
Batch Informed Trees (BIT*): Sampling-based Optimal Planning via
the Heuristically Guided Search of Implicit Random Geometric Graphs

Jonathan D. Gammell1, Siddhartha S. Srinivasa2, and Timothy D. Barfoot1

Abstract— In this paper, we present Batch Informed Trees
(BIT*), a planning algorithm based on unifying graph- and
sampling-based planning techniques. By recognizing that a
set of samples describes an implicit random geometric graph
(RGG), we are able to combine the efficient ordered nature of
graph-based techniques, such as A*, with the anytime scala-
bility of sampling-based algorithms, such as Rapidly-exploring
Random Trees (RRT).

BIT* uses a heuristic to efficiently search a series of in-
creasingly dense implicit RGGs while reusing previous infor-
mation. It can be viewed as an extension of incremental graph-
search techniques, such as Lifelong Planning A* (LPA*), to
continuous problem domains as well as a generalization of
existing sampling-based optimal planners. It is shown that it is
probabilistically complete and asymptotically optimal.

We demonstrate the utility of BIT* on simulated random
worlds in R2 and R8 and manipulation problems on CMU’s
HERB, a 14-DOF two-armed robot. On these problems, BIT*
finds better solutions faster than RRT, RRT*, Informed RRT*,
and Fast Marching Trees (FMT*) with faster anytime conver-
gence towards the optimum, especially in high dimensions.

I. INTRODUCTION

Graph-search and sampling-based methods are two popu-
lar techniques for path planning in robotics. Graph-based
searches, such as Dijkstra’s algorithm [1] and A* [2],
use dynamic programming [3] to exactly solve a discrete
approximation of a problem. These algorithms are not only
resolution complete but also resolution optimal, always finding
the optimal solution to the given problem at the chosen
discretization, if one exists. A* does this efficiently by using a
heuristic to estimate the total cost of a solution constrained to
pass through a state. The result is an algorithm that searches in
order of decreasing solution quality and is optimally efficient.
Any other optimal algorithm using the same heuristic will
expand at least as many vertices as A* [2].

The quality of the continuous solution found by these
graph-search techniques depends heavily on the discretization
of the problem. Finer discretization increases the quality of
the solution [4], but also increases the computational effort
necessary to find it. This becomes a significant problem in
high-dimensional spaces, such as for manipulation planning
(Fig. 1), as the size of the discrete state space grows
exponentially with the number of dimensions. Bellman [5]
referred to this problem as the curse of dimensionality. Graph-
search techniques have still been successful as planning
algorithms [6] on a variety of graph types [7], [8], including

1 J. D. Gammell and T. D. Barfoot are with the Autonomous Space
Robotics Lab at the University of Toronto, Toronto, Ontario, Canada. Email:
{jon.gammell, tim.barfoot}@utoronto.ca

2 S. S. Srinivasa is with The Personal Robotics Lab at Carnegie Mellon
University, Pittsburgh, Pennsylvania, USA. Email: siddh@cs.cmu.edu

Fig. 1. A composite figure of a trajectory generated by BIT* for a difficult
14-DOF two-arm manipulation planning problem on HERB. In the trial
pictured, BIT* found a solution in 4 seconds and spent 2.5 minutes refining
it. Over 25 trials with 2.5 minutes of computational time, BIT* had a median
solution cost of 17.4 and success rate of 68%, while Informed RRT* and
FMT* had median costs of 25.3 and 17.2 and success rates of 8% and 36%,
respectively. Nonoptimal planners, RRT and RRT-Connect, had median costs
of 31.1 and 22.1 and success rates of 8% and 100%, respectively.

for nonholonomoic robots [9], [10], kinodynamic planning
[11], [12], and manipulation planning [13].

Graph search has also been extended to anytime and
incremental search. Anytime techniques [14]–[16] quickly
find a suboptimal path before completing the search for
the optimum, while incremental techniques [15]–[19] handle
changes in a graph efficiently by reusing information.

Sampling-based planners, such as Probabilistic Roadmaps
(PRM) [20], Rapidly-exploring Random Trees (RRT) [21],
and Expansive Space Trees (EST) [22], avoid the dis-
cretization problems of graph-search techniques by randomly
sampling the continuous planning domain. This scales more
effectively to high-dimensional problems, but makes their
search probabilistic. They are probabilistically complete,
having a probability of finding a solution, if one exists,
that goes to one as the number of samples goes to infinity.
Anytime algorithms, such as RRT and EST, also have anytime
resolution, a growing representation of the problem domain
that becomes increasingly accurate as the number of iterations
increases. Optimal variants, such as RRT* and PRM* [23],
are also asymptotically optimal, converging asymptotically to
the optimal solution with probability one as the number of
samples goes to infinity (almost sure asymptotic convergence).
While solutions improve with computational time, this does
not guarantee a reasonable rate of convergence as the random
sampling is inherently unordered.

There is a long history of adding graph-search concepts
to sampling-based planners. Algorithms have used heuristics
to refine the RRT search, including by biasing the sampling
procedure [24], and to define a series of subplanning problems
given the current solution [25]. Similarly, focusing techniques

2015 IEEE International Conference on Robotics and Automation (ICRA)
Washington State Convention Center
Seattle, Washington, May 26-30, 2015

978-1-4799-6922-7/15/$31.00 ©2015 IEEE 3067

have also been used to limit the search of RRT* once it finds
a solution [26]–[28]. While these techniques can improve the
initial solution and/or the convergence rate to the optimum,
their RRT-based search is still unordered.

Other algorithms order the search at the expense of anytime
resolution. Fast Marching Trees (FMT*) [29] uses a marching
method to process a single set of samples. The resulting
search is ordered on cost-to-come but must be restarted if
a higher resolution is needed. The Motion Planning Using
Lower Bounds (MPLB) algorithm [30] extends FMT* to
quasi-anytime resolution and an ordering given by estimating
the cost of solutions constrained to pass through each state.
The quasi-anytime resolution is achieved by solving a series of
independent problems with an increasing number of samples.
It is stated that this can be done efficiently by reusing
information, but no specific methods are presented.

Still other algorithms attempt to extend graph-search
directly to continuous planning problems. In Randomized
A* (RA*) [31] and Sampling-based A* (SBA*) [32] a tree
is grown towards solutions by sampling near heuristically
selected vertices. This biases the growth of the tree towards
good solutions but requires methods to avoid local minima.
RA* defines a minimum-allowed distance between vertices,
limiting the number of times a vertex can be expanded but
also limiting the final resolution. SBA* includes a measure of
local sample density in the vertex expansion heuristic. This
decreases the priority of sampling near frequently expanded
vertices, but requires methods to estimate local sample density.

In this paper, we present Batch Informed Trees (BIT*),
a planning algorithm that balances the benefits of graph-
search and sampling-based techniques. It uses batches of
samples to perform an ordered search on a continuous
planning domain while maintaining anytime performance.
By processing samples in batches, its search can be ordered
around the minimum solution proposed by a heuristic, as
in A* [2]. By processing multiple batches of samples, it
converges asymptotically towards the global optimum with
anytime resolution, as in RRT* [23]. This is done efficiently
by using incremental search techniques to incorporate the
new samples into the existing search, as in Lifelong Planning
A* (LPA*) [17]. The multiple batches also allow subsequent
searches to be focused on the subproblem that could contain
a better solution, as in Informed RRT* [28].

The performance of BIT* is demonstrated both on random
experiments in R2 and R8 and manipulation problems on
the CMU Personal Robotic Lab’s Home Exploring Robot
Butler (HERB) [33]. The results show that BIT* consistently
outperformed both nonasymptotically and asymptotitcally
optimal planners (RRT, RRT*, Informed RRT*, and FMT*).
It was more likely to have found a solution at a given
computational time and converged towards the optimum faster.
The same held in difficult planning problems on HERB, where
collision checking is expensive. BIT* was nearly twice as
likely to find a solution to a difficult two-arm problem (Fig. 1)
and found better solutions on easier one-arm problems (Fig. 6).
The only planner tested that found solutions faster was RRT-
Connect, which does not converge towards the optimum.

PRM* et al.

graphstrees

Sampling-based
optimal planners

RRT*

BIT*

FMT*

`m batches

` batches

1 batch
1 sample/batch

m samples/batch

`m samples/batch

Fig. 2. A simplified taxonomy of sampling-based optimal planners
demonstrating the relationship between RRT*, FMT*, and BIT*.

The remainder of this paper is organized as follows.
Section II presents further background and Section III presents
a description of the algorithm. Section IV presents an initial
theoretical analysis of BIT*, while Section V presents the
experimental results in detail. Finally, Section VI presents
a discussion on the algorithm and related future work and
Section VII provides a conclusion.

II. BACKGROUND

We define the optimal planning problem similarly to [23].
Problem Definition 1 (Optimal Planning): Let X ⊆ Rn

be the state space of the planning problem, Xobs ⊂ X be
the states in collision with obstacles, and Xfree = X \Xobs

be the resulting set of permissible states. Let xstart ∈ Xfree

be the initial state and Xgoal ⊂ Xfree be the set of desired
final states. Let σ : [0, 1] 7→ X be a sequence of states (a
path) and Σ be the set of all nontrivial paths.

The optimal solution is the path, σ∗, that minimizes a
chosen cost function, s : Σ 7→ R≥0, while connecting xstart

to any xgoal ∈ Xgoal through free space,

σ∗ = arg min
σ∈Σ

{s (σ) | σ(0) = xstart, σ(1) ∈ xgoal,

∀t ∈ [0, 1] , σ (t) ∈ Xfree} ,
where R≥0 is the set of non-negative real numbers. We denote
the cost of this optimal path as s∗.

A discrete set of states in this state space, Xsamples ⊂ X ,
can be viewed as a graph whose edges are given algorithmi-
cally by a transition function (an implicit graph). When these
states are sampled randomly, Xsamples = {x ∼ U (X)}, the
properties of the graph can be described by a probabilistic
model known as a random geometric graph (RGG) [34].

In an RGG, the connections (edges) between states (ver-
tices) depend on their relative geometric position. Common
RGGs have edges to a specific number of each state’s nearest
neighbours (a k-nearest graph [35]) or to all neighbours
within a specific distance (an r-disc graph [36]). RGG theory
provides probabilistic relationships between the number and
distribution of samples, the k or r defining the graph, and
specific graph properties such as connectivity or relative cost
through the graph [23], [29], [34], [37].

Sampling-based planners can therefore be viewed as
algorithms to construct an implicit RGG and an explicit
spanning tree in the free space of the planning problem. Much

3068

During each batch, the search
expands outwards around the
minimum solution using a
heuristic.

(a) (b) (c) (d)

When a solution is found, the
batch finishes and the expansion
stops.

A new batch of samples is then
added and the search restarts.

The process repeats indefinitely,
restarting each time an im-
proved solution is found.

Fig. 3. An illustration of the informed search procedure used by BIT*. The start and goal states are shown as green and red, respectively. The current
solution is highlighted in magenta. The subproblem that contains any better solutions is shown as a black dashed line, while the progress of the current
batch is shown as a grey dashed line. Fig. (a) shows the growing search of the first batch of samples, and (b) shows the first search ending when a solution
is found. After pruning and adding a second batch of samples, Fig. (c) shows the search restarting on a denser graph while (d) shows the second search
ending when an improved solution is found. An animated illustration is available in the attached video.

like graph-search techniques, the performance of an algorithm
will depend on the quality of the RGG representation and
the efficiency of the search.

Karaman and Frazzoli [23] use RGG theory in RRT*
to limit graph complexity while maintaining probabilistic
bounds on the representation, but the graph is constructed
and searched simultaneously, resulting in a randomly ordered
anytime search. Janson and Pavone [29] similarly use RGG
theory in FMT*, but for a constant number of samples,
resulting in an ordered but nonanytime (in solution or
resolution) search. Recently, Salzman and Halperin [30] have
given FMT* quasi-anytime performance by independently
solving increasingly dense RGGs in their MPLB algorithm.
Heuristics order and focus the search, but solutions are only
returned when an RGG is completely searched.

In contrast, BIT* uses incremental search techniques on
increasingly dense RGGs. This balances the benefits of
heuristically ordered search with anytime performance and
asymptotic optimality. The tuning parameters are the choice
of the heuristic, an RGG constant, and the number of samples
per batch. BIT* can be viewed as an extension of LPA* [17]
to continuous problems and as a generalization of existing
sampling-based optimal planners (Fig. 2). With batches of
one sample, it is a version of Informed RRT* [28], and with
a single batch and the zero heuristic, a version of FMT*.

III. BATCH INFORMED TREES (BIT*)
Informally, BIT* works as follows. An initial RGG with

implicit edges is defined by uniformly distributed random
samples from the free space and the start and goal. The RGG
parameter (r or k) is chosen to reduce graph complexity while
maintaining asymptotic optimality requirements as a function
of the number of samples [23], [29]. An explicit tree is then
built outwards from the start towards the goal by a heuristic
search (Fig. 3a). This tree includes only collision-free edges
and its construction stops when a solution is found or it can
no longer be expanded (Fig. 3b). This concludes a batch.

To start a new batch, a denser implicit RGG is constructed
by adding more samples and updating r (or k). If a solution
has been found, these samples are limited to the subproblem
that could contain a better solution (e.g., an ellipse for path
length [28]). The tree is then updated using LPA*-style

incremental search techniques that reuse existing information
(Fig. 3c). As before, the construction of the tree stops
when the solution cannot be improved or when there are no
more collision-free edges to traverse (Fig. 3d). The process
continues with new batches as time allows.

A. Notation

The functions ĝ (x) and ĥ (x) represent admissible es-
timates of the cost-to-come to a state, x ∈ X , from the
start and the cost-to-go from a state to the goal, respectively
(i.e., they bound the true costs from below). The function,
f̂ (x), represents an admissible estimate of the cost of a
path from xstart to Xgoal constrained to pass through x, i.e.,
f̂ (x) := ĝ (x) + ĥ (x). This estimate defines a subset of
states, Xf̂ :=

{
x ∈ X

∣∣∣ f̂ (x) ≤ cbest

}
, that could provide

a solution better than the current best solution cost, cbest.
Let T := (V,E) be an explicit tree with a set of vertices,

V ⊂ Xfree, and edges, E = {(v,w)} for some v, w ∈ V .
The function gT (x) represents the cost-to-come to a state
x ∈ X from the start vertex given the current tree, T . We
assume a state not in the tree, or otherwise unreachable
from the start, has a cost-to-come of infinity. It is important
to recognize that these two functions will always bound
the unknown true optimal cost to a state, g (·), i.e., ∀x ∈
X, ĝ (x) ≤ g (x) ≤ gT (x).

The functions ĉ (x,y) and c (x,y) represent an admissible
estimate of the cost of an edge and the true cost of an
edge between states x, y ∈ X , respectively. We assume
that edges that intersect the obstacle set have a cost of
infinity, and therefore ∀x, y ∈ X, ĉ (x,y) ≤ c (x,y) ≤ ∞.
It is important to recognize that calculating c (x,y) can be
expensive (e.g., collision detection, differential constraints,
etc.) and using a heuristic estimate for edge cost has the
effect of delaying this calculation until necessary.

The function λ (·) represents the Lebesgue measure of a
set (e.g., the volume), and ζn represent the Lebesgue measure
of an n-dimensional unit ball. The cardinality of a set is
denoted by |·|. We use the notation X +←− {x} and X −←− {x}
to compactly represent the compounding operations X ←
X ∪ {x} and X ← X \ {x}, respectively. As is customary,
we take the minimum of an empty set to be infinity.

3069

Algorithm 1: BIT*
(
xstart ∈ Xfree,xgoal ∈ Xgoal

)
1 V ← {xstart} ; E ← ∅; Xsamples ←

{
xgoal

}
;

2 QE ← ∅; QV ← ∅; r ←∞;
3 repeat
4 if QE ≡ ∅ and QV ≡ ∅ then
5 Prune

(
gT
(
xgoal

))
;

6 Xsamples
+←− Sample

(
m, gT

(
xgoal

))
;

7 Vold ← V ;
8 QV ← V ;
9 r ← radius

(
|V |+

∣∣Xsamples

∣∣);
10 while BestQueueValue (QV) ≤ BestQueueValue (QE) do
11 ExpandVertex (BestInQueue (QV));

12 (vm,xm)← BestInQueue (QE);
13 QE

−←− {(vm,xm)};
14 if gT (vm) + ĉ (vm,xm) + ĥ (xm) < gT

(
xgoal

)
then

15 if ĝ (vm) + c (vm,xm) + ĥ (xm) < gT
(
xgoal

)
then

16 if gT (vm) + c (vm,xm) < gT (xm) then
17 if xm ∈ V then
18 E

−←− {(v,xm) ∈ E};
19 else
20 Xsamples

−←− {xm};
21 V

+←− {xm} ; QV
+←− {xm};

22 E
+←− {(vm,xm)};

23 QE
−←− {(v,xm) ∈ QE |

gT (v) + ĉ (v,xm) ≥ gT (xm)};

24 else
25 QE ← ∅; QV ← ∅;
26 until STOP;
27 return T ;

B. Algorithm
BIT* is presented in Algs. 1–3. For simplicity, we limit

our discussion to a search from the start to a single goal
state using an r-disc RGG, but the formulation is similar
for searches from a goal state, with a goal set, or with a
k-nearest RGG. The algorithm starts with a given initial state,
xstart, in the tree, T , and the goal state, xgoal, in the set of
unconnected samples, Xsamples (Alg. 1, Line 1). The tree is
grown towards xgoal from xstart by processing a queue of
RGG edges, QE . This edge queue is populated by a vertex
expansion queue, QV (Alg. 1, Line 2).

1) Batch creation (Alg. 1, Lines 4–9): A new batch begins
when the queues are empty. The samples and spanning tree
are pruned of states that cannot improve the solution (Alg. 1,
Line 5; Alg. 3). A new set of m samples is then added to
the RGG from the subproblem containing a better solution
(Alg. 1, Line 6). This can be accomplished by rejection
sampling or, for some cost functions, direct sampling [28].
The vertices in the tree are labelled so that only connections
to new states will be considered (Alg. 1, Line 7) and requeued
for expansion (Alg. 1, Line 8). The radius of the underlying
r-disc RGG is updated to reflect its size, q, (Alg. 1, Line 9),

radius (q) := 2η
(
1 + 1

n

) 1
n

(
λ(Xf̂)
ζn

) 1
n (

log(q)
q

) 1
n

, (1)

where η ≥ 1 is a tuning parameter [23].
2) Edge selection (Alg. 1, Lines 10–13): The tree is built

by processing the queue of edges, QE , in order of increasing
estimated cost of a solution constrained to pass through the

Algorithm 2: ExpandVertex(v ∈ QV ⊆ V)

1 QV
−←− {v};

2 Xnear ←
{
x ∈ Xsamples

∣∣ ||x− v||2 ≤ r
}

;
3 QE

+←−
{
(v,x) ∈ V ×Xnear

∣∣∣
ĝ (v) + ĉ (v,x) + ĥ (x) < gT

(
xgoal

)}
;

4 if v 6∈ Vold then
5 Vnear ←

{
w ∈ V

∣∣ ||w − v||2 ≤ r
}

;
6 QE

+←−
{
(v,w) ∈ V × Vnear

∣∣ (v,w) 6∈ E,

ĝ (v) + ĉ (v,w) + ĥ (w) < gT
(
xgoal

)
,

gT (v) + ĉ (v,w) < gT (w)
}

;

Algorithm 3: Prune
(
c ∈ R≥0

)
1 Xsamples

−←−
{
x ∈ Xsamples

∣∣∣ f̂ (x) ≥ c
}

;

2 V
−←−
{
v ∈ V

∣∣∣ f̂ (v) > c
}

;

3 E
−←−
{
(v,w) ∈ E

∣∣∣ f̂ (v) > c, or f̂ (w) > c
}

;

4 Xsamples
+←− {v ∈ V | gT (v) ≡ ∞};

5 V
−←− {v ∈ V | gT (v) ≡ ∞};

edge, (v,x), given the current tree, gT (v) + ĉ (v,x) + ĥ (x).
Ties are broken in favour of the edge with the lowest current
cost-to-come to the source vertex, gT (v). The function
BestInQueue (QE) returns the best edge in the queue given
this ordering. The function BestQueueValue (QE) returns
the estimated solution cost of the best edge in the queue.

The cost of creating the edge queue is delayed by using a
vertex expansion queue, QV . This vertex queue is ordered on
the estimated cost of a solution constrained to pass through
the vertex given the current tree, gT (v) + ĥ (v). This value
is a lower bound estimate of the edge-queue values from
a vertex; therefore, vertices only need to be expanded into
the edge queue when their vertex-queue value is less than
the best edge-queue value. The function BestInQueue (QV)
returns the best vertex in the vertex queue given this ordering.
The function BestQueueValue (QV) returns the estimated
solution cost of the best vertex in the queue.

Before selecting the next edge in the queue to process,
any vertices that could have a better outgoing edge (Alg. 1,
Line 10) are expanded (Alg. 1, Line 11; Alg. 2). The best
edge in the queue, (vm,xm), is then removed for processing
(Alg. 1, Lines 12–13). As edges are only added to the edge
queue by expanding their source vertex, and each vertex is
only expanded once per batch, each edge is guaranteed to
only be processed once per batch.

3) Edge processing (Alg. 1, Lines 14–25): Heuristics are
used to accelerate the processing of edges and delay the
calculation of the true edge cost. The edge being processed,
(vm,xm), is first checked to see if it can improve the current
solution given the current tree (Alg. 1, Line 14). If it cannot,
then by construction no other edges in the queue can and
both queues are cleared to start a new batch (Alg. 1, Line 25).

The true edge cost is then calculated by performing
collision checks and solving any differential constraints. This
may be expensive, so the edge is processed if it could ever
improve the current solution, regardless of the current state
of the tree (Alg. 1, Line 15). If it cannot, than it is discarded.

3070

RRT* FMT* Informed RRT* BIT*

t = 0.487s t = 0.072st = 0.144st = 0.141s

Fig. 4. An example of RRT*, Informed RRT*, FMT* (m = 2500), and BIT* run on a random R2 world. Each algorithm was run until it found a
equivalent solution to FMT* (c = 1.39) regardless of homotopy class. BIT*’s use of heuristics allows it to find such a solution faster (t = 0.072s) than
RRT* (t = 0.487s), FMT* (t = 0.141s) and Informed RRT* (t = 0.144s) by performing its search in a principled manner that initially investigates
low-cost solutions and focuses the search for improvements. Animated results are available in the attached video.

Finally, the edge is checked to see if it improves the cost-
to-come of its target vertex (Alg. 1, Line 16), noting that
disconnected vertices have an infinite cost. If it does, it is
added to the tree.

If the target vertex, xm, is in the tree (Alg. 1, Line 17), then
the edge represents a rewiring, otherwise it is an expansion.
Rewirings require removing the edge to the target vertex from
the tree (Alg. 1, Line 18). Expansions require moving the
target vertex from the set of unconnected samples to the set of
vertices and queueing it for expansion (Alg. 1, Lines 20–21).

The new edge is then added to the tree (Alg. 1, Line 22)
and the edge queue is pruned to remove edges that cannot
improve the cost-to-come of the vertex (Alg. 1, Line 23).

4) Vertex Expansion (Alg. 2): The function, Expand-
Vertex (v), removes a vertex, v ∈ QV ⊆ V , from the
vertex queue (Alg. 2, Line 1) and adds outgoing edges from
the vertex to the edge queue.

In the RGG, a vertex is connected to all states within a
radius, r. Edges to unconnected states (Alg. 2, Line 2) are
always added to edge queue if they could be part of a better
solution (Alg. 2, Line 3). Edges to connected states are only
added if the source vertex was added to the tree during this
batch (Alg. 2, Line 4). This prevents repeatedly checking
edges between vertices in the tree. These rewiring edges
(Alg. 2, Line 5) are added to the edge queue if, in addition
to possibly providing a better solution, they are not already
in the tree and could improve the path to the target vertex
given the current tree (Alg. 2, Line 6).

5) Graph Pruning (Alg. 3): The function, Prune (c),
removes states that cannot provide a solution better than
the given cost, c ∈ R≥0. Unconnected samples are removed
(Alg. 3, Line 1), while vertices in the tree are removed and
disconnected (Alg. 3, Lines 2–3). To maintain uniform sample
density in the subproblem being searched, disconnected
descendents that could still provide a better solution are
returned to the unconnected sample set (Alg. 3, Lines 4–5).
C. Practical Considerations

Algs. 1–3 describe BIT* without considering implemen-
tation, leaving room for practical improvements. Pruning
(Alg. 1, Line 5) is expensive and should only occur when
a new solution has been found. It can even be limited to

significant changes in solution cost without altering behaviour.
Searches (e.g., Alg. 1, Line 18; Alg. 2, Line 2; Alg. 3,

Line 3; etc.) can be implemented efficiently with appropriate
datastructures, e.g., k-d trees or indexed containers, that do
not require an exhaustive global search.

Ordered containers provide an efficient edge queue (Alg. 1,
Lines 12–13). While rewirings will change the order of some
elements, we found little experimental difference between an
approximately sorted and a strictly sorted queue.

IV. ANALYSIS

For brevity, we only present a proof of almost sure
asymptotic optimality (Theorem 1) and note that this implies
probabilistic completeness. We also present a discussion on
the relationship between BIT*’s edge queue and LPA*’s
vertex queue (Remark 1).

Theorem 1 (Asymptotic Optimality): BIT* asymptotically
converges almost surely to the optimal solution to Prob. 1, if
a solution exists, as the total number of samples, q, goes to
infinity, i.e.,

P

(
lim sup
q→∞

cBIT∗
best,q = s∗

)
= 1,

where cBIT∗
best,q is the cost of the best solution found by BIT*

from q samples.
Proof: The proof extends directly from the work in

[23]. In Appendix G, Karaman and Frazzoli show that for q
uniformly distributed random samples and a specific constant
rq, the solution found by RRT* almost surely converges
asymptotically to the optimal solution as q goes to infinity, i.e.,

P

(
lim sup
q→∞

cRRT∗
best,q = s∗

)
= 1.

RRT* processes the sequence of q samples individually. For
any sample, it considers all edges involving samples earlier in
the sequence that are less than length rq . BIT* processes the
sequence of samples in batches. For any sample in a batch,
it considers all edges involving samples from the same or
earlier batches that are less than length rq . This will contain
all the edges considered by RRT* for the same sequence
and rq. As BIT* maintains uniform sample density in the
subproblem that contains all better solutions and (1) meets
the requirements for almost sure asymptotic optimality given
in [23], BIT* is almost surely asymptotically optimal.

3071

Computation time [s] Computation time [s]

Computation time [s]

S
u
c
c
e
ss

[%
]

S
u
c
c
e
ss

[%
]

M
e
d
ia
n

so
lu
ti
o
n

c
o
st

M
e
d
ia
n

so
lu
ti
o
n

c
o
st

RRT RRT-Connect FMT* RRT* Informed RRT* BIT*

(a) R2: Runs solved vs. time (b) R8: Runs solved vs. time

(c) R2: Median solution cost vs. time (d) R8: Median solution cost vs. time

50

100

0
10−2

50

0

100

10−1 100

10−2 10−1 100

1.4

1.6

1.8

2.0

2.2

2.4

2.6

10−2 10−1 100 101

10−2 10−1 100 101

Computation time [s]

3.0

3.5

4.0

4.5

5.0

Fig. 5. The results from representative worlds in R2 and R8 for RRT, RRT-Connect, RRT*, Informed RRT*, BIT* with a batch size of 100 samples, and
FMT* of various sample sizes (R2: 500, 1000, 2500, 5000, 10000, 25000, and 50000; R8: 100, 500, 1000, 2500, 5000, and 7500). For the chosen
random worlds, (a) and (b) show the percentage of trials solved versus run time for the 50 different trials, while (c) and (d) show the median solution cost
versus run time. Dots represent the median initial solution. For algorithms that asymptotically converge towards the optimum, the dashed lines represent a
median calculated from 50%–100% success rate and may increase as new trials are included. The solid lines represent the median when all trials have a
solution, with error bars denote a non-parametric 95% confidence interval on median solution cost and time. Note that for some algorithms the confidence
intervals are smaller than the median line and are not visible and that RRT and RRT-Connect are not asymptotically optimal planners.

Remark 1 (Equivalence to LPA* vertex queue): BIT*’s
edge queue is an extension of LPA*’s vertex queue [17] to
include a heuristic estimate of edge cost.

Explanation: LPA* uses a queue of vertices ordered
lexicographically first on the solution cost constrained to
go through the vertex and then the cost-to-come to the
vertex. Both these terms are calculated for a vertex, v ∈ V ,
considering all the incoming edges (rhs-value in LPA*), i.e.,

min
(u,v)∈E

{gT (u) + c (u,v)} , (2)

where E is the set of edges.
This minimum requires the calculation of the true edge

cost between a vertex and all of its possible parents. This
calculation is expensive in sampling-based planning (e.g.,
collision checking, differential constraints, etc.), and reducing
its calculation is desirable. This can be done by using an
admissible heuristic estimate of edge cost and calculating (2)
incrementally. A running minimum is calculated by processing
edges in order of increasing estimated cost. The process
finishes, and the true minimum is found, when the estimated
cost through the next edge is higher than the current value.

BIT* combines these individual minima calculations into
a single edge queue. In doing so, it simultaneously calculates
the minimum cost-to-come for each vertex while expanding
vertices in order of increasing estimated solution cost.

V. EXPERIMENTAL RESULTS

BIT* was tested against existing algorithms in both
simulated random worlds (Section V-A) and real-world
manipulation problems (Section V-B) using publicly available
Open Motion Planning Library (OMPL) [38] implementations.
All tests and algorithms used an RGG constant (e.g., η in (1))
of 1.1 and approximated λ (Xfree) with λ (X). RRT-based
algorithms used a goal bias of 5%. BIT* used 100 samples
per batch, Euclidean distance between states for heuristics,

and direct informed sampling [28]. Graph pruning was limited
to changes in the solution cost greater than 1% and we used
an approximately sorted queue.
A. Simulated Random Worlds

BIT* was compared to existing sampling-based algorithms
on random problems minimizing path length in R2 and R8.
The problems consisted of a (hyper)cube of width 2 populated
with random axis-aligned (hyper)rectangular obstacles such
that at most one third of the environment was obstructed.
The initial state was in the centre of the world and the goal
was (0.9, 0.9, . . . , 0.9) away (Fig. 4). BIT* was compared
to the OMPL implementations of RRT, RRT-Connect [39],
RRT*, Informed RRT*, and FMT*. The RRT-based planners
used a maximum edge length of 0.2 and 1.25 in R2 and R8,
respectively. All algorithm parameters were chosen in good
faith to maximize performance on a separate training set of
random worlds.

For each state dimension, 10 different random worlds were
generated and the planners were tested with 50 different
pseudo-random seeds on each. The solution cost of each
planner was recorded every 1 millisecond by a separate
thread1. For each world, median solution cost was calculated
for a planner by interpolating each trial at a period of
1 millisecond. As the true optima for these problems are
different and unknown, there is no meaningful way to
compare the results across problems. Instead, results from
a representative problem are presented in Fig. 5, where the
percent of trials solved and the median solution cost are
plotted versus computational time.

These experiments show that in both R2 (Figs. 5a, 5c)
and R8 (Figs. 5b, 5d), BIT* generally finds better solutions
faster than other sampling-based optimal planners and RRT.

1Simulations were run on a MacBook Pro with 4 GB of RAM and an
Intel i7-620M processor running a 64-bit version of Ubuntu 12.04.

3072

It has a higher likelihood of having found a solution at a
given computational time than these planners, and converges
faster towards the optimum. The only planner tested that
found solutions faster than BIT* was RRT-Connect, a
nonasymptotically optimal planner.

B. Motion Planning for Manipulation
To evaluate the performance of BIT* on real-world high-

dimensional problems, it was tested on HERB [33]. Exper-
iments consisted of both dual-arm and one-arm planning
problems for manipulation with a goal of minimizing the
path length through configuration space. Parameter values
for BIT* and RRT-based planners were chosen from the
results of Section V-A, and the number of FMT* samples
was chosen to use the majority of the available computational
time. Once again, BIT* outperformed all planners other than
RRT-Connect.

For the dual-arm planning problem, HERB started with
both arms extended under a table from the elbow onward.
The task was to plan a trajectory for both arms to place
the hands in position to open a bottle (Fig. 1). HERB’s
proximity to the table and starting position created a narrow
passage for the arms around the table. Coupled with the
14-degree-of-freedom (DOF) configuration space, this made
for a challenging problem.

Given 2.5 minutes2 of planning time, BIT* was almost
twice as likely to find a solution than RRT, Informed RRT*,
or FMT*. Over 25 trials, BIT* was 68% successful with
a median solution cost of 17.4. RRT-Connect was 100%
successful, but had a median solution cost of 22.1. RRT
was 8% successful with a median solution cost of 31.1 and
Informed RRT* was 8% successful with a median solution
cost of 25.3. FMT* with m = 500 was 36% successful with
a median solution cost of 17.2. All RRT-based planners used
a maximum edge length of 3.

An easier one-arm planning problem was also tested.
HERB started with its left arm folded at the elbow and
held at approximately the table level of a table. The task
was to plan a trajectory to place the left hand in position
to grasp a box (Fig. 6). The smaller configuration space, 7
DOF, and a starting position partially clear of the table made
this an easier planning problem. In the given 5 seconds of
computational time, both BIT* and RRT-Connect found a
solution in all 25 trials. BIT* had a median solution cost
of 6.8 while RRT-Connect had a median solution cost of
10.6. RRT was 88% successful with a median solution cost
of 11.2 and Informed RRT* was 88% successful with a
median solution cost of 10.6. FMT* with m = 50 was 52%
successful with a median solution cost of 9.0. All RRT-based
planners used a a maximum edge length of 1.25.

VI. DISCUSSION & FUTURE WORK

BIT* demonstrates that anytime sampling-based planners
can be designed by combining incremental graph-search
techniques with RGG theory. We hope that this work will
motivate further unification of these two planning paradigms.

2HERB experiments were run on a Dell T3500 with 12 GB of RAM and
an Intel W3565 processor running a 64-bit version of Ubuntu 12.04.

Fig. 6. A composite figure of a one-arm trajectory on HERB found by BIT*.
Over 25 trials with 5 seconds of computational time, BIT* had a median
solution cost of 6.8 and success rate of 100%, while Informed RRT* and
FMT* had median costs of 10.6 and 9.0 and success rates of 88% and 52%,
respectively. Nonoptimal planners, RRT and RRT-Connect, had median costs
of 11.2 and 10.6 and success rates of 88% and 100%, respectively.

A fundamental component of BIT* is the application of
heuristic estimates to all aspects of path cost. Doing so allows
the algorithm to account for future graph improvements (cost-
to-come), avoid unnecessary collision checks and boundary-
value problems (edge cost), and order and focus the search
(solution cost). As always, the benefit of these heuristics
will depend on their suitability for the specific problem,
but we feel that they are an important tool to reduce the
curse of dimensionality. Note that while direct sampling of
the subproblem is possible for some cost functions [28],
rejection sampling is applicable. Also note that, as with other
heuristically guided searches (e.g., A*), BIT* works with
the trivial zero heuristic (e.g., Dijkstra’s algorithm); however,
more conservative heuristics provide less benefit to the search.

In describing BIT* as an extension of LPA* to continuous
planning problems, it is important to note a key difference in
how they reuse information. In LPA*, updating the cost-to-
come of a vertex requires reconsidering the cost-to-come of
all possibly descendent vertices. This is a step that becomes
prohibitively expensive in anytime resolution planners as
graph size increases quickly. The results of RRT* demonstrate
that this is unnecessary for the planner to almost surely
converge asymptotically to the optimum as the number of
samples approaches infinity.

While the efficiency of graph-search techniques is well
understood, this area remains understudied for sampling-based
planners. We are actively investigating whether BIT*’s use
of graph-search techniques and RGG theory can be used to
probabilistically evaluate its efficiency.

Also of interest are possible improvements to BIT*,
including the fact that BIT* does not remove samples when
connection attempts fail. This is a requirement of the uniform
sample distribution used in RGG theory, but leaves edges in
the implicit RGG that are known to be unusable.

Finding an efficient method to avoid these edges would
improve BIT*, and there are multiple potential ways to
accomplish this. Failed edges could be tracked and prevented
from reentering the queue, but initial attempts have proven

3073

too computational expensive. Samples that fail multiple
connection attempts could be removed, but doing so will
require RGG theory for nonuniform distributions. Our current
focus is on the adaptively varying batch size to increase the
rate at which these edges are removed from the RGG.

We are also interested in more general extensions to BIT*.
Its expanding search is well suited for large or unbounded
planning problems, and we have had initial success with a
version that generates samples as needed and avoids the
a priori definition of state space limits. Its relationship
to incremental search techniques also suggests it may be
well suited for planning problems in changing environments.
We are also investigating the use of other graph-search
techniques, including anytime [14]–[16] or bidirectional [40],
[41] searches to decrease the time required to find an initial
solution. Finally, we are investigating combining BIT*’s
global search with local searches, such as path-smoothing.

VII. CONCLUSION

In this paper, we attempt to unify graph-search and
sampling-based planning techniques through RGG theory.
By recognizing that a set of samples defines an implicit
RGG and using incremental-search techniques, we are able
to combine the efficient search of algorithms such as A*,
with the anytime scalability of sampling-based algorithms
such as RRT*. The resulting algorithm, BIT*, uses heuristics
for all aspects of path cost in order to prioritize the search
of high-quality paths and focus the search for improvements.

As demonstrated on both simulated and real-world exper-
iments, BIT* outperforms existing sampling-based optimal
planners and RRT, especially in high dimensions. For a
given computational time, BIT* has a higher likelihood of
finding a solution and generally finds solutions of equivalent
quality sooner. It also converges towards the optimum faster
than other asymptotic optimal planners, and has recently
been shown to perform well on problems with differential
constraints [42]. Information on the OMPL implementation of
BIT* is available at http://asrl.utias.utoronto.ca/code.

ACKNOWLEDGMENT

We would like to thank Christopher Dellin, Michael Koval,
and Rachel Holladay for their comments on drafts of this work
and Jennifer King for her help with experiments on HERB.
This research was funded by contributions from the Natural
Sciences and Engineering Research Council of Canada
(NSERC) through the NSERC Canadian Field Robotics
Network (NCFRN), the Ontario Ministry of Research and
Innovation’s Early Researcher Award Program, and the Office
of Naval Research (ONR) Young Investigator Program.

REFERENCES
[1] E. W. Dijkstra, “A note on two problems in connexion with graphs,”

Numerische Mathematik, 1(1): 269–271, 1959.
[2] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the

heuristic determination of minimum cost paths,” TSSC, 4(2): 100–107,
Jul. 1968

[3] R. E. Bellman, “The theory of dynamic programming,” Bull. of the
AMS, 60(6): 503–516, 1954.

[4] D. P. Bertsekas, “Convergence of discretization procedures in dynamic
programming,” TAC, 20(3): 415–419, Jun. 1975.

[5] R. E. Bellman, Dynamic Programming. Princeton Uni. Press, 1957.
[6] T. Lozano-Pérez and M. A. Wesley, “An algorithm for planning

collision-free paths among polyhedral obstacles,” CACM, 22(10): 560–
570, Oct. 1979.

[7] P. C. Chen and Y. K. Hwang, “SANDROS: a motion planner with
performance proportional to task difficulty,” in ICRA, 3: 2346–2353,
May 1992.

[8] C. S. Sallaberger and G. M. D’Eleuterio, “Optimal robotic path planning
using dynamic programming and randomization,” Acta Astronautica,
35(2–3): 143–156, 1995.

[9] J. Barraquand and J.-C. Latombe, “Nonholonomic multibody mobile
robots: controllability and motion planning in the presence of obstacles,”
in ICRA, 3: 2328–2335, Apr. 1991.

[10] K. M. Lynch and M. T. Mason, “Stable pushing: Mechanics, controlla-
bility, and planning,” IJRR, 15(6): 533–556, 1996.

[11] M. Cherif, “Kinodynamic motion planning for all-terrain wheeled
vehicles,” in ICRA, 1: 317–322, 1999.

[12] B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodynamic motion
planning,” JACM, 40(5): 1048–1066, Nov. 1993.

[13] K. Kondo, “Motion planning with six degrees of freedom by multi-
strategic bidirectional heuristic free-space enumeration,” TRA, 7(3):
267–277, Jun. 1991.

[14] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun,
“Anytime dynamic A*: An anytime, replanning algorithm,” in ICAPS,
Jun. 2005.

[15] D. Ferguson and A. Stentz, “The delayed D* algorithm for efficient
path replanning,” in ICRA, 2045–2050, Apr. 2005.

[16] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun,
“Anytime search in dynamic graphs,” Art. Intel., 172(14): 1613–1643,
2008.

[17] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning A*,” Art.
Intel., 155(1–2): 93–146, 2004.

[18] A. Stentz, “The focussed D* algorithm for real-time replanning,” in
IJCAI 1652–1659, 1995.

[19] S. Koenig and M. Likhachev, “Fast replanning for navigation in
unknown terrain,” TRO, 21(3): 354–363, Jun. 2005.

[20] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” TRA, 12(4): 566–580, 1996.

[21] S. M. LaValle and J. J. Kuffner Jr., “Randomized kinodynamic planning,”
IJRR, 20(5): 378–400, 2001.

[22] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized
kinodynamic motion planning with moving obstacles,” IJRR, 21(3):
233–255, 2002.

[23] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” IJRR, 30(7): 846–894, 2011.

[24] C. Urmson and R. Simmons, “Approaches for heuristically biasing
RRT growth,” IROS, 2: 1178–1183, 2003.

[25] D. Ferguson and A. Stentz, “Anytime RRTs,” IROS, 5369–5375, 2006.
[26] B. Akgun and M. Stilman, “Sampling heuristics for optimal motion

planning in high dimensions,” IROS, 2640–2645, 2011.
[27] M. Otte and N. Correll, “C-FOREST: Parallel shortest path planning

with superlinear speedup,” TRO, 29(3): 798–806, Jun. 2013
[28] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed RRT*:

Optimal sampling-based path planning focused via direct sampling of
an admissible ellipsoidal heuristic,” in IROS, 2997–3004, 2014.

[29] L. Janson and M. Pavone, “Fast marching trees: a fast marching
sampling-based method for optimal motion planning in many dimen-
sions,” in ISRR, Dec. 2013.

[30] O. Salzman and D. Halperin, “Asymptotically-optimal motion planning
using lower bounds on cost,” in ICRA, 2015.

[31] R. Diankov and J. J. Kuffner Jr., “Randomized statistical path planning,”
in IROS, 2007.

[32] S. M. Persson and I. Sharf, “Sampling-based A* algorithm for robot
path-planning,” IJRR, 33(13): 1683–1798, 2014.

[33] S. Srinivasa, D. Berenson, M. Cakmak, A. Collet Romea, M. Dogar,
A. Dragan, R. A. Knepper, T. D. Niemueller, K. Strabala, J. M.
Vandeweghe, and J. Ziegler, “HERB 2.0: Lessons learned from
developing a mobile manipulator for the home,” Proc. IEEE, 100(8):
1–19, Jul. 2012.

[34] M. Penrose, Random Geometric Graphs, ser. Oxford Studies in
Probability, L. C. G. Rogers, Ed. Oxford Uni. Press, 5: 2003.

[35] F. Xue and P. R. Kumar, “The number of neighbors needed for
connectivity of wireless networks,” Wireless Networks, 10(2): 169–
181, 2004.

[36] E. N. Gilbert, “Random plane networks,” SIAM, 9(4): 533–543, 1961.
[37] S. Muthukrishnan and G. Pandurangan, “The bin-covering technique for

thresholding random geometric graph properties,” in SODA, 989–998,
2005.

[38] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE R&A Mag., 19(4): 72–82, Dec. 2012.

[39] J. J. Kuffner Jr. and S. M. LaValle, “RRT-Connect: An efficient approach
to single-query path planning,” in ICRA, 995–1001, 2000.

[40] I. Pohl, “Bi-directional search,” Mach. Intel., 6: 127–140, 1971.
[41] L. Sint and D. de Champeaux, “An improved bidirectional heuristic

search algorithm,” JACM, 24(2): 177–191, Apr. 1977.
[42] C. Xie, J. van den Berg, S. Patil, and P. Abbeel, “Toward asymptotically

optimal motion planning for kinodynamic systems using a two-point
boundary value problem solver,” in ICRA, 2015.

3074

