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Abstract

The Robust Extended Kalman Filter (REKF), presented recently in [7], is investigated as a possible improvement
over the conventional Extended Kalman Filter (EKF) approach to solve the Simultaneous Localization and Map-
ping (SLAM) problem for mobile robotics. The limitations of the EKF are investigated compared to theoretical
boundaries in the form of the Cramer-Rao Lower Bound (CRLB), and concise derivations for the EKF and REKF
are presented. Simulations are conducted to obtain additional insight in the performance and failure points of the
EKF-SLAM algorithm, alongside some REKF-SLAM trials.
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Chapter 1

Introduction

1.1 Motivation

While robotics found its first widely-used application in the industrial setting, researchers worldwide have been
working hard to change this concept, making robots more viable for other applications. There are promises of grand
changes to society, but there are still challenges for robotics researchers before systems like entirely autonomous
space rovers can be sent off for planetary exploration. With the desire that robots operate in the physical world
comes inherently unpredictability, hardware limitations, and modeling approximations. A robust method to
represent and reason with uncertainty will address these issues, and thus facilitate true autonomous navigation.

Simultaneous localization and mapping (SLAM) is a process by which a mobile robot can build a map and localize
itself within the map at the same time. As a theoretical problem, the SLAM problem is viewed solved, but
substantial issues with physical implementation currently prevent the development of truly general algorithms for
scaling to large, real-world applications.

1.2 Literature Review

The initial research into this problem began with the seminal paper by Smith, Self and Cheeseman ([4]) which
introduced the Stochastic Map. The Stochastic Map allows for concurrent mapping of the robot and the landmarks
by augmenting the robot state vector with the landmark states, and using the Extended Kalman Filter as a tool for
estimation. However, this traditional implementation of SLAM on real systems requires a number of assumptions
and approximations that lead to inconsistencies in the algorithm. It has been shown by a number of papers ([2], [1])
that severe estimate degradation occurs when the Gaussian noise and linearization approximations do not hold.
Two key books on the subject of statistical methods applied to mobile robotics and state estimation have recently
been published, [6] and [3], of which the development of this implementation of the SLAM algorithm and the
REKF derivation were influenced, respectively.

Various other filters and methods have been proposed to address this issue, including particle filters and variations
on the EKF. A recent development by West and Syrmos ([7]) proposes the Robust Extended Kalman Filter (REKF)
applied to SLAM, which addresses the limitations through the implementation of the H∞ bounded norm.
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1.3 Objectives

The primary purpose of this thesis is to investigate the improvements the REKF provides over the conventional
EKF approach. Various aspects will be investigated, including comparisons to the theoretical limit of the
Cramer-Rao Lower Bound (CRLB) (as introduced in [5]), as well as performance under Gaussian and
non-Gaussian noise situations. As the REKF is a newly-proposed technique, its performance is not yet well
detailed in literature, and has a number of variations to be experimented with.

In the following chapters, the simulator model and dataset generator will be introduced, as well as the underlying
mathematical theory for EKF-SLAM and REKF-SLAM, culminating in the experiment results. Concise derivations
are intended to provide a clean starting point for further investigations into the REKF method, with discussion and
suggestions for future work to follow.

2
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Chapter 2

Simulator

2.1 Introduction

As the goal of this thesis is to investigate the improvements of the SLAM algorithms, various other aspects were
chosen to be as simple as possible, yet also general enough for the problem. The intent of the simplicity is to isolate
the effects of the filtering algorithms, and avoid any possible unrelated complications. The first is the choice of the
robot motion and sensor model, which is used to generate the datasets for testing. Figure 2.1 shows the model used.

(xr, yr)

vθr, ω

φlmax

rlm
ax

r
lm

in

Figure 2.1: Robot motion and sensor model.
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2.2 Motion Model

The motion model used is that of the 2D unicycle. This is a barebones representation of a mobile rover, with linear
and angular velocities as the inputs. The robot pose is represented in two dimensions, with x = (xr, yr, θr) as the
state, and the input is u = (v, ω). The equations governing motion of the rover are

ẋ =

 v cos θ
v sin θ
ω

 (2.1)

To discretize this model, we will use the following numerical approximation:

ẋ (t) =
x (t)− x (t−∆t)

∆t
(2.2)

With this approximation, our discrete state transition model is then:

xk = xk−1 + ∆t

 v cos θ
v sin θ
ω

 (2.3)

2.3 Sensor Model

The sensor model used is that of a generic range sensor, with a sensing cone defined by the maximum range rlmax,
minimum range rlmin, and angle φlmax. This generalizes common rangefinding sensors such as radar, LIDAR, and
computer vision. A reading is thus obtained for each landmark observation, zl = (rl, φl). Absolute identification is
assumed, to simplify the algorithm.

rl =
√

(xl − xr)2 + (yl − yr)2 (2.4)

φl = tan−1

(
yl − yr
xl − xr

)
− θr (2.5)

rlmin
|rl| ≤ rlmax (2.6)

|φl| ≤ φlmax (2.7)

2.4 Noise Model

To simulate uncertainty in sensor readings and motion commands, noise is injected into the datasets prior to
storage. Initial tests use and vary magnitudes of i.i.d. Gaussian noise, but later ones also try to see if the filters are
robust to other types - as EKF is defined under Gaussian assumptions.

4
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ũ = u+ δu, δu ∼ N (0, Qk) (2.8)

z̃l = zl + δzl, δzl ∼ N (0, Rk) (2.9)

2.5 Simulation

For the datasets, v and ω are chosen to be constant, so that the robot travels in a circle. This makes it easy to see the
ground truth deviation of the estimates. As well, the landmarks were randomly generated in a annular distribution
around the path of the robot, and the noisy control and noisy sensor readings were stored to file as input for the
filtering algorithm.

2.6 Implementation

For implementation, a single file is used to define the simulation initializations and input commands, and a random
map is generated from it. These parameters are fed into the simulator, generating a noisy dataset storing the ground
truth, noisy input, noisy sensor readings, map, and various model properties. These can be used to generate an
animation for viewing, as well as fed to the SLAM algorithms. Consistency plots can then be generated from the
estimation results. Figure 2.2 below summarizes the code file relations.

mdl param simulator simdata

sensor reading animator

odometry

(R)slammer

(R)EKF SLAM

(R)EKF results

plottype1

plottype2

Figure 2.2: File relation flowchart.

5
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Chapter 3

Kalman Filter (KF)

3.1 Introduction

The Kalman Filter (KF) is a well-studied recursive state estimator for stochastic systems. Based on Bayes’ Rule,
and a number of assumptions, the Kalman Filter estimates the state of a system by incorporating a series of noisy
measurements. These assumptions include the Markov properties, linear state transitions and measurements, a
normally distributed initial belief, and zero-mean, Gaussian noise characteristics. Alternately, one can also view the
system as a Markov chain with linear operators perturbed by Gaussian noise. While the Kalman Filter is a
discrete-time method, it is still highly applicable given the discrete approximations that we apply anyway when
implementing algorithms on computers today. As a result of the derivations, the Kalman Filter is also a minimum
mean-square error estimator (MMSE). The linear state transition and measurement models are given below, along
with the Gaussian noise assumptions factored directly into the process and measurement equations.

xk = Akxk−1 +Bkuk + wk, wk ∼ N (0, Qk) (3.1)

zk = Ckxk + nk, nk ∼ N (0, Rk) (3.2)

3.2 Algorithm

The algorithm can be generally viewed in two steps, as a predictor-corrector. The Filter maintains the first and
second moments of the state distribution - the mean and covariance, keeping with the Gaussian assumption. These
are represented by µ−k and Σ−k regarded as the predictive step, and µk and Σk the corrective step. For the robotic
rover, the motion model is applied first as a predictor, and predictions are made as to the location of the landmarks.
These predictions are compared against the actual measurements, and the difference (known as the innovation) is
used alongside the Kalman gain, Kk, as a correction to the state estimate. The following set of equations
summarizes the overall algorithm at each update step.
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µ−k = Akµk−1 +Bkuk (3.3)

Σ−k = AkΣk−1A
T
k +Qk (3.4)

Kk = Σ−k C
T
k

(
CkΣ−k C

T
k +Rk

)−1
(3.5)

µk = µ−k +Kk

(
zk − Ckµ−k

)
(3.6)

Σk = (I −KkCk)Σ−k (3.7)

3.3 Derivation

In this derivation, we will split the algorithm into its two component steps, the predictive and corrective elements.
We will begin by assuming a form for the filter:

µ−k := Akµk−1 +Bkuk (3.8)

µk := µ−k +Kk (zk − ẑk) (3.9)

ẑk := Ckµ
−
k (3.10)

The choice for µ−k can be motivated by seeing that with the linear operators of the state transition equation in
Equation 3.1, our best initial estimate would be to use our best corrected estimate generated in the prior step. For
the estimate µk, it is based on the previous estimate and the new measurement zk. Kk is a gain matrix to be
determined, and the quantity (zk − ẑk) is known as the innovation, a corrective term to the estimate.

Alongside these estimators, we can define the a priori and the a posteriori estimate-errors:

e−k := xk − µ−k (3.11)

ek := xk − µk (3.12)

Alongside these, we can define the respective a priori and a posteriori estimate-errors covariances:

Σ−k := E
[
e−k e

−T
k

]
(3.13)

Σk := E
[
eke

T
k

]
(3.14)

With these definitions and the system dynamics, we can complete the expression for e−k :

e−k = xk − µ−k
= Akxk−1 +Bkuk + wk −Akµk−1 −Bkuk
= Akek + wk (3.15)

7
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Next, for Σ−k :

Σ−k = E
[
e−k e

−T
k

]
= E

[
(Akek + wk) (Akek + wk)

T
]

= E
[
Akeke

T
kA

T
k + wkw

T
k

]
= AkE

[
eke

T
k

]
ATk + E

[
wkw

T
k

]
= AkΣk−1A

T
k +Qk (3.16)

Similarly, for ek:

ek = xk − µk
= xk − µ−k −Kk

(
zk − Ckµ−k

)
= e−k −Kk

(
Ckxk + nk − Ckµ−k

)
= e−k −Kk

(
Cke

−
k + nk

)
= (I −KkCk) e−k −Kknk (3.17)

And then for Σk:

Σk = E
[(

(I −KkCk) e−k −Kknk
) (

(I −KkCk) e−k −Kknk
)T ]

= E
[
(I −KkCk) e−k e

−T
k (I −KkCk)

T − (I −KkCk) e−k n
T
kK

T
k −Kknke

−T
k (I −KkCk) +Kknkn

T
kK

T
k

]
= (I −KkCk)E

[
e−k e

−T
k

]
(I −KkCk)

T − (I −KkCk)E
[
e−k n

T
k

]
KT
k

−KkE
[
nke
−T
k

]
(I −KkCk)

T +KkE
[
nkn

T
k

]
KT
k

= (I −KkCk) Σ−k (I −KkCk)
T +KkRkK

T
k (3.18)

As can be seen, for the last line of simplification, E
[
e−k n

T
k

]
= 0 and E

[
nke
−T
k

]
= 0. That is, the a posterior

estimate-error is assumed to be uncorrelated with nk, the measurement noise of the current step (and unaffected by
values in previous steps since nk is i.i.d.).

Now, to find Kk, the optimal gain, we must define a cost function to minimize. We will choose to minimize the sum
of the squares of the estimation-error of each component of xk at every time step, resulting in the MMSE property
of the Kalman Filter.

In this case, we can minimize the trace of Σk, using the matrix calculus identity
∂tr(ABAT )

∂A = 2AB.

∂trΣk

∂Kk
= 2 (I −KkCk) Σ−k−1

(
−CTk

)
+ 2KkRk (3.19)

8
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Setting the derivative to 0 and solving for Kk, we get:

KkRk = (I −KkCk) Σ−k−1C
T
k

KkRk = Σ−k−1C
T
k −KkCkΣ−k−1C

T
k

Kk = Σ−k−1C
T
k

(
CkΣ−k−1C

T
k +Rk

)−1
(3.20)

With this result, we have the entirety of the algorithm. However, we can take these results and further simplify the
expressions for ease of implementation and computational efficiency by combining equations 3.18 and 3.20.
Starting with Σk, and inserting the expression for Kk, we get:

Σk =
(
I − Σ−k C

T
k

(
CkΣ−k C

T
k +Rk

)−1
Ck

)
Σ−k
(
I − Σ−k C

T
k

(
CkΣ−k C

T
k +Rk

)−1
)T

+Σ−k C
T
k

(
CkΣ−k C

T
k +Rk

)−1
Rk

(
Σ−k C

T
k

(
CkΣ−k C

T
k +Rk

)−1
)T

(3.21)

Expanding out the bracketed terms:

Σk = Σ−k − Σ−k C
T
k

(
CkΣ−k C

T
k +Rk

)−1
CkΣ−k

−Σ−k C
T
k

(
CkΣ−k C

T
k +Rk

)−1
CkΣ−k

+Σ−k C
T
k

(
CkΣ−k C

T
k +Rk

)−1
CkΣ−k C

T
k

(
CkΣ−k C

T
k +Rk

)−1
CkΣ−k

+Σ−k C
T
k

(
CkΣ−k C

T
k +Rk

)−1
RkC

T
k

(
CkΣ−k C

T
k +Rk

)−1
CkΣ−k

= Σ−k − 2Σ−k C
T
k

(
CkΣ−k C

T
k +Rk

)−1
CkΣ−k

+Σ−k C
T
k

(
CkΣ−k C

T
k +Rk

)−1
CkΣ−k C

T
k

(
CkΣ−k C

T
k +Rk

)−1
CkΣ−k

+Σ−k C
T
k

(
CkΣ−k C

T
k +Rk

)−1
RkC

T
k

(
CkΣ−k C

T
k +Rk

)−1
CkΣ−k (3.22)

Combining the last two terms:

Σk = Σ−k − 2Σ−k C
T
k

(
CkΣ−k C

T
k +Rk

)−1
CkΣ−k

+Σ−k C
T
k

(
CkΣ−k C

T
k +Rk

)−1 (
CkΣ−k C

T
k +Rk

) (
CkΣ−k C

T
k +Rk

)−1
CkΣ−k

= Σ−k − 2Σ−k C
T
k

(
CkΣ−k C

T
k +Rk

)−1
CkΣ−k + Σ−k C

T
k

(
CkΣ−k C

T
k +Rk

)−1
CkΣ−k

= Σ−k − Σ−k C
T
k

(
CkΣ−k C

T
k +Rk

)−1
CkΣ−k (3.23)

9
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From here, we can reinsert the expression for Kk, and complete the derivation.

Σk = Σ−k −KkCkΣ−k
= (I −KkCk)Σ−k (3.24)

10
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Chapter 4

Extended Kalman Filter (EKF)

4.1 Introduction

One of the basic assumptions of the Kalman Filter is linearity. Unfortunately, in the real world, linear systems do
not exist, even for our very simple robot model. One approach to address nonlinearity is to linearize the state
transition and measurement models, resulting in the Extended Kalman Filter (EKF). For this, we consider the
generalized form of our nonlinear system model, where the noise again is factored directly into the process and
measurement equations.

xk = f (xk−1, uk) + wk, wk ∼ N (0, Qk) (4.1)

zk = h (xk) + nk, nk ∼ N (0, Rk) (4.2)

4.2 Algorithm

After the linearization steps are applied, the algorithm largely resembles that of the regular Kalman Filter.

µ−k = f (µk−1, uk) (4.3)

Σ−k = FkΣk−1F
T
k +Qk (4.4)

Kk = Σ−kH
T
k

(
HkΣ−kH

T
k +Rk

)−1
(4.5)

µk = µ−k +Kk

(
zk − h

(
µ−k
))

(4.6)

Σk = (I −KkHk) Σ−k (4.7)

4.3 Derivation

The derivation for the EKF also resembles that of the KF, after the linearization step. As such, we first begin by
linearizing the state transition model using a first order Taylor series expansion around µk−1.
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f (xk−1, uk) = f (µk−1, uk) + ∆xk (4.8)

∆xk =
∂f

∂x

∣∣∣∣
µk−1

δxk−1 +H.O.T. (4.9)

∆xk ≈ Fkδxk−1 (4.10)

Where Fk is the Jacobian of f with respect to x. Then, as motivated by the KF derivation, we find the mean
prediction, as the form is no longer as simple to assume. However, the result of taking the expected value of both
sides of the state transition equation is quite intuitive:

µ−k = E [xk]
= E [f (µk−1, uk) + ∆xk + wk]
= E [f (xk−1, uk)] + E [∆xk] + E [wk]
= f (µk−1, uk) (4.11)

Next, for the covariance prediction:

Σ−k = E
[(
xk − µ−k

) (
xk − µ−k

)T ]
= E

[(
f (µk−1, uk) + ∆xk + wk − µ−k

)
(. . . )T

]
= E

[(
µ−k + ∆xk + wk − µ−k

)
(. . . )T

]
= E

[
(∆xk + wk) (. . . )T

]
= E

[
(Fkδxk−1 + wk) (. . . )T

]
= FkE

[
δxk−1δx

T
k−1

]
F Tk + E

[
wkw

T
k

]
= FkΣk−1F

T
k +Qk (4.12)

We now continue on to the correction step, with the Taylor series expansion of the measurement model around µ−k :

h (xk) = h
(
µ−k
)

+ ∆zk (4.13)

∆zk =
∂f

∂x

∣∣∣∣
µ−k

δxk +H.O.T. (4.14)

∆zk ≈ Hkδxk (4.15)

12
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Choosing an appropriate estimate, ẑk:

ẑk = E [zk]
= E

[
h
(
µ−k
)

+ ∆zk + nk
]

= E
[
h
(
µ−k
)]

+ E [∆zk] + E [nk]
= h

(
µ−k
)

(4.16)

Then, defining the innovation term:

zk − ẑk = h (xk) + nk − h
(
µ−k
)

= h
(
µ−k
)

+ ∆zk + nk − h
(
µ−k
)

= ∆zk + nk

≈ Hkδxk + nk (4.17)

As this is of the same form as the measurement model in the KF derivation, the correction step derivation gives a
very similar result.

Kk = Σ−kH
T
k

(
HkΣ−kH

T
k +Rk

)−1
(4.18)

µk = µ−k +Kk

(
zk − h

(
µ−k
))

(4.19)

Σk = (I −KkHk) Σ−k (4.20)

13
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Chapter 5

Robust Kalman Filter (RKF)

5.1 Introduction

While the Kalman Filter is presented as a mathematically elegant tool for state estimation, a number of issues arise
in actual implementation on real-world systems. The two main issues are the fundamental assumptions of linearity
and zero-mean, Gaussian noise, and the possibility of inaccuracies in system modeling. The linearization in the
EKF fundamentally violates the assumptions, and as such, the algorithm fails to perform properly.

To address these issues, a new filter was developed for robustness to these modeling inaccuracies, addressing
estimation errors bounded by the H∞ norm. As a result, the filter limits the worst-case error, but allows the average
overall error to be bigger. This filter is known as the H∞ Filter, or, as it will soon become apparent, the Robust
Kalman Filter (RKF).

To begin, we will retain the linear model for the state transition and measurement models, and introduce two
additive parameters, wk, and nk.

xk+1 = Akxk +Bkuk + wk (5.1)

zk = Ckxk + nk (5.2)

While these parameters were used to represent noise in the previous filters, these parameters will now also capture
the unmodeled system dynamics, as well as additive noise. As such, no assumptions are made at all about the
distribution of these parameters.
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5.2 Cost Function

For this derivation of the H∞ Filter, we will take the game theory approach, as it provides some intuition as well as
a clean derivation. For the estimates at each timestep from 0 to K-1, we define the cost function as:

J̃ :=

∑K−1
k=0

∣∣∣∣xk − x̂−k ∣∣∣∣2Sk∣∣∣∣x0 − x̂−0
∣∣∣∣2
P−

−1

0
+
∑K−1

k=0

(
||wk||2Q−1

k
+ ||nk||2R−1

k

) (5.3)

Defining Sk, P−0 , Qk, and Rk as weights (symmetric, positive-definite matrices), the cost function is defined as the
weighted L2-norms of the estimation error over the weighted L2-norms of the noise. It will be seen later that the
values of P−0 , Qk, and Rk can be taken as analogous to those in the Kalman Filter, representing initial uncertainty,
and noise parameters, if they are known. However, since wk and nk are supposed to capture the unmodeled system
dynamics along with the additive noise, the magnitudes of the weighting matrices may need to be increased. Sk
does not have an analogy in the Kalman Filter, but it is a user-specified matrix with relative weighting to which
components of the error in the robot pose estimate the user deems more important.

Viewing this as a game, our goal is to minimize the estimation error, while our adversary, Nature, assumed to be
perverse, attempts to maximize the error. We define J̃ with the noise variables and initial conditions in the
denominator to mitigate the use of of large magnitudes, necessitating clever choices to increase the estimation error
instead of brute force. As such, we can view this rivalry as a minimax problem, wherein the optimal strategies are
played at each timestep, k:

min
x̂−k

max
wk,nk,x0

J̃ (5.4)

It is analytically intractable to solve for the optimal estimator to minimize the cost function, so instead we can
guarantee a bound, γ2, to the function:

J̃ < γ2 (5.5)

This user-specified upper bound to the cost function is the H∞ bound that we consider in the H∞ filter. As will be
seen, this parameter will need to be determined experimentally, which may or may not be chosen to be its minimum
value due to various performance specifications.

5.3 Algorithm

Again, the resulting algorithm is in the form of a predictor-corrector. In fact, it largely resembles the form of the
Kalman Filter, but with robustness to noise and modeling uncertainties (explaining the name RKF):

15
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x̂−k+1 = Akx̂k +Bkuk (5.6)

P−k = AkPkA
T
k +Qk (5.7)

P̃k =
(
I − 1

γ2
SkP

−
k

)−1(
2I − 1

γ2
SkP

−
k

)
P−k

(
I − 1

γ2
SkP

−
k

)−1

(5.8)

Kk = P̃kC
T
k

(
CkP̃kC

T
k +Rk

)−1
(5.9)

x̂k = x̂−k +Kk

(
zk − Ckx̂−k

)
(5.10)

Pk = (I −KkCk) P̃k (5.11)

One of the particular differences is that we are no longer estimating µk and Σk, but now x̂k and Pk, respectively.
The reason for this is that without the Gaussian noise assumption, we can no longer maintain a Gaussian
representation for our state estimates. x̂k is our best estimate of the state, and Pk is a parameter defined for the sake
of the calculation of Kk. In light of that, we can no longer view Pk as the certainty of the estimate, as it is just a
value that evolves through time alongside the x̂k.

5.4 Derivation

To begin this derivation, we will first need to start with a couple of definitions. We will assume a form for the
estimator, defined as:

x̂−k+1 := Akx̂k +Bkuk (5.12)

x̂k := x̂−k +Kk

(
zk − Ckx̂−k

)
(5.13)

In addition, we will consider the estimation-error dynamics, and how they propagate:

ek := xk − x̂−k (5.14)

ek+1 = xk+1 − x̂−k+1

= (Akxk +Bkuk + wk)− (Akx̂k +Bkuk)
= Akek + wk −AkKk

(
Ckxk + nk − Ckx̂−k

)
= Ak (I −KkCk) ek + wk −AkKknk (5.15)

With these definitions, we can manipulate the cost function into a more useful form.

J̃ =
∑K−1

k=0 eTk Skek

eT0 P
−−1

0 e0 +
∑K−1

k=0

(
wTkQ

−1
k wk + nTkR

−1
k nk

) < γ2 (5.16)

16
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Bringing the denominator to the other side of the inequality:

K−1∑
k=0

eTk Skek < γ2

(
eT0 P

−−1

0 e0 +
K−1∑
k=0

(
wTkQ

−1
k wk + nTkR

−1
k nk

))
(5.17)

Dividing both sides by 2γ2, and moving the terms all to one side:

K−1∑
k=0

1
2γ2

eTk Skek −
1
2
eT0 P

−−1

0 e0 −
K−1∑
k=0

(
1
2
wTkQ

−1
k wk +

1
2
nTkR

−1
k nk

)
< 0 (5.18)

For use in the rest of the derivation, we will define J as our cost function, which includes the Lagrange multiplier
terms λk to maintain the error dynamic relations as constraints in the optimization.

J :=
K−1∑
k=0

[
1
2
eTk

(
1
γ2
Sk

)
ek −

1
2
wTkQ

−1
k wk −

1
2
nTkR

−1
k nk

+λTk+1 (Ak (I −KkCk) ek + wk −AkKknk − ek+1)

]
− 1

2
eT0 P

−−1

0 e0 (5.19)

This cost function is guaranteed to be constrained by the bound, and we will attempt to find an analytical solution
to the minimax problem using it.

For Nature’s influence, we will maximize the cost function with respect to the two noise parameters, as well as the
initial condition. The maximal parameters will be found by obtaining the partial derivatives of J with respect to the
parameters, setting them to 0, and solving:

∂J

∂wk

T

= −Q−1
k wk + λk+1 = 0⇒ wk = Qkλk+1 (5.20)

∂J

∂nk

T

= −R−1
k nk −KT

k A
T
k λk+1 = 0⇒ nk = −RkKT

k A
T
k λk+1 (5.21)

∂J

∂x0

T

=
1
γ2
S0e0 + (I −K0C0)T AT0 λ1 − P−

−1

0 e0 = 0

⇒ e0 =
(
P−

−1

0 − 1
γ2
S0

)−1

(I −K0C0)T AT0 λ1 (5.22)

For cleanliness, let us define λ0, so to simplify the expression for e0:

λ0 :=
(
I − 1

γ2
S0P

−
0

)−1

(I −K0C0))T AT0 λ1 (5.23)
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So that:

e0 = P−0 λ0 (5.24)

Plugging these expressions into J , and since Qk, Rk are symmetric matrices, we get:

J =
K−1∑
k=0

[
1

2γ2
eTk Skek −

1
2
λTk+1Q

T
kQ
−1
k Qkλk+1 −

1
2
λTk+1AkKkR

T
kR
−1
k RkK

T
k A

T
k λk+1

+λTk+1

(
Ak (I −KkCk) ek +Qkλk+1 +AkKkRkK

T
k A

T
k λk+1 − ek+1

)]
− 1

2
λT0 P

−
0 P

−−1

0 P−0 λ0

=
K−1∑
k=0

[
1

2γ2
eTk Skek + λTk+1

(
Ak (I −KkCk) ek +

1
2
Qkλk+1 +

1
2
AkKkRkK

T
k A

T
k λk+1 − ek+1

)]

−1
2
λT0 P

−
0 λ0 (5.25)

Now, we will minimize the cost function with respect to the estimation error. Finding the partial derivative of J
with respect to ek:

∂J

∂ek

T

=
1
γ2
Skek + (I −KkCk)

T ATk λk+1 − λk (5.26)

We will now define a matrix P−k , that relates ek to λk:

ek := P−k λk (5.27)

The actual value of P−k will be determined later. Plugging this expression into our partial derivative, setting it to 0,
and solving for λk, we get:

0 =
1
γ2
SkP

−
k λk + (I −KkCk)

T ATk λk+1 − λk (5.28)

λk =
(
I − 1

γ2
SkP

−
k

)−1

(I −KkCk)
T ATk λk+1 (5.29)

18
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Re-expressing J using this value, we get:

J =
K−1∑
k=0

[
1

2γ2
λTk P

−
k SkP

−
k λk + λTk+1

(
Ak (I −KkCk)P−k λk +

1
2
Qkλk+1 +

1
2
AkKkRkK

T
k A

T
k λk+1 − ek+1

)]

−1
2
λT0 P

−
0 λ0

=
K−1∑
k=0

[
1

2γ2
λTk+1Ak (I −KkCk)

(
I − 1

γ2
SkP

−
k

)−1

P−k SkP
−
k

(
I − 1

γ2
SkP

−
k

)−1

(I −KkCk)
T ATk λk+1

+λTk+1

(
Ak (I −KkCk)P−k

(
I − 1

γ2
SkP

−
k

)−1

(I −KkCk)
T ATk λk+1 +

1
2
Qkλk+1

+
1
2
AkKkRkK

T
k A

T
k λk+1 − P−k+1λk+1

)]
− 1

2
λT0 P

−
0 λ0 (5.30)

Grouping common terms, we can further simplify the expression:

J =
K−1∑
k=0

[
1
2
λTk+1Ak (I −KkCk)

(
I − 1

γ2
SkP

−
k

)−1( 1
γ2
SkP

−
k + 2

(
I − 1

γ2
SkP

−
k

))
P−k

×
(
I − 1

γ2
SkP

−
k

)−1

(I −KkCk)
T ATk λk+1 +

1
2
λTk+1Qkλk+1 +

1
2
λTk+1AkKkRkK

T
k A

T
k λk+1

−λTk+1P
−
k+1λk+1

]
− 1

2
λT0 P

−
0 λ0

=
K−1∑
k=0

[
1
2
λTk+1Ak (I −KkCk)

(
I − 1

γ2
SkP

−
k

)−1(
2I − 1

γ2
SkP

−
k

)
P−k

(
I − 1

γ2
SkP

−
k

)−1

× (I −KkCk)
T ATk λk+1 +

1
2
λTk+1Qkλk+1 +

1
2
λTk+1AkKkRkK

T
k A

T
k λk+1

−λTk+1P
−
k+1λk+1

]
− 1

2
λT0 P

−
0 λ0 (5.31)

For simplicity in further derivation, we will define P̃k:

P̃k :=
(
I − 1

γ2
SkP

−
k

)−1(
2I − 1

γ2
SkP

−
k

)
P−k

(
I − 1

γ2
SkP

−
k

)−1

(5.32)
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This simplifies the expression for J into:

J =
K−1∑
k=0

[
1
2
λTk+1Ak (I −KkCk) P̃k (I −KkCk)

T ATk λk+1 +
1
2
λTk+1Qkλk+1 +

1
2
λTk+1AkKkRkK

T
k A

T
k λk+1

−λTk+1P
−
k+1λk+1

]
− 1

2
λT0 P

−
0 λ0 (5.33)

Now, to find the optimal gain, Kk, we can minimize J directly:

∂J

∂KT
k A

T
k λk+1

T

= −CkP̃k (I −KkCk)
T ATk λk+1 +RkK

T
k A

T
k λk+1 = 0 (5.34)

Canceling the ATk λk+1 terms (they are non-zero), and rearranging to solve for Kk:

0 = −CkP̃k (I −KkCk)
T +RkK

T
k

0 = −CkP̃k + CkP̃kC
T
k K

T
k +RkK

T
k

KT
k =

(
CkP̃kC

T
k +Rk

)−1
CkP̃k

Kk = P̃kC
T
k

(
CkP̃kC

T
k +Rk

)−1
(5.35)

As can be seen, Kk is of the same form as the Kalman gain in the Kalman Filter. Next, we can optimize J with
respect to λk+1:

∂J

∂λk+1

T

= Ak (I −KkCk) P̃k (I −KkCk)
T ATk λk+1+Qkλk+1+AkKkRkK

T
k A

T
k λk+1−P−k+1λk+1 = 0 (5.36)

Canceling the λk+1 terms and solving for P−k+1:

0 = Ak (I −KkCk) P̃k (I −KkCk)
T ATk +Qk +AkKkRkK

T
k A

T
k − P−k+1

P−k+1 = Ak (I −KkCk) P̃k (I −KkCk)
T ATk +Qk +AkKkRkK

T
k A

T
k (5.37)

Gathering common terms:

P−k+1 = Ak

[
(I −KkCk) P̃k (I −KkCk)

T +KkRkK
T
k

]
ATk +Qk (5.38)
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If we define Pk based on the above equation, and use it to further simplify P−k+1:

Pk := (I −KkCk) P̃k (I −KkCk)
T +KkRkK

T
k (5.39)

P−k+1 = AkPkA
T
k +Qk (5.40)

As can be seen, P−k+1 is in a familiar form to the covariance prediction step in the Kalman Filter. In addition, Pk is
of the same form as equation 3.18, so we can apply the same manipulation to simplify it even further:

Pk = (I −KkCk) P̃k (5.41)

Thus, all the expressions in the RKF are found. One additional aspect needs to be considered, which to ensure that
the extremizing value of Kk is a minimum of the cost function. To determine the type of a stationary point, the
second derivative must be considered. For minima, the expression must be positive definite. In our case:

∂2J

∂
(
KT
k A

T
k λk+1

)2 T = CkP̃kC
T
k +Rk > 0 (5.42)

Since Rk is defined as positive definite, and Ck and Kk are just linear operators, this requires that Pk is also
positive definite. This assertion is the limitation on the value of γ2.

With this final condition, the derivation is complete.
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Chapter 6

Robust Extended Kalman Filter (REKF)

6.1 Introduction

As the final section to the set of derivations, we will apply the RKF to nonlinear systems, constructing the Robust
Extended Kalman Filter (REKF). The same approach (as th EKF) to linearization using Taylor series expansions
will be applied, and (unsurprisingly), the resulting algorithm will be a familiar form. The general nonlinear form of
the system model is as follows:

xk+1 = f (xk, uk) + w̃k (6.1)

zk = h (xk) + ñk (6.2)

Where w̃k and ñk are the additive noise and unmodeled system dynamics.

6.2 Algorithm

The algorithm largely resembles the form of the EKF:

x̂−k+1 = f (x̂k, uk) (6.3)

P−k = FkPkF
T
k +Qk (6.4)

P̃k =
1
2

(
I − 1

γ2
SkP

−
k

)−1(
2I − 1

γ2
SkP

−
k

)
P−k

(
I − 1

γ2
SkP

−
k

)−1

(6.5)

Kk = P̃kH
T
k

(
HkP̃kH

T
k +Rk

)−1
(6.6)

x̂k = x̂−k +Kk

(
zk − h

(
x̂−k
))

(6.7)

Pk = (I −KkHk) P̃k (6.8)
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Again, as γ2 →∞, the REKF reduces to the EKF. Just like the EKF, a combination of nonlinear estimates and
linear approximations are used for the various predictor-corrector steps. While Qk and Rk can be taken as
analogous to their counterparts in the EKF, in the REKF they capture the additive noise as well as unmodeled
system dynamics (and linearization errors), so they may need to be inflated to account for those effects.

6.3 Derivation

Again, we will need to begin by assuming a form for the estimator:

x̂−k+1 := f (x̂k, uk) (6.9)

x̂k := x̂−k +Kk

(
zk − h

(
x̂−k
))

(6.10)

As there are nonlinear functions, we will conduct a linearization step. First, we obtain a Taylor series expansion of
the state transition equation around x̂k:

f (xk, uk) = f (x̂k, uk) +
∂f

∂x

∣∣∣∣
x̂k

(xk − x̂k) +H.O.T (6.11)

= f (x̂k, uk) + Fk (xk − x̂k) + ∆f (xk) (6.12)

Where Fk is the Jacobian of f with respect to x, and ∆f (xk) is the higher-order terms of the Taylor series
expansion. Now, for the measurement equation, we expand around x̂−k :

h (xk) = h
(
x̂−k
)

+
∂h

∂x

∣∣∣∣
x̂−k

(
xk − x̂−k

)
+H.O.T (6.13)

= h
(
x̂−k
)

+Hk

(
xk − x̂−k

)
+ ∆h (xk) (6.14)

Similarly, Hk is the Jacobian of h with respect to x, and ∆h (xk) represents the higher-order terms. With these
expansions, we can consider the error dynamics:

ek+1 = xk+1 − x̂−k+1 (6.15)

= f (xk, uk) + w̃k − f (x̂k, uk)
= f (x̂k, uk) + Fk (xk − x̂k) + ∆fxk + w̃k − f (x̂k, uk)
= Fkxk − Fkx̂k + ∆fxk + w̃k (6.16)
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Using the assumed estimator for x̂k:

ek+1 = Fkxk − Fk
(
x̂−k +Kk

(
zk − h

(
x̂−k
)))

+ ∆f (xk) + w̃k

= Fkxk − Fkx̂−k − FkKk

(
h (xk) + ñk − h

(
x̂−k
))

+ ∆f (xk) + w̃k

= Fkek − FkKk

(
h
(
x̂−k
)

+Hk

(
xk − x̂−k

)
+ ∆h (xk) + ñk − h

(
x̂−k
))

+ ∆f (xk) + w̃k

= Fkek − FkKk (Hkek + ∆h (xk) + ñk) + ∆f (xk) + w̃k (6.17)

If we define wk and nk as below:

wk := w̃k + ∆f (xk) (6.18)

nk := ñk + ∆h (xk) (6.19)

The variables capture the additive noise and unmodeled system dynamics, along with the higher order terms of
linearization approximations (which, in spirit, can be lumped into the unmodeled system dynamics group). With
these definitions, we obtain:

ek+1 = Fkek − FkKk (Hkek + nk) + wk

= Fk (I −KkHk) ek + wk − FkKknk (6.20)

This is of the exact same form as the error dynamics relation in the RKF case, and as such, the completion of the
derivation follows the exact same steps.

24



UTIAS

UNIVERSITY OF TORONTO

INSTITUTE FOR AEROSPACE STUDIES

Engineering Science Undergraduate Thesis
April 11, 2008

Chapter 7

Simultaneous Localization and Mapping
(SLAM)

7.1 Introduction

The Simultaneous Localization and Mapping (SLAM) problem is the process by which a mobile robot can build a
map and localize itself within the map at the same time. The solution to this problem would provide a large
component of the ability for a robot to autonomously navigate through any unknown locale, and as such, the
solution is viewed as a holy grail of robotics. Various solutions have been proposed, each with their own sets of
assumptions, as well as limitations (often in terms of scaling or consistency). For a baseline comparison, we will
start with one of the earliest proposed solutions to the SLAM problem, and compare it to this newly postulated
approach.

7.2 EKF-SLAM

7.2.1 Introduction

The EKF-SLAM solution augments the robot pose state with all the landmark locations, creating a large state to
estimate and update with the Extended Kalman Filter. It has been implemented with a good degree of success in
some applications, but the linearization and Gaussian noise assumptions lead to inconsistencies that are
unacceptable in the general case. These inconsistencies tend to be very noticeable in the loop-closure scenario,
where the algorithm proves to be overconfident in its estimates of the landmark locations. However, it is the most
basic of the SLAM solutions, so it provides a good initial attempt.

7.2.2 Linearization

Starting with the state transition and measurement models in equations 2.3, 2.4, and 2.5, we can apply Taylor series
expansions to get the relations in equations 4.10 and 4.15:



UTIAS

UNIVERSITY OF TORONTO

INSTITUTE FOR AEROSPACE STUDIES

Engineering Science Undergraduate Thesis
April 11, 2008

∆xk = Fkδxk−1 (7.1)

∆zk = Hkδxk (7.2)

Calculating out the Jacobian for the motion update, we get:

Fk :=
∂f

∂x

∣∣∣∣
µk−1

= I +

 0 0 −vk∆t sin θrk−1

0 0 vk∆t cos θrk−1

0 0 0

∣∣∣∣∣∣
µk−1

(7.3)

In addition, for this particular implementation, we will find the Jacobian of f with respect to u:

Gk :=
∂f

∂u

∣∣∣∣
µk−1

=

 ∆t cos θrk−1
0

∆t sin θrk−1
0

0 ∆t

∣∣∣∣∣∣
µk−1

(7.4)

This Gk term will be used for in the covariance update step due to how the noise parameters were defined.

For the measurement model, we calculate the Jacobian with respect to the robot pose as well as the landmark
location. For conciseness, the general form is as follows:

δx = xl − xr (7.5)

δy = yl − yr (7.6)

q =
(
δ2x + δ2y

)
(7.7)

Hk :=
∂h

∂x

∣∣∣∣
µ−k

=

[
− δx√

q − δy√
q 0 . . . δx√

q
δy√
q

δy
q − δx

q −1 . . . − δy
q

δx
q

]∣∣∣∣∣
µ−k

(7.8)

7.2.3 Implementation

The Jacobians derived above are used in the algorithm. In terms of implementation peculiarities, projection
matrices are used to isolate the portions of the state that it is desired to modify, and newly observed landmarks are
initialized to the measurement (as there is no other information). The algorithm is initialized with large landmark
covariances (to indicate no knowledge), and the initial pose with very low uncertainty. For this implementation, the
process noise is factored directly into the input (as defined in Section 2.4). To maintain generality, Q̃k is defined,
making use of the Gk term to achieve the appropriate dimensions. In addition, for simplicity, identification of
observed landmarks and the total number are known a priori, so we can isolate the effects of the various filter
implementations. In real life implementation, these concerns must also be integrated into the algorithm. The
following page details the entire implementation for each time step.
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Algorithm 1 EKF-SLAM (µk−1,Σk−1, uk, zk, Qk, Rk)

1 : P =


1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0︸ ︷︷ ︸

2N


2 : µ−k = µk−1 + P T

 vk∆t cos (µk−1,θ)
vk∆t sin (µk−1,θ)

ωk∆t


3 : Fk = I + P T

 0 0 −vk∆t sin (µk−1,θ)
0 0 vk∆t cos (µk−1,θ)
0 0 1

P
4 : Gk =

 ∆t cos (µk−1,θ) 0
∆t sin (µk−1,θ) 0

0 ∆t


5 : Q̃k = GkQkG

T
k

6 : Σ−k = FkΣk−1F
T
k + P T Q̃kP

7 : for all observed features zik =
(
rik, φ

i
k

)T do:
8 : if landmark i never seen before:

9 :
[
µ−i,x
µ−i,y

]
=

[
µ−k,x
µ−k,y

]
+

 rik cos
(
φik + µ−k,θ

)
rik sin

(
φik + µ−k,θ

) 
10 : endif

11 : δ =
[
δx
δy

]
=

[
µ−i,x − µ

−
k,x

µ−i,y − µ
−
k,y

]
12 : q = δT δ

13 : ẑik =
[ √

q
atan2(δy, δx)

]

14 : P =


1 0 0 0 . . . 0 0 0 0 . . . 0
0 1 0 0 . . . 0 0 0 0 . . . 0
0 0 1 0 . . . 0 0 0 0 . . . 0
0 0 0 0 . . . 0 1 0 0 . . . 0
0 0 0 0 . . . 0︸ ︷︷ ︸

2i−2

0 1 0 . . . 0︸ ︷︷ ︸
2N−2i


15 : H i

k = 1
q

[
−δx
√
q −δy

√
q 0 δx

√
q δx

√
q

δy −δx −q −δy δx

]
P

16 : Ki
k = Σ−kH

iT
k

(
H i
kΣ
−
kH

iT
k +Rk

)−1

17 : µ−k = µ−k +Ki
k

(
zik − ẑik

)
18 : Σ−k =

(
I −Ki

kH
i
k

)
Σ−k

19 : endfor
20 : µk = µ−k
21 : Σk = Σ−k
22 : return µk,Σk
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7.3 REKF-SLAM

7.3.1 Introduction

The REKF-SLAM solution is very similar to the EKF-SLAM, as can be seen in the relations between the two
underlying algorithms. The state vector is again the augmented pose and landmark locations, and the REKF applied
on it. It is expected that using a filter designed with robustness in mind will result in better estimates and a more
consistent filter performance.

Historically, the standard approach for improved robustness in EKF-SLAM implementation often is an artificial
inflation of Qk and Rk, the noise covariances, determined through experimentation and heuristics. This results in
an inflation of the estimation covariance, improving consistency. However, as can be seen in the algorithm, the
REKF defines this inflation of the estimation covariance more methodically, and is thusly preferred, if it proves to
have an advantageous performance.

While the algorithm explicitly removes experimentation in some steps, unfortunately, the smallest value of γ2 will
need to be determined iteratively, asserting that Pk be positive definite at every time step.

7.3.2 Linearization

The exact same linearization approach is applied in the REKF as the EKF, except that the expansions are around x̂k
instead of µk (minor change in notation, the expressions are effectively the same).

Fk :=
∂f

∂x

∣∣∣∣
x̂k−1

(7.9)

Gk :=
∂f

∂u

∣∣∣∣
x̂k−1

(7.10)

Hk :=
∂h

∂x

∣∣∣∣
x̂−k

(7.11)

7.3.3 Implementation

The implementation of REKF-SLAM uses the Jacobians defined above, and resembles EKF-SLAM, with the use of
projection matrices, and Q̃k. The modifications include the additions of Sk and γ2, as well the use of the function
LOCALP̃ , which modifies the relevant sections of P̃k as per the REKF algorithm at each time step.

Additionally, the P̃k expression was modified to include a 1
2 coefficient. In other works, such as [3] and [7], it is

said that the EKF is recovered when γ2 →∞, as the optimal result without a bound on the cost function should
return to the Kalman Filter’s goal of reducing the average overall error. This also should give an insight to the
choice of γ2, as it represents a balance between the KF and RKF’s estimation goals. Unfortunately, in the
derivation presented in the earlier chapter for the RKF, this would not be the case. Upon implementation, it was
found that the coefficient was necessary to obtain working results. This modification will be discussed further in the
following chapters.
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Algorithm 2 REKF-SLAM
(
x̂k−1, Pk−1, uk, zk, Qk, Rk, Sk, γ

2
)

1 : P =


1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0︸ ︷︷ ︸

2N


2 : x̂−k = x̂k−1 + P T

 vk∆t cos (x̂k−1,θ)
vk∆t sin (x̂k−1,θ)

ωk∆t


3 : Fk = I + P T

 0 0 −vk∆t sin (x̂k−1,θ)
0 0 vk∆t cos (x̂k−1,θ)
0 0 1

P
4 : Gk =

 ∆t cos (x̂k−1,θ) 0
∆t sin (x̂k−1,θ) 0

0 ∆t


5 : Q̃k = GkQkG

T
k

6 : P−k = FkPk−1F
T
k + P T Q̃kP

7 : for all observed features zik =
(
rik, φ

i
k

)T do:
8 : if landmark i never seen before:

9 :
[
x̂−i,x
x̂−i,y

]
=

[
x̂−k,x
x̂−k,y

]
+

 rik cos
(
φik + x̂−k,θ

)
rik sin

(
φik + x̂−k,θ

) 
10 : endif

11 : δ =
[
δx
δy

]
=

[
x̂−i,x − x̂

−
k,x

x̂−i,y − x̂
−
k,y

]
12 : q = δT δ

13 : ẑik =
[ √

q
atan2(δy, δx)

]

14 : P =


1 0 0 0 . . . 0 0 0 0 . . . 0
0 1 0 0 . . . 0 0 0 0 . . . 0
0 0 1 0 . . . 0 0 0 0 . . . 0
0 0 0 0 . . . 0 1 0 0 . . . 0
0 0 0 0 . . . 0︸ ︷︷ ︸

2i−2

0 1 0 . . . 0︸ ︷︷ ︸
2N−2i


15 : H i

k = 1
q

[
−δx
√
q −δy

√
q 0 δx

√
q δx

√
q

δy −δx −q −δy δx

]
P

16 : P̃ ik = LOCALP̃
(
P̃k, i, Sk, γ

2
)

17 : Ki
k = P̃ ikH

iT
k

(
H i
kP̃

i
kH

iT
k +Rk

)−1

18 : x̂−k = x̂−k +Ki
k

(
zik − ẑik

)
19 : P̃k =

(
I −Ki

kH
i
k

)
P̃ ik

20 : endfor
21 : x̂k = x̂−k
22 : Pk = P̃k
23 : return x̂k, Pk
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Algorithm 3 LOCALP̃
(
P̃k, i, Sk, γ

2
)

1 : P̄k =
[

P̃k (1 : 3, 1 : 3) P̃k ((2i+ 2) : (2i+ 3) , 1 : 3)
P̃k (1 : 3, (2i+ 2) : (2i+ 3)) P̃k ((2i+ 2) : (2i+ 3) , (2i+ 2) : (2i+ 3))

]
2 : P̃ ik = 1

2

(
I − 1

γ2SkP̄k−
)−1 (

2I − 1
γ2SkP̄k

)
P̄k

(
I − 1

γ2SkP̄k

)−1

3 : P̃k (1 : 3, 1 : 3) = P̃ ik (1 : 3, 1 : 3)
4 : P̃k (1 : 3, (2i+ 2) : (2i+ 3)) = P̃ ik (1 : 3, (2i+ 2) : (2i+ 3))
5 : P̃k ((2i+ 2) : (2i+ 3) , 1 : 3) = P̃ ik ((2i+ 2) : (2i+ 3) , 1 : 3)
6 : P̃k ((2i+ 2) : (2i+ 3) , (2i+ 2) : (2i+ 3)) = P̃ ik ((2i+ 2) : (2i+ 3) , (2i+ 2) : (2i+ 3))
7 : return P̃k
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Chapter 8

Results

8.1 EKF-SLAM

8.1.1 Cramér-Rao Lower Bound (CRLB)

Prior to the presentation of the simulation results, the Cramér-Rao Lower Bound (CRLB) should be introduced. As
detailed in [5], the Jacobians calculated in the EKF algorithm for the linearization step can be improved by using
their true values instead of the prior estimates (for simplicity, henceforth denoted as EKFJ). The covariance matrix
that comes as a result, known as the CRLB, is a theoretical lower bound for the covariance magnitude. The
performance of the EKF algorithm can be assessed against this theoretical limit.

As the EKF theory and practice is well established, it is much more interesting to show the cases where it fails
rather than where it works. To inflame the differences, high noise scenarios will be presented. In Figure 8.1, the
values σω = 5◦, σv = 10σω, σφ = 1◦, and σr = 10σφ were used, displaying the estimate errors in x, y, and θ. As
can be seen, the EKF estimates (in the blue) deviate wildly from the 3σ bound, while the EKFJ (in the red) is much
more accurate. While these plots do not tell the entire story as they do not illustrate covariances between elements
of the pose, they are a good first approximation.

Since in this case the EKF was inconsistent whereas the EKFJ was not, we can study the plots to identify where the
failure occurred. At the end of the first peak in the 3σ plots, the covariance estimate dips below that of the CRLB.
Once that occurred, all bets were off and the estimate quality in x, θ, and later on y severely degraded. It was only
the loop closure at the end that brought all the estimates back to the correct boundaries.

As a different and possibly more illuminating way to illustrate the problem with the inconsistency of the algorithm,
we can look at the estimation of the map at the end of the rover traverse, along with the estimates of the rover
position at select intervals. As can be seen in Figure 8.2, the overconfidence results in estimates that do not even
come close to containing the true locations (illustrated by the 3σ ellipses). This presents a fundamental problem for
landmark recognition (which we ignored in this set of simulations), as statistical belief should provide a good
indicator of whether the landmark was seen before or not. However, as these landmarks lie far beyond the 3σ range,
it is unlikely in this case that the rover will recognize that the loop has been closed.

Though in the case presented the EKFJ estimates were well behaved, that result cannot be guaranteed in the general
case. The following section details some additional tests to demonstrate this point, where visual results are not
necessary to illustrate the other effects.
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8.1.2 Consistency Tests

To assess the statistical performance of the EKF-SLAM algorithm, consistency trials were designed. In these tests,
a map was generated and hundreds of simulation scenarios were generated and run, given preset model parameters,
such as noise and trajectory plans. Four situations were considered: when the EKF estimate for the robot pose
exceeded the 3-σ estimate of the covariance matrix, when the EKF exceeded the CRLB, as well as the same two
bounds for the EKF with True Jacobians estimate. It was hoped that by looking at these counts over a large number
of trials that the general performance could be evaluated.

Table 8.1: Consistency tests for EKF-SLAM

Number of Noise Characteristics Number of Number of EKF EKF EKFJ EKFJ
Trials σω,v,φ,r Loops Steps 3σ CRLB 3σ CRLB
500 3, 0.52, 1, 0.17 2 2000 431 429 422 421
100 3, 0.52, 1, 0.17 1 200 12 11 12 11
100 3, 0.3, 1, 0.1 1 200 17 16 17 15

In a Gaussian distribution, 99.7% of the probability lies in the 3σ range. As a result, it would be expected that if the
covariance values were accurate, the number of times that the bounds are exceeded should be fairly low. As can be
seen, this is not the case, even with the larger CRLB, and the more accurate EKFJ estimate, though the performance
is still slightly better. The performance in the first set of trials is the most telling, with 86.2% of the EKF estimates
becoming inconsistent. We can note however, that consistency was maintained in some situations nonetheless, so
there are situations where the algorithm performs fine. In general, the EKF-SLAM algorithm fails due to the
nonlinear effects, and in real practice, with non-Gaussian noise, the performance would be even worse.

The other two sets of trials were smaller, but were generated to show the effects of the noise magnitudes, especially
in those that affect the heading estimate. Only a single loop was traversed, and only over 200 steps, so to decrease
the processing time required to run the trials. With less steps and the rover traveling a greater distance, the velocity
was higher, so the effects of the noise lower - thus resulting in a much lower inconsistency rate (but still much
higher than desired). It can be seen that with lower magnitudes of noise used in the dataset generation, a higher
inconsistency rate occurred. This can be attributed to the fact that larger noise parameters in the algorithm allows
for greater robustness to noise other than just the Gaussian additive parameters.

A common approach to increase robustness of the EKF algorithm is to artificially inflate the noise parameters Qk
and Rk, effectively preparing the algorithm to handle larger magnitudes of deviation. While it would be expected
that this negatively affects the accuracy of the estimates, as the more serious inconsistency issues are addressed, the
estimates perform better. Figure 8.3 shows the improvements in performance of a 3x increase in the noise
parameters for the EKF-SLAM algorithm. If additional knowledge is known, such as the relative ratios of
unmodeled dynamics in the system model compared to the measurement model, relative adjustments of Qk and Rk
could be made to have the algorithm favour the sensor measurements over the odometry, or vice versa.

8.2 REKF-SLAM

The REKF algorithm can be viewed as modifying the noise parameters as well, but through the tuning of the γ2

bound parameter. This provides a bit more mathematical rigor to the goal of robustifying the estimation filter.
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Unfortunately, in implementation and simulation of the algorithm, poor results were obtained. The only limitation
on the value of γ2 was that Pk needed to stay positive definite throughout the REKF-SLAM algorithm. For
simplicity, the value was varied by hand, so to see the effects of different values. Figure 8.4 illustrates what happens
to the filter performance as the bound is lowered, prior to reaching the values where positive definiteness is lost with
a value of γ2 = 550. This is the same dataset as the one used on the EKF-SLAM algorithm in the previous section.

Other trials involving the use of the other filter forms as established by other researchers gave similar results. Since
seeking the optimal γ2 in this case was done by hand, the lowest possible value was definitely not found in these
trials. However, it is expected that when nearing the optimal value, lowering the bound should cause the maximum
errors to decrease (once the bound reaches relevant magnitudes). Since the opposite occurred and the estimate got
worse as the bound went lower, it is suspected that numerical instabilities may be at fault.

Though the lower limit of γ2 was not able to be reached, interesting results were obtained in the iterations
conducted on the way there. It is expected that lowering the bound would lower the maximum error, but increase
the average overall error (since an additional constraint is applied). This occurred as expected, with a hybrid filter
(one that optimizes both the KF and the RKF goals) arising as a result. As such, prior to the region of numerical
instabilities, improvements on the EKF algorithm were observed. Figure 8.5 shows the improved performance for
γ2 = 1000, with the REKF-SLAM estimate in green.

Additionally, as the REKF also defines a Sk matrix (which was taken as identity before), relative weighting can be
applied to the portions of the state that the filter designer wishes to be more accurate. Motivated by the results in [1]
that suggest that reduction in errors in the heading angle, θ, greatly affect the overall performance of the other
estimates, S3,3 was increased by a factor of 10. The right hand side plots of Figure 8.5 show the effects. Though it
is not easily seen in the plots, the overall average error and maximum error in the robot pose estimates were
improved with the additional weighting towards θ.

Regardless of the implementation errors, some other pieces of insight can still be obtained. Seeing as how the P̃k
formula involved the identity matrix subtracting an expression at each step, it was found that the initial landmark
uncertainties placed a limitation on the magnitude of γ2 allowed (so to keep that subexpression positive definite).
As such, the entire P−k could not be used in the calculation, and a local P̃ ik calculation was developed. This
limitation is purely a construct of this simulation scenario, as all the landmarks are encoded a priori. In real
implementation, the state is grown as the rover travels and sees new landmarks, which would definitely not be
instantiated with such large covariances.

To address the missing 1
2 term, without it, only very large values of γ2 (near infinity) completed a run, while all the

other values caused the assertion of positive definiteness for Pk to fail. When the guarantee on Pk is lost, the
algorithm switches over into maximizing the error - which could lead to a catastrophic failure of the system. As
such, the code aborted whenever this was the case. It was found that including the 1

2 coefficient allowed for more
reasonable (lower) values to be used for γ2, but seeing as how the algorithm did not perform as desired, definite
claims cannot be made.
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Figure 8.1: Example of EKF estimate error inconsistencies in robot pose: (x, y, θ).
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Figure 8.2: Example of landmark inconsistencies.
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Figure 8.3: Example of estimate performance increase due to 3x artificial noise inflation.
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Figure 8.4: Example of REKF filter estimate (blue) failure for γ2 = 550.
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Figure 8.5: Example of hybrid filter performance for γ2 = 1000.
(left) Sk3,3 = 1, (right) Sk3,3 = 10
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Chapter 9

Conclusions and Recommendations

The EKF, in construction, violates the assumptions as set forth by the derivation of the Kalman Filter. As such, it is
not surprising that even just in simulation with Gaussian noise, the non-linear effects lead to inconsistent results.
The CRLB provides a theoretical bound on the confidence of the algorithm, and while the EKF can be seen in the
results to be overconfident in some situations, even the EKF with True Jacobians does not always perform well due
the nonlinear effects.

However, the EKF is still commonly used in practice, because there are methods of coping with these violations of
the basic assumptions. By increasing the noise parameters Qk and Rk, the system becomes more robust - as it is
prepared to handle stronger deviations than just the noise. Unfortunately, these parameter adjustments are usually
made on the basis of heuristics by experienced engineers.

The REKF approach does not assume any particular form for the noise, and lumps the unmodeled system dynamics
into perturbing error terms. The derivation formulation presents a game between Nature and the filter designer, with
opposing goals. The resulting algorithm resembles the Kalman Filter closely, and the effect of varying γ2 can be
viewed as modifications of the noise parameters Qk and Rk. In effect, the REKF presents a mathematical method
of conducting the parameter adjustments. While this presents more rigor in the filter design, the cost function
unfortunately cannot be optimized directly, and the lower bound of γ2 must be obtained experimentally. In addition
to choosing the value through experimentation, consideration must be given to future applications as well, as when
the filter fails, it fails catastrophically. A possibility to consider to address this is to define a dynamic bound, γ2

k .
The decision on the dynamic bound could be influenced by knowledge of the filter performance under regular
circumstances. Though computationally inefficient, an example would be to run a standard EKF-SLAM algorithm
in parallel to utilize the covariance bounds. Despite these shortcomings, γ2 is a much more intuitive parameter to
adjust, and the introduction of Sk allows for additional weighting towards the heading error, which was shown to
have a positive effect on the efficacy of the entire algorithm.

In conducting the derivation for the RKF, a concise method was sought, to provide a clean document for future
investigations into this approach. While that was achieved, a number of issues arose. The first is that the resulting
form is considerably more complex than what results in other literature, the second was the missing 1

2 coefficient,
and the third is in the implementation. While it is believed that no errors were made in the derivation, the absence
of the coefficient and subsequent requirement in the implementation brings the derivation to suspect. However,
since the algorithm did not really perform as expected with improved results, there is no certainty to that statement.
Additionally, to address the mismatch in form with other results, it is suspected that the cause may be in the slight
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difference in the definition of the error dynamics. As defined in 5.27, the error dynamics used are actually of the a
priori estimates. Other literature seems to use the a posteriori estimates, and as such, the two definitions differ by a
Kalman update, which could possibly explain the discrepancy. Time did not permit further investigation into this
suspicion, but it must be noted some favourable results did arise with this form in implementation, and the
derivation presented is very clear. With regards to the implementation, it is suspected that numerical issues are at
fault, as both the filter form derived in this paper and filter forms shown to work by other researchers had similar
results on this simulation framework. As well, time did not permit further investigation to solve this problem and
obtain working results. However, some hybrid filter improvements were able to be demonstrated.

These consistency concerns represent fundamental issues in the SLAM problem, and should be addressed to
achieve the goal of field applications of these technologies. The REKF provides a desired mathematical rigor to
dealing with non-linearity and unknown noise characteristics, but it is only one aspect of a much larger framework.
These fundamental problems cannot be ignored, and should be addressed, but there is also a lot more work to be
done.
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