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Abstract Visual navigation of mobile robots has become a core capability that
enablesmany interesting applications from planetary exploration to self-driving cars.
While systems built on passive cameras have been shown to be robust in well-lit
scenes, they cannot handle the range of conditions associated with a full diurnal
cycle. Lidar, which is fairly invariant to ambient lighting conditions, offers one pos-
sible remedy to this problem. In this paper, we describe a visual navigation pipeline
that exploits lidar’s ability to measure both range and intensity (a.k.a., reflectance)
information. In particular, we use lidar intensity images (from a scanning-laser
rangefinder) to carry out tasks such as visual odometry (VO) and visual teach and
repeat (VT&R) in realtime, from full-light to full-dark conditions. This lighting
invariance comes at the price of copingwithmotion distortion, owing to the scanning-
while-moving nature of laser-based imagers. We present our results and lessons
learned from the last few years of research in this area.

1 Introduction

1.1 Motivation

Visual navigation is an enabling technology for mobile robots operating in chal-
lenging, real-world environments. Satellite-based positioning, such as GPS, is often
insufficient or unavailable in many interesting situations: indoors, in urban canyons,
under forest canopies, underground, underwater, and on other planets. As such, pas-
sive cameras and/or lidars are employed to provide as position estimation and also
help with path following, hazard detection, and object recognition. Cameras and
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lidars are typically viewed as separate-yet-complementary sensors. Roughly speak-
ing, (passive) cameras are used to acquire appearance information and geometry
while (active) lidars are used to acquire geometry. The active nature of lidars make
themwell-suited toworking in any lighting condition, while passive cameras struggle
with lighting change.

An underexploited capability of 3D lidar is its ability to acquire appearance infor-
mation through intensity images. Intensity data is derived from the amount of trans-
mitted light that is reflected back from the scene. Traditionally, the raw output of a
lidar sensor is thought to be a 3D point cloud; instead, we consider the output to be a
pair of range and intensity images. Figure1 provides a comparison between passive
camera images and lidar intensity images for the same scene.

This paper describes how we use lidar intensity images (derived from a scanning-
laser rangefinder) to build a realtime, lighting-invariant visual pipeline that leverages
the heritage of the traditional stereo-camera pipeline.Weweremotivated to do this for
two reasons: (i) to navigate in full-dark conditions, and (ii) to recognize placeswe had
seen before, despite drastic changes in lighting.Much of ourwork is targeted at future
planetary exploration missions. For example, permanently shadowed craters near the
south pole of the Moon may contain water-ice and other useful volatiles. Missions
to these craters will require robots that are able to navigate in full darkness and in

Fig. 1 Examples of passive camera (top row) and lidar intensity (bottom row) images of the same
scene at three different times of day (13h38, 18h12, 05h43). Images acquired using an Optech
ILRIS3D survey-grade lidar with built-in passive camera. Raw SURF [5] features are marked in
all images. We see that the lidar intensity images and features look very similar regardless of the
sunlight conditions, while the passive camera images and features change significantly with lighting
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realtime (due to the low-latency communications and short lunar day). However,
beyond planetary exploration, robotics generally requires the ability to recognize
previously visited places in order to build consistent surveymaps and re-drive routes.

We successful built a lidar-intensity-image pipeline suitable for visual odometry
(VO) [10, 21, 23] and visual teach and repeat (VT&R) [22, 24]. However, due to
the scanning-while-moving nature of laser-based imaging, motion distortion can be
significant if the sensor’s motion is high relative to its framerate. In order to obtain
an accurate motion estimate, we were forced to innovate ways of coping with this
distortion [2, 3, 26–29], but we believe that it has been worth the effort to achieve
lighting invariance.

The rest of the paper is organized as follows. The remainder of Sect. 1 provides
a brief summary of related work and introduces the lidar-intensity-image pipeline.
Section2 discusses motion distortion and our various approaches to overcome it.
Section3 provides the results of some visual-odometry and visual-teach-and-repeat
experiments. Section4 discusses lessons learned and concludes the paper.

1.2 Related Work

We only briefly review other works that have used lidar intensity images (a.k.a.,
reflectance images) for motion estimation. McManus et al. [23, 24] provide more
information. Laser intensity images have been used in the past for surveying applica-
tions [8, 18] and some researchers have looked at automated point-cloud registration
techniques that use 2D interest points in the intensity images [1, 6].

The SwissRanger sensor, a ‘flash lidar’, also produces intensity/range images
but using a different principle than laser-based scanners. Unlike a laser scanner, the
SwissRanger uses an array of 24 LEDs to simultaneously illuminate a scene, offering
the advantage of higher framerates. However, the SwissRanger has a limited FOV,
short maximum range, and is very sensitive to environmental noise. Weingarten et
al. [30] used images from the SwissRanger for robotics applications; however, their
method, as well as others that followed [11, 32], only used range data from the sensor
and not the intensity data.

May et al. [20], and later Ye and Bruch [31], were the first to develop 3Dmapping
and appearance-based egomotion techniques using a SwissRanger. May et al. [20]
used intensity images to employ two feature-based methods for motion estimation: a
Kanade–Lucas–Tomasi (KLT)-tracker and frame-to-frame VO using SIFT features.
Their results indicated that the SIFT approach yielded more accurate motion esti-
mates than the KLT approach, but less accurate than the iterative closest point (ICP)
method. Although May et al. [20] demonstrated that frame-to-frame VO might be
possible with the SwissRanger, the largest environment in which they tested was
a 20m long indoor hallway, with no groundtruth. Furthermore, laser scanners are
very different from flash lidars in that they scan the scene with a single light source,
introducing new problems such as image formation and image distortion caused by
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Fig. 2 Stereo-image (above) and lidar-intensity-image (below) visual pipelines. Both pipelines
show the main steps required to go from raw images on the left to a pose solution on the right. On
the surface, we see that switching to lidar intensity images only alters the initial steps. However,
due to the scanning-while-moving nature of the lidar-intensity images, most of the blocks require
modification to compensate for motion distortion
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Fig. 3 Image stack concept.Wedetect sparse keypoints in the intensity image (at subpixel locations)
then, for each keypoint, pierce through the stack to look up the associated azimuth, elevation (based
on lidar’s mirror angles), range, and time (using bilinear interpolation). The result is a keypoint
augmented with its 3D position and timestamp

moving and scanning at the same time. We believe our work is the first and only one
to use laser-based intensity images in a realtime visual pipeline.

1.3 Lidar-Intensity-Image Pipeline

Figure2 provides an overview of our lidar-intensity-image pipeline, as well as the
typical stereo-image pipeline for comparison. The purpose of these pipelines is to
determine the robot’s motion from a sequence of images. The main steps of the lidar
pipeline are:
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(i) acquire a lidar intensity image,
(ii) carry out preprocessing to improve contrast in the image—either adaptive his-

togram equalization or a linear range correction,
(iii) detect sparse keypoints in the intensity image—we use SURF implemented on

a GPU but other methods should work,
(iv) build an ‘image stack’ (cf., Fig. 3) and for each keypoint pierce through to

form augmented keypoints—this provides the 3D position (azimuth, elevation,
range) and time of each keypoint,

(v) track keypoints—we match to the previous frame (VO) and a local map (VT&R),
(vi) detect and reject outliers—we use RANSAC,
(vii) solve for the robot’s motion using a nonlinear, least-squares method—we can

incorporate an attitude sensor such as a star tracker and/or IMU to help deter-
mine orientation.

We carry out these steps every time a new image is acquired.
Figure4 compares the lidar-intensity-image and stereo-image pipelines on the VO

problem.With the robot stopping every time it gathered images (approximately every
0.5m), we can see that the lidar and stereo pipelines both provide good estimates of
the robot motion compared to GPS groundtruth. However, if we allow the lidar to
acquire images while in motion, the VO performance degrades quickly as the images
becomes distorted. We discuss this motion distortion and our efforts to compensate
for it in detail in the next section.

2 Coping with Motion Distortion

2.1 Nature of Distortion

In this paper, we are concerned with laser-based 3D rangefinders that are capable of
producing high-quality intensity images. The main sensor we use for realtime oper-
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Fig. 4 Comparison of lidar-intensity-image (laser) and stereo-image VO. In this experiment the
robot stopped every time images were acquired (approximately every 0.5m). Both algorithms are
able to provide reasonable estimates (compared to GPS groundtruth) in this stop-scan-go paradigm
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ations is the Autonosys LVC0702, which uses a combined nodding and polygonal
mirror assembly to steer a single laser beam through a raster pattern in order to build
intensity/range images (cf., Fig. 5; left). It works out to about 50m in range.

To our knowledge, the Autonosys unit has the highest pulse repetition frequency
(PRF) of the single-laser scanners on the market at 500,000points/s. We use the unit
in a mode that produces 480 × 360 pixel intensity images at 2Hz. Even for a robot
moving at a modest speed, say 0.5m/s, there is noticeable distortion in the images if
they are acquired during motion (cf., Fig. 5; right). This is essentially an exaggerated
‘rolling shutter’ effect; an image is gathered over a fraction of a second, with every
pixel acquired at a unique (known) time.

We considered using a Velodyne HDL64E for our work, but found that the narrow
vertical field of view (16◦) and resolution (64 pixels) made the resulting intensity
images unsuitable for our approach; it would also require careful inter-calibration of
intensity values derived from the 64 separate laser sources.

Flash lidar does not suffer from the same motion distortion issues as laser-based
rangefinders and eventually may be provide lighting-invariant imagery. Currently,
however, inexpensive units such as the SwissRanger SR4000 have limited range
capabilities (less than 10m), struggle to cope with sunlight, and have low resolution
(e.g., 176 × 144 pixels). More expensive units, such as the ASC TigerEye, have
longer range and work outside but still have limited resolution (e.g., 128 × 128
pixels) and thus are not suitable for our image pipeline as of yet.

TheMicrosoft Kinect sensor produces similar data products to lidar (i.e., intensity
and depth images) but it does not work outside in direct sunlight, its range is limited
to approximately 7m, and the intensity image comes from a passive camera and thus
is not lighting-invariant.

Thus, for the time being, we need to be able to handle motion distortion in laser-
based lidar images. The next sections describe our efforts to cope with this issue.

r1,2

r0,1

r

F→p

F→k

F→l

Fig. 5 3D range sensors based on a single laser use a mirror assembly (left) to steer the beam
through a raster pattern in order to build an image. If the lidar is mounted on a moving robot, the
scene can undergo a non-affine transformation during imaging; in the checkerboard example (right),
some of the straight lines are distorted because the lidar was in motion during acquisition
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2.2 Effect on Features

In our pipeline, we extract SURF features from the raw, motion-distorted images
and track them on a frame-to-frame basis (cf., Fig. 6). The effect of scanning while
moving has not been so severe as to cause feature tracking to fail catastrophically
in our experiments so far. Thus, we have avoided carrying out full-image motion
compensation. However, if the same scene is imaged twice at two very different
vehicle speeds, it is intuitive that feature matching will fail as the images will expe-
rience different amounts of motion distortion. We are currently carrying out a study
to characterize how large we can make the speed differential and still successfully
match features.

2.3 Motion-Compensated RANSAC

The next step is to identify outlying feature tracks and remove them from the pipeline.
We originally used the out-of-the-box random sample and consensus (RANSAC)
algorithm [12] typically found in the stereo-camera pipeline. This worked reasonably
well most of the time, but we found that the threshold used to separate inliers from
outliers was difficult to tune. We would typically end up with a lot of false negatives
(i.e., throwing away many good feature tracks) or a handful of false positives (i.e.,
letting some bad feature tracks in). We see these two cases in Fig. 7 (left; middle).
Note that when the threshold is tight the inliers are restricted to a horizontal band,
implying near-simultaneous capture. This is expected as the lidar scans quickly left-
to-right while slowly scanning up-and-down.

We found the reason forRANSAC’s difficulty to be our choice ofmodel. Typically,
RANSAC in the stereo-camera pipeline seeks to find a rigid, frame-to-frame pose
change that explains the most data. Due to the motion distortion present in the

Fig. 6 We extract SURF features from the raw (i.e., motion-distorted) images (left) and track them
on a frame-to-frame basis (right). This allows us to only motion-compensate a sparse number of
points rather than the entire image
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Fig. 7 In a VO pipeline, outliers are usually detected/rejected on a frame-to-frame basis using
RANSAC [12], which is used to solve for the rigid pose change between two frames that explains the
most features. Unfortunately, for intensity images gathered during motion, this model is insufficient
and results in false negatives if the matching threshold is too tight (left) or false positives (red) if
the threshold is too loose (middle). To overcome this, we created a motion-compensated version of
RANSAC that solves for the 6DOF velocity that explains the most features (right) [2]

imagery,we found that it wasmuchmore effective to haveRANSACfind the constant
velocity that explains the most data over a two-frame time interval. It turns out that,
as with the rigid pose change, the minimum number of feature tracks needed to fit
a constant velocity is still three. Thus, RANSAC proceeds as usual, but with this
change of model. We see the improved outlier rejection in Fig. 7 (right). We are now
able to keep the decision threshold tight and still obtain lots of good feature tracks
without false positives. Anderson and Barfoot [2] provide further details.

2.4 Continuous-Time Estimation for Pose

After removing outlying feature tracks, the last major step in the pipeline is to
solve for the pose change using an iterative, nonlinear, least-squares method such
as bundle adjustment [7]. It is again important in this step to account for the proper
timestamps of all observed features in order to combat the motion distortion. Tradi-
tional approaches represent the robot’s trajectory in discrete time (cf., Fig. 8; left).
This is sufficient because the exposure times associated with passive-camera image
capture are so short that they can be thought of as instantaneous.

Unfortunately, for lidar intensity images, this is not a good assumption. If we
simply put a discrete-time pose at nominal image capture times, we cannot account
for the actual (and varying) timestamps of the measurement observations and our
VO solution ends up being poor. If we put a discrete-time pose at every unique
measurement timestamp, the problem is computationally intractable but also under-
constrained (without including an additional prior).

We found a better idea was to consider the robot’s trajectory to be a continuous
function of time (cf., Fig. 8; right) so that we could query it at any particular time
at which a feature was observed. Thus, in general, we write the robot’s trajectory as
x(t) and then build a measurement reprojection error term as



Into Darkness: Visual Navigation Based on a Lidar-Intensity-Image Pipeline 495

2

1

zk−1,1
zk,1

zk,2

zk+1,2

zk+2,2

xk−1

xk

xk+1 xk+2

. . .

. . .

. . .

. . .

x(t)

z(ti−1)
z(ti)

z(ti+1)

z(ti+2)
z(ti+3)

2

1

Fig. 8 Typically in robotics, the robot’s trajectory is represented in discrete time (left).We represent
the robot’s trajectory in continuous time (right), x(t), which allows us to query the pose at the exact
times the landmarks were observed; this is important due to the scanning-while-moving nature of
laser-based scanners

ek,j = zk,j − g
(
x(tk), �j

)
, (1)

where zk,j is the observation of landmark j at time tk , g(·, ·) is the lidar’s observation
model, and �j is the position of landmark j.We sumover all themeasurements to build
a nonlinear, least-squares cost function, J , that we seek to minimize with respect to
x(t):

J(x(t), �) = 1

2

∑

k,j

eT
k,jR

−1
k,j ek,j, (2)

where Rk,j is the measurement noise covariance associated with ek,j. We then seek
to solve the following optimization problem,

{
x(t)�, ��

} = argmin
x(t), �

J(x(t), �) (3)

for the optimal robot trajectory, x(t)�, and landmark positions, ��. We use Gauss-
Newton optimization with a robust kernel to find the best trajectory estimate.

Naturally, we still need to discretize x(t) in some way to make the state estimation
problem tractable and have considered a few ways of doing so:

(i) linear interpolation: represent the trajectory using discrete-time poses, xi, with
linear pose interpolation in between to evaluate measurement error terms at
their appropriate times [10]

(ii) spline: represent the trajectory as a weighted sum of a finite number of known
basis functions, x(t) = ∑

i ciφ(t), and solve for the optimal coefficients, ci [13,
15, 25]

(iii) spline velocity: represent the trajectory in terms of velocity (i.e., a relative pose
trajectory), which we still consider to be a weighted sum of a finite number of
known basis functions: ẋ(t) = ∑

i ciφ(t), and solve for the optimal coefficients,
ci [3]

(iv) Gaussian process: represent the robot trajectorynonparametrically as aGaussian
process, x(t) ∼ GP(μ(t),Σ(t, t′)) and solve for the pose at desired times
[27, 29]
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Regardless of the method, we solve for only a finite number of variables, in each case
optimizing the robot trajectory based on the observed feature tracks. Our preferred
approach is to do this online in a sliding-window style estimator where we estimate a
small temporal section of the robot’s trajectory (i.e., several seconds) and then slide
the optimization window along to incorporate the next batch of measurements.

2.5 Celestial Attitude Corrections

While the continuous-time trajectory estimation approach is already quite accurate,
we can also incorporate absolute attitude (i.e., orientation) corrections into our pose
solution, as depicted in Fig. 2. As our motivation has been planetary exploration, we
have primarily investigated celestial observations (with ephemeris, coarse location
on the planet, and time/date) as a source of absolute attitude data.

In the daytime, we can use a dedicated sun sensor/inclinometer to provide attitude
corrections very inexpensively [19]. Alternatively, we have found that it is actually
possible with some laser-based imagers to use intensity/range images as a make-shift
sun sensor [16]; the sun appears as a blob of points with maximum intensity and zero
range (cf., Fig. 9; middle).

At nighttime, a small star tracker/inclinometer (cf., Fig. 9; right) is the preferred
source of absolute attitude information. As star measurements can be provided
frequently and during motion [17], they seem to be a natural pairing for lidar to
support dark navigation.

Regardless of the source of absolute attitude measurements, we typically incor-
porate them into the VO pipeline by introducing additional error terms in Eq. (2).
These celestial attitude sensors can be included at very little additional mass, power,
and computational cost and are very beneficial to the accuracy of the VO solution
over long distances [19].

Fig. 9 Celestial/gravity observations can be used to correct rover orientation in a VO pipeline. In
the daytime, we use the sun and either a dedicated sun sensor (not shown) or lidar intensity images
[16]. For example, a SICK laser (left) was swept 360◦ to produce a panoramic intensity image
(middle); the sun shows up as an artifact (circled in green) with maximum intensity and zero range.
At nighttime, we use a small star tracker (right), which directly outputs full 3DOF orientation while
the robot is motion [17]
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3 Experimental Results

3.1 Setup

We gathered a large-scale lidar intensity image dataset at a sand and gravel pit near
Sudbury, Ontario, Canada [4]. The ROC6 robot was equipped with the Autonosys
lidar and DGPS for groundtruth positioning. The robot travelled the same 1.1km
course 10 times in a diurnal cycle, or approximately every 2.5h for a 25h period.
Figure10 depicts the experimental setup and the path the robot took based on DGPS
groundtruth. The dataset is available for download from our webpage: http://asrl.
utias.utoronto.ca/datasets/abl-sudbury.

Fig. 10 We gathered 11km of lidar-intensity-image data and DGPS groundtruth at the Ethier Sand
and Gravel Pit near Sudbury, Ontario (top). The Autonosys lidar was mounted on the ROC6 field
robot (right) and the same 1.1km circuit (left) was repeated every 2.5h for 25h straight, ensuring
datawas gathered across an entire diurnal cycle (full-light to full-dark). The entire dataset is available
on our webpage: http://asrl.utias.utoronto.ca/datasets/abl-sudbury [4]

http://asrl.utias.utoronto.ca/datasets/abl-sudbury
http://asrl.utias.utoronto.ca/datasets/abl-sudbury
http://asrl.utias.utoronto.ca/datasets/abl-sudbury
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3.2 Visual Odometry

Figure11 shows an example of our motion-compensated visual odometry algorithm
running on one of the full-dark 1.1 km circuits from our Sudbury dataset. It was
a very cloudy night and therefore pitch black during the experiment. It should be
noted that while the robot frequently revisited places it had been before, we are
not detecting and exploiting loop closures in this experiment (i.e., we are not doing
SLAM), merely dead-reckoning from sequential lidar data (in a sliding window).
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Fig. 11 VO results for one of the full-dark 1.1km gravel-pit circuits, comparing all of the various
motion-compensation strategies we have used over the last few years. Roughly speaking, all the
methods are a big improvement compared to not compensating for themotion distortion. The spline-
velocity estimation ofAnderson andBarfoot [3] (purple) and theGPGNmethod of Tong andBarfoot
[27] (green) do the best. Total Euclidean error (right) is much lower for the motion-compensated
methods

The plot compares (i) GPS groundtruth, (ii) no motion compensation (i.e., tra-
ditional discrete-time VO), (iii) linear interpolation, (iv) Gaussian process Gauss-
Newton (GPGN), and (v) spline velocity estimation (integrated after the fact to
produce x(t)). All the algorithms use the same VO pipeline, except for the last step
involving the nonlinear, numerical pose solution. To provide a fair comparison we
used our motion-compensated RANSAC feature tracks for all the algorithms; with
traditional feature tracks the performance would be poor for all algorithms, even the
discrete-time estimator.
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We see some variability in performance across the algorithms, but there are
different tuning parameters in each algorithm, making the comparison rough at
best. At a high level, the total Euclidean error (cf., Fig. 11; right) shows all that
the motion-compensated methods have much lower error than the traditional non-
motion-compensated algorithm. On this particular dataset, the GPGN and spline
velocity methods fared the best, with linear interpolation performing worse.

The motion compensation in the pose solution clearly helps and comes at lit-
tle extra computational cost over the discrete-time estimator; we still do nonlinear,
iterative least-squares with a robust cost function and estimate a similar number of
variables, but the accuracy is higher.
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Fig. 12 We developed a lidar calibration tool inspired by the standard passive camera calibration
approach. We present a number of views of checkboards to the lidar and capture intensity (top-
left) and range images (not shown). We then automatically extract the locations of the checkboard
corners from the intensity images (top-right). We simultaneously solve for the checkerboard poses
and intrinsic parameters of the lidar (bottom-left). Calibration greatly improves the quality of our
VO solution (bottom-right); comparison carried out using the spline-velocity approach
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3.3 Lidar Calibration

As with any imaging sensor, our lidar-intensity-images require calibration to make
the 3D positions of the landmarks accurate (cf., Fig. 12). This procedure is described
by Dong et al. [9], but briefly the calibration uses multiple images of checkerboards
at known locations to solve for intrinsic parameters by calculating the poses of the
checkerboards. We effectively calibrate the azimuth, elevation, and range images
in the lidar image stack of Fig. 3. Figure12 (bottom-right) shows the effect of this
calibration on the quality of our VO solution; we see that the calibration is just as
important as motion compensation to producing an accurate VO solution.
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Fig. 13 Our visual-teach-and-repeat method was used to autonomously repeat the 1.1km gravel-
pit circuit 10 times. The path was taught in full daylight and repeated throughout an entire diurnal
cycle. The method allowed the ROC6 robot to drive autonomously almost directly in its taught
tracks (top) for 99.7% of the distance. To localize relative to the path, the system matched features
to the previous frame (VO) and to the map built during the teach pass; we see good numbers of
features for all ten repeats (left), independent of the time of day. Only when both matching methods
failed simultaneously were we required to exert manual control (right) to move the robot past small
difficult sections (0.3% of distance)

3.4 Visual Teach and Repeat

The second (and perhaps more important) experiment we will discuss is visual teach
and repeat (VT&R). Chronologically, we carried out this experiment before our
work to motion-compensate VO and so when we refer to the VO pipeline in this
section, it is the basic, discrete-time version without motion compensation. In fact,
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the lidar dataset [4] described abovewas actually gathered as by-product of theVT&R
experiment. It turns out for path repeating, the non-motion-compensated solution is
almost good enough, but we decided to work on motion compensation primarily to
improve the robustness of VT&R.

The idea behind VT&R is to pilot a robot manually along a route once to ‘teach’
it, and then to autonomously repeat the route many times. We accomplish this by
running the VO pipeline during the teaching phase to estimate motion, but we save
all of the features used to estimate VO, relative to the camera view from which they
were first observed. During ‘repeat’, we match features from the live camera view to
those stored in the map (as well as to the previous live view; cf., Fig. 2). This allows
the robot to determine its pose relative to the taught path. A feedback controller then
steers the robot to bring the path-tracking errors to zero over time. If the robot cannot
match to the map, then VO is used to propagate the previous path-tracking errors
forward in time. The end result is a robot that can drive directly in its taught tracks,
using only visual feedback (i.e., no GPS).

We originally carried out this work using a stereo camera [14] before switching to
lidar. However, we found that if the lighting changed toomuch between the teach and
repeat phases, the robot would be unable to match its live view to the map reliably.
This was the main reason we decided to explore using lidar intensity images, which
can be matched across a wide variety of lighting conditions.

To demonstrate the lighting-invariant capabilities of our lidar pipeline, we taught
a 1.1km route in daylight (cf., Fig. 13; top) and then repeated it autonomously every
2.5h for the next 25h [24]. Thismeantwewerematching light-to-light, light-to-dusk,
light-to-dark, and light-to-dawn. Figure13 (left) shows how many features we were
on average able to match to the map (red) and previous image (blue) across all ten
repeat runs; both numbers remain fairly constant. By distance, our systemwas 99.7%
successful, with the remaining 0.3% requiring some minor manual interventions.
Figure13 (right) shows the union of the few places requiring manual interventions
across all 10 repeat runs. Our average path-tracking error was about 8cm RMS as
measured by DGPS.

We found that using aVOpipelinewithoutmotion compensation inside ourVT&R
system meant we could not drive very far without matching to the map. We have yet
to put our VOmotion-compensation improvements back into VT&R, but believe this
will further increase robustness by handling more of the cases where it is difficult to
match to the map.

4 Conclusion and Future Work

We have discussed our experiences in building a visual pipeline based on lidar inten-
sity images for both visual odometry and visual teach and repeat. Our major lessons
learned along the way are:
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(i) lidar intensity images offer excellent lighting invariance and can be used suc-
cessfully in a visual pipeline,

(ii) lidar image stacks require careful calibration to achieve high-quality VO results
(i.e., comparable to the stereo-camera pipeline),

(iii) the scanning-while-moving nature of laser-based imagers results in motion
distortion that affects the accuracy of VO if left unchecked,

(iv) visual teach and repeat is possible even without motion compensation but will
be more robust with it,

(v) it is possible to compensate for motion distortion in the RANSAC and pose
solution steps of the VO pipeline,

(vi) it is possible to extract features from the raw intensity images, but this may no
longer work if the motion distortion becomes too high,

(vii) absolute attitude corrections can be used to correct the robot’s orientation and
further improve the accuracy of the pipeline.

We believe our work shows not only that it is possible to build a VO pipeline that
will work in the dark (and any other lighting condition), but that we can successfully
match features across lighting conditions. We used this matching ability to build
a lighting-invariant, visual-teach-and-repeat system, but we see this enabling other
lighting-invariant robotics capabilities as well. For example, our next step is to do
place recognition across lighting conditions. We hope that an affordable version of
the lidar we used in this work becomes available within a few years, as we believe
this could have a big impact in enabling real-world applications.
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