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Abstract—Pose estimation is a critical skill in mobile robotics
and is often accomplished using onboard sensors and a Kalman
filter estimation technique. For systems to run online, com-
putational efficiency of the filter design is crucial, especially
when faced with limited computing resources. In this paper, we
present a novel approach to serially process high-dimensional
measurements in the Sigma-Point Kalman Filter (SPKF), in
order to achieve a low computational cost that is linear is
the measurement dimension. Although the concept of serially
processing measurements has been around for quite some time
in the context of the Extended Kalman Filter (EKF), few
have considered this approach with the SPKF. At first glance,
it may be tempting to apply the SPKF update step serially.
However, we prove that without re-drawing sigma points, this
‘naive’ approach cannot guarantee the positive-definiteness of
the state covariance matrix (not the case for the EKF). We then
introduce a novel method for the Sigma-Point Kalman Filter
to process high-dimensional, uncorrelated measurements serially
that is algebraically equivalent to processing the measurements
in parallel, but still achieves a computational cost linear in the
measurement dimension.

I. INTRODUCTION

For nonlinear estimation, the Extended Kalman Filter (EKF)
is perhaps the most common technique that is used in practice
[8]. However, it is widely understood that the first-order
linearization used in the EKF can lead to issues in both
accuracy and stability [9, 25].

Derivative-free Kalman filters, such as the Divided Differ-
ence Filter (DDF) [16], the Central Difference Filter (CDF)
[4], the Unscented Kalman Filter (UKF) [9], and the Iterated
Sigma-Point Kalman Filter (ISPKF) [20] offer an attractive
alternative to the EKF as they are theoretically more accurate
and easier to implement due to their derivative-free nature.
Collectively, these filters have been referred to as Sigma-Point
Kalman Filters (SPKF) [21], or Linear Regression Kalman
Filters (LRKF) [12], because they linearize a function by way
of a statistical linear regression through a specific sampling of
points [12]. This paper focuses on the most common of the
four types of SPKF, namely, the UKF. As an aside, although
SPKF is technically an umbrella term, we prefer to use the
term SPKF synonymously with UKF, as we feel it is less
colloquial.

For many practical field robotic systems, filter efficiency is
a critical requirement due to limited computational resources.
As an example, we refer to the autonomous underground tram-
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Fig. 1. Autonomous underground tramming vehicle used by Marshall et al.
[14]; equipped with a SICK laser rangefinder and wheel/shaft encoders. We
consider the same localization scenario as Marshall et al., which is a vehicle
using a planar rangefinder to localize against a known map. As was the case
for this system, we consider localization using the SPKF. Image credit: Atlas
Copco.

ming system developed by Marshall et al. [14] (see Figure 1),
which uses a SICK laser rangefinder and the SPKF to localize
against a known map. Since this system functioned in an
underground, infrastructureless mine environment, the vehicle
could only use its onboard sensors for motion estimation.
However, due to computational constraints, they were only
able to process a small portion of the incoming data-stream
from their SICK laser.

With the ever-increasing data acquisition rates of light
detection and ranging (lidar) sensors, such as a Velodyne
lidar1, developing efficient estimation techniques are crucial
for online performance. Motivated by this need, we have been
investigating serially processing high-dimensional measure-
ments as opposed to processing the measurements in parallel,
which requires a large matrix inversion in the measurement-
update step. Although the concept of serial processing has
been around for quite some time2, few have considered serial
processing with the SPKF.

For the EKF, it is well known that parallel processing and
serial processing will produce an algebraically equivalent state
covariance matrix, so long as the state estimate is not being re-

1High Definition Lidar HDL-64E S2, Data Sheet, Veldoyne Lidar Inc.
2According to Gelb et al. [3], the idea of serial processing instead of

parallel processing was recognized as early as 1962.



linearized after each measurement update [3]3. Intuitively, one
would expect the same properties to hold true for the SPKF.
However, as we will show, ‘naively’ applying the standard
SPKF update step for serial processing cannot guarantee a
positive-definite state covariance and will not result in the
same estimate. In response to this rather counterintuitive result,
we derive a new form of the measurement-update step in
the SPKF, in order to process high-dimensional, uncorrelated
measurements serially. This new form is algebraically identical
to processing the measurements in parallel, but maintains a
cost that is linear in the measurement dimension.

We present simulations comparing the computational time
of our serial SPKF (S-SPKF) with the canonical parallel
processing form (P-SPKF) and demonstrate the significant
efficiency improvements with our method. In addition, to
verify the algebraic equivalency between the S-SPKF and P-
SPKF, we implemented a simulation representing the scenario
described in Marshall et al. [14], which is a robot localizing
against a known map using a 2D planar laser as the primary
sensor. It is worth noting that this particular problem is not
well suited for the EKF because it involves a generative sensor
model that does not have a closed-form analytical expression,
and thus requires numerical Jacobians. Nonetheless, as the
EKF is such a common estimator, we have included it in our
comparison.

II. REVIEW

Julier et al. [9] introduced the SPKF as an alternative to
the EKF, demonstrating its superior performance and ease of
implementation for nonlinear estimation problems. Initially,
the SPKF was presented in a form in which the noise
associated with the transition and observation models was
added outside the nonlinearity, allowing one to simply add
the noise covariance matrices to the state covariance updates.
Later, Julier and Uhlmann [6] presented a more general form
where the process and observation noises are stacked with the
state, requiring the computation of a larger number of sigma-
points; obviously this is not ideal for applications with large
measurement dimensions. To address this issue, Julier and
Uhlmann [7] introduced a smaller set of sigma-points, called
simplex sigma-points, which are chosen to minimize the third
order moments of the probability density function (PDF). They
showed that the dimensionality of the problem can be reduced
from 2N +1 to N +2 sigma-points. A more stable version of
this algorithm was later presented in [5], which constrains the
simplex sigma-points to be equidistant from the origin. Quine
[17] derived a similar reduced SPKF formulation, but one that
used the minimal set of N + 1 sigma-points, which can only
capture the mean and covariance of the PDF.

In [22], van der Merwe and Wan presented the Square Root
Unscented Kalman Filter (SR-UKF), which uses a series of
linear algebra techniques such as QR decomposition, Cholesky
factor updating, and efficient least squares, in order to avoid

3This is only true for one measurement update step, as the mean would
not be algebraically identical.

the need to refactor the state covariance matrix at each time
step. In addition to these efficiency gains, the SR-UKF also
presents numerical stability benefits as it ensures that the state
covariance is always positive-definite.

The aforementioned methods aim to improve efficiency
by either reducing the number of sigma-points or by using
efficient algebraic simplifications. However, as for processing
measurements serially or in parallel, there is little mentioned
in the literature pertaining to the SPKF. Duan et al. [2] and
later Lei and Han [13], introduced a SPKF serial process-
ing approach for the problem of radar target tracking with
range measurements. Their method was analogous to serial
processing with the EKF and re-linearizing after incorporating
each measurement. In the case of the SPKF, this means re-
drawing sigma-points and estimating a new mean, covariance
and associated statistical Jacobians. They argue in favour of
re-drawing sigma-points because of the success with the EKF
counterpart in target tracking applications [15, 18]. However,
we note that improved accuracy resulting from re-linearizing
is not guaranteed for all systems, as was the case for our
simulations (this is discussed in more detail later). Asl and
Pourtakdoust [1] also considered the problem of radar target
tracking and developed a serial processing approach that uses
a UD covariance factorization for additional efficiency gains.
Unlike Duan et al., the sigma-points were not re-drawn after
each measurement update. Our work shares similarities to Asl
and Pourtakdoust [1] as we do not re-draw sigma-points after
each measurement update and we also use a factorization
technique to re-write the canonical SPKF equations in a more
efficient form. However, their method is not algebraically
equivalent to the parallel case and uses a UD factorization
whereas we chose to use a statistical Jacobian factorization.

In the common case of uncorrelated measurements, the
information filter is well suited for serial processing, as its
form naturally results in a linear summation of the innovation
terms. Consequently, the Unscented Information Filters (UIF)
by Vercauteren et al. [24] and Lee et al. [10, 11] can be consid-
ered other serial processing methods for the SPKF. However,
instead of maintaining an estimate of the information vector,
we derive an alternative serial form of the measurement-
update step that directly computes the mean, making our
form more efficient. This is accomplished by expressing the
measurement-update step in terms of its statistical Jacobian
factors and performing a series of manipulations to decouple
the state and measurement terms. Loosely speaking, we have
developed a hybrid of the canonical SPKF measurement-
update step and the UIF measurement-update step that is
particularly helpful for the case of processing measurements
serially.

III. THE SIGMA-POINT KALMAN FILTER

This section presents the canonical SPKF algorithm in its
entirety. Consider the following nonlinear, dynamic, discrete-



time transition model, h(·), and measurement model, g(·),

xk = h (xk−1,uk,wk) , wk ∼ N (0,Qk)

yk = g (xk) + nk, nk ∼ N (0,Rk)

where xk is the state, yk is our sensor measurement, uk
is a control input, wk is process noise, Qk is the process
noise covariance matrix, nk is measurement noise, Rk is
the measurement noise covariance matrix, and k denotes the
time step. The goal is to take a prior belief of the state and
covariance,

{
x̂k−1, P̂k−1

}
, and estimate the posterior belief{

x̂k, P̂k
}

, according to a two stage process: the prediction
step and the correction step.

A. Prediction
{

x̂k−1, P̂k−1

}
→
{

x̂−k , P̂
−
k

}
1) Augment our state with the motion noise4:

z :=

[
x̂k−1

0

]
, Y :=

[
P̂k−1 0

0 Qk

]
(1)

We let L = dim z = N + P , where N is the state
dimension and P is the process noise dimension.

2) Convert {z,Y} to a sigma-point representation:

SST := Y (Cholesky decomposition)
Z0 := z
Zi := z +

√
L+ κ coliS

i = 1 . . . L.Zi+L := z−
√
L+ κ coliS

where κ is a scaling parameter that affects fourth and
higher-order moments of the PDF.

3) Unstack each sigma-point into state and motion noise,

Zi =:

[
Xi,k−1

Wi,k

]
,

and then pass through the nonlinear motion model:

X−
i,k := h (Xi,k−1,uk,Wi,k) i = 0 . . . 2L.

4) Recombine the transformed sigma-points into the pre-
dicted belief,

{
x̂−k , P̂

−
k

}
, according to

x̂−
k :=

2L∑
i=0

βiX−
i,k,

P̂−
k :=

2L∑
i=0

βi

(
X−
i,k − x̂−

k

)(
X−
i,k − x̂−

k

)T
,

where βi =
{ κ

L+κ i = 0
1
2

κ
L+κ otherwise

4For notational convenience, we use 0 rather loosely, since the dimensions
are not the same for each matrix.

B. Correction
{

x̂−k , P̂
−
k

}
→
{

x̂k, P̂k
}

1) Pass each sigma-point through the nonlinear observation
model exactly:

Yi,k := g
(
X−
i,k

)
i = 0 . . . 2L.

2) Compute the predicted measurement and innovation
covariance, according to

ŷk :=

2L∑
i=0

βiYi,k,

Vk :=

2L∑
i=0

βi (Yi,k − ŷk) (Yi,k − ŷk)
T
+ Rk.

3) Build the state-measurement covariance and Kalman
gain according to

Uk :=

2L∑
i=0

βi

(
X−
i,k − x̂−

k

)
(Yi,k − ŷk)

T
,

Kk := UkV−1
k .

4) Compute the posterior belief,
{

x̂k, P̂k
}

, according to

x̂k := x̂−k + Kk (yk − ŷk) , P̂k := P̂−
k −KkUTk .

IV. SERIAL PROCESSING

In this section we will present our new serial processing
approach for the SPKF. But first, we begin by proving that
naive serial processing using the standard SPKF measurement-
update step cannot guarantee the positive-definiteness of the
state covariance matrix (not the case for the EKF). Since the
remaining section is concerned with the correction step at a
single time-step, we will omit the subscript k for convenience.

In the ensuing discussion, we assume that we acquire
an uncorrelated high-dimensional measurement with a block-
diagonal noise covariance matrix:

y =
[
yT1 yT2 . . . yTM

]T
, R = diag (R1,R2, . . . ,RM ) ,

where yi ∈ RJ and Ri ∈ RJ×J .

A. Parallel Processing Approach
Following the correction step shown in section III, the

innovation covariance is given by the following

V =

2L∑
i=0

βi (Yi − ŷ) (Yi − ŷ)T + R = YYT + R,

where we have conveniently defined

Y :=
[√

β0 (Y0 − ŷ) . . .
√
β2L (Y2L − ŷ)

]
=:

Y1

...
YM

 .
We can then see that the innovation covariance matrix will be
dense with these predicted measurement error terms:

V =

Y1YT
1 + R1 . . . Y1YT

M
...

. . .
...

YMYT
1 . . . YMYT

M + RM

 (2)



The ‘state-measurement’ covariance is given by

U = XYT ,

where,

X :=
[√

β0
(
X−

0 − x̂−) . . .√β2L (X−
2L − x̂−

)]
. (3)

The resulting posterior is then

x̂ = x̂− +XYTV−1 (y− ŷ) ,
P̂ = XX T −XYTV−1YX T , (4)

where V is given by (2) and we note that XX T = P̂−. So
far we have merely rewritten the SPKF update step using
its statistical Jacobian form, which will prove useful in the
remainder of this section.

B. ‘Naive’ Serial Processing Approach

By assumption, the yi measurements are uncorrelated; we
can therefore attempt to process them serially. The first mea-
surement is processed as follows, where we use the notation
(·)i to denote an estimate at iteration i:

V1 = Y1YT
1 + R1

K1 = XYT
1

(
Y1YT

1 + R1

)−1

x̂1 = x̂− +XYT
1

(
Y1YT

1 + R1

)−1

(y1 − ŷ1)

P̂1 = XX T −XYT
1

(
Y1YT

1 + R1

)−1

Y1X T

For the second measurement, we have

x̂2 = x̂1 +XYT
2

(
Y2YT

2 + R2

)−1

(y2 − ŷ2) ,

P̂2 = P̂1 −XYT
2

(
Y2YT

2 + R2

)−1

Y2X T .

Continuing this process and stacking everything in matrix
form, we see that the posterior is given by

x̂ = x̂− +XYTV−1 (y− ŷ) ,
P̂ = XX T −XYTV−1YX T , (5)

where

V = diag
(
Y1YT

1 + R1, . . . ,YMYT
M + RM

)
. (6)

Comparing (6) with (2), we immediately see that ‘naively’
processing the measurements serially results in the loss of all
the off-diagonal terms in the innovation covariance, yielding
a different estimate. In addition, it turns out that this method
of serial processing cannot guarantee a positive-definite state
covariance matrix. We now introduce the following theorems
that will be useful in analyzing the stability of the parallel and
serial processing methods.

Theorem 1. Let X := [0,B,−B], such that XX T := P̂,
where P̂ ∈ RN×N , and P̂ > 0. If A ∈ RM×M and A > 0
then XAX T > 0, else if A ≤ 0 then XAX T ≤ 0.

Proof: Let

v :=

 0
u
−u

 , A :=

a11 aT21 aT31
a21 A22 AT32
a31 A32 A33

 ,
where u 6= 0 and A is an M × M real, symmetric ma-
trix. Recalling the definition of a positive definite matrix,
we note that A is positive definite if vTAv > 0, ∀ v ∈
RM , v 6= 0. Using the above defined quantities, we have
vTAv = uT

(
A22 − AT32 − A32 + A33

)
u, where we can see

that

A > 0 =⇒ A22 − AT32 − A32 + A33 > 0, (7)
A ≤ 0 =⇒ A22 − AT32 − A32 + A33 ≤ 0.

Now we define a new quantity, X := [0,B,−B], where B is
an invertible matrix that is proportional to the Cholesky factor
of P̂. Taking note of the fact that

XAX T = B
(
A22 − AT32 − A32 + A33

)
BT ,

we see that

wT
(
XAX T

)
w = wTB

(
A22 − AT32 − A32 + A33

)
BTw.

Since B is invertible, we know that w 6= 0⇒ BTw 6= 0. Thus,
using (7), we can conclude that

XAX T > 0 if A > 0

XAX T ≤ 0 if A ≤ 0

Theorem 2. If A > 0, B ≥ 0 and A,B ∈ RN×N , then
A + B > 0.

Proof: Trivially, we have that
xT (A + B)x = xTAx︸ ︷︷ ︸

>0

+ xTBx︸ ︷︷ ︸
≥0

> 0.

1) Parallel Processing Stability: For parallel processing,
the state covariance update, given by equation (4), has the
form

P̂ = XX T −XYT
(
YYT + R

)−1

YX T

= X
(

1−YT
(
YYT + R

)−1

Y
)
X T .

We will now introduce two forms of the well known Sherman-
Morrison-Woodbury (SMW) identity [19], which will play an
important role in our analysis:

A−1 − A−1B
(
C−1 + DA−1B

)−1 DA−1 = (A + BCD)−1 (8)
A−1B

(
C−1 + DA−1B

)−1
= (A + BCD)−1 BC (9)

Using (8), we can re-write the state covariance as

P̂ = X
(

1 +YTR−1Y
)−1

X T .

Given that R−1 is positive definite, if we decompose it into
Cholesky factors, SST := R, we see that YTR−1Y =



(YTS)(YTS)T , which is at least semi-positive definite. Since
1 is the identity matrix and therefore positive definite, by
Theorem 2, we know that 1 + YTR−1Y is positive definite
and, therefore, so is its inverse. By Theorem 1, we therefore
have that P̂ > 0 for the case of parallel processing.

2) Serial Processing Stability: For ‘naive serial’ processing,
the state covariance update, given by equation (5), has the form

P̂ = X
(

1−
M∑
i=1

YT
i

(
YiYT

i + Ri
)−1

Yi

)
X T .

Clearly, one cannot ensure that the matrix

1 −
∑M
i=1 Y

T
i

(
YiYT

i + Ri
)−1

Yi > 0, especially for large

M . By Theorem 1, if 1−
∑M
i=1 Y

T
i

(
YiYT

i + Ri
)−1

Yi ≤ 0,
then the state covariance matrix will not be positive definite.
Note, however, that if the sigma-points are re-drawn after
each measurement update, then the state covariance would be
given by the following, where (·)i denotes iteration i:

P̂i = X i
(

1 +YiTR−1Yi
)−1

X iT ,

where X i is given by equation (3) and constructed with sigma-
points from {x̂i−1, P̂i−1}. By the same reasoning as in the
parallel case, we have that P̂i > 0 for i = 1 . . .M . Of
course, this approach does not yield the same result as parallel
processing and for our localization simulations, re-drawing
resulted in worse performance than parallel processing.

C. New Serial Processing Approach

We now introduce our new serial processing approach. One
of the important aspects of this method has already been
introduced, which is to express the standard covariance update
equation, P̂ = P̂− −KUT , as the following

P̂ = X
(

1 +YTR−1Y
)−1

X T ,

which we obtain from the first form of the SMW identity.
Using the fact that we are considering uncorrelated measure-
ments, we define the following quantity:

C :=

(
1 +

M∑
i=1

YT
i R−1

i Yi

)−1

Note that C−1 can be computed serially and has dimension
2L + 1 × 2L + 1, which is relatively inexpensive to invert,
since we are interested in the case where M � L. After
serially computing C−1, the state covariance update is given by
P̂ = XCX T . Thus, we have introduced a method that is based
on the parallel processing equations, but serially computes the
quantity C−1 to obtain the estimated state covariance.

In a similar manner, we can develop a serial approach to
compute the mean of the state estimate, which is given by

x̂ = x̂− +XYT
(
YYT + R

)−1

(y− ŷ) .

We now invoke the second form of the SMW identity (9) to
give us

x̂ = x̂− +X
(

1 +YTR−1Y
)−1

YTR−1 (y− ŷ) .

Using our newly defined quantity, C, and the fact that the
measurements are uncorrelated, we can simplify the above to

x̂ = x̂− +XC

(
M∑
i=1

YT
i R−1

i (yi − ŷi)

)
︸ ︷︷ ︸

=:d

.

Again, C−1 and d can be computed serially, after which
they are pre-multiplied by X . In essence, we have decoupled
the state from the measurements, in order to compute the
measurement quantities in a serial manner. It is interesting
to note the similarity with the Unscented Information Filter
[10, 11], however, there are several key differences. Firstly,
we directly compute the mean and not the information vector.
Secondly, we do not have an extra Jacobian term in the
innovation. Thirdly, this form is only attainable if one makes
explicit use of the statistical Jacobian factors (i.e., X and Y).

It is worth mentioning that under this approach, regardless
of the order in which the measurements are processed, we
obtain an algebraically identical result to the parallel version.
Our serial processing method, which will be referred to as the
S-SPKF, is summarized below, where we have re-introduced
the time-step, k, to make things comparable to the canonical
SPKF. The predictive step has been omitted since it is identical
to the canonical SPKF predictive step.

1) Serial Correction Step
{

x̂−
k , P̂

−
k

}
→
{

x̂k, P̂k
}

:
1) Initialize our serial processing variables:

C−1
0,k := 1, d0,k := 0

2) For all measurements, m = 1 . . .M , do the following:
a) Pass each sigma-point through the nonlinear obser-

vation model:

Ym,i,k := g
(
X−
i,k

)
i = 0 . . . 2L.

b) Compute the predicted measurement and Ym,k

ŷm,k :=

2L∑
i=0

βiYm,i,k,

Ym,k :=
[
. . .
√
βi (Ym,i,k − ŷm,k) . . .

]
,

for i = 0 . . . 2L.
c) Compute C−1

m,k and dm,k

C−1
m,k := C−1

m−1,k +YT
m,kR−1

m,kYm,k,

dm,k := dm−1,k +YT
m,kR−1

m,k(ym,k − ŷm,k).

3) Compute X k

X k :=
[
. . .
√
βi

(
X−
i,k − x̂−

k

)
. . .
]
, i = 0 . . . 2L

4) Compute the posterior belief,
{

x̂k, P̂k
}

x̂k := x̂−k +X kCkdk, P̂k := X kCkX T
k .
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Fig. 2. Processing time (s) versus measurement dimension (M) for various
processing implementations. Note that the line slopes indicate the computa-
tional complexities. In this case, the serial approaches have a linear slope
with respect to the measurement dimension and the parallel approach has a
cubic cost, as expected. The SRD-SPKF has a larger vertical offset than the
S-SPKF because it has to re-draw sigma points each iteration.

V. RESULTS

The results section has been divided into two subsections:
the first presents our experimental efficiency results and the
second presents our accuracy analysis. For our simulations,
we ran Matlab v7.7 on a 2.66GHz Intel Core i7 CPU.

A. Efficiency Results

We compared our serial processing approach (the S-SPKF)
against the following two SPKF implementations:

1) Serial Processing - Re-drawing Sigma-points: We con-
sider a serial processing approach that re-draws sigma-points
after each iteration in the measurement update step. This
method will be denoted as the SRD-SPKF, where ‘RD’ stands
for ‘re-draw’.

2) Parallel Processing - Triangular Decomposition: Instead
of directly inverting the large M × M innovation covari-
ance matrix, we solve the system KkVk = Uk for Kk

using a triangular decomposition scheme (i.e., we compute
the triangular Cholesky factors, SST = Vk, and then solve
Kk =

(
Uk/ST

)
/S. using forward/backward substitutions).

This method will be denoted by P-SPKF, since we are pro-
cessing the measurements in parallel.

To test the efficiency of each filter implementation, we
examined the processing time required for one SPKF func-
tion call versus a range of measurement dimensions (M =
100 . . . 2500). Figure 2 shows the results averaged over 10
trials on a log-log plot, where we have plotted the processing
time versus the measurement dimension.

Using the log-log plot, we experimentally estimated the
cost of each method by calculating the respective line slopes.
Although this approximation does not take into account ad-
ditional terms, the aim was to provide a rough estimate of
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Fig. 3. Processing time (s) versus measurement dimension (M) for various
processing implementations (Note: this is the linear plot of Figure 2). We have
provided an example cutoff time in the inset figure near the top left, which
indicates the maximum number of measurements that can be processed in one
control cycle operating at 10Hz.

TABLE I
EXPERIMENTAL ORDERS OF COMPLEXITY FOR METHODS SHOWN IN

FIGURE 3 (BASED ON LINE SLOPES)

Method Experimental Theoretical
S-SPKF O(M1.0) O(M)
SRD-SPKF O(M1.0) O(M)
P-SPKF O(M2.1) O(M3)

the computational complexities associated with each method.
Table I shows our experimentally estimated results, along with
the theoretical complexities for comparison. Note that since
the state dimension and process noise dimension, L, is held
constant, only the dependence on the measurement dimension
can be evaluated.

As expected, the Cholesky decomposition method was the
most costly5, followed by the serial processing methods, where
we see that our method is actually less expensive than the
SRD-SPKF. This is because the SRD-SPKF has to re-draw
sigma-points and recompute statistical Jacobians for each
measurement update step, which is not required in the S-SPKF.

To illustrate the importance of this serial processing ap-
proach for mobile robots, we wish to emphasize the fact
that for online systems, processing constraints can limit the
number of measurements used in the SPKF. For instance, a
typical mobile robot may have a control loop that operates at
a frequency of 10Hz, meaning that the SPKF must provide
the controller with state estimates at least once every 0.1s.
For this particular case, we have included the cutoff time of
0.1s in Figure 3, which indicates the maximum number of
sensor measurements the SPKF could afford to process per
control cycle. The results indicate that the S-SPKF can process
approximately 2.3 times as many measurements as the P-SPKF

5The experimental order of complexity for the P-SPKF is lower than the
theoretical complexity due to the fact that Matlab’s built-in Cholesky function
uses an efficient Fortran subroutine, which reduces the processing time.



and approximately 1.8 times more than the SRD-SPKF.
Although we have restricted our attention to measurement

dimensions between 100 and 2500, data acquisition rates for
3D lidar sensors can be considerably higher and amount
to much larger measurement dimensions. For instance, the
Velodyne HDL-64E S2 lidar can acquire approximately 1.8
million points per second6, which, depending on the frequency
at which the estimator is running, would amount to hundreds
of thousands of measurements per SPKF iteration. In this case,
the efficiency gains from serial processing versus parallel pro-
cessing would be critical for systems that wish to incorporate
such data-dense sensors.
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Fig. 4. Snapshots of simulated robot using a 2D lidar sensor to localize
against a known map. In this example, only 30 laser rays were plotted for
illustration; however the measurement dimension was 200 (i.e., 200 range
readings).

B. Accuracy Results

As a consistency check, we ran each SPKF processing
method through the simulation shown in Figure 4, which is
a mobile robot localizing against a known map and using
the SPKF to track a path along a corridor. This is similar
to the scenario described by Marshall et al. [14]. Furthermore,
we compared the accuracy of the SPKF against the EKF to
demonstrate the superior performance of the SPKF (for details
on the EKF, the reader is referred to [3]). It should be noted
that we used numerical Jacobians in the EKF as we only
have a generative (i.e., black box) sensor model due to the
unstructured occupancy grid map of the corridor.

The estimation error was defined as the root-mean-squared
(RMS) error with respect to groundtruth:

Ex̂ :=

√∑N
k=0 |x̂k − x̂ktrue |

2

N + 1
,

and the relative error between covariance estimates of the P-
SPKF and S-SPKF was measured using the Frobenious norm:

EP̂ :=

N∑
k=0

√
tr
[(

P̂k,serial − P̂k,parallel

)T (P̂k,serial − P̂k,parallel

)]
.

Also, to ensure a fair comparison, we used the same random
noise for each method.

6High Definition Lidar HDL-64E S2, Data Sheet, Veldoyne Lidar Inc.
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Fig. 5. Histograms of the estimation error, Ex̂, for the S-SPKF and SRD-
SPKF vs. ground truth, over 1000 runs. The S-SPKF achieved a mean error
that was almost half the error for the SRD-SPKF.

As expected, both the error in the mean and covariance
between the S-SPKF and P-SPKF agreed to within machine
zero and the S-SPKF outperformed the EKF; the EKF’s mean
error was 3.7 times greater than the S-SPKF. As noted earlier,
the EKF is not well suited for this problem as numerical
Jacobians are required since the observation model does not
have an analytical expression. Not only does this increase
the EKF’s computational cost, but it also adds a potential
instability in the filter.

In addition, we examined the accuracy of the SRD-SPKF
against the S-SPKF to demonstrate that re-drawing, or re-
linearizing, after each measurement is not necessarily the best
approach. Figure 5 shows the mean error histograms with
respect to groundtruth for both methods over a 1000 random
runs, where we see that the mean error for the S-SPKF is
almost half that of the SRD-SPKF. Thus, we found that re-
drawing sigma-points provided absolutely no advantage, as it
was more costly and did not result in better estimates.

VI. DISCUSSION

The SPKF can encounter stability issues if the standard
measurement-update step is used to naively process the mea-
surements serially. This is due to a coupling between the
predicted measurements (i.e., the off-diagonal terms in equa-
tion (2)) that is being ignored in the ‘naive’ serial approach.
For our localization simulations, we were never able to run a
complete simulation without the state covariance matrix losing
its positive definiteness. In contrast, our serial approach does
not encounter this stability issue since it is algebraically equiv-
alent to the parallel processing case and therefore includes the
coupling information. Re-drawing sigma-points also takes into
account the coupling between the predicted measurements, in
the sense that each update is based on the sigma-points from
the previous iteration. However, as was shown, the SRD-SPKF
did not perform as well as the S-SPKF and is in fact, more
costly since in each iteration sigma-points are being re-drawn.

In addition, serial filters that employ re-linearization can
be sensitive to the order in which the measurements are
processed. For example, if an outlier or noisy measurement
is processed early, it can perturb the estimate for subsequent
iterations. For radar target tracking problems, it is well known
that the order in which the measurements are serially processed
has a significant effect on the accuracy [15, 18, 2]. For
instance, the serial SPKF method by Duan et al. [2], which
re-draws sigma-points, processed measurements in order of



decreasing accuracy: azimuth, elevation and range. In our
approach, the same estimate is obtained regardless of the order
in which the measurements are serially processed.

In our simulations, we found that this problem of re-
linearizing about a poor operating point (i.e., a poor estimate)
was an issue for the SRD-SPKF, depending on the selection
of the sigma-point weights. In other words, we found the
SRD-SPKF to be more sensitive to outliers than the S-SPKF.
Although RANSAC could be applied to the SRD-SPKF, as it
has been for the EKF [23], we note that our S-SPKF would
only help RANSAC, as it is less sensitive to outliers. It is not
our contention that re-linearizing will always be problematic or
less accurate. However, we recognize that in some problems,
such as our localization problem, re-linearizing does not result
in better estimates and is not as robust to outliers.

VII. CONCLUSION

This paper presents a novel serial processing approach to
handling high-dimensional measurements within the SPKF.
We demonstrated that our S-SPKF algorithm is more accurate
than either the S-EKF or SRD-UKF and is the fastest SPKF
algorithm of all considered, with a computational cost that
is linear in the number of measurements. We also proved that
naively applying the SPKF measurement update step in a serial
manner cannot guarantee a positive-definite state covariance
matrix. By re-writing the SPKF equations in its statistical
Jacobian form and utilizing the Sherman-Morrison-Woodbury
identity, we showed how to decouple the state and measure-
ment variables in order to serially process the measurements.
For practical field robotic systems that incorporate data-rich
sensors, we have provided a new form of the SPKF that offers
the robustness and accuracy of parallel processing, but with a
minimal computational cost.
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