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3Canadian Space Agency, Saint-Hubert, Québec, Canada, J3Y 8Y9 , erick.dupuis@asc-csa.gc.ca

ABSTRACT

This paper describes a proposed operational architecture
for a planetary worksite mapping mission concept. To
map three-dimensional (3D) planetary terrain, we pro-
pose to use a rover equipped with a laser rangefinder,
and employ a stop-scan-go approach with a human-in-
the-loop.

In the operational cycle, the rover collects locally consis-
tent 3D range data while stationary. The range data are
coupled with visual odometry to estimate the rover pose
at each scan and create a consistent 3D map. The 3D map
is then used to evaluate candidate next-best views (NBV).
The operator selects a NBV with the aid of three evalu-
ation criteria and the rover autonomously travels to the
NBV using a network of reusable paths (NRP). Finally,
the rover collects another 3D scan and the cycle repeats.

This mission concept was validated through hardware ex-
periments on the CSA’s Mars Emulation Terrain (MET),
which measures 60m × 120m and includes inclines,
rocks, cliffs and a 5.5m-diameter crater.

1. INTRODUCTION

1.1. Motivation

In May 2007, representatives from 14 international space
organizations devised the Global Exploration Strategy
[1]. The strategy states that robotic exploration is a nec-
essary precursor to human exploration of space. More re-
cently, Tompkins et al. [14] identified water in the Cabeus
crater near the South pole of the Moon. It is therefore
likely that lunar exploration will begin in a crater at the
South pole. The South pole has also been deemed the
most probable location for a permanent base station on
the Moon [5].

Before a permanent base station is erected on the lunar
surface, the site must be accurately mapped in order to
further plan the base station. The base station and its
surrounding area, where humans and rovers will repeat-
edly visit the same locations, is defined as a worksite.
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Figure 1: Operational cycle for 3D site mapping. The
rover collects 3D range data while stopped. A batch
SLAM algorithm computes the rover pose and creates a
consistent 3D map. The operator selects the next-best
view (NBV) based on three computed metrics. The rover
autonomously drives to the NBV and the cycle repeats.

Planning for both human and robot operations will likely
require a consistent three-dimensional (3D) map of the
worksite.

While planetary maps have been produced using orbital
imagery, these maps are insufficient for some surface op-
erations due to their low resolution. Conversely, a rover
on the planetary surface would be able to use a more pre-
cise range sensor because the distances being measured
would be much less. Given the communication lag from
a planetary surface to Earth and potential difficulty com-
municating from inside a crater, an autonomous rover has
distinct benefits over a teleoperated one. Thus, this paper
presents a site mapping capability for a rover equipped
with a laser rangefinder (as depicted in Figure 1 and Fig-
ure 2) to produce consistent surface maps. Lasers are
suitable for a planetary environment because they work
consistently across a wide variety of lighting conditions
including in the dark (ice on the Moon is likely in perma-
nently shadowed regions), have long range, and have low



Figure 2: Rover traversing Mars Emulation Terrain (MET). The rover uses stereo vision for navigation and obstacle
avoidance, and a 3D laser rangefinder for mapping and localization.

measurement error. However, collecting a set of 3D range
measurements is a slow process. Therefore, the system
outlined in the paper employs a stop-scan-go approach.
For operational safety, a human operator is incorporated
in the operational cycle presented in Figure 1, but exten-
sions are proposed for a fully autonomous system.

1.2. Literature Review

Related work conducted by Fong et al. [7] recently
demonstrated that it is feasible to conduct a site survey us-
ing a rover-mounted laser rangefinder. Their experiments
in a planetary analog environment highlighted the benefit
of using rovers for the tedious and repetitive task of site
surveying. Fong et al. [6] identified additional mission
concepts that could also be facilitated by mapping tech-
nology, such as resource prospecting and autonomous
reconnaissance. However, the experiments presented in
[7] and [6] relied on GPS for localization. Since such
an infrastructure does not currently exist for Mars or the
Moon, this paper presents a framework suitable for GPS-
denied environments.

Wettergreen et al. [17] have also demonstrated au-
tonomous rover traverses in planetary analog terrain.
While they used GPS for some experiments, Wettergreen
et al. also developed a dark navigation system for GPS-
denied environments. They used a downward-facing op-
tical sensor and an inertial measurement unit (IMU) and
performed dense data alignment to estimate the rover’s
pose. This system yielded results of 2-3% error on dis-
tance traveled. In contrast, the batch SLAM method pre-
sented in this paper seeks to produce a globally consistent
map and is thus not subject to the drift error encountered
by odometry methods.

The 6DSLAM work by Nüchter et al. [11] first utilized
the iterative closest point (ICP) algorithm [3] to compute
pairwise alignments between scans, then used a global
relaxation technique for refinement. This approach re-
solves the inconsistencies between pairwise linkages by
distributing the error over the entire map. However, the

overall performance is still limited by the quality of the
initial guesses because pairwise ICP still remains at the
core of the approach. In addition, long loops were not de-
tected because loop closures were indicated by a simple
distance criterion [18]. In this paper, we utilize a combi-
nation of sparse features and odometry measurements in
the batch alignment. This approach is similar to Graph-
SLAM [13], but extended to 3D, and with a different ro-
tation linearization method. The use of sparse features
provides implicit loop closure detection, whereas the in-
clusion of odometry adds flexibility in the distance trav-
eled between scans.

1.3. Outline

The overall operational cycle that will be detailed
throughout this paper is shown in Figure 1. To map the
3D terrain using a rover, the rover collects range data
while stopped, then uses this data to localize itself and
plan its next scan location. Collecting 3D range data
while stationary simplifies the scan matching [15]. Vi-
sual odometry with a stereo camera is used for high-rate
localization during rover movement.

After each 3D laser scan, a batch simultaneous localiza-
tion and mapping (SLAM) algorithm uses peaks in the
terrain to estimate the relative pose of the rover at each
scan location. The human operator is shown the amalga-
mated terrain data and they select candidate locations for
the next-best view (NBV). Each candidate NBV is eval-
uated on three criteria: traversability, localizability and
information gain. The operator selects the NBV based on
the three criteria, in addition to any waypoints, and the
rover plans a path and drives to the NBV autonomously.

A network of reusable paths (NRP) is used to plan and
execute the rover’s path across the 3D terrain. The NRP
software uses stereo vision for navigation and is able to
return to any previously driven position with centimeter-
level accuracy. Once the rover reaches the NBV, it per-
forms another 3D laser scan, and the operational cycle
repeats.



Figure 3: A sample point cloud obtained by a rover equipped with a 3D laser rangefinder in the CSA’s Mars Emulation
Terrain (MET), with the world coordinate frame depicted on the left side. The scan was taken from the center of the
image, with the rectangular cutout corresponding to the rover’s footprint, and the green squares indicating the detected
peak features.
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Figure 4: The batch SLAM algorithm used to estimate the
rover pose at each scan location. Feature measurements
are extracted from the 3D laser scans and coupled with
visual odometry data for batch alignment. Batch hetero-
geneous outlier rejection adds robustness. After conver-
gence, the pose estimates are validated and the scans are
overlaid to construct the final 3D map.

The remainder of the paper is organized as follows. Sec-
tions 2 to 4 describe the core algorithms developed for the
operational cycle. Specifically, Section 2 details the batch
SLAM algorithm and Section 3 discusses the NBV eval-
uation and illustrates the operator interface. Finally, Sec-
tion 4 outlines the NRP algorithm. After describing the
operational cycle and the various algorithms used, Sec-
tion 5 highlights the field tests conducted at the Canadian
Space Agency’s (CSA) Mars Emulation Terrain (MET)
in Québec, Canada. The MET measures 60m × 120m
and includes inclines, rocks, cliffs and a 5.5m-diameter
crater. Figure 2 depicts our rover exploring the MET.
Through three days of field trials, we tested various oper-
ational procedures, culminating in a 25-scan exploratory
traverse conducted over the course of a day. Finally, Sec-
tion 6 concludes with lessons learned and provides sug-
gested avenues for future improvement.

2. BATCH SIMULTANEOUS LOCALIZATION
AND MAPPING

The process of collecting 3D range data with a 2D laser
rangefinder (LRF) on a pan-tilt unit (PTU) takes several
minutes. Thus, acquiring this data while the rover is
in motion would introduce significant motion distortion
in the data and require the accurate computation of the
rover’s pose for the entire traverse. In other words, the

stop-scan-go approach is known to produce more accu-
rate maps [15] because the range data at each 3D scan is
locally consistent and only the rover’s pose at each scan
location must be computed to resolve the scans in a con-
sistent map.

After the rover has collected a set of locally consistent
3D range data, the batch simultaneous localization and
mapping (SLAM) algorithm seeks to align these scans
to obtain the six-degree-of-freedom pose of the rover at
each scan location, relative to its initial pose. Figure 4
illustrates the batch SLAM algorithm and the details are
presented by Tong et al. [15]; however, this section will
provide an overview of the algorithm.

Given the 3D range data, the algorithm first extracts dis-
tinctive features from each scan. In our implementation,
peaks in the terrain are chosen to serve as the distinctive
interest points due to their ease of extraction and visibil-
ity at long ranges. Though the choice of peaks as features
limits the feature extraction and matching approach pre-
sented in this section to 2.5D environments, these fea-
tures produced good results for the planetary mapping
scenario. In fully 3D scenarios, an alternative approach
may need to be used. Figure 3 shows the peak features
detected in a 3D point cloud gathered on the MET.

Matching the peak features between scans is a multistep
process. For each pair of scans, constellations of features
are matched using the data-aligned rigidity-constrained
exhaustive search (DARCES) algorithm [4] to generate
hypotheses. This constellation-matching process can be
viewed as seeking sets of similar triangles between scans.
Unfortunately, due to the large uncertainties in the feature
measurements, the DARCES algorithm tends to produce
a large number of hypotheses. To reduce this number to
only the correct hypotheses, a quality metric is computed
by overlaying the dense data for each match. Finally,
the data association process is concluded by resolving
the valid hypotheses back into individual feature associa-
tions.

In addition to the natural features obtained from the range
data, we utilize the between-scan visual odometry mea-



Figure 5: The NBV software displays the merged 3D range data as a 2.5D elevation map where dark blue is the lowest
and red is the highest elevation. All rover scan locations are shown and enumerated. Landmarks from the batch SLAM
algorithm are shown two concentric gray circles. The user can select any point on the map and the software will compute
the shortest traversable path (shown as a pink line), the amount of expected information gain (shown as green lines), and
the number of visible landmarks (shown as gray lines).

surements obtained during navigation. This provides
flexibility in the rover traverse, because the visual odom-
etry estimates pose-to-pose scan relations in regions of
feature scarcity, and situations without any scan over-
lap. Since these measurements are already utilized dur-
ing navigation between scan stops, it is straightforward
to store them for later use. If these measurements are ap-
propriately incorporated into the batch SLAM algorithm,
the presence of more information benefits alignment ac-
curacy.

To maintain global consistency of the estimate, we use a
batch approach to the alignment problem. By formulating
the SLAM problem as an optimization problem, we seek
the optimal estimate of all rover poses and feature loca-
tions that best matches the measurement data available.
For robustness, the alignment algorithm is augmented
with heterogeneous outlier rejection to address the pos-
sibility of outliers in either measurement type [16]. Af-
ter convergence, a post-alignment automatic verification
check is performed for each pose estimate to ensure that
the alignment produced is valid for inclusion into the fi-
nal map. This check is computed using the confidence
measure obtained from the SLAM algorithm.

The outputs of the batch SLAM algorithm are the pose of
the rover at each scan location, the landmark locations,
and the merged globally consistent point cloud. These
outputs are presented to the operator, and provided to the
next-best-view software.

3. NEXT-BEST VIEW

To determine the next scan location, we created a tool to
assist the operator. Once the batch SLAM algorithm has
computed the rover pose at each scan location thus far, the
dense laser data can be combined to produce a consistent

global map. Our software combines the dense laser data
in three formats. The first is a point cloud (depicted in
Figure 7 and Figure 9), which is displayed to the opera-
tor to visually verify the output of the batch SLAM algo-
rithm. Later, this point-cloud view is used to add way-
points en route to the next-best view (NBV), but first the
operator must select a NBV. Second, the dense laser data
is combined to create a 2.5D elevation map of the ter-
rain. The elevation map is illustrated in Figure 5 and the
graphical user interface (GUI) allows the operator to se-
lect candidate NBV locations; each of which is evaluated
on the three criteria of traversability, localizability and
information gain. Traversability can be computed on the
2.5D elevation map, but the other two metrics require a
full 3D representation of the laser range data because they
require knowledge of the unoccupied space as well as the
occupied space. Therefore, all of the positive and nega-
tive measurements1 are combined in a 3D occupancy grid
(OG) representation. The 3D OG is written to file and
may be viewed at any time. However, viewing the OG
is not required during the operational cycle because the
localizability and information gain metrics are computed
on the OG and displayed to the operator on the GUI.

The GUI shown in Figure 5 illustrates that the 2.5D eleva-
tion map is augmented with previous rover scan locations
and that when the operator selects a candidate NBV it is
shown as a numbered pink square and further augmented
by the three metrics. First, the software computes the
A* path [9] on the elevation map, where the rover is con-
strained in the step-size and slope that it can traverse. The
traversable step-size, slope and A* grid resolution are all

1Each range measurement traverses many cells (or voxels) before
being reflected. We define the measurement of unoccupied cells as neg-
ative measurements and the single measurement of an occupied cell as
a positive measurement.
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Figure 6: The user is able to compare the selected candi-
date NBVs based on the three criteria: (i) travel distance,
(ii) expected information gain, and (iii) number of visible
landmarks.

parameters in the software than can be modified by the
user. The A* path is displayed on the GUI as a pink path
from the current rover location to the selected candidate
NBV. Second, the software uses the 3D OG to trace a ray
from the selected NBV to each landmark that was pre-
viously identified by the batch SLAM algorithm. Each
landmark is shown on the GUI as two concentric gray
circles. If a landmark is visible from the candidate NBV,
a gray line is drawn between the two. The number of
visible landmarks is the localizability metric. Finally, the
NBV software computes the expected information gain
at each candidate NBV. The expected information gain
is approximated by tracing a ray in the OG in every 3D
direction (resolution is user-defined) from the candidate
NBV and summing the entropy of every visible cell. Each
ray is expected to terminate when it reaches an occupied
cell in the OG or it reaches the maximum range of the
sensor. A similar heuristic has been successfully applied
in the past; Makarenko et al. [10] used a similar heuris-
tic to approximate expected information gain in 2D. The
3D information gain metric is projected into the 2D plane
of the elevation map and displayed on the GUI as green
lines originating from the candidate NBV. The length of
each green line in the GUI is proportional to the amount
of expected information gain in that direction.

All three metrics for each selected candidate NBV are
displayed on a bar graph as shown in Figure 6. The op-
erator may again select any previously chosen candidate
NBV to visualize the three metrics on the GUI, or select
new locations. Once the operator has chosen which of the
candidate NBVs is best, this goal location is passed to the
Ground Station software depicted in Figure 7 where the
user may optionally select waypoints en route to the next-
best view. The optional waypoints are locations that the
rover will traverse, but not stop and collect a 3D scan.
The operator may opt to use waypoints to force the rover
along a specific route to the NBV.

4. AUTONOMOUS 3D NAVIGATION

The rover autonomously navigates to the selected next-
best view, visiting any optional waypoints along the way,
using the network of reusable paths (NRP) as described
by Stenning and Barfoot [12]. Physical obstacles are de-
tected by a stereo camera, while an inclinometer is used
to detect rollover hazards. The stereo camera also pro-
vides visual odometery and localization against a map

Figure 7: Ground Station software illustrating the map
thus far as a 3D point cloud. Four scans have been taken
(large green and red boxes) and the fifth is being planned
(large yellow box).

of relative pose transformations identified by visual data.
Barfoot et al. [2] explain that one of the advantages of the
relative pose method is that the rover’s pose never needs
to be resolved to a single privileged coordinate frame (un-
like batch SLAM).

NRP is a planning and navigation algorithm capable of
having the rover autonomously drive to its goal location
using only a stereo camera. NRP is built upon the vi-
sual teach and repeat (VT&R) framework developed by
Furgale and Barfoot [8] for navigation in partially-known
terrain. Starting with only the rover’s current location and
the existing paths, NRP uses a rapidly-exploring random
tree (RRT) to plan a route from the existing network to the
goal in two discrete parts: (i) a retrotraversal of existing
paths to return to a previously-driven pose (the departure
pose) and (ii) a kinematically-feasible exploration path
from the departure pose to the specified goal, avoiding
known obstacles. The NRP algorithm treats each way-
point as a goal.

The rover navigates to the departure pose using the repeat
mode of the VT&R framework and then switches to teach
mode to execute the proposed exploration path such that
it is simultaneously added to the network. The rover es-
timates its relative motion while driving the exploration
path using visual odometry from the stereo camera. If the
rover senses an obstacle along the proposed path, it stops
and NRP replans for a new route to the goal that uses the
new information collected. This continues until the rover
successfully arrives at the specified goal. As a result of
the underlying VT&R framework, the rover arrives at the
goal with the same positional uncertainty (with respect to
the first rover pose) as if it had driven that route directly
from the first rover pose to the goal.

Once the rover reaches the next-best-view location, it
stops and waits for operator confirmation before collect-
ing another set of 3D laser range data and restarting the
operational cycle. The operator can end the cycle at any
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Figure 8: The path traversed during the 25 scan experiment on the MET. Note that the VO localization estimate (used for
NRP) diverges from the GPS locations; especially as the distance from the start increases. Notice that the rover retraces
its path before branching off from the network to explore new terrain. The rover is able to return to any location on the
NRP map with centimeter-level accuracy.

time and command the rover to autonomously return to
its starting location. In order to increase system robust-
ness, NRP runs independently of the mapping and NBV
software; however, the planning algorithm would benefit
from the long-range laser data if the two could be inte-
grated.

For example, Figure 8 shows the 25-scan traverse from
the hardware experiments, overlaid on a topological map
of the MET. Note that the NRP localization estimate di-
verges from the GPS ground truth; especially as the dis-
tance from the start increases. The 25 scan locations are
indicated on the figure (true GPS locations) as large cir-
cles. The batch SLAM algorithm is used to ensure that
the final 3D map is consistent, as opposed to using the
VO estimate of the scan locations. As with all odometry
systems, the VO localization error grows with distance
from the start. However, the VT&R framework only uses
relative transformations to move between positions on the
network; therefore, the drift only affects the goal defini-
tion and not the rover’s ability to navigate along the net-
work.

5. HARDWARE EXPERIMENTS

As depicted in Figure 2, the entire surface mapping sys-
tem was tested on physical hardware at the Canadian
Space Agency’s (CSA) Mars Emulation Terrain (MET).
The rover used was a Husky A200 from Clearpath
Robotics; it is a four-wheeled electric vehicle, approxi-
mately one meter in length. We equipped the rover with a
SICK LMS laser rangefinder mounted on a pan-tilt unit.
We also used a Point Grey Bumblebee XB3 stereo cam-
era for NRP and visual odometry. We used RTK-GPS
for ground truth localization, but it was not used in the
operational cycle. A single laptop computer on the robot
computed visual odometry, NRP, and collected laser data.
The batch SLAM, Ground Station and NBV software ran
off-board at the operator’s command station.

The MET is a 60m × 120m area designed to be a plan-
etary analog environment. In addition to inclines, rocks,
and cliffs, the MET has different granularity sand and two
large craters. Field trials were conducted over three days,
during which we tested various operational procedures,
culminating in a 25-scan exploratory traverse.

Figure 8 shows the path driven by the rover during the
25-scan traverse. Note that rover retraces its path along
the network before branching from the network to ex-
plore new terrain. Figure 9 depicts the SLAM solved
point cloud of the 25-scan traverse in the Ground Sta-
tion software. Figure 10 shows an aerial photograph of
the terrain for reference. Finally, Figure 11 illustrates
the map created from the 25-scan traverse of the MET.
Figure 11b is a 3D estimate of the MET given the batch
SLAM estimate of the 25 scan locations and Figure 11a is
a similar estimate using post-processed GPS data for the
25 scan locations. Discrepancies between the estimated
maps and the aerial photograph (particularly at the top of
the image) are explained by a lack of range data. Figure 8
shows the scan locations of the 25 scans; areas of the ter-
rain that were not scanned correspond to a poor estimates
of the terrain in Figure 11. Comparing Figure 11b to Fig-
ure 11a in the well-mapped areas shows that the estimate
is consistent; the major ridges, craters, and flat terrain are
accurately depicted.

6. CONCLUSION AND LESSONS LEARNED

The surface mapping system was deemed quite success-
ful in the field. The rover was able to traverse the plan-
etary analog environment and create a consistent 3D sur-
face map. The final map is represented in three different
forms, (i) a 3D point cloud, (ii) a 2.5D elevation map, and
(iii) a 3D occupancy grid. We were able to incorporate a
human in the loop for operational safety; however, a fu-
ture extension of the work may be to randomly sample
candidate NBVs and select the optimal one based on a



Figure 9: Ground Station software illustrating the map after the 25-scan traverse. The terrain is shown as a 3D point
cloud, and overlayed are the scan locations (large green and red boxes) with lines between them indicating the order. The
green box is the starting location of the mission. The small green circles on the map are landmarks.

Figure 10: An aerial photograph of the Mars Emulation
Terrain (MET).

weighted sum of the three metrics: traversability, localiz-
ability, and information gain.

Based on these preliminary experimental results, we be-
lieve that the operational cycle described in the paper and
depicted in Figure 1 is very promising. We were able
to successfully map CSA’s MET by emulating a plan-
etary deployment. Possible areas for improvement in-
clude tighter integration between the various subsystems.
For example, the NRP software could benefit from the
long-range laser data to plan paths into areas of the map
that are not in the network. However, the laser data can-
not be incorporated into the network without first resolv-
ing the localization discrepancy between VO and batch
SLAM. The NBV software could also be integrated with

the Ground Station software, but the decision was made
to keep them separate so each can be used separately on
future projects. Furthermore, since the 3D data is repre-
sented in three different forms, the operator may benefit
from switching between these at will, as opposed to per-
forming specific tasks on each view. The 25-scan traverse
of the MET produced a consistent 3D map of the plan-
etary analog environment, but it could be improved by
more scans. The mapped areas of the MET resemble the
true terrain and we believe that they would be sufficient
for planetary worksite operations.
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[18] O. Wulf, A. Nüchter, J. Hertzberg, and
B. Wagner, “Benchmarking urban six-degree-
of-freedom simultaneous localization and map-
ping,” Journal of Field Robotics, vol. 25,
no. 3, pp. 148–163, 2008. [Online]. Available:
http://dx.doi.org/10.1002/rob.20234


