
62 IEEE TRANSACTIONS ON ROBOTICS, VOL. 26, NO. 1, FEBRUARY 2010

Decentralized Localization of
Sparsely-Communicating Robot Networks:

A Centralized-Equivalent Approach
Keith Y. K. Leung, Student Member, IEEE, Timothy D. Barfoot, and Hugh H. T. Liu, Member, IEEE

Abstract—Finite-range sensing and communication are factors
in the connectivity of a dynamic mobile-robot network. State es-
timation becomes a difficult problem when communication con-
nections allowing information exchange between all robots are not
guaranteed. This paper presents a decentralized state-estimation
algorithm guaranteed to work in dynamic robot networks with-
out connectivity requirements. We prove that a robot only needs
to consider its own knowledge of network topology in order to
produce an estimate equivalent to the centralized state estimate
whenever possible while ensuring that the same can be performed
by all other robots in the network. We prove certain properties
of our technique and then it is validated through simulations. We
present a comprehensive set of results, indicating the performance
benefit in different network connectivity settings, as well as the
scalability of our approach.

Index Terms—Autonomous agents, decentralized state estima-
tion, finite sensing and communication, localization, networked
robots.

I. INTRODUCTION

ACOOPERATIVE multirobot system is beneficial in many
applications. Besides allowing for greater coverage in ex-

ploration and searching tasks, it also allows for the implemen-
tation of more complex strategies over a single robot. A greater
number of robots can also provide a certain degree of redun-
dancy to ensure the completion of tasks should a portion of the
multirobot team become disabled.

Communication and the mutual exchange of information are
key performance factors for many cooperative multirobot sys-
tems. Research in this area often assumes that robots can broad-
cast information to all other team members, or it assumes a
static network configuration. However, limited communication
range becomes a factor in larger workspaces or environments
populated with structures that obstruct communication. Limited
sensing and communication range, as well as network dynamics,
pose an added layer of difficulty in both cooperative state esti-
mation (localization) and cooperative planning. Recent work by

Manuscript received December 17, 2008; revised June 9, 2009. First pub-
lished December 31, 2009; current version published February 9, 2010. This
paper was recommended for publication by Associate Editor S. Roumeliotis
and Editor W. K. Chung upon evaluation of the reviewers’ comments. This
paper was presented in part at the IEEE International Conference on Robotics
and Automation, Kobe, Japan, 2009, with title “Decentralized Localization for
Dynamic and Sparse Robot Networks.” This work was supported by the Natural
Sciences and Engineering Research Council of Canada.

The authors are with the University of Toronto Institute for
Aerospace Studies, Toronto, ON M3H 5T6, Canada (e-mail: keith.leung@
robotics.utias.utoronto.ca; tim.barfoot@utoronto.ca; liu@utias.utoronto.ca).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TRO.2009.2035741

Fig. 1. Simulation of our decentralized state-estimation algorithm with a dy-
namic network of 10 robots. The decentralized state estimates shown are from
the perspective of robot 1.

Burgard et al. [1] studied a method for cooperative exploration
and partially looked at the performance of their proposed method
under limited communication range but concluded that further
study is required. The novel contribution in our paper is the
study of the cooperative-localization problem over a dynamic
network, wherein connectivity of all robots is not guaranteed,
and each robot must localize all robots using odometry, relative
measurements, and through the communication of this infor-
mation. We present a decentralized state-estimation algorithm
that is a) equivalent to a centralized state estimator whenever
possible, b) scalable to any number of robots in the sense that it
is not necessary to know the total number of robots in the team
(but only if communication between robots is bidirectional and
if the communication range limit is greater than or equal to the
measurement range limit), and c) general in that many recur-
sive filtering methods can be applied within our framework. The
brute-force solution to obtaining a decentralized state estimate
that is equivalent to a centralized estimate (whenever possible)
would be to have each robot keep all past data and communi-
cate this with all robots encountered. This is neither as scalable
nor as efficient as recursive state-estimation techniques. One of
the challenges of decentralized state estimation is to ensure that
when a robot replaces information with a state estimate, it will
not compromise the others’ ability to do so. The question of
what information to keep or discard at what time is answered

1552-3098/$26.00 © 2009 IEEE

Authorized licensed use limited to: The University of Toronto. Downloaded on February 24,2010 at 11:40:00 EST from IEEE Xplore.  Restrictions apply. 



LEUNG et al.: DECENTRALIZED LOCALIZATION OF SPARSELY-COMMUNICATING ROBOT NETWORKS 63

by our proposed algorithm, and we show that this decision can
be based on each robot’s individual knowledge of the network
topology, making the approach implementable as a recursive
decentralized algorithm.

In the following section, we will review the literature on
distributed and decentralized state estimation. In Section III, we
will formulate our decentralized state-estimation problem. In
developing a solution to the problem, we begin to examine how
information flows within a dynamic network (see Section IV).
We will also introduce several theorems regarding information
flow, which are used in our proposed algorithm in Section V.
This algorithm is tested through simulation, and we will present
the results in Section VI. To provide an insight to the scalability
of our approach, we will examine how the number of robots,
communication range, and the size of the workspace affects
localization performance.

II. RELATED WORK

The problem of distributed and decentralized state estimation
has been studied by various researchers in the past for uncon-
trolled linear stochastic systems, as well as for sensor networks.
The work we present in this paper takes a more general ap-
proach and examines nonlinear systems with control inputs, but
the following related research is worth mentioning. Berg and
Durrant-Whyte [2], [3] looked at a computer network of arbi-
trary topology, in which each node in the network is attempting
to estimate the partial or full state of the system. Their work
showed how the information filter can be used to easily incor-
porate observation data from many nodes. The concept of the
internodal transformation matrix was introduced for a node to
incorporate relevant information from other nodes. This matrix
can also be used to determine the minimal communication con-
nections required between the nodes of the system to achieve
optimal state estimation. Grime and Durrant-Whyte [4] exam-
ined the decentralized state-estimation problem in a network,
wherein information can propagate by hopping between nodes.
The channel filter was introduced to ensure that only new infor-
mation is passed to neighboring nodes, but it was shown only to
work in an acyclic network (with no loops). This work was ex-
tended by Utete and Durrant-Whyte [5] for an arbitrary network
topology, wherein communication restrictions are applied, en-
abling the channel filter to work. Later, this work was simulated
by Bourgault and Durrant-Whyte [6] for a team of unmanned au-
tonomous vehicles (UAV) that formed a chain network for com-
munication and state estimation. The simulation showed how
the UAVs successfully coordinated with each other in a search
mission.

More closely related to this paper is the following research on
cooperative localization. Kurazume and Hirose [7] introduced
one of the first methods for cooperative localization, where a
robot team was split into two groups. One group of robots
moved, while the other remained stationary, essentially serv-
ing as landmarks for the first group of robots for localization.
This concept of using other robots in a team for localization has
since been extended by various researchers. It was shown in [8]
that given a limited set of relative measurements from a network

of robots in a formation, localizing the robots (and determining
the correct formation) is an NP-hard problem.

Roumeliotis and Bekey [9] performed distributed multirobot
localization by decomposing the extended Kalman filter (EKF)
into a number of filters that can perform the prediction step of the
EKF locally on each robot. As the highlight, this work showed
how the propagation of the covariance matrix can be factored
using singular-value decomposition such that the factored terms
can be computed by each robot individually using their own
odometry data. The factored terms only need to be combined
before a measurement update, which then requires full network
connectivity (i.e., all robots need to communicate with each
other for the EKF correction step). More recently, Nerurkar
et al. [10] performed cooperative localization using a distributed
maximum a posteriori (MAP) estimator.

Howard [11] looked at performing multirobot simultaneous
localization and mapping (SLAM), wherein each robot is un-
aware of each other’s initial pose and begins state estimation
in a decentralized manner. When robots encountered each other
for the first time, their individual maps are combined into a
common map using relative poses. The mapping process then
continued as robots broadcasted new observations to each other.
The notion of a virtual robot traveling backward in time was
introduced to allow the incorporation of information gathered
by a robot before the common map was merged.

Madhavan et al. [12] studied how cooperative localization
and mapping can be performed using robots with heterogeneous
sets of sensors. It was shown how localization performance can
improve for robots with poor localization capabilities by using
relative measurements to a robot with better localization capa-
bilities [equipped with a differential global positioning system
(DGPS)]. This work was demonstrated by trials wherein two
robots cooperatively performed vision-based terrain mapping.

Rekleitis et al. [13] examined how sensing paradigm and the
number of robots affect localization performance with multiple
robots. The sensing paradigms included range-only, bearing-
only, range-and-bearing, and full-pose sensing (range, bearing,
and relative orientation). The results indicated that full-pose
measurement provides slightly better results than range-and-
bearing measurement, as well as range-only measurement. In-
creasing the number of robots also showed better localization
results. However, bearing-only measurement performed poorly,
regardless of the number of robots used.

Later, Roumeliotis and Rekleitis [14] analytically quantified
the benefit of cooperative localization. It was shown how the
number of robots can influence localization performance. Fur-
thermore, it was discovered that there are diminishing returns in
increasing the number of robots to reduce uncertainty.

Most recently, Trawny et al. [15] showed how the com-
munication cost of cooperative localization can be signifi-
cantly reduced by using quantized measurements. By quan-
tizing measurements to 4 bits, results were practically the
same compared to using real-valued measurements in a MAP
estimator.

Static network connectivity, or the ability to broadcast infor-
mation to all other robots in a multirobot team, is an important
requirement for the works mentioned previously. In this paper,

Authorized licensed use limited to: The University of Toronto. Downloaded on February 24,2010 at 11:40:00 EST from IEEE Xplore.  Restrictions apply. 



64 IEEE TRANSACTIONS ON ROBOTICS, VOL. 26, NO. 1, FEBRUARY 2010

we will address the challenge with performing state estima-
tion over a time-varying network. The difficulty involved is the
obstruction of data flow between robots and the unpredictable
sequence in which data are received. Ferguson and How [16]
examined various filters and network architectures to arrive at
suboptimal (full and partial) state estimates. For the various
methods and network architectures compared, the tradeoff be-
tween performance and computational requirement was shown.
This paper will look at how every robot in the team can obtain the
best possible (centralized) estimate under the aforementioned
network properties.

In a dynamic network, the sequence in which information is
communicated to a robot is often out of order, and this leads
to the out-of-sequence measurements (OOSM) problem. Bar-
Shalom [17], [18] examined some possible remedies for treating
OOSM in state estimation using a Kalman filter (also known
as the negative timestep problem) and applied this to target
tracking. It was shown that for a missed measurement, the only
way to incorporate it so as to produce a centralized state estimate
is to sequentially reprocess all following measurements. This
is an important concept to note for the rest of this paper. In
situations where past measurements are no longer available,
various methods were proposed to arrive at an approximate
estimate. For the special case when the missed measurement is
from a single timestep back, it was shown that the centralized
state estimate can be recovered.

As network properties can cause difficulties in cooperative
localization by preventing the exchange of information, robots
may also experience the problem of overusing the same piece of
information. This problem, known as cyclic update, occurs when
one robot provides information to another robot to update its
state estimate, which, in turn, is provided back to the first robot
for updating its state estimate. The result of this is overconfident
state estimates. Previously, we mentioned how the channel filter
was applied in sensor networks for this reason. Howard et al.
[19] introduced the dependency tree as a remedy to this problem
for a multirobot system, but it is not guaranteed to work in
all cases. We will show that the decentralized state-estimation
method that we present in this paper does not suffer from cyclic
updates. In contrast, we handle this by giving each piece of
information a unique identifier and then limit the amount of
information through the Markov property.

Also worth mentioning is the consensus problem, but note
that the work presented in the current paper does not fit into the
consensus-problem framework. For a network of agents, solv-
ing the consensus problem requires determining a consensus
algorithm. This algorithm specifies how agents should inter-
act with their neighboring agents and defines the actions to
be used by each agent, with the goal of converging the states
of all agents to some common value. In general, the study of
the consensus problem looks at how coherent global behavior
can be produced by local control laws or estimation methods.
An example of this is distributed formation control for multi-
vehicle systems [20]. Another example of an application that
involves more complex local actions is distributed control for
object clustering [21]. For distributed state estimation, Schizas et
al. [22] looked at how consensus can be reached in wireless sen-

sor networks. Recently, research on the consensus problem has
extended to switching (dynamic) network topologies, but con-
vergence can only be guaranteed under some network topology
restrictions [23].

To the knowledge of the authors, there has been no previ-
ous work by other researchers on a localization method that
is able to achieve our objective of providing a decentralized
state estimate in a dynamic network (wherein connectivity is
not guaranteed) that is equivalent to the centralized state esti-
mate whenever possible. In [24], we introduced the preliminary
concepts regarding information flow and the first version of
our decentralized framework. Simulations were conducted for
a single-network configuration. Compared with our past work,
this paper adds significantly more insight into the decentralized
localization problem by providing all the theorems and proofs
that we have developed regarding information flow in a robot
network. We also provide greater details for our decentralized
state-estimation algorithm and the scalability of our approach.
Most importantly, this paper provides simulated localization
results for a broad range of network connectivity settings to
give a comprehensive assessment on the performance of our
approach.

III. PROBLEM FORMULATION

In a multirobot system, let N represent the set that contains
the unique identification indexes of all robots. The total number
of robots corresponds to |N |, the cardinality of the set, and we
assume that the identification indexes of the robots range from 1
to |N |. Furthermore, we define Ni,k as the set of robots known
to robot i at a specific timestep k. We assume a general system
model for the robots

xi,k = g (xi,k−1 ,ui,k , εk )

yj,i
i,k = h (xi,k ,xj,k , δk ) (∀j)(dj,i

k ≤ robs)

where for timestep k, xi,k represents the state (pose) of robot i,
ui,k represents the odometry information of robot i, g(·) is the
state-transition function (with process noise εk ), yj,i

i,k represents
the measurement (e.g., range/bearing) of robot j with respect
to robot i, h(·) is the measurement function (with measurement
noise, δk ), dj,i

k is the distance between robot i and j, and robs

is the measurement range limit. Robots within communication
range rcomm of each other are able to exchange and relay in-
formation, which includes state estimates, odometry data, and
measurement data. Let

Xk = {xi,k} (∀i ∈ N)

represent the set of all robot states at time step k, and let

XQ,k = {xi,k} (∀i ∈ Q)(Q ⊆ N)

represent the set of states at timestep k for the robots in some
subset Q of N . Similarly, let

Uk = {ui,k} (∀i ∈ N)

Authorized licensed use limited to: The University of Toronto. Downloaded on February 24,2010 at 11:40:00 EST from IEEE Xplore.  Restrictions apply. 



LEUNG et al.: DECENTRALIZED LOCALIZATION OF SPARSELY-COMMUNICATING ROBOT NETWORKS 65

represent the set of odometry information from all robots at
timestep k, and let

UQ,k = {ui,k} (∀i ∈ Q)(Q ⊆ N)

represent the set of odometry data at timestep k for all robots in
subset Q of N . Let

Yk = {yj,i
i,k} (∀i, j)(dj,i

k ≤ robs)

represent the set of all measurements made at timestep k

Yi,k = {yj,i
i,k} (∀j)(dj,i

k ≤ robs)

represent the set of all measurements made by robot i at timestep
k, and let

YQ,k = {yj,i
i,k} (∀i, j ∈ Q)(dj,i

k ≤ robs)

represent the set of measurements made between robots in set
Q.

Due to uncertainty in both state transition and measurements,
the true state of the system cannot be found deterministically, but
can only be estimated using odometry and measurement data.
In general, the centralized belief is represented by a probability
density function p(·) over all robot states Xk

bel(Xk ) := p (Xk |bel(X0), U1:k , Y1:k )

which is conditioned on the initial belief bel(X0), past odometry
data, and past range and bearing measurements. From a practical
and computation point of view, it is helpful to apply the Markov
property [25]

p (Xk |bel(X0), U1:k , Y1:k ) = p (Xk |bel(Xk−1), Uk , Yk )

when performing state estimation. This property makes the be-
lief over the current state of a system independent of all past
states, and it limits memory and processing requirements by al-
lowing state estimation to be performed recursively. This can be
accomplished for a centralized state estimator using the Bayes
filter [26]

bel(Xk ) = p (Xk |bel(X0), U1:k , Y1:k )

= η p (Yk |Xk )
∫

p (Xk |Xk−1 , Uk )

p (Xk−1 |bel(X0), U1:k−1 , Y1:k−1) dXk−1

where η is a normalizing constant to ensure that the result-
ing posterior probability density function bel(Xk ) preserves the
axiom of total probability. However, in a decentralized frame-
work wherein robots are not always in contact with each other,
the Markov property can only be applied once a robot obtains
sufficient information regarding other robots through commu-
nication. Furthermore, each robot must ensure that other robots
will no longer require any of the past information it possesses
(because it will be discarded when applying the Markov prop-
erty). Hence, the key problem is to determine the necessary and
sufficient conditions under which the Markov property can be
applied in order to obtain an estimate equivalent to that ob-
tainable by a centralized state estimator when robots are only

ROBOT 1

ROBOT 2

ROBOT 3

y2,1

u1,1

u2,1

u3,1

u1,2

u2,2

u3,2

u1,3

u2,3

u3,3

u1,4

u2,4

u3,4
k=0=k1 

1,1

y3,2
2,2

y1,2
2,1

y1,2
2,3

y2,1
1,3

y2,3
3,2

k=4=k2
k = 1 k = 2 k = 3

TIME

Fig. 2. Example global information flow graph Gk 1 :k 2 indicating state tran-
sition and communication links established between timesteps k1 and k2 for
three robots.

occasionally exchanging information with each other. Accord-
ingly, our objective is for each robot i to estimate the state of all
known robots (i.e., find bel(Xk )) in a decentralized manner.

IV. INFORMATION FLOW IN A DYNAMIC NETWORK

In the case of sporadic communication and observations, it
is essential to track the information available to each robot for
making state estimations to ensure that 1) a robot does not
apply the Markov property without receiving all information
required to calculate the centralized state estimate, and 2) a robot
does not reuse information and cause cyclic updates to occur.
A graph is a convenient tool for representing network topology.
We will first examine the robot network from the perspective of
an outside observer having the ability to see all the interactions
between robots. We will then look at the network locally (i.e.,
from the perspective of a particular robot). To simplify many
of the following concepts in this paper, we will assume that
rcomm = robs, but this is only for explanation purposes. We will
revisit this assumption in a later section to show that the two do
not need to be equivalent.

A. Global Perspective

Let Gk1 :k2 be a directed graph that shows the communication
links established between robots from timestep k1 to k2 . This
graph can be used to show the flow and distribution of infor-
mation, and we will refer to Gk1 :k2 as the global information
flow graph. The number of nodes in Gk1 :k2 is the product of the
number of robots and the number of timesteps represented by
the graph. These nodes v can be systematically numbered using
the time index k and the robot index i, such that

v(i, k) = (k − k1)|N | + i, (k1 ≤ k ≤ k2)(1 ≤ i ≤ |N |).

An example of an information flow graph is depicted in Fig. 2.
In relation to the system model, an arc connecting two robots
at a timestep represents a measurement between the two robots.
This also represents a communication window (which allows
the exchange of information possessed by both robots). Hor-
izontal arcs represent state transitions. The presence of an arc
connecting two nodes implies that all information at the originat-
ing node is also available at the destination node. Furthermore,
odometry and measurement information that are labeled on the
arcs making up the path in between are also available at the
destination node.

Authorized licensed use limited to: The University of Toronto. Downloaded on February 24,2010 at 11:40:00 EST from IEEE Xplore.  Restrictions apply. 



66 IEEE TRANSACTIONS ON ROBOTICS, VOL. 26, NO. 1, FEBRUARY 2010

As a robot traverses a workspace and occasionally observes
and communicates with another robot, it will begin to accumu-
late information regarding the entire team. The specific data in
its possession will depend on the evolving topology of the in-
formation flow graph. Let the knowledge set Si,k consist of all
odometry and measurement data, as well as the previous state
estimates known to robot i at time k. We will assume at the initial
time that Si,0 = {bel(xi,0)}. A more in-depth discussion on this
initial condition will follow in a later section. At each timestep,
the knowledge set expands with the addition of new odometry
data as well as measurement data if another robot is observed.
Let Ri,k represent the set of robots within distance rcomm of
robot i at time k, and let S−

i,k represent the knowledge set after
state transition and observations but before communication is
established with any other robot

S−
i,k = Si,k−1 ∪ {ui,k , Yi,k} . (1)

When communication occurs between robots i and j, they will
make their knowledge sets available to each other, and the
knowledge set of both robots will become identical

Si,k = Sj,k = S−
i,k ∪ S−

j,k , (∀j ∈ Ri,k ). (2)

The previous equations model how information flows within
the robot network at every timestep. With the progression of
time, the knowledge set for each robot will continue to expand,
causing the information storage requirement to also increase. If
the Markov property is not exploited in an estimator, the amount
of data in each knowledge set will increase over time without
bound. In most centralized recursive-state estimators, we make
use of the Markov property to reduce memory-storage require-
ments. In our decentralized state-estimation problem, this must
be done with extreme care to ensure that all robots can also
make the same state estimate. For this purpose, a checkpoint is
defined as follows.

Definition 1: A checkpoint C(kc , ke) is an event that occurs
at the checkpoint time kc that first comes into existence at ke ,
in which the set of knowledge for each robot i contains for
all j:

1) the previous state estimate of robot j at some timestep
ks,j ≤ kc ;

2) all the odometry and measurement data of robot j from
timestep ks,j to kc .

Equivalently written using mathematics, a checkpoint occurs
at timestep kc when Si,ke

⊇ Sj,kc
(∀i, j).

Using Fig. 2 as an example, and assuming that each robot
begins with Si,0 = {bel(xi,0)}, one of the checkpoints that can
be found in this figure is C(1, 3). It can be verified that at k = 3,
each robot has the previous state estimate of all robots (at k = 0).
Also, each robot has the odometry and measurement data of all
robots up to k = 1.

The importance of a checkpoint is that it allows us to apply
the Markov property, thereby replacing an old state estimate,
odometry, and measurement data up to kc , with a new state esti-
mate. To make use of a checkpoint, it is first necessary to prove
its existence for a given information flow graph. According to
the definition of a checkpoint, we need to show that the knowl-
edge set of each robot at timestep ke contains the state estimate

ROBOT 1

ROBOT 2

ROBOT 3
kc1

kc2
ke2

ke1

Fig. 3. Checkpoint C(kc 2 , ke2 ) cannot come into existence before an earlier
occurring checkpoint C(kc 1 , ke1 ) comes into existence. Hence, ke1 must be
less than ke2 since kc 1 is less than kc 2 .

for all robots at a timestep ks,j , as well as the odometry and
measurement data for all robots from timestep ks,j to kc . Note
that from (1) and (2), a property of knowledge sets is that

Si,k1 ⊆ Si,k2 , (k1 ≤ k2)

provided that the Markov property is not applied between k1 and
k2 . This property guarantees that all information is retained as
the knowledge set (information) that a robot accumulates over
time. By this argument, the knowledge set of a robot must always
contain its previous state estimate, all its previous odometry data,
as well as measurements. That is, if the Markov property is not
applied

bel(xi,ks
) ∈ Si,ks

→ bel(xi,ks
) ∈ Si,k , (k ≥ ks)

ui,k ∈ Si,k → ui,k ∈ Si,kc
, (kc ≥ k)

yi,k ∈ Si,k → yi,k ∈ Si,kc
, (kc ≥ k).

We now present a theorem regarding checkpoint existence.
Theorem 1.1: C(kc , ke) exists if and only if a path exists from

v(i, kc) to v(j, ke) on Gkc ,ke
(∀i, j).

Proof: We will first assume that C(kc , ke) exists. This implies
that all odometry measurements and state estimates from all
robots at kc are in the knowledge sets of all robots at ke . Clearly,
this is only possible if there exists an information flow path from
v(i, kc) to v(j, ke) (∀i, j).

Now we will assume that a path exists from v(i, kc) to v(j, ke)
(∀i, j). By the knowledge set update rules, all odometry mea-
surements and state estimates from all robots at kc will become
incorporated into the knowledge sets of all robots at ke . There-
fore, C(kc , ke) exists. �

The necessary and sufficient conditions of Theorem 1.1 pro-
vide a method for verifying checkpoint existence (an indication
of when the Markov property is applicable), but there exists a
more practical verification for checkpoint existence for imple-
mentation purposes. Before showing this, we need to introduce
a lemma. Referring to Fig. 3, the lemma states that in the interval
between the occurrence and existence time of one checkpoint
(i.e., kc1 and ke1 ), we can be certain that another checkpoint
will not come into existence. Hence, information in knowledge
sets within this interval will not be replaced by state estimates
since we know (for now) that the Markov property can only be
applied at a checkpoint.

Lemma 1.1: Suppose C(kc1 , ke1 ) and C(kc2 , ke2 ) exist and
that ke1 	= ke2 . Then kc1 < kc2 if and only if ke1 < ke2 .

Proof: We will use the information flow graph as an aid in

this proof. Furthermore, the notation v1
path−→ v2 will be used

Authorized licensed use limited to: The University of Toronto. Downloaded on February 24,2010 at 11:40:00 EST from IEEE Xplore.  Restrictions apply. 



LEUNG et al.: DECENTRALIZED LOCALIZATION OF SPARSELY-COMMUNICATING ROBOT NETWORKS 67

to denote that a path exists from node v1 to node v2 . We will
show that there is a violation in the existence of a checkpoint if
the necessary and sufficient conditions are not followed. More
formally, let us first assume that

kc1 < kc2

⇒ v(i, kc1 )
path−→ v(i, kc2 ) (∀i)

⇒ v(i, kc2 )
path−→ v(j, k) (∀i,∀j)(ke2 ≤ k)

⇒




v(i, kc1 )
path−→ v(j, k) (∀i,∀j)(ke2 ≤ k), if (ke1 ≥ke2 )

v(i, kc1 )
path−→ v(j, k) (∀i,∀j)(ke1 ≤ k), if (ke1 <ke2 )

⇒ ke1 < ke2 .

To explain in greater detail, line 2 is true simply from the
fact that a node representing a robot at a given time is always
connected to a node representing the same robot at a future
time. Line 3 is merely restating the assumption that ke2 is the
earliest time at which checkpoint 2 exists. In line 4, given that
ke1 ≥ ke2 , this implies that the earliest time at which checkpoint
1 exists is ke2 and not ke1 . Only when we are on line 5, where
ke1 < ke2 , can ke1 be the earliest time at which checkpoint 1
exists. Therefore, it must be true that ke1 < ke2 . Now, we will
assume that

ke1 < ke2

⇒ v(i, kc1 )
path−→ v(j, k) (∀i,∀j)(ke1 ≤ k)

⇒ (kc1 ≥ kc2 ), v(i, kc2 )
path−→v(i, kc1 ) (∀i)

⇒




v(i, kc2 )
path−→ v(j, k), (∀i,∀j)(ke1 ≤ k), if (kc1 ≥ kc2 )

v(i, kc2 )
path−→ v(j, k), (∀i,∀j)(ke2 ≤ k), if (kc1 < kc2 )

⇒ kc1 < kc2 .

On line 2, we are restating the assumption that ke1 is the
earliest time at which checkpoint 1 exists. On line 3, given
that kc1 ≥ kc2 , we know a node representing a robot is always
connected to a node representing the same robot at a future time.
This implies on line 4 that the earliest time at which checkpoint
2 comes into existence is ke1 and is invalid. On the other hand, if
we are given that kc1 < kc2 on line 5, the earliest time at which
checkpoint 2 comes into existence becomes ke2 . Hence, it must
be true that kc1 < kc2 . �

Using the earlier lemma, we now present a theorem which
gives a more practical method for verifying the existence of
a checkpoint for implementation purposes. Basically, we will
show that it is possible to know when a checkpoint exists by
looking for a subset of odometry information in the knowledge
set of each robot.

Theorem 1.2: C(kc , ke) exists if and only if the knowl-
edge set of each robot at ke contains uj,kc

or bel(xj,kc
)(∀j).

Expressed mathematically, Si,ke
⊇ Sj,kc

(∀i, j) ⇔ Si,ke
⊇

(uj,kc
or bel(xj,kc

))(∀i,∀j).

ROBOT 1

ROBOT 2

ROBOT 3

at k=1

k=0 k=1

LOCAL INFORMATION FLOW GRAPHS FOR ROBOT 3 

Robot 3 is unaware of 
the interaction between 
Robot 1 and Robot 2

Robot 3 is again unaware 
of the interaction between 
Robot 1 and Robot 2

Robot 3 is now aware 
of this interaction 
between Robot 1 and 
Robot 2

at k=2 at k=3

k=0 k=1 k=2 k=0 k=1 k=2 k=3

Fig. 4. Example showing the local information flow graph topology of a single
robot (robot 3) as time progresses.

Proof: We will approach this proof by first assuming that
C(kc , ke) exists

Si,ke
⊇ Sj,kc

(∀i,∀j)

⇒ Si,ke
⊇




{
bel(xj,ks , j

), Yj,ks , j +1:kc
,uj,ks , j +1:kc

}
(∀i,∀j) if (ks,j < kc){

bel(xj,ks , j
)
}

(∀i,∀j) if (ks,j = kc)

⇒ Si,ke
⊇ uj,kc

or bel(xj,kc
) (∀i,∀j).

In the second line, we expand Sj,kc
(∀j) to show the infor-

mation that can be found in the knowledge sets depending on
ks,j , the time of the latest belief for robot j. In the last line, we
show that either uj,kc

or bel(xj,kc
) for all robots j will always

be available.
Now, assuming that the knowledge set of each robot at ke

contains uj,kc
or bel(xj,kc

)

Si,ke
⊇ uj,kc

or bel(xj,kc
) (∀i,∀j)

⇒ Si,ke
⊇ Sj,k (∀i,∀j)(kc ≤ k ≤ ke)

⇒ Si,ke
⊇ Sj,kc

(∀i,∀j).

Since odometry data and the belief at kc from all robots
j are available, this implies on line 2 that Sj,k must also be
available for all robots j, where kc ≤ k ≤ ke . Furthermore, we
know that the knowledge set of a robot will always contain its
past knowledge set, provided the Markov property has not been
applied. We are certain of this because Lemma 1.1 indicates that
another checkpoint cannot come into existence between kc and
ke . Therefore, the Markov property can never be applied within
this timeframe. �

B. Local Perspective

The information flow graph is a global graph in the sense
that it represents the interactions of all robots as viewed by an
outside observer. In relation to Fig. 2, the graph topology from
the point of view of an individual robot will differ, as illustrated
in Fig. 4.

This leads to the question of whether or not it is necessary for
a robot to know the complete knowledge set of all other robots
before determining that a checkpoint exists. It turns out that
we do not. To show this, we present the definition of a partial
checkpoint and a theorem for its existence.

Definition 2: A partial checkpoint Cp(kc,i , ke,i) is an event
that occurs for robot i at time kc,i that first comes into exis-
tence at ke,i , in which the set of knowledge for robot i contains
for all j:

Authorized licensed use limited to: The University of Toronto. Downloaded on February 24,2010 at 11:40:00 EST from IEEE Xplore.  Restrictions apply. 



68 IEEE TRANSACTIONS ON ROBOTICS, VOL. 26, NO. 1, FEBRUARY 2010

1) the previous state estimate of robot j at some timestep
ks,j ≤ kc,i ;

2) all the odometry and measurement data of robot j from
timestep ks,j to kc,i .

Equivalently written using mathematics, a partial checkpoint
for robot i occurs at timestep kc,i when Si,ke

⊇ Sj,kc
(∀j).

We will only present here the theoretical statements regarding
the existence of a partial checkpoint. The proofs of these are
largely similar to the proofs of Theorem 1.1, Lemma 1.1, and
Theorem 1.2, and are located in the Appendix.

Theorem 2.1: For robot i, Cp(kc,i , ke,i) exists if and only if a
path exists from v(j, kc,i) to v(i, ke,i) on Gkc ,ke

(∀j).
Lemma 2.1: Suppose Cp(kc1 ,i , ke1 ,i) and Cp(kc2 ,i , ke2 ,i) ex-

ist, and ke1 ,i 	= ke2 ,i . Then, kc1 ,i < kc2 ,i if and only if ke1 ,i <
ke2 ,i .

Theorem 2.2: Cp(kc,i , ke,i) exists if and only if the knowl-
edge set of robot i at ke contains uj,kc , i

or bel(xj,kc , i
)(∀j).

Expressed mathematically, Si,ke , i
⊇ Sj,kc , i

(∀j) ⇔ Si,ke , i
⊇

(uj,kc , i
or bel(xj,kc , i

))(∀j).
Similarly to Theorem 1.2, this Theorem 2.2 is important as it

provides a practical method to detect partial checkpoints when
implementing our decentralized state-estimation framework.
Note that a partial checkpoint can come into existence at differ-
ent times for each robot, depending on the evolving topology
of the robot network. We now present a lemma and two impor-
tant theorems that relate partial checkpoints to checkpoints and
show how the occurrence of these is affected when the Markov
property is applied.

Lemma 3.1: C(kc , ke) exists if and only if Cp(kc,i , ke,i) exists
(∀i), with (kc,i = kc), and (ke,i ≤ ke).

Proof: The underlying message in this lemma is that when
all robots detect a partial checkpoint occurring for the same
timestep, then a checkpoint will exist. The approach to this
proof is to use the definitions of a checkpoint and a partial
checkpoint. We will show that when the knowledge set of each
robot satisfies the condition for partial checkpoint existence for
timestep kc , then we also satisfy the condition for checkpoint
existence for timestep kc .

First, assume

C(kc , ke) exists

⇒ Si,ke
⊇ Sj,kc

(∀i,∀j)

⇒ (∃ke,i ≤ ke), Si,ke , i
⊇ Sj,kc

(∀i,∀j)

⇒ (∃ke,i ≤ ke), Si,ke , i
⊇ Sj,kc , i

(∀i,∀j)(kc,i = kc)

⇒ Cp(kc,i , ke,i) exists (∀i)(kc,i = kc)(ke,i ≤ ke).

In line 2, we rewrite the expression of a checkpoint using
its definition. Note that Sj,kc

, (∀j) is available to all robots at
earliest timestep ke , but it is possible for individual robots to
obtain this at an earlier time ke,i as indicated on line 3. In line
4, kc is simply replaced by kc,i . Finally, we use the definition
of a partial checkpoint to arrive at line 5. Now, we will assume
that Cp(kc,i , ke,i) exists (∀i), with (kc,i = kc) and (ke,i ≤ ke)

Cp(kc,i , ke,i) exists (∀i)(kc,i = kc)(ke,i ≤ ke)

⇒ Si,ke , i
⊇ Sj,kc , i

(∀i,∀j)(kc,i = kc)(ke,i ≤ ke)

⇒ Si,ke
⊇ Sj,kc

(∀i,∀j)

⇒ C(kc , ke) exists.

The definition of a partial checkpoint is used in line 2. In
line 3, we note that Si,ke

is a superset of Si,ke , i
since ke,i ≤ ke .

Furthermore, we replace all kc,i with kc and use the definition
of a checkpoint to arrive at the last line. �

Using this lemma, we can be sure that when partial check-
points (that occur at the same time kc,i for all robots) exist, then
a checkpoint also exists (with kc = kc,i(∀i)).

Theorem 3.1: Suppose C(kc , ke) exists, and robot m applies
the Markov property when Cp(kc , ke,m ) exists (i.e., at ke,m ).
Then, Cp(kc , ke,i) continues to exist (∀i).

Proof: We approach this proof by examining the knowledge
set of each robot and the changes caused by applying the Markov
property. We then verify that partial checkpoints continue to
exist for all robots.

When a checkpoint exists, and before the Markov property is
applied by robot m, the knowledge sets of all robots i contain
the belief at some previous time ks,j , for all robots j, as well as
odometry and measurements up to kc

C(kc , ke) exists

⇒ Cp(kc , ke,i) exists (∀i)

⇒ Si,ke , i
⊇ Sj,kc

(∀i,∀j)

⇒ Si,ke , i
⊇




{
bel(xj,ks , j

),uj,ks , j +1:kc
Yj,ks , j +1:kc

}
(∀i,∀j), if (ks,j < kc){

bel(xj,ks , j
)
}

(∀i,∀j), if (ks,j = kc).

It is of interest to know how the knowledge sets of robots that
are receiving information from robot m will change once robot

m applies the Markov property. Again using
path−→ to denote the

existence of a path on the information flow graph, let

Q =
{

all robots i|v(m, ke,m )
path−→v(i, ke,i)

}

and let Q = N − Q. Now, if we suppose that robot m
has applied the Markov property at ke,m , then Sm,ke , m

⊇
bel(xj , kc)(∀j). Furthermore, all robots in Q will also obtain
this belief in their knowledge set

Si,ke , i
⊇




{bel(xj,kc
)} (∀i,∀j ∈ Q){

bel(xj,ks , j
),uj,ks , j +1:kc

, Yj,ks , j +1:kc

}
(∀i,∀j ∈ Q), if (ks,j < kc){

bel(xj,ks , j
)
}

(∀i,∀j ∈ Q), if (ks,j = kc)

⇒ Si,ke , i
⊇ Sj,kc

(∀i,∀j)

⇒ Cp(kc , ke,i) exists (∀i).

For robots in Q, their knowledge sets will contain the same in-
formation as before the Markov property was applied by robot
m. Regardless, each of the three cases for Si,ke , i

shown ear-
lier allows us to conclude that by definition, a partial check-
point exists for all robots i. Fig. 5 is an illustration of this
theorem. �

Authorized licensed use limited to: The University of Toronto. Downloaded on February 24,2010 at 11:40:00 EST from IEEE Xplore.  Restrictions apply. 



LEUNG et al.: DECENTRALIZED LOCALIZATION OF SPARSELY-COMMUNICATING ROBOT NETWORKS 69

ROBOT 1

c ke1e4

ROBOT 2

ROBOT 3

ROBOT 4

ROBOT 5
,k,k k,k e5 e3e2 ek k

Fig. 5. Theorem 3.1. C(kc , ke ) exists, and robot 2 applies the Markov prop-
erty at ke2 when Cp (kc , ke2 ) exists (black node). The set of robots in Q are
the darker shaded nodes. The robots represented by these nodes will receive
bel(Xkc ), which is calculated by robot 2. Robots in Q are represented by
the lighter shaded nodes. The dotted arcs indicate the information flow paths
between these nodes and the robot that applied the Markov property.

The implication of this theorem is significant because we are
now certain that a robot’s decision to invoke the Markov property
as soon as its partial checkpoint exists will have no effect on
the other robots’ abilities to obtain a partial checkpoint (that
occurs for the same timestep kc ). Hence, all robots only need
to consider their local knowledge when applying the Markov
property. Note also the possibility for a robot to communicate
a state estimate that it has calculated. This allows other robots
to skip the redundant calculation for the same estimate. We will
now show that the centralized state estimate is obtainable by
all robots regardless of when each robot applies the Markov
property.

Theorem 3.2: Suppose that (∀i), robot i applies the Markov
property when Cp(kc,i , ke,i) exists (detected using Theo-
rem 2.2). Then, (∀C(kc , ke)), Si,ke , i

⊇ {bel(Xkc
)}(∀i), where

ke,i ≤ ke , and bel(Xkc
) is the centralized state estimate.

Proof: Whenever there exists a checkpoint, we know accord-
ing to Lemma 3.1 that partial checkpoints occurring at the same
time also exist for all robots. We also know from Theorem 3.2
that regardless of when the Markov property is applied by each
robot, partial checkpoints will always exists for all robots, and
therefore, all robots are able to apply the Markov property in any
order. Hence, the first line of the following mathematical state-
ments is true before and after the Markov property is applied by
all robots:

(∀C(kc , ke)), Cp(kc , ke,i) exists (∀i)(ke,i ≤ ke)

⇒(∀C(kc , ke)), Si,ke , i
⊇ {bel(Xkc

)} (∀i)(ke,i ≤ ke).

When robot i applies the Markov property at ke,i , the cen-
tralized state estimate will replace the equivalent information
in its knowledge set (up to time kc ). When all robots have ap-
plied the Markov property, all robots will have the centralized
state estimate. Furthermore, we are certain that this will occur
at ke = max

i
ke,i . �

With the previous theorem, not only are we certain that robots
can apply the Markov property based on local knowledge with-
out affecting the ability for others to do so, we are also cer-
tain now that all robots are able to obtain the centralized state
estimate if each robot applies the Markov property whenever
possible. Cyclic updates will never occur because 1) the knowl-

ROBOT 1

ROBOT 2

ROBOT 3
k=1 k=2 k=4k=3k=0

ROBOT 1

ROBOT 2

ROBOT 3

ROBOT 1

ROBOT 2

ROBOT 3

k=1 4=k2=k k=3k=0

4=k2=k1=k k=3k=0

r
comm

=  r
obs

r
comm

>  r
obs

r
comm

<  r
obs

Case 1

Case 2

Case 3

Communication only Measurement only Odometry

Fig. 6. Even when communication and measurement ranges are different or
unidirectional, Theorems 2.1 or 2.2 allow us to correctly determine when each
robot can apply the Markov property to obtain the centralized state estimate.

edge set update rules ensure that there is no repeating data in a
knowledge set, and 2) each robot will know whether an estimate
it has is equivalent to the centralized estimate (which is never
updated again). These important results will be used to develop
our decentralized state-estimation algorithm.

C. Communication and Measurement Ranges

Up to this point, we have let rcomm = robs, and implicitly
assumed that communication and measurements are bidirec-
tional. The applicability of the theorems presented remains the
same regardless of whether communication range is different
from measurement range and whether they are unidirectional
or bidirectional. This is because using Theorem 2.1 or 2.2,
we ensure that each robot will apply the Markov property if
and only if it has all the information necessary to calculate the
centralized estimate at the partial checkpoint occurrence time.
Fig. 6 is an example illustrating this fact. In case 1, rcomm = robs

as we have previously assumed. Using the theorems that we have
developed, robots 2 and 3 will both find Cp(1, 2), then robots
1 and 2 will find Cp(2, 3). Finally, robot 2 will find Cp(3, 4).
In all partial checkpoint instances, it can be verified that all
robots have gathered the required information to calculate the
centralized estimate, regardless of whether communication and
measurements occur unidirectionally or bidirectionally. In case
2 (rcomm > robs), most of the measurements seen from the pre-
vious case do not occur. Still, all partial checkpoint instances are
identical to case 1, and it can again be verified that the central-
ized estimates can be calculated at partial checkpoint occurrence
times. In case 3 (rcomm < robs), most of the communication in-
stances seen from case 1 do not occur, and it is not possible
for robots 1 and 3 to calculate the centralized estimate at the
timesteps shown. Cp(1, 4) is the only partial checkpoint that
occurs for robot 2, which is the same conclusion that Theorems
2.1 or 2.2 will provide when they are applied.

Authorized licensed use limited to: The University of Toronto. Downloaded on February 24,2010 at 11:40:00 EST from IEEE Xplore.  Restrictions apply. 



70 IEEE TRANSACTIONS ON ROBOTICS, VOL. 26, NO. 1, FEBRUARY 2010

V. DECENTRALIZED STATE-ESTIMATION ALGORITHM

The theoretical development in the previous section provides
the basis for developing our decentralized state-estimation al-
gorithm. We will first discuss the topic of initial conditions, and
show one of the scalable aspects of our method. This is followed
by the detailed explanation of our decentralized state-estimation
algorithm and a look into computational complexity.

A. Initial Conditions

For a system of robots, we have assumed that each robot
initially only has a belief of its own state. Hence, each robot
is only aware of its own existence, and a robot will only know
of the existence of another robot at first contact (i.e., when
communication or a measurement is made between the robots).
Correlation between the estimates on the states of two robots is
generated through relative measurements. When the estimates
of the states of all robots are correlated, any odometry and
measurement data for a single robot will not only influence the
belief over the individual robot’s state but the belief over all
robot states as well. It is precisely this reason why there is the
need for the notion of a checkpoint: so that all odometry and
measurement data are accounted for to produce decentralized
state estimates equivalent to those produced by a centralized
state estimator.

Due to the independence of state estimates before an en-
counter, individual (or a group of) robots can be treated as inde-
pendent subsystems. In other words, the system of all robots can
be decoupled into smaller subsystems and into |N | subsystems
(of individual robots) at the initial timestep.

Suppose Q1 and Q2 are two sets of robots that have never en-
countered each other before, and let bel(XQ 1 ,k ) and bel(XQ 2 ,k )
represent the beliefs over the states of the two groups,
respectively. Before accounting for any measurements between
the two groups, statistical independence allows the state estimate
for the combined system to be written as

bel(XQ 1 ,k ,XQ 2 ,k ) = bel(XQ 1 ,k )bel(XQ 2 ,k ). (3)

To implement this, we will always combine state estimates
made at the same timestep if they are found within a knowledge
set using (3). Measurements can then be processed to couple
and update the states in the combined state estimate. This seem-
ingly simple process contributes to the scalability aspect of our
decentralized state-estimation algorithm, in the sense that it is
unnecessary for each robot to initially know how many robots
there are. However, this is only possible when communica-
tion is bidirectional and when the communication range limit
is greater than or equal to the measurement range limit (i.e.,
the coupling of state estimates is detectable). Otherwise, each
robot will initially need to know the total number of robots on
the team.

B. Algorithm

Algorithm 1 is designed to perform decentralized state esti-
mation in a scalable manner and is guaranteed to work in a dy-
namic mobile-robot network wherein connectivity between all

Fig. 7. Iteration of the decentralized state-estimation algorithm, showing how
a knowledge set is updated at timestep k, as well as the calculation of the current
belief. Line numbers correspond to those in Algorithm 1.

Algorithm 1: DecentralizedStateEst(k, ui,k, Yi,k, Si,k−1,
Sj,k (∀j ∈ Ri,k))

Si,k ← Si,k−1 ∪ {ui,k} ∪ {Yi,k} ∪ {Sj, k}(∀j ∈ Ri,k)1
Ni,k ← {Q|(∀bel(XQ,ks) ∈ Si, k), (ks ≤ k)}2
repeat3

flagrepeat = false4
{ks1 ,Q1} ← find smallest ks1 such that

bel∗ (XQ1 ,  ks1) ∈ Si, k5
ks2 ← k6
if Q1 �= Ni,k then7

{ks2 ,  Q2} ← find smallest ks2 such that
bel∗ (XQ2 ,  ks2) ∈ Si,k (Q1 �= Q2)8

end9
for kc ← ks2 : ks1 do10

if UQ1 ,kc ∈ Si,k or kc = ks1 then11

S̃i,kc ← Si, k − {UQ1 ,kr ,  YQ1 ,kr} (∀kr > kc)12

bel∗ (XQ1 ,kc) ← p XQ1 , kc |S̃i,kc

)
13

Si,k ← Si,k ∪ bel∗ (XQ1 ,kc)14
Si,k ← Si,k−

{UQ1 ,kr ,  YQ1 ,kr , bel∗ (XQ1 ,kr )} (∀kr ≤ kc)15
break16

end17
end18
if {bel∗ (XQ1 ,kc) , bel∗ (XQ2 ,kc)} ∈ Si,k then19

bel∗ (XQ3 ,kc) ← bel∗ (XQ1 ,kc) bel∗ (XQ2 ,kc)20
Si, k ← Si,k ∪ bel∗ (XQ3 ,kc)−

{bel∗ (XQ1 ,kc) , bel∗ (XQ2 ,kc)}21
flagrepeat = true22

end23
until flagrepeat = false24

{ks1 ,  Q1} ← find smallest ks1 such that
bel∗ (XQ1 ,k s1) ∈ Si,k25

while Q1 �= Ni,k do26
{ks2 ,  Q2} ← find smallest ks2 such that27
bel (XQ2 ,  ks2) ∈ Si,k (Q1 �= Q2)(ks1 ≤ ks2)28

S̃i,ks2
← Si,k − {UQ1 ,ku ,  YQ1 ,kr} (∀ku > ks2)29

bel XQ1 ,ks2

)
← p XQ1 ,ks2

|S̃i,ks2

)
30

bel XQ1 ,ks2
,  XQ2 ,ks2

)
← bel XQ1 ,ks2

)
bel XQ2 , ks2

)
31

Q1 ← Q1 ∪Q232
ks1 ← ks233

end34
bel (XNi ,k) ← p (XNi ,k|Si,k)35
return {bel (XNi ,k) ,  Si,k ,  Ni,k}36

robots is not guaranteed. The same algorithm is implemented on
each robot and iterates every timestep. The required inputs are
the current timestep k, odometry data ui,k , measurements Yi,k ,
the latest knowledge set Si,k−1 , and the knowledge sets of all
robots (to which information exchange is possible at the current
timestep), Sj,k (∀j ∈ Ri,k ). Fig. 7 is a graphical overview of the
algorithm. Each robot first updates its knowledge set with the
current odometry and measurements. If other robots are within

Authorized licensed use limited to: The University of Toronto. Downloaded on February 24,2010 at 11:40:00 EST from IEEE Xplore.  Restrictions apply. 



LEUNG et al.: DECENTRALIZED LOCALIZATION OF SPARSELY-COMMUNICATING ROBOT NETWORKS 71

communication range, new information from other robots are
appended to the knowledge set. Within this updated knowledge
set, we apply Theorem 2.2 to detect partial checkpoints and
apply the Markov property at the partial checkpoint time if pos-
sible. Finally, the current state estimate is generated. Essentially,
each robot is running its own centralized state estimator on the
available information from the partial checkpoint timestep to
the current timestep. Note that in most cases, it is not possible
to reuse the current state estimate at a later time to generate the
centralized state estimate for the same timestep. This is due to
the OOSM problem mentioned in Section II.

At the very first iteration of our algorithm, we assume that
each robot initially only has a state estimate of itself in its
knowledge set. On line 1, we update the knowledge set of robot
i by implementing (1) and (2). Line 2 determines the set of all
robots known to i by looking for part beliefs bel∗(XQ,ks

) in
Si,k , where Q represents a set of robots. Note that bel∗ indicates
a belief that is equivalent to the state estimate obtainable using
a centralized state estimator. The loop beginning on line 3 re-
peats according to the flag variable set on line 4. The purpose
of this loop is to systematically combine multiple beliefs for
independent subgroups of robots in Si,k . To do this, on line 5,
we search for the earliest state estimate bel∗ (XQ 1 , ks1 ) in the
knowledge set. If Q1 = N , then we already have the belief over
all known robots. Otherwise, we search for the next earliest esti-
mate bel∗ (XQ 2 , ks2 ) on line 8. The intention here is to calculate
bel∗ (XQ 1 , ks2 ) so that the beliefs over the two groups can be
combined.

The search for a partial checkpoint (for system Q1) begins
with the “for” loop on line 10. If Q1 = N , we will attempt
to look for a partial checkpoint that is closest to the current
timestep, and this is why ks2 is initially set equal to k on line 6.
Otherwise, we will attempt to find a partial checkpoint at ks2 . If
ks1 and ks2 are the same, the partial checkpoint search is skipped
and we proceed directly to line 19 and combine the estimates
found on lines 5 and 8. Line 11 uses Theorem 2.2 to detect the ex-
istence of a partial checkpoint. If one is found, we use the knowl-
edge up to the partial checkpoint time determined on line 12 to
obtain the state estimate on line 13. The new estimate is entered
into the knowledge set on line 14, and we proceed to discard
information replaceable by bel∗ on line 15. On line 16, we break
out of the partial checkpoint search since one has been found.

Line 19 checks if there are two estimates for the same timestep
in the knowledge set. If a pair is found, we proceed to combine
them according to (3) on line 20, and update the knowledge
set on line 21. The repeat flag defined on line 4 is made true
here because there may be beliefs for other subgroups of robots
in the knowledge set that can be combined (i.e., in the next
iteration of the line 3–24 loop, the newly combined belief on
line 20 becomes the belief we will find on line 5, and we will
attempt to find the next earliest belief for another subgroup
on line 8). After searching for partial checkpoints, we turn our
attention to determine the state estimate for the current timestep.
Again, multiple estimates (for independent groups of robots at
different timesteps) may still exist in the knowledge set. We
again begin with the earliest state estimate in the knowledge
set on line 25, and aim to produce a state estimate at the time

of the next earliest estimate (line 27) in the knowledge set so
that the two can be combined. This process repeats in the loop
between lines 26 and 33 until we have a single state estimate
over the states of all known robots. The current state estimate
is then determined on line 35, which is based on the estimate
at the last partial checkpoint and any information since then to
the current time. Hence, it uses all the information available and
is the best estimate that can be produced at the current time.
In calculating this current estimate, we may not have all the
information required to make an estimate that is equivalent to
the centralized state estimator (i.e., a partial checkpoint does
not exist). In this situation, we assume the last known velocity
for robots from which we do not have odometry data, but this is
only temporary.

There are some important points to highlight about Algorithm
1. First, as mentioned already, it is unnecessary for a robot to
initially know how many robots there are in the system. This
is the scalable aspect of our algorithm. Second, since our al-
gorithm is based on the information-flow graph, the sequence
of communication between multiple robots or delays in com-
munication can be handled naturally without any changes to
our algorithm. This is one of the practical advantages with our
framework. Third, any recursive-filtering method can be used
on lines 13, 30, and 35. To give a few examples, the EKF, the
unscented Kalman filter, and the particle filter could be used in
our decentralized state-estimation framework. Thus, the algo-
rithm is very general and is widely applicable in any situation
in which there is a need to perform decentralized state estima-
tion in a dynamic network. Furthermore, an equivalent to the
centralized state estimate can always be calculated at the time
of a partial checkpoint. Although the state estimate at the cur-
rent time may be suboptimal due to missing information, the
equivalent centralized state estimate is guaranteed to be obtain-
able later. For the moment, a robot assumes that another robot
maintains its last known velocity until its odometry is known.
We are working on incorporating motion planning information
to produce more accurate motion predictions when robots are
not connected. Finally, note that the cyclic update problem is
never encountered.

C. Complexity

Since we are exploiting the Markov property, computation
and memory usage are limited provided that all robots are able
to detect partial checkpoints in the future, which is a reasonable
assumption if their task is to cooperatively localize. The compu-
tational complexity of Algorithm 1, its memory usage, as well
as communication bandwidth requirements will vary depending
on the number of timesteps since the previous partial checkpoint
k − kc , the number of states that need to be estimated n (which
is proportional to the number of robots |N |), and the filtering
method selected for use within Algorithm 1. The frequency
at which partial checkpoints occur depends on factors such as
communication range as well as the size of the workspace.
Fig. 8 illustrates the worst-case scenario for a four-robot team.
The scenario shows that while relative measurements are made
between all robots at all timesteps, information exchange does

Authorized licensed use limited to: The University of Toronto. Downloaded on February 24,2010 at 11:40:00 EST from IEEE Xplore.  Restrictions apply. 



72 IEEE TRANSACTIONS ON ROBOTICS, VOL. 26, NO. 1, FEBRUARY 2010

ROBOT 1

ROBOT 2

ROBOT 3

kkc

Communication and measurement Measurement only

ROBOT 4

OdometryMeasurement only

Fig. 8. Worst-case scenario in terms of memory usage, computation, and
communication.

not occur with one of the robots (Robot 4). This may occur if
Robot 4 or its communication hardware fails. Hence, new par-
tial checkpoints will not come into existence for all the robots,
and information will continue to accumulate in each robot’s
knowledge set. This will continue until communication is re-
established to Robot 4.

Assume that the EKF is used in the previous scenario. Since
n = c|N |, where c is a constant representing the number of states
per robot, we can simplify this complexity analysis by letting
c = 1 without affecting the end result. In a centralized estimator
(where all robots can exchange information at all timesteps),
there are (n2 − n) measurements at each timestep since every
robot makes a measurement of every other robot. Assuming that
the dimension of each measurement is constant (i.e., all mea-
surements always provide only range and bearing information),
and we process measurements sequentially, the computational
complexity of processing each measurement is O(n2) (from the
Kalman gain calculation and the covariance update steps). With
(n2 − n) measurements, the overall computational complexity
is therefore O(n4) for the centralized estimator. Furthermore,
storing the covariance matrix and measurements requires mem-
ory usage of O(n2).

Using the EKF in our decentralized estimator, memory us-
age will be of O((k − kc)n2) for each robot in the worst-case
scenario. This is because it is necessary to keep all information
in the knowledge set that comes after kc and up to the current
timestep k. For the worst-case scenario shown, at every timestep,
all robots except Robot 4 communicate with each other, pass-
ing on measurement and odometry information accumulated
since the last partial checkpoint to n − 2 robots (remember that
n = |N |). This makes the communication bandwidth require-
ment of O((k − kc)n3) for each robot. The computational com-
plexity of calculating the current state estimate is O((k − kc)n4)
for each robot, but only when a new partial checkpoint is dis-
covered since the calculation must then be performed from the
last partial checkpoint time. Otherwise, by knowing the state es-
timate from the previous timestep (k − 1), computational com-
plexity of calculating the current state estimate is O(n4). In
general, the difference in computational complexity from the
centralized approach (i.e., the k − kc factor) is the result of net-
work connectivity (i.e., the cost of operating in a dynamic and
sparse network).

In practice, performing state estimation at high frequency
may cause difficulties in real-time implementations as the num-

ber of timesteps since the previous partial checkpoint (k − kc )
increases at a high rate. A practical solution may be to aggregate
odometry data between measurements to effectively increase the
size of each timestep. It is important to note that in our simu-
lations, we found that the worst-case scenario of Fig. 8 rarely
occurs for a prolonged number of timesteps. Recall also from
Theorem 3.1 that the ability for robots to pass on state estimates
will reduce the need for other robots to perform the calculations
for the same state estimate, hence reducing computational cost.
It is worth mentioning that if robots keep track of the information
they have already sent to other robots, redundancy in commu-
nication can be reduced (in exchange for increase in memory
usage). Furthermore, robots consistently in contact with each
other can form a subgroup and temporarily store their current
state estimate to reduce the amount of computation required for
the next timestep (assuming that no past information is added
to their knowledge sets). We plan to address these extensions
in our future work. We also plan to look at robot failure cases
to decide when it no longer becomes feasible to maintain the
centralized estimate.

VI. SIMULATIONS

In the theoretical development of a checkpoint, we showed
that a state estimate equivalent to the centralized estimate can
be reached by all robots when a checkpoint exists (or by a par-
ticular robot when a partial checkpoint exists). It is of interest to
compare the performance of the proposed decentralized state es-
timation algorithm against a centralized state estimator. For this
purpose, simulations were performed for a group of uniquely
identifiable robots moving in a workspace in which each robot
does not initially know the total number of robots in the team.
The intention of the simulation is to have each robot estimate
the states of all robots known to itself (shown in Fig. 1). Com-
munication range and measurement range are set equal and are
limited so that the robots are in a dynamic network that is not
always fully connected. Note, the centralized state estimator
would simply not work under these assumptions, but we allow
robots the ability to always communicate with each other at
all timesteps for the centralized estimator so that estimates can
actually be made for comparison.

A. Setup

The EKF algorithm [27] is used as the filtering method on
lines 13, 20, and 35 of Algorithm 1. Note that many other
recursive filtering methods can be applied. The state of each
robot includes position (x, y) and orientation θ. A discrete-time
unicycle model [27] is used for state transition for each robot,
where the inputs (odometry data) are translational and angular
velocities (v, ω). The two inputs are assumed to be corrupted by
independent zero-mean Gaussian noise. When robot i observes
another robot j within range robs, it is able to measure the
range rj,i , as well as the bearing φj,i , of robot j with respect
to robot i. Each measurement component is assumed to contain
independent zero-mean additive Gaussian noise. The robot starts
with a random pose and an estimate of that pose in its knowledge
set, and each robot will move using the same visual servoing
control law [28] to random waypoints in the bounded workspace.

Authorized licensed use limited to: The University of Toronto. Downloaded on February 24,2010 at 11:40:00 EST from IEEE Xplore.  Restrictions apply. 



LEUNG et al.: DECENTRALIZED LOCALIZATION OF SPARSELY-COMMUNICATING ROBOT NETWORKS 73

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

π2

F
re

qu
en

cy
 o

f c
on

ne
ct

iv
ity

B C
A

π1 = 5

π1 = 10 π1 = 20

π1 = 15

Fig. 9. Frequency of connectivity observed for different numbers of stationary
robots.

B. Results

We postulate that the number of robots |N |, the size of the
workspace A (or robot density ρ), and communication range
rcomm are all the major factors that will influence the connectiv-
ity of the robot network and localization performance. There-
fore, it is necessary to test if and how simulation results are
affected by varying these parameters. To reduce the dimension-
ality of this analysis, Buckingham’s Pi theorem [29] is applied
to generate the dimensionless variables

π1 = |N |

π2 =
|N |
A

r2
comm = ρr2

comm.

Since we have three variables (|N |, A, and rcomm), and the units
of these contain only one fundamental quantity (distance), this
enables us to use 3 − 1 dimensionless parameters to analyze
the effects of each of the three variables on localization perfor-
mance.

There have been many studies on network connectivity in
the past for random graphs. A network is connected at a given
timestep if there exists a path between every pair of nodes. This
is true on the information-flow graph if at timestep k a path
exists from v(i, k) to v(j, k) (∀i, j). Furthermore, we define the
frequency of connectivity as the percentage of time that a robot
network is connected. This is shown in Fig. 9 for different num-
bers of (stationary) robots randomly populated in a workspace
1000 times to obtain an average at each data point. The trend
observed also applies to moving robots [30], and we have also
confirmed this through simulation.

The zero-to-one transition phenomenon observed in Fig. 9 is
typical for Bernoulli random graph models wherein connections
between robots are determined based on frequency (and not
distance) [31], as well as the fixed-radius random graph model
used for generating our robot network [32]. Furthermore, we
note that as π1 increases, the π2 value at which phase transition
occurs, as well as the steepness of the transition also increases to

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3

po
si

tio
n 

er
ro

r 
[m

]

 

 

rmse − x, π
1
 = 5

rmse − x, π
1
 = 10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.15

0.3

0.45

0.6

0.75

0.9

1.05

1.2

1.35

1.5

π
2
=r2ρ

he
ad

in
g 

er
ro

r 
[r

ad
]

 

 
rmse − θ, π

1
 = 5

rmse − θ, π
1
 = 10

A

B C

Fig. 10. Average error between decentralized and centralized state estimates.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

π2=r2ρ

av
er

ag
e 

m
em

or
y 

us
ag

e 
[M

B
]

π1 = 20

π1 = 15

π1 = 5

π1 = 10

CBA

Fig. 11. Average memory usage of a robot for decentralized state estimation.

approach an asymptotic curve. This corresponds to the findings
in [33].

This network connectivity phase transition is important in
providing us with an indication of how our decentralized state-
estimation algorithm performs. Low π2 values can be interpreted
as low robot density or short communication range. Under these
conditions, robots are rarely in contact with each other and infre-
quently establish partial checkpoints. Conversely, high π2 values
(after the phase transition) correspond to high robot density or
long communication range. Under these conditions, robots are
frequently in contact with each other, establishing partial check-
points. The range of π2 values at which the phase transition
occurs is an indication of when the implementation of our de-
centralized state estimate algorithm becomes advantageous. We
will first present overall performance results collected over hun-
dreds of simulation trials. Fig. 10 plots the root-mean-squared
error between the decentralized state estimates produced by our
algorithm and the centralized state estimates for x and y posi-
tions (which are almost overlapping in the figure, and thus, we
chose not to show the plots for π1 = 15 and π1 = 20 for this
reason), along with 2-standard-deviation error bars, as well as

Authorized licensed use limited to: The University of Toronto. Downloaded on February 24,2010 at 11:40:00 EST from IEEE Xplore.  Restrictions apply. 



74 IEEE TRANSACTIONS ON ROBOTICS, VOL. 26, NO. 1, FEBRUARY 2010

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Simulation time [s]

M
em

or
y 

us
ag

e 
[M

B
]

(a) π1 = 3, π2 = 0.50 (pt.A).

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Simulation time [s]

M
em

or
y 

us
ag

e 
[M

B
]

(b) π1 = 8, π2 = 2.00 (pt.B).

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Simulation time [s]

M
em

or
y 

us
ag

e 
[M

B
]

(c) π1 = 17, π2 = 4.25 (pt.C).

0 10 20 30 40 50 60 70 80 90 100
10

−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

Simulation time [s]

D
et

er
m

in
an

t o
f C

ov
ar

ia
nc

e 
M

at
rix

CSE DSE DDR

(d) π1 = 3, π2 = 0.50 (pt.A).

0 10 20 30 40 50 60 70 80 90 100
10

−100

10
−80

10
−60

10
−40

10
−20

10
0

Simulation time [s]

D
et

er
m

in
an

t o
f C

ov
ar

ia
nc

e 
M

at
rix

CSE DSE DDR

(e) π1 = 8, π2 = 2.00 (pt.B).

0 10 20 30 40 50 60 70 80 90 100
10

−250

10
−200

10
−150

10
−100

10
−50

10
0

Simulation time [s]

D
et

er
m

in
an

t o
f C

ov
ar

ia
nc

e 
M

at
rix

CSE DSE DDR

(f) π1 = 17, π2 = 4.25 (pt.C). Note that the plots
for CSE and DSE are overlapping

0 10 20 30 40 50 60 70 80 90 100
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Simulation time [s]

D
iff

er
en

ce
 [m

]

(g) π1 = 3, π2 = 0.50 (pt.A).

0 10 20 30 40 50 60 70 80 90 100
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

Simulation time [s]

D
iff

er
en

ce
 [m

]

(h) π1 = 8, π2 = 2.00 (pt.B).

0 10 20 30 40 50 60 70 80 90 100
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

Simulation time [s]

D
iff

er
en

ce
 [m

]

(i) π1 = 17, π2 = 4.25 (pt.C).

0 10 20 30 40 50 60 70 80 90 100
−8

−6

−4

−2

0

2

4

6

8

Simulation time [s]

D
iff

er
en

ce
 [m

]

(j) π1 = 3, π2 = 0.50 (pt.A).

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3

Simulation time [s]

D
iff

er
en

ce
 [m

]

(k) π1 = 8, π2 = 2.00 (pt.B).

0 10 20 30 40 50 60 70 80 90 100
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Simulation time [s]

D
iff

er
en

ce
 [m

]

(l) π1 = 17, π2 = 4.25 (pt.C).

Fig. 12. Detailed simulation results for simulation trials at various connectivity settings. (a)–(c) Memory usage for robot 1. (d)–(f) Estimation uncertainty for
the DSE, the CSE, and DDR. (g)–(i) Difference between the decentralized estimate from robot 1 and the centralized estimate of robot 1’s own x-position. (j)–(l)
Difference between the decentralized estimate from robot 1 and the centralized estimate for robot 2’s x-position. Note the difference in scale for (g)–(l).

orientation θ. The averaged error at each data point is obtained
over 50 simulation trials.

In Figs. 9 and 10, we have identified three specific π2 values:
Point A (π2 = 0.5) corresponds with low frequency of connec-
tivity, point B (π2 = 2.0) is within the connectivity phase transi-

tion region, and point C (π2 = 4.25) corresponds with high fre-
quency of connectivity. Over the phase transition, the difference
between the decentralized and centralized estimates has reduced
drastically. This is where our decentralized state-estimation
algorithm begins to show its merits. At point C, connectivity

Authorized licensed use limited to: The University of Toronto. Downloaded on February 24,2010 at 11:40:00 EST from IEEE Xplore.  Restrictions apply. 



LEUNG et al.: DECENTRALIZED LOCALIZATION OF SPARSELY-COMMUNICATING ROBOT NETWORKS 75

has a high likelihood of being maintained and the difference
in the decentralized and centralized estimates approaches zero.
Note that although the performance between the two is almost
identical, the centralized state estimator will only work if con-
nectivity is guaranteed at all times.

Memory usage is limited since our decentralized state-
estimation algorithm makes use of the Markov property. Ac-
tual memory usage will depend on how many robots there are
in the network (i.e., the number of states to estimate) and the
frequency of partial checkpoint occurrence. Fig. 11 is a plot
of average memory usage with 2-standard-deviation error bars.
Each plotted point represents the averaged results of over 50
simulation runs. At low frequency of connectivity settings, par-
tial checkpoints occur infrequently and each robot must store
all its accumulated data in the duration between partial check-
points, leading to high average memory usage. As π2 increases,
the robot encounters occur more often and the frequency of par-
tial checkpoint occurrence also increases, leading to reductions
in memory usage. Note, as we increase the number of robots,
memory usage also increases because the number of states that
need to be estimated is increasing.

Now we will present detailed results corresponding to sin-
gle simulation trials at points A, B, and C, beginning first with
memory usage for a single robot (robot 1) in Fig. 12(a)–(c). In
these figures, momentary increases in memory usage occur as a
robot accumulates information between partial checkpoints and
reduces when the Markov property is applied. The characteris-
tics and the frequency of these fluctuations were observed to be
dependent on connectivity settings. Note that at high frequency
of connectivity, memory usage approaches that of a centralized
estimator. Using these three graphs, we can also get a sense
of computation and communication requirements. As memory
usage increases, more information is stored in the knowledge
set, which needs to be communicated and processed during state
estimation. However, note that we rarely experience the worst-
case scenario shown in Fig. 8, and even in the low-frequency-
of-connectivity case, the timesteps between partial checkpoints
are limited.

The difference between the overall uncertainty of robot 1’s
decentralized state estimate and that of the centralized state es-
timate can be observed in Fig. 12(d)–(f). The determinant of the
estimation error covariance (which is proportional to the volume
of the uncertainty ellipsoid) are shown in these plots for the cen-
tralized state estimator (CSE), our decentralized state estimator
(DSE), and decentralized dead-reckoning (DDR), which only
uses odometry data. As the frequency of connectivity increases,
uncertainty for the decentralized state estimate approaches that
of the centralized state estimate. Note that because there are no
stationary landmarks, and since all robots are always in motion,
the error covariance gradually inflates over time. In our tests,
we have also simulated the Cramér–Rao lower bound for un-
certainty by evaluating the Jacobians used in the EKF at the
true states [34]. This theoretical lower bound for uncertainty
is confirmed to be slightly lower than that of the centralized
state estimator, providing evidence that both the centralized and
decentralized estimators that have been implemented are not
overconfident.

Next, we will show the difference between the mean of the
decentralized state estimates, and that of the centralized state
estimates. Since there are a large number of states being esti-
mated (by each robot), we elected to only show a portion of
these. For each trial, we will show the difference for robot 1’s
own x-position estimates [see Fig. 12(g)–(i)] and that of robot
2 [see Fig. 12(j)–(l)]. Similar results are observed for all other
robots’ poses. It is evident that as the frequency of connectivity
increases, the difference between the decentralized and cen-
tralized state estimates decreases. Furthermore, the difference
for a robot’s estimate for itself is always closer to the central-
ized estimate compared to its estimate of another robot. This is
because a robot is always aware of its own odometry and mea-
surements but not necessarily that of another robot, depending
on the evolving network topology.

It can be seen how the detailed results presented earlier fol-
low the overall trend in localization performance and memory
usage observed in Figs. 10 and 11. Once again, remember that
centralized state estimation is not possible when full connectiv-
ity is not guaranteed between robots at each timestep, and the
decentralized state estimator presented here is proven to allow
the equivalent centralized state estimate to be reached under a
dynamic network where robots sporadically communicate. At
no time does the network need to be fully connected.

VII. CONCLUSION

An algorithm was presented that allows state estimation to
be performed in a dynamic robot network, in which full con-
nectivity is not assumed. We defined checkpoints and partial
checkpoints, which are events during which a state estimate
equivalent to the centralized estimate can be made by the de-
centralized state estimator, implying that the estimate is based
on all past information. We have also introduced theorems to
allow checkpoints and partial checkpoints to be detected in a
practical manner. The proposed method is scalable in the sense
that the number of robots in the network does not need to be
known initially, but only when communication is bidirectional,
and when the communication range limit is greater than the
measurement range limit. Furthermore, we have shown through
simulations that memory usage (although large compared to the
centralized estimator) is limited by exploiting the Markov prop-
erty at partial checkpoints. In our simulations, we also looked at
how various factors captured by dimensionless variables affect
performance of our decentralized state estimator in comparison
to the centralized estimator, and how this relates to network
connectivity. Results show that the performance of our decen-
tralized state estimator begins to approach that of the centralized
state estimator when a phase transition occurs in the frequency
of network connectivity. It must be stressed again that a cen-
tralized state estimator will not be able to produce an estimate
unless we assume full network connectivity at all times.

The natural extension of this research (already in progress) is
to look at decentralized SLAM under the same assumptions on
the network (i.e., include landmarks) and to conduct experiments
with real robots. Furthermore, we are extending our algorithm
to accommodate the situation in which a robot that is previously

Authorized licensed use limited to: The University of Toronto. Downloaded on February 24,2010 at 11:40:00 EST from IEEE Xplore.  Restrictions apply. 



76 IEEE TRANSACTIONS ON ROBOTICS, VOL. 26, NO. 1, FEBRUARY 2010

part of the network fails or leaves the group permanently. Finally,
we would like to incorporate decentralized planning and achieve
a method of active SLAM for a dynamic network of mobile
robots.

APPENDIX

Proof of Theorem 2.1: We will first assume that Cp(kc,i , ke,i)
exists. This implies that all odometry measurements and state
estimates from all robots at kc,i are in the knowledge sets of
robots i at ke,i . Clearly, this is only possible if there exists an
information flow path between v(i, kc) to v(j, ke) (∀j).

Next, we assume that a path exists between v(i, kc) to v(j, ke)
(∀j). By the knowledge set update rules, all odometry measure-
ments and state estimates from all robots at kc,i will become
incorporated into the knowledge sets of robot i at ke,i . There-
fore, Cp(kc,i , ke,i) exists. �

Proof of Lemma 2.1: First, let us assume that kc1 < kc2

kc1 ,i < kc2 ,i

⇒ v(j, kc1 ,i)
path−→ v(j, kc2 ,i) (∀j)

⇒ v(j, kc2 ,i)
path−→ v(i, k) (∀j)(ke2 ,i ≤ k)

⇒
{

v(j, kc1 ,i)
path−→ v(i, k) (∀j)(ke2 ,i≤k) if (ke1 ,i≥ke2 ,i)

v(j, kc1 ,i)
path−→ v(i, k) (∀j)(ke1 ,i≤k) if (ke1 ,i<ke2 ,i)

⇒ ke1 ,i < ke2 ,i .

Now, we will assume that ke1 ,i < ke2 ,i

ke1 ,i < ke2 ,i

⇒ v(j, kc1 ,i)
path−→ v(i, k) (∀j)(ke1 ,i ≤ k)

⇒ (kc1 ,i ≥ kc2 ,i) v(j, kc2 ,i)
path−→ v(i, kc1 ,i) (∀j)

⇒
{

v(j, kc1 ,i)
path−→ v(i, k) (∀j)(ke1 ,i ≤ k) if (kc1 ,i≥kc2 ,i)

v(j, kc1 ,i)
path−→v(i, k) (∀j)(ke2 ,i ≤ k) if (kc1 ,i<kc2 ,i)

⇒ kc1 ,i < kc2 ,i .

�
Proof of Theorem 2.2: Assume that Cp(kc,i , ke,i) exists

Si,ke , i
⊇ Sj,kc , i

(∀j)

⇒ Si,ke , i
⊇




{
bel(xj,ks , j

), Yj,ks , j +1:kc , i
uj,ks , j +1:kc , i

}
(∀j), if (ks,j < kc,i){

bel(xj,ks , j
)
}

(∀j), if (ks,j = kc,i)

⇒ Si,ke , i
⊇ uj,kc , i

or bel(xj,kc , i
) (∀j).

Now, assuming that the knowledge set of each robot at ke,i

contains uj,kc , i
or bel(xj,kc , i

)

Si,ke , i
⊇ uj,kc , i

or bel(xj,kc , i
) (∀j)

⇒ Si,ke , i
⊇ Sj,k (∀j)(kc,i ≤ k ≤ ke,i)

⇒ Si,ke , i
⊇ Sj,kc , i

(∀j).

�

REFERENCES

[1] W. Burgard, M. Moors, C. Stachniss, and F. Schneider, “Coordinated
multi-robot exploration,” IEEE Trans. Robot, vol. 21, no. 3, pp. 376–386,
Jun. 2005.

[2] T. M. Berg and H. F. Durrant-Whyte, “Distributed and decentralized es-
timation,” in Proc. Singapore Int. Conf. Intell. Control Instrum., 1992,
vol. 2, pp. 1118–1123.

[3] T. M. Berg and H. F. Durrant-Whyte, “General decentralized Kalman
filters,” in Proc. Amer. Control Conf., 1994, vol. 2, pp. 2273–2274.

[4] S. Grime and H. F. Durrant-Whyte, “Data fusion in decentralized sensor
networks,” Control Eng. Pract., vol. 2, no. 5, pp. 849–863, 1994.

[5] S. Utete and H. F. Durrant-Whyte, “Reliability in decentralised data fusion
networks,” in Proc. IEEE Int. Conf. MFI, 1994, pp. 215–221.

[6] F. Bourgault and H. F. Durrant-Whyte, “Communication in general de-
centralized filters and the coordinated search strategy,” presented at the
Int. Conf. Inf. Fusion Conf., Stockholm, Sweden, 2004.

[7] R. Kurazume and S. Hirose, “An experimental study of a cooperative
positioning system,” Auton. Robot, vol. 8, no. 1, pp. 43–52, 2000.

[8] Y. Dieudonne, O. Labbani-Igbida, and F. Petit, “On the solvability of the
localization problem in robot networks,” in Proc. IEEE Int. Conf. Robot.
Autom., 2008, pp. 480–485.

[9] S. I. Roumeliotis and G. A. Bekey, “Distributed multirobot localization,”
IEEE Trans. Robot. Autom., vol. 18, no. 5, pp. 781–795, Oct. 2002.

[10] E. D. Nerurkar, S. I. Roumeliotis, and A. Martinelli, “Distributed maxi-
mum a posteriori estimation for multi-robot cooperative localization,” in
Proc. IEEE Int. Conf. Robot. Autom., 2009, pp. 1402–1409.

[11] A. Howard, “Multi-robot simultaneous localization and mapping using
particle filters,” Int. J. Robot. Res., vol. 25, no. 12, pp. 1243–1256, 2006.

[12] R. Madhavan, K. Fregene, and L. E. Parker, “Distributed cooperative
outdoor multirobot localization and mapping,” Auton. Robot, vol. 17,
no. 1, pp. 23–39, 2004.

[13] I. M. Rekleitis, G. Dudek, and E. Milios, “Multi-robot cooperative local-
ization: A study of trade-offs between efficiency and accuracy,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2002, pp. 2690–2695.

[14] S. I. Roumeliotis and I. M. Rekleitis, “Propagation of uncertainty in coop-
erative multirobot localization: Analysis and experimental results,” Auton.
Robot, vol. 17, no. 1, pp. 41–54, 2004.

[15] N. Trawny, S. I. Roumeliotis, and G. B. Giannakis, “Cooperative multi-
robot localization under communication constraints,” in Proc. IEEE Int.
Conf. Robot. Autom., 2009, pp. 4394–4400.

[16] P. Ferguson and J. How, “Decentralized estimation algorithms for forma-
tion flying spacecraft,” in Proc. AIAA Conf. Guid. Navigat. Control, 2003,
pp. 1–12.

[17] Y. Bar-Shalom, “Update with out-of-sequence measurements in tracking:
Exact solution,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3,
pp. 769–777, Jul. 2002.

[18] Y. Bar-Shalom, H. Chen, and M. Mallick, “One-step solution for the mul-
tistep out-of-sequence-measurement problem in tracking,” IEEE Trans.
Aerosp. Electron. Syst., vol. 40, no. 1, pp. 27–37, Jan. 2004.

[19] A. Howard, M. J. Mataric, and G. S. Sukhatme, “Putting the ‘i’ in ‘team’:
An ego-centric approach to cooperative localization,” in Proc. IEEE Int.
Conf. Robot. Autom., 2003, pp. 1–7.

[20] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation
in networked multi-agent systems,” Proc. IEEE, vol. 95, no. 1, pp. 215–
233, Jan. 2007.

[21] T. D. Barfoot and G. M. T. D’Eleuterio, “Evolving distributed control for
an object clustering task,” Complex Syst., vol. 15, no. 3, pp. 183–201,
2005.

[22] I. D. Schizas, A. Ribeiro, S. I. Roumeliotis, and G. B. Giannakis, “Con-
sensus in ad hoc wsns with noisy links—part I: Distributed estimation
of deterministic signals,” IEEE Trans. Signal Process, vol. 56, no. 1,
pp. 350–364, Jan. 2008.

[23] L. Moreau, “Stability of multiagent systems with time-dependent commu-
nication links,” IEEE Trans. Autom. Control, vol. 50, no. 2, pp. 169–182,
Feb. 2005.

[24] K. Y. K. Leung, T. D. Barfoot, and H. H. T. Liu, “Decentralized localization
for dynamic and sparse robot networks,” in Proc. IEEE Int. Conf. Robot.
Autom., 2009, pp. 1–7.

[25] Z. Brzeźniak and T. Zastawniak, Basic Stochastic Processes: A Course
Through Exercise. New York: Springer-Verlag, 1999.

[26] A. H. Jazwinsky, Stochastic Processes and Filtering Theor. New York:
Academic, 1970.

[27] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotic. Cambridge,
MA: MIT Press, 2005.

Authorized licensed use limited to: The University of Toronto. Downloaded on February 24,2010 at 11:40:00 EST from IEEE Xplore.  Restrictions apply. 



LEUNG et al.: DECENTRALIZED LOCALIZATION OF SPARSELY-COMMUNICATING ROBOT NETWORKS 77

[28] R. Siegwart and Nourbakhsh, Introduction to Autonomous Mobile Robot.
Cambridge, MA: MIT Press, 2004.

[29] E. Buckingham, “On physically similar systems; illustrations of the use
of dimensional equations,” Phys. Rev., vol. 4, no. 4, pp. 345–376, 1914.

[30] M. Sanchez, P. Manzoni, and Z. J. Haas, “Determination of critical trans-
mission range in ad-hoc networks,” in Proc. Multiaccess, Mobility Tele-
traffic Wireless Commun., 1999, pp. 1–11.

[31] B. Bollobas, Random Graph. New York: Academic, 1985.
[32] B. Krishnamachari, S. B. Wicker, and R. Bejar, “Phase transition phe-

nomena in wireless ad hoc networks,” in Proc. IEEE Global Telecommun.
Conf., 2001, pp. 2921–2925.

[33] J. Frank and C. U. Martel, “Phase transitions in the properties of random
graphs,” in Proc. Principles Pract. Constraint Program., 1995, pp. 62–69.

[34] Z. Jiang, S. Zhang, and L. Xie, “Cramer–Rao lower bound analysis for
mobile robot navigation,” in Proc. Int. Conf. Intell. Sens., Sens. Netw. Inf.
Process., 2005, pp. 229–234.

Keith Y. K. Leung (S’08) received the B.A.Sc. and
M.A.Sc. degrees in mechanical engineering (mecha-
tronics option) from the University of Waterloo, Wa-
terloo, ON, Canada, in 2005 and 2007, respectively.
He is currently working toward the Ph.D. degree
with the University of Toronto Institute for Aerospace
Studies, Toronto, ON.

He is a Research Assistant with the Autonomous
Space Robotics Laboratory and the Flight Systems
Control Laboratory, Toronto.

Timothy D. Barfoot received the B.A.Sc. degree in
engineering science (aerospace option) in 1997 from
the University of Toronto, Toronto, ON, Canada,
and the Ph.D. degree in aerospace engineering in
2002 from the University of Toronto Institute for
Aerospace Studies (UTIAS), Toronto.

He is currently an Assistant Professor with
UTIAS, where he leads the Autonomous Space
Robotics Laboratory. Before joining UTIAS, he
worked at MDA Space Missions in the Controls and
Analysis Group on applications of mobile robotics to

space exploration and underground mining.
Dr. Barfoot is a Professional Engineer in the province, Ontario and the

Canada Research Chair (Tier II) in Autonomous Space Robotics.

Hugh H. T. Liu (M’00) received the B.Sc. de-
gree from Shanghai Jiao Tong University, Shanghai,
China, the M.Sc. degree from Beijing University of
Aerospace and Aeronautics, Beijing, China, and the
Ph.D. degree from the University of Toronto, Toronto,
ON, Canada.

He is currently an Associate Professor with the
University of Toronto Institute for Aerospace Stud-
ies (UTIAS), where he leads the Flight Systems and
Control Laboratory. He is also the Associate Director
of Graduate Studies with UTIAS.

Dr. Liu is a Registered Professional Engineer in the province of Ontario
and is a member of the Canadian Aeronautics and Space Institute. He is also
a member of the American Institute of Aeronautics and Astronautics Guid-
ance, Navigation, and Control Technical Committee. He is currently an Asso-
ciate Editor of the Conference Editorial Board of the IEEE Control Systems
Society.

Authorized licensed use limited to: The University of Toronto. Downloaded on February 24,2010 at 11:40:00 EST from IEEE Xplore.  Restrictions apply. 


