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Abstract— Rapidly-exploring random trees (RRTs) are pop-
ular in motion planning because they find solutions efficiently
to single-query problems. Optimal RRTs (RRT*s) extend RRTs
to the problem of finding the optimal solution, but in doing so
asymptotically find the optimal path from the initial state to
every state in the planning domain. This behaviour is not only
inefficient but also inconsistent with their single-query nature.

For problems seeking to minimize path length, the subset
of states that can improve a solution can be described by a
prolate hyperspheroid. We show that unless this subset is sam-
pled directly, the probability of improving a solution becomes
arbitrarily small in large worlds or high state dimensions. In
this paper, we present an exact method to focus the search by
directly sampling this subset.

The advantages of the presented sampling technique are
demonstrated with a new algorithm, Informed RRT*. This
method retains the same probabilistic guarantees on complete-
ness and optimality as RRT* while improving the convergence
rate and final solution quality. We present the algorithm as a
simple modification to RRT* that could be further extended
by more advanced path-planning algorithms. We show exper-
imentally that it outperforms RRT* in rate of convergence,
final solution cost, and ability to find difficult passages while
demonstrating less dependence on the state dimension and
range of the planning problem.

I. INTRODUCTION

The motion-planning problem is commonly solved by
first discretizing the continuous state space with either a
grid for graph-based searches or through random sampling
for stochastic incremental searches. Graph-based searches,
such as A* [1], are often resolution complete and resolution
optimal. They are guaranteed to find the optimal solution,
if a solution exists, and return failure otherwise (up to the
resolution of the discretization). These graph-based algorithms
do not scale well with problem size (e.g., state dimension or
problem range).

Stochastic searches, such as Rapidly-exploring Random
Trees (RRTs) [2], Probabilistic Roadmaps (PRMs) [3], and
Expansive Space Trees (ESTs) [4], use sampling-based
methods to avoid requiring a discretization of the state space.
This allows them to scale more effectively with problem size
and to directly consider kinodynamic constraints; however,
the result is a less-strict completeness guarantee. RRTs are
probabilistically complete, guaranteeing that the probability
of finding a solution, if one exists, approaches unity as the
number of iterations approaches infinity.
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Fig. 1. Solutions of equivalent cost found by RRT* and Informed RRT* on
a random world. After an initial solution is found, Informed RRT* focuses
the search on an ellipsoidal informed subset of the state space, X

f̂
⊆ X ,

that contains all the states that can improve the current solution regardless
of homotopy class. This allows Informed RRT* to find a better solution
faster than RRT* without requiring any additional user-tuned parameters.

Until recently, these sampling-based algorithms made no
claims about the optimality of the solution. Urmson and
Simmons [5] had found that using a heuristic to bias sampling
improved RRT solutions, but did not formally quantify the
effects. Ferguson and Stentz [6] recognized that the length
of a solution bounds the possible improvements from above,
and demonstrated an iterative anytime RRT method to solve
a series of subsequently smaller planning problems. Karaman
and Frazzoli [7] later showed that RRTs return a suboptimal
path with probability one, demonstrating that all RRT-based
methods will almost surely be suboptimal and presented a new
class of optimal planners. They named their optimal variants
of RRTs and PRMs, RRT* and PRM*, respectively. These
algorithms are shown to be asymptotically optimal, with the
probability of finding the optimal solution approaching unity
as the number of iterations approaches infinity.

RRTs are not asymptotically optimal because the existing
state graph biases future expansion. RRT* overcomes this
by introducing incremental rewiring of the graph. New
states are not only added to a tree, but also considered as
replacement parents for existing nearby states in the tree.
With uniform global sampling, this results in an algorithm
that asymptotically finds the optimal solution to the planning
problem by asymptotically finding the optimal paths from
the initial state to every state in the problem domain. This
is inconsistent with their single-query nature and becomes
expensive in high dimensions.

In this paper, we present the focused optimal planning
problem as it relates to the minimization of path length in
Rn. For such problems, a necessary condition to improve
the solution at any iteration is the addition of states from
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Fig. 2. The solution cost versus computational time for RRT* and Informed RRT* on a random world problem. Both planners were run until they found a
solution of the same cost. Figs. (a, c) show the final result, while Fig. (b) shows the solution cost versus computational time. From Fig. (a), it can be
observed that RRT* spends significant computational resources exploring regions of the planning problem that cannot possibly improve the current solution,
while Fig. (c) demonstrates how Informed RRT* focuses the search. .

an ellipsoidal subset of the planning domain [6], [8]–[10].
We show that the probability of adding such states through
uniform sampling becomes arbitrarily small as the size of the
planning problem increases or the solution approaches the
theoretical minimum, and present an exact method to sample
the ellipsoidal subset directly. It is also shown that with
strict assumptions (i.e., no obstacles) that this direct sampling
results in linear convergence to the optimal solution.

This direct-sampling method allows for the creation of
informed-sampling planners. Such a planner, Informed RRT*,
is presented to demonstrate the advantages of informed
incremental search (Fig. 1). Informed RRT* behaves as RRT*
until a first solution is found, after which it only samples
from the subset of states defined by an admissible heuristic to
possibly improve the solution. This subset implicitly balances
exploitation versus exploration and requires no additional
tuning (i.e., there are no additional parameters) or assumptions
(i.e., all relevant homotopy classes are searched). While
heuristics may not always improve the search, their promi-
nence in real-world planning demonstrates their practicality.
In situations where they provide no additional information
(e.g., when the informed subset includes the entire planning
problem), Informed RRT* is equivalent to RRT*.

Informed RRT* is a simple modification to RRT* that
demonstrates a clear improvement. In simulation, it performs
as well as existing RRT* algorithms on simple configurations,
and demonstrates order-of-magnitude improvements as the
configurations become more difficult (Fig. 2). As a result of
its focused search, the algorithm has less dependence on the
dimension and domain of the planning problem as well as
the ability to find better topologically distinct paths sooner. It
is also capable of finding solutions within tighter tolerances
of the optimum than RRT* with equivalent computation, and
in the absence of obstacles can find the optimal solution to
within machine zero in finite time (Fig. 3). It could also
be used in combination with other algorithms, such as path-
smoothing, to further reduce the search space.

The remainder of this paper is organized as follows.
Section II presents a formal definition of the focused op-
timal planning problem and reviews the existing literature.

Section III presents a closed-form estimate of the subset of
states that can improve a solution for problems seeking to
minimize path length in Rn and analyzes the implications
on RRT*-style algorithms. Section IV presents a method to
sample this subset directly. Section V presents the Informed
RRT* algorithm and Section VI presents simulation results
comparing RRT* and Informed RRT* on simple planning
problems of various size and configuration and random
problems of various dimension. Section VII concludes the
paper with a discussion of the technique and some related
ongoing work.

II. BACKGROUND

A. Problem Definition

We define the optimal planning problem similarly to [7].
Let X ⊆ Rn be the state space of the planning problem.
Let Xobs ( X be the states in collision with obstacles and
Xfree = X \Xobs be the resulting set of permissible states.
Let xstart ∈ Xfree be the initial state and xgoal ∈ Xfree be
the desired final state. Let σ : [0, 1] 7→ X be a sequence of
states (a path) and Σ be the set of all nontrivial paths.

The optimal planning problem is then formally defined
as the search for the path, σ∗, that minimizes a given cost
function, c : Σ 7→ R≥0, while connecting xstart to xgoal

through free space,

σ∗ = arg min
σ∈Σ

{c (σ) | σ(0) = xstart, σ(1) = xgoal,

∀s ∈ [0, 1] , σ (s) ∈ Xfree} ,
where R≥0 is the set of non-negative real numbers.

Let f (x) be the cost of an optimal path from xstart to xgoal

constrained to pass through x. Then the subset of states that
can improve the current solution, Xf ⊆ X , can be expressed
in terms of the current solution cost, cbest,

Xf = {x ∈ X | f (x) < cbest} . (1)

The problem of focusing RRT*’s search in order to increase
the convergence rate is equivalent to increasing the probability
of adding a random state from Xf .

As f (·) is generally unknown, a heuristic function, f̂ (·),
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59 iterations, cbest = 148.24 175 iterations, cbest = 107.12 1142 iterations, cbest = 100
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After an initial solution is found all
possible improvements lie within an
ellipse.

As the solution is improved the area of
the ellipse decreases.

In the absence of obstacles the
ellipse degenerates to a line.

Fig. 3. Informed RRT* converging to within machine zero of the optimum in the absence of obstacles. The start and goal states are shown as green and
red, respectively, and are 100 units apart. The current solution is highlighted in magenta, and the ellipsoidal sampling domain, X

f̂
, is shown as a grey

dashed line for illustration. Improving the solution decreases the size of the sampling domain, creating a feedback effect that converges to within machine
zero of the theoretical minimum. Fig. (a) shows the first solution at 59 iterations, (b) after 175 iterations, and (c), the final solution after 1142 iterations, at
which point the ellipse has degenerated to a line between the start and goal.

may be used as an estimate. This heuristic is referred to as
admissible if it never overestimates the true cost of the path,
i.e., ∀x ∈ X, f̂ (x) ≤ f (x). An estimate of Xf , Xf̂ , can
then be defined analogously to (1). For admissible heuristics,
this estimate is guaranteed to completely contain the true set,
Xf̂ ⊇ Xf , and thus inclusion in the estimated set is also a
necessary condition to improving the current solution.

B. Prior Work

Prior work to focus RRT and RRT* has relied on sample
biasing, heuristic-based sample rejection, heuristic-based
graph pruning, and/or iterative searches.

1) Sample Biasing: Sample biasing attempts to increase
the frequency that states are sampled from Xf by biasing the
distribution of samples drawn from X . This continues to add
states from outside of Xf that cannot improve the solution. It
also results in a nonuniform density over the problem being
searched, violating a key RRT* assumption.

a) Heuristic-biased Sampling: Heuristic-biased sam-
pling attempts to increase the probability of sampling Xf

by weighting the sampling of X with a heuristic estimate of
each state. It is used to improve the quality of a regular RRT
by Urmson and Simmons [5] in the Heuristically Guided
RRT (hRRT) by selecting states with a probability inversely
proportional to their heuristic cost. The hRRT was shown to
find better solutions than RRT; however, the use of RRTs
means that the solution is almost surely suboptimal [7].

Kiesel et al. [11] use a two-stage process to create an RRT*
heuristic in their f-biasing technique. A coarse abstraction of
the planning problem is initially solved to provide a heuristic
cost for each discrete state. RRT* then samples new states
by randomly selecting a discrete state and sampling inside it
with a continuous uniform distribution. The discrete sampling
is biased such that states belonging to the abstracted solution
have the highest probability of selection. This technique
provides a heuristic bias for the full duration of the RRT*
algorithm; however, to account for the discrete abstraction it
maintains a nonzero probability of selecting every state. As
a result, states that cannot improve the current solution are
still sampled.

b) Path Biasing: Path-biased sampling attempts to
increase the frequency of sampling Xf by sampling around
the current solution path. This assumes that the current
solution is either homotopic to the optimum or separated
only by small obstacles. As this assumption is not generally
true, path-biasing algorithms must also continue to sample
globally to avoid local optima. The ratio of these two sampling
methods is frequently a user-tuned parameter.

Alterovitz et al. [12] use path biasing to develop the
Rapidly-exploring Roadmap (RRM). Once an initial solution
is found, each iteration of the RRM either samples a new
state or selects an existing state from the current solution and
refines it. Path refinement occurs by connecting the selected
state to its neighbours resulting in a graph instead of a tree.

Akgun and Stilman [13] use path biasing in their dual-
tree version of RRT*. Once an initial solution is found, the
algorithm spends a user-specified percentage of its iterations
refining the current solution. It does this by randomly selecting
a state from the solution path and then explicitly sampling
from its Voronoi region. This increases the probability of
improving the current path at the expense of exploring other
homotopy classes. Their algorithm also employs sample
rejection in exploring the state space (Section II-B.2).

Nasir et al. [14] combine path biasing with smoothing in
their RRT*-Smart algorithm. When a solution is found, RRT*-
Smart first smooths and reduces the path to its minimum
number of states before using these states as biases for further
sampling. This adds the complexity of a path-smoothing
algorithm to the planner while still requiring global sampling
to avoid local optima. While the path smoothing quickly
reduces the cost of the current solution, it may also reduce the
probability of finding a different homotopy class by removing
the number of bias points about which samples are drawn
and further violates the RRT* assumption of uniform density.

Kim et al. [15] use a visibility analysis to generate an initial
bias in their Cloud RRT* algorithm. This bias is updated as a
solution is found to further concentrate sampling near the path.

2) Heuristic-based Sample Rejection: Heuristic-based
sample rejection attempts to increase the real-time rate of
sampling Xf by using rejection sampling on X to sample
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Xf̂ . Samples drawn from a larger distribution are either
kept or rejected based on their heuristic value. Akgun and
Stilman [13] use such a technique in their algorithm. While
this is computationally inexpensive for a single iteration, the
number of iterations necessary to find a single state in Xf̂ is
proportional to its size relative to the sampling domain. This
becomes nontrivial as the solution approaches the theoretical
minimum or the planning domain grows.

Otte and Correll [8] draw samples from a subset of the
planning domain in their parallelized C-FOREST algorithm.
This subset is defined as the hyperrectangle that bounds the
prolate hyperspheroidal informed subset. While this improves
the performance of sample rejection, its utility decreases as
the dimension of the problem increases (Remark 2).

3) Graph Pruning: Graph pruning attempts to increase the
real-time exploration of Xf by using a heuristic function
to limit the graph to Xf̂ . States in the planning graph
with a heuristic cost greater than the current solution are
periodically removed while global sampling is continued.
The space-filling nature of RRTs biases the expansion of the
pruned graph towards the perimeter of Xf̂ . After the subset
is filled, only samples from within Xf̂ itself can add new
states to the graph. In this way, graph pruning becomes a
rejection-sampling method after greedily filling the target
subset. As adding a new state to an RRT requires a call to
a nearest-neighbour algorithm, graph pruning will be more
computationally expensive than simple sample rejection while
still suffering from the same probabilistic limitations.

Karaman et al. [16] use graph pruning to implement an
anytime version of RRT* that improves solutions during
execution. They use the current vertex cost plus a heuristic
estimate of the cost from the vertex to the goal to periodically
remove states from the tree that cannot improve the current
solution. As RRT* asymptotically approaches the optimal
cost of a vertex from above, this is an inadmissible heuristic
for the cost of a solution through a vertex (Section III). This
can overestimate the heuristic cost of a vertex resulting in
erroneous removal, especially early in the algorithm when the
tree is coarse. Jordan and Perez [17] use the same inadmissible
heuristic in their bidirectional RRT* algorithm.

Arslan and Tsiotras [18] use a graph structure and lifelong
planning A* (LPA*) [19] techniques in the RRT# algorithm
to prune the existing graph. Each existing state is given a
LPA*-style key that is updated after the addition of each new
state. Only keys that are less than the current best solution are
updated, and only up-to-date keys are available for connection
with newly drawn samples.

4) Anytime RRTs: Ferguson and Stentz [6] recognized
that a solution bounds the subset of states that can provide
further improvement from above. Their iterative RRT method,
Anytime RRTs, solves a series of independent planning
problems whose domains are defined by the previous solution.
They represent these domains as ellipses [6, Fig. 2], but do
not discuss how to generate samples. Restricting the planning
domain encourages each RRT to find a better solution than
the previous; however, to do so they must discard the states
already found in Xf̂ .

The algorithm presented in this paper calculates Xf̂

xstart xgoal

cbest

√
c2best − c2min cmin

Fig. 4. The heuristic sampling domain, X
f̂

, for a R2 problem seeking to
minimize path length is an ellipse with the initial state, xstart, and the goal
state, xgoal as focal points. The shape of the ellipse depends on both the
initial and goal states, the theoretical minimum cost between the two, cmin,
and the cost of the best solution found to date, cbest. The eccentricity of
the ellipse is given by cmin/cbest.

explicitly and samples from it directly. Unlike path biasing
it makes no assumptions about the homotopy class of the
optimum and unlike heuristic biasing does not explore states
that cannot improve the solution. As it is based on RRT*,
it is able to keep all states found in Xf̂ for the duration of
the search, unlike Anytime RRTs. By sampling Xf̂ directly,
it always samples potential improvements regardless of the
relative size of Xf̂ to X . This allows it to work effectively
regardless of the size of the planning problem or the relative
cost of the current solution to the theoretical minimum,
unlike sample rejection and graph pruning methods. In
problems where the heuristic does not provide any additional
information, it performs identically to RRT*.

III. ANALYSIS OF THE ELLIPSOIDAL INFORMED SUBSET

Given a positive cost function, the cost of an optimal path
from xstart to xgoal constrained to pass through x ∈ X ,
f (x), is equal to the cost of the optimal path from xstart to
x, g (x), plus the cost of the optimal path from x to xgoal,
h (x). As RRT*-based algorithms asymptotically approach
the optimal path to every state from above, an admissible
heuristic estimate, f̂ (·), must estimate both these terms. A
sufficient condition for admissibility is that the components,
ĝ (·) and ĥ (·), are individually admissible heuristics of g (·)
and h (·), respectively.

For problems seeking to minimize path length in Rn,
Euclidean distance is an admissible heuristic for both terms
(even with motion constraints). This informed subset of states
that may improve the current solution, Xf̂ ⊇ Xf , can then be
expressed in closed form in terms of the cost of the current
solution, cbest, as

Xf̂ =
{
x ∈ X

∣∣ ||xstart − x||2 + ||x− xgoal||2 ≤ cbest

}
,

which is the general equation of an n-dimensional prolate
hyperspheroid (i.e., a special hyperellipsoid). The focal points
are xstart and xgoal, the transverse diameter is cbest, and the
conjugate diameters are

√
c2best − c2min (Fig. 4).

Admissibility of f̂ (·) makes adding a state in Xf̂ a
necessary condition to improve the solution. With the space-
filling nature of RRT, the probability of adding such a state
quickly becomes the probability of sampling such a state1.
Thus, the probability of improving the solution at any iteration
by uniformly sampling a larger subset, xi+1 ∼ U (Xs) , Xs ⊇

1States may be added to X
f̂

with a sample from outside the subset until
it is filled to within the RRT growth-limiting parameter, η, of its boundary.
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Xf̂ , is less than or equal to the ratio of set measures λ (·),

P
(
ci+1
best < cibest

)
≤ P

(
xi+1 ∈ Xf

)
(2)

≤ P
(
xi+1 ∈ Xf̂

)
=

λ(Xf̂)
λ(Xs)

.

Using the volume of a prolate hyperspheroid in Rn gives

P
(
ci+1
best < cibest

)
≤ cibest

(
ci

2

best−c2min

)n−1
2 ζn

2nλ(Xs)
, (3)

with ζn being the volume of a unit n-ball.

Remark 1 (Rejection sampling): From (3) it can be ob-
served that the probability of improving a solution through
uniform sampling becomes arbitrarily small for large subsets
(e.g., global sampling) or as the solution approaches the
theoretical minimum.

Remark 2 (Rectangular rejection sampling): Let Xs be a
hyperrectangle that tightly bounds the informed subset (i.e.,
the widths of each side correspond to the diameters of the
prolate hyperspheroid) [8]. From (3), the probability that a
sample drawn uniformly from Xs will be in Xf̂ is then ζn

2n ,
which decreases rapidly with n. For example, with n = 6 this
gives a maximum 8% probability of improving a solution at
each iteration through rejection sampling regardless of the
specific solution, problem, or algorithm parameters.

Theorem 1 (Obstacle-free linear convergence): With uni-
form sampling of the informed subset, x ∼ U

(
Xf̂

)
, the cost

of the best solution, cbest, converges linearly to the theoretical
minimum, cmin, in the absence of obstacles.

Proof: The heuristic value of a state is equal to the
transverse diameter of a prolate hyperspheroid that passes
through the state and has focal points at xstart and xgoal.
With uniform sampling, the expectation is then [20]

E
[
f̂ (x)

]
=

nc2best+c
2
min

(n+1)cbest
. (4)

We assume that the RRT* rewiring parameter is greater than
the diameter of the informed subset, similarly to how the proof
of the asymptotic optimality of RRT* assumes that η is greater
than the diameter of the planning problem [7]. The expectation
of the solution cost, cibest, is then the expectation of the
heuristic cost of a sample drawn from a prolate hyperspheroid
of diameter ci−1

best, i.e., E
[
cibest

]
= E

[
f̂
(
xi
)]

. From (4) it
follows that the solution cost converges linearly with a rate,
µ, that depends only on the state dimension [20],

µ =
∂E[cibest]
∂ci−1

best

∣∣∣∣
ci−1
best=cmin

= n−1
n+1 .

While the obstacle-free assumption is impractical, Thm. 1
illustrates the fundamental effectiveness of direct informed
sampling and provides possible insight for future work.

IV. DIRECT SAMPLING OF AN ELLIPSOIDAL SUBSET

Uniformly distributed samples in a hyperellipsoid,
xellipse ∼ U (Xellipse), can be generated by transforming
uniformly distributed samples from the unit n-ball, xball ∼
U (Xball),

xellipse = Lxball + xcentre,

where xcentre = (xf1 + xf2) /2 is the centre of the hyper-
ellipsoid in terms of its two focal points, xf1 and xf2, and
Xball = {x ∈ X | ||x||2 ≤ 1} [21].

This transformation can be calculated by Cholesky decom-
position of the hyperellipsoid matrix, S ∈ Rn×n,

LLT ≡ S,
where

(x− xcentre)
T

S (x− xcentre) = 1,

with S having eigenvectors corresponding to the axes of the
hyperellipsoid, {ai}, and eigenvalues corresponding to the
squares of its radii,

{
r2
i

}
. The transformation, L, maintains

the uniform distribution in Xellipse [22].
For prolate hyperspheroids, such as Xf̂ , the transformation

can be calculated from just the transverse axis and the radii.
The hyperellipsoid matrix in a coordinate system aligned with
the transverse axis is the diagonal matrix

S = diag
{
c2best

4 ,
c2best−c2min

4 , . . . ,
c2best−c2min

4

}
,

with a resulting decomposition of

L = diag

{
cbest

2 ,

√
c2best−c2min

2 , . . . ,

√
c2best−c2min

2

}
, (5)

where diag {·} denotes a diagonal matrix.
The rotation from the hyperellipsoid frame to the world

frame, C ∈ SO (n), can be solved directly as a general
Wahba problem [23]. It has been shown that a valid solution
can be found even when the problem is underspecified [24].
The rotation matrix is given by

C = U diag {1, . . . , 1,det (U) det (V)}VT , (6)

where det (·) is the matrix determinant and U ∈ Rn×n and
V ∈ Rn×n are unitary matrices such that UΣVT ≡M via
singular value decomposition. The matrix M is given by the
outer product of the transverse axis in the world frame, a1,
and the first column of the identity matrix, 11,

M = a11
T
1 ,

where
a1 = (xgoal − xstart) / ||xgoal − xstart||2 .

A state uniformly distributed in the informed subset,
xf̂ ∼ U

(
Xf̂

)
, can thus be calculated from a sample drawn

uniformly from a unit n-ball, xball ∼ U (Xball), through a
transformation (5), rotation (6), and translation,

xf̂ = CLxball + xcentre. (7)

This procedure is presented algorithmically in Alg. 2.

V. INFORMED RRT*
An example algorithm using direct informed sampling,

Informed RRT*, is presented in Algs. 1 and 2. It is identical
to RRT* as presented in [7], with the addition of lines 3, 6,
7, 30, and 31. Like RRT*, it searches for the optimal path,
σ∗, to a planning problem by incrementally building a tree
in state space, T = (V,E), consisting of a set of vertices,
V ⊆ Xfree, and edges, E ⊆ Xfree ×Xfree. New vertices are
added by growing the graph in free space towards randomly
selected states. The graph is rewired with each new vertex
such that the cost of the nearby vertices are minimized.

The algorithm differs from RRT* in that once a solution
is found, it focuses the search on the part of the planning
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Algorithm 1: Informed RRT*(xstart,xgoal)

1 V ← {xstart};
2 E ← ∅;
3 Xsoln ← ∅;
4 T = (V,E);
5 for iteration = 1 . . . N do
6 cbest ← minxsoln∈Xsoln

{Cost (xsoln)};
7 xrand ← Sample

(
xstart,xgoal, cbest

)
;

8 xnearest ← Nearest (T ,xrand);
9 xnew ← Steer (xnearest,xrand);

10 if CollisionFree (xnearest,xnew) then
11 V ← ∪{xnew};
12 Xnear ← Near (T ,xnew, rRRT∗ );
13 xmin ← xnearest;
14 cmin ← Cost (xmin) + c · Line (xnearest,xnew);
15 for ∀xnear ∈ Xnear do
16 cnew ← Cost (xnear) + c · Line (xnear,xnew);
17 if cnew < cmin then
18 if CollisionFree (xnear,xnew) then
19 xmin ← xnear;
20 cmin ← cnew;

21 E ← E ∪ {(xmin,xnew)};
22 for ∀xnear ∈ Xnear do
23 cnear ← Cost (xnear);
24 cnew ← Cost (xnew) + c · Line (xnew,xnear);
25 if cnew < cnear then
26 if CollisionFree (xnew,xnear) then
27 xparent ← Parent (xnear);
28 E ← E \ {(xparent,xnear)};
29 E ← E ∪ {(xnew,xnear)};

30 if InGoalRegion (xnew) then
31 Xsoln ← Xsoln ∪ {xnew};

32 return T ;

problem that can improve the solution. It does this through
direct sampling of the ellipsoidal heuristic. As solutions are
found (line 30), Informed RRT* adds them to a list of possible
solutions (line 31). It uses the minimum of this list (line 6) to
calculate and sample Xf̂ directly (line 7). As is conventional,
we take the minimum of an empty set to be infinity. The
new subfunctions are described below, while descriptions of
subfunctions common to RRT* can be found in [7]:
Sample: Given two poses, xfrom, xto ∈ Xfree and

a maximum heuristic value, cmax ∈ R, the function
Sample (xfrom,xto, cmax) returns independent and identically
distributed (i.i.d.) samples from the state space, xnew ∈ X ,
such that the cost of an optimal path between xfrom and
xto that is constrained to go through xnew is less than cmax

as described in Section III and Alg. 2. In most planning
problems, xfrom ≡ xstart, xto ≡ xgoal, and lines 2 to 4 of
Alg. 2 can be calculated once at the start of the problem.
InGoalRegion: Given a pose, x ∈ Xfree, the function

InGoalRegion (x) returns True if and only if the state is in
the goal region, Xgoal, as defined by the planning problem,
otherwise it returns False. One common goal region is a
ball of radius rgoal centred about the goal, i.e.,

Xgoal =
{
x ∈ Xfree

∣∣ ||x− xgoal||2 ≤ rgoal

}
.

RotationToWorldFrame: Given two poses as the
focal points of a hyperellipsoid, xfrom, xto ∈ X , the function
RotationToWorldFrame (xfrom,xto) returns the rotation
matrix, C ∈ SO (n), from the hyperellipsoid-aligned frame
to the world frame as per (6). As previously discussed, in

Algorithm 2: Sample (xstart,xgoal, cmax)

1 if cmax <∞ then
2 cmin ←

∣∣∣∣xgoal − xstart

∣∣∣∣
2

;
3 xcentre ←

(
xstart + xgoal

)
/2;

4 C← RotationToWorldFrame
(
xstart,xgoal

)
;

5 r1 ← cmax/2;

6 {ri}i=2,...,n ←
(√

c2max − c2min

)
/2;

7 L← diag {r1, r2, . . . , rn};
8 xball ← SampleUnitNBall;
9 xrand ← (CLxball + xcentre) ∩X;

10 else
11 xrand ∼ U (X);

12 return xrand;

most planning problems this rotation matrix only needs to
be calculated at the beginning of the problem.
SampleUnitNBall: The function, SampleUnitNBall

returns a uniform sample from the volume of an n-ball of
unit radius centred at the origin, i.e. xball ∼ U (Xball).

A. Calculating the Rewiring Radius

At each iteration, the rewiring radius, rRRT∗ , must be large
enough to guarantee almost-sure asymptotic convergence
while being small enough to only generate a tractable number
of rewiring candidates. Karaman and Frazzoli [7] present a
lower-bound for this rewiring radius in terms of the measure
of the problem space and the number of vertices in the graph.
Their expression assumes a uniform distribution of samples
of a unit square. As Informed RRT* uniformly samples the
subset of the planning problem that can improve the solution,
a rewiring radius can be calculated from the measure of this
informed subset and the related vertices inside it. This updated
radius reduces the amount of rewiring necessary and further
improves the performance of Informed RRT*. Ongoing work
is focused on finding the exact form of this expression, but
the radius provided by [7] appears appropriate. There also
exists a k-nearest neighbour version of this expression.

VI. SIMULATIONS

Informed RRT* was compared to RRT* on a variety
of simple planning problems (Figs. 5 to 7) and randomly
generated worlds (e.g., Figs. 1, 2). Simple problems were
used to test specific challenges, while the random worlds
were used to provide more challenging problems in a variety
of state dimensions.

Fig. 5(a) was used to examine the effects of the problem
range and the ability to find paths within a specified tolerance
of the true optimum, with the width of the obstacle, w, se-
lected randomly. Fig. 5(b) was used to demonstrate Informed
RRT*’s ability to find topologically distinct solutions, with
the position of the narrow passage, yg, selected randomly.
For these toy problems, experiments were ended when the
planner found a solution cost within the target tolerance of
the optimum. Random worlds, as in Fig. 2, were used to
test Informed RRT* on more complicated problems and in
higher state dimensions by giving the algorithms 60 seconds
to improve their initial solutions. For each variation of every
experiment, 100 different runs of both RRT* and Informed
RRT* were performed with a common pseudo-random seed
and map.
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Fig. 5. The two planning problems used in Section VI. The width of the
obstacle, w, and the location of the gap, yg , were selected randomly for
each experimental run.

The algorithms share the same unoptimized code, allowing
for the comparison of relative computational time2. While
further optimization would reduce the effect of graph size on
the computational cost and reduce the difference between the
two planners, as they have approximately the same cost per
iteration it will not effect the order. To minimize the effects of
the steer parameter on our results, we set it equal to the RRT*
rewiring radius at each iteration calculated from γRRT =
1.1γ∗RRT, a choice we found improved the performance of
RRT*. As discussed in Section V-A, for Informed RRT* we
calculated the rewiring radius for the subproblem defined by
the current solution using the expression in [7].

Experiments varying the width of the problem range, l,
while keeping a fixed distance between the start and goal show
that Informed RRT* finds a suitable solution in approximately
the same time regardless of the relative size of the problem
(Fig. 8). As a result of considering only the informed subset
once an initial solution is found, the size of the search space
is independent of the planning range (Fig. 6). In contrast,
the time needed by RRT* to find a similar solution increases
as the problem range grows as proportionately more time
is spent searching states that cannot improve the solution
(Fig. 8).

Experiments varying the target solution cost show that
Informed RRT* is capable of finding near-optimal solutions
in significantly fewer iterations than RRT* (Fig. 9). The
direct sampling of the informed subset increases density
around the optimal solution faster than global sampling and
therefore increases the probability of improving the solution
and further focusing the search. In contrast, RRT* has uniform
density across the entire planning domain and improving the
solution actually decreases the probability of finding further
improvements (Fig. 6).

Experiments varying the height of hg in Fig. 5(b) demon-
strate that Informed RRT* finds difficult passages that
improve the current solution, regardless of their homotopy
class, quicker than RRT* (Fig. 10). Once again, the result of
considering only the informed subset is an increased state
density in the region of the planning problem that includes the
optimal solution. Compared to global sampling, this increases
the probability of sampling within difficult passages, such as
narrow gaps between obstacles, decreasing the time necessary

2Experiments were run in Ubuntu 12.04 on an Intel i5-2500K CPU with
8GB of RAM.

5 seconds, cbest = 114.86 5 seconds, cbest = 112.52

(a) (b)

RRT* Informed RRT*

Fig. 6. An example of Fig. 5(a) after 5 seconds for a problem with
an optimal solution cost of 112.01. Note that the presence of an obstacle
provides a lower bound on the size of the ellipsoidal subset but that Informed
RRT* still searches a significantly reduced domain than RRT*, increasing
both the convergence rate and quality of final solution.

12.32 seconds 4.00 seconds

(a) (b)

RRT* Informed RRT*

Fig. 7. An example of Fig. 5(b) for a 3% off-centre gap. By focusing the
search space on the subset of states that may improve an initial solution
flanking the obstacle, Informed RRT* is able to find a path through the
narrow opening in 4.00 seconds while RRT* requires 12.32 seconds.

to find such solutions (Fig. 7).
Finally, experiments on random worlds demonstrate that

the improvements of Informed RRT* apply to a wide range
of planning problems and state dimensions (Fig. 11).

VII. DISCUSSION & CONCLUSION

In this paper, we discuss that a necessary condition for
RRT* algorithms to improve a solution is the addition of a
state from a subset of the planning problem, Xf ⊆ X . For
problems seeking to minimize path length in Rn, this subset
can be estimated, Xf̂ ⊇ Xf , by a prolate hyperspheroid (a
special type of hyperellipsoid) with the initial and goal states
as focal points. It is shown that the probability of adding a new
state from this subset through rejection sampling of a larger
set becomes arbitrarily small as the dimension of the problem
increases, the size of the sampled set increases, or the solution
approaches the theoretical minimum. A simple method to
sample Xf̂ directly is presented that allows for the creation
of informed-sampling planners, such as Informed RRT*. It is
shown that Informed RRT* outperforms RRT* in the ability
to find near-optimal solutions in finite time regardless of
state dimension without requiring any assumptions about the
optimal homotopy class.

Informed RRT* uses heuristics to shrink the planning
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Fig. 8. The median computational time needed by RRT* and Informed
RRT* to find a path within 2% of the optimal cost in R2 for various map
widths, l, for the problem in Fig. 5(a). Error bars denote a nonparametric
95% confidence interval for the median number of iterations calculated from
100 independent runs.
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Fig. 9. The median computational time needed by RRT* and Informed
RRT* to find a path within the specified tolerance of the optimal cost, c∗,
in R2 for the problem in Fig. 5(a). Error bars denote a nonparametric 95%
confidence interval for the median number of iterations calculated from 100
independent runs.

problem to subsets of the original domain. This makes it
inherently dependent on the current solution cost, as it cannot
focus the search when the associated prolate hyperspheroid is
larger than the planning problem itself. Similarly, it can only
shrink the subset down to the lower bound defined by the
optimal solution. We are currently investigating techniques
to focus the search without requiring an initial solution.
These techniques, such as Batch Informed Trees (BIT*) [25],
incrementally increase the search subset. By doing so, they
prioritize the initial search of low-cost solutions.

An open motion planning library (OMPL) implementa-
tion of Informed RRT* is described at http://asrl.utias.
utoronto.ca/code.
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