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Abstract—This paper presents a method to exploit inher-
ent deficiencies in the sensing technology of a SICK laser
rangefinder to detect sun positions from 3D lidar scans. Given
the common use of SICK lidars on mobile robots, this method
enables sun sensing for some existing configurations without
requiring additional hardware or configuration costs. Adding
sun sensing to mobile rovers has clear advantages; for example,
sun vectors can be combined with an inclinometer to calculate
rover orientation in an absolute reference frame and used to
improve pose estimates.

The proposed sun sensing technique was verified using a
SICK LMS-511 lidar mounted on a Schunk panning unit
through two separate experiments. In the first experiment, the
outputs of both our algorithm and a Sinclair Interplanetary SS-
411 digital sun sensor were compared to solar ephemeris data
over an entire day. While the SS-411 has higher accuracy, the
experiment showed that our lidar-based method has acceptable
accuracy and a larger field of view (FOV) that covers the entire
sky. In the second experiment, our sun sensing algorithm was
used with an inclinometer to calculate the absolute orientation
of the rover periodically during a traverse. This information
was used with wheel odometry to estimate rover poses over
the entire traverse, yielding more accurate results than wheel
odometry alone. When including lidar-based sun measure-
ments, the average estimate error over the entire traverse was
only 8.4 metres, an 88% improvement over wheel odometry
(70.4 metres). The resulting final position estimate error was
22.8 metres, or 2.76% of total distance travelled.

Keywords-lidar; sun sensing; robotics; attitude estimation;
pose estimation; rover odometry

I. INTRODUCTION

Relative wheel odometry is the cheapest and simplest

method available for estimating mobile robot position; how-

ever, without some form of external correction the estimate

error grows unbounded with distance travelled. To limit

error growth, odometry measurements are commonly supple-

mented with periodic absolute corrections. Common meth-

ods include using prior knowledge about the environment

(e.g., localization against a map) or existing infrastructure

(e.g., global positioning system (GPS)). It has been shown

that the more accurate visual odometry (VO) techniques

also show significant improvements with periodic absolute-

measurement corrections [1].

(a)

(b)

Figure 1. The ASRL Clearpath Husky A200 configured with a SICK
LMS-511 scanning lidar (a) on a Schunk panning unit (b) and a Honeywell
inclinometer (not shown) during the rover odometry experiment analyzed
in Section IV.

Sources of localization correction are limited when de-

ploying systems to unknown or GPS-denied environments.

One common technique in planetary exploration is the use

of celestial observations to calculate rover orientation or

position in a global frame. Volpe [2] demonstrated such a

system on the Rocky 7 rover during development for the

Mars Exploration Rover (MER) program. Using a mast-

mounted sun sensor to measure the azimuth and eleva-

tion of the Sun and an inclinometer to measure gravity,

the algorithm corrected wheel odometry measurements to

achieve an average error of 6% as a function of distance

over a 1 kilometre traverse. Development of this technique

continued in the MER program [3], with a final design

that used the onboard panoramic cameras to image the

Sun [4]. Lambert et al. [1] similarly used a sun sensor

and inclinometer in the VO pipeline, proposing methods

to both improve the estimate accuracy and to decrease the

computational burden. Gammell et al. [5] have demonstrated

that similar techniques can be applied to star trackers to

correct wheel odometry at night.

This paper presents a method to calculate sun vectors

using 3D scanning lidars commonly found on rover plat-
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(b)

(a)

Figure 2. Reflectivity image showing a sun blob (a, green) and the extended inconsistent intensity measurements (b, blue). Dimensions are 360◦×190◦.

forms and use them to improve pose estimates. The idea

of using existing imaging sensors as sun detectors is not

new; for example, the MERs articulated their panoramic

cameras to search for and locate the Sun, using the resulting

sun positions to update rover heading and point their com-

munication antenna [4]. Presently, 3D scanning lidars are

used in existing systems as sensors for obstacle detection or

mapping [6], [7], as well as for lighting-invariant VO [8]–

[10]. The proposed lidar-based technique would allow them

to also operate as sun sensors in some popular configurations

[11] without interfering with existing sensing operations or

creating significant computational overhead.

Integrating sun sensor measurements into a system with-

out introducing additional error or bias requires careful

calibration between the sensor and the odometric frame.

The work by Volpe [2] demonstrated the importance of

calibration as well as the difficulty in assuring that it

is maintained in real systems. If a sensor could provide

both relative odometric measurements and periodic absolute

corrections, it would remove a significant source of error.

This paper suggests that, if coupled with lidar-based VO and

an inclinometer, this could be accomplished with a 3D lidar.

The result would be a system that is capable of providing

both relative odometric estimates and absolute orientation

corrections on existing platforms with minimal intersensor

calibration.

This paper also suggests that this work could extend to

the problem of large-scale, outdoor simultaneous localization

and mapping (SLAM). It has been shown that SLAM results

can be improved with occasional absolute measurements

(e.g., GPS) [12]. The proposed sensing method would allow

a single 3D lidar to provide both dense point clouds for

mapping as well as strong prior estimates on orientation to

aid in their alignment.

The remainder of this paper is structured as follows. The

paper begins by discussing the effect of the Sun on the

SICK LMS-511 and presenting our simple method to detect

the Sun (Section II). This is followed by an experimental

validation that compares the method’s performance to both

solar ephemeris data and a Sinclair Interplanetary SS-411

digital sun sensor (Section III). The results show that while

the lidar method is slightly less accurate than the SS-411

at detecting the azimuth and elevation of the Sun and has

a lower sampling rate, it does have a larger field of view

(FOV) the covers the entire sky. The paper also presents

example results of using the lidar-detected sun vectors to

correct wheel odometry estimates (Section IV), and finally,

some thoughts on future work to extend this novel sensing

technique (Section V).

II. LIDAR-BASED SUN DETECTION

Lidars (LIght Detection And Ranging) are active sensors

that detect the location of objects by emitting light at a

known frequency and measuring the return-trip time of

flight. Scanning models use mirrors or multiple light sources

to image an entire scene, giving positions in a spherical
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Figure 3. The azimuth of the Sun versus time calculated by the SICK
LMS-511 lidar (blue), the Sinclair Interplanetary SS-411 digital sun sensor
(red) and solar ephemeris data (black). Note that the SICK has a larger
field of view. The lack of SS-411 data from 14:13–14:37 EST is the result
of a rover shadow that occludes the sensor at that orientation.

coordinate system centred at the sensor. Most lidars also

measure the intensity of the returned light, which can be

used to infer the reflectivity of a measured object.

SICK lidars are popular 2D scanning lidars in robotics.

These experiments used a SICK LMS-511 lidar mounted

on a panning unit (the SICK). The lidar has a range of

up to 80 metres and uses a spinning mirror to scan a

905 nanometer laser in one direction over a 190◦ linear FOV

at 1/6◦ spacing. It measures the range, the detection angle,

and the returning light intensity. By mounting the sensor

on a Schunk panning unit, the SICK can take 3D scans by

panning up to 360◦, giving azimuth, elevation, range and

intensity to every measured point (Figure 1).

This configuration has been successfully used for 3D

worksite mapping in planetary analogue missions [13], [14].

In the process of these experiments, it was discovered that

the Sun appeared as a high-intensity, zero-range artifact in

outdoor scans. Further investigations showed that the Sun

emits enough light at the 905 nanometer wavelength to

saturate the detector of the SICK as it passes over the

Sun. This measures as an instantaneous return time, (i.e.,

zero range) and a maximum intensity. As the detector has

a nonzero recovery time, the zero range, high intensity

readings continue for a short number of measurements after

passing over the Sun, resulting in a sun blob. This can

be visualized by plotting the data as a reflectivity image

(Figure 2). It is interesting to note that even after the sensor

desaturates, the reflectivity data remain affected by their

exposure to the Sun. The sensor underestimates intensity

compared to similar objects, as illustrated by the dark bands

below the sun blob in the reflectivity image.

Given a 3D lidar scan, we can calculate the position of

the Sun by searching for these clusters of zero-range, high-

intensity measurements. The sun blob can be converted to

a sun vector or to azimuth and elevation using knowledge

of the hardware configuration. In our configuration (as the

SICK scans from top down and remains saturated after

moving past the Sun) the Sun is approximately located at

the top of the sun blob in elevation, and in the middle in

azimuth.
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Figure 4. The elevation of the Sun versus time calculated by the SICK
LMS-511 lidar (blue), the Sinclair Interplanetary SS-411 digital sun sensor
(red) and solar ephemeris data (black). Note that the SICK has a larger
field of view. The lack of SS-411 data from 14:13–14:37 EST is the result
of a rover shadow that occludes the sensor at that orientation.

III. SUN-SENSING PERFORMANCE

To validate the accuracy of the proposed technique, sun

vectors from 3D lidar scans acquired by the SICK were

compared to simultaneously captured data from a Sinclair

Interplanetary SS-411 digital sun sensor (the SS-411) and

solar ephemeris data (Figures 3, 4). The data were collected

at the University of Toronto Institute for Aerospace Stud-

ies (UTIAS) campus in Toronto, Canada (43◦ 46′ 55.1′′ N,

79◦ 27′ 55.9′′ W) on March 14, 2013, a clear, cloudless day.

A stationary rover equipped with the SICK and a SS-411

was used to track the Sun’s traverse through the sky, starting

when it first rose at 06:40 Eastern Standard Time (EST) and

continuing until the Sun was hidden by nearby buildings

at 17:50 EST. The SICK performed a full 360◦ scan every

60 seconds, while the SS-411 recorded the sun position at

a frequency of 1 Hz for the entire duration, except for a

period from 14:13–14:37 EST when the SS-411 was in the

shadow of the rover-mounted GPS antenna. To compare the

different sensing methods to the solar ephemeris data, the

rotations from the sensor frames to the ephemeris frame

were estimated from a calibration dataset. This allowed the

measured sun vectors to be rotated into the ephemeris frame

and then converted to azimuth and elevation.

A. Solar Ephemeris Calibration

Each individual sensor measures the position of the Sun

in its local frame. The rotation between a sensor frame

and the ephemeris frame, CES , can be calculated from a

dataset consisting of M unit sun vectors from the sensor,

uSi
, and the solar ephemeris data, uEi

. The best estimate of

the rotation from the sensor to ephemeris frame, C∗
ES , can

be written as a classic Wahba problem [15] determining the

rotation matrix that minimizes a cost function,

C∗
ES := argmin

CES

{J (CES)} , (1)

J (CES) :=
1

2

M∑
i=1

||uEi
− CESuSi

||2 .
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Figure 5. Measurement error, in degrees, of the SICK-based sun sensor
(blue) and a SS-411 digital sun sensor (red) as calculated from solar
ephemeris data.

For our experiment, a singular value decomposition (SVD)

method [16], [17] was used to calculate the least-squared

solution to (1). The calibration vectors are columnated into

matrices, and multiplied together,

W :=
[
uE1

uE2
. . . uEM

] [
uS1

uS2
. . . uSM

]T
.

The result is then factored,

USVT := W,

where U and V are unitary matrices and S is rectangular

diagonal matrix, as per SVD. The optimal estimate of the

rotation is then given by,

C∗
ES = U

⎡
⎣1 0 0
0 1 0
0 0 |U| |V|

⎤
⎦VT .

B. Results

Over the entire day, 637 sun vectors were calculated by

the SICK from 660 scans. When evaluating the SICK and

SS-411 to the solar ephemeris data, we compared only data

occurring in the FOVs of both sensors. While the SICK can

detect the Sun over the entire sky, the SS-411 has a ±70◦

FOV centred about the vertical axis. There are 483 SICK

measurements with a corresponding SS-411 measurement

within 1 second.

This set of paired measurements was split into a cali-

bration set of 50 measurements used to estimate the rotation

between each sensor and the solar ephemeris data, and a test

set of 433 measurements used to evaluate the performance

of the sensors (Table I, Figure 5). The results show that the

SICK has less variance in elevation than in azimuth with bias

in both measurements and that the SS-411 is more accurate.

The elevation performance of the SICK depends on the

method used to convert the sun blob into a sun vector and the

scanning resolution of the lidar. Better performance may be

realized from more advanced sun blob processing techniques

and higher scan resolution. The azimuth performance of the

SICK depends on the synchronization between the lidar and

the panning unit. Since the pan angle of a lidar measurement

is calculated from the lidar and the panning unit timestamps,

improving the synchronization between these two clocks

could improve performance [18].

Table I
MEASUREMENT ERROR, IN DEGREES, OF THE SICK-BASED SUN

SENSOR AND A SS-411 DIGITAL SUN SENSOR AS CALCULATED FROM

SOLAR EPHEMERIS DATA.

Azimuth Elevation

Mean St. dev. Mean St. dev.

SS-411 0.031 0.086 -0.011 0.081

SICK -0.106 0.875 0.199 0.243

IV. ODOMETRY CORRECTIONS

To demonstrate the value of the lidar-based sun sensing

technique, the Clearpath Husky A200 was equipped with the

SICK and an inclinometer and driven 826 metres through the

UTIAS campus while acquiring 15, 360◦ lidar scans (Figure

6). At each scan location, the sun vector was calculated

from the 3D lidar scan and combined with inclinometer

measurements and solar ephemeris data to estimate the

absolute orientation of the rover. These periodic orientations

were used as corrections to the pose-estimation problem

using a batch estimator.

A. Batch Optimization

The absolute orientation measurements from the Sun were

used to improve the relative motion from the wheel odometry

in a batch optimization formulation [5]. Expressing the rela-

tive odometric measurements as 6 degree-of-freedom (DOF)

transformation matrices, T̃k,k−1, with associated covari-

ances, Uk,k−1, and the absolute orientation measurements as

3 DOF rotation matrices, C̃k,0, with associated covariances,

Pk,0, we wish to find the set of optimal estimates whose

resulting measurement errors, δεk,k−1 and δψk,0, minimize

a cost function,

J :=
1

2

∑
k

(δεTk,k−1U
−1
k,k−1δεk,k−1 + δψT

k,0P
−1
k,0δψk,0

)
.

(2)

The measurement errors are defined in terms of the estimate,

Tk,0, as

e−δε�k,k−1 := T̃k,k−1Tk−1,0T
−1
k,0,

e−δψ×k,0 := C̃k,0C
T
k,0,

where Tk,0 is a 4 × 4 transformation matrix consisting of

a rotation from 0 to k, Ck,0, and translation from 0 to k
expressed in frame 0, rk00 ,

Tk,0 :=

[
Ck,0 −Ck,0r

k0
0

0T 1

]
.

The operator, (·)�, is defined for a 6×1 vector, w, as

w� =

[
u
v

]�
:=

[
v× −u
0T 0

]
,
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Figure 6. The odometry dataset collected at UTIAS consisting of wheel
odometry pose estimates (green) and sun vectors from lidar scans (black).
Arrows serve to illustrate the direction of the traverse.

and the operator, (·)×, is defined for a 3×1 vector, u, as

u× =

⎡
⎣u1

u2

u3

⎤
⎦
×

:=

⎡
⎣ 0 −u3 u2

u3 0 −u1

−u2 u1 0

⎤
⎦ .

The minimum of (2) can be found iteratively with Gauss-

Newton. We approximate the current measurement errors as

a function of the previous iteration’s errors, δεk,k−1 and

δψk,0, as

δεk,k−1 ≈ δεk,k−1 −Hk,k−1Bk,k−1δx,

δψk,0 ≈ δψk,0 −GBk,0δx,

with

Hk,k−1 :=

[
1 −

(
Tk,0T

−1

k−1,0

)�
]
,

G :=
[
0 1 0 0

]
,

Bk,k−1δx :=

[
δπk,0

δπk−1,0

]
.

Where 1 as the identity matrix, and the operator, (·)�, is

defined for any transformation matrix, T, as

T� =

[
C −Cr
0T 1

]�
:=

[
C Cr×

0 C

]
.

The projection matrix, Bk.k−1, selects the perturbations,

δπk,0 and δπk−1,0, for the k and k − 1 poses from the

entire state, δx. New estimates can then be expressed in

terms of perturbations on the previous estimates, Tk,0, as

Tk,0 = e−δπ�
k,0Tk,0.

The process is repeated until a suitable convergence criterion

is reached.

������

��	
�

Figure 7. Estimates produced from wheel odometry corrected with lidar-
based sun vectors (blue) plotted with the DGPS groundtruth (black), and
the wheel odometry (red). Dots indicate the locations at which 3D lidar
scans were acquired to measure absolute orientation from the Sun.

B. Results

The batch estimator with lidar-based sun measurements

was compared to groundtruth calculated from post-processed

differential GPS gathered by an onboard receiver. The first

100 metres of the traverse were used to align the groundtruth

to the local rover frame. As expected, the sun-vector-

corrected method provided a more accurate estimate than

wheel odometry alone (Figure 7). The average estimate error

over the traverse was 8.4 metres, an 88% improvement over

the average wheel odometry error of 70.4 metres (Table II).

The final position error was 22.8 metres, or 2.76% of total

distance travelled.

V. DISCUSSION & FUTURE WORK

Orientation errors cause uncorrected pose estimates to

grow superlinearly without bound. Providing frequent and

accurate orientation corrections can limit this to linear

growth [1]. Therefore, it is expected that the results pre-

sented in Section IV can be extended to any system using a

3D lidar and requiring accurate pose estimates, including VO

and SLAM. Doing so would leverage hardware commonly

found on existing platforms for mapping and obstacle de-

tection into a simple, yet improved, estimation system that

requires minimal intersensor calibration.

While the presented method was demonstrated and eval-

uated on a SICK LMS-511 lidar, the technique should be

extensible to other makes and models. The presented method

could be adapted with at most minor modifications; the

method of extracting measurements from sun blobs may

have to be modified to reflect different scanning mecha-

nisms. The only requirements are that the lidar must use

a wavelength strongly emitted by the Sun and also measure

the intensity of the returning light. Other popular lidars in

robotics that may potentially work include models made by

Velodyne and Hokuyo.
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Figure 8. Position estimate error versus distance travelled showing
that using lidar-based sun vectors to correct wheel odometry significantly
reduces error. Dotted lines indicate the locations at which sun vectors were
acquired from 3D lidar scans to provide absolute orientation corrections.
Note the difference in scale between the wheel odometry and sun-vector-
corrected estimates.

With an inclinometer and solar ephemeris data, a lidar

could be used to provide both relative odometry estimates

through lidar-based VO [8]–[10], and absolute orientation

corrections from celestial calculations. A similar configura-

tion could also be used in SLAM problems to provide both

dense point clouds for mapping as well as strong estimates

on prior orientation to aid in their alignment.

VI. CONCLUSION

This paper presents a novel method to detect the Sun

using a common scanning 3D lidar. The presented technique

is simple, accurate, and computationally inexpensive. The

required hardware is common on many systems and the

adoption of the presented technique does not interfere with

existing sensing operations or require additional sensors

or associated calibrations. Experiments showed the lidar

method to have lower accuracy and measurement frequency

than a digital sun sensor but an expanded FOV.

With only one additional sensor, an inclinometer, the

technique can be expanded to provide full rover attitude

estimates from solar ephemeris data. These attitude estimates

can be used to improve the accuracy of pose estimates in

a wide range of applications, including VO and SLAM.

The paper presents an example of using sun vectors from

a SICK LMS-511 mounted on a Schunk panning unit to

correct wheel odometry on a dataset of over 800 metres.

The resulting estimate had an average error of 8.4 metres, a

88% improvement over basic wheel odometry (70.4 metres),

and a final position error of 22.8 metres, or 2.76% of total

distance travelled.

Table II
ERROR IN METERS, ε, OF THE WHEEL ODOMETRY (WO) AND

LIDAR-BASED SUN-VECTOR-CORRECTED (WO + SICK) ESTIMATES

EXPRESSED IN THE LOCAL ROVER FRAMES

WO WO + SICK

Mean Max. Final Mean Max. Final

||ε|| 70.4 140.9 102.8 8.4 22.8 22.8

εx 59.2 113.9 101.4 -1.5 12.9 -12.9

εy 30.9 83.4 16.7 3.8 18.8 18.8

εz 1.1 2.6 1.6 -0.9 2.4 -1.7
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