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Abstract— Sampling-based optimal planners, such as RRT*,
almost-surely converge asymptotically to the optimal solution,
but have provably slow convergence rates in high dimensions.
This is because their commitment to finding the global optimum
compels them to prioritize exploration of the entire problem
domain even as its size grows exponentially. Optimization
techniques, such as CHOMP, have fast convergence on these
problems but only to local optima. This is because they are
exploitative, prioritizing the immediate improvement of a path
even though this may not find the global optimum of nonconvex
cost functions.

In this paper, we present a hybrid technique that integrates
the benefits of both methods into a single search. A key insight
is that applying local optimization to a subset of edges likely to
improve the solution avoids the prohibitive cost of optimizing
every edge in a global search. This is made possible by Batch
Informed Trees (BIT*), an informed global technique that
orders its search by potential solution quality. In our algorithm,
Regionally Accelerated BIT* (RABIT*), we extend BIT* by
using optimization to exploit local domain information and
find alternative connections for edges in collision and accelerate
the search. This improves search performance in problems
with difficult-to-sample homotopy classes (e.g., narrow passages)
while maintaining almost-sure asymptotic convergence to the
global optimum.

Our experiments on simulated random worlds and real data
from an autonomous helicopter show that on certain difficult
problems, RABIT* converges 1.8 times faster than BIT*.
Qualitatively, in problems with difficult-to-sample homotopy
classes, we show that RABIT* is able to efficiently transform
paths to avoid obstacles.

I. INTRODUCTION

Sampling-based planners are popular for solving the
motion-planning problem in robotics and are effective on
a large range of applications. Algorithms such as Proba-
bilistic Roadmaps (PRM) [1], Rapidly-exploring Random
Trees (RRT) [2], and Expansive Space Trees (EST) [3] are
probabilistically complete. These algorithms find a solution,
if one exists, with probability one as the number of samples
goes to infinity.

Recent research has developed asymptotically optimal
planners, such as RRT* [4]. The solutions found by these
algorithms converge asymptotically to the optimum, if one
exists, with probability one as the number of samples goes to
infinity (i.e., almost surely). With informed search techniques,
such as Informed RRT*, this convergence can be linear in
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Fig. 1. Solutions found by BIT* and RABIT* after 0.1 seconds of
computation time on a simulated 2-dimensional world. The world has an
obstacle with a narrow gap that creates three homotopy classes, two of
which flank the obstacle and one that passes through the narrow gap. BIT*’s
ability to find a path through the narrow gap depends on the distribution
of the random samples. RABIT* judiciously applies a local optimizer to
potential edges (shown in magenta), allowing it to exploit additional problem
information and find paths through difficult-to-sample homotopy classes
(e.g., narrow passages) faster than sampling alone.

the absence of obstacles [5], but generally convergence is
provably poor, especially in high dimensions [6]. This is
because the algorithms prioritize exploring the domain despite
its exponential growth in size with increased state dimension.

Local optimizers, such as Covariant Hamiltonian Optimiza-
tion for Motion Planning (CHOMP) [7], instead prioritize
exploiting domain information, such as cost gradients, to
modify and improve a path. This rapidly finds high-quality
solutions in high-dimensional planning problems, but only
provides guarantees on local optimality. This is because
nonconvex cost functions have local optima that can entrap
greedy optimization methods, such as gradient descent. This
makes the relative suitability of local optimizers and global
searches dependent on the specific planning problem [8].

In the field of nonconvex optimization, it is common to
avoid these limitations by combining local optimization with a
global search [9]–[14]. This provides the rapid convergence of
local optimizers (e.g., gradient descent) with the insensitivity
to local optima of a global search (e.g., stochastic search).

In this paper, we use this existing work as motivation for
a framework to integrate local and global planning methods
into a hybrid search. We do so by using Batch Informed
Trees (BIT*) [15], a global method that uses heuristics to
search in order of potential solution quality. This provides the
efficiency necessary for a local optimizer to generate potential
edges from domain information (e.g., cost gradients). This
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Fig. 2. An illustration of how the RABIT* algorithm uses a local optimizer to exploit obstacle information and improve a global search. The global search
is performed, as in BIT*, by incrementally processing an edge queue (dashed lines) into a tree (a). Using heuristics, the potential edge from xi to xk is
processed first as it could provide a better solution than an edge from xi to xj . The initial straight-line edge is given to a local optimizer which uses
information about obstacles to find a local optima between the specified states (b). If this edge is collision free, it is added to the tree and its potential
outgoing edges are added to the queue. The next-best edge in the queue is then processed in the same fashion, using the local optimizer to once again
propose a better edge than a straight-line (c).

extra information helps the algorithm find difficult-to-sample
homotopy classes (e.g., narrow passages, Fig. 1). The resulting
algorithm, Regionally Accelerated BIT* (RABIT*), maintains
almost-sure asymptotic convergence to the global optimum.

We demonstrate this technique with CHOMP [7] as a
gradient-based local optimizer (Fig. 2). The algorithm is tested
in various state dimensions on simulated random worlds with
narrow passages and an example problem from an autonomous
helicopter flight. These experiments show that RABIT* is
‘CHOMPing at the BIT*’ [sic] to find solutions to challenging
high-dimensional problems with difficult-to-sample homotopy
classes, outperforming both existing asymptotically optimal
algorithms and local optimization.

The remainder of this paper is organized as follows.
Section II is a review of relevant literature, while Section III
contains formal definitions and notation. The algorithm is
presented in Section IV and Section V presents experimental
results. Finally, Sections VI and VII present a discussion with
thoughts on future work and a conclusion.

II. BACKGROUND

Substantial work exists on improving the solution quality
of sampling-based planners, including adaptations to search
techniques, local optimization methods, and hybrid searches.

A. Adapted Search Techniques

Many adaptations exist to the RRT search procedure.
Urmson and Simmons [16] use a heuristic to bias sample
generation in an RRT while Ferguson and Stentz [17]
use a series of independent RRTs in their Anytime RRTs
algorithm. Jaillet et al. [18] combine RRT with stochas-
tic optimization techniques in their Transition-based RRT
(T-RRT) algorithm, while Rickert et al. [19] attempt to balance
exploration and exploitation through gradient information in
their Exploring/Exploiting Tree (EET) algorithm. Though
these techniques are effective, their asymptotic optimality is
limited by the underlying RRT.

Karaman and Frazzoli [4] incrementally rewire the RRT
graph using random geometric graph (RGG) theory to achieve
asymptotic optimality in their algorithm, RRT*. Recent
work has focused on improving the convergence rate of
asymptotically optimal planners.

Alterovitz et al. [20], Akgun and Stilman [21], and Nasir
et al. [22] all use path-biased sampling in their algorithms.
This increases the likelihood of sampling near the current

solution and the convergence to a local optimum, but results
in a nonuniform distribution that can decrease the likelihood
of finding solutions in other homotopy classes.

Gammell et al. [5] improve convergence for problems
seeking to minimize path length by directly sampling a (upper-
bound) heuristic in their Informed RRT* algorithm. Although
this has linear convergence to the optimum in the absence
of obstacles, the presence of obstacles in practical problems
prevents the subproblem from shrinking indefinitely.

Arslan and Tsiotras [23], [24] use dynamic programming
[25] and Lifelong Planning A* (LPA*) techniques [26] in their
RRT# algorithm to improve RRT* rewiring. This improves
convergence but does not directly focus the search.

Janson et al. [6] use a marching method on a set of samples
in their Fast Marching Tree (FMT*) algorithm. The search
expands outward from the start in order of increasing cost-to-
come; however, it is not anytime and must be restarted if more
samples are needed to find a solution. Salzman and Halperin
[27] extend FMT* to quasi-anytime performance with their
Motion Planning Using Lower Bounds (MPLB) algorithm.
Denser sets of samples are searched using lower-bounding
estimates of the solution cost through states, with improved
solutions being found only when a search finishes. They state
that this can be done efficiently by reusing information, but
they do not provide specific methods to do so.

Gammell et al. [15] combine incremental graph-search
techniques with RGG theory in their BIT* algorithm to
create an anytime asymptotically optimal search that checks
potential solutions in order of estimated cost. This is done
efficiently by using heuristics to search batches of samples
and has proven effective even for problems with differential
constraints that require solving two-point boundary-value
problems (2-pt BVPs) [28]. This paper builds on Gammell et
al. [15] by incorporating local search to improve convergence.

B. Local Optimizers

Local optimization methods focus on improving an initial
suboptimal path towards a local optimum. All these methods
can be used to post-process results from global searches
and some can be used to solve a problem directly. While
optimization can occasionally switch between topologically
close classes, these methods are generally limited to the
homotopy class of the initial path.

Basic techniques seek to simplify the initial path by
removing redundant states through path pruning or path
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Fig. 3. The results after 0.2 seconds of RRT*, Informed RRT*, BIT*, and RABIT* on the random R2 world analyzed in Fig. 4. Note how RABIT* uses
local information to find a path through the optimum narrow gap with fewer samples than BIT*. While in easier low-dimensional problems this does not
result in better performance than BIT*, it does on analogous problems in R8.

shortcutting [29]–[33]. Path pruning iteratively improves a
discrete path by considering new connections between existing
vertices, while path shortcutting performs a similar procedure
but also considers interpolating edges to create new vertices.
In both, when a feasible connection is found the path is
simplified by using it and removing the intermediate vertices.

More advanced techniques seek to optimize an initial
path, independent of its feasibility, by exploiting additional
information about the problem domain (e.g., cost gradients).
These can be used independent of a global search; however,
they may become stuck in the local optima of nonconvex
cost functions.

Zucker et al. [7] use gradient methods to optimize an
initial solution in their CHOMP algorithm. Kalakrishnan
et al. [34] use stochastic methods to replace analytical
gradients in their Stochastic Trajectory Optimization for
Motion Planning (STOMP) algorithm. Choudhury et al. [35]
optimize systems with dynamic constraints in their Dy-
namics Projection Filter (DPF) algorithm. These techniques
associate a cost to obstacles and perform optimization of
an unconstrained cost function. This allows for the rapid
discovery of local optima, but does not guarantee that the
path will be feasible (i.e., collision-free). Schulman et al. [36]
perform optimization constrained by obstacle avoidance in
their trajectory optimization (TrajOpt) algorithm; however, it
is still susceptible to local optima.

C. Hybridization

Hybrid search techniques combine the results of multiple,
possibly different, search algorithms into a solution that is
better than that of the individual inputs.

Basic techniques combine the results of completed searches
[37], [38]. This allows for a wide variety of methods as inputs,
including both global and local techniques, but keeps each
search independent. This means information discovered by
one search is not shared with others, a limitation that is
especially problematic in domains with difficult-to-sample
features such as narrow passages.

Otte and Correll [39] use a parallel hybrid method in
their Coupled Forest of Random Engrafting Search Trees
(C-FOREST) algorithm. Demonstrated with RRT*, the algo-
rithm shares information between multiple sampling-based

planners using heuristics and rejection sampling. Compared
to other parallel algorithms [40], this results in a superlinear
speedup in computation time; however, they only use global
searches.

D. Regionally Accelerated BIT* (RABIT*)

In this paper, we present an anytime hybrid search that
integrates local information into a global search. A local
optimizer is used to exploit additional domain information
(e.g., cost gradients) to divert edges around obstacles. When
combined with BIT*’s ordered search, this efficiently exploits
local information to find difficult-to-sample features while
continuing to explore the entire problem domain and almost-
surely converge asymptotically to the global optimum. This is
analogous to the way 2-pt BVP-solvers can be used to plan
with dynamic constraints [28].

III. DEFINITIONS

We define the asymptotically optimal planning problem as
in [4] as well as some mathematical notation.

Definition 1 (Optimal Planning): Let X ⊆ Rn be the
state space of the planning problem, Xobs ⊂ X be the states
in collision with obstacles, and Xfree = X \ Xobs be the
resulting set of permissible states. Let xstart ∈ Xfree be the
initial state and Xgoal ⊂ Xfree be the set of desired goal
states. Let σ : [0, 1] → X be a sequence of states (a path)
and Σ be the set of all nontrivial paths.

The optimal planning problem is then formally defined
as the search for the path, σ∗, that minimizes a given cost
function, s : Σ→ R≥0, while connecting xstart to xgoal ∈
Xgoal through free space,

σ∗ = arg min
σ∈Σ

{s (σ) | σ (0) = xstart, σ (1) ∈ Xgoal,

∀t ∈ [0, 1] , σ (t) ∈ Xfree} ,
where R≥0 is the set of non-negative real numbers. We
say a planner almost-surely converges asymptotically to this
optimum if the probability of convergence is unity as the
number of iterations, i, goes to infinity,

P

(
lim sup
i→∞

s (σi) = s (σ∗)

)
= 1.
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Algorithm 1: RABIT*
(
xstart ∈ Xfree,xgoal ∈ Xgoal

)
1 V ← {xstart} ; E ← ∅; Xsamples ←

{
xgoal

}
;

2 QV ← ∅; QE ←
{(

xstart,xgoal

)}
; r ←∞;

3 repeat
4 if QV ≡ ∅ and QE ≡ ∅ then
5 Prune

(
gT
(
xgoal

))
;

6 Xsamples
+←− Sample

(
m, gT

(
xgoal

))
;

7 r ← radius
(
|V |+

∣∣Xsamples

∣∣);
8 QV ← V ;

9 while BestQueueValue (QV ) ≤ BestQueueValue (QE) do
10 ExpandVertex (BestInQueue (QV ));

11 ProcessEdge (BestInQueue (QE));
12 until STOP;
13 return T ;

A. Notation

We define T := (V,E) to be an explicit tree with a set
of vertices, V ⊂ Xfree, and edges, E = {(v,w)} for some
v, w ∈ V .

The functions ĝ (x) and ĥ (x) represent admissible es-
timates of the cost-to-come to a state, x ∈ X , from the
start and the cost-to-go from a state to the goal, respectively
(i.e., they bound the true costs from below). The function
gT (x) represents the cost-to-come to a state, x ∈ X , through
the tree. We assume a state not in the tree has a cost-to-
come of infinity. Note that these two functions will always
bound the unknown true optimal cost to a state, g (·), i.e.,
∀x ∈ X, ĝ (x) ≤ g (x) ≤ gT (x).

There exists a path, σ(v,w) : [0, 1]→ X , for every edge,
(v,w), in the tree such that σ(v,w) (0) = v and σ(v,w) (1) =
w. The functions ŝ

(
σ(v,w)

)
and s

(
σ(v,w)

)
represents an

admissible estimate and the true cost of this path, respectively.
With a slight abuse of notation, we denote the costs of straight-
line edges as simply ŝ (v,w) and s (v,w).

Finally, the function λ (·) represents the Lebesgue measure
of a set (e.g., the volume), the cardinality of a set is denoted
by |·|, and we take the minimum of an empty set to be
infinity, as is customary. We use the notation X

+←− {x}
and X −←− {x} to compactly represent the compounding set
operations X ← X ∪ {x} and X ← X \ {x}, respectively.
The trace of a matrix is given by tr (·) and the Euclidean
norm of a vector or matrix is denoted by ||·||2. We use ∇
and ∇ to denote the vector and matrix gradients of a scalar
function, respectively.

IV. ALGORITHM

We present RABIT*, a hybrid search technique. It generates
edges for a global search that avoid obstacles by using an
optimizer to exploit local domain information. It does this
while maintaining almost-sure asymptotic convergence to the
global optimum.

The version presented uses CHOMP (Section IV-B) to
exploit cost gradients inside BIT* (Section IV-A); however,
other local optimization [34]–[36] or search techniques would
also be appropriate. CHOMP is a local optimization algorithm
that uses a quasi-Newton method to quickly improve a path by
exploiting cost-gradient information. This not only improves
the quality of the global search, but also its ability to find
difficult-to-sample homotopy classes.

Algorithm 2: ProcessEdge((vm,xm) ∈ QE)

1 QE
−←− {(vm,xm)};

2 if gT (vm) + ŝ (vm,xm) + ĥ (xm) < gT
(
xgoal

)
then

3 σ(vm,xm) ← OptimizeEdge ((vm,xm));
4 if ĝ (vm) + s

(
σ(vm,xm)

)
+ ĥ (xm) < gT

(
xgoal

)
then

5 if gT (vm) + s
(
σ(vm,xm)

)
< gT (xm) then

6 if xm ∈ V then
7 E

−←− {(v,xm) ∈ E};
8 else
9 Xsamples

−←− {xm};
10 V

+←− {xm} ; QV
+←− {xm};

11 E
+←− {(vm,xm)};

12 QE
−←− {(v,xm) ∈ QE |

gT (v) + ŝ (v,xm) ≥ gT (xm)};

13 else
14 QV ← ∅; QE ← ∅;

For simplicity, Algs. 1–4 present the search from a single
start state to a single goal state. This formulation could easily
be extended to a goal region by extending the heuristic, or
to a search originating from the goal.

A. Global Search

RABIT* uses the principles developed in BIT*. Due to
space constraints, we present only basic implementation
details and direct the reader to [15] for more information.

BIT* is an asymptotically optimal planning algorithm that
orders its search on estimated solution cost and uses the
current solution to bound the search domain. This ordering
provides the opportunity to apply a local optimizer efficiently
in a global search. For clarity, we separate the algorithm into
a main section that is unchanged (Alg. 1) and the processing
of edges (Alg. 2) where we highlight the changes in RABIT*.

The algorithm starts with a given initial state, xstart ∈
Xfree, in an otherwise empty tree, T . The goal state, xgoal ∈
Xgoal, is placed in the set of unconnected samples, Xsamples,
and the search queues are initialized (Alg. 1, Lines 1–2).

Whenever the queues are empty (Alg. 1, Line 4), RABIT*
starts a new batch (Alg. 1, Lines 5–8). All vertices that cannot
improve the solution are removed (Alg. 1, Line 5, see [15])
and more samples are added (Alg. 1, Line 6). This creates
a new, denser implicit RGG from both the existing and new
states, defined by a connection radius, r (Alg. 1, Line 7). The
connected vertices are then inserted into the vertex-expansion
queue to start the search (Alg. 1, Line 8).

The connection radius is calculated from bounds for
asymptotic optimality [4],

radius (q) := 2η
(
1 + 1

n

) 1
n

(
λ(Xf̂)
ζn

) 1
n (

log(q)
q

) 1
n

, (1)

where q is the number of vertices, Xf̂ is the subset of states
that can provide a better solution [5], ζn is the volume of an
n-dimension unit ball, and η > 1 is a tuning parameter.

The underlying implicit RGG is searched in order of
decreasing solution quality using a queue-based incremental
graph search (Alg. 1, Lines 9–11) that expands vertices only
when necessary (Alg. 1, Lines 9–10). Vertices are expanded
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Algorithm 3: OptimizeEdge((v,w) ∈ QE)

1 if ŝ (v,w) < s (v,w) then
2 σ′ ← Optimize ({v, w});
3 if s (σ′) < s (v,w) then
4 return σ′;
5 else
6 return {v, w};

7 else
8 return {v, w};

from a vertex queue, QV , into an edge queue, QE , when
they could provide a better edge than the best of the edge
queue (Alg. 1, Line 9). The functions BestQueueValue and
BestInQueue return the value of the best element and the
best element itself, respectively, for either the vertex or edge
queues. The ordering value of a vertex, v, or an edge, (v,x),
in its queue is a lower bounding estimate of the cost of a
solution constrained to pass through the vertex or edge given
the current tree, gT (v)+ ĥ (v), and gT (v)+ ŝ (v,x)+ ĥ (x),
respectively. A vertex is expanded into the edge queue by
adding the potential edges from the vertex to all other vertices
within the distance r (Alg. 1, Line 10, see [15]).

As time allows, RABIT* processes the edge queue (Alg. 1,
Line 11), increasing the density of the RGG with new batches
of samples when necessary.

Potential edges are processed by evaluating increasingly
accurate cost calculations (Alg. 2). This allows optimizations
and collision checks to be delayed until necessary, limiting
computational effort. The cost of a solution through the edge
is first estimated using an admissible estimate of the edge
cost (Alg. 2, Line 2). If this cannot improve the current
solution, then neither can the rest of the queue and the batch
is finished (Alg. 2, Line 14). RABIT* then applies the local
optimizer in an attempt to find a collision-free path for the
proposed edge (Alg. 2, Line 3, Section IV-B). The solution
cost through this path is then estimated using the actual path
cost (Alg. 2, Line 4). If this cannot improve the solution or
it is in collision, then the potential edge is discarded. Finally,
the effect of the path on the existing graph is evaluated, if it
does not improve the cost-to-come of the target vertex then
it is discarded (Alg. 2, Line 5).

If the new path passes all these checks, it is added to the
graph as an edge (Alg. 2, Lines 6–12), either improving the
path to an existing state (a rewiring) or connecting a new
state (an expansion). For rewirings, the existing edge in the
graph is removed (Alg. 2, Line 7). For expansions, the vertex
is moved from the set of unconnected samples and added to
the graph (Alg. 2, Lines 9–10). Finally, the queue is pruned
of any redundant edges incoming to the vertex that cannot
provide a better path (Alg. 2, Line 12).

B. Local Optimization

Local optimization is used to exploit domain information
to generate high-quality potential edges for the global search.
Using obstacle information finds collision-free edges and
helps the global search find paths through difficult-to-sample
homotopy classes.

The integration of the local optimizer into the global

Algorithm 4: Optimize (σ)

1 S′ ← σ;
2 if ||σ (1)− σ (o)||2 < γ then
3 if tr

(
∇c (S′)T ∇c (S′)

)
/c (S′) ≥ ν then

4 for i = 0, 1, . . . , imax and ||∇c (S′)||2 ≥ ε do
5 ∆S← −α−1

i A−1∇c (S′);
6 S′ ← S′ + ∆S;

7 σ′ ← S′;
8 return σ′;

search is presented in Alg. 3. Edges are only optimized
if the heuristic predicts that a better path is possible (Alg. 3,
Line 1), otherwise the original straight-line path is returned
(Alg. 3, Line 8). If a better path may exist, the optimizer
is applied to the straight-line edge between the two states
(Alg. 3, Line 2). If the cost of the optimized path is less
than the cost of the original, then the function returns the
optimized path (Alg. 3, Lines 3–4). If not, it returns the
straight-line path (Alg. 3, Line 6). This comparison allows
for the integration of local optimization methods that do not
guarantee obstacle avoidance or minimize a different cost
function (e.g., CHOMP) into the global search. Note that by
definition, calculating the path cost includes collision checks.

1) Covariant Hamiltonian Optimization for Motion Plan-
ning (CHOMP): In this version of RABIT*, we use CHOMP
as a local optimizer to exploit cost gradients (Alg. 4). Due
to space constraints, we present only basic implementation
details and direct the reader to [7] for more information,
including on path parameterizations. We use a discretized
straight-line parameterization to represent paths as matrices,
S ∈ Rz×n, where z is a number of intermediate waypoints
between the start and end of the path, a single tuning
parameter. These waypoints are internal to CHOMP and are
not considered vertices in the RABIT* graph.

To reduce optimization time, we skip paths that CHOMP
cannot improve efficiently. To avoid low-resolution paths, we
skip those longer than a user-tuned threshold (Alg. 4, Line 2).
To avoid paths near local optima, we compare the trace of a
paths cost gradient to its cost. If this ratio is insufficiently
large, then the path is already near a local optima and is
not optimized further (Alg. 4, Line 3). The iterative CHOMP
procedure is then repeated for a specified number of iterations,
imax, while the gradient is sufficiently large (Alg. 4, Line 4).

CHOMP minimizes a cost function, c (·) ∈ R≥0, that
combines path smoothness and obstacle avoidance,

c (S) := tr
(
0.5 STAS + STB + C

)
+ λ cobs (S) ,

where λ ∈ R≥0 is a user-tuned weighting parameter.
The smoothness matrix terms, A ∈ Rz×z , B ∈ Rz×n, and

C ∈ Rn×n are,

A :=


2 −1 0

−1
. . . . . .
. . . . . . −1

0 −1 2

 ,
B :=

[
−v 0 . . . 0 −w

]T
,
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and

C := 0.5
(
vvT + wwT

)
,

where v and w are the start and end states of the path,
respectively.

The obstacle cost, cobs (·) ∈ R≥0, is

cobs (S) :=
∑z
j=1 wobs (xj) ||xj+1 − xj ||2 ,

where xj is the j-th waypoint on the discretized path and
the weight, wobs (x), is given by

wobs (x) :=


0 if δ (x) > ε

0.5 (ε− δ (x))
2
/ε if ε ≥ δ (x) ≥ 0

0.5ε− δ (x) if δ (x) < 0,

where ε ∈ R>0 is a tuning parameter defining obstacle
clearance. The function δ (x) is the distance from the state
to the nearest obstacle boundary and is negative when the
state is inside an obstacle.

The form of this cost function allows CHOMP to use a
quasi-Newton approach to iteratively optimize the path,

Si+1 := Si + ∆S,

where ∆S ∈ Rz×n,

∆S := −α−1
i A−1∇c (Si) ,

and ∀i = 1, 2, . . . , imax, αi ∈ R≥0 are tuning parameters that
define the step size at each iteration, i, of the optimization.

The matrix gradient of the cost function, ∇c (S) ∈ Rz×n,
is given analytically by

∇c (S) = AS + B + ∇cobs (S) ,

where the j-th row of the obstacle cost, ∇cobs (S) ∈ Rz×n, is

∇cobs (S)j = ∇wobs (xj)
T ||xj+1 − xj ||2

+ wobs (xj−1)
xTj − xTj−1

||xj − xj−1||2

+ wobs (xj)
xTj+1 − xTj
||xj+1 − xj ||2

,

and the vector gradient of the weight, ∇wobs (x) ∈ Rn, is

∇wobs (x) =


0 if δ (x) > ε

−∇δ (x) (ε− δ (x)) /ε if ε ≥ δ (x) ≥ 0

−∇δ (x) if δ (x) < 0,

and∇δ (·) ∈ Rn is the vector gradient of the distance function
with respect to a state. In some planning applications, this
distance function and its gradient can be calculated a priori.

V. EXPERIMENTAL RESULTS

An Open Motion Planning Library (OMPL) [41] implemen-
tation of RABIT* was evaluated on both simulated random
worlds (Section V-A) and a real planning problem from an
autonomous helicopter (Section V-B)1.

A. Random Worlds
To systemically evaluate RABIT*, it was run on randomly

generated worlds in R2 and R8. It was compared to publicly
1Experiments were run on a MacBook Pro with 16 GB of RAM and an

Intel i7-4870HQ processor running a 64-bit version of Ubuntu 14.04.

available OMPL implementations of RRT, RRT-Connect [42],
RRT*, Informed RRT*, and BIT*.

Algorithms used an RGG constant (η in (1)) of 1.1 and
approximated λ (Xfree) with λ (X). RRT-based algorithms
used a goal bias of 5%, and a maximum edge length of 0.2
and 1.25 in R2 and R8, respectively. BIT*-based algorithms
used 100 samples per batch, Euclidean distance for heuristics,
and direct informed sampling [5]. Graph pruning was limited
to changes in the solution cost greater than 1% and we used
an approximately sorted queue as discussed in [15]. RABIT*
uses CHOMP parameters of λ = 100, ε = 0.05, z = 8,
γ = 0.05 (R2) or 0.2 (R8), ν = 0.1, imax = 5, ε = 1×10−3,
and αi = i−1/2×10−3. The distance gradient was calculated
analytically.

The worlds consisted of a (hyper)cube of width 2 divided
in half by a wall with 10 narrow gaps. The world also
contained random axis-aligned (hyper)rectangular obstacles
such that at most one third of the environment was obstructed.
The start and goal states were located on different sides
of the wall at [−0.5, 0.0, . . . , 0.0] and [0.5, 0.0, . . . , 0.0],
respectively (Fig. 3). This allowed us to randomly generate
challenging planning problems that had an optimal solution
passing through a difficult-to-sample narrow passage.

For each state dimension, 10 different random worlds were
generated and the planners were tested with 100 different
pseudo-random seeds on each world. The solution cost of
each planner was recorded every 1 millisecond by a separate
thread and the median was calculated by interpolating each
trial at a period of 1 millisecond.

As the true optima for these problems are different and
unknown, there is no meaningful way to compare the
results across problems. Instead, results from a representative
problem are presented in Fig. 4, where the percent of trials
solved and the median solution cost are plotted versus
computation time.

To quantify the results in Fig. 4, we calculate the time
for each algorithm to reach 90% of its final value. In R2,
RABIT* takes 0.215s compared to BIT*’s 0.179s. In R8,
RABIT* takes 0.262s compared to BIT*’s 0.471s.

These results show that in R2 RABIT* performs similarly
to BIT*; however, that in R8 RABIT* finds better solutions
faster on these problems with difficult-to-sample homotopy
classes.

B. Autonomous Helicopter

To evaluate RABIT* on real planning problems, it was
run on a recorded flight mission of an autonomous helicopter.
The autonomous helicopter operates at speeds of up to
50 meters/second in challenging environments that may
contain difficult-to-sample features such as valleys. Plans
must obey the dynamic and power constraints of the vehicle
(including climb-rate limits) and completely avoid obstacles,
a planning problem that is difficult to solve in real time.

Sensor data collected from test flights over Mesa, Arizona
were used to propose a planning problem around mountains
(Fig. 5). This problem is challenging because the helicopter’s
constraints create a large number of states from which no
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legibility, we did not plot confidence intervals with an infinite upper bound.

collision-free path can be found (inevitable collision states).
These states reduce the connectivity of the free space and
increase the inherently difficult problem of sampling a valid
path through the narrow valley.

This problem was used to compare the ability of BIT*,
CHOMP, and RABIT* to plan for a vehicle with restrictive
constraints given limited computation time (2 seconds). These
results demonstrate how RABIT* combines the benefits of
global and local techniques. CHOMP uses cost-gradient
information but can become stuck in a poor local minima
when optimizing long paths, failing to find a feasible solution.
BIT* almost-surely converges asymptotically to the global
optimum but has difficulty sampling the valley in the
available time, finding a path that goes around the mountain
(6.17 kilometres). RABIT* uses the local optimizer on short
paths to help find narrow passages and a global search to
avoid infeasible local minima, finding a path through the
valley (5.0 kilometres).

VI. DISCUSSION & FUTURE WORK

RABIT* uses a local optimizer to find connections between
states that cannot be connected by a straight line. This helps
find paths in difficult-to-sample homotopy classes, such as
through narrow passages, faster than an entirely global search.
The simulated problems presented in Figs. 3–4 were designed
to have such features. A column of obstacles with narrow
gaps divides the start and goal, guaranteeing that the optimal
solution belongs to a difficult-to-sample homotopy class. We
found that in problems where global sampling is an effective
method to find the optimal homotopy class (e.g., without these
narrow passages), RABIT* performed similarly to BIT*.

For a local optimizer to be beneficial to the overall search,
it must be applied judiciously. During development, we
investigated hybrid searches based on other global methods
and only found beneficial results with BIT*. This is because
searching in order of decreasing solution quality limits the

optimizer to edges that could improve the solution, helping
to reduce the amount of time spent on optimization. This
coincides with observations made by Xie et al. in personal
communication regarding their use of a 2-pt BVP-solver with
BIT* in [28]. The local optimizer can actually be considered a
more general 2-pt BVP-solver that includes problem domain
constraints (i.e., obstacles) in addition to dynamic constraints.

While we presented a version of RABIT* that uses
CHOMP, any local optimizer or search can be used regardless
of its cost function or optimality without affecting almost-
sure asymptotic optimality. This is because RABIT* uses the
global cost function to compare the straight-line and locally
optimized paths. We are currently investigating replacing
CHOMP with TrajOpt [36] as the local optimizer in RABIT*.

We had initially planned to use the local optimizer to also
rewire the RABIT* tree. Using it to propose high-quality
edges from the start to a vertex, generated by optimizing the
existing path through the tree, appeared to be a promising
method to increase the rate at which the solution converges
towards the optimum. In our experiments, CHOMP proved
to be an inefficient optimizer for collision-free, piecewise
locally optimal paths. We are currently investigating whether
another local optimizer would make this procedure beneficial.

VII. CONCLUSION

RABIT* integrates a local optimizer into a global search
to create a hybrid technique with benefits from both methods.
By using local optimization, it is able to exploit local infor-
mation to quickly find paths in difficult-to-sample homotopy
classes (e.g., narrow passages). By using an informed global
search, it is able to efficiently explore the entire planning
domain, considering all possibly better homotopy classes
while maintaining almost-sure asymptotic convergence to the
optimum.

We demonstrate the benefits of this technique on both
simulated and real planning problems with narrow passages,
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RABIT*

CHOMP

BIT*

Fig. 5. The results of a planning problem encountered during flight tests of
an autonomous helicopter in Mesa, Arizona from a start (green dot) to a goal
located 4.91 kilometres away (red dot). An inset evidence map shows the
terrain height above the helicopter, scaled such that the highest peak is black.
Examples of inevitable collision states (red cones) and useful states (green
cones) are shown on evidence map to illustrate the difficulty of navigating
the through the valley. The three-dimensional map shows the results found
in the 2 seconds of computation time available in flights conditions, with the
view from the helicopter as inset. BIT* finds a flanking solution to the left
of the mountains (blue, 6.17 kilometres), but is unable to navigate the valley
in the available planning time. CHOMP finds an infeasible local optimum
that strikes a mountain (red) from an initial condition connecting directly
connecting the start and goal. RABIT* is able to use edges proposed by a
local optimizer to find a path through the valley (green, 5.0 kilometres).

comparing it to existing asymptotically optimal planning
algorithms and a local optimization technique. Randomly
generated worlds show that on easy problems (R2), it is
roughly equivalent to BIT*, while on harder problems (R8)
it outperforms the other tested algorithms. Data from an
autonomous helicopter demonstrate its suitability for time-
constrained path planning in challenging environments for
vehicles with dynamic constraints.
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[41] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE R&A Mag., 19(4): 72–82, 2012.

[42] J. J. Kuffner Jr. and S. M. LaValle, “RRT-Connect: An efficient approach
to single-query path planning,” in ICRA 2000, 995–1001.

4214


