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Abstract

In this paper we revisit the topic of how to formulate error terms for esti-
mation problems that involve rotational state variables. We present a first-
principles linearization approach that yields multiplicative error terms for
unit-length quaternion representations of rotations, as well as for canonical
rotation matrices. Quaternion algebra is employed throughout our deriva-
tions. We show the utility of our approach through two examples: (i) lin-
earizing a sun sensor measurement error term, and (ii) weighted-least-squares
point-cloud alignment.

1. Introduction

The classic results of multivariate state estimation are rooted in both
probability theory and vector calculus. This presents challenges for many
practical estimation problems involving rotational state variables, which are
not members of a vector space. Rather, the set of rotations constitutes a non-
commutative group, called SO(3). Regardless of the choice of representation
(e.g., rotation matrix, unit-length quaternion, Euler angles), a rotation has
exactly three degrees of freedom. All rotational representations involving ex-
actly three parameters have singularities [27] and all representations having
more than three parameters have constraints. The question of how best to
parametrize and handle rotations in state estimation is by no means new.
There are many rotational parameterizations available, each with its unique
advantages and disadvantages [22]. In spacecraft attitude and robotics esti-
mation, the 4× 1 unit-length quaternion (a.k.a., Euler-Rodrigues symmetric
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parameters), the standard 3 × 3 rotation matrix, and Euler angles are all
common [4].

Unit-length quaternions are appealing in that they are free of singulari-
ties and compact in their representation; however, the unit-length constraint
must be considered carefully, particularly for estimation problems. The ques-
tion of whether to make updates to unit-length quaternions ‘additively’ or
‘multiplicatively’ has been debated often [17, 16]. For online attitude esti-
mation, two variants of the Kalman filter [11] have been introduced: The
Additive Extended Kalman Filter (AEKF) [1] and the Multiplicative Ex-
tended Kalman Filter (MEKF) [12, 15]. Both of these require the estimated
quaternion to be re-normalized after the filter update step to restore the unit-
length constraint. However, it was only recently shown that re-normalization
within the Kalman filter framework is in fact a direct consequence of perform-
ing optimal estimation under the unit-length constraint [32]. More generally,
Shuster [23, 24] provides a detailed examination of performing both ‘con-
strained’ (e.g., sensitive to but not enforcing the unit-length quaternion con-
straint during the update step) and ‘unconstrained’ (e.g., not sensitive to the
unit-length quaternion constraint), demonstrating that constraint-sensitive
estimation is preferable.

This paper builds on the work of Shuster [23, 24], by deriving constraint-
sensitive linearizations of both unit-length quaternions and rotation matrices
from a simple first-principles linearization perspective. Under this approach,
the multiplicative perturbations arise quite naturally. We show how these
perturbations may be used in the calculation of an arbitrary ‘measurement
sensitivity matrix’ (i.e., partial derivative of the measurement function with
respect to the rotation) [23] and more generally in the linearization of any
expression involving a unit-length quaternion or rotation matrix. In our han-
dling of unit-length quaternions, we exploit ‘quaternion algebra’ [10] quite
heavily, which permits parallels to be drawn between the unit-length quater-
nion and rotation matrix results. To demonstrate the utility of our approach,
we provide an example of linearizing a sun sensor measurement error term
as well as an extended example of a batch weighted-least-squares pose (i.e.,
position and orientation) estimation problem. Pose estimation is an impor-
tant problem in such aerospace applications as spacecraft rendezvous and
docking, as well as motion estimation of planetary rovers.

The paper is organized as follows. We first introduce the notation and
operations we will use for handling quaternions. We then derive our general
expressions for linearizing expressions involving both unit-length quaternions

2



and rotation matrices. Finally, we demonstrate these through the sun sensor
and weighted-least-squares examples.

2. Quaternion Algebra

In this section we introduce the notation that we will employ in our
treatment of quaternions [6, 28, 7], which we refer to as quaternion algebra
[10]. We use quaternions to represent both translations and rotations. Our
notation differs slightly from others [3, 22], but the concepts remain the same.
We begin with notation followed by identities and finally the relationship to
rotations (i.e., unit-length quaternions).

2.1. Notation

In what is to follow, a quaternion will be a 4 × 1 column that may be
written as

q :=

[
ε
η

]
, (1)

where ε is a 3 × 1 and η is a scalar. The quaternion left-hand compound
operator, +, and the right-hand compound operator, ⊕, will be defined as

q+ :=

[
η1− ε× ε
−εT η

]
and q⊕ :=

[
η1 + ε× ε
−εT η

]
, (2)

where

ε× :=

 0 −ε3 ε2
ε3 0 −ε1
−ε2 ε1 0

 (3)

defines the usual 3× 3 skew-symmetric matrix, which may be used to imple-
ment the cross product for 3 × 1 columns [9]. Under these definitions, the
multiplication of quaternions, u and v, which is typically written as u ⊗ v
[22], may be written equivalently as either

u+v or v⊕u, (4)

which are both products of a 4×4 matrix with a 4×1 column. The conjugate
operator for quaternions, −1, will be defined by

q−1 :=

[
−ε
η

]
. (5)
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According to Whittaker [31], the scalar formulae for the multiplication of
quaternions were independently discovered by Gauss, Rodrigues, Hamilton,
and Cayley at different times. They were first written as a matrix multipli-
cation by Peirce [21] and later in the spacecraft attitude dynamics field by
Ickes [10], according to Ell [5]. Note that we have not yet restricted ourselves
to unit-length quaternions, which may be used to represent rotations.

2.2. Identities

Let u, v, and w be quaternions. Then some useful identities are

u+v⊕ ≡ v⊕u+, (6)

and

(u+)
T ≡ (u+)

−1 ≡ (u−1)+ (u⊕)
T ≡ (u⊕)

−1 ≡ (u−1)⊕

(u+v)
−1 ≡ v−1+u−1 (u⊕v)

−1 ≡ v−1⊕u−1

(u+v)
+w ≡ u+ (v+w) ≡ u+v+w (u⊕v)

⊕w ≡ u⊕ (v⊕w) ≡ u⊕v⊕w
αu+ + βv+ ≡ (αu + βv)+ αu⊕ + βv⊕ ≡ (αu + βv)⊕

(7)
where α and β are scalars. Most of these can be found in [3] and [22]. We
omit the proofs in the interest of space.

The set of quaternions forms a non-commutative group under both the
+ and ⊕ operations [22]. Many of the identities above are prerequisites to

showing this fact. The identity element of this group, ι :=
[
0 0 0 1

]T
, is

such that
ι+ = ι⊕ = 1, (8)

where 1 is the 4× 4 identity matrix.

2.3. Relationship to Rotations and Translations

Rotations may be represented in this notation by using a unit-length
quaternion, q. The unit-length constraint can be written as

qTq = 1. (9)

The set of unit-length quaternions forms a non-commutative sub-group of
the quaternions known as SO(3). A point, v (or a translation), may be
represented by a quaternion of the form

v =

[
ρ
0

]
, (10)
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where ρ =
[
x y z

]T
is the usual 3× 1 expression. To rotate a point, v, to

a new frame using the rotation, q, we compute

u = q+v+q−1 = q+q−1⊕v = Rv, (11)

where

R := q+q−1⊕ = q−1⊕q+ = q⊕T q+ =

[
C 0
0T 1

]
, (12)

and C is the canonical 3 × 3 rotation matrix [22] representing the same
rotation as q. It follows that

u =

[
Cρ
0

]
, (13)

as expected. It is worth noting that for unit-length quaternions, we will refer
to the conjugate as the inverse.

3. Linearizing Expressions Involving Rotations

In this section we present our main result, which is a re-examination of
how to linearize expressions involving rotations. We treat both canonical ro-
tation matrices as well as unit-length quaternions. Our approach is a simple
first-principles Taylor approximation. We will see that the so-called multi-
plicative perturbations arise quite naturally. In the interest of accessibility,
we begin with the rotation matrix case, followed by unit-length quaternions,
and then show how to linearize a typical sun sensor measurement error term
using our derived expressions.

3.1. Rotation Matrix Approach

To begin, we require the establishment of two identities. Euler’s theorem
allows us to write a rotation matrix, C, in terms of a rotation about a unit-
length axis, a, through an angle, ϕ [9]:

C(a, ϕ) = cosϕ 1 + (1− cosϕ)aaT − sinϕ a× (14)
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We may now take the partial derivative of C(a, ϕ) with respect to the angle,
ϕ:

∂C(a, ϕ)

∂ϕ
= − sinϕ 1 + sinϕ aaT − cosϕ a× (15a)

= sinϕ
(
−1 + aaT

)︸ ︷︷ ︸
a×a×

− cosϕ a× (15b)

= − cosϕ a× − (1− cosϕ) a×a︸︷︷︸
0

aT + sinϕ a×a× (15c)

= −a× (cosϕ 1 + (1− cosϕ)aaT − sinϕ a×)︸ ︷︷ ︸
C(a,ϕ)

(15d)

Thus, our first key identity is

∂C(a, ϕ)

∂ϕ
≡ −a×C(a, ϕ). (16)

An immediate application of this is that for any principal-axis rotation,
Cψ(θ), about principal axis ψ and through angle θ, we have

∂Cψ(θ)

∂θ
= −1×

ψCψ(θ), (17)

where 1ψ is column ψ of the 3 × 3 identity matrix. Let us now consider an
α-β-γ Euler sequence (with α 6= β and β 6= γ),

C(θ) := Cγ(θ3)Cβ(θ2)Cα(θ1), (18)

where θ := [θ1 θ2 θ3]T . Furthermore, select an arbitrary constant 3 × 1
column, v. Applying (17), we have

∂ (C(θ)v)

∂θ3
= −1×γ Cγ(θ3)Cβ(θ2)Cα(θ1)v = (C(θ)v)× 1γ , (19a)

∂ (C(θ)v)

∂θ2
= −Cγ(θ3)1×β Cβ(θ2)Cα(θ1)v = (C(θ)v)× Cγ(θ3)1β, (19b)

∂ (C(θ)v)

∂θ1
= −Cγ(θ3)Cβ(θ2)1×αCα(θ1)v = (C(θ)v)× Cγ(θ3)Cβ(θ2)1α, (19c)

where we have made use of the two general identities,

r×s ≡ −s×r, (20a)

(Cs)× ≡ Cs×CT , (20b)
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for any 3× 1 columns r, s and any 3× 3 rotation matrix, C [9]. Combining
the results in (19) we have

∂ (C(θ)v)

∂θ
=
[
∂(C(θ)v)
∂θ1

∂(C(θ)v)
∂θ2

∂(C(θ)v)
∂θ3

]
= (C(θ)v)×

[
Cγ(θ3)Cβ(θ2)1α Cγ(θ3)1β 1γ

]︸ ︷︷ ︸
S(θ)

, (21)

and thus our second key identity is

∂ (C(θ)v)

∂θ
≡
(

C(θ)v
)×

S(θ), (22)

which we note is true regardless of the choice of Euler sequence. The matrix,
S(θ), is the usual matrix relating angular velocity to Euler-angle rates [9].

Having established identities (16) and (22), we now return to first princi-
ples and consider carefully how to linearize a rotation. If we have a function,
f(x), of some variable, x, then perturbing x slightly from its nominal value,
x̄, by an amount δx will result in a change in the function. We can express
this in terms of a Taylor-series expansion of f about x̄:

f(x̄ + δx) = f(x̄) +
∂f(x)

∂x

∣∣∣∣
x̄
δx + (higher order terms) (23)

This presupposes that δx is not constrained in any way. The trouble with car-
rying out the same process with rotations is that most of the representations
involve constraints and thus are not easily perturbed (without enforcing the
constraint). The notable exceptions are the three-parameter representations,
the most common of which are the Euler angle sequences. These contain ex-
actly three parameters and thus each can be varied independently. For this
reason, we choose to use Euler angles in our perturbation of functions involv-
ing rotations.

Consider perturbing C(θ)v with respect to Euler angles θ, where v is

an arbitrary constant 3 × 1 column. Letting θ̄ :=
[
θ̄1 θ̄2 θ̄3

]T
and δθ :=[

δθ1 δθ2 δθ3

]T
, then applying a first-order Taylor-series approximation we
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have

C(θ̄ + δθ)v ≈ C(θ̄)v +
∂ (C(θ)v)

∂θ

∣∣∣∣
θ̄

δθ (24a)

= C(θ̄)v +
(
(C(θ)v)× S(θ)

)∣∣
θ̄
δθ (24b)

= C(θ̄)v +
(
C(θ̄)v

)× S(θ̄) δθ (24c)

= C(θ̄)v−
(
S(θ̄) δθ

)× (C(θ̄)v
)

(24d)

=
(

1−
(
S(θ̄) δθ

)×) C(θ̄)v, (24e)

where we have used (22) to get to the second line. Observing that v is
arbitrary, we can drop it from both sides and write

C(θ̄ + δθ) ≈
(

1−
(
S(θ̄) δθ

)×)︸ ︷︷ ︸
infinitesimal rot.

C(θ̄), (25)

which we see is the product of an infinitesimal rotation matrix [9] and the
unperturbed rotation matrix, C(θ̄). It is worth noting that we did not assume
the perturbation is of this multiplicative form, but rather showed that it is
a consequence of the linearization procedure. Notationally, it is simpler to
write

C(θ̄ + δθ) ≈
(
1− δφ×) C(θ̄), (26)

with δφ := S(θ̄) δθ. Equation (26) is revealing as it tells us how to perturb
a rotation matrix when it appears inside any function. This may be done
either in terms of perturbations to the Euler angles, δθ, or directly through
the rotation vector, δφ.

Rotation matrices fundamentally have three degrees of freedom but are
represented by nine parameters. There are therefore six constraints, which
may be written as a single matrix orthogonality constraint: CCT = 1. Sup-
pose this constraint holds for C(θ̄). Then for the perturbed rotation matrix
according to (26) we have

C(θ̄ + δθ)C(θ̄ + δθ)T =
((

1− δφ×) C(θ̄)
) ((

1− δφ×) C(θ̄)
)T

= 1− δφ×δφ×, (27)

which we see is correct to first order in δφ. For this reason, this approach to
linearization may be thought of as constraint-sensitive.
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Working in the other direction, suppose we have a perturbation in the
form of a rotation vector, δφ, and we wish to apply this to a prior value of
the rotation, C(θ̄). In terms of Euler angles, we would like to carry out the
update

θ = θ̄ + S(θ̄)−1 δφ. (28)

However, we would prefer not to use the Euler angles, because S(θ̄)−1 does
not exist precisely at the associated singularities. Instead, we would like to
simply store and update the rotation as a rotation matrix. The updated
rotation matrix, corresponding to the updated Euler angle sequence above,
is given by

C(θ) = C
(
θ̄ + S(θ̄)−1 δφ

)
(29a)

≈
(

1−
(
S(θ̄)S(θ̄)−1︸ ︷︷ ︸

1

δφ
)×)C(θ̄) (29b)

≈
(
1− δφ×)C(θ̄), (29c)

where we have used (26), our linearized rotation matrix expression. We then
make the observation that setting θ̄ = 0 in this last expression reveals

C(δφ) = C
(

0 + S(0)−1︸ ︷︷ ︸
1

δφ
)

(30a)

≈
(
1− δφ×)C(0)︸︷︷︸

1

(30b)

≈
(
1− δφ×) . (30c)

Using δφ as an Euler angle sequence to construct a rotation matrix, C(δφ),
is somewhat unsettling (since δφ are not Euler angles), but in the neighbour-
hood of θ̄ = 0, δφ ≈ δθ, so this is reasonable. In fact, any Euler sequence
could be used to compute C(δφ), as they all result in the same linearized
expression. Substituting (30c) into (29c), we arrive at an expression for our
rotation matrix update,

C(θ) = C(δφ) C(θ̄), (31)

where we have dropped the approximation symbol due to the fact that the ro-
tation matrix constraint, C(θ)C(θ)T = 1, is satisfied. This update approach
allows us to store and update the rotation as a rotation matrix, thereby
avoiding singularities and the need to restore the constraint afterwards (i.e.,
constraint restoration is built in).
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3.2. Unit-Length Quaternion Approach

A similar approach may be followed in the treatment of unit-length quater-
nions. In terms of the axis-angle rotation variables, a and ϕ, a unit-length
quaternion may be written as

q(a, ϕ) =

[
sin ϕ

2
a

cos ϕ
2

]
. (32)

Proceeding in a similar manner to the rotation matrix case, we see that

∂q(a, ϕ)

∂ϕ
=

[
1
2

cos ϕ
2

a
−1

2
sin ϕ

2

]
=

1

2

[
−a× a
−aT 0

] [
sin ϕ

2
a

cos ϕ
2

]
, (33)

whereupon we have the first key identity,

∂q(a, ϕ)

∂ϕ
≡ 1

2

[
a
0

]+

q(a, ϕ), (34)

which may be compared to (16) for the rotation matrix case. A principal-axis
rotation, qψ(θ), about principal axis ψ and through angle θ, may be written
as

qψ(θ) :=

[
sin θ

2
1ψ

cos θ
2

]
, (35)

where 1ψ is column ψ of the 3× 3 identity matrix [22]. We then have

∂qψ(θ)

∂θ
=

1

2

[
1ψ
0

]+

qψ(θ). (36)

We again consider an α-β-γ Euler sequence (with α 6= β and β 6= γ),

q(θ) := qγ(θ3)+qβ(θ2)+qα(θ1), (37)

where θ := [θ1 θ2 θ3]T . The partial derivatives with respect to the Euler
angles are given by

∂q(θ)

∂θ3
=

[
1
21γ
0

]+

qγ(θ3)+qβ(θ2)+qα(θ1) =
1

2
q(θ)⊕

[
1γ
0

]
, (38a)

∂q(θ)

∂θ2
= qγ(θ3)+

[
1
21β
0

]+

qβ(θ2)+qα(θ1) =
1

2
q(θ)⊕

[
Cγ(θ3)1β

0

]
, (38b)

∂q(θ)

∂θ1
= qγ(θ3)+qβ(θ2)+

[
1
21α
0

]+

qα(θ1) =
1

2
q(θ)⊕

[
Cγ(θ3)Cβ(θ2)1α

0

]
,(38c)
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where we have employed several of our quaternion identities to arrive at the
expressions on the far right. Combining the partial derivatives we have

∂q(θ)

∂θ
=
[
∂q(θ)
∂θ1

∂q(θ)
∂θ2

∂q(θ)
∂θ3

]
=

1

2
q(θ)⊕

[
Cγ(θ3)Cβ(θ2)1α Cγ(θ3)1β 1γ

0 0 0

]
︸ ︷︷ ︸S(θ)

0T


,

(39)
which is a 4× 3 matrix. Thus, we have the second key identity,

∂q(θ)

∂θ
≡ 1

2
q(θ)⊕

[
S(θ)
0T

]
, (40)

which may be compared to (22) for the rotation matrix case. It is also worth
noting at this point that

q(θ)+q(θ)−1 = ι ⇒ q(θ)+∂q(θ)−1

∂θ
+ q(θ)−1⊕∂q(θ)

∂θ
= 0, (41)

so that combining with (40) we have

∂q(θ)−1

∂θ
≡ −1

2
q(θ)−1+

[
S(θ)
0T

]
. (42)

As in the rotation matrix case, we consider perturbing q(θ) with respect
to Euler angles θ. Applying a first-order Taylor approximation we have

q(θ̄ + δθ) ≈ q(θ̄) +
∂q(θ)

∂θ

∣∣∣∣
θ̄

δθ (43a)

= q(θ̄) +
1

2
q(θ)⊕

[
S(θ)
0T

]∣∣∣∣
θ̄

δθ (43b)

= q(θ̄) +
1

2
q(θ̄)

⊕
[

S(θ) δθ
0

]
(43c)

= ι+q(θ̄) +

[
1
2
S(θ̄) δθ

0

]+

q(θ̄). (43d)

Factoring q(θ̄) out on the right we arrive at

q(θ̄ + δθ) ≈
(
ι +

[
1
2
S(θ̄) δθ

0

])
︸ ︷︷ ︸
infinitesimal rot.

+

q(θ̄), (44)
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which is our expression for perturbing a unit-length quaternion and may be
compared to (26) from the rotation matrix case. Making the substitution
δφ := S(θ̄) δθ, we have

q(θ̄ + δθ) ≈
(
ι +

[
1
2
δφ
0

])+

q(θ̄) =

[
1
2
δφ
1

]
︸ ︷︷ ︸

δq

+

q(θ̄). (45)

This multiplicative perturbation quaternion (it is not unit-length), δq, is of
the infinitesimal form reported by others [22, 15, 23]. However, the fact that
the perturbation resembles the multiplication of unit-length quaternions (i.e.,
compounding rotations) is a consequence of our linearization strategy rather
than an a priori assumption.

For the unit-length constraint, suppose q(θ̄)Tq(θ̄) = 1. Then under the
perturbation in (44) we have

q(θ̄ + δθ)Tq(θ̄ + δθ) =

((
ι +

[
1
2
δφ
0

])+

q(θ̄)

)T ((
ι +

[
1
2
δφ
0

])+

q(θ̄)

)

= 1 + q(θ̄)T
[

1
2
δφ
0

]+T [
1
2
δφ
0

]+

q(θ̄)

= 1 +
1

4
δφT δφ, (46)

which may be compared to (27). Again, we see that the constraint is satis-
fied to first order in δφ, and thus the linearization approach is constraint-
sensitive.

Note that q(θ̄ + δθ)Tq(θ̄ + δθ) is simply the length of δq. It is therefore
tempting to restore the unit-length constraint on q(θ̄ + δθ) by normalizing
δq by its length. However, we can avoid normalization altogether using the
approach outlined in the rotation matrix case. Suppose we have a prior value
for the rotation, q(θ̄), and wish to apply a perturbation, δφ. The updated
unit-length quaternion, corresponding to the updated Euler angle sequence
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in (28), is given by

q(θ) = q
(
θ̄ + S(θ̄)−1 δφ

)
(47a)

≈
(
ι +

[
1
2

1︷ ︸︸ ︷
S(θ̄)S(θ̄)−1 δφ

0

])+

q(θ̄) (47b)

≈
(
ι +

[
1
2
δφ
0

])+

q(θ̄), (47c)

where we have used (44), our linearized rotation matrix expression. We then
make the observation that setting θ̄ = 0 in this last expression reveals

q(δφ) = q
(

0 + S(0)−1︸ ︷︷ ︸
1

δφ
)

(48a)

≈
(
ι +

[
1
2
δφ
0

])+

q(0)︸︷︷︸
ι

(48b)

≈
(
ι +

[
1
2
δφ
0

])
. (48c)

As in the rotation matrix case, any Euler sequence could be used to compute
q(δφ), as they all result in the same linearized expression. Substituting (48c)
into (47c), we arrive at an expression for our unit-length quaternion update,

q(θ) = q(δφ)+ q(θ̄), (49)

where we have dropped the approximation symbol due to the fact that the
unit-length quaternion constraint, q(θ)Tq(θ) = 1, is satisfied. This update
approach allows us to store and update the rotation as a unit-length quater-
nion, thereby avoiding singularities and the need to restore the constraint
afterwards (i.e., constraint restoration is built in).

3.3. Sun Sensor Unit-Length Quaternion Example

In this section we provide an example of using our linearized unit-length
quaternion expression to construct a linearized error term for a sun sen-
sor measurement for use in a batch-style attitude estimator. We begin by
defining the reference frames depicted in Figure 1. Suppose the estimation
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F−→i

inertial

F−→s

sun sensor

s−→

F−→e

ephemeris measurement

F−→m

s−→ s−→
of F−→i of F−→s

sun direction sun direction sun direction

1

1

1 1

2

2

2 2

3

3

3 3

in 2-3 planein 2-3 plane
µ

λ

Figure 1: Reference frames used in sun sensor example.

problem is to determine qsi, the rotation from the inertial frame, F−→i, to
the sun sensor frame, F−→s. The sun sensor measures the direction to the
sun, s−→, in frame F−→s; this is a two-degree-of-freedom measurement. In our
formulation, we parameterize this type of measurement, ỹ, as

ỹ :=

[
µ̃

λ̃

]
, (50)

where µ̃ and λ̃ are noise-corrupted measurements of the true angles µ and λ
in Figure 1. We note that the rotation from F−→m to F−→s, qsm, can be written
as the Euler sequence

qsm = q1(λ)+ q2(µ)+ q3(0), (51)

where

q1(θ) :=

[
sin θ

2
11

cos θ
2

]
, q2(θ) :=

[
sin θ

2
12

cos θ
2

]
, q3(θ) :=

[
sin θ

2
13

cos θ
2

]
. (52)

We also note that the rotation from F−→e to F−→i, qie, can be computed from

ephemeris and date/time, and is therefore a known quantity. Finally, the
rotation from F−→m to F−→e, qem, is a rotation about the z-axis (of either frame),

through an unknown angle, ψ. In other words, qem = q3(ψ); this is because
the z-axes of both frames point directly at the sun.

With these preliminaries established, we turn to building the sun sensor
error term. Noting that qsm contains the measurement information, we build
a predicted version of this, q̂sm, based on our attitude estimate, q̂si, and the
other inter-frame rotations:

q̂sm := q̂+
si q+

ie qem = q1(λ̂)
+

q2(µ̂)+ q3(ν̂), (53)
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where we have also written it as an Euler sequence on the right. The angle ν̂
is non-zero because we are using q̂si, not the true value, qsi. We then perturb
the expression for q̂si about some initial estimate, q̄si, using (44):

q̂sm ≈
(
ι +

[
1
2
δφ
0

])+

q̄+
si︸ ︷︷ ︸

≈q̂si

q+
ie qem (54)

The compound rotation, q̄+
siqie, may be expressed as the Euler sequence,

q̄+
si qie = q1(λ̄)

+ q2(µ̄)+ q3(ν̄), (55)

so that (54) may be written as

q̂sm ≈
(
ι +

[
1
2
δφ
0

])+

q1(λ̄)
+ q2(µ̄)+ q3(ν̄)+ q3(ψ) (56a)

≈
(
ι +

[
1
2
δφ
0

])+

q1(λ̄)
+ q2(µ̄)+q3(ν̄ + ψ) (56b)

≈
(
ι +

[
1
2
δφ
0

])+

q̄sm, (56c)

where q̄sm := q1(λ̄)
+ q2(µ̄)+q3(ν̄ + ψ). The angle ψ is unknown, but, as we

will see shortly, we do not need it.
This last expression is precisely of the linearized form in (44), but now

for q̂sm not q̂si. This allows us to immediately rewrite it in terms of the
constituent Euler angles,

θ̂ ≈ θ̄ + S(θ̄)−1 δφ, (57)

where

θ̂ :=

ν̂µ̂
λ̂

 , θ̄ :=

ν̄ + ψ
µ̄
λ̄

 , S(θ̄) :=
[
C1(λ̄)C2(µ̄)13 C1(λ̄)12 11

]
. (58)

Equation (57) tells us how the Euler sequence for q̂sm changes as we perturb
it with δφ (in the neighbourhood around the prior estimate, q̄sm). It is
important to note that the inverse of S(θ̄) will always exist for sun sensors
with a half-angle field of view less than π/2 (i.e., a hemisphere). This is
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because we have chosen an Euler sequence to parameterize qsm with the
singularity at µ = π/2. It is also worth noting that the unknown angle, ψ,
is not used in the calculation of S(θ̄), again by careful selection of the Euler
sequence.

We can build an expected measurement, ŷ, by applying a projection ma-
trix, P, to θ̂:

ŷ := Pθ̂ =

[
µ̂

λ̂

]
= ȳ + PS(θ̄)−1 δφ, (59)

where

ȳ :=

[
µ̄
λ̄

]
, P :=

[
0 1 0
0 0 1

]
. (60)

The linearized error term, e, for our sun sensor measurement is then simply
the difference between the actual measurement and the expected measure-
ment:

e := ỹ− ȳ− PS(θ̄)−1 δφ, (61)

which is linear in its dependence on δφ.
Note that one sun sensor measurement is not enough to solve for attitude

alone. However, this error term could be used in a batch estimator along with
measurements from other sources such as a stereo camera, inclinometers, star
tracker, or angular rate sensors. One iteration of a batch-style estimator
would proceed as follows:

1. Begin with an initial attitude estimate, q̄si.
2. Decompose q̄+

si qie into Euler angles λ̄, µ̄, and ν̄ using a 3-2-1 sequence.
Note that we will not require ν̄.

3. Build ȳ and S(θ̄) from λ̄ and µ̄.
4. Build e from ȳ and S(θ̄).
5. Use e in any sum-of-squared-errors objective function for a batch-style

estimator (along with other measurements) to solve for δφ?, which will
be some optimal perturbation to the initial attitude estimate.

6. Update q̄si using δφ? in (49).
7. Check for convergence. If not converged, return to step 2.

It is worth noting that in this procedure, the attitude we are estimating, qsi,
is always stored as a unit-length quaternion. We do not need to compute its
constituent Euler angles at any time. This implies that the procedure can
handle arbitrary motions of the sun sensor frame without encountering sin-
gularities. A similar procedure exists for the rotation matrix representation
of qsi.
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4. Weighted-Least-Squares Point Cloud Alignment

In this section we provide an extended example of a pose estimation prob-
lem: weighted-least-squares point-cloud alignment. The problem setup is de-
picted in Figure 2. There are two reference frames, F−→u and F−→v, which could
represent the pose of a moving vehicle or camera at two different times, for ex-
ample.

Pj

r−→ vj−→

uj−→
F−→u

F−→v

U

V

Figure 2: References
frames for point cloud
alignment.

For the measurements, we have M pairs of vector
observations, ( u−→j, v−→j), where j = 1 . . .M . Each
pair is a correlated set of measurements of the same
point, Pj, on some stationary object. We assume
all measurements are corrupted by some noise. Our
task is to estimate the pose (i.e., translation and ro-
tation) from F−→u to F−→v, based on the measurements.
We assume that we do not know the true position of
the points, Pj, in either frame. This situation is rel-
evant to spacecraft rendezvous and docking as well
as visual motion estimation of a planetary rover.

There are two approaches we may take to esti-
mate pose: scalar weights and matrix weights. In
the scalar-weight case, we assume the noise corrupting each measurement
is isotropic (i.e., the same in all directions about Pj) and therefore we can
minimize an objective function that uses simple scalar weights. In this case,
we can solve for an optimal estimate of the pose closed form. In the matrix-
weight case, we assume the nose is anisotropic (i.e., different in different
directions) and therefore require an objective function with matrix weights.
In this case, the pose problem must be solved iteratively using, for example,
a Gauss-Newton algorithm [20]. The latter iterative scheme requires an ini-
tial guess, which may be obtained by first solving the scalar-weight problem.
We present both solutions, treating the scalar-weight case with unit-length
quaternions and the matrix-weight case with rotation matrices.

4.1. Scalar Weights

The scalar-weight case can be solved in closed form [8]. We show this
result in our notation for comparison to the next section on the matrix-
weight case. We will use quaternions in this case and thus we define the
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following 4× 1 columns:

q : (unit-length) rotation from F−→u to F−→v

r : translation of V with respect to U , expressed in F−→u

uj : measurement of Pj with respect to U , expressed in F−→u

vj : measurement of Pj with respect to V , expressed in F−→v

In the absence of any noise, the geometry of the situation is described by

vj = q+(uj − r)+q−1. (62)

Referring to (62), we could define an error quaternion for the measurements
associated with point Pj according to

êj := vj − q+(uj − r)+q−1, (63)

but instead we can manipulate the above to generate an error that appears
linear in q,

ej := q⊕êj =
(
vj+ − (uj − r)⊕

)
q. (64)

We will define the total sum-of-squares objective function (to minimize), J ,
as

J(q, r, λ) :=
1

2

M∑
j=1

wjeTj ej −
1

2
λ
(
qTq− 1

)︸ ︷︷ ︸
Lagrange mult. term

(65)

where the wj are unique scalar weights assigned to each of the point pairs.
This is similar to the classic Wahba’s problem [30], but we also have a trans-
lation to estimate. We have included the Lagrange multiplier term on the
right to enforce the unit-length constraint on the rotation quaternion. It
is also worth noting that selecting ej over êj has no effect on our objective
function since

eTj ej =
(
q⊕êj

)T (q⊕êj
)

= êTj q⊕T q⊕êj = êTj
(

q−1⊕q
)⊕

êj = êTj êj. (66)

Inserting the expression for ej into the objective function we see

J(q, r, λ) =
1

2

M∑
j=1

wjqT
(
vj+ − (uj − r)⊕

)T (vj+ − (uj − r)⊕
)

q−1

2
λ
(
qTq− 1

)
.

(67)
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Taking the derivative of the objective function with respect to q, r, and λ
we find

∂J

∂q

T

=
M∑
j=1

wj
(
vj+ − (uj − r)⊕

)T (vj+ − (uj − r)⊕
)

q− λq, (68a)

∂J

∂r

T

= q−1+
M∑
j=1

wj
(
vj+ − (uj − r)⊕

)
q, (68b)

∂J

∂λ
= −1

2

(
qTq− 1

)
. (68c)

Setting the second to zero we find

r = u− q−1+v+q, (69)

where u and v are defined below. Substituting r into the first and setting to
zero we can show

Aq = λq, (70)

where

A :=
1

w

M∑
j=1

wj
(
(vj − v)+ − (uj − u)⊕

)T (
(vj − v)+ − (uj − u)⊕

)
, (71a)

v :=
1

w

M∑
j=1

wjvj, u :=
1

w

M∑
j=1

wjuj, w :=
M∑
j=1

wj. (71b)

We can see this is just an eigenproblem. Finding the smallest eigenvalue and
the corresponding eigenvector will yield q to within a multiplicative constant
and our constraint that qTq = 1 makes the solution unique.

To see that we want the smallest eigenvalue, we return to the objective
function. We can see from setting (68a) to zero that an equivalent expression
for A is

A =
M∑
j=1

wj
(
vj+ − (uj − r)⊕

)T (vj+ − (uj − r)⊕
)
. (72)

Substituting this into the objective function in (67) we immediately see that

J(q, r, λ) =
1

2
qT Aq︸︷︷︸

λq

−1

2
λ
(
qTq− 1

)
=

1

2
λ. (73)
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Thus, picking the smallest possible value for λ will minimize the objective
function.

Note, we have not made any approximations or linearizations, but this
depends heavily on the fact that the weights are scalar not matrices.

4.2. Matrix Weights

In some situations, the assumption of isotropic measurement noise is not
appropriate. For example, if the measurements of Pj are obtained from a
stereo camera, there will be much more noise in the depth direction than the
lateral directions [18]. In this case, we can employ a sum-of-squares objective
function of the form J := 1

2

∑M
j=1 eTj Wjej, where ej is a measurement error

term and Wj is the associated weight. A common approach for the selection
of Wj is to use the inverse covariance matrix of ej. In this case, J takes on
the form of a Mahalanobis distance [13]. If we select ej to be of the form
in (64), we find that the covariance matrix, and hence Wj, depends on the
state we are trying to estimate [19, 14], which complicates the solution.

Instead, we turn to a well-known approach in the robotics and computer
vision domain. Namely, we introduce the positions of the points, Pj, as part
of the state we are trying to estimate. This augmented state estimation
problem has been called simultaneous localization and mapping [25, 26] and
bundle adjustment [29, 2] in the robotics and computer vision literature. We
will see that although the size of the state is much larger, we will be able to
exploit the sparse structure of the problem to keep the computational cost
low.

We will use rotation matrices in this example and thus define the following
quantities:

C : 3× 3 rotation matrix from F−→u to F−→v

r : 3× 1 translation of V with respect to U , expressed in F−→u

pj : 3× 1 translation of Pj with respect to U , expressed in F−→u

uj : 3× 1 measurement of Pj with respect to U , expressed in F−→u

vj : 3× 1 measurement of Pj with respect to V , expressed in F−→v

In the absence of any noise, the geometry of the situation is described by

vj = C (uj − r) . (74)
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With this setup, our objective function and errors are defined as

J(C, r,pj) :=
1

2

M∑
j=1

(
eTu,jU

−1
j eu,j + eTv,jV

−1
j ev,j

)
, (75a)

eu,j := uj − pj, (75b)

ev,j := vj − C (pj − r) , (75c)

where Uj is the covariance of eu,j and Vj is the covariance of ev,j. We seek
to minimize the objective function using the Gauss-Newton algorithm [20].
It is straightforward to perturb the error terms using

r = r̄ + δr, (76a)

C = δC C̄ ≈
(
1− δφ×) C̄, (76b)

pj = p̄j + δpj, (76c)

where (̄·) are the initial guesses and δ(·) the perturbations. Equation (76b)
employs our linearized rotation matrix expression derived earlier. Substitut-
ing these into the error terms we have

eu,j ≈ uj − p̄j︸ ︷︷ ︸
ēu,j

−
[

0 0
∣∣∣ only col. j is non-zero︷ ︸︸ ︷
0 · · · 1 · · · 0

]
︸ ︷︷ ︸

Hu,j

δx, (77a)

ev,j ≈ vj − C̄ (p̄j − r̄)︸ ︷︷ ︸
ēv,j

−
[
−C̄

(
C̄(p̄j − r̄)

)× ∣∣∣ only col. j is non-zero︷ ︸︸ ︷
0 · · · C̄ · · · 0

]
︸ ︷︷ ︸

Hv,j

δx,

(77b)

δx :=
[
δrT δφT δpT1 · · · δpTM

]T
(77c)

where we have dropped products of small terms. These errors now have a
linear dependence (with an offset) on δx, the perturbations. Note that we
have shown the state partitioning between the pose and the positions of the
points with vertical lines. Substituting these linearized error expressions in
the objective function, J , it becomes quadratic in δx. It is straightforward
to show that the value of δx that minimizes J is given by δx?, the solution
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to the following linear system of equations:

M∑
j=1

(
HT
u,jU

−1
j Hu,j + HT

v,jV
−1
j Hv,j

)
︸ ︷︷ ︸

A

δx? =
M∑
j=1

(
HT
u,jU

−1
j ēu,j + HT

v,jV
−1
j ēv,j

)
︸ ︷︷ ︸

b

.

(78)
We can write this in partitioned form as[

A11 A12

AT
12 A22

]
︸ ︷︷ ︸

A

[
δx?1
δx?2

]
︸ ︷︷ ︸

δx?

=

[
b1

b2

]
︸ ︷︷ ︸

b

, (79)

where δx?1 are the pose state variables and δx?2 are the point position state
variables. In detail we have

A11 =


∑M

j=1 C̄TV−1
j C̄ −∑M

j=1 C̄TV−1
j

(
C̄(p̄j − r̄)

)×
∑M

j=1

(
C̄(p̄j − r̄)

)× V−1
j C̄ −∑M

j=1

(
C̄(p̄j − r̄)

)× V−1
j

(
C̄(p̄j − r̄)

)×
 ,

(80a)

A12 =

[ −C̄TV−1
1 C̄ · · · −C̄TV−1

M C̄
−
(
C̄(p̄1 − r̄)

)× V−1
1 C̄ · · · −

(
C̄(p̄M − r̄)

)× V−1
M C̄

]
, (80b)

A22 = diag
{

U−1
1 + C̄TV−1

1 C̄, · · · ,U−1
M + C̄TV−1

M C̄
}
, (80c)

b1 =

[
−∑M

j=1 C̄TV−1
j ēv,j

−∑M
j=1

(
C̄(p̄j − r̄)

)× V−1
j ēv,j

]
, (80d)

b2 =

 U−1
1 ēu,1 + C̄TV−1

1 ēv,1
...

U−1
M ēu,M + C̄TV−1

M ēv,M

 . (80e)

This system may be solved efficiently using the Schur complement due to the
fact that A22 is block-diagonal; this is referred to as sparse bundle adjustment
in the computer vision literature [2, 29]. Premultiplying both sides of (79)
by [

1 −A12A−1
22

0 1

]
(81)

results in[
A11 − A12A−1

22 AT
12 0

AT
12 A22

] [
δx?1
δx?2

]
=

[
b1 − A12A−1

22 b2

b2

]
, (82)
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which has the same solution as the original system. The advantage is that
A22 can be inverted efficiently due to its block-diagonal form. The pose state
variables, δx?1, can be determined directly from (82) and the point position
variables, δx?2, found inexpensively through back-substitution. After solving
for δx? we update r̄ using (76a), p̄j using (76c), and C̄ using (31). We iterate
through the entire procedure until δx? is sufficiently small. Once converged,
the covariance of the state estimate is provided by A−1. It should be pointed
out that this approach does not require us to decompose C into an Euler
angle sequence at any time and thus is entirely general.

4.3. Numerical Example

In this section we provide a numerical example of aligning two point
clouds using the Gauss-Newton method from the previous section. Fig-
ure 3(a) depicts two sets of noisy point cloud measurements generated by
a simulated stereo camera. Due to the nature of this camera, the resulting
covariance matrices, Uj and Vj, are as shown in the plot [18]. Measurements
further from the camera (represented by the axes in the plot) are noisier than
those close to the camera. It is therefore important to use a matrix weighted-
least-squares technique, so that we may trust the measurements closer to the
camera more and those further from the camera less. Accordingly, we em-
ployed the method from the previous section to estimate C and r (as well
as pj). For the initial condition we used C̄ = 1, r̄ = 0, and p̄j = C̄Tvj + r̄.
Figure 3(b) depicts the convergence of the objection function, J , with sub-
sequent iterations of the Gauss-Newton procedure. Figures 3(c) and 3(d)
depict the translational and rotational errors (compared to the true values
of C and r), respectively. We see that within a few iterations, the algorithm
converges to its final value and that the resulting errors are acceptably small.
Note, the errors do not converge to zero because the measurements are noisy
and the problem is overconstrained (i.e., we have 12 measurements but re-
quire only 3 to solve for pose). This results in a residual error, as would any
least-squares method.

5. Conclusion

This paper has presented a first-principles approach to linearizing ex-
pressions involving rotations represented by either 3× 3 rotation matrices or
4× 1 unit-length quaternions. The linearization approach was demonstrated
through two examples: (i) linearizing a sun sensor measurement error term,
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F−→u F−→v

uj

vj

Vj

Uj

large uncertainty
far from camera

close to camera
small uncertainty

measurements

covariances

(a) Aligned stereo camera measurements of
points, pj : uj (blue circles), vj (red dia-
monds), and 3σ-covariances.
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(c) Convergence of translational errors.
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(d) Convergence of rotational errors.

Figure 3: Numerical example of point-cloud alignment.
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and (ii) performing weighted-least-squares point-cloud alignment. Specifi-
cally, we believe the contributions of the paper are:

1. Compact matrix expressions for the partial derivative of both a rotation
matrix and a unit-length quaternion with respect to constituent Euler
angles, given by (22) and (40), respectively.

2. A first-principles derivation of the multiplicative constraint-sensitive
perturbations of a rotation matrix and a unit-length quaternion, given
by (26) and (44), respectively. These may be used to linearize any
expression involving a rotation matrix or unit-length quaternion.

3. Expressions for updating rotation matrices and unit-length quaternions
with a constraint-sensitive perturbation are provided in (31) and (49),
respectively. These updates avoid the need to restore constraints after-
wards.

4. Demonstration of linearizing a sun sensor measurement error term in-
volving a unit-length quaternion. The resulting linearized error term,
given by (61), may be used in a batch-style estimator in combination
with other types of measurements for attitude determination.

5. Demonstration of the approach to linearizing expressions involving ro-
tation matrices through an extended pose estimation example: weighted-
least-squares point-cloud alignment. The procedure outlined is able
to handle arbitrary motions (i.e., it has no singularities) and matrix
weights.

We have shown that the multiplicative perturbations to rotation matrices and
unit-length quaternions are a consequence of straightforward linearization
with respect to a set of three Euler angles. This result can almost certainly
be generalized to other three-parameter representations of rotations. Also,
throughout the paper we have employed constraint-sensitive perturbations
to rotations and then used corresponding update rules that automatically
restore the constraints. Given the results of Zanetti et al. [32] for Kalman
filtering, it may be possible to show that constraint restoration for batch-
style estimation is also a consequence of the optimization procedure rather
than assuming it a priori. Finally, an interesting avenue for future research
might be to employ our approach to linearizing rotations in other types of
problems than pose estimation, e.g., dynamics and control.
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Appendix

This appendix contains material to supplement the main body of the
paper. In particular, the sun sensor example worked out using unit-length
quaternions in the main body, is repeated using rotation matrices.

5.1. Sun Sensor Rotation Matrix Example

In this section we provide an example of using our linearized rotation
matrix expression to construct a linearized error term for a sun sensor mea-
surement for use in a batch-style attitude estimator. We begin by defining
the reference frames depicted in Figure 4. Suppose the estimation problem is

F−→i

inertial

F−→s

sun sensor

s−→

F−→e

ephemeris measurement

F−→m

s−→ s−→
of F−→i of F−→s

sun direction sun direction sun direction

1

1

1 1

2

2

2 2

3

3

3 3

in 2-3 planein 2-3 plane
µ

λ

Figure 4: Reference frames used in sun sensor example.

to determine, Csi, the rotation from the inertial frame, F−→i, to the sun sensor
frame, F−→s. The sun sensor measures the direction to the sun, s−→, in frame
F−→s; this is a two-degree-of-freedom measurement. In our formulation, we
parameterize this type of measurement, ỹ, as

ỹ :=

[
µ̃

λ̃

]
, (83)

where µ̃ and λ̃ are noise-corrupted measurements of the true angles µ and λ
in Figure 1. We note that the rotation from F−→m to F−→s, Csm, can be written
as the Euler sequence

Csm = C1(λ) C2(µ) C3(0), (84)
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where

C1(θ) :=

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 , C2(θ) :=

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 ,
C3(θ) :=

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 . (85)

We also note that the rotation from F−→e to F−→i, Cie, can be computed from

ephemeris and date/time, and is therefore a known quantity. Finally, the
rotation from F−→m to F−→e, Cem, is a rotation about the z-axis (of either

frame), through an unknown angle, ψ. In other words, Cem = C3(ψ); this is
because the z-axes of both frames point directly at the sun.

With these preliminaries established, we turn to building the sun sensor
error term. Noting that Csm contains the measurement information, we build
a predicted version of this, Ĉsm, based on our attitude estimate, Ĉsi, and the
other inter-frame rotations:

Ĉsm := ĈsiCieCem = C1(λ̂) C2(µ̂) C3(ν̂), (86)

where we have also written it as an Euler sequence on the right. The angle
ν̂ is non-zero because we are using Ĉsi, not the true value, Csi. We then
perturb the expression for Ĉsi about some initial estimate, C̄si, using (26):

Ĉsm ≈
(
1− δφ×) C̄si︸ ︷︷ ︸

≈Ĉsi

CieCem (87)

The compound rotation, C̄siCie, may be expressed as the Euler sequence,

C̄siCie = C1(λ̄) C2(µ̄) C3(ν̄), (88)

so that (87) may be written as

Ĉsm ≈
(
1− δφ×)C1(λ̄) C2(µ̄) C3(ν̄)C3(ψ) (89a)

≈
(
1− δφ×)C1(λ̄) C2(µ̄) C3(ν̄ + ψ) (89b)

≈
(
1− δφ×) C̄sm, (89c)

where C̄sm := C1(λ̄) C2(µ̄) C3(ν̄ + ψ). The angle ψ is unknown, but, as we
will see shortly, we do not need it.
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This last expression is precisely of the linearized form in (26), but now
for Ĉsm not Ĉsi. This allows us to immediately rewrite it in terms of the
constituent Euler angles,

θ̂ ≈ θ̄ + S(θ̄)−1 δφ, (90)

where

θ̂ :=

ν̂µ̂
λ̂

 , θ̄ :=

ν̄ + ψ
µ̄
λ̄

 , S(θ̄) :=
[
C1(λ̄)C2(µ̄)13 C1(λ̄)12 11

]
. (91)

Equation (90) tells us how the Euler sequence for Ĉsm changes as we perturb
it with δφ (in the neighbourhood around the prior estimate, C̄sm). It is
important to note that the inverse of S(θ̄) will always exist for sun sensors
with a half-angle field of view less than π/2 (i.e., a hemisphere). This is
because we have chosen an Euler sequence to parameterize Csm with the
singularity at µ = π/2. It is also worth noting that the unknown angle, ψ,
is not used in the calculation of S(θ̄), again by careful selection of the Euler
sequence.

We can build an expected measurement, ŷ, by applying a projection ma-
trix, P, to θ̂:

ŷ := Pθ̂ =

[
µ̂

λ̂

]
= ȳ + PS(θ̄)−1 δφ, (92)

where

ȳ :=

[
µ̄
λ̄

]
, P :=

[
0 1 0
0 0 1

]
. (93)

The linearized error term, e, for our sun sensor measurement is then simply
the difference between the actual measurement and the expected measure-
ment:

e := ỹ− ȳ− PS(θ̄)−1 δφ, (94)

which is linear in its dependence on δφ. One iteration of a batch-style esti-
mator would proceed as follows:

1. Begin with an initial attitude estimate, C̄si.

2. Decompose C̄siCie into Euler angles λ̄, µ̄, and ν̄ using a 3-2-1 sequence.
Note that we will not require ν̄.

3. Build ȳ and S(θ̄) from λ̄ and µ̄.
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4. Build e from ȳ and S(θ̄).

5. Use e in any sum-of-squared-errors objective function for a batch-style
estimator (along with other measurements – one sun sensor measure-
ment is not enough to solve for attitude alone) to solve for δφ?, which
will be some optimal perturbation to the initial attitude estimate.

6. Update C̄si using δφ? according to the procedure in (31).

7. Check for convergence. If not converged, return to step 2.

It is worth noting that in this procedure, the attitude we are estimating, Csi,
is always stored as a rotation matrix. We do not need to compute its con-
stituent Euler angles at any time. This implies that the procedure can handle
arbitrary motions of the sun sensor frame without encountering singularities.
A similar procedure exists for the unit-length quaternion representation of
Csi.
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