
Decentralized Localization for Dynamic and Sparse Robot Networks

Keith Y. K. Leung∗, Timothy D. Barfoot†, Hugh H. T. Liu‡

University of Toronto Institute for Aerospace Studies
Toronto, Ontario, Canada, M3H 5T6

keith.leung@robotics.utias.utoronto.ca∗, tim.barfoot@utoronto.ca†, liu@utias.utoronto.ca‡

Abstract— Finite-range sensing and communication are fac-
tors in the connectivity of a dynamic mobile robot network.
State estimation becomes a difficult problem when communi-
cation connections for information exchange between all robots
are not guaranteed. This paper presents a decentralized state
estimation algorithm guaranteed to work in dynamic networks
without connectivity requirements. We show that a robot only
needs to consider its own knowledge of network topology in
order to produce an estimate equivalent to the centralized state
estimate whenever possible, while ensuring the same can be
performed by all other robots in the network. Our technique
is validated through simulations.

I. INTRODUCTION

Communication and the mutual exchange of information
are key performance factors for many cooperative multi-robot
systems. Research in this area often assumes that robots
can broadcast information to all other team members, or
it assumes a static network configuration. However, limited
communication range becomes a factor in larger workspaces
or environments populated with structures that obstruct com-
munication. Limited sensing and communication range, as
well as network dynamics, pose an added layer of difficulty
in both cooperative state estimation (localization) and coop-
erative planning.

Recent work by Burgard et al. [1] studied a method for
cooperative exploration and partially looked at the perfor-
mance of their proposed method under limited communica-
tion range, but concluded that further study is required. The
novel contribution in our paper is the study of the localization
problem over a dynamic network, wherein connectivity of all
robots is not guaranteed. Furthermore, the decentralized state
estimation algorithm that we present is: (1) equivalent to a
centralized state estimator whenever possible, (2) scalable
to any number of robots, where it is not necessary for each
robot to know the total number of robots in the team, (3)
general in that many recursive filtering methods can be
applied within our framework. The brute-force solution to
obtaining a decentralized state estimate that is equivalent
to a centralized estimate (whenever possible) would be to
have each robot keep all past data and communicate this
with all robots encountered. This is neither as scalable nor
as efficient as recursive state estimation techniques. One
of the challenges of decentralized state estimation is to
ensure that when a robot replaces information with a state
estimate, that it will not compromise the others’ ability to
do so. The question of what information to keep or discard

True Robot 1 state
(filled circle)

A link representing
communication and
measurement

Closely matching (overlapping)
decentralized and centralized
state estimates

Decentralized state estimate
(outlined ellipse) made by Robot 1

Centralized state
estimate (filled ellipse)
for benchmarking

1 m

Fig. 1. A simulation of our decentralized state estimation algorithm with
a dynamic network of 10 robots. The decentralized state estimates shown
are from the perspective of robot 1.

at what time is answered by our proposed algorithm, and
we show that this decision can be based on each robot’s
individual knowledge of the network topology, making the
approach implementable as a decentralized algorithm. The
problem of distributed and decentralized state estimation
has been studied by a number of researchers for linear
stochastic systems without inputs. Berg and Durrant-Whyte
[2][3] looked at a computer network of arbitrary topology, in
which each node in the network is attempting to estimate the
state of the system. Their work showed how the information
filter can be used to easily incorporate observation data from
many nodes. The concept of the inter-nodal transformation
matrix was introduced and can be used to determine the
minimal communication connections required between nodes
to produce a state estimate. Grime and Durrant-Whyte [4]
examined the decentralized state estimation problem in a
network, wherein information can propagate by hopping
between nodes. The channel filter was introduced to ensure
that only new information is passed to neighbouring nodes,
but it was shown only to work in an acyclic network.
This work was extended by Utete and Durrant-Whyte [5]
for an arbitrary network topology, wherein communication
restrictions are applied so that the channel filter can be used.
Later, this was simulated by Bourgault and Durrant-Whyte

[6] for a team of unmanned autonomous vehicles (UAV) and
it was shown how the UAVs successfully coordinated with
each other in a search mission.

For system models with inputs, Roumeliotis and Bekey [7]
performed distributed multi-robot localization by decompos-
ing the Kalman filter into a number of filters that can perform
the prediction step of the Kalman filter locally on each
robot. However, a fully connected network is still required
to perform the update step. Howard [8] looked at performing
multi-robot simultaneous localization and mapping (SLAM),
wherein each robot is unaware of each other’s initial pose
and begins state estimation in a decentralized manner. Maps
are combined when robots encounter each other and the
mapping process eventually becomes centralized. Madhavan
et al. [9] studied how cooperative localization and mapping
can be performed with a heterogeneous set of sensors and
demonstrated this concept with field trials. Rekleitis et al.
[10] examined how sensing paradigm and the number of
robots affect localization performance with multiple robots.

Static network connectivity is an important requirement
for the works mentioned previously. The challenge with
performing state estimation over a time-varying network
is the obstruction of data flow between robots and the
unpredictable sequence in which data is received. Ferguson
and How [11] examined various other filters and network
architectures to arrive at sub-optimal (full and partial) state
estimates. For the various methods and network architectures
compared, the trade off between performance and compu-
tational requirement was shown. Bar-Shalom et al. [12],
[13] examined some possible remedies for out-of-sequence
measurements (OOSM) for state estimation using a Kalman
filter. It was shown that for a missed measurement, the only
way to incorporate it to produce an optimal state estimate
is to sequentially reprocess all following measurements. In
situations where past measurements are no longer available,
various methods were proposed to arrive at an approximate
estimation. For the special case when the missed measure-
ment is from a single timestep back, it was shown that the
optimal state estimate can be achieved.

Also worth mentioning is the consensus problem, but note
that the work presented in the current paper does not fit
into the consensus problem framework. For a network of
agents, solving the consensus problem requires determining
a consensus algorithm. In general, the study of the consensus
problem looks at how coherent global behaviour can be
produced by local control laws or estimation methods. An
example of this is distributed formation control for multi-
vehicle systems [14]. Another example of an application that
involves more complex local actions is distributed control
for object clustering [15]. For distributed state estimation,
Schizas et al. [16] looked at how consensus can be reached
in wireless sensor networks. Recently, research on the con-
sensus problem has extended to dynamic network topologies,
but convergence can only be guaranteed under some network
topology restrictions [17].

In the following section we will formulate our state
estimation problem. Section III examines information flow

in a network and introduces theorems, which are used in our
proposed algorithm in section IV. Simulation results of the
algorithm are shown in section V.

II. PROBLEM FORMULATION

In a multi-robot system, let N represent the set that
contains the unique identification indices of all robots. The
total number of robots corresponds to |N |, the cardinality of
the set, and we assume that the identification indices of the
robots range from 1 to |N |. Furthermore, we define Ni,k as
the set of robots known to robot i at a specific timestep, k.
We assume a general system model for the robots:

xi,k = g (xi,k−1,ui,k, εk)

yj,i
i,k = h (xi,k,xj,k, δk) , (∀j)(dj,i

k ≤ robs)

where for timestep k, xi,k represents the state (pose) of robot
i, ui,k represents the odometry information of robot i, g(·)
is the state transition function (with process noise, εk), yj,i

i,k

represents the measurement (e.g., range/bearing) of robot j
with respect to robot i, h(·) is the measurement function
(with measurement noise, δk), dj,i

k is the distance between
robot i and j, and robs is the measurement range limit.
Robots within communication range rcomm of each other are
able to exchange and relay information, which includes state
estimates, odometry data, and measurement data. We will
assume that robs = rcomm to simplify the explanation of our
work but could be different if required. Let

Xk = {xi,k}, (∀i ∈ N)

represent the set of all robot states at timestep k, and let

XQ,k = {xi,k}, (∀i ∈ Q)(Q ⊆ N)

represent the set of states at timestep k for the robots in some
subset Q of N . Similarly, let

Uk = {ui,k}, (∀i ∈ N)

represent the set of odometry information from all robots at
timestep k, and let

UQ,k = {ui,k}, (∀i ∈ Q)(Q ⊆ N)

represent the set of odometry data at timestep k for all robots
in subset Q of N . Let

Yk = {yj,i
i,k}, (∀i, j)(dj,i

k ≤ robs)

represent the set of all measurements made at timestep k,

Yi,k = {yj,i
i,k}, (∀j)(dj,i

k ≤ robs)

represent the set of all measurements made by robot i at
timestep k, and

YQ,k = {yj,i
i,k}, (∀i, j ∈ Q)(dj,i

k ≤ robs)

represent the set of measurements made between robots
in set Q. Due to uncertainty in both state transition and
measurements, the true state of the system cannot be found
deterministically, but can only be estimated using odometry
and measurement data. In general, the centralized belief is

represented by a probability density function, p(·), over all
robot states, Xk:

bel(Xk) := p (Xk|bel(X0), U1:k, Y1:k)

which is conditioned on the initial belief bel(X0), past
odometry data, and past range and bearing measurements.
From a practical and computation point of view, it is helpful
to apply the Markov property

p (Xk|bel(X0), U1:k, Y1:k) = p (Xk|bel(Xk−1), Uk, Yk)

when performing state estimation, as it limits memory and
processing requirements. However, in a decentralized frame-
work, wherein robots are not always in contact with each
other, the Markov property can only be applied once a robot
obtains sufficient information regarding other robots through
communication. Furthermore, each robot must ensure that
other robots will no longer require any of the past informa-
tion that will be discarded when applying the Markov prop-
erty. Hence, the key problem is to determine the necessary
and sufficient conditions under which the Markov property
can be applied in order to obtain an estimate equivalent to
that obtainable by a centralized state estimator, but when
robots are only occasionally exchanging information with
each other. Accordingly, our objective is for each robot, i,
to estimate the state of all known robots (i.e. find bel(Xi,k))
in a decentralized manner.

III. INFORMATION FLOW IN A DYNAMIC NETWORK

Under the assumption of sporadic communication and
observations, it is essential to track the information available
to each robot for making state estimations. A graph is a
convenient tool for representing network topology. We will
first examine the robot network from the perspective of an
outside observer having the ability to see all the interactions
between robots. We will then look at the network locally
from the perspective of a particular robot.

A. The Global Perspective

Let Gk1:k2 be a directed graph (di-graph) that shows
the communication links established between robots from
timestep k1 to k2. This graph can be used to show the flow
and distribution of information and will be referred to as
Gk1:k2 , the global information flow graph. An example of
this graph is depicted in Fig. 2. In relation to the system
model, an arc connecting two robots at a timestep represents
a measurement between the two robots. This also represents
a communication window (which allows the exchange of
information possessed by both robots). Horizontal arcs repre-
sent state transitions. The presence of an arc connecting two
nodes implies that all information at the originating node is
also available at the destination node. Furthermore, odometry
and measurement information that are labeled on the arcs
that make up the path in between are also available at the
destination node.

As a robot traverses a workspace and occasionally ob-
serves and communicates with another robot, it will begin
to accumulate information regarding the entire team. The

ROBOT 1

ROBOT 2

ROBOT 3

y2,1

u1,1

u2,1

u3,1

u1,2

u2,2

u3,2

u1,3

u2,3

u3,3

u1,4

u2,4

u3,4

TIME
k=0=k1

1,1

y3,2
2,2

y1,2
2,1

y1,2
2,3

y2,1
1,3

y2,3
3,2

k=4=k2k = 1 k = 2 k = 3

Fig. 2. An example global information flow graph Gk1:k2 indicating state
transition and communication links established between timesteps k1 and
k2 for 3 robots.

specific data in its possession will depend on the evolving
topology of the information flow graph. Let the knowledge
set, Si,k, consist of all odometry and measurement data, as
well as the previous state estimates known to robot i at time
k. We will assume at the initial time, Si,0 = {bel(xi,0)}. At
each timestep, the knowledge set expands with the addition
of new odometry data as well as measurement data if another
robot is observed. Let Ri,k represent the set of robots within
distance rcomm of robot i at time k, and let S−i,k represent
the knowledge set after state transition and observations, but
before communication is established with any other robot:

S−i,k = Si,k−1 ∪ {ui,k, Yi,k} (1)

When communication occurs between robots i and j, they
will make their knowledge sets available to each other, and
the knowledge set of both robots will become identical:

Si,k = Sj,k = S−i,k ∪ S
−
j,k, (∀j ∈ Ri,k) (2)

The above equations model how information flow within
the robot network at every timestep. With the progression
of time, the knowledge set for each robot will continue
to expand, causing the information storage requirement to
also increase. If the Markov property is not exploited in
an estimator, the amount of data in each knowledge set
will increase over time without bound. In most centralized
recursive state estimators, we make use of the Markov
property to reduce memory storage requirements. In our
decentralized state estimation problem, this must be done
with extreme care to ensure that all robots can also make
the same state estimate. For this purpose, a checkpoint is
defined as follows (due to the page constraint, the proof of
existence for this can be found in [18]):

Definition 1: A checkpoint, C(kc, ke), is an event that
occurs at the checkpoint time, kc, that first comes into
existence at ke, in which the set of knowledge for each robot
i contains for all j:

1) the previous state estimate of robot j at some timestep,
ks,j ≤ kc,

2) all the odometry and measurement data of robot j from
timestep ks,j to kc.

Equivalently written using mathematics, a checkpoint occurs
at timestep kc when Si,ke

⊇ Sj,kc
, (∀i, j).

B. The Local Perspective

The information flow graph is a global graph in the sense
that it represents the interactions of all robots as viewed by
an outside observer. The graph topology from the point of
view of an individual robot will differ as illustrated in Fig. 3.

ROBOT 1

ROBOT 2

ROBOT 3

at k=1

k=0 k=1

LOCAL INFORMATION FLOW GRAPHS FOR ROBOT 3

Robot 3 is unaware of
the interaction between
Robot 1 and Robot 2

Robot 3 is again unaware
of the interaction between
Robot 1 and Robot 2

Robot 3 is now aware
of this interaction
between Robot 1 and
Robot 2

at k=2 at k=3

k=0 k=1 k=2 k=0 k=1 k=2 k=3

Fig. 3. An example showing the local information flow graph topology of
a single robot (robot 3) as time progresses.

This leads to the question of whether or not it is necessary
for a robot to know the complete knowledge set of all other
robots before determining that a checkpoint exists. For this,
we present the definition of a partial checkpoint and present
a proof of existence.

Definition 2: A partial checkpoint, Cp(kc,i, ke,i), is an
event that occurs for robot i at time kc,i, that first comes into
existence at ke,i, in which the set of knowledge for robot i
contains for all j:

1) the previous state estimate of robot j at some timestep,
ks,j ≤ kc,i,

2) all the odometry and measurement data of robot j from
timestep ks,j to kc,i.

Equivalently written using mathematics, a partial checkpoint
for robot i occurs at timestep kc,i when Si,ke

⊇ Sj,kc
, (∀j).

Theorem 1: Cp(kc,i, ke,i) exists if and only if the know-
ledge set of robot i at ke contains uj,kc,i

or bel(xj,kc,i
), (∀j).

Expressed mathematically: Si,ke,i
⊇ Sj,kc,i

, (∀j) ⇔
Si,ke,i

⊇ (uj,kc,i
or bel(xj,kc,i

)), (∀j).
Proof: Assume that Cp(kc,i, ke,i) exists:

Si,ke,i
⊇ Sj,kc,i

, (∀j)

⇒ Si,ke,i
⊇

{
bel(xj,ks,j

), Yj,ks,j+1:kc,i
uj,ks,j+1:kc,i

}
,

(∀j) if (ks,j < kc,i){
bel(xj,ks,j

)
}
, (∀j) if (ks,j = kc,i)

⇒ Si,ke,i
⊇ uj,kc,i

or bel(xj,kc,i
), (∀j)

In the second line, we expand Sj,kc,i
(∀j) to show the infor-

mation that can be found in the knowledge sets depending on
ks,j , the time of the latest belief for robot j. In the last line,
we show that either uj,kc,i

or bel(xj,kc,i
) for all robots j

will always be available. Now assuming that the knowledge
set of each robot at ke,i contains uj,kc,i

or bel(xj,kc,i
):

Si,ke,i
⊇ uj,kc,i

or bel(xj,kc,i
), (∀j)

⇒ Si,ke,i
⊇ Sj,k, (∀j)(kc,i ≤ k ≤ ke,i),

⇒ Si,ke,i
⊇ Sj,kc,i

, (∀j).

Since odometry data and the belief at kc,i from all robots
j is available, this implies on line 2 that Sj,k must also
be available for all robots j, where kc,i ≤ k ≤ ke,i.

Furthermore, we know that the knowledge set of a robot will
always contain its past knowledge set, provided the Markov
property has not been applied.

This theorem is important as it provides a practical method
to detect checkpoints when our decentralized state estimation
framework is implemented on a real system. A partial
checkpoint can come into existence at different times for
each robot depending on the evolving topology of the robot
network. Also, a checkpoint exists for the entire system of
robots when a partial checkpoint exists for all robots. We
now present 2 important theorems regarding the use of partial
checkpoints, the proofs of which can again be found in [18]
due to page limitation.

Theorem 2: Suppose C(kc, ke) exists, and robot m ap-
plies the Markov property when Cp(kc, ke,m) exists (i.e. at
ke,m). Then Cp(kc, ke,i) continues to exist, (∀i).
The implication of this theorem is significant because we
are now certain that a robot’s decision to invoke the Markov
property as soon as a partial checkpoint exists will have
no effect on the other robots’ abilities to obtain a partial
checkpoint (that occurs for the same timestep, kc). Hence,
all robots only need to consider their local knowledge when
applying the Markov property.

Theorem 3: Suppose that (∀i), robot i applies the Markov
property when Cp(kc,i, ke,i) exists, (detected using Theorem
1). Then (∀C(kc, ke)), Si,ke,i ⊇ {bel(Xkc)}, (∀i) where
ke,i ≤ ke and bel(Xkc

) is the centralized state estimate at
timestep kc.
With the above theorem, we are certain that robots can apply
the Markov property based on local knowledge, and without
affecting the ability for others to do so. We are also certain
now that all robots are able to obtain the centralized state
estimate if each robot applies the Markov property whenever
possible. This important result will be used to develop our
decentralized state estimation algorithm.

IV. DECENTRALIZED STATE ESTIMATION ALGORITHM

Based on the theoretical development in the previous
section, Algorithm 1 is designed to perform decentralized
state estimation in a scalable manner that is guaranteed to
work in a dynamic and sparse mobile robot network. The
same algorithm is implemented on each robot and iterates
every timestep. The algorithm requires as inputs: the current
timestep, k, odometry data, ui,k, measurements, Yi,k, the
latest knowledge set, Si,k−1, and the knowledge sets of
all robots to which information exchange is possible at the
current timestep, Sj,k (∀j ∈ Ri,k)).

We assume that initially each robot only has a state
estimate of itself in its knowledge set. Line 1 updates the
knowledge set of robot i by implementing (1) and (2). Line
2 determines the set of robots known to i by looking for
part beliefs bel∗(XQ,ks

) in Si,k, where Q represents a set of
robots. Note that bel∗ indicates a belief that is equivalent
to the state estimate obtainable using a centralized state
estimator. The search for a partial checkpoint begins with
the ‘for’ loop on line 3. Line 4 uses Theorem 1 to detect
the existence of a checkpoint. If one is found, we use the

Algorithm 1: DecentralizedStateEst(k, ui,k, Yi,k, Si,k−1,
Sj,k (∀j ∈ Ri,k))

Si,k ← Si,k−1 ∪ {ui,k} ∪ {Yi,k} ∪ {Sj,k}(∀j ∈ Ri,k)1
Ni,k ← {Q}, (∀Q)(bel∗(XQ,ks) ∈ Si,k)(ks ≤ k)2
for kc ← k : 0 do3

if UNi,k,kc ∈ Si,k then4
S̃i,kc ← Si,k −

{
UNi,k,kr , YNi,k,kr

}
(∀kr > kc)5

bel∗
(
XNi,k,kc

)
← p

(
XNi,k,kc |S̃i,kc

)
6

Si,k ← Si,k ∪ bel∗
(
XNi,k,kc

)
7

Si,k ← Si,k−{
UNi,k,kr , YNi,k,kr , bel∗

(
XNi,k,kr

)}
(∀kr ≤ kc)8

break9
end10

end11
bel (XNi,k)← p (XNi,k|Si,k)12
return {bel (XNi,k) , Si,k, Ni,k}13

knowledge up to the checkpoint time (line 5) to obtain the
state estimate on line 6 that it is equivalent to the centralized
state estimate. This is entered into the knowledge set on line
7 and we proceed to discard information replaceable by bel∗

on line 8. On line 9, we break out of the ‘for’ loop since
a partial checkpoint has been found. Finally on line 12, we
use all information in the knowledge set to produce the state
estimate for the current timestep. (i.e., from kc forwards, our
estimate is temporary).

There are some important points to highlight about Algo-
rithm 1. First, many recursive filtering method can be used
on lines 6 and 12. Thus the algorithm is a very general
framework that is widely applicable in any situation in which
there is a need to perform decentralized state estimation in a
dynamic network. Furthermore, the centralized state estimate
can always be calculated at the time of a partial checkpoint.
Although the state estimate at the current time may be subop-
timal due to missing information, the equivalent centralized
state estimate is guaranteed to be obtainable later. For the
moment, we assume that a robot maintains its last known
velocity until its odometry is known. We are working on
incorporating motion planning information to produce more
accurate motion predictions when robots are not connected.

In terms of scalability, it is unnecessary for a robot to know
how many robots there are in the team initially since state
estimates of robots are statistically independent before any
encounters and are only correlated through measurements
during encounters. When this occurs, estimates can be com-
bined as follows (not explicitly shown in Algorithm 1):

bel(XQ1,k, XQ2,k) = bel(XQ1,k)bel(XQ2,k) (3)

Since we are exploiting the Markov property, computational
memory usage is limited provided that robots do not wander
away from the group permanently, which is a reasonable
assumption if their task is to cooperatively localize.

V. SIMULATION

The theoretical development of a checkpoint already guar-
antees that a state estimate equivalent to the centralized
estimate can be reached by all robots when a checkpoint

exists. It is of interest to compare the performance of the
proposed decentralized state estimation algorithm against a
centralized state estimator. For this purpose, simulations are
performed for a group of uniquely identifiable robots moving
in a workspace in which each robot does not initially know
the total number of robots in the team. The intention of
the simulation is to have each robot estimate the states of
all robots known to itself (shown in Fig.1). Communication
range is limited so the robots are in a dynamic network that
is not always fully connected. Note, the centralized state es-
timator would simply not work under these assumptions, but
we allow robots the ability to always communicate with each
other regardless of range limit for the centralized estimator
so that estimates can actually be made for comparison.

A. Setup

The Extended Kalman Filter (EKF) algorithm [19] is used
as the filtering method on lines 7 and 13 of Algorithm 1.
Note that any other filtering method can be applied. The state
of each robot includes position, x, y, and orientation, θ. A
discrete-time unicycle model is used for state transition for
each robot, where the inputs (odometry data) are translational
and angular velocities, v, ω. The two inputs are assumed
to contain independent zero-mean Gaussian noise. When a
robot i observes another robot j within range rcomm, it is able
to measure the range, rj,i, as well as the bearing, φj,i of robot
j with respect to robot i. Each measurement component is
assumed to contain independent zero-mean additive Gaussian
noise. The robot starts with a random pose and an estimate
of that pose in its knowledge set, and each robot will move
using the same visual servoing control law [20] to random
waypoints in the bounded workspace.

B. Results

We now present the simulation results for decentralized
state estimation with 10 robots1. Due to this high number
(30) of states, we elect to show the estimation performance
for two states in a particular simulation run with rcomm = 3.
The decentralized state estimates that we refer to in the
plots are made by robot 1. Fig. 4 shows the decentralized
estimation errors for the x-position of robot 1. Fig. 5 shows
the difference compared to the centralized state estimator.
Note that for most timesteps, performance between the two
estimators are equivalent. Minor deviations occur when an
observation is made that is not communicated to robot 1
immediately. The variance of the estimation error is also
plotted. Similar performance can be observed in the other
robots’ decentralized state estimate of themselves.

Fig. 6 shows the decentralized estimation errors for the x-
position of robot 2 and Fig. 7 compares this to the centralized
state estimate. Deviation in performance is visible when
robot 2 loses the connection to robot 1, during which time
robot 1 can only assume the last known velocity of robot
2. The spikes seen in Fig. 6 occur when the last known

1The video included with the conference proceedings provides a visual-
ization of a simulation run (shortened due to the file size restriction), and
Fig.1 should be used as a legend.

velocity of robot 2 is significantly different than the actual
velocity. Similar performance is observed for any robot’s
decentralized state estimate of another robot.

Memory usage by each robot is limited since the Markov
property is exploited at partial checkpoints. The amount of
memory used by robot 1 in a simulation run is shown in
Fig. 8, which reaches a maximum of only 0.11 MB. This is
representative of memory usage by other robots. Increases
in memory usage occur as time passes since the last partial
checkpoint. The more pronounced increases are indications
of one or more robots losing connection with robot 1, which
is not reestablished until a later time when another partial
checkpoint is detected. Memory usage will reduce when
this occurs and the Markov property is applied. The rate
of memory usage increase between partial checkpoints will
in general depend on the number of robots in the system (i.e.
the number of states), as well as the freqeuncy of odometry
readings and measurements. Currently, if a robot is unable to
detect partial checkpoints (i.e. a robot in the team has failed),
the consequence is the continual increase in memory usage
and we plan to address this scenario in our future work.

Different performance characteristics will result when the
number of robots and the communication range are changed.
For 10 robots, Fig. 9 shows how the average error between
the decentralized and centralized estimates for x-position and
orientation θ is reduced as communication range limit rcomm

increases. The average error plot for y-position is almost
identical and therefore not plotted. Similarily, Fig. 10 shows
how memory usage decreases with increasing communica-
tion range limit. Each data point in the above plots represents
data averaged over 50 simulation trials. The trends observed
in the above figures occur because as communication range
increases, the frequency at which robots detect partial check-
points also increases. A more detailed study of these trends
is presented in [18].

It is important to remember that centralized state estima-
tion is not possible when full connectivity is not guaranteed
between robots, and the decentralized state estimator pre-
sented is proven to allow the equivalent centralized state es-
timate to be reached under a dynamic network where robots
sporadically communicate. At no time does the network need
to be fully connected in our algorithm.

VI. CONCLUSIONS

An algorithm was presented that allows state estimation
to be performed in a dynamic robot network, in which full
connectivity is not assumed. We defined checkpoints and
partial checkpoints, which defines when a state estimate
equivalent to the centralized estimate can be made by the
decentralized state estimator, and implies that the estimate
is based on all past information. The proposed method
is scalable in that the number of robots in the network
does not need to be known initially. Furthermore, we have
shown through simulations that memory usage (although
large compared to the centralized estimator) is limited by
exploiting the Markov property at partial checkpoints. Sim-
ulations performed with 10 robots also showed that the error

0 10 20 30 40 50 60 70 80 90 100

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Simulation time [s]

E
rr

or
 [m

]

Estimation Error Error Covariance (3σ)

Fig. 4. Error in the decentralized state estimate made by robot 1 for the
x-position of robot 1

0 10 20 30 40 50 60 70 80 90 100
−0.01

−0.005

0

0.005

0.01

Simulation time [s]

D
iff

er
en

ce
 [m

]

Fig. 5. Difference between the centralized and robot 1’s decentralized state
estimates for the x-position of robot 1

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Simulation time [s]

E
rr

or
 [m

]

Estimation Error

Error Covariance (3σ)

Fig. 6. Error in the decentralized state estimate made by robot 1 for the
x-position of robot 2

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Simulation time [s]

D
iff

er
en

ce
 [m

]

Fig. 7. Difference between the centralized and robot 1’s decentralized state
estimates for the x-position of robot 2

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

Simulation time [s]

M
em

or
y

[M
B

]

Fig. 8. Memory usage for robot 1

1 1.5 2 2.5 3 3.5 4
0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3

po
si

tio
n

er
ro

r
[m

]

1 1.5 2 2.5 3 3.5 4
0

0.15

0.3

0.45

0.6

0.75

0.9

1.05

1.2

1.35

1.5

communication range [m]

he
ad

in
g

er
ro

r
[r

ad
]

rmse − x rmse − θ

Fig. 9. Average difference between the centralized and decentralized
estimates for a 10-robot system with various communication range limits.
2-standard-deviation error bars are shown for the x-position error plot.

1 1.5 2 2.5 3 3.5 4
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

av
er

ag
e

m
em

or
y

us
ag

e
[M

B
]

communication range [m]

Fig. 10. Average memory usage for a 10-robot system with various
communication range limits. 2-standard-devation error bars are shown.

performance of our decentralized state estimator is almost as
good as the centralized state estimator. We acknowledge that
the performance is dependent on the number of robots and
the size of the workspace and studies on this are presented in
[18]. Nevertheless, it is important to note that a centralized
state estimator will not be able to produce an estimate unless
we assume full network connectivity at all times.

The natural extension of this research (already in progress)
is to look at decentralized SLAM under the same assump-
tions on the network (i.e., include landmarks) and to conduct
experiments with real robots. Furthermore, we are extending
our algorithm to accommodate the situation in which a robot
that is previously part of the network fails or leaves the
group permanently. Also of interest is to show how commu-

nication delay can be accommodated by our decentralized
state estimation algorithm (as is). Finally, we would like to
incorporate decentralized planning and achieve a method of
active SLAM for a dynamic network of mobile robots.

ACKNOWLEDGMENT

This research is supported by Natural Sciences and Engi-
neering Research Council (NSERC) of Canada.

REFERENCES

[1] W. Burgard, M. Moors, C. Stachniss, and F. Schneider, “Coordinated
multi-robot exploration,” IEEE Transactions on Robotics, vol. 21,
no. 3, pp. 376–386, 2005.

[2] T. Berg and H. Durrant-Whyte, “Distributed and decentralized estima-
tion,” in Proc. of the Singapore Int’l Conference on Intelligent Control
and Instrumentation, vol. 2, 1992, pp. 1118–1123.

[3] ——, “General decentralized kalman filters,” in American Control
Conference, vol. 2, 1994, pp. 2273–2274.

[4] S. Grime and H. Durrant-Whyte, “Data fusion in decentralized sensor
networks,” Control Engineering Practice, vol. 2, no. 5, pp. 849–863,
1994.

[5] S. Utete and H. Durrant-Whyte, “Reliability in decentralised data
fusion networks,” in Proc. of IEEE Int’ll Conference on Multisensor
Fusion and Integration for Intelligent Systems, 1994, pp. 215–221.

[6] F. Bourgault and H. Durrant-Whyte, “Communication in general de-
centralized filters and the coordinated search strategy,” in Proceedings
of the 7th International Conference on Information Fusion, 2004.

[7] S. Roumeliotis and G. Bekey, “Distributed multirobot localization,”
Robotics and Automation, IEEE Trans. on, vol. 18, no. 5, pp. 781–
795, 2002.

[8] A. Howard, “Multi-robot simultaneous localization and mapping using
particle filters,” International Journal of Robotics Research, vol. 25,
no. 12, pp. 1243–1256, 2006.

[9] R. Madhavan, K. Fregene, and L. Parker, “Distributed cooperative
outdoor multirobot localization and mapping,” Autonomous Robots,
vol. 17, no. 1, pp. 23–39, 2004.

[10] I. Rekleitis, G. Dudek, and E. Milios, “Multi-robot cooperative lo-
calization: A study of trade-offs between efficiency and accuracy,” in
Proceedings of the IEEE/RSJ IROS, 2002.

[11] P. Ferguson and J. How, “Decentralized estimation algorithms for
formation flying spacecraft,” in Proceedings of the AIAA Guidance,
Navigation, and Control Conf., 2003.

[12] Y. Bar-Shalom, “Update with out-of-sequence measurements in track-
ing: exact solution,” Aerospace and Electronic Systems, IEEE Trans-
actions on, vol. 38, no. 3, pp. 769–777, 2002.

[13] Y. Bar-Shalom, H. Chen, and M. Mallick, “One-step solution for
the multistep out-of-sequence-measurement problem in tracking,”
Aerospace and Electronic Systems, IEEE Transactions on, vol. 40,
no. 1, pp. 27–37, 2004.

[14] R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and cooperation
in networked multi-agent systems,” Proceedings of the IEEE, vol. 95,
no. 1, pp. 215–233, 2007.

[15] T. Barfoot and G. D’Eleuterio, “Evolving distributed control for an
object clustering task,” Complex Systems, vol. 15, no. 3, pp. 183–201,
2005.

[16] I. Schizas, A. Ribeiro, S. Roumeliotis, and G. Giannakis, “Consensus
in ad hoc wsns with noisy links - part i: Distributed estimation
of deterministic signals,” Signal Processing, IEEE Transactions on,
vol. 56, no. 1, pp. 350–364, 2008.

[17] L. Moreau, “Stability of multiagent systems with time-dependent
communication links,” Automatic Control, IEEE Transactions on,
vol. 50, no. 2, pp. 169–182, 2005.

[18] K. Y. K. Leung, T. D. Barfoot, and H. H. T. Liu, “Decentralized local-
ization for general robot networks,” (submitted to) IEEE Transaction
on Robotics (available upon request).

[19] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. The MIT
Press, 2005.

[20] R. Siegwart and Nourbakhsh, Introduction to Autonomous Mobile
Robots. MIT Press, 2004.

