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Abstract

Towards Deep Learning for Long-Term Visual Localization in

Visual Teach and Repeat

Mona Gridseth

Doctor of Philosophy

Graduate Department of Aerospace Science and Engineering

University of Toronto

2022

Visual path following can facilitate autonomous operation of robots in a large variety of environments

while solely relying on an inexpensive camera sensor. Visual Teach and Repeat (VT&R) achieves accurate

metric and long-range autonomous path following in unstructured environments. The user teaches a path

by driving the robot manually, after which the path can be repeated autonomously. During long-term

operation, the camera is affected by lighting changes, and the appearance of the environment changes.

This poses a challenge for localizing to the visual map that was built when teaching the path. VT&R

can operate across large appearance change by using multi-experience localization. Each time the robot

repeats a path, the run is stored as a new experience in the map. When localizing, VT&R can rely on

intermediate experiences to bridge the appearance gap. This requires collecting experiences continuously

as the environment changes and from scratch whenever a new path is taught.

In this thesis, we tackle long-term localization using deep learning techniques with the aim of removing

the need for intermediate bridging experiences. We first show that we can train a neural network to

regress relative poses for localization directly from pairs of images. With this method, we localize across

large lighting and seasonal change but fail to generalize to new and unfamiliar paths. We improve on

this work by learning visual features that can be used in the VT&R pipeline. With these deep learned

features, we perform closed-loop path following across a full range of lighting change and also show that

the learned features generalize to new areas. We further test the learned features’ robustness to seasonal

change in an experiment from late summer through autumn. The experiments cover a total of 87.7 km

of driving.
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Chapter 1

Introduction

1.1 Motivation

Vision-based navigation can be applied to a wide variety of robots such as Unmanned Aerial Vehicles

(UAV), rovers for space exploration, or autonomous cars. In VT&R (Furgale and Barfoot, 2010) a robot

autonomously repeats a known path while only relying on a camera for sensing. A user manually drives

the robot to teach the path and build a visual map, ensuring that the route can be safely traversed by

the robot. See Figure 1.1 for an illustration of VT&R operation. Route repetition is potentially useful

in many real-world applications such as robots monitoring crops in an orchard, operation of trucks in

underground mines without access to GPS, or robots in large warehouses.

Cameras are commercially ubiquitous and inexpensive, making them a good option as a sensor

for robotic navigation. Moreover, they have low power consumption and few moving parts. Cameras

produce texture-rich images of a scene, providing useful information for vision algorithms. Compared

to 3D Light Detection and Ranging (LiDAR) and Radio Detection and Ranging (RADAR) sensors,

cameras are highly sensitive to lighting. In addition to lighting change, seasonal or structural changes to

the environment also pose challenges for visual path following in the long term (see Figure 1.2). For path

(a) Manual teach at 12:56 to build a visual map. (b) Autonomous repeat after dark at 17:22.

Figure 1.1: In VT&R, the user teaches a path by driving the robot manually (a), after which the path
is repeated autonomously (b). For each figure, the UI (left) shows the estimated path and the robot’s
position. On the right, we see an external view of the Clearpath Grizzly robot (top) together with the
live camera frame and matched features (bottom) for Visual Odometry (VO) during the teach phase
and localization during the repeat phase.

1
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(a) Lighting change.

(b) Seasonal change.

Figure 1.2: In order to be feasible for real-world applications, long-term visual path following must work
even when the environment changes.

following to be useful in real-world applications, reliable long-term operation in changing environments

is required.

Furgale and Barfoot (2010) perform long-range autonomous path following with VT&R using only

a stereo camera. They extract sparse visual features, called Speeded-Up Robust Features (SURF) (Bay

et al., 2006), from images in the visual map as well as the live images seen by the robot during a repeat.

By matching features between the map and live images, they were able to localize and compute the

current offset of the robot with respect to the mapped path. With this information, the path-tracking

controller computes the velocities needed to stay on the path. The downside to such handcrafted visual

features is their lack of robustness to lighting change or longer-term changes to the environment.

Further work was done to improve the operational time-range of VT&R. Paton et al. (2015) first

converted RGB images to colour-constant images (Corke et al., 2013), which extended the operational

time from a few hours to being able to repeat a path between sunrise and sunset over multiple days.

Later, Paton et al. (2016) introduced Multi-Experience Localization (MEL) (Churchill and Newman,

2013) to VT&R. Each time the robot repeats a path, the run is stored as a new experience in the map.

When localizing back to the map, they can use visual features from experiences with the most similar

appearance to the current condition instead of matching to features from the initial teach run. In other

words, localization relies on intermediate experiences stored in the map to bridge the appearance gap,

see Figure 1.3a. This extension to VT&R achieved accurate path following across a full day of lighting

change, including driving after dark (MacTavish et al., 2017), and across seasons in an experiment that

was run from January until May (Paton, 2018).

The reliance on intermediate bridging experiences in multi-experience VT&R comes with a couple

of downsides. Firstly, we must repeat the path often enough to gradually capture the environmental

change. In a scene with rapid change, we need to collect a large number of experiences to successfully

describe the environment. Secondly, we must collect experiences from scratch for each new path - even if

we operate in the same area - since the experiences are specific to each map. We can imagine applications

where MEL may fail. If we are teaching a longer path during varying conditions (such as during sunrise,
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Teach

Repeat N

Repeat 1

?
Repeat k

(a) Multi-experience localization.

Teach

Repeat 

?

(b) Single-experience localization.

Figure 1.3: MEL (a) relies on intermediate bridging experiences (purple) to localize a live frame (orange)
where appearance has changed significantly since the mapped teach run. The motivation for our work
is to make Single-Experience Localization (SEL) robust for long-term operation, avoiding the use of
intermediate experiences.

sunset, or changing weather), we will not be able to repeat the full path relying on traditional hand-

crafted features because the environment has changed during operation. An example of this scenario is

a UAV that relies on vision-based repetition of an outward route for emergency return if GPS navigation

fails. Another case where we want to avoid multiple visits to the same path, is operation in hazardous

environments. In our research, we aim to tackle long-term localization in VT&R. In particular, we wish

to improve the robustness of Single-Experience Localization (SEL) to large appearance change, such that

we can localize directly to the original teach run without relying on intermediate bridging experiences,

see Figure 1.3b. We can think of robust SEL and MEL with hand-crafted features where every repeat

is added as an experience to the map, as two extremes on a spectrum. Linegar (2016) combined MEL

with a small number of representative experiences, different types of hand-crafted features as well as

learned place-dependent features to handle long-term localization in an off-road environment. However,

they combined one experience from winter and one from summer for their map. This relies on having

two experiences from different seasons available when building the map, which would not be the case

when starting to teach a new path from scratch.

Our goal is to focus on autonomous visual path following in outdoor scenes, including challenging

off-road environments. A substantial part of our work will include localization in areas with undulating

terrain together with tall grass, bushes, and trees as seen in Figure 1.2. They also have fewer permanent

structures such as buildings or roads. These characteristics can pose challenges for localization - especially

during large lighting or seasonal change - that do not arise in more structured urban scenes common

in public localization datasets (examples include the Aachen (Sattler et al., 2012) and Oxford Robotcar

datasets (Maddern et al., 2017)). For instance, as grass and leaves wither in the autumn, the appearance

changes more drastically in a forest area or open field than on a city street surrounded by buildings.
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1.2 Research Objectives

There are two main objectives of this thesis as alluded to in the previous section. The first objective

is to improve the robustness of visual localization for VT&R such that we can localize across large

appearance change without the need for intermediate bridging experiences. The second objective is to

include our localization approach in the VT&R system and demonstrate real-time autonomous path

following in challenging outdoor environments, including off-road areas with significant vegetation and

few permanent structures. Moreover, the experiments should achieve accurate path following across

lighting and seasonal change. We emphasize that the accuracy of pose estimation in VT&R is very

high (Clement et al., 2017) and so we are not working to improve path-following accuracy, but focus on

long-term operation.

1.3 Novel Contributions

This thesis presents the following novel contributions towards tackling the research objective of robust

long-term visual localization in VT&R.

- We replace sparse feature-based visual localization in VT&R with a direct method and are the

first to demonstrate direct localization in a challenging off-road example with tall grass and dense

vegetation, but limited appearance change (Gridseth and Barfoot, 2019).

- We regress relative pose for single-experience visual localization across large appearance change

directly from a pair of images using a deep neural network. We also regress poses for VO with the

same network architecture and combine localization and VO for visual path following. We are the

first to tackle large seasonal appearance change in a challenging off-road environment with deep

learned pose regression (Gridseth and Barfoot, 2020).

- We estimate the pose for single-experience visual localization using sparse features extracted with

a deep neural network. We include the learned features for localization into the VT&R pipeline

and are the first to achieve real-time autonomous path following across a full range of lighting

change with a 100% autonomy rate with deep learned features. We extend the experiment to

include three months of seasonal change from summer through autumn, where 79% of runs have

no path-following failures. We demonstrate successful generalization to new areas not seen in the

training data (Gridseth and Barfoot, 2022).

1.4 Thesis Outline

This thesis is structured as follows; Chapter 2 introduces topics in state estimation and deep learning

that we rely on in following chapters of the thesis. The chapter also gives a brief overview of VT&R

and describes the datasets that we use to develop and test our research. Chapter 3 describes our first

attempt at improving robustness of SEL in VT&R by replacing sparse feature-based localization with

a direct method. Seeing the challenges posed by lighting and seasonal change to visual localization, we

choose to focus on deep learning for the remainder of our work.

In Chapter 4, we train a deep neural network to regress the relative pose between two input images.

With this we are able to localize images across large appearance change. However, generalizing to new
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paths not observed in the training data proved challenging. In Chapters 5 and 6, we add more structure

to the learning method with the goal of improving generalization. We learn sparse visual features that

can be used in a differentiable, classical pose estimation pipeline that allows for end-to-end training. In

Chapter 5, we apply the learned features to VO and show that they perform well on previously unseen

paths. In Chapter 6, we extend this work to use the learned features for localization. We include the

features in the VT&R system and perform path following across a full range of lighting change and

three months of seasonal change from summer through autumn. Finally, Chapter 7 summarizes the

conclusions and novel contributions of the thesis and discusses possibilities for future work.

In all remaining chapters, except the final one, we follow the same general outline of providing an

introduction to motivate the work, a section on related work, and a section to explain the methodology

before we present the experiments, results, and conclusions.

1.5 Associated Material

Publications

- Gridseth and Barfoot (2019). Towards Direct Localization for Visual Teach and Repeat. In the

2019 Conference on Computer and Robot Vision (CRV).

- Gridseth and Barfoot (2020). DeepMEL: Compiling visual multi-experience localization into a

deep neural network. In the 2020 IEEE International Conference on Robotics and Automation

(ICRA).

- Gridseth and Barfoot (2022). Keeping an Eye on Things: Deep Learned Features for Long-Term

Visual Localization. In the 2022 IEEE Robotics and Automation Letters (RAL).

Code

The code for training and testing deep learned features for localization in PyTorch is available at

https://github.com/utiasASRL/deep learned visual features

Videos

- Deep learned pose estimation: https://youtu.be/lXbTaAM6kSY

- Deep learned pose estimation (conference presentation): https://youtu.be/XrlLDTFiMt8

- Deep learned features: https://youtu.be/mqDivnIQjl0

- Deep learned features (conference presentation): https://youtu.be/JsEBs9Y5XVg

- Deep learned features and VT&R3 (demo): https://youtu.be/ZYkxevdw7DA

https://github.com/utiasASRL/deep_learned_visual_features
https://youtu.be/lXbTaAM6kSY
https://youtu.be/lXbTaAM6kSY
https://youtu.be/XrlLDTFiMt8
https://youtu.be/XrlLDTFiMt8
https://youtu.be/mqDivnIQjl0
https://youtu.be/mqDivnIQjl0
https://youtu.be/mqDivnIQjl0
https://youtu.be/JsEBs9Y5XVg
https://youtu.be/ZYkxevdw7DA
https://youtu.be/ZYkxevdw7DA


Chapter 2

Background

This chapter provides background information relevant to later chapters of the thesis. We start by sum-

marizing some relevant deep learning concepts before discussing topics from three-dimensional geometry

and the sensor model that we make use of in our work. We give an overview of VT&R and the challenges

of long-term localization. Finally, we give details on the datasets we use to develop our research and

how we sample from those dataset. The material on three-dimensional geometry, the sensor model, and

VT&R was presented in a similar fashion in the thesis of Paton (2018).

2.1 Deep Learning Primer

In this section we describe some basic concepts form deep learning that are relevant to this thesis. We

have based our summary on some of the material presented in the book by Nielsen (2015) and in the

introductory review by Emmert-Streib et al. (2020).

Neural Networks

A neural network is a computational model consisting of a set of basic entities, called neurons. The

neuron takes an input x ∈ R
n, applies weights, w ∈ R

n, and adds a bias, b ∈ R. The result, z ∈ R, is

passed through an activation function (or transfer function), φ : R→ R, to get the output, y ∈ R:

y = φ(z) = φ
(
wT x + b

)
. (2.1)

The most used activation functions are non-linear and examples include the Sigmoid function, the

Rectified Linear Unit (ReLU) activation function, and the Hyperbolic Tangent (tanh) activation function.

In our work we make use of ReLU (Nair and Hinton, 2010), which is defined as:

φ(z) =

{

0 if x < 0

z if x ≥ 0.

To form a neural network, the neurons are connected to each other, i.e. the output of one neuron is

passed as the input to another. In the simplest neural network, a Multi-Layer Perceptron (MLP), the

neurons are organized in layers with one input layer, one or more hidden layers, and one output layer,

see Figure 2.1. The depth of the network is determined by the number of activation functions connecting

6
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Input layer Hidden layer Hidden layer Output layer

Figure 2.1: A basic MLP neural network with one input layer, two hidden layers, and one output layer.
The layers are fully connected.

the layers, while its weight is given by the number of neurons contained in a hidden layer. Networks,

where information is passed forward form one layer to the next without loops, are called feedforward

neural networks.

When training a neural network, the goal is to find the optimal network parameters. We start by

computing the error between the network output and the ground truth labels, which are then used to

form a cost function (or loss function). During training we find the optimal network parameters by

minimizing the cost function for the training data. This can be done with gradient descent, where

backpropagation is used to calculate the gradients.

Convolutional Neural Networks

In networks with fully connected layers, each neuron in a layer is connected to all neurons in the

next layer, as seen in Figure 2.1. This can result in a very high number of network parameters. A

Convolutional Neural Network (CNN) is a type of neural network that is commonly used when working

with images. CNNs are able to handle such high-dimensional data by using alternatives to fully connected

layers that use fewer parameters. Moreover, a fully connected MLP does not take into consideration the

spatial structure of images, but instead treats pairs of pixels the same way whether they are far apart

or close together. CNNs rely on three main tools, namely local receptive fields, shared weights, and

pooling, which we describe in the following.

For a CNN, we can imagine a layer as a grid of neurons and the input layer corresponds to the image

grid of pixels. We pick a small square region (or window) in the input image and connect it to one

neuron in the first hidden layer. This is called a local receptive field. Then we slide this region across the

image, moving a chosen number of pixels (stride) over to the right each time and down when we reach

the right edge of the image. As we slide the region over the image, we connect each new receptive field

to a neuron in the first hidden layer. The same operation is repeated to connect the following layers.

Each neuron in a hidden layer has one bias, and the number of weights equal the size of the local

receptive field connected to the neuron. The same bias and weights are used for each of the neurons in

a hidden layer. We refer to these as shared weights and a shared bias, which are also commonly called

kernels or filters. At a high level, it means that all the neurons in one hidden layer detect the same

type of feature, such as an edge, in different locations in the image. Combining several individual layers

for feature detection forms one convolutional layer. By not connecting every pixel to every neuron in
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Input: 28 x 28 x 1 Convolution: 24 x 24 x 4 Pooling: 12 x 12 x 4 Fully 
connected

Output

Figure 2.2: A CNN with a convolutional layer with 24x24 neurons across four individual features layers
that share weights and a bias within the layer. Pooling reduces the spacial resolution to 12x12 neurons.
A fully connected layer is included at the end before the output layer.

Skip connections

Encoder Decoder

Figure 2.3: Encoder-decoder architecture with strided convolutions in the encoder for downsampling and
strided convolutions for upsampling in the encoder. Skip connections between layers preserve information
that may otherwise be lost during downsampling.

the next layer, and by using shared weights, the convolutional layers reduce the number of parameters

needed.

After a convolutional layer, a pooling layer can be used to summarize and simplify the output. In

particular, a region in the output from the convolutional layer can be summarized into one neuron by the

pooling operation. Options include, but are not limited to, keeping the maximum value from the region

(max-pooling) or taking an average of the values (average pooling). The pooling is done separately for

each individual layer making up the convolution layer, and so the number of layers stay the same while

the spatial resolution is reduced. This, again, helps reduce the number of parameters needed.

The final CNN is usually a combination of convolutional layers and pooling layers with one or more

fully connected layers at the end before the output layer, see Figure 2.2. The components of CNNs

can also be used to form a network architecture that contains an encoder and a decoder, see Figure

2.3. UNet, by Ronneberger et al. (2015), is an example of an encoder-decoder. The encoder uses

strided convolutions to learn features while reducing the spatial resolution of the input, referred to

as downsampling or compression. Afterwards, strided convolutions are used to increase the resolution

back to the original input image size, referred to as upsampling or decompression. The layer at the
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smallest spatial resolution, where the encoder and decoder connect, is referred to as the bottleneck. Skip

connections between layers in the encoder and decoder let the network preserve information that may

otherwise be lost during the downsampling.

2.2 State Estimation Primer

This section presents some topics related to state estimation that we use in different chapters of the

thesis.

2.2.1 Three-Dimensional Geometry

Vehicles that translate and rotate have three degrees of freedom (DOF) for rotation and three DOF

for translation. We refer to their six DOF configuration as a pose, which consists of position and

orientation. The following material explains how to represent rotations and poses in three dimensions.

For more detailed derivations and explanations, we refer to Chapter 7 of Barfoot (2017).

Matrix Lie Groups

Rotations and poses do not form vectorspaces but can be represented using the special orthogonal group,

SO(3), and the special Euclidean group, SE(3), respectively. SO(3) and SE(3) are matrix Lie groups.

A group is a set of elements together with an operation that combines any two elements to form a third

element in the same set. This must be the case while satisfying four group axioms: closure, associativity,

identity, and invertibility. A Lie group is a group that is also a differential manifold. The elements in a

matrix Lie group are matrices.

Rotations are represented with the special orthogonal group, which is the set of valid rotation ma-

trices:

SO(3) =
{

C ∈ R
3×3|CCT = 1, det C = 1

}
. (2.2)

Poses are represented using the special Euclidean group, which is the set of valid transformation matrices:

SE(3) =

{

T =

[

C r

0T 1

]

∈ R
4×4|C ∈ SO(3), r ∈ R

3

}

. (2.3)

Lie Algebra

Every matrix Lie group has an associated Lie algebra. The Lie algebra consists of a vectorspace, V, over

a field, F, together with a Lie bracket, [·, ·], which is a binary operation that satisfies the properties of

closure, bilinearity, alternating, and Jacobi identity.

The Lie algebra for rotations, or SO(3), is given by:

vectorspace: so(3) =
{

Φ = φ∧ ∈ R
3×3|φ ∈ R

3
}

,

field: R,

Lie bracket: [Φ1, Φ2] = Φ1Φ2 −Φ2Φ1, (2.4)



Chapter 2. Background 10

where

φ∧ =






φ1

φ2

φ3






∧

=






0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0




 ∈ R

3×3, φ ∈ R
3. (2.5)

The Lie algebra for poses, or SE(3), is given by:

vectorspace: se(3) =
{

Ξ = ξ∧ ∈ R
4×4|ξ ∈ R

6
}

,

field: R,

Lie bracket: [Ξ1, Ξ2] = Ξ1Ξ2 −Ξ2Ξ1, (2.6)

where

ξ∧ =

[

ρ

φ

]∧

=

[

φ∧ ρ∧

0 φ∧

]

∈ R
6×6, ρ, φ ∈ R

3. (2.7)

Exponential Map

The exponential map is used to relate a matrix Lie group to the corresponding Lie algebra. For a square

matrix, A ∈ R
M×M , the exponential map and logarithm are:

exp(A) = 1 + A +
1

2!
A2 +

1

3!
A3 + · · · =

∞∑

n=0

1

n!
An, (2.8)

ln(A) =

∞∑

n=1

(−1)
n−1

n
(A− 1)

n
. (2.9)

For rotations, we can relate elements of SO(3) to elements of so(3) using the exponential map:

C = exp(φ∧) =

∞∑

n=0

1

n!

(
φ∧
)n

= cos φ1 + (1− cos φ)aaT + sin φa∧, (2.10)

where C ∈ SO(3) and φ ∈ so(3). This uses an axis-angle formulation, where a is the axis and φ is the

angle. We can also convert from so(3) to SO(3) with the logarithm map:

φ = ln(C)∨, (2.11)

where the operator (·)∨ is the inverse of (2.5). This conversion is not unique.

For poses, we can relate elements of SE(3) to elements of se(3) using the exponential map:

T = exp(ξ∧) =

∞∑

n=0

1

n!

(
ξ∧
)n

=

∞∑

n=0

1

n!

([

ρ

φ

])n

=

∞∑

n=0

1

n!

[

φ∧ ρ

0T 1

]n

=

[∑∞

n=0
1
n!

(
φ∧
)n

(
∑∞

n=0
1

(n+1)!

(
φ∧
)n
)

ρ

0T 1

]

=

[

C r

0T 1

]

, (2.12)

where T ∈ SE(3), ξ ∈ R
6, r = Jρ, and J =

∑∞

n=0
1

(n+1)!

(
φ∧
)n

is the left Jacobian of SO(3). We can



Chapter 2. Background 11

also convert from se(3) to SE(3) with the logarithm map, which, again, is not unique:

ξ = ln(T)∨ = ln

([

C r

0T 1

])∨

=

[

J−1r

φ

]

, (2.13)

and J−1 is the inverse Jacobian of SO(3).

2.2.2 Stereo Camera Model

All the work in this thesis is done using a stereo camera as the only sensor for the robot. Cameras are

widely available, inexpensive sensors that can be used to estimate a robot’s motion and the geometry of

the surrounding environment. In this section, we present the stereo camera sensor model as it is defined

in Chapter 6 of Barfoot (2017). We rely on the stereo camera model for tasks such as triangulating

3D points from 2D image coordinates (Chapters 5 and 6) and transforming image coordinates from one

frame to another with a warp function (Chapter 3).

Figure 2.4: This figure is from Barfoot (2017). Illustration of a perspective camera. In reality the image
plane is behind the camera, but the frontal projection model avoids working with a flipped image. The
intrinsic parameters are focal length, f , and optical centre, (cu, cv). With the camera model we can
project the point, P , into its image coordinates, (u, v).

Perspective Camera

We start with a perspective camera with a frontal projection model, illustrated in Figure 2.4. Lens

effects can distort camera images. However, we assume that undistortion (calibration) has been applied

so that the images appear as coming from an idealized pinhole camera. Given a point, P , in the sensor

frame, F−→s, with coordinates, p =
[

x y z
]T

, we can project it into its image frame coordinates,

q =
[

u v
]T

, with the perspective camera model, s : R3 → R
2, as follows:

q =

[

u

v

]

= s(p) =

[

1 0 0

0 1 0

]

︸ ︷︷ ︸

P






fu 0 cu

0 fv cv

0 0 1






︸ ︷︷ ︸

K

1

z






x

y

z




 , (2.14)

where P is a projection matrix, and K holds the intrinsic camera parameters. These are the focal

lengths, fu and fv, and the coordinates of the optical centre, (cu, cv). With one perspective camera
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alone, we cannot recover the depth of points in the environment. Combining two cameras into a stereo

camera solves this problem.

Figure 2.5: This figure is from Barfoot (2017). A stereo camera configuration, where the cameras are
separated by the baseline, b, distance along the x-axis. The stereo camera sensor frame, F−→s, is chosen
to coincide with the left camera sensor frame, F−→ℓ.

Stereo Camera

A stereo camera consists of two perspective cameras connected by a known, fixed transform. Most

commonly they are placed side-by-side along the x-axis pointing in the same direction, and the distance

between the cameras is referred to as the baseline, b. For our purposes, we use a left stereo camera

model, which means that the sensor frame, F−→s, coincides with the sensor frame of the left camera, F−→ℓ.

Figure 2.5 illustrates such a stereo camera configuration.

We can define a stereo camera model, g : R3 → R
4, that maps a point, P , in the sensor frame, F−→s,

with coordinates, p =
[

x y z
]T

, to stereo image coordinates, q =
[

ul vl ur vr

]T

:

q =









uℓ

vℓ

ur

vr









= g(p) =









fu 0 cu 0

0 fv cv 0

fu 0 cu −fub

0 fv cv 0









︸ ︷︷ ︸

M

1

z









x

y

z

1









︸︷︷︸

p

= M
1

cT p
p, (2.15)

where cT =
[

0 0 1 0
]

, and the stereo camera frame coincides with the left camera frame We also

assume that both cameras have the same intrinsic properties.

If we wish to recover the coordinates of the point, P , we need the inverse of the stereo camera model

that maps stereo image coordinates to a homogeneous point:

p =









x

y

z

1









= g−1(q) =









b
uℓ−ur

(uℓ − cu)
bfu

fv(uℓ−ur) (vℓ − cv)
bfu

uℓ−ur

1









. (2.16)

The disparity, uℓ−ur, is found by performing stereo matching. In our work, we use the stereo matching
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method from Hirschmuller (2008) as implemented in OpenCV (OpenCV, 2019).

Warp Function

When we have a stereo camera together with its inverse, we have the ability to transform 2D image

coordinates from one image frame to another. Given a relative pose transformation, T ∈ SE(3), between

to camera frames, we want to transform the stereo image coordinates, q, from one frame to stereo image

coordinates, q′, in the other frame using the warp function, w : SE(3)× R
4 → R

4:

q′ = w(T, q) = g
(
T g−1(q)

)
= g (T p) = M

1

cT Tp
Tp. (2.17)

2.2.3 Point-Cloud Alignment

In Chapters 5 and 6, we need to solve a point-cloud alignment, meaning that we want to find the best

estimate of the pose to align two sets of 3D point measurements. How the rotation or pose is represented

(with quaternions, rotation matrices, or transformation matrices) determines the approach used to solve

for the pose. If we represent the rotation with rotation matrices, we can use a non-iterative method

that relies on Singular Value Decomposition (SVD) (Umeyama, 1991). Although an iterative approach

with transformation matrices only requires solving a system of linear equations, our later work requires

a non-iterative approach. The following is based on the more thorough explanation in Chapter 8 of

Barfoot (2017).

Assume that we have two frames, one attached to a map frame, F−→m, and one to the live robot

camera, F−→ℓ. For both of these frames, we have M measurements of a set of landmark points, Pi, given

in the respective frames, namely rpim
m and rpiℓ

ℓ , where i = 1 . . . M . The goal is to find the rotation

matrix, Cℓm, and translation, rℓm
m , that will align the two sets of points. In order to simplify notation,

we define:

yi = rpim
m , pi = rpiℓ

ℓ , r = rℓm
m , C = Cℓm. (2.18)

We also define

y =
1

w

M∑

i=1

wiyi, p =
1

w

M∑

i=1

wipi, w =

M∑

i=1

wi, (2.19)

where wi are scalar weights for each point.

Now that we have all the variables, we define the error term for each point:

ei = yi −C (pi − r) (2.20)

and use it to create the cost function to minimize,

J(C, r) =
1

2

M∑

i=1

wie
T
i ei =

1

2

M∑

i=1

wi (yi −C (pi − r))
T

(yi −C (pi − r)) , (2.21)

subject to C ∈ SO(3).

The next step is to make a change of variables for the translation,

d = r + CT y− p, (2.22)
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such that we can rewrite the cost function as

J(C, d) =
1

2

M∑

i=1

wi ((yi − y)−C (pi − p))
T

((yi − y)−C (pi − p)) +
1

2
dT d, (2.23)

where the first term of the cost only depends on C and the second term only depends on d. The second

term can be minimized by setting d = 0, which means that the translation is the difference of the

centroids of the point clouds:

r = p−CT y. (2.24)

In order to find the rotation, we need to minimize the first term of the cost with respect to C. We can

multiply out parts of the cost term,

((yi − y)−C (pi − p))
T

((yi − y)−C (pi − p))

= (yi − y)
T

(yi − y)− 2
(

(yi − y)
T

C (pi − p)
)

+ (pi − p)
T

(pi − p) ,

where only the middle term depends on C. We sum the middle term over all the points to get

1

w

M∑

i=1

wi

(

(yi − y)
T

C (pi − p)
)

=
1

w

M∑

i=1

wi tr
(

C (pi − p) (yi − y)
T
)

= tr

(

C
1

w

M∑

i=1

wi (pi − p) (yi − y)
T

)

= tr
(
CWT

)
, (2.25)

where

W =
1

w

M∑

i=1

wi (yi − y) (pi − p)
T

. (2.26)

We define a new cost function that we can minimize with respect to C,

J(C, Λ, γ) = − tr
(
CWT

)
+ tr

(
Λ
(
CCT − 1

))
+ γ (det C− 1) , (2.27)

where Λ and γ are Lagrange multipliers, and the associated terms are added to ensure that C ∈ SO(3)

(i.e. that CCT = 1 and det C = 1). Finally, we find the derivative of the cost,

∂J

∂C
= −W + 2ΛC + γ det C

︸ ︷︷ ︸

1

C−T

︸ ︷︷ ︸

C

= −W + LC, (2.28)

∂J

∂Λ
= CCT − 1, (2.29)

∂J

∂γ
= det C− 1, (2.30)

where L = 2Λ + γ1. If we set the first equation equal to zero, we get

LC = W. (2.31)
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At this point, SVD on the matrix W to find C:

W = UDVT , (2.32)

where U and V are square, orthogonal matrices, and D = diag(d1, d2, d3) is a diagonal matrix of singular

values, d1 ≥ d2 ≥ d3 ≥ 0. Depending on the properties of W, there can be one or infinitely many global

solutions for C. The different cases (Umeyama, 1991; de Ruiter and Forbes, 2013) are described in great

detail in Barfoot (2017). If a unique solution for C exists, it is:

C = USVT , (2.33)

where S = diag (1, 1, det U, det V). The necessary and sufficient conditions for this unique global solution

to exist are:

1. det W > 0, or

2. det W < 0 and d1 ≥ d2 > d3 > 0, or

3. rank W = 2.

Cases where these conditions do not hold, and we get infinitely many solutions, are rare in practical

situations.

We bring everything together to build the final solution. After estimating the rotation, Ĉℓm, we use

(2.24) to get the estimated translation:

r̂ℓm
m = p− Ĉℓm (2.34)

and combine everything in the transformation matrix,

T̂ℓm =

[

Ĉℓm −Ĉℓmr̂ℓm
m

0T 1

]

. (2.35)

In Chapters 5 and 6, we will make use of this non-iterative pose estimation technique in a fully differen-

tiable pose estimation pipeline.

2.3 Visual Teach and Repeat

VT&R facilitates accurate metric and long-range autonomous path following in unstructured and GPS-

denied environments (Furgale and Barfoot, 2010; Paton et al., 2018). VT&R relies on a local relative

pose map removing the need for global localization. The user teaches a path by driving the robot

manually, after which the path can be repeated autonomously. The overall work flow of the VT&R

system is illustrated at a high level in Figure 2.6. In the teach phase visual features are extracted and

used to generate landmarks and estimate poses that are stored in the map. During the repeat phase

visual odometry and localization are combined in a predictor/corrector fashion to estimated the robot’s

offset to the mapped path. In the following sections, we describe the various components of the system

in more detail.
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Figure 2.6: This figure is based on a figure from Furgale and Barfoot (2010). An overview of the main
blocks of the VT&R system.

Figure 2.7: Illustration of a pose graph used to store a map in VT&R. The grey triangles represent
vertices that store 3D landmarks shown as green stars. The landmark positions are given relative to the
vertex reference frame. The blue edges represent the relative SE(3) pose transforms between vertices,
for instance Tba is the transform from vertex va to vertex vb.

2.3.1 Map Representation

The map for VT&R is represented as a topometric pose graph, an example of which is shown in Figure

2.7. The pose graph contains a series of vertices (shown as gray triangles), each of which has its own

reference frame. The vertices store an image as well as the triangulated 3D landmarks (green stars)

observed at that vertex together with their associated uncertainties and descriptors. The landmark

positions are given relative to the vertex reference frame. The vertices are connected by edges (blue lines)

that represent the relative SE(3) pose between them, which are stored together with their uncertainty.

These poses are generated using VO. Since VT&R does not keep track of global poses, only relative

poses need to be stored in the graph. It is possible to create a network of paths in VT&R, and therefore

the pose graph may contain both branches and loops.

2.3.2 Teach Phase

When a user teaches a new path, they drive the robot manually while a map of the path is created and

stored as a pose graph. A high-level overview of the teach phase is shown in Figure 2.8. One of the

main components of building the map is VO. When the stereo camera captures a new stereo image,

the individual images are rectified and converted to grayscale. Next, visual features (SURF (Bay et al.,

2006)) are extracted using the gpusurf library developed by Furgale and Tong (2010). Stereo matching

is performed on the extracted keypoints to find the depth values needed to triangulate the 3D landmark

associated with each keypoint. Each landmark has an associated descriptor and uncertainty. The VO
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Figure 2.8: An overview of the main blocks of the VT&R teach phase. Image capture and feature
extraction is followed by VO for pose estimation. The map stores vertices with 3D landmarks and the
relative poses between vertices.
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Figure 2.9: An overview of the main blocks of the VT&R repeat phase. Image capture and feature
extraction is followed by VO and localization that act as pose predictor and corrector, respectively. The
relative pose provides the offset to the path needed for path following.

pipeline recalls landmarks associated with the closest vertex in the map and uses nearest-neighbour

matching of descriptors for data association between these and the newly detected landmarks. This

means that keypoints for each incoming stereo image are tracked against the landmarks of the closest

vertex in the map.

After data association, outlier rejection with Random Sample Consensus (RANSAC) (Fischler and

Bolles, 1981; Raguram et al., 2013) is applied to the matched landmarks, and the resulting inliers are

passed to pose estimation. The relative pose between the live frame and the map is found by minimizing

the sum of squared map landmark reprojection errors after transforming and projecting the landmarks

into the image plane. The errors are weighted with uncertainty from the live landmark measurements.

Whenever the estimated relative pose between the live frame and the map exceeds a certain distance

threshold, or the number of matched feature inliers gets too low, a new vertex is added to the pose

graph. The distance threshold ensures vertices are evenly distributed and avoids a bloated map with

too much data. More details on the optimization algorithm for pose estimation in VT&R can be found

in Furgale and Barfoot (2010) and Paton (2018).

2.3.3 Repeat Phase

In the repeat phase, the robot traverses the taught path autonomously. An overview of the workflow

is shown in Figure 2.9. The task is to localize the robot with respect to the map such that commands

can be issued to stay on the path. This requires metric localization. We assume that the user provides

the initial approximate topological localization by either placing the robot at the beginning of the path

or indicating (in the user interface) where along the path the robot is located. An initial localization

search is performed to find the closest vertex in the pose graph map. During path following, VO and
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localization are run in a predictor/corrector fashion. This means that VO is used to propagate the

estimated pose forward as the robot drives, and localization uses sensor measurements to correct the

pose estimate. In the following we explain these operations in more detail.

As before, live images are captured with the stereo camera before they are rectified and converted to

grayscale. Sparse visual features (SURF) are extracted, and the associated keypoints are triangulated to

find 3D landmarks. These landmarks must then be matched to landmarks in the pose graph. Given the

last known closest vertex in the graph and the pose estimate from VO, we can find the current closest

vertex in the graph. Let this vertex have reference frame F−→m. Next, VT&R extracts a local submap

by relaxing a window of vertices centred at the closest vertex. The landmarks from all the vertices in

the window are then transformed to the frame F−→m. Let the frame of the live robot be F−→l. Feature

matching is performed between the landmarks in F−→l and F−→m using nearest neighbour matching of the

descriptors. As in the case with VO, RANSAC is used for outlier rejection, and the pose, Tlm, is found

using the reprojection error of map landmarks transformed into the image plane. Additionally, the pose

propagated forward with VO is used as a prior for the pose estimation. Hence, we can see the estimated

pose from localization as a correction, based on feature measurements, to the pose predicted by VO. If

localization fails, VT&R relies on the pose propagated by VO. Path following fails if localization has

not recovered after 20 metres of driving.

The estimated SE(3) relative offset to the mapped path is projected into SE(2). With knowledge of

the projected 2D pose, the 2D reference path, and the target velocity, the path tracker carries out path

following using Model Predictive Control (Rawlings and Mayne, 2009).

2.3.4 Long-Term Localization

When relying on handcrafted features such as SURF, feature matching will fail once the difference in

appearance between the live and the map images becomes too large. VT&R has been extended with

new work to make localization more robust to large environmental change. Paton et al. (2015) extended

the operation of VT&R from a few hours to repeating from sunrise until sunset across multiple days.

They improved the localization’s robustness to lighting change by transforming RGB images into colour-

constant images (Corke et al., 2013).

Paton et al. (2016) further extended the long-term localization ability by introducing MEL (Churchill

and Newman, 2013). Each time the robot repeats a path is referred to as an experience. The data for

each repeat is then added to the pose graph map such that we get a spatio-temporal pose graph, see

Figure 2.10. This means that we get vertices in the graph for each repeat. In addition to the temporal

edges (in blue) that record the relative transforms between vertices on the teach, or privileged, run, we

also get spatial edges (green dashed line) that represent the relative pose transforms between vertices

from each new experience back to the closest vertex on the teach run. These poses are obtained with

localization during repeats. Finally, the temporal relative transformations (blue dashed line) between

adjacent vertices, obtained with VO, are also recorded for each experience.

MEL tackles drastic appearance change by using intermediate experiences to bridge the appearance

gap. We assume that the robot has been repeating a path as the environment gradually changes and

storing the data from each experience. When localizing across significant environmental change, VT&R

can pick a subset of the stored experiences that are most similar to the current conditions and use the

visual features from these experiences to localize instead of or together with the features stored with

the first mapping run. MacTavish et al. (2018) provide details on different ways to pick the relevant
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Figure 2.10: The spatio-temporal pose graph for MEL stores the data from each repeat as an experience
in the pose graph. Vertices on the teach are connected by temporal edges (blue line) that represent the
relative SE(3) pose between them. Repeat vertices are connected to a vertex on the map via a spatial
edge (green dashed line) that represents the relative pose from localization. Finally, the temporal edges
(dashed blue line) between adjacent vertices on the repeats represent the relative pose provided by VO.

experiences. MEL has extended VT&R operation to a full day of lighting change, including driving

after dark (MacTavish et al., 2017), and localization across seasons in an experiment that was run from

January until May (Paton, 2018). The downside to MEL is the fact that experiences must be collected

continually as the environment changes. Moreover, they must be gathered independently for each path

even though two paths may be collected in similar environments. In this thesis, we work towards making

single-experience localization more robust to appearance change with the goal of localizing without

intermediate bridging experiences.

2.4 Datasets

Throughout the work for this thesis, we make use of datasets that were collected outdoors using multi-

experience VT&R. In this section, we provide details on each dataset and describe how we use the data

in our work. As explained in Section 2.3.4, multi-experience VT&R stores sensor data with vertices and

relative poses as edges between the vertices in a spatio-temporal pose graph. It contains temporal edges

between adjacent keyframes on a given run and spatial edges from repeat vertices back to the teach

vertices to which they are localized.

The data used in this thesis were all collected outdoors at the University of Toronto Institute for

Aerospace Studies (UTIAS). Figure 2.11 shows an overhead view of the area. The data were gathered

during autonomous path following with the Clearpath Grizzly robot (see Figure 2.12), which uses a

factory-calibrated FLIR Bumblebee XB3 stereo camera with 24 cm baseline and 16 Hz frame rate as

the only sensor for VT&R. The camera is mounted on a mast and the extrinsic transformation between

the robot base and the camera is hand-measured. The robot has two forward-facing and two backward-

facing LED lights that can be used while driving during the dark. There is also a Navtech GPS unit,

which was not used for the data we work with.

The VT&R data is stored in a pose graph structure that can be accessed with Python code. In

order to make the data easier to handle for our own work, and to make it more accessible to others, we
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Figure 2.11: Aerial view of UTIAS, with the approximate path for each dataset overlayed.

FLIR Bumblebee XB3 
stereo camera

Navtech 
GPS module

Headlights

Figure 2.12: The Clearpath Grizzly robot with a forward-facing FLIR Bumblebee XB3 stereo camera,
headlights, and a Navtech GPS.

worked together with another student, Ben Congram, to store the VT&R data in easier-to-use formats.

The UTIAS Long-Term Mapping and Localization dataset is accessible online 1 and comes with Python

tools for reading vertices and transforms from the pose graph. The first two datasets that we explain

below, are available under the UTIAS Long-Term Mapping and Localization dataset.

2.4.1 UTIAS In-The-Dark

In summer 2016, MacTavish et al. (2017) used multi-experience VT&R to repeat a path across all lighting

conditions over a 31-hour time period between 09:00 on July 19th and 15:30 the following day. We refer to

the data from this experiment as the UTIAS In-The-Dark dataset. The path is approximately 250 metres

long and was collected on the road and lawn around the Mars Dome building. Small traffic cones were

set up to cordon off the experiment from other vehicles along the road. Figure 2.13 shows the overhead

1Data available at http://asrl.utias.utoronto.ca/datasets/2020-vtr-dataset.
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Figure 2.13: Overhead view of the UTIAS In-The-Dark path. Example images from different places
along the path are indicated with coloured markers on the map. The images on the bottom row with
blue frames show different appearance conditions from the same location.

view of the path and some example images from different locations along the path and from different

lighting conditions. Figure 2.15 summarizes the distribution of different conditions in the data. This

dataset contains a full range of lighting, including challenging conditions such as strong sun flares during

sunrise and sunset, long shadows, and driving with headlights after dark. Since the weather remains

the same throughout the experiment, apart from a few instances with cloud cover causing some more

diffuse lighting, this dataset nicely isolates the lighting change from longer-term weather and structural

changes. All together the dataset contains 39 experiences and a total of 72,666 stereo image pairs. The

number of stereo pairs per run varies between 862 and 4042. In general, more keyframes were created

in runs with more challenging visual conditions as new vertices are created in the pose graph when the

number of matched features during VO drop below a certain threshold.

2.4.2 UTIAS Multiseason

Over 17 weeks from January 31st til May 11th, 2017, Paton (2018) repeated the same path across

different lighting, weather, and seasonal conditions. We refer to the data from this experiment as the

UTIAS Multiseason dataset. The 165 metre path is driven off-road in an area with more undulating

terrain, sharper turns, denser vegetation, and fewer permanent structures compared to the UTIAS In-

The-Dark dataset. The dataset comprises conditions with varying degrees of snow accumulation, snow

melting, muddy conditions, and green grass. Different lighting conditions, including driving during the

dark, and different weather conditions are also present in the 136 total runs of the path. Figure 2.15
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Figure 2.14: Overhead view of the UTIAS Multiseason path. Example images from different places along
the path are indicated with coloured markers on the map. The images on the right with blue frames
show different appearance conditions from the same location.
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(a) UTIAS Multiseason dataset.
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Figure 2.15: Summary of weather, lighting, and ground conditions experienced during the 39 runs of the
In-The-Dark dataset (a) and 136 runs of the UTIAS Multiseason dataset (b).

summarizes the distribution of different conditions. A total of 86,883 stereo image pairs are provided.

An overhead view of the path together with example images are can be seen in Figure 2.14.

2.4.3 Additional Paths

During spring and early summer in 2019, we collected data from new paths around UTIAS to use as

additional testing data. In particular, for learning-based algorithms, we want to test generalization to

paths and areas not seen in the larger UTIAS In-The-Dark and UTIAS Multiseason datasets we use

for training. We have named the paths East, West, Lawn, West-Road, and East-Road. Each of these

paths have fewer repeats and also less appearance change between repeats compared to the UTIAS

In-The-Dark and UTIAS Multiseason datasets. However, they were intended to test generalization to

new areas and not for tackling a large range of appearance conditions.

The West path is approximately 470 metres long and driven off-road in a vegetated area with few

permanent structures. We taught the path on May 15th, 2019 and collected six repeats on May 15th and

May 16th, some of which include sun flares from low evening sun. See Figure 2.16 for an overhead view

of the path and example images. The East path is approximately 190 metres long and is also collected in

an off-road field with surrounding vegetation. In particular, it has tall grass along the entire route. We



Chapter 2. Background 23

Figure 2.16: Overhead view of the West path. Example images from different places along the path are
indicated with coloured markers on the map. The images on the right with blue frames show different
appearance conditions from the same location.

Figure 2.17: Overhead view of the East path. Example images from different places along the path are
indicated with coloured markers on the map. The images on the right with blue frames show different
appearance conditions from the same location.

taught the path on June 6th, 2019 and repeated it four times in the afternoon of the same day. Figure

2.17 provides a summary of the path with example images.

The Lawn path is a shorter, approximately 120 metre, route collected on the lawn next to the Mars

Dome building. The path taught on June 12th, 2019, was repeated once on June 12th, three times on

June 14th, and seven times on June 21st. Some of the data contains long shadows. An overhead view

of the path and images from different locations along the path are provided in Figure 2.18.

The West-Road path was taught in the evening on June 21st, 2019 and repeated once on June 21st

and twice on June 25th. The robot drives along the road and the path drives around a parking lot. Some

of the runs are gathered during the evening with low sun and long shadows. Figure 2.19 displays an

overhead view of the path and example images from the robot’s camera. The East-Road path was also

collected along a road and contains a large turn next to a smaller parking lot. The path is approximately

410 metres. It was taught on June 14th, 2019 and repeated twice on June 14th and twice more on June

21st. See Figure 2.20 for a summary including an overhead view and example images.
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Figure 2.18: Overhead view of the Lawn path. Example images from different places along the path are
indicated with coloured markers on the map. The images on the right with blue frames show different
appearance conditions from the same location.

Figure 2.19: Overhead view of the West-Road path. Example images from different places along the
path are indicated with coloured markers on the map. The images on the right with blue frames show
different appearance conditions from the same location.

2.4.4 Generating Datasets for Deep Learning

For the work on deep learning in Chapters 4, 5, and 6, we sample training, validation, and test data

from the VT&R spatio-temporal pose graph. We use the relative poses estimated with multi-experience

VT&R as ground truth for training. Although this ground truth is computed using VT&R and not

a typical GPS-based system such as RTK-GPS (using a base station) or GPS-INS (inertial navigation

system), we believe it can be used to supervise training due to the high accuracy of VT&R path following

with centimeter-level error on kilometer-scale repeats (Clement et al., 2017). A data sample consists of

two sets of stereo images together with the relative pose between them. For a VO sample, the images are

chosen from two vertices on the same repeat, while a localization sample contains images from vertices

on two different repeats, see Figure 2.21.

Since the UTIAS In-The-Dark and UTIAS Multiseason dataset have many experiences (39 and

136, respectively), we can generate a large number of samples for training and validation by randomly

sampling from the spatio-temporal pose graph. In the case of VO, we can vary the size of the relative



Chapter 2. Background 25

Figure 2.20: Overhead view of the East-Road. Example images from different places along the path are
indicated with coloured markers on the map. The images on the bottom row with blue frames show
different appearance conditions from the same location.
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Figure 2.21: Sampling relative poses for VO and localization from the spatio-temporal pose graph. The
sample in purple shows an example of how we get the temporal relative pose between two vertices on
the same run. This can be used as VO ground truth for training. An example of getting a relative pose
for localization ground truth is shown in orange.

pose by either choosing adjacent keyframes (purple sample in Figure 2.21) or compound poses between

keyframes that are farther apart. Since VT&R localizes all repeats back to the teach run, we can find

the relative pose between vertices from any two repeats. We do so by compounding the relative poses

from the vertex on one repeat, via the teach vertex, to a vertex on a another repeat, see the sample
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marked in orange in Figure 2.21. Similarly to VO, we can choose two vertices connected directly via

the teach vertex, or we can move temporally along the teach run to find a vertex farther away and

generate a relative pose with larger magnitude. The combination of many repeats and the ability to

move both spatially and temporally in the pose graph, lets us generate large numbers of localization

samples. Since VT&R accomplishes very accurate path following, many samples, apart from on turns

along the path, will not provide a large change in viewpoint. We easily find samples with drastically

different appearance, but a small portion of potential samples have large viewpoint change. Advancing

along the graph temporally to sample vertices that are farther apart helps remedy this challenge to a

certain extent.

When extracting data for experiments to test the performance of deep learning methods, we do not

sample randomly from the pose graph but rather collect all of the samples sequentially. Specifically,

the samples come from the same repeat for VO or from a pair of repeats for localization, where we use

one run as the teach and the other as the repeat. Further details on the training, validation, and test

datasets that we create will be provided in Chapters 4, 5, and 6.

2.4.5 Comparison to Public Datasets

As described above the data we use captures stereo images and associated poses from different outdoor

paths across lighting, weather, and seasonal change. There exist many datasets that can be used to

test localization and mapping. Some are based on images of city scenes or landmarks taken from many

different viewpoints (Li et al., 2012; Sattler et al., 2012; Kendall et al., 2015; Li and Snavely, 2018) or a

static camera (Chen et al., 2017) that captures change over time, but do not collect data along a path.

Other datasets provide data from driving, though the paths are never or only seldom traversed more

than once (Smith et al., 2009; Geiger et al., 2012; Blanco et al., 2014; Wang et al., 2017). We focus on

comparing the datasets we use to others that follow a similar approach, i.e. datasets for localization

from paths that have been traversed more than once.

The Oxford Robotcar Dataset (Maddern et al., 2017) was gathered while driving a car through central

Oxford during different seasons, weather, and lighting conditions over a total distance of approximately

1000 km. The 4Seasons dataset (Wenzel et al., 2020) records 350 km cross-seasonal driving in nine areas

ranging from urban to countryside environments. The University of Michigan North Campus Long-Term

Vision and Lidar Dataset (Carlevaris-Bianco et al., 2015) covers 27 runs across 15 months from indoor

and outdoor environments at the University of Michigan campus. The Ford Campus Vision and Lidar

Data Set (Pandey et al., 2011) also collects data in an urban environment, however the paths are only

traversed a few times during the span of a month. In their Bovasia dataset, which is a part of the

Rawseed Project, Ceriani et al. (2009) provide six sessions of mixed indoor and outdoor paths on a

campus. Another campus dataset is the Cross Season University Campus Dataset (Masatoshi et al.,

2015). The authors collect data from a hand-held camera along three different paths over four seasons

with a total of 12 traversals per path. The CMU Visual Localization Dataset repeats the same path 16

times during a year (Badino et al., 2011). Later, the CMU Seasons Dataset (Sattler et al., 2018) has

been created using data from (Badino et al., 2011). Two traversals of an 8 km path through a suburb,

one collected during heavy rain at night time and the other during a clear morning, is presented in

the Alderley Day/Night Dataset (Milford and Wyeth, 2012). The Nordland dataset consist of images

from a train journey completed during four different seasons and has been applied to robotics research

(Sünderhauf et al., 2013). The Symphony Lake dataset provides 121 surveys of an approximately 1.3 km
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lakeshore and includes appearance change across lighting, weather, and seasons (Griffith et al., 2017).

Finally, (Sattler et al., 2018) have created a benchmark for challenging visual localization. It contains

several different datasets that provide a range of different scenes and associated ground truth poses.

Since the datasets collected at UTIAS were captured while running multi-experience VT&R in the

loop, the robot follows the taught path closely and the viewpoint change is small over time (MacTavish

et al., 2018). This is different from datasets where paths are collected manually for each session. The

Nordland Dataset was collected by a train and therefore also provides minimal viewpoint change. In

contains a total of four traversals, one for each season.

The UTIAS In-The-Dark dataset systematically captures lighting change across 31 hours by travers-

ing the path approximately once per hour. The lighting change is not conflated with seasonal, weather,

and structural change as in other long-term localization and mapping datasets. Moreover, the data cover

challenging scenarios such as driving during the night and sun flares, see Figure 2.13.

Similarly to the New College Dataset (Smith et al., 2009) and other datasets collected in a campus

environment, the UTIAS In-The-Dark dataset (along with Lawn, West-Road and East-Road) provide

imagery of a mixed environment with road, buildings, fencing, and greenery. The UTIAS Multiseason

dataset (along with West and East) contain off-road areas with sharp turns, undulating terrain, and

vegetation. These off-road conditions, ranging from thick snow cover to tall grass, facilitate extreme

appearance change across seasons, as seen in Figure 2.14. The absence of road together and fewer

permanent structures than seen in urban datasets (Carlevaris-Bianco et al., 2015; Maddern et al., 2017;

Wenzel et al., 2020) lead to additional challenges for localization. Vegetation or heavy snow cover can

also create difficulties within a traversal, e.g., moving grass and vegetation are demanding for stereo-

matching and feature matching for VO. The Symphony Lake Dataset also captures data in a natural

scenery, but the route is only repeated approximately and stereo imagery is not provided.
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Direct Localization in

Visual Teach & Repeat

In this chapter we make a first attempt at improving robustness of single-experience localization in

VT&R by replacing sparse feature-based pose estimation with a direct method that uses the whole

image without relying on feature extraction and matching.

3.1 Introduction

Attention has been brought to direct methods for visual navigation (Comport et al., 2010; Newcombe

et al., 2011; Engel et al., 2014) as an alternative to feature-based ones and have been shown to have

several advantages. Direct methods minimize a photometric error based on direct image registration as

opposed to sparse feature matching. This removes the intermediate steps of feature computation and

matching and their associated errors. There is variation in how much of the image is used by different

direct methods ranging from dense approaches using all the pixels to (Newcombe et al., 2011), to semi-

dense (Engel et al., 2014) or even sparse approaches (Engel et al., 2018). Most direct methods lack the

sparseness of feature-based approaches, but with the use of code parallelization they can run in real-time.

Direct methods are advantageous for images with motion blur and camera defocus (Newcombe et al.,

2011) as well as for low-texture areas that make feature detection challenging.

We want to use a direct method for localization in VT&R to investigate whether using the intensi-

ties from the whole image can provide some improved robustness to appearance change and improved

accuracy to pose estimation over using sparse features. In this chapter, we implement direct localization

for VT&R using the image alignment method presented in Baker and Matthews (2001). VO remains

unchanged from the original feature-based implementation. The map is created by using VO to build a

pose graph, where vertices are linked by relative pose transformations. During autonomous repeats, we

combine feature-based VO and direct localization to obtain pose estimates relative to the path.

We test our direct localization approach for VT&R on two real-world outdoor paths. The first path

covers a loop on flat terrain over asphalt and grass, while the second path runs off-road over undulating

terrain. Because the data was collected using the existing VT&R system, we have the opportunity to

directly compare feature-based localization and direct localization on the same data. We show that

direct localization with a basic photometric cost function can provide increased accuracy for repeats

28
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under nominal lighting conditions. However, the direct method struggles in the presence of large lighting

change and will require further work to handle the more extreme cases well.

To summarize, the novel contribution of this chapter is the implementation of direct pose estimation

for localization in VT&R. As opposed to the existing localization approach, it does not rely on sparse

feature extraction and matching. The content in this chapter appeared in the Conference on Computer

and Robot Vision (CRV) (Gridseth and Barfoot, 2019).

3.2 Related Work

Direct methods for visual navigation differ from feature-based approaches by relying on image registration

directly instead of calculating and matching sparse visual features. They allow us to use more data

and avoid the step of computing either manually designed or learned features. As mentioned in the

introduction, direct methods can vary by the amount of pixels they use varying from dense (Newcombe

et al., 2011), to semi-dense (Engel et al., 2014), and sparse approaches (Engel et al., 2018). Direct

methods provide an advantage in areas with low texture, where it is difficult to compute features, as well

as for images with motion blur or camera defocus (Newcombe et al., 2011). Despite using more data,

direct methods can run in real time with the help of parallelization, choosing pixels with strong gradients,

and algorithm approximations such as the inverse compositional formulation (Baker and Matthews, 2001)

that significantly reduces the number of Jacobian calculations.

The goal of the original Lucas-Kanade algorithm (Lucas and Kanade, 1981; Baker and Matthews,

2004) was to align a template image to an input image. Later, Baker and Matthews (2001) developed

the inverse compositional algorithm, which improved computational speed because it avoided calculating

the image gradient and warp derivative for every iteration of the optimization. Most subsequent works

in the area of direct image alignment are based on this algorithm.

3.2.1 Direct Visual Odometry

Several researchers have used the direct approach for VO. Comport et al. (2010) use a quadrifocal rela-

tionship between image intensities in sequential stereo pairs to construct their iterative non-linear pose

estimation. Engel et al. (2018) present their Direct Sparse Odometry, in which they optimize a direct

photometric error without incorporating a geometric prior. A common problem with the photometric

error formulation in direct methods is the brightness constancy assumption (Newcombe et al., 2011).

Alismail et al. (2017) improve robustness to illumination change by densely calculating a binary de-

scriptor for each pixel instead of using only intensity. This involves computing descriptors, but does not

require data association by descriptor matching as is the case in sparse feature-based methods. Jaramillo

et al. (2017) also rely on dense matching of descriptors, but experiment with existing descriptors such as

Scale-Invariant Feature Transform (SIFT) (Lowe, 2004) and learned descriptors extracted from CNNs.

In their paper, Forster et al. (2014) combine direct and feature-based methods to form a Semi-Direct

Visual Odometry.

3.2.2 Direct Visual Localization and Mapping

Direct localization and mapping has also received some attention. With their Dense Tracking and Map-

ping system, Newcombe et al. (2011) perform real-time tracking of a monocular camera and reconstruct a
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Figure 3.1: The localization pipeline illustrated from input live stereo images on the left to the final
pose estimate on the right. Boxes marked in green correspond to components that are new for direct
localization compared to the original feature-based implementation.

dense model of the scene. The authors show that using a dense model provides superior camera tracking

during rapid motion compared to feature-based methods. With LSD-SLAM (Engel et al., 2014, 2015),

the authors demonstrate that they can use direct Simultaneous Localization and Mapping (SLAM) to

build consistent maps of large-scale environments. In order to tackle illumination and long-term envi-

ronmental change in an outdoor urban environment, Pascoe et al. (2017) align images using Normalized

Information Distance, which is derived from mutual information. Park et al. (2017) compare several ap-

proaches that update the cost function for pose estimation and use dense binary descriptors to improve

robustness. Clement and Kelly (2018) use a neural network to transfer the input images to new illumina-

tion and seasonal conditions before pose estimation. Finally, Dame and Marchand (2013) perform path

following using a monocular camera. They use mutual information to register images of the current view

to previously mapped images. Unlike VT&R, they control only 1 DOF using visual servoing instead of

performing explicit 6 DOF localization.

The direct approach has also been used to localize camera images to synthetic images created from a

prior model. In this case mutual information is used to compare different image modalities, a technique

that has been used in the medical imaging field (Viola and Wells III, 1997). Caron et al. (2014) track

objects and localize a vehicle by combining real and rendered synthetic images. Pascoe et al. (2015) align

real images with synthetic images rendered from a textured 3D mesh created using LIDAR point clouds

and camera images, while Stewart and Newman (2012) uses a textured point cloud directly. Wolcott

and Eustice (2014) create synthetic views of the ground plane for localization. Unlike Pascoe et al.

(2015) and Stewart and Newman (2012), they use LIDAR reflectance and perform a grid search instead

of gradient-based optimization.

3.3 Methodology

This section explains the pipeline used for direct localization in VT&R. We start by setting up a warp

function required in the inverse compositional method for pose optimization. We also discuss using a

robust cost function together with some implementation considerations.
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3.3.1 System Overview

As discussed in Section 2.3.4, VT&R builds a map during the teach phase that is represented as a pose

graph. The vertices in the pose graph store images and landmarks and are connected by edges that store

the transformation between vertices. During a repeat, VO and localization are fused to execute path

following. Sparse features are used to match landmarks in the current view to landmarks in the previous

frame for VO and to landmarks in the map for localization. Localization estimates a transformation

back to the closest vertex on the pose graph. The initial pose guess for localization is provided by

using VO to propagate forward the most recently localized pose. In our approach we will substitute the

feature-based localization, that matches landmarks in the current frame to landmarks in the map, with

a direct method that uses the current and map images only. The rest of the VT&R system remains the

same.

Our direct visual localization approach is based on the inverse compositional method proposed by

Baker and Matthews (2001). We construct a cost function from the intensity difference between the live

stereo images and those associated with the corresponding vertex on the mapped path. Minimizing this

cost function with iterative Gauss-Newton optimization yields the relative pose transform between the

robot and the mapped path. See Figure 3.1 for an overview of the localization pipeline.

3.3.2 Warp Function

First we construct a function that warps image coordinates. For this we need the stereo camera model

that was defined in Section 2.2.2, g : R
3 → R

4, that maps a 3D point, p ∈ R
3, to stereo image

coordinates, q ∈ R
4:
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and the stereo camera frame coincides with the left camera frame. Each

stereo image coordinate pair is assigned intensity values

y(q) =

[

Iℓ(uℓ, vℓ)

Ir(ur, vr)

]

, (3.2)

where Iℓ and Ir are the left and right images, respectively. The inverse of the stereo camera model maps

stereo image coordinates to a homogeneous point:
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We perform stereo matching to obtain disparity by using Hirschmuller (2008) as implemented in OpenCV.

We recall the warp function defined in Section 2.2.2. Given a pose transformation, T ∈ SE(3), we want
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to transform the stereo image coordinates, q, from one frame to stereo image coordinates, q′, in another

frame using the warp function, w : SE(3)× R
4 → R

4:

q′ = w(T, q) = g
(
T g−1(q)

)
= g (T p) = M

1

cT Tp
Tp. (3.4)

In order to use the warp function in the direct optimization, we need to find its derivative. While

doing so, we rely on some of the three-dimensional geometry described in Section 2.2.1. The direct

optimization algorithm solves iteratively for the pose, T, by making small perturbations, ξ ∈ R
6, to

the current pose estimate (or pose at the operating point), Top. The pose update is applied as follows

(Barfoot, 2017):

T = exp
(
ξ∧
)

Top ≈
(
1 + ξ∧

)
Top, (3.5)

with

ξ∧ =

[

ρ

φ

]∧

=

[

φ∧ ρ

0T 0

]

(3.6)

and

φ∧ =






φ1

φ2

φ3






∧

=






0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0




 . (3.7)

Further expanding the expression, we find that

Tp ≈
(
1 + ξ∧

)
Topp = Topp + (Topp)

⊙
ξ, (3.8)

using the identity

ξ∧Topp ≡ (Topp)
⊙

ξ, (3.9)

where ⊙ is a homogeneous-point operator (Barfoot, 2017) given by

[

ǫ

η

]⊙

=

[

η1 −ǫ∧

0T 0T

]

, (3.10)

where ǫ ∈ R
3 and η ∈ R. By combining a first order Taylor expansion with (3.8) we get that:

1

cT Tp
≈

1

cT Topp
−

1

(cT Topp)
2 cT (Topp)

⊙
ξ. (3.11)

Substituting (3.8) and (3.11) into the warp in (3.4) lets us update the warp to include the pose pertur-

bation ξ:

w(T, q) ≈ M

(

1

cT Topp
−

1

(cT Topp)
2 cT (Topp)

⊙
ξ

)
(

Topp + (Topp)
⊙

ξ
)

= M
1

cT Topp
Topp

︸ ︷︷ ︸

w(Top,q)

+ M
1

cT Topp

(

1−
1

cT Topp
ToppcT

)

(Topp)
⊙

︸ ︷︷ ︸

W(Top,q)

ξ

= w(Top, q) + W(Top, q) ξ, (3.12)
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where we have kept only terms linear in ξ, and W(·, ·) is the derivative (Jacobian) of the warp function

with respect to pose.

3.3.3 Inverse Compositional Approach

We can set up our pose optimization problem using the inverse compositional approach introduced by

Baker and Matthews (2001). The purpose of the optimization is to find the pose, T, that minimizes the

following cost function:

J(T) =
1

2

∑

i

e(T, qi)
T e(T, qi), (3.13)

where the residual error, e(T, qi), is defined as

e(T, qi) = y′(w(T, qi))− y(qi). (3.14)

y′(·) and y(·) are stereo images taken from two different camera poses.

Assume that we have an initial guess for the pose, Top. Using the compositional property of the

warp function, we can write write the error as

e(T, qi) = y′(w(T, qi))− y(qi)

= y′(w(exp(ξ∧), w(Top, qi)))− y(qi). (3.15)

In order to use a change of variables, we define

qi,op = w(Top, qi), (3.16)

from which we get

qi = w(T−1
op , qi,op). (3.17)

We can substitute this into the error to arrive at

e(T, qi) = y′(w(exp(ξ∧), qi,op))− y(w(T−1
op , qi,op)). (3.18)

Inserting the linearized warp function from (3.12), we can linearize the error function:

e(T, qi) ≈ y′(w(1, qi,op) + W(1, qi,op) ξ)− y(w(T−1
op , qi,op))

≈ y′(qi,op)− y(w(T−1
op , qi,op))

︸ ︷︷ ︸

e(1,qi,op)

+
∂y′

∂q

∣
∣
∣
∣
qi,op

W(1, qi,op)

︸ ︷︷ ︸

E(1,qi,op)

ξ

= e(1, qi,op) + E(1, qi,op) ξ, (3.19)

where ∂y′

∂q
is the image gradient.

We make the further approximation that qi,op is constant between iterations, which is then equivalent

to Baker and Matthews (2001). This allows us to calculate the image gradient and warp derivative once at

the beginning of the optimization instead of recalculating them at each step. Substituting the linearized
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Figure 3.2: The live image (left), the map image (middle), and a weight image (right) displaying the
weights computed by the Geman-McClure robust cost function. Dark pixels correspond to low weights.
We see that areas with changing shadows are downweighted. Red pixels are excluded.

error (3.19) into the cost function (3.13) gives:

J(T) ≈
1

2

∑

i

(e(1, qi,op) + E(1, qi,op) ξ)
T

(e(1, qi,op) + E(1, qi,op) ξ) . (3.20)

This is minimized by the solution, ξ⋆, to the following system of linear equations:

(
∑

i

E(1, qi,op)T E(1, qi,op)

)

ξ⋆ = −
∑

i

E(1, qi,op)T e(1, qi,op). (3.21)

Finally, we apply the pose perturbation to the initial guess as follows:

Top ← exp
(

ξ⋆∧
)

Top, (3.22)

and iterate to convergence.

3.3.4 Robust Optimization

We aim to make our optimization more robust (e.g., to scene changes such as shadows) by using a robust

cost function. We do so by modifying our cost function to be

J ′(T) =
1

2

∑

i

ρ (u(T, q)) , (3.23)

with

u(T, qi) =
√

e(T, qi)T e(T, qi). (3.24)

The derivative of the cost is:
∂J ′(T )

∂ξ
=
∑

i

∂ρ

∂ui

∂ui

∂ei

∂ei

∂ξ
, (3.25)

where
∂ui

∂ei

=
1

u(T, qi)
e(T, qi)

T ,
∂ρ

∂ui

=
u(T, qi)

(1 + u(T, qi)2)2
. (3.26)

This gives us
∂J ′(T )

∂ξ
=
∑

i

αie(T, qi)
T ∂e(T, qi)

∂ξ
, (3.27)
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Figure 3.3: On the left we have an image that has been warped with the initial pose guess, Top. Invalid
coordinates are shown using a red mask. The mask on the right is created by further perturbing the
pose in individual DOF in a small area around Top. This gives us a buffer so the mask will stay the
same while the pose updates during iterations.

where

αi =
1

u(T, qi)

∂ρ

∂u

∣
∣
∣
∣
u(Top,qi)

. (3.28)

There are several common robust cost functions to choose from and we opt to use the Geman-McClure

robust cost (Geman et al., 1992):

ρ(u) =
1

2

u2

(1 + u2)
, (3.29)

which gives the following weight:

αi =
1

u(T, qi)

∂ρ

∂u

∣
∣
∣
∣
u(Top,qi)

=
1

(1 + e(Top, qi)T e(Top, qi))
2 . (3.30)

In our experiments, we implement this robust optimization as Iteratively Reweighted Least Squares

(Holland and Welsch, 1977) with the original cost function modified to include a weight for each term:

J ′′(T) =
1

2

∑

i

αie(T, qi)
T e(T, qi). (3.31)

Our optimal pose perturbation is now given by the solution to

(
∑

i

αiE(Top, qi)
T E(Top, qi)

)

ξ⋆ = −
∑

i

αiE(Top, qi)
T e(Top, qi), (3.32)

with αi updating at each iteration. Figure 3.2 shows an example image with the pixels coloured by αi;

we see that the large shadow has been downweighted as it was not present in the reference image.

3.3.5 Implementation Considerations

For the pose optimization to succeed, we want the initial pose guess to fall inside the cost function’s

basin of convergence. As explained in Engel et al. (2014), a sufficiently good initialization is typically
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Figure 3.4: The leftmost column shows aerial views of the two paths we are repeating, while the remaining
images show example views form the two paths (by row). The bottom left image shows a view of the
path in winter, though we work with data collected in spring. The first path provides challenges to
localization due to changing illumination, while the second path contains a lot of vegetation, especially
tall grass, that can make it difficult to extract and match sparse features.

available for VO or tracking of new camera frames, while this is not necessarily the case for loop closures.

Similarly, localization with direct methods is more challenging than VO. Since VT&R solves a tracking

problem we get a good initial pose estimate, Top, from propagating the previous localization forward

using VO. We ended up using the initial pose guess provided by the feature-based localization method for

both approaches because the direct method was somewhat more sensitive to the initial pose guess than

the feature-based method and using the same Top facilitates direct comparison of the two approaches.

As described in Section 3.3.4, we use a robust cost function to reduce the effect of outliers. We also

found it necessary to use a coarse-to-fine pyramid approach to widen the basin of convergence, which is

common practice for most direct methods.

During warping, some image coordinates are discarded because they do not project into the new

image frame. Hence, the number of image coordinates included in the photometric error computation

will vary, which creates local minima in our cost function. Therefore, we warp the image coordinates to

perturbed poses in individual DOF in an area around the current pose guess (2.0 cm and 2.9 radians).

Then we take the union of image coordinates excluded at each of these perturbations and discard them

all from the current step of the optimization. This greatly helps smooth our cost function. Figure 3.3

shows an example of the constant pixel mask we use throughout optimization.

3.4 Experiments

We conducted experiments with data gathered on two real-world outdoor paths driven by the Clearpath

Grizzly robot. The camera is a forward-facing factory-calibrated FLIR Bumblebee XB3 stereo camera

with 24 cm baseline. Feature-based VT&R with SURF, colour-constant images (Paton et al., 2015), and

multi-experience localization (Paton et al., 2016) was used for autonomous navigation. We access images
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Figure 3.5: The top graph shows the photometric cost between images we are aligning. The images
are warped and aligned using the feature-based (blue) and direct (green) pose solutions. The middle
and bottom graphs show the difference between feature-based and direct pose for lateral translation
and heading. The red lines mark four places along the path for which we display aligned and overlayed
images on the bottom row. The red pixels are not used because they could not be warped into the new
frame. The large amount of discarded pixels are due to the moving vegetation making stereo matching
difficult. These example images show qualitatively that the direct method achieves a better alignment,
which is consistent with the lower cost in the top plot.

and poses from the spatio-temporal pose graph created by VT&R during teaching and autonomous path

following.

The first path from the UTIAS In-The-Dark dataset (described in detail in Section 2.4.1), is about

250 meters long, covering a paved road and grass in an area with trees, buildings and other structures.

Each repeat has significant illumination change with respect to the teach, which constitutes the biggest

challenge to localization for this path. The second path is about 165 metres long and runs through an

area with undulating terrain and vegetation such as bushes, trees, and a lot of tall grass. The data are

collected along the same path as the UTIAS Multiseason dataset (see Section 2.4.2) but was collected
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at a different time and is not a part of the dataset. We use three repeat paths captured under similar

lighting conditions to the mapped path. The dense vegetation, and especially the grass, poses a challenge

for feature-based methods as it provides fewer distinct and stable features. Figure 3.4 displays aerial

views of the two paths as well as examples views of the scenes along them.

In the experiments, we localize each vertex on the chosen repeats back to the corresponding vertex

on the teach pass. We use the vertex correspondences already given in the pose graph such that we can

compare the results between the feature-based method (using SURF) and our method directly. Note

that the feature-based method relied on MEL.

3.5 Results

We compare the localization performance of the direct and feature-based methods for the two paths

described in the previous section. The comparison is made on dataset and the code is written in Python.

The pipeline in its current form does not run in real time, but implementation in C++ in addition to

making use of parallelization should be sufficient to make the code run in real-time. There is no GPS

pose ground truth available for the dataset we use. Therefore we compare the methods by calculating

the photometric error for image alignment. The live image from the current vertex on the repeat run is

warped using the localization pose estimated by each of the two approaches, i.e. the relative pose of the

live vertex with respect to the corresponding map vertex. Then we take the photometric error between

the pixel intensities in the warped image and the image for the corresponding map vertex. The lower

the photometric cost, the better the image alignment.

Since we cannot assume ideal brightness constancy between images from different runs, using the

photometric error is not a perfectly fail-safe way to compare performance. For this reason, we also provide

some anecdotal image overlays between the warped and map images to qualitatively show that lower

cost is indeed associated with better image alignment and pose estimation accuracy in our experiments

despite the presence of some lighting-change. Furthermore, we show the difference in estimated pose for

lateral translation and heading for each vertex along the path. Figure 3.5 shows the results from a repeat

on the off-road path, which had little lighting change from teach to repeat, but contained a lot of tall

grass and other vegetation. We see that the direct localization provides consistently lower photometric

cost than the feature-based method. Across three repeats of this path the average absolute photometric

cost difference between the two methods was 0.0032. The average lateral translation difference was 0.010

m and the average heading difference was 0.29 degrees.

Figure 3.6 shows the results from two repeats of the on-road path. The main challenge on this path

comes from illumination change that introduces effects such as moving shadows and sun glare. The direct

localization generally behaves well, except at certain locations with varying shadows, where we can see a

larger discrepancy in the heading and lateral translation differences between the direct and feature-based

approaches. In particular, the method tries to align the shadows in the live and mapped images. A

basic direct cost function with robust M-estimation is not enough to deal with these intensity changes

that violate the brightness constancy assumption (Newcombe et al., 2011) and causes the optimization

to converge to local minima.
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Figure 3.6: The top graph shows the photometric cost between images we are aligning. The images are
warped and aligned using the feature-based (blue) and direct (green) pose solutions. The graph below
shows the pose difference between the methods for lateral translation. The red lines mark the places for
which we display the aligned and overlayed images below. The left column holds the original mapped
and live images. These examples shows that the direct method reaches local minima, despite using a
robust cost function to downweight outliers. The shaded green areas on the plots show areas, where the
direct method struggles due to shadows.

3.6 Conclusions and Future Work

We have implemented a basic pipeline for direct localization in VT&R and compared its performance

to feature-based localization. Direct localization provides improved localization accuracy under nomi-

nal lighting conditions in a challenging off-road scenario. This shows that we have a correct problem

formulation, though some work remains to improve the optimization pipeline, in particular increased

robustness to initial conditions, and to illumination changes. For areas with changing shadows, the direct

localization converged to local minima. This is a limitation of using the most basic direct localization

formulation since the cost function assumes brightness constancy (Newcombe et al., 2011), and adding

the robust cost function was not sufficient to solve this problem.

We have seen that tackling environmental changes when using pixel intensities together with a robust

cost function is difficult even when we rely on whole-image registration over sparse feature-matching.
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This suggests that more work is required on the vision front-end, where we process the images before

passing them to a pose optimization algorithm. In the following chapters of this thesis, we shift focus

to explore whether deep learning can be used to improve robustness of visual localization to appearance

change. We will investigate whether deep learning can help better match images between repeats and

the original teach run in single-experience localization.

3.7 Novel Contribution

We include direct localization for stereo images into VT&R and are the first to demonstrate direct

localization in a challenging off-road example with tall grass and dense vegetation, but limited appearance

change.

3.8 Associated Material

Publication

Gridseth and Barfoot (2019). Towards Direct Localization for Visual Teach and Repeat. In the 2019

Conference on Computer and Robot Vision (CRV).



Chapter 4

Deep Learned Pose Estimation for

Long-Term Localization

In this chapter we aim to use deep learning to improve robustness of single-experience long-term lo-

calization in VT&R by estimating relative poses for localization directly from images using a neural

network.

4.1 Introduction

Localization for VT&R that relies on matching of hand-crafted visual features (SURF) has been extended

to autonomous operation across lighting, weather, and seasonal change by adding colour-constant images

(Paton et al., 2015) and MEL (Paton et al., 2016). As we explained in Section 2.3.4, MEL collects data

every time the robot repeats a path, and the most relevant experiences are chosen for feature matching

in an effort to bridge the appearance gap. As long as the path is repeated as the environment gradually

changes, these bridging experiences will allow for long-term localization. One downside to MEL is that

data needs to be gathered for each new path that is taught, even if the new path is driven in a similar

environment to an existing path. Moreover, MEL requires keeping track of all the experiences and

finding the relevant subset for localization. In this work we wish to compile MEL into a Deep Neural

Network (DNN) such that we can perform robust single-experience pose estimation directly from images

without the need for feature extraction, feature matching, and pose optimization.

Developing a robust and accurate VT&R system has taken a large research and engineering effort.

As a result, we can use outdoor datasets collected with VT&R across lighting and seasonal change to

train a DNN for relative pose estimation (see Figure 4.1). As explained in Section 2.3.4, VT&R stores

data in a spatio-temporal pose graph that contains the relative poses of repeat vertices with respect

to the mapped path for every recorded path traversal. We can sample relative poses between vertices

across experiences and use them as ground truth labels to train a DNN. With the DNN, we aim to

localize radically different path traversals against each other without the use of intermediate bridging

experiences.

The design of the DNN is based on previous work by Melekhov et al. (2017). In particular, our DNN

takes two pairs of stereo images and regresses the relative robot pose. We conduct experiments to test

the ability of the relative pose regression system to generalize across changing environmental conditions.

41
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Multi-experience localization   Seasonal dataset

Deep relative pose regression

Input
Radically 
different 
views of 
nearby 
places

Output
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relative 
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for path 
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DNN

Figure 4.1: We compile MEL for path following into a DNN. We use datasets collected with VT&R
across different lighting and seasons to train the DNN to perform three degrees of freedom (DOF) relative
pose estimation under changing environmental conditions.

Since both VO and localization with respect to a path fall under relative pose estimation, we test the

network’s performance on both of these tasks. Using the exact same network architecture, we train one

network with VO data and one network with localization data.

To summarize, the novel contributions of this work include estimating poses for localization across

large seasonal and lighting change directly from images using a neural network. Moreover, we localize

in scenes that include challenging off-road areas with fewer permanent structures, more vegetation, and

larger appearance change between seasons than commonly used urban datasets such as Maddern et al.

(2017); Sattler et al. (2018); Wenzel et al. (2020). The content in this chapter appeared in the IEEE

International Conference on Robotics and Automation (ICRA) (Gridseth and Barfoot, 2020).

4.2 Related Work

CNNs have been used extensively for different parts of visual navigation and control. For instance,

researchers have tackled environmental change by using learning as a part of the pose estimation pipeline.

Examples include learning robust visual features (Sünderhauf et al., 2015; Arandjelovic et al., 2016) for

place recognition, learning which visual features are stable over time and suited for long-term localization

(Dymczyk et al., 2016), and transforming whole images to different appearance conditions before using

them in direct localization (Clement and Kelly, 2018). Others have in turn focused on replacing the

whole pose-estimation pipeline with neural networks by regressing pose directly from images in an end-

to-end fashion, several examples of which are presented in a survey on deep learning and visual SLAM

(Li et al., 2018a). The two main avenues for this approach is to regress absolute or relative poses.
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4.2.1 Absolute Pose Regression

In absolute pose regression, the neural network outputs a global pose in the world frame for the given

image input. Early work on absolute pose regression came from the development of PoseNet by Kendall

et al. (2015). This system is based on a pre-trained GoogleNet architecture and regresses six DOF pose

for metric localization of a monocular camera. Kendall and Cipolla (2016) extended PoseNet to use a

Bayesian neural network providing localization uncertainty and an improved loss function (Kendall and

Cipolla, 2017). Cai et al. (2018) were also able to generate uncertainties over the pose estimates by

using Gaussian process regressors to generate the probability distribution of the camera pose. Naseer

and Burgard (2017) improve on PoseNet by generating additional augmented data leading to improved

accuracy, while Walch et al. (2017) perform structured dimensionality reduction on the CNN output with

the help of Long Short-term Memory (LSTM) units. Clark et al. (2017) and Patel et al. (2018) were

able to reduce localization error by passing sequential image data to recurrent models with LSTM units.

Melekhov et al. (2018) uses an encoder-decoder together with fully connected layers to regress pose. Wu

et al. (2017) reduce the problem of overfitting from sparsely available training poses by synthesizing new

poses. They also introduce branching in the latter part of their network to deal with the coupling of

orientation and translation. As pointed out by Laskar et al. (2017), papers on absolute pose regression

often do not explore generalization to unseen places, because networks are trained separately for each

place in a dataset.

4.2.2 Relative Pose Regression

Instead of learning absolute pose, regressing the relative pose between two images removes the reliance

on a given scene and opens up the possibility to better tackle generalization. Melekhov et al. (2017)

use a Siamese CNN architecture based on AlexNet (Krizhevsky et al., 2012) to compute relative camera

pose from a pair of images. Similarly, Bateux et al. (2018) regress relative pose for use in visual servoing,

while DeTone et al. (2016) estimate the relative homography between two images. VO is a special case

of relative pose estimation and has been explored extensively (Mohanty et al., 2016; Wang et al., 2018;

Zhan et al., 2018; Iyer et al., 2018; Costante et al., 2015). In several examples authors combine CNNs

with LSTM units to incorporate a sequence of input data (Wang et al., 2018; Iyer et al., 2018). Iyer et al.

(2018) use geometric consistency constraints to train their network in a self-supervised manner. Going in

a different direction, Peretroukhin et. al. have combined deep learning with traditional pose estimation

by learning SE(3) pose corrections (Peretroukhin and Kelly, 2018) and SO(3) rotation (Peretroukhin

et al., 2019), which they fuse with relative SE(3) pose estimates.

Relative pose estimation has also been used as a tool to regress absolute pose. In particular, Laskar

et al. (2017) combine relative pose regression with image retrieval from a database. Balntas et al. (2018)

retrieve nearest neighbours based on learned image features before regressing relative pose to refine the

absolute pose. Saha et al. (2018) classify anchor points to which they regress relative pose. Oliveira

et al. (2020) combine the outputs of two DNNs for VO and absolute pose estimation, respectively, to

accomplish topometric localization. The work was further extended by using multi-task learning for

localization (Valada et al., 2018) as well as learning semantics (Radwan et al., 2018).

Authors that make use of relative pose estimation have explored generalization to unseen scenes, but

mostly in similar environmental conditions (Laskar et al., 2017; Melekhov et al., 2017; Wang et al., 2018;

Mohanty et al., 2016). We go beyond existing work by providing an analysis of the performance of our
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relative pose estimation system under drastically different environmental conditions on two challenging

outdoor datasets. As explained in Section 2.4, the UTIAS In-The-Dark dataset contains a full day of

lighting change, including driving after dark. The UTIAS Multiseason dataset is collected in an off-road

environment from winter until spring. We provide pose regression results for VO and localization with

respect to a path as well as combining the two.

4.3 Methodology

The neural network outlined in this section can be used to estimate three DOF relative poses for VO

and localization in VT&R. In the following, we introduce the neural network architecture and the loss

function we use to train it.

4.3.1 System Overview

VT&R stores images as vertices and relative poses between them as edges in a spatio-temporal pose

graph. Temporal edges between adjacent vertices are derived from VO, and spatial edges connect

vertices from autonomous repeats to vertices on the manually driven teach path. Our system estimates

both relative pose for VO as well as metric localization with respect to the mapped path. We use the

same neural network architecture and train two networks separately on data for VO and localization,

respectively. Since VT&R achieves highly accurate path following (Clement et al., 2017), we sample

ground truth relative pose labels for training the DNN from the multi-experience VT&R pose graph.

The DNN takes as input RGB stereo images from a pair of vertices and regresses a three DOF relative

pose given in the robot frame. For path following, the lateral offset from the path and heading are the

most important DOF and so we opt to estimate ξ =
[

x y θ
]T

, where x ∈ R, y ∈ R, and θ ∈ [−π, π].

4.3.2 Network Architecture

Our DNN architecture is inspired by the one presented by Melekhov et al. (2017). Similarly to their ap-

proach, the convolutional part of our DNN is taken from the well-known AlexNet architecture (Krizhevsky

et al., 2012). We do not use a Siamese configuration, but instead opt to input all four RGB images to

the network at once, resulting in 12 input channels. Our images are different in size (512 × 384) from

the standard input to AlexNet (224 × 224), and hence we make use of Spatial Pyramid Pooling (SPP)

(He et al., 2015) as in (Melekhov et al., 2017) to reduce the size of our feature map before the fully

connected layers. SPP lets us create a fixed-sized output, despite the different input image size, while

maintaining spatial information by pooling the responses of each feature in spatial bins (we use max

pooling). The size of the output is the number of bins times the number of features. We use four levels

of pyramid pooling with the following bins: 5× 5, 3× 3, 2× 2, and 1× 1. Finally, we keep the same fully

connected layers as in AlexNet, but add one more fully connected layer with 3 connections to regress

the three DOF pose. An overview of the network can be seen in Figure 4.2.

4.3.3 Loss Function

We use a simple quadratic loss function that takes the difference in target and predicted pose coordinates.

Translation and rotation are manually weighted using a diagonal matrix W with 1.0 on the diagonal for
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Figure 4.2: The neural network takes two sets of RGB stereo images and produces a three DOF relative
pose. The architecture contains convolutional layers, spatial pyramid pooling, and fully connected layers.
We list the stride, kernel size, and number of input and output channels for the convolutional layers as
well as input and output sizes for the fully connected layers.

x and y and 10.0 for θ. As pointed out by Kendall and Cipolla (2017), angles may wrap around 2π, but

this is not a problem we encounter as we are estimating small relative poses. The loss is

L =
1

2

(

ξ − ξ̂
)T

W
(

ξ − ξ̂
)

, (4.1)

where ξ represents the target pose that we have sampled from the VT&R pose graph and ξ̂ is the

estimated pose.

4.4 Experiments

For the experiments, we will train one neural network for VO pose estimation and another for localization.

We will test VO on runs under different appearance conditions and test localization across large lighting

and seasonal change. The experiments make use of the UTIAS In-The-Dark and UTIAS Multiseason

datasets described in detail in Sections 2.4.1 and 2.4.2, respectively. The data were previously collected

with the Clearpath Grizzly robot with a factory-calibrated FLIR Bumblebee XB3 stereo camera with
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24 cm baseline, see figure 4.1. VT&R with colour-constant images Paton et al. (2015) and MEL Paton

et al. (2016) was used for autonomous operation and building the resulting pose graph and ground truth

poses.

4.4.1 Data

We train, validate, and test our system on two separate outdoor paths. The UTIAS In-The-Dark dataset

(see Section 2.4.1 for more details) covers a path that is about 250 metres long following a paved road and

grass in an area with buildings. The path is repeated once per hour for over 30 hours and hence covers

significant illumination change. The path has a total of 39 runs from which we choose five for testing

and use the remaining for training and validation. The path in the UTIAS Multiseason dataset (see

Section 2.4.2) is about 165 metres long. It covers an area with more undulating terrain and vegetation.

Data is collected from winter to spring and also includes different weather. The dataset includes a total

of 136 runs and we hold out eight of those for testing, while using the rest for training and validation.

As explained in Section 2.4.4, we generate ground truth labels for training and validation for VO by

sampling the temporal edges between immediately adjacent vertices in the pose graph. For localization

we can sample randomly from the graph in both space and time, allowing us to generate large datasets

connecting vertices from both similar and radically different conditions. For this paper, we sample only

in time and do not move along the graph in the spatial direction.

For the UTIAS In-The-Dark dataset our training and validation sets have 360, 000 and 40, 000 samples

for localization, respectively. For VO we get 64, 530 and 7170 samples. The UTIAS Multiseason dataset

has 450, 000 and 50, 000 samples for localization training and validation, respectively. For VO we have

69, 659 training samples and 7739 validation samples.

4.4.2 Training and Inference

We train and test our network once for each path and do not re-train for each individual test condition.

The networks are trained separately on the UTIAS Multiseason and UTIAS In-The-Dark datasets, so

in total we train four networks (two for VO and two for localization). We on an NVIDIA GTX 1080

Ti GPU with a batch size of 64 and use early stopping based on the validation loss to determine the

number of epochs. We use the Adam optimizer (Kingma and Ba, 2015) with learning rate 10−5 and

other parameters set to their default values. Network inference runs at minimum 50 fps on a ThinkPad

P52 laptop with an Intel ® Core™ i7-8850H CPU, 32 GB of RAM, and an NVIDIA Quadro P2000 4

GB GPU.

4.4.3 Visual Odometry and Localization

When running the experiments on the test runs, we keep the data sequential in order to easily assess

performance in a realistic scenario. We perform one experiment (per path) for VO, where we compute

relative pose for each of the test runs. We test the network’s localization ability across environmental

change by localizing every repeat in the test set against each other. As mentioned in Section 1.2, the

focus of our work is not to improve on the accuracy of VT&R pose estimation, but to tackle localization

robustness in long-term operation. VT&R achieves kilometer-scale route repetition with centimeter-

level accuracy (Clement et al., 2017) and so we consider the learned pose regression sufficiently accurate

for VT&R operation if we stay within 20 cm error in each translational DOF and 5 degrees error in



Chapter 4. Deep Learned Pose Estimation for Long-Term Localization 47

Repeat

Teach

Figure 4.3: We estimate the relative pose for localization for the current repeat vertex, Tbd, by using
the VO estimate (purple) to propagate the previous localization pose Tac forward. The propagated pose
estimate is combined with the estimated localization pose (orange) from the localization neural network
to find the final estimate of Tbd.

heading compared to the VT&R ground truth data. We conduct two types of experiments (per path) for

localization. In the first experiment we localize the live vertices to the closest map vertices as determined

by the VT&R pose graph and compare the results to ground truth.

With the first type of experiment, we only solve one part of the localization problem since the map

vertex is already chosen for us by the ground truth system. Therefore, we devise a second test, where we

combine the outputs of the VO and localization networks to estimate the pose of the robot with respect

to the path. We start with the localization network computing the relative pose between the initial pair

of vertices localized by VT&R and then we combine VO and localization as a predictor and corrector

as we move forward along the path. We illustrate how this works in Figure 4.3. Assume that we have

the current repeat vertex, vd, and we want to localize it to the closest teach vertex, vb. We know the

relative pose, Tac from the last repeat vertex, vc, to its closest vertex on the teach path, va, from the

latest iteration of localization. From the map, we also know the transform between the teach vertices,

Tba. Now, we use the VO network to predict the relative pose between the previous and current live

frame, Tdc. With the pose from VO, we can propagate the previous localized pose forward to get an

initial guess T̂bd = T−1
dc TacTba. We use the localization network to make its estimate of Tbd. Finally,

we make a final prediction of the relative pose for localization by taking a weighted combination of the

two estimates for Tbd. This is not equal to how the predictor/corrector usually works, where the VO

prediction is passed as a prior to the localization pose estimation, but it allows us to combine the two

neural network predictions in a reasonable way. We continue along the path localizing all the live repeat

vertices. The closest map vertex at any time is chosen based on the relative pose computations and not

by ground truth from VT&R.

4.5 Results

We conduct experiments with the localization and VO networks for data across large environmental

change in an outdoor environment. Tables 4.1 and 4.2 list the Root Mean Squared Error (RMSE)

for each repeat in the test sets. The values on the diagonal are results for VO, while the rest are for

localization. The rows represent repeat runs while the columns are used as teach runs. We see that

the system achieves low errors across a range of conditions. For tests across lighting change, localizing
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Table 4.1: RMSE for each DOF for the UTIAS Multiseason dataset. Translation (x, y) is given in
metres and rotation (θ) in degrees. The diagonal entries are VO results, while the off-diagonal entries
are localization results. The rows are used as repeats and the columns as teach runs. The green and red
cells are better and worse performing examples, respectively, picked for further qualitative analysis.

Snow Some snow No snow Green
Sun Overcast Sun Overcast Sun Overcast Sun Overcast

Snow
Sun

x : 0.015
y : 0.0039
θ : 0.11

x : 0.073
y : 0.023
θ : 0.54

x : 0.086
y : 0.028
θ : 0.55

x : 0.086
y : 0.041
θ : 0.85

x : 0.070
y : 0.017
θ : 0.40

x : 0.075
y : 0.023
θ : 0.49

x : 0.089
y : 0.028
θ : 0.59

x : 0.082
y : 0.024
θ : 0.49

Overcast
x : 0.073
y : 0.031
θ : 0.57

x : 0.032
y : 0.0032
θ : 0.11

x : 0.074
y : 0.031
θ : 0.60

x : 0.088
y : 0.046
θ : 0.81

x : 0.074
y : 0.027
θ : 0.55

x : 0.080
y : 0.037
θ : 0.59

x : 0.099
y : 0.040
θ : 0.79

x : 0.088
y : 0.035
θ : 0.68

Some snow
Sun

x : 0.077
y : 0.029
θ : 0.64

x : 0.075
y : 0.032
θ : 0.65

x : 0.014
y : 0.0059
θ : 0.13

x : 0.086
y : 0.037
θ : 0.92

x : 0.070
y : 0.028
θ : 0.61

x : 0.074
y : 0.029
θ : 0.59

x : 0.100
y : 0.039
θ : 0.81

x : 0.091
y : 0.035
θ : 0.70

Overcast
x : 0.13
y : 0.071
θ : 2.1

x : 0.13
y : 0.069
θ : 2.1

x : 0.12
y : 0.066
θ : 2.4

x : 0.019
y : 0.0025
θ : 0.13

x : 0.12
y : 0.065
θ : 1.3

x : 0.13
y : 0.069
θ : 2.1

x : 0.12
y : 0.071
θ : 1.4

x : 0.13
y : 0.076
θ : 1.6

No snow
Sun

x : 0.056
y : 0.017
θ : 0.39

x : 0.061
y : 0.020
θ : 0.41

x : 0.065
y : 0.023
θ : 0.48

x : 0.079
y : 0.031
θ : 0.63

x : 0.011
y : 0.0033
θ : 0.10

x : 0.057
y : 0.021
θ : 0.42

x : 0.076
y : 0.025
θ : 0.52

x : 0.074
y : 0.019
θ : 0.46

Overcast
x : 0.071
y : 0.025
θ : 0.49

x : 0.067
y : 0.034
θ : 0.47

x : 0.070
y : 0.028
θ : 0.57

x : 0.082
y : 0.033
θ : 0.75

x : 0.057
y : 0.024
θ : 0.47

x : 0.012
y : 0.0042
θ : 0.012

x : 0.082
y : 0.031
θ : 0.61

x : 0.074
y : 0.028
θ : 0.54

Green
Sun

x : 0.097
y : 0.034
θ : 0.63

x : 0.10
y : 0.039
θ : 0.92

x : 0.10
y : 0.042
θ : 0.81

x : 0.095
y : 0.045
θ : 0.96

x : 0.088
y : 0.031
θ : 0.66

x : 0.097
y : 0.036
θ : 0.74

x : 0.019
y : 0.0033
θ : 0.14

x : 0.070
y : 0.029
θ : 0.50

Overcast
x : 0.090
y : 0.029
θ : 0.55

x : 0.099
y : 0.032
θ : 0.69

x : 0.10
y : 0.033
θ : 0.65

x : 0.10
y : 0.042
θ : 0.94

x : 0.10
y : 0.026
θ : 0.52

x : 0.097
y : 0.030
θ : 0.61

x : 0.089
y : 0.030
θ : 0.52

x : 0.013
y : 0.0035
θ : 0.14

Table 4.2: RMSE for each DOF for the UTIAS In-The-Dark dataset. Translation (x, y) is given in
metres and rotation (θ) in degrees. The diagonal entries are VO results, while the off-diagonal entries
are localization results. The rows are used as repeats and the columns as teach runs. The green and red
cells are better and worse performing examples, respectively, picked for further qualitative analysis.

Morning Sun Flare Day Evening Night

Morning
x : 0.0073
y : 0.0022
θ : 0.080

x : 0.012
y : 0.0053
θ : 0.17

x : 0.013
y : 0.0058
θ : 0.15

x : 0.013
y : 0.0079
θ : 0.15

x : 0.013
y : 0.0093
θ : 0.21

Sun Flare
x : 0.010
y : 0.0051
θ : 0.12

x : 0.0079
y : 0.0023
θ : 0.084

x : 0.011
y : 0.0060
θ : 0.14

x : 0.013
y : 0.0069
θ : 0.15

x : 0.013
y : 0.0086
θ : 0.20

Day
x : 0.012
y : 0.0058
θ : 0.13

x : 0.011
y : 0.0058
θ : 0.14

x : 0.0074
y : 0.0021
θ : 0.079

x : 0.013
y : 0.0069
θ : 0.15

x : 0.013
y : 0.0087
θ : 0.20

Evening
x : 0.019
y : 0.011
θ : 0.22

x : 0.019
y : 0.011
θ : 0.22

x : 0.019
y : 0.011
θ : 0.22

x : 0.0091
y : 0.0037
θ : 0.092

x : 0.020
y : 0.012
θ : 0.28

Night
x : 0.015
y : 0.013
θ : 0.29

x : 0.015
y : 0.014
θ : 0.31

x : 0.016
y : 0.013
θ : 0.29

x : 0.016
y : 0.014
θ : 0.31

x : 0.0047
y : 0.0041
θ : 0.092

evening and night repeats are the most challenging, but they do not perform much worse than the other

combinations. For the seasonal tests, we see that the network is able to localize runs as different as

winter and spring. These examples show the system’s potential to localize against large environmental

changes directly without relying on intermediate experiences.
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Figure 4.4: Integrated VO for sunny weather with snow on the ground and overcast weather with no
snow representing one of the most and least accurate results, respectively.

Figure 4.5: Integrated VO for day and evening with low sun and sun flares. These examples represent
one of the most and least accurate results, respectively.

To supplement our quantitative findings, we provide detailed plots for two test cases from each

dataset. We pick one of the best performing test cases (marked in green in the tables) and one of the

cases with the largest errors (marked in red). We integrate the results from VO to show the full paths

in Figures 4.5 and 4.4. Figures 4.7 and 4.6 display localization results. For path following, the most

important performance indicators are the lateral and heading errors with respect to the path. For a small

segment of each path, we plot the ground truth y and θ values against those predicted by the localization

network (for the ground truth vertex pairs) as well as the full localization method that combines VO and

localization network outputs. We think the latter method has a smoothing effect on the pose estimates.

The fact that this method chooses different map vertices for localization than the ground truth may

account for some of the discrepancy between the two solutions in Figure 4.6. Additionally, in Figures 4.7

and 4.6, we plot the cumulative distribution of y and θ errors for the whole test sequence and include

two example teach-and-repeat image pairs, illustrating the challenging environmental change. The path

from the UTIAS In-The-Dark Dataset has less sharp turns and small lateral path offsets resulting in a

smaller signal-to-noise ratio in the data. This makes the value of y harder to predict, see Figure 4.7.
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Figure 4.6: The figure shows localization results for one of the better (top) test sequences from the
UTIAS Multiseason dataset and one with larger errors (bottom). We plot the relative pose estimates
for y and θ from the localization network (blue) as well as pose estimates from combining VO and
localization (green) together with the target values (orange) for a segment of the full path. The plots
on the right show the cumulative distribution of errors for the full path. The image pairs on the left
provide anecdotal examples from the test sequence and are marked in the plot.

Given the qualitative plots from the example runs and the fact that the RMSE compared to the VT&R

ground truth are less than 20 cm in translation and 5 degrees in rotation (as suggested in Section 4.4.3),

we believe that the learned poses would be sufficiently accurate for successful path following in the loop.

4.6 Conclusions and Future Work

In this chapter, we presented a DNN that can perform relative pose regression for both VO and localiza-

tion for paths in an outdoor environment across illumination and seasonal change. We sampled ground

truth labels for training and testing from a spatio-temporal pose graph generated by VT&R. We con-
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Figure 4.7: The figure shows localization results for one of the better (top) test sequences from the
UTIAS In-The-Dark dataset and one with larger errors (bottom). We plot the relative pose estimates
for y and θ from the localization network (blue) as well as pose estimates from combining VO and
localization (green) together with the target values (orange) for a segment of the full path. The plots
on the right show the cumulative distribution of errors for the full path. The image pairs on the left
provide anecdotal examples from the test sequence and are marked in the plot.

ducted experiments across environmental change on data from two outdoor paths. The network carries

out VO under different and challenging conditions, including after dark. Furthermore, our network can

perform localization for input image pairs from different times of day or seasons without the need for

intermediate bridging experiences, which are necessary for long-term operation with the original VT&R

system. From the performance we achieve on these datasets we believe that the localization system is

sufficiently accurate for in-the-loop path following.

An end-to-end trained neural network that regresses pose directly from images provides a very simple

method for localization since visual feature extraction, data association, 3D point computation, pose

optimization and other tasks in a typical pose estimation pipeline are not needed. Moreover, we see
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that using deep learning has helped us tackle large appearance change that has not been successful with

traditional handcrafted features or the direct approach we presented in Chapter 3. With the learned

approach, however, we found it to be challenging to get the neural network to generalize well to other

paths not seen in the training data. Our aim in the next two chapters is therefore to introduce more

structure into our deep learning approach in order to better tackle generalization to new paths

4.7 Novel Contributions

- We estimate relative poses for localization across large seasonal and lighting change directly from

images using a neural network. We use the same network architecture to estimate relative poses

for VO and combine VO and localization for path following.

- We are the first to tackle large seasonal appearance change in a challenging off-road environment

with deep learned pose regression. We localize in scenes with fewer permanent structures, more

vegetation, and larger seasonal appearance change (such as snow and green grass) than commonly

used urban datasets.

4.8 Associated Material

Publication

Gridseth and Barfoot (2020). DeepMEL: Compiling visual multi-experience localization into a deep

neural network. In the 2020 IEEE International Conference on Robotics and Automation (ICRA).

Videos

- Deep learned pose estimation: https://youtu.be/lXbTaAM6kSY

- Deep learned pose estimation (conference presentation): https://youtu.be/XrlLDTFiMt8

https://youtu.be/lXbTaAM6kSY
https://youtu.be/lXbTaAM6kSY
https://youtu.be/XrlLDTFiMt8
https://youtu.be/XrlLDTFiMt8


Chapter 5

Deep Learned Features for

Visual Odometry

5.1 Introduction

In Chapter 4, we successfully trained a network to learn relative pose for VO and localization across

large appearance change directly from sensor inputs. We found, however, that the approach struggled

to generalize to new paths not seen during training. Sattler et al. (2019) state that accuracy can be an

issue for methods that regress global pose directly from sensor data. In their survey, Chen et al. (2020)

find that hybrid methods, which combine deep learning and classical geometric models, are usually more

successful for VO than models that learn pose directly, with some even outperforming state-of-the-art

classical monocular VO algorithms (Yang et al., 2020).

This motivates introducing more structure to our method for learning relative poses. Instead of

learning a replacement for a complete VO or localization pipeline, we focus on learning visual features,

while using a traditional algorithm for pose estimation, see Figure 5.1. In this chapter, we apply this

approach to VO before continuing to work with localization in Chapter 6. Due to the lack of major

lighting or environmental change between image frames, VO is a simpler problem than localization

to start with. Our work follows the approach of Barnes and Posner (2020), which learns features for

RADAR localization. In particular, we learn keypoints with associated descriptors and scores that are

passed to a differentiable point-based pose estimator. This ensures the pipeline can be trained end-to-

end supervised by ground truth poses. Learning the score is supervised solely from pose error and so

determines which keypoints are robust for VO, serving as outlier rejection. We only need the ground

truth poses to construct our loss functions, and therefore we do not require access to additional ground

truth keypoint correspondences.

In this work, we aim to use deep learning for stereo VO on challenging outdoor data with vegetation

and few permanent structures. The data cover different lighting and seasonal conditions, including chal-

lenging scenarios such as snow cover, tall grass, driving after dark, and strong sun flares. Furthermore,

we test the learned feature’s ability to generalize to paths not seen in the training data. We compare

our experimental results to a baseline using handcrafted SURF (Bay et al., 2006). We find that properly

weighting keypoints during pose estimation is essential to successful VO and therefore also experiment

with learned and non-learned weights for both the learned and baseline methods.

53
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Keypoint 
matching

Differentiable 
visual odometry 

estimation

Relative pose

Backpropagation

Keypoints, descriptors, scores

Keypoints, descriptors, scores

Figure 5.1: We use a neural network to predict keypoints, descriptors, and keypoint scores that can be
used in classical VO pose estimation. The differentiable pipeline lets us train end-to-end from ground
truth poses. We train and test on challenging outdoor data collected with a Clearpath Grizzly ground
robot.

To summarize, we develop an approach to learn sparse visual features for relative pose estimation

based on the earlier work on RADAR localization from Barnes and Posner (2020). We successfully

apply it to VO and show that the features generalize to new paths. Other than working with off-road

environments and a large variety of seasonal conditions, the successful estimation of poses for VO is in

itself not a novel contribution since applications of learned features to VO already exist (DeTone et al.,

2018a; Tang et al., 2020; Jau et al., 2020). The main goal of this chapter is to develop a learning pipeline

that we apply to the more challenging localization problem in Chapter 6. Given the improvement in

generalization over Chapter 4, we find the VO results beneficial to include in the thesis as a step on the

way towards learned features for localization.

5.2 Related Work

There has been a wide range of work on deep learning for pose estimation. Chen et al. (2020) provide a

survey of deep learning for mapping and localization, including VO. Both supervised and unsupervised

techniques have been used to learn pose directly from sensor data for VO (Wang et al., 2018; Li et al.,

2018b; Mahjourian et al., 2018). As mentioned before, Sattler et al. (2019) noted that learning pose

directly from image data can struggle with accuracy, and Chen et al. (2020) found that approaches

combining deep learning and classical geometric models for VO usually improve over the latter. Structure

can be added to deep learning in different ways. While still learning pose directly, some researchers have

used the properties of rigid motion to add loss terms that help enforce the geometric consistency of

their computed trajectory (Iyer et al., 2018; Wang et al., 2019). Another approach focuses on learning

corrections to poses computed by a classical VO method (Peretroukhin and Kelly, 2018; Wagstaff et al.,

2020).
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5.2.1 Learned Features

A further possibility for adding more structure to learned pose estimation, is to focus on learning visual

features, while retaining a classical pose estimator. This tackles challenging visual appearance with

learning, but avoids using learning for the part of the problem with well-known solutions. A lot of work

has been done on the various components relating to visual features, from learning detectors, descriptors,

weights, matching, and outlier rejection. Many papers focus on one of these parts exclusively, while others

tackle several at once. Due to the amount of previous work, we choose to highlight those papers most

relevant to the tasks of VO and localization, that we are interested in. Ma et al. (2021) provide an

excellent and thorough survey of feature detection, description, and matching covering both handcrafted

and learned features, which we recommend consulting for further detail.

We have created a table to compare a select set of methods most relevant to our work, see Table 5.1.

This means that we mostly focus on methods that learn detection, description, and matching together.

Moreover, we pay most attention to papers that train features targeted specifically at the tasks of either

VO or metric localization. We do not consider image retrieval or place recognition. Although this

chapter develops learned features for VO, we continue with localization in Chapter 6 and so set up

our comparison table with both tasks in mind. For sparse feature-based localization, specifically, we

concentrate on what Chen et al. (2020) refer to as 2D-to-3D localization or close variants thereof. In

2D-to-3D localization, correspondences are established between 2D points in an image and 3D points

in a map, before performing outlier rejection with RANSAC and pose estimation with a Perspective-n-

Point (PnP) solver. We choose to leave out localization with scene coordinate regression, which Chen

et al. (2020) describe as estimating the 3D coordinates of each pixel in an image in the world coordinate

system or learning a transform from an image to the global coordinates of the scene. Finally, we will

also leave out feature learning for 3D-to-3D localization with LiDAR sensors. A comprehensive review

of the aforementioned topics are included in Chen et al. (2020).

We start by getting an overview of a breadth of feature-learning strategies before discussing learned

features applied specifically to VO (Section 5.2.2) and localization (Section 6.2.1). In particular, we look

at what the methods learn and the network architectures they use, what data or ground truth labels

they rely on for training, and, finally, how they test performance.

Method Design

In the second to fourth columns of Table 5.1, we have recorded which components out of keypoint

detection, descriptor computation, and feature matching, that each approach learns. As documented

by Chen et al. (2020) and Ma et al. (2021), many methods focus solely on a subset of these. We only

include a few examples of such approaches in the first rows of Table 5.1, because we are more interested

in methods that learn all three simultaneously in a differentiable pipeline (with exception of the lack of

keypoint detection for direct methods).

LIFT (Yi et al., 2016) and LF-Net (Ono et al., 2018) are two of the early methods that were able to

jointly train keypoint detection, description, and matching. For LF-Net, only one of the two branches

of their pipeline is differentiable, which complicates training. Moreover, both methods operate on image

patches instead of whole images. SuperPoint (DeTone et al., 2018b), on the other hand, computes

keypoints and descriptors for whole images. The authors design a network with an encoder and two

decoders, one for descriptors and the other for keypoint detection. Several other methods rely on
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Table 5.1: The table compares different methods that use learned features. We compare whether they
learn keypoint detection, descriptors, or matching. We distinguish between sparse and dense methods.
Methods that compute densely across the image but use sparse keypoints and descriptors at test time, are
listed as sparse. We record what ground truth data is used for supervision, i.e. are only poses needed or
does the method need explicit point correspondence labels (an empty response indicates unsupervised).
We note which task the method has been tested on such as feature matching, VO, etc. Tasks marked
with * were tested on indoor data. We check whether the has been tested on trajectory data as this
is most relevant for robot navigation. Finally, we indicate if the test data contains lighting or seasonal
change.

Method Detect Describe Match Sparse Supervise Task Trajectory Lighting Seasons

TILDE (Verdie et al., 2015) ✓ ✗ ✗ ✓ Points Keypt. detection ✗ ✓ ✓

(Wang et al., 2020) ✗ ✓ ✓ ✓ Pose Localization ✗ ✓ ✗

SuperGlue (Sarlin et al., 2020) ✗ ✗ ✓ ✓ Matched points Localization ✗ ✓ ✗

(Yu et al., 2020) ✗ ✗ ✓ ✓ Matched points Localization ✓ ✓ ✓

LIFT (Yi et al., 2016) ✓ ✓ ✓ ✓ Matched patches Feat. matching ✗ ✓ ✗

LF-Net (Ono et al., 2018) ✓ ✓ ✓ ✓ Pose, depth Feat. matching ✗ ✓ ✗

SuperPoint (DeTone et al., 2018b) ✓ ✓ ✓ ✓ Synthetic points Homography est. ✗ ✓ ✗

UnSuperPoint (Christiansen et al., 2019) ✓ ✓ ✓ ✓ - Homography est. ✗ ✓ ✗

(Venator et al., 2021) ✓ ✓ ✓ ✓ - Localization ✓ ✓ ✓

D2-Net (Dusmanu et al., 2019) ✓ ✓ ✓ ✓ Matched points Localization ✗ ✓ ✗

R2D2 (Revaud et al., 2019) ✓ ✓ ✓ ✓ Dense matched points Localization ✗ ✓ ✗

ASLFeat (Luo et al., 2020) ✓ ✓ ✓ ✓ Dense matched points Localization, VO ✓ ✓ ✗

S2DNet (Germain et al., 2020) ✗ ✓ ✓ ✓ Matched points Localization ✓ ✓ ✓

SAND (Spencer et al., 2019) ✗ ✓ ✓ ✓ Matched points SLAM ✓ ✗ ✗

(Spencer et al., 2020) ✗ ✓ ✓ ✓ Matched image triplets Feat. matching ✓ ✓ ✓

(Lv et al., 2019) ✗ ✓ ✓ ✗ Pose SLAM*, VO* ✓ ✓ ✗

BA-Net(Tang and Tan, 2019) ✗ ✓ ✓ ✗ Pose, depth Localization*, VO ✓ ✗ ✗

(Xu et al., 2020) ✗ ✓ ✓ ✗ Pose SLAM* ✓ ✓ ✗

(von Stumberg et al., 2020a) ✗ ✓ ✓ ✗ Matched points Localization ✓ ✓ ✓

(von Stumberg et al., 2020b) ✗ ✓ ✓ ✗ Pose, matched points Localization ✓ ✓ ✓

(Kasper et al., 2020) ✗ ✓ ✓ ✗ VO poses Localization ✓ ✓ ✓

(Germain et al., 2021) ✗ ✓ ✓ ✓ Pose, (3D point cloud) Localization ✗ ✓ ✗

(Bhowmik et al., 2020) ✓ ✓ ✓ ✓ Pose SfM ✗ ✓ ✗

(Barnes and Posner, 2020) ✓ ✓ ✓ ✓ Pose Odom. + localize ✓ ✓ ✗

(Sarlin et al., 2021) ✗ ✓ ✓ ✓ Pose, (3D point cloud) Localization ✓ ✓ ✓

(Tang et al., 2020) ✓ ✓ ✓ ✓ - VO ✓ ✗ ✗

(DeTone et al., 2018a) ✓ ✓ ✓ ✓ - VO* ✓ ✗ ✗

(Jau et al., 2020) ✓ ✓ ✓ ✓ Synthetic points, pose VO ✓ ✗ ✗

(Huang et al., 2020) ✓ ✓ ✓ ✓ Not trained VO* ✓ ✓ ✗

(Li et al., 2020) ✓ ✓ ✓ ✓ Not trained SLAM* ✓ ✓ ✗

HF-Net (Sarlin et al., 2019) ✓ ✓ ✓ ✓ Teacher networks Localization ✓ ✓ ✓

(Gladkova et al., 2021) ✓ ✓ ✓ ✓ Not trained VO + localization ✓ ✓ ✓

(Sun et al., 2021) ✓ ✓ ✓ ✓ - VT&R closed-loop ✓ ✓ ✗

the SuperPoint network design (Christiansen et al. (2019) (UnSuperPoint), Venator et al. (2021), and

Bhowmik et al. (2020)). D2-Net (Dusmanu et al., 2019) chooses a different strategy of combining the

weights for detection and description in one encoder by basing detection on local maxima in descriptor

space. The downside is that detection happens at a lower image resolution, which limits accuracy.

ASLFeat (Luo et al., 2020) relies on the design from D2-Net but remedies the resolution limitation

by detecting keypoints at multiple levels of the network corresponding to multiple image resolutions.

This is similar to the well-known approach of using Gaussian image pyramids for hand-crafted feature

extraction. While S2DNet (Germain et al., 2020) uses an off-the-shelf keypoint detector, they employ a

similar strategy to ASLFeat by matching descriptors at multiple levels of the encoder. Differently from

most other methods, they match sparse descriptors in the source image to dense descriptors in the target

image. R2D2 (Revaud et al., 2019) learns descriptors together with point repeatability and reliability.
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They avoid the issue of detection at low resolution by using dilated convolutions to maintain the spatial

resolution. Sarlin et al. (2021) compute dense descriptors at several levels, while Germain et al. (2021)

compute coarse and fine descriptors with two different networks.

Barnes and Posner (2020) operate on RADAR data, but we include their approach because we build

on it for our own work. The authors use an architecture with one encoder together with one decoder-

branch for keypoint detection and another to compute point importance scores. They extract descriptors

densely from each level of the encoder before resizing and concatenating them together. One advantage

to the approach from Barnes and Posner (2020), is that they directly detect a fixed number of keypoints

across the image without the use of Non-Maximal Suppression (NMS) or other strategies for picking the

top keypoint candidates. SAND (Spencer et al., 2019) and Spencer et al. (2020) extract dense descriptors

from the decoder in a single encoder-decoder pair. Additionally, SAND uses an off-the-shelf keypoint

detector at inference for tasks that require keypoints.

Finally, we look at dense learned features for use in direct pose estimation. As explained in Section

3.3.5, direct methods do not detect and match sparse keypoints, but instead they iteratively estimate

pose for different resolutions of an image pyramid. Therefore, the learned methods from Lv et al. (2019),

Tang and Tan (2019) (BA-Net), Xu et al. (2020), von Stumberg et al. (2020a) (GN-Net), von Stumberg

et al. (2020b) (LM-Reloc), and Kasper et al. (2020), extract descriptors densely from each level of their

encoder or decoder and use these features to estimate pose at the corresponding image resolution.

Training

Next, we compare what ground truth labels the different methods use for training. This gives insight

into how easy a method is to develop, especially in the case of robotics, where real-world data is time-

consuming to collect and label. The column labeled ”Supervise” in Table 5.1 lists the ground truth

labels required for training supervision. Many approaches for learning features rely on point or point

correspondences between two images (D2-Net, R2D2, ASLFeat, S2DNet, SAND, GN-Net, and LM-

Reloc), which can be tedious to generate at scale. They can be computed using ground truth poses

and depth, though might rely on an existing keypoint detector. Alternatively, point correspondences

can be generated with classical pose estimation techniques, though they may run into challenges with

appearance changes, which is one of the problems learning is trying to mitigate. Spencer et al. (2020)

use image triplets with a positive sample from the same location and a negative sample for a different

place. These are easier to generate than point correspondences, but still require the capacity for place

recognition.

SuperPoint gets around the need for point correspondences by bootstrapping keypoint detection with

synthetic data. In the second training stage, they apply the keypoint detector and use homographic

adaptation to train their full network. This means that they warp images with known homographies

and match descriptors between warped images. The downside is that homographies do not capture

full six DOF pose changes. Moreover, they are not able to compare images taken under naturally

varying appearance change. UnSuperPoint trains fully unsupervised by removing the need for initial

bootstrapping but still relies on homography adaptation. Venator et al. (2021) further compensate

for the appearance problem by adding learned domain adaptation, although it does not capture full

real-world appearance change.

Another group of learning methods use the ground truth pose for training (LF-Net, Germain et al.

(2021), and Wang et al. (2020)). For instance, Wang et al. (2020) develop a loss function that exploits
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the epipolar constraint given by relative camera poses. Training networks with relative poses from

VO or localization, may make the learned features better adapted to these tasks than if trained with

homographies or general point correspondences. Going further than feature matching on relevant data,

some approaches use a training pipeline that includes differentiable pose estimation (Lv et al. (2019), BA-

Net, Xu et al. (2020), Barnes and Posner (2020), Bhowmik et al. (2020), and Sarlin et al. (2021)). This

allows them to train features end-to-end explicitly for the target pose estimation task. Direct methods

have the advantage that they do not rely on non-differentiable feature matching. They, however, use

iterative optimization, which can be made differentiable by unrolling the optimizer a fixed number of

steps as in Lv et al. (2019), BA-Net, Xu et al. (2020), and Kasper et al. (2020). Although Kasper

et al. (2020) train features for localization, they are able to supervise with poses from VO because they

consider the relative poses between three frames, two of which are temporally adjacent. Bhowmik et al.

(2020) make their sparse feature pipeline differentiable by implementing probabilistic feature matching

with the help of reinforcement learning. Sarlin et al. (2021) create a differentiable pipeline by aligning

dense features and computing pose at multiple levels. Their method, however, relies on a 3D point

cloud and course pose estimate as inputs. Finally, Barnes and Posner (2020) make feature matching

differentiable by matching sparse descriptors in the source image to dense descriptors in the target and

computing the weighted target coordinates. Moreover, they solve for the pose between two sets of 3D

points with SVD (see Section 2.2.3), which avoids iteration and is also differentiable.

Testing

Finally, we look how the learned feature methods are tested and what data they use for testing. The

column labeled ”Task” in Table 5.1 specifies which task is used to test the features. If several tasks are

used, we list the one most relevant to VO and localization, which we are interested in. In the column

labeled ”Trajectory”, we indicated whether the features were tested on data from a trajectory. In their

paper on benchmarking outdoor visual localization, Sattler et al. (2018) distinguish between datasets,

where images are part of a trajectory or are taken ”free viewpoints”. The former is most often collected

by a robot or car driving on the road, while the latter, for instance, represent images of a building

taken from different viewpoints. Since our work ultimately revolves around path following, we are most

interested in seeing how various learned features perform on a similar task, i.e. on datasets that contain

trajectories preferably collected outdoors. Images of large buildings are less relevant as they contain large

planes, have many corners and other structured features, and provide less useful viewpoints (looking up

at a building instead of along a path). As the last two columns of our table indicate, we also record

which features have been tested under illumination and seasonal change.

We see in Table 5.1 that some of the approaches we have discussed above are only tested on feature

matching (LIFT, LF-Net, and Spencer et al. (2020)). Moreover, SuperPoint and UnSuperPoint, which

were trained with homography adaptation, also test on homography estimation. Venator et al. (2021),

which extended SuperPoint with domain adaptation, tests localization on trajectory data across lighting

and seasonal change. Some methods test on localization and appearance change, but do not include

data with trajectories (R2D2, D2-Net, Germain et al. (2021), and Bhowmik et al. (2020)). Finally,

several of the methods we have discussed so far test their learned feature on tasks such as VO, SLAM, or

localization on datasets containing trajectories (ASLFeat, SAND, S2DNet, Sarlin et al. (2021), GN-Net,

LM-Reloc, Kasper et al. (2020), BA-Net, Lv et al. (2019), and Xu et al. (2020)). At this point, we do

not go into more detail on the experiments, but leave this to the following section, where we discuss
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learned features for VO and to Section 6.2.1, where we discuss localization.

5.2.2 Visual Odometry

Learned features have been applied specifically to the task of VO, either by learning new features or using

existing ones for VO. DeTone et al. (2018a) use the SuperPoint network as a frontend to produce visual

features that are passed to a backend that uses Bundle Adjustment and computes 3D points, which are

in turn used as training signals for the frontend network. This means that they do not need any external

ground truth data for training. The VO system is tested on the indoor ScanNet dataset (Dai et al., 2017),

where they show improvement over classical and learned approaches they compare to. Tang et al. (2020)

learn both keypoint detection and depth estimation unsupervised for VO. They introduce differentiable

pose estimation to their pipeline by solving for an initial pose with a PnP algorithm and RANSAC

before correcting the pose with a differentiable method. They integrate their learned features into the

existing Direct Sparse Odometry framework (Engel et al., 2018) and test on outdoor VO data from the

KITTI dataset (Geiger et al., 2012), where they improve over both classical and learned methods they

compare with. Jau et al. (2020) use the SuperPoint architecture when learning keypoint detection and

description for VO. The authors use a second network to compute weights for matched point pairs and

rely on SVD for relative pose estimation, which makes their pipeline differentiable. They first train

the feature network in the same way as described for SuperPoint, before training the point weighting

network. At the end they put all the components together and train the full pipeline end-to-end with

a pose loss. Jau et al. (2020) test their features on VO sequences from the KITTI dataset and show

results on par with classical methods.

The final two papers we include, do not train features but use existing learned features in VO

and SLAM pipelines, respectively. Huang et al. (2020) integrate SuperPoint features in a monocular VO

pipeline and show improvement over the classical Direct Sparse Odometry (DSO) and ORB-SLAM (Mur-

Artal et al., 2015) under challenging conditions from the synthetic indoor New Tsukuba (Martull et al.,

2012) dataset, and the indoor EuRoC Mav dataset (Burri et al., 2016). Li et al. (2020) build a SLAM

framework using both learned global descriptors and learned sparse features. They test several learned

features (D2-Net, SuperPoint, and HF-Net (Sarlin et al., 2019)) and show some improved performance

over ORB-SLAM on indoor data as well as outdoor data from the City Centre and New College dataset

(Cummins and Newman, 2008).

5.2.3 Summary

We base our pipeline and network architecture on the design by Barnes and Posner (2020) that learns

features for RADAR localization supervised solely by pose error. For camera data we found that only

relying on pose error was not sufficient, and we needed to include a loss for keypoint matching errors.

This loss does not require point correspondence ground truth, but is instead computed form the pose

ground truth. Since we are using a stereo camera instead of a RADAR, we also include a stereo camera

model that allows us to triangulate 3D points and warp 2D points for the keypoint loss. With a fully

differentiable pipeline, we learn features specifically for the task of VO and, particularly, learn weights

that decide which keypoints are good for VO. Next we summarize how our method differs from other

learned visual features according to the criteria we have discussed at length in this section.
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Method Design We use the network design for RADAR features by Barnes and Posner (2020) but

make updates to suit our visual sensor. The network consists of an encoder together with one decoder

for keypoint detection and another to learn importance scores. An advantage to this network, is that

a fixed number of keypoints are detected spread across the image avoiding NMS or other strategies to

pick the top keypoints as in, for instance, SuperPoint, R2D2, and ASLFeat. The descriptors are derived

directly from encoder layers and resized and concatenated together.

Training The learning pipeline we use is fully differentiable, which allows us to train end-to-end for

the task of VO. While Bhowmik et al. (2020) uses a probabilistic approach to make feature matching

differentiable, our method matches sparse descriptor vectors in the source image with dense descriptors

in the target and finds the resulting target coordinates by weighting. Furthermore, differentiability

is preserved by using SVD for point-cloud alignment to estimate the final pose. Several of the direct

methods (Lv et al. (2019), BA-Net, Xu et al. (2020), and Kasper et al. (2020)) are also fully differentiable,

but they do not detect sparse keypoints, and their pose optimization requires iteration. Finally, Sarlin

et al. (2021) also presents a fully differentiable pipeline for vision data. However, they rely on a 3D point

cloud and initial pose estimate as input to their method.

Testing The main difference in testing between ours and other methods, is that we use a dataset that

includes off-road (UTIAS Multiseason dataset) data, while other approaches that test pose estimation

outdoors do so either on trajectories driven by cars in urban environments (ASLFeat, SAND, S2DNet,

Sarlin et al. (2021), GN-Net, LM-Reloc, and Kasper et al. (2020)) or on images of buildings or places

from different viewpoints (R2D2, D2-Net, Germain et al. (2021), and Bhowmik et al. (2020)). Off-road

data provides challenges with vegetation, as well as snow cover, that is not prominent in urban datasets

that contain roads and other permanent structures. Although VO does not compute the pose between

different appearance conditions, the variety of illumination conditions (dark, low sun) from the UTIAS

In-The-Dark and UTIAS Multiseason datasets provide challenging scenarios.

Visual Odometry Of the VO approaches we summarized in Section 5.2.2, only Jau et al. (2020)

and Tang et al. (2020) use a fully differentiable learning pipeline. As opposed to them, we did not

include additional losses for descriptors or scores. Instead of learning scores for individual keypoints,

Jau et al. (2020) use a second network to learn weights for matched point pairs. Their training process

is also more complicated that ours, because they first train their SuperPoint network, then proceed

with training the point weighting network, before they finally train both networks together end-to-end.

While our approach computes pose in one step with SVD, Tang et al. (2020) first solves for an initial

pose with a RANSAC and PnP before correcting the pose with a differentiable method. The different

VO methods test performance either on indoor or urban datasets, while we include off-road data and

challenging lighting conditions.

5.3 Methodology

The neural network for feature extraction and following differentiable pose estimation outlined in this

section can be used to estimate relative poses for VO and is end-to-end trainable. We introduce the
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Figure 5.2: In our learning pipeline we pass the images from a source frame (green) and a target frame
(orange) to a neural network that predicts keypoints, descriptors, and scores. We match keypoints
between the image frames, use the stereo camera model to find their corresponding 3D coordinates, and
use the matched point pairs to estimate the relative pose.

neural network architecture, the rest of the components of the pose estimation pipeline as well as the

loss functions we use for training.

5.3.1 System Overview

Our fully differentiable training pipeline takes a pair of source and target stereo images and estimates

the relative pose, Tts ∈ SE(3), between their associated frames. We build on the approach for RADAR

localization in Barnes and Posner (2020) with some modifications to allow for the use of a vision sensor.

In summary, we use a neural network to detect keypoints and compute their descriptors and scores.

Then we match keypoints from the source and target before computing their 3D coordinates with a

stereo camera model. Finally, the point correspondences are used in a differentiable pose estimator. For

an overview of the pipeline, see Figure 5.2.

5.3.2 Visual Features

The keypoints, descriptors, and scores are extracted from a neural network and matched in a way that

preserves the differentiability of the learning pipeline.

Keypoint Detection and Description

We start by detecting sparse 2D keypoints, q =
[

uℓ vℓ

]T

, at sub-pixel locations in the left stereo

image and computing descriptor vectors, d ∈ R
248, as well as scores, s ∈ [0, 1], for all pixels in the

image. The descriptor and score for a given keypoint is found using bilinear interpolation. The score is

used to determine how important a point is for VO pose estimation. We pass an image to an encoder-

decoder neural network following the same design as in Barnes and Posner (2020), illustrated in Figure

5.3. After the bottleneck, the network separates into two decoder branches, one with values needed to

compute keypoint coordinates and one for the scores. We divide the image into size 16×16 windows and

detect a keypoint for each window by taking the weighted average of the pixel coordinates. We get the

weights by computing the softmax over the network output for each window. Applying a sigmoid to the

output of the second decoder branch gives us the scores. Finally, the descriptors are found by resizing
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Figure 5.3: Neural network architecture with one decoder to detect keypoints and one to learn scores
for all pixels. Descriptors for all pixels are computed by resizing and concatenating the output feature
maps of each encoder layer.

and concatenating the output feature maps of each of the encoder blocks, leaving us with a length 248

descriptor vector for each image pixel coordinate.

Keypoint Matching

We have a set of N keypoints for the source image and we need to perform data association between

these and points in the target image. Descriptors are compared using zero-normalized cross correlation

(ZNCC), which means that the resulting value will be in the range [−1, 1]. For each detected keypoint

in the source image, qi
s, i ∈ [1, N ], we compute a corresponding matched point, q̂i

t, in the target image.

This point is the weighted sum of all image coordinates in the target image, where the weight is based

on how well descriptors match:

q̂i
t =

M∑

j=1

σ(τfzncc(di
s, dj

t ))qj
t . (5.1)

M is the total number of pixels in the target image, fzncc(·) computes the ZNCC between the descriptors,

and σ(·) takes the temperature-weighted softmax with τ as the temperature, which is determined empir-

ically by trying a range of values. The keypoint matching is differentiable. We found that using all target

pixels worked better in practice than only including keypoints detected in the target image. Finally, we

find the descriptor, d̂i
t, and score, ŝi

t, for each computed target point using bilinear interpolation.

5.3.3 Stereo Camera Model

In order to estimate the pose based on our matched 2D keypoints, we need to get their corresponding

3D coordinates, which is straight-forward with a stereo camera. The stereo camera model is described

in more detail in Section 2.2.2. The camera model, g(·), for a pre-calibrated stereo rig maps a 3D

point, p =
[

x y z
]T

, in the camera frame to left stereo image coordinates, q, together with disparity,
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d = uℓ − ur, as follows:
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where fu and fv are the horizontal and vertical focal lengths in pixels, cu and cv are the the camera’s

horizontal and vertical optical centre coordinates in pixels, and b is the baseline in metres. The stereo

camera model is invertible and its inverse is given by

p =






x

y

z




 = g−1(y) =

b

d
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fu

fv
(vℓ − cv)
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 . (5.3)

We obtain disparity, d, using the stereo matching algorithm implemented in OpenCV, which is based on

Hirschmuller (2008). We use the inverse stereo camera model to get each keypoint’s 3D coordinates.

We have made two adjustments to the stereo camera model compared to how it is defined in Section

2.2.2, and how it is used in Section 3.3.2, to better fit our problem setup in this chapter. In particular,

we represent the 2D image coordinates, q, with left camera coordinates only, instead of the full four left

and right coordinates as in 2.15. We add disparity together with q to form the vector y, which then

represents the same information as the stacked left and right coordinates. Furthermore, we represent

the 3D points, p, in R
3 instead of using homogeneous coordinates as in 2.16.

5.3.4 Pose Estimation

Given the correspondences between the source keypoints, qi
s, and matched target keypoints, q̂i

t, we can

compute the relative pose from the source to the target, Tts =

[

Cts rst
t

0 1

]

, where rst
t is the translation

from the target frame to the source frame given in the target frame. As described in Section 5.3.3, we

use the inverse stereo camera model (5.3) to compute 3D coordinates, pi
s and p̂i

t, from the corresponding

2D keypoints. This means we have two sets of 3D point measurements and need to solve a point-cloud

alignment problem. In Section 2.2.3, we describe in detail how to solve this problem and only include

the main points here.

To find the relative pose that best aligns the two sets of points, we minimize the following cost

function:

J =

N∑

i=1

wi||(Ctspi
s + rst

t )− p̂i
t||

2
2. (5.4)

The minimization is implemented using SVD. This method does not require iteration and hence does

not break the differentiability of our pose estimation pipeline. An iterative method would break differ-

entiability by checking a stopping condition, unless adjustments are made such as stopping after a fixed

number of iterations. The weight, wi ∈ [0, 1], for a matched point pair is a combination of the learned

point scores and how well the descriptors match:

wi =
1

2
(fzncc(di

s, d̂i
t) + 1)si

sŝi
t. (5.5)
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We additionally remove large outliers at training time based on ground truth keypoint coordinate error

and using RANSAC at inference.

5.3.5 Loss Functions

Barnes and Posner (2020) supervise training using only a loss on the estimated pose. We found this

was insufficient for our approach and add a loss on the image coordinates of the matched keypoints. We

generate the keypoint ground truth from the poses and do not require additional keypoint correspondence

data. These losses are sufficient and we do not need to add further losses for descriptors or scores. Our

goal is to keep the training of the model as simple as possible.

Using the stereo camera model (5.2) and its inverse (5.3), we can form a warp operator that transforms

the left stereo image coordinates and disparity, y =
[

qT d
]T

, from one frame to the corresponding,

y′ =
[

q′T d′

]T

, in another frame given the relative pose, T =

[

C r

0 1

]

, between the two camera frames:

y′ = w(T, y) = g
(
C g−1(y) + r

)
. (5.6)

This is the same warp function as presented in (2.17), but written slightly differently to account for

the point representation adjustments discussed in Section 5.3.3. Given the ground truth pose, Tts, we

can therefore transform a keypoint in the source image, qi
s, to its ground truth coordinate in the target

image, q̄i
t, and find its error with respect to the matched target keypoint, q̂i

t:

Lkeypoint =

N∑

i=1

||q̄i
t − q̂i

t||
2
2. (5.7)

Taking the ground truth pose, Tts, and estimated pose, T̂ts, we get the following pose loss:

Lpose = ||r̂st
t − rst

t ||
2
2 + β||ĈtsCT

ts − 1||22, (5.8)

where β determined empirically to balance rotation and translation. The total loss is a weighted sum of

Lkeypoint and Lpose, where the weight is determined empirically to balance the two loss terms.

5.4 Experiments

We devise an experiment to test our learned features for VO outdoors under different conditions and on

both familiar and new paths.

5.4.1 Data

The datasets, which are presented in detail in Section 2.4, were previously collected using a Clearpath

Grizzly robot with a FLIR Bumblebee XB3 camera, see Figure 5.1. The robot autonomously repeats

previously taught paths using multi-experience VT&R (Paton et al., 2016). We can use the resulting

data as ground truth for supervised learning. In VT&R, stereo image frames are stored as vertices in a

spatio-temporal pose graph. Edges contain the relative pose between temporally adjacent vertices and
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(a) UTIAS Multiseason (b) UTIAS Multiseason (c) UTIAS Multiseason (d) UTIAS In-The-Dark

(e) UTIAS In-The-Dark (f) UTIAS In-The-Dark (g) West (h) West

(i) East (j) East-Road (k) Lawn

Figure 5.4: Images taken by the robot’s camera from the different test paths labeled with their path
name. Images from the same path are taken in the same location along the path during different repeats.
The data used for testing covers several challenging conditions such as tall grass, driving at after dark,
and sun flares.

between a repeat vertex and the teach vertex it has been localized to. We sample image pairs and poses

for VO from the pose graph to build a training dataset, as described in Section 2.4.4.

We use data collected from two different paths for training. The UTIAS In-The-Dark dataset contains

39 runs of a path collected at along a road and on grass. The path is repeated over 31 hours and

systematically captures lighting change. The UTIAS Multiseason dataset contains 136 runs of a path in

an area with more vegetation and undulating terrain. It was repeated from January until May capturing

varying seasons and weather.

For testing we use some repeats from these two paths that were not included in the training dataset

covering different challenging conditions (snow, night-time, sun flares etc.). Additionally, we test gener-

alizability to paths not seen in the training datasets with data from four more paths, called West, East,

East-Road and Lawn. These are described in detail in Section 2.4.3. We note that these test paths were

collected in the spring and summer of 2019, which is three years after the UTIAS In-The-Dark training

data was gathered and over two years after the UTIAS Multiseason training data was gathered. The

first two paths were collected in areas with a lot of vegetation and East is particularly challenging with

tall moving grass. East-Road was collected along a road and Lawn on a grass lawn. Example images

from the test set in Figure 5.4 show that the data covers many challenging scenarios not present in

urban self-driving datasets. In total we have a training set with 115,800 samples and a validation set

with 45,171 samples. The validation set is fairly large relative to the training set because it contains
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samples from all different paths, not just the UTIAS In-The-Dark and UTIAS Multiseason datasets.

5.4.2 Training and Inference

We train the network by giving it pairs of images and the ground truth relative pose, which we extract

from the VT&R pose graph. In addition to the weights used for pose estimation, we remove large

outliers based on keypoint error using the ground truth pose during training and with RANSAC during

inference. The network is trained using the Adam optimizer (Kingma and Ba, 2015) with a learning rate

of 10−5 and other parameters set to default values. We determine the number of training epochs with

early stopping based on the validation loss. The network is trained on an NVIDIA Tesla V100 DGXS

GPU with batch size 5. Network inference runs on average at 21 ms on a ThinkPad P52 laptop with

an Intel ® Core™ i7-8850H CPU, 32 GB of RAM, and an NVIDIA Quadro P2000 4 GB GPU. The full

pipeline implemented in Python takes 370 ms, but can easily be made faster by transitioning to C++.

Alternatively, the learned features could be inserted into an existing optimized classical VO framework

instead of using the learning pipeline for inference.

5.4.3 Visual Odometry

In order to evaluate our approach, we use the pipeline described in Section 5.3 to perform frame-to-

frame VO. We compute the relative pose between sequential images from the repeat of a path in the

test dataset. The performance of the learned method is compared to using a classical point detector

and descriptor with the same pose estimator. We use the SURF detector, descriptor, and descriptor

matching implemented in OpenCV. We found that properly weighting matched keypoint pairs is essential

to successful VO pose estimation. Since we do not learn scores for the classical method, we instead

compute weights based on the method proposed in Maimone et al. (2007), which starts by computing a

covariance for each 3D point:

Σp =
∂g−1

∂y

[

Σℓ 0

0 Σr

]

∂g−1

∂y

T

, (5.9)

where Σℓ = Σr =

[

2k 0

0 2k

]

are the covariances for the image coordinates in the left and right frames

and k is the octave of the image pyramid at which the keypoint is detected. The inverse camera model,

g−1, is defined in (5.3) and:

∂g−1

∂y
=

b

d2






cu − uℓ + d 0 uℓ − cu

cv − vℓ d vℓ − cv

−f 0 f




 , (5.10)

where we have used the fact that d = uℓ−ur in our derivation. The scalar weight is then obtained with:

wi =
(

det(Σpi
s
) + det(Σp̂i

t
)
)−1

. (5.11)

Computing Σp and then taking the determinant means that the disparity term in the denominator of

the derivative becomes dominant. Points close to the robot get a very large weight and points far away

get a very small weight. On paths with tall grass and vegetation computing disparity can be difficult

close to the robot due to challenging left-right matching between the stereo images. Hence, we are left
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path method RMSE (m) RMSE (◦) RPE (m) ATE (m) inlier

Multiseason Learned detector, descriptor, score 0.052 0.52 4.36 4.56 483

165 m Learned detector, descriptor 0.035 0.54 8.08 7.32 489

SURF baseline 0.034 0.52 5.71 5.92 454

In-The-Dark Learned detector, descriptor, score 0.012 0.24 12.83 15.40 556

250 m Learned detector, descriptor 0.014 0.29 14.21 14.74 566

SURF baseline 0.012 0.23 8.94 11.76 465

West Learned detector, descriptor, score 0.035 0.78 7.74 15.04 428

470 m Learned detector, descriptor 0.031 0.76 15.25 23.08 428

SURF baseline 0.040 0.76 7.86 12.65 355

East Learned detector, descriptor, score 0.045 0.74 9.30 9.60 354

190 m Learned detector, descriptor 0.033 0.67 5.97 6.62 348

SURF baseline 0.032 0.68 3.98 3.61 309

East-Road Learned detector, descriptor, score 0.025 0.21 10.81 16.25 572

410 m Learned detector, descriptor 0.025 0.21 10.06 7.72 582

SURF baseline 0.049 0.24 7.12 6.24 390

Lawn Learned detector, descriptor, score 0.025 0.43 3.89 4.67 528

120 m Learned detector, descriptor 0.020 0.42 3.91 3.96 545

SURF baseline 0.035 0.45 2.98 3.16 431

Table 5.2: RMSE in metres and degrees for translation and rotation for relative poses, Relative Pose
Error (RPE) averaged over all possible relative poses, Absolute Trajectory Error (ATE), and average
number of point inliers for each path. We compare the two learned methods to the SURF baseline. The
approximate length of each path is listed in the first column.

with too many points that have very low weights, causing poor VO performance on some paths. Instead

we adjusted the denominator to be d instead of d2 and found that this resulted in good performance

across all paths.

Since we found that weighting keypoint pairs was essential for good VO, we also experiment with

the effect of learned and non-learned weights (as defined in (5.11)). All together we run four different

experiments. First, we use the learned detector and descriptor with the weights computed from the

learned scores and descriptors defined in (5.5). Second, we train the network to learn the detector and

descriptors, but use the non-learned weights from (5.11). Third, we use the base-line SURF method as

described above, and, finally, we use the SURF detector and descriptor, but try to learn scores. Then

the SURF descriptors and learned scores are combined to compute the keypoint pair weights following

(5.5).

5.5 Results

In our experiments, we found that using a learned detector and learned descriptors worked both with

the learned and non-learned weights. However, learning scores to use with the SURF detector and

descriptor was unsuccessful with our learning pipeline. We found that the method very quickly overfit

to the training data and gave poor results on the test data. It may be possible to learn such scores, but

we believe it would require larger changes to our system design. Hence, we report results on the two

versions of the learned method and compare to the baseline SURF approach.

Quantitative results are listed in Table 5.2, which reports the RMSE for translation and rotation in
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(a) UTIAS Multiseason (b) UTIAS Multiseason (c) UTIAS Multiseason

(d) UTIAS In-The-Dark (e) UTIAS In-The-Dark (f) UTIAS In-The-Dark

(g) West (h) West (i) East

(j) East-Road (k) Lawn

Target.

Learned detector, descriptor, 
and score.

Learned detector and descriptor. 
Non-learned score.

SURF baseline.

Figure 5.5: Plots of the integrated paths for different repeats of the test paths. The plots correspond
to the images in Figure 5.4 that show the conditions under which the data was collected. The blue line
shows the ground truth target path we get from multi-experience VT&R, orange corresponds to the
learned method with learned weights, green to the learned method with non-learned weights, and red to
the baseline SURF method.

metres and degrees for the relative pose for each test path. We compute relative poses between each

pair of adjacent vertices in the pose graph, hence the frames are father apart than the camera frame

rate. The vertices are usually spaced about 0.3 metres apart, but can be as far apart as 1.4 metres. In
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Figure 5.6: Input images and their corresponding learned scores that emphasize which pixels are useful
for VO. The brighter the pixel, the higher the score.

addition to this forward distance, the DOF that matter most for path following with a ground robot

are the lateral direction and heading. Across the test dataset, the largest lateral offset is approximately

0.4 metres but most values fall between +/- 0.1 metres. While the largest heading offset is about 13◦,

most values fall in the +/- 6◦ range. In order to evaluate performance over the whole path, we compute

Relative Pose Error (RPE) and Absolute Trajectory Error (ATE) as defined by Sturm et al. (2012).

In particular, we average RPE over all possible intervals of relative poses. For frame-to-frame VO, the

RPE can be smaller than ATE in cases where errors are larger at the beginning of the path. For the

UTIAS Multiseason data, the results cover 9 different repeats with different seasonal conditions, UTIAS

In-The-Dark provides 5 test repeats, West has 2 repeats, East has 1, East-Road has 2, and Lawn has

4 repeats. We see that both learned methods perform similarly to the baseline SURF method, but do

not improve over it. Furthermore, the learned methods generalize well to the new paths (West, East,

East-Road, and Lawn) and provide a higher number of inliers as determined by RANSAC.

For a qualitative visualization of the results, we plot the integrated paths in Figure 5.5. The plots

correspond to the images from the paths illustrated in Figure 5.4. For the UTIAS Multiseason data,

we show an example where all methods perform similarly well (a), one where the fully learned method
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outperforms the two others (b), and the repeat where the fully learned method performs the poorest

while the baseline does better (c). For the UTIAS In-The-Dark dataset, the first example (d) is handled

well by all approaches, while they all struggle in the more difficult scenarios (e, f) with strong sun flare

and night-time driving. For the West path, we show the best (g) and poorest (h) repeats, the first

collected during the day and the latter during early evening with low sun. For the remaining paths, we

plot the results of one repeat each. East provides challenging data with taller grass than was seen in the

training dataset.

In our method we use the learned keypoint score to determine which points are useful for VO.

The results indicate that both the weights based on the learned scores and descriptors (5.5) and the

non-learned weights based on the camera model (5.11) work well. It is important to note that for the

latter case, the network had to be trained from scratch using these weights. Simply inserting them

at test time with an already trained detector and descriptors, leads to inferior results. As opposed to

the non-learned weights that only rely on the camera parameters and disparity (i.e., distance from the

camera), the learned weights take appearance into account. Although this does not play as important

a role for VO, where source and target images look similar, this may become important for localization

between different conditions. In Figure 5.6, we show examples of the learned score. We see that scores

are higher closer to the camera, which is consistent with (5.11). Additionally, the scores emphasize the

ground below the horizon and certain parts of the image based on appearance. In particular, in the first

example edges and areas of contrast are highlighted. In the second image the moving shadow of the

robot is downweighted, while the still shadows from the fence are highlighted. In the final example, the

ground is highlighted with edges from sticks getting higher weights. Although difficult to make out at

this image size, the darker areas are not entirely black, but do pick out trees, fence posts etc., with a

gray colour.

5.6 Conclusions and Future Work

We adapted the method from Barnes and Posner (2020) that learns a keypoint detector, descriptors,

and scores for RADAR localization for use in VO. The learning pipeline is fully differentiable, allowing

for end-to-end training specifically for the VO task. We show that the learned features perform similarly

to a SURF baseline for frame-to-frame VO on challenging outdoor data. Moreover, they generalize to

paths not seen during training, which was not possible in our earlier work with a network that estimated

pose directly from input images. Although the learned features do not provide a performance benefit

over SURF for VO, apart from increasing the number of inliers, we will see that they are useful for the

more challenging localization task, where handcrafted features fail. The next step of this work, presented

in the following chapter, is to adapt this work to localization and include the learned features in the

existing VT&R system for closed-loop path following.



Chapter 6

Deep Learned Features for

Long-Term Localization

6.1 Introduction

After setting up a pipeline for relative pose estimation with learned features, and showing that they

work and generalize well for VO, we apply the work from the previous chapter to localization. While

handcrafted visual features such as SURF work well for VO, they struggle under large appearance

change. As we have explained before, VT&R relies on multi-experience localization to handle long-term

localization. Intermediate experiences are used to bridge the appearance gap when localizing to the

initial map becomes difficult. With the help of learned features, we aim to remove the need for such

intermediate experiences for localization, which is the motivation for and ultimate goal of the work in

this thesis. We have arrived at a learned approach to pose estimation that is both simple to train from

ground truth poses and easy to integrate with classical pose estimation.

In this chapter, we use learning for the perception front-end of long-term localization, while the

remaining components of pose estimation are implemented with classical tools, see Figure 6.1. Fur-

thermore, we insert the learned features into the existing VT&R pipeline and perform autonomous path

following outdoors. In particular, we teach a path in the day time and repeat it for a full range of lighting

conditions, including after dark. In another experiment, we show that the learned features generalize

to new areas not present in the feature training dataset. Finally, we complete a seasonal experiment,

where we teach a path in August and keep repeating the path for three months until November. The

experiments tackling lighting change all achieved a 100% autonomy rate. 21% of the runs in the seasonal

experiment experienced path-following failures caused by the compounding effect of seasonal and large

illumination change.

For training, we use data collected across lighting and seasonal change by a robot using multi-

experience VT&R. The two datasets were collected four and five years prior to our closed-loop ex-

periments. We train a network to provide keypoints with associated descriptors and scores. Using a

differentiable pose estimator allows us to backpropagate losses based on poses from the training data.

The network is small enough to fit on a laptop GPU, fast enough to run in real time, and simple to train

with only two training losses generated directly from pose ground truth.

Our method differs from others that use learned features for localization across environmental change,

71
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Keypoint
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pose es�ma�on

Rela�ve pose

Backpropaga�on
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Keypoints, descriptors, scores

Map image Live image

Figure 6.1: We train a neural network to predict keypoints, descriptors, and scores that can be used
in classical pose estimation. We train on outdoor data collected with a Grizzly ground robot and later
drive the same robot autonomously with the learned features despite lighting and seasonal change.

such as (Piasco et al., 2019; von Stumberg et al., 2020a,b; Kasper et al., 2020; Spencer et al., 2020;

Sarlin et al., 2021), since they test localization standalone, while we include our features in the full

VT&R system. Gladkova et al. (2021) combine learned features for localization with VO, but only test

on datasets. Since our goal is to learn features for path following, we focus on closed-loop performance.

Good localization performance on datasets does not guarantee successful real-life autonomous driving,

which involves interaction of localization with VO and path-tracking control. Sun et al. (2021) published

closed-loop path following with learned features around the same time our work was submitted for

publication, but their lighting-change experiments are less extensive than ours and they do not test

during seasonal change.

To summarize, the novel contributions of this work are learning features for localization, including

them in the VT&R system, and showing successful autonomous path following on a robot across light-

ing and seasonal change. Moreover, we operate in scenes that include challenging off-road areas with

few permanent structures and abundant vegetation, which makes localization challenging under large

appearance change. The content in this chapter including the lighting-change experiments appeared in

the IEEE Robotics and Automation Letters (RAL) (Gridseth and Barfoot, 2022), and will be presented

at ICRA (2022). The seasonal experiments were not included in the publication.

6.2 Related Work

There has been a wide range of work on deep learning for robotic navigation. Our work focuses on

learning for pose estimation in visual path following, though others have tackled visual path following,

either in simulation or a limited indoor environment, by learning discrete navigation directions (Swedish

and Raskar, 2018), learning a visual MPC-policy that can avoid obstacles (Hirose et al., 2019), and

learning how to retrace a path under noisy actuation and a changing environment (Kumar et al., 2018).

Chen et al. (2020) provide a thorough survey of deep learning for mapping and localization. Some
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research has focused on learning pose for localization directly from images via absolute pose regression

(Kendall et al., 2015), relative pose regression (Laskar et al., 2017), or combining learning for localization

and VO (Valada et al., 2018). Sattler et al. (2019) note that learning pose directly from image data can

struggle with accuracy. More structure can be imposed on the learning problem by using features to

tackle front-end visual matching, while retaining a classical method for pose estimation. In this section

we will discuss relevant work on learned features with focus on localization.

In Section 5.2.3, we reviewed several methods that learn features for pose estimation and created

Table 5.1 for comparison. We will not repeat the discussion here, but summarize some of the high-level

points. We looked at the design of the different learning pipelines, where one of the main differentiating

factors was whether the methods learned only feature matching or provided a fully differentiable pipeline

that included pose estimation. We also considered what data was needed to train the network such as

point correspondences, poses, or no labels at all. Finally, the data used for testing also matters. Are the

features tested on the tasks that we care about? In this chapter we focus on long-term localization and

so we want to compare our method to others that tackle localization outdoors under appearance change.

6.2.1 Learned Features for Localization

Several of the methods that tackle localization in outdoor environments have already been described

in Section 5.2.1, namely the work from D2-Net (Dusmanu et al., 2019), R2D2 (Revaud et al., 2019),

ASLFeat (Luo et al., 2020), S2DNet (Germain et al., 2020), GN-Net (von Stumberg et al., 2020a), LM-

Reloc (von Stumberg et al., 2020b), Kasper et al. (2020), Germain et al. (2021), Spencer et al. (2020),

Venator et al. (2021), Bhowmik et al. (2020), and Sarlin et al. (2021). Sarlin et al. (2019) present HF-

Net, which learns features for localization. They extract local features using the SuperPoint architecture

and global descriptors using a NetVLAD layer (Arandjelovic et al., 2016). The local features and global

descriptors are combined in a hierarchical approach to localization. HF-Net trains using multi-task

distillation, which means that they learn from off-the-shelf trained teacher models for local and global

features, respectively. DOAP (He et al., 2018) is used as the teacher network for local features, while

NetVLAD is used for the global descriptors.

Gladkova et al. (2021) integrate existing learned features (SuperPoint, R2D2, and ASLFeat) for

localization in a classical VO pipeline. The localization poses are used as a prior for frontend tracking

and integrated into backend bundle adjustment. Global localization poses are fused with VO estimates.

The method does not need training as they use existing learned features as is. Zhao et al. (2021) run

VT&R in closed loop by performing visual servoing between topological nodes in a map. Their deep

steering network combines learned feature extraction (using the SuperPoint architecture) and matching

with learned scale estimation to infer a sequence of linear and angular velocities for servoing to the

next node. They do not compute poses based on the matched features but instead rely on histogram

voting over the horizontal offsets between matched features to estimate the robot’s angular velocity. The

authors use odometry in combination with scale estimation to select the goal node and then determine

the linear velocity. Sun et al. (2021) drive a robot in closed loop using learned features in VT&R. They

use SuperPoint features, but update the original training method to include illumination adaptation

using a Gamma Transform. In particular, they start by using the existing bootstrapped point detector,

before continuing with homographic adaptation in addition to their own illumination adaptation. For

this process they do not need any ground truth poses.

The various methods in Table 5.1 that tackle localization employ different strategies for testing. Most
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papers test localization standalone on datasets. ASLFeat, D2-Net, R2D2, Germain et al. (2021), and

Bhowmik et al. (2020) test localization on datasets that contain large illumination change, but not data

from trajectories. ASLFeat does test on trajectories, but only for VO. As discussed in Section 5.2.3,

data from free-standing view points often contain planar scenes with images of buildings. They are

less relevant to path following than datasets collected by cars or robots driving along a road or a path.

Spencer et al. (2020) test feature matching over illumination and seasonal data. Technically, they also

run localization experiments under the same conditions, but pass the learned features to a pre-trained

pose regression network and do not rely on classical pose estimation. BA-Net tests performance for

localization along a trajectory but only for indoor data. S2DNet, GN-Net, LM-Reloc, Kasper et al.

(2020), Sarlin et al. (2019), Sarlin et al. (2021), and Venator et al. (2021) all test localization on the

Oxford Robotcar dataset (Maddern et al., 2017), which contains a route through Oxford repeated across

different lighting, weather, and seasonal conditions. Additionally, Sarlin et al. (2019) and Sarlin et al.

(2021) also test on the CMU Seasons dataset (Sattler et al., 2018) gathered with a car in urban, sub-

urban and park areas across one year. Sarlin et al. (2021) also show good generalization between very

different domains with their learned features. For instance, they are able to use features trained on

outdoor data for indoor localization.

The downside to the above approaches, is that they all test localization standalone. As mentioned

earlier, the work from Gladkova et al. (2021) integrates learned features for localization in a VO pipeline.

They test on the Oxford Robotcar dataset and the 4Seasons dataset (Wenzel et al., 2020), which is

another dataset collected while driving in an urban environment. Zhao et al. (2021) perform autonomous

visual path following with a robot based on their learned velocities, but only operate indoors without

any appearance change. Sun et al. (2021) moves away from datasets and drive a robot in closed loop

using learned features in VT&R. They test day-to-night localization, though their experiments are over

a short time range. Furthermore, they test lighting change in on-road areas such as a parking lot and

by a church.

6.2.2 Summary

We base our learning pipeline and network architecture on the design presented by Barnes and Posner

(2020), which learns keypoints, descriptors, and scores for RADAR localization. We chose this method

because it required only a pose loss for supervision and provided a simple network design with a fully

differentiable learning pipeline. For camera data, we found that only relying on pose error was not

sufficient and needed to include a loss for keypoint matching errors. This loss does not require point

correspondence ground truth, but is instead computed form the pose ground truth. Since we are using a

stereo camera instead of a RADAR, we include a stereo camera model that allows us to triangulate 3D

points and warp 2D points for the keypoint loss. With a fully differentiable pipeline, we learn features

specifically for the task of localization and apply them to real-time closed-loop path following. Next, we

summarize how our method differs from the other learned visual features according to the criteria we

have discussed at length in this section.

Method Design We use the network design devised by Barnes and Posner (2020) for RADAR local-

ization. It consists of an encoder together with one decoder for keypoint detection and another to learn

importance scores. The network detects a fixed number of keypoints spread evenly across the image and,

therefore, avoids pruning with NMS or other strategies as required by, for instance, SuperPoint, R2D2,
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and ASLFeat. The descriptors are derived directly from encoder layers and resized and concatenated

together. Overall, network size and run time is important for our real-time application. Since they use

deep learned feature for real-time closed-loop operation, both Zhao et al. (2021) and Sun et al. (2021)

use the SuperPoint architecture because of its runtime performance. When compared to SuperPoint,

R2D2, and D2-Net (see Section 6.7.1), our network has the fastest feature extraction time and second

smallest memory utilization. In particular, our network is faster than SuperPoint and uses less memory.

Training Our learning pipeline is fully differentiable, which allows us to train end-to-end for localiza-

tion. While Bhowmik et al. (2020) use a probabilistic approach to make feature matching differentiable,

our method matches sparse descriptor vectors from the source image with dense descriptors in the target

and finds the resulting target coordinates by weighting. Furthermore, differentiability is preserved by

using SVD for point-cloud alignment to estimate the final pose. Several of the direct methods (BA-Net,

Lv et al. (2019), Xu et al. (2020), and Kasper et al. (2020)) are also fully differentiable, but need to

unroll iterative pose optimization with a fixed number of iterations. Finally, Sarlin et al. (2021) also

presents a fully differentiable pipeline for vision data, however, they rely on a 3D point cloud and initial

pose estimate as input to their method.

Testing While most learned feature approaches test localization standalone, Gladkova et al. (2021)

integrate learned features for localization in a classical VO pipeline and test on urban datasets with

illumination and seasonal change. Zhao et al. (2021) test their learned velocities for path following in

closed-loop on a robot but only in an indoor environment. Similarly to Sun et al. (2021), we integrate

our learned features into VT&R and perform closed-loop path following on a robot. While Sun et al.

(2021) perform day-to-night localization over a limited time range in an urban environment, we show

successful localization across a full range of lighting change, including driving during the dark, sunrise

and sunset. Moreover, we include driving in an off-road area with tall grass, bushes and trees, which

leads to additional challenges for localization. Finally, we also include a three month seasonal experiment

from mid-August to mid-November.

6.3 Methodology

The method outlined in this Section lets us extract learned visual features that we can train end-to-end

and use with a classical pose estimator. The learning pipeline remains the same as in Chapter 5, apart

from some adjustments to the loss functions. For this reason, we provide an overview of the system, but

do not repeat the detailed explanations from the previous chapter.

6.3.1 System Overview

Our fully differentiable training pipeline, see Figure 6.2, takes a pair of source and target stereo images

and estimates the relative pose, Tts ∈ SE(3), between their associated frames. We build on the approach

for RADAR localization in Barnes and Posner (2020) with some modifications to use a vision sensor.

In short, the neural network (illustrated in Figure 6.3) detects keypoints and computes their descriptors

and scores. We match keypoints from the source and target before computing their 3D coordinates with

a stereo camera model. Finally, the point correspondences are used in a differentiable pose estimator

based on SVD for point-cloud alignment. See Figure 6.4 for example matched keypoints and the learned
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(orange) to a neural network that predicts keypoints, descriptors, and scores. We match keypoints
between the image frames, use the stereo camera model to find their corresponding 3D coordinates, and
use the matched point pairs to estimate the relative pose.
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Figure 6.3: Neural network architecture with one decoder to detect keypoints and one to learn scores
for all pixels. Descriptors for all pixels are computed by resizing and concatenating the output feature
maps of each encoder layer.

scores. When tackling localization, instead of VO, we add more capacity to network relative to the

architecture in Section 5.3.2. This leaves us with a descriptor vector of size 496.

6.3.2 Loss Functions

Since the learning pipeline is fully differentiable, we can train the network end-to-end from ground truth

poses. Barnes and Posner (2020) supervise training using only a loss on the estimated pose. As in

the VO case, we found this was insufficient for our approach and therefore include a loss on the 3D

coordinates of the matched keypoints, similar to Christiansen et al. (2019). We generate the keypoint

ground truth from the poses and do not require additional keypoint correspondence data. These losses

are sufficient and we do not include further losses for descriptors or scores.

For our training datasets, we only use a subset of the pose DOF for supervision due to accuracy
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Figure 6.4: Example detected and sparse-to-densely matched keypoints with associated scores for a
source and target pair of images. The shown keypoints are inliers after feature matching. The lowest
scores are dark blue and the highest scores are red.

variability in the remaining DOF for some sequences. Specifically, we use the robot longitudinal direction,

α, lateral offset, β, and heading, γ. When training the learned features for VO, we used the full six

DOF poses. For this reason, we modify the keypoint loss from (5.7) to use fewer DOF. Using the inverse

stereo camera model from (5.3), we can compute the 3D coordinates of the keypoints in the source and

target camera frames. Given the ground truth pose, Tts, we form a pose

T′

ts =

[

C′
ts rst

t
′

0 1

]

=









cos(γ) − sin(γ) 1 α

sin(γ) cos(γ) 1 β

0 0 1 0
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(6.1)

that we use to transform the source keypoints. Because we transform the source points in the plane, we

only compare the x and y point coordinates:

Lkeypoint =

N∑

i=1

||T′

ts pi
s

∣
∣
z=0
− p̂i

t

∣
∣
z=0
||22. (6.2)

Forming T′
ts from the ground truth pose and T̂′

ts from the estimated pose, we get the following updated

pose loss:

Lpose = ||r̂st
t

′
− rst

t

′
||22 + λ||Ĉ′

tsC′

ts
T
− 1||22, (6.3)

where λ is used to balance rotation and translation. The total loss is a weighted sum of Lkeypoint and

Lpose, where the weight is determined empirically to balance the influence of the two terms.

6.4 Implementation

In this section we will discuss some of the practical considerations that went into using the learned

features in a closed-loop system. We describe the data used to train our networks and how the training
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was done. We also explain how we added the learned features to the existing VT&R system and how

we made it run in real time for autonomous path following.

6.4.1 Data

In order to train the network that will compute the keypoints, descriptors, and scores, we need training,

validation, and testing data. We use the UTIAS In-The-Dark and UTIAS Multiseason datasets that we

have described in detail in Sections 2.4.1 and 2.4.2, respectively. These datasets are particularly suited

for localization because they contain many runs of the same path across large appearance change. In

particular, the UTIAS In-The-dark dataset has 39 runs collected in an mostly on-road area over 31 hours

in summer 2016, providing a full range of lighting change. The UTIAS Multiseason dataset has 136 runs

of the same path collected in an off-road area from January until May in 2017, including everything from

full snow cover to green grass.

As explained in Section 2.4.4, we generate training, validation, and testing datasets by sampling

images and relative poses from the VT&R spatio-temporal pose graph. Because the UTIAS In-The-

Dark and UTIAS Multiseason datasets have a large number of runs, we get a large set of potential

samples. We create one set of training, validation, and testing datasets from the UTIAS the In-The-

Dark data and another set from the UTIAS Multiseason data. For the feature training and validation

data, we randomly draw samples from the pose graphs and pick vertices that are topologically up to

three steps away from each other. Both datasets that we generated, have 100,000 training samples and

20,000 validation samples. For testing, we do not extract random samples, but pick pairs of held-out

runs (using one as the teach and one as the repeat) and extract images and relative poses for the entire

sequence to emulate localization in path following.

6.4.2 Network Training and Inference

We train the network by giving it pairs of images and the corresponding ground truth relative poses

from the training dataset. Since our learning pipeline involves pose estimation, we remove large outliers

after feature matching. During training, we can easily remove these based on the residual error between

matched keypoints in the target frame and their ground truth coordinates. When running inference with

the pipeline, large outliers are removed with RANSAC as we do not need to worry about differentiability.

The network is trained using the Adam optimizer (Kingma and Ba, 2015) with a learning rate of

10−5 and other parameters set to default values. We determine the length of training with early stopping

based on the validation loss. Because we have such a large training dataset, we do not wait for a complete

parse of the 100,000 samples before we compute the validation loss. Instead, we randomly pick and train

on 10,000 samples from the training data and compute the validation loss over 2,500 random samples

from the validation data. The network is trained on an NVIDIA Tesla V100 DGXS GPU with batch size

3 or 4 depending on available space. Feature extraction on this server using PyTorch takes on average

14.8 ms, while it takes 7.3 ms using C++ in the VT&R system running on a ThinkPad P52 laptop with

an Intel ® Core™ i7-8850H CPU, 32 GB of RAM, and an NVIDIA Quadro P2000 4 GB GPU.

For our experiments, that we describe in more detail in Section 6.5.6, we train two different networks.

We train a network with data only from the UTIAS In-The-Dark dataset, which we use to test robustness

to lighting-change in a closed-loop experiment in a mostly on-road area. This network has a higher

number of network weights than the network illustrated in Figure 6.3, with the first layer being of size
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Figure 6.5: An overview of the main blocks of the VT&R teach phase with our updates to include learned
features marked with yellow boxes and orange lines. Image capture and feature extraction is followed
by VO for pose estimation. We introduce extraction of learned features, and update the landmark
triangulation to include the computation of disparity images. The learned features are passed to map
building to be stored in the map but are not used for VO, which relies on SURF.
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Figure 6.6: An overview of the main blocks of the VT&R repeat phase with our updates to include
learned features marked in yellow. For localization, SURF are replaced by learned features and landmark
triangulation is updated to include computation of disparity images. SURF are still used in VO, which
acts together with localization in a predictor/corrector fashion. The relative pose provides the offset to
the path needed for path tracking.

32 instead of 16. This was the first network we used in closed-loop path-following with VT&R and with

more experimentation, we later found that using fewer weights was sufficient. Naturally, it was beneficial

to reduce the network size when trying to reduce processing time for real-time operation. This network

was trained on 165 randomly generated subsets of the training data, meaning it has trained on a total

of 165 × 10,000 = 1.65 million samples, which took approximately 8.5 days.

The final network was trained with the aim to drive both in an on-road and off-road area, and so

we used both the UTIAS In-The-Dark and UTIAS Multiseason datasets. We started by training on the

UTIAS Multiseason dataset before fine-tuning with the UTIAS In-The-Dark data. We trained on 391

× 10,000 = 3.91 million samples from the UTIAS Multiseason dataset, which took approximately 14.5

days, and another 194 × 10,000 = 1.94 million samples from UTIAS In-The-Dark, which took a bit over

6.5 days. Due to time constraints, we did not try to train with samples from both datasets at the same

time given that our approach worked well for the experiment we were conducting. In Appendix A, we

elaborate on the training process and include plots of losses and errors over time. We also discuss how

we determined when the features performed well enough to transition to closed-loop testing.

6.4.3 Learned Features in Visual Teach and Repeat

In order to test the performance of the learned features in closed-loop on a robot, we add them to the

VT&R system, which normally relies on sparse SURF for localization. We have explained VT&R in

detail in Section 2.3.4, and here we will focus on the parts we adapted to use learned features. Since



Chapter 6. Deep Learned Features for Long-Term Localization 80

(a) Manual teach at 12:56 to build a visual map. (b) Autonomous repeat after dark at 17:22.

Figure 6.7: In VT&R, the user teaches a path by driving the robot manually (a), after which the path
is repeated autonomously (b). For each figure the UI (left) shows the estimated path and the robot’s
position. On the right we see an external view of the Clearpath Grizzly robot (top) together with the
live camera frame and matched features (bottom) for VO during the teach (SURF) and localization
during the repeat (learned features).

VT&R is modular with different components for tasks such as feature extraction, feature matching,

point triangulation, VO, and localization, the code we needed to implement was limited to creating a

new feature extractor, computing disparity images, and enforcing single-experience localization. Some

additional adjustment were necessary, but these involved minor tasks such as creating new variables and

parameters etc. so that the new features could be used in subsequent parts of the pipeline.

For the teach phase, we update VT&R by extracting learned features, triangulating landmarks using

disparity images, and storing them in them map. See Figure 6.5 for an illustration of the updates to the

teach phase. For the repeat phase, we extract learned features, triangulate landmarks using disparity

images, and use the learned features for localization, see Figure 6.6. In the rest of the section we will

explain how these changes were made.

In VT&R, a new type of visual features can be introduced by writing a class for feature extraction.

Extractors for SURF and Oriented FAST and Rotated BRIEF (ORB) (Rublee et al., 2011) already

exist. In multi-experience VT&R, SURF are used for both VO and localization. We use learned features

instead of SURF for localization but keep the VO implementation with SURF as is. We need to find

the disparity for each detected keypoint so that they can be triangulated to find the corresponding 3D

coordinates. For SURF this is done for each keypoint individually by matching the keypoints detected

in the left and right image using their SURF descriptors. Since our descriptors are only trained for

localization, we do not use them for left-right stereo matching but instead compute disparity images.

We use the StereoSGM class in OpenCV, which is based on Hirschmuller (2008) and allows us to add the

computation on the GPU. Computing disparity images on the CPU was too slow for real-time operation.

In order to extract keypoints, descriptors, and scores from the neural network, we convert our PyTorch

model to TorchScript such that we can use it with libtorch in C++. We run VT&R on a ThinkPad P52

laptop with an Intel® Core™ i7-8850H CPU, 32 GB of RAM, and an NVIDIA Quadro P2000 4 GB GPU.

In addition to the forward pass of the neural network, the GPU is used to compute SURF and disparity

images. It turned out that our original version of the full-size network with the first layer of size 32 was

too big to fit on the GPU. We solved this problem by cropping away the left edge of the image such that

it is of size 464×384 instead of 512×384. While training the network in PyTorch, we used OpenCV’s

StereoSGBM algorithm to compute disparity images because it has a Python implementation. With



Chapter 6. Deep Learned Features for Long-Term Localization 81

this algorithm, also based on Hirschmuller (2008), a fixed-width left edge of the left image does not get

disparity values and, hence, the loss was not backpropagated through the keypoints detected in this part

of the image. Therefore, cropping away this part of the image during operation with VT&R did not

result in loss of information as the keypoints would have been masked out regardless. After our initial

closed-loop experiment, we found that using a network with fewer features (first layer of size 16 instead

of 32) was feasible and allowed us to further improve computation time. As mentioned in the previous

section, one forward pass of the network takes on average 7.3 ms on the laptop.

After the learned features have been extracted for a live image during the repeat phase, they are

compared to learned features from an image in the map. We normalize the descriptors and use the

same method to compute the distance between descriptors as already used for SURF. As explained in

Section 5.3.2, in the training pipeline, we match a sparse descriptor from the source image densely to

all descriptors in the target image and compute target coordinates. Doing this type of matching would

require a bigger implementation change in VT&R, would likely use up too much space on the GPU,

and possibly slow processing. Therefore, we opted to use the sparse nearest neighbour matching of

descriptors already implemented in VT&R. Some additional checks are performed, such as comparing

against a depth threshold, comparing depth for matched points, checking the distance in pixels between

matched keypoints etc. Relying on sparse feature matching worked well in the closed-loop experiments.

In VT&R, we rely on RANSAC to remove outliers from the set of matched points. The inliers are

then passed on to pose estimation. We did not make any adjustments to the pose estimation in VT&R

for these experiments. The scores output by the network for each keypoint can be included to weight

matched points in future work. The scores helped pose estimation during training, which relied on a

simple single-frame method with SVD. In VT&R, which uses a more sophisticated approach with a

prior from VO and a window of frames, we got pose estimates that were good enough for path following

without using the scores. The final change we made to VT&R was to force the pipeline to only run

single-experience localization. Originally, the system uses multiple experiences if they are available in

the pose graph.

The main challenge of adding the learned features into the VT&R system was ensuring real-time

operation. Because we could not remove the detection and matching of SURF needed for VO, we added

additional computation to the system without freeing up processing. We made some adjustments such

as cropping the image, using a network with fewer features, and disabling visualizations. Moreover, we

reduce the speed of the robot from 1.0 m/s to 0.8 m/s to avoid delays in localization. Meanwhile, there

are further improvements that can be pursued in order to improve computation time, and we discuss

these under future work in Section 7.3.3. We also tested on a newer version of the same laptop from

2020 that has a larger, 12 GB GPU. In this case, we were able to raise the speed of the robot to 1.5

m/s without localization slowing down. The repeats were only run during the daytime one day after the

path was taught (also during daytime) and so the appearance change was not very challenging. This

indicates that processing would keep up with driving at higher speeds, but does not guarantee that the

learned features’ performance remains robust if the appearance change was larger.

To summarize, we have converted our learned model to C++, created a new feature extractor in

VT&R for learned features, and updated stereo-matching. We are able to run the code in real time on

a Lenovo laptop. Figure 6.7, shows a teach and repeat we did with learned features for a live demo.
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Experiment Environment Conditions Dates Distance

Lighting Change On road Lighting change 02.08.2021 - 09.08.2021 10.9 km

Generalization I On road and off road Lighting change 14.08.2021 - 20.08.2021 20.6 km

Generalization II Off road Lighting change 11.11.2021 - 12.11.2021 2.2 km

Generalization III On road Lighting change 11.11.2021 - 12.11.2021 1.8 km

Seasonal Change On road and off road Seasonal change 14.08.2021 - 19.11.2021 52.3 km

Table 6.1: Overview of the closed-loop experiments to test the robustness of learned features to lighting
change and seasonal change, as well as their ability to generalize to new areas not seen in training data.
We have driven 87.8 km across all the experiments.

Figure 6.8: Aerial view of UTIAS, where all experiments were run. The approximate paths for the
different are overlayed. The green path is used for both the Generalization I experiment and the Seasonal
Change experiment.

6.5 Experiments

We have completed four experiments to test the ability of the learned features to localize as appearance

changes. We start with an offline experiment to compare our learned method against other state-of-the

art learned features. For this, we test localization-only on held-out repeats from the UTIAS Multiseason

dataset. The rest of the experiments are performed in closed loop with the Clearpath Grizzly robot.

We aim to asses the features’ robustness to a full range of lighting change, including driving after dark

with headlights. We also investigate the learned features’ ability to generalize to new areas that were

not seen in the training data. Finally, we complete a long-term experiment that encompasses seasonal

change from August to November. During the three closed-loop experiments, which are summarized in

Table 6.1, we complete 87.8 km of driving across four different paths.
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Figure 6.9: Images of the robot driving in the areas, where we conduct the experiments summarized in
Table 6.1. The first row of images are taken on the green path in the large off-road area below the tennis
court in Figure 6.8, the second row on the green and blue paths in the area around the Mars Dome, the
third on the yellow path in the off-road field, and the fourth row on the red path in the parking lot. The
images are taken at different times during closed-loop experiments from August through November.

6.5.1 Environment

The experiments were either run on data previously collected at UTIAS or run in closed loop at UTIAS.

The offline comparison to state-of-the-art methods was run on previously collected data from the UTIAS

Multiseason dataset, whereas all other experiments were run in closed loop. See figure 6.8 for an overhead

view of the institute and explanation of which areas were used for testing. The data used for training,

explained in detail in Section 2.4 and Section 6.4.1, was also collected at UTIAS. In order to give an

impression of what the test environments look like, we show pictures in Figure 6.9 taken of the robot

during autonomous operation from each part of UTIAS described in Figure 6.8. We conduct testing

in two off-road areas that contain abundant vegetation such as tall grass, bushes, and trees. The two

on-road areas contain views of permanent structures such as buildings, storage units, fences, and street

lights.

The offline experiment spans appearance change from January to May in an off-road area with con-

ditions as different as complete snow cover and green grass. The closed-loop experiments are completed

either across short times spans (a few days) to capture lighting changes or a long time span to capture

seasonal changes. The experiments were run during August until November, 2021. The seasonal changes

are naturally strongest in the off-road areas. At the start, in August, trees and bushes had green leaves

and there was tall, but partially dry grass. As we went into autumn, some leaves changed colour, while

trees and bushes slowly lost more and more leaves. The grass also changed, initially growing and be-
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Figure 6.10: The Clearpath Grizzly robot with a forward-facing FLIR Bumblebee XB3 stereo camera,
LED headlights, and a Navtech GPS.

coming greener as the weather cooled down, but turning brown and less dense later into autumn. The

images in Figure 6.9 illustrate some of these seasonal changes. The day-to-night lighting changes were

most drastic off road. While the on-road areas received some light from buildings or street lights, the

robot’s headlights provided the only light in the dark off-road areas.

6.5.2 Hardware Configuration

Closed-loop experiments are conducted with the Clearparth Grizzly robot, pictured in Figure 6.10. We

use a factory-calibrated FLIR Bumbleebee XB3 stereo camera with 24 cm baseline and 16 Hz frame

rate as the only sensor for VT&R. The camera is mounted on a mast and the extrinsic transformation

between the robot base and the camera is hand-measured. The robot has two forward-facing and two

backward-facing LED lights that can be used while driving during the dark. There is also a GPS unit,

which we used together with a base station to get RTK GPS ground truth pose measurements for one of

our experiments. VT&R was run exclusively on a ThinkPad P52 from early 2019 with an Intel® Core™

i7-8850H CPU, an NVIDIA Quadro P2000 4 GB GPU, and 32 GB of RAM.

6.5.3 Experiment 1: Offline Comparison

We start the experiments by comparing our deep-learned features to other methods. We pick SuperPoint

(DeTone et al., 2018b), D2-Net (Dusmanu et al., 2019), and R2D2 (Revaud et al., 2019) because they

are state-of-the-art methods with code available online that represent different strategies to learning

visual features. This comparison is done offline in PyTorch (not in VT&R) for localization only on held-

out repeats from the UTIAS Multiseason dataset. We compare feature matching performance, memory

usage, and run time for feature extraction. The test runs cover conditions from winter with snow or

clear ground to green grass in spring. Images from the different runs can be seen in Figure 6.12 and an

overhead view of the path is depicted in Figure 6.11. We test localization on all combinations of these

conditions, meaning that each run is used as a teach and localized against each of the remaining runs.

The SuperPoint method uses one encoder, one decoder for keypoint detection, and another decoder to

compute descriptors of size 256. Unlike our decoder, which has several layers of upsampling, SuperPoint

only relies on one level of non-learned up-sampling. SuperPoint also uses NMS to pick a set of keypoints

that are evenly distributed across the image. D2-Net proposes a describe-and-detect methodology, where

detection is not done on low-level image structures. Rather it is done at a higher level jointly with image
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Figure 6.11: An overhead view of the path for the UTIAS Multiseason dataset, which we use for the
offline comparison experiment, overlaid on a Google Earth image.

Figure 6.12: Images taken by the robot from the held-out runs from the UTIAS Multiseason dataset
that we use for the offline comparison of different methods. Each image is labeled with the collection
date (dd.mm) of the corresponding run.

description. They use a truncated, pre-trained VGG-net and fine-tune the last layer during training

which gives them descriptors of size 512. Finally, R2D2 uses a fully connected network that outputs

dense descriptors, a heat map of repeatability for detecting sparse keypoints, as well as a reliability score

for all pixels. During test time they run detection on different scales of the image and choose the best

keypoints to keep based on repeatability and reliability.

We ran this comparison on just the localization task in PyTorch instead of full path following in

VT&R. The code for the other methods is provided in PyTorch, and it turned out to be difficult to

convert all of these networks into C++ without making changes that could potentially introduce errors

and compromise their performance. Our method uses the network trained on the UTIAS Multiseason

and UTIAS In-The-Dark datasets (described in Section 6.4.2), while we use weights provided online

for the other methods. Since we test on off-road data that is quite different from the more commonly

used urban datasets that other methods use for training, this limits the usefulness of our experiment to

compare feature matching performance. However, it does serve as a sanity check to make sure that our
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Figure 6.13: The path we taught on August 2nd for the lighting-change experiments is shown overlaid
on a Google Earth image. It is driven in the same area as the UTIAS In-The-Dark path.

Figure 6.14: The robot repeating the path for the lighting-change experiment under different appearance
conditions.

method trained on relevant data is not outperformed by the others. Moreover, the design of the different

feature regression networks or the potentially limited difference in feature matching performance between

them is not very important to us. The training method, which allows us to train features tailored for

the task of localization in a fully differentiable pipeline, is the main reason we chose the approach from

Barnes and Posner (2020) over other state-of-the-art methods. Finally, given the importance of run-time

performance for closed-loop operation, the comparison of network memory usage and run time is very

useful for our application.

6.5.4 Experiment 2: Lighting Change

The ultimate goal of our work is to develop learned features for long-term localization during autonomous

operation. The remaining experiments of this chapter all run in closed loop with the Clearpath Grizzly

robot. First, we evaluate the features’ robustness to drastic lighting change. We use the network trained

on the UTIAS In-The-Dark dataset only. The training of this specific network was described in detail

in Section 6.4.2.

We drive the robot manually to teach a new path in the same area as the UTIAS In-The-Dark dataset

was collected, see Figure 6.13. This means we do not use the path from the dataset, but teach a new,

similar path. Hence, this experiment assesses the learned features’ robustness to drastic appearance

change, but does not attempt to generalize to new environments not seen in the training dataset. The

UTIAS In-The-Dark data were gathered across two consecutive, sunny days (with cloud cover for a small

number of runs) at the end of July, 2016, and our experiment was conducted on mostly sunny days in

August, 2021. Thus the weather and appearance conditions are mostly similar between the training
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Figure 6.15: Images taken during closed-loop testing for the lighting-change experiment labeled with
collection day and time (dd-hh:mm). The images are ordered according to the time of day when they
were collected as we are most interested in the lighting change, and the weather did not vary significantly.

data and the experiment. The training data, however, was collected five years prior to our experiment

leading to some physical changes in the environment.

The new path is approximately 265 metres long and was taught at 12:14 on August 2nd, 2021. We

repeated the path on August 3rd and 9th covering lighting conditions between 03:00 and 22.30. The



Chapter 6. Deep Learned Features for Long-Term Localization 88

Not in 

training data

Figure 6.16: Overhead view of the path for the first generalization experiment overlaid on a Google
Earth image. The path was taught on August 14th. The top left area of the path is close to the UTIAS
Multiseason path, which can be seen with the tennis court as reference in Figure 6.11. Most of the
path around the Mars Dome is close to the path from the UTIAS In-The-Dark dataset. The rectangles
indicate the parts of the path that are outside of the training data.

Figure 6.17: The top row shows images from the last run in the UTIAS Multiseason dataset (used for
training our model) collected on May 11th, 2017. The middle row contain images from the teach path
collected on August 14th, 2021, used for our generalization and seasonal closed-loop experiments, while
the bottom row is from a repeat on October 28th, 2021. The leftmost and rightmost images from all
rows are collected in approximately the same two locations. The rest of the images are from the same
locations on the last two rows, but differ from the training data as we do not have spatial overlap. We
can see that, although all runs are collected off road, both the seasonal difference and variation in area
contributes to a significant visual gap between the training and experimental data.

experiment was conducted over two days to be able to cover the large range of times, while keeping the

robot battery charged and handling transfer of the collected data to a server. Images from the robot

camera from each repeat in Figure 6.15 show the variety in appearance. We also provide some images
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of the robot that show the different appearance conditions along the path in Figure 6.14.

6.5.5 Experiment 3: Generalization

In the second closed-loop experiment, we aim to investigate whether the learned features will generalize

to areas that were not seen in the training data. That is, we want to make sure that the network is

not just remembering locations along the paths from the training data. If the features generalize, this

would provide an advantage over MEL beyond removing the need for intermediate bridging experiences.

In MEL, the experiences collected over time can only be used for that specific path. If we wish to teach

and repeat a new path, in the same area or elsewhere, we need collect a new set of experiences.

For the generalization experiment, we teach three different paths and will refer to the different tests

as generalization I, II, and III. For all three tests. we use the network trained using both the UTIAS

Figure 6.18: Images taken during closed-loop testing for the first generalization experiment labeled with
collection day and time (dd-hh:mm). The image labeled in blue is from the teach pass for reference. The
images are taken in the new off-road area not contained in the feature training dataset. The images are
ordered according to the time of day when they were collected as we are most interested in the lighting
change, and the weather did not vary significantly.
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Figure 6.19: The robot autonomously repeating the path for the first generalization experiment under
different appearance conditions.

Figure 6.20: Overhead view of the paths for the second (left) and third (right) generalization experiments
overlaid on a Google Earth image. The path on the left is taught in a field, while the other is driven in
a parking lot. Neither path has any spatial overlap with the training data.

Multiseason and UTIAS In-The-Dark datasets so that we can follow paths in both off-road and on-road

areas. The network training is explained in detail in Section 6.4.2.

Generalization I

For the first test we taught an approximately 760 metre long path on August 14th at 13:26, which

includes both on-road and off-road driving. As shown in Figure 6.16, we add two new areas that are not

in the training data. The larger of the two new sections is driven in an off-road area with more vegetation

and taller grass than what was seen in the most similar UTIAS Multiseason training dataset. On three

occasions, the robot traverses through areas with trees and bushes close on either side. Moreover, the

experiment is conducted in August, while the UTIAS Multiseason dataset only contains data until May.

This means that none of our training data exactly resembles this off-road summer condition. Figure 6.17

shows example images along the new off-road section to illustrate the challenging environment and how

it is different from the training data. It contains spring image examples from the UTIAS Multiseason

dataset for comparison.

The second part of the path that runs through a new and unknown area, is smaller and contained

in a parking lot. This area more closely resembles the environment in the UTIAS In-The-Dark training

dataset. It is also more closely related in seasonal appearance, since the UTIAS In-The-Dark data was

collected in summer. Finally, the training datasets were collected in summer 2016 and winter to spring

2017, while we conduct our experiment several years later in August 2021.

As stated above, the first generalization path was taught on August 14th. It was repeated on August

15th, 16th, and 20th covering lighting change between 04:00 and 21:00. The weather was mostly sunny

on all days, with some intermittent clouds. We used several days to be able to cover a complete range of

lighting changes while keeping the robot battery charged and handling data transfer after each repeat.

Images from the robot for each repeat are displayed in Figure 6.18, while we include pictures of the
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Figure 6.21: The robot autonomously repeating the paths for the second (top row) and third (bottom
row) generalization experiments under different appearance conditions.

Figure 6.22: Images taken during closed-loop testing for the second generalization test labeled with
collection day and time (dd-hh:mm). The image labeled in blue is from the teach pass for reference, and
the images are ordered by the time of day when they were collected.

Figure 6.23: Images taken during closed-loop testing for the third generalization test labeled with col-
lection day and time (dd-hh:mm). The image labeled in blue is from the teach pass for reference, and
the images are ordered by the time of day when they were collected.

robot during autonomous traversal under different appearance conditions in Figure 6.19.

Generalization II, III

For the last two test of the generalization experiments, we teach off-road in a field (generalization II)

and on-road in a parking lot (generalization III). These new paths have no spatial overlap at all with
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Figure 6.24: The robot repeating the path for the seasonal experiment under different appearance
conditions. The coloured frames indicate pictures taken in the same location at different times.

Figure 6.25: Images taken in September during closed-loop testing for the seasonal change experiment
labeled with collection date and time (dd.mm-hh:mm). The image from the teach sequence is included
for reference and marked with a blue label.

the UTIAS Multiseason or UTIAS In-The-Dark training data. We used the same network for feature

extraction as in the first generalization experiment. We taught an approximately 275 metre path in the

field at 09:52. on November 11th, 2021. An overhead view of the path can be seen in Figure 6.20. The

second path is approximately 220 m and was taught at 11:34 on November 11th, 2021, in a parking lot,

see Figure 6.20.

6.5.6 Experiment 4: Seasonal Change

After completing the experiments to test robustness to lighting change, we also want to see how the

learned features perform as the weather and environment changes over a longer time period. Hence, we

keep repeating the 760 metre path from the first generalization experiment, taught on August 14th, into

autumn. See Figure 6.16 for the overhead view. After a break at the end of August, we start repeating

the path on September 10th and continue until November 19th. The repeats are collected at different

times of day, hence, lighting and seasonal change will both influence visual appearance .
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Figure 6.26: Images taken in October during closed-loop testing for the seasonal change experiment
labeled with collection date and time (dd.mm-hh:mm). The image from the teach sequence is included
for reference and marked with a blue label.
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Figure 6.27: Images taken in November during closed-loop testing for the seasonal change experiment
labeled with collection date and time (dd.mm-hh:mm). The image from the teach sequence is included
for reference and marked with a blue label.

We can note that since the UTIAS Multiseason dataset was collected from January to May, we do not

have any specific off-road training data for summer or autumn. Some examples of the difference between

the training data and the images seen during autonomous traversal are illustrated in Figure 6.17. The

same is true for the on-road area, as the UTIAS In-The-Dark training data was only gathered over two

days in summer. The road and surrounding buildings, however, make for an easier matching task, while

the off-road area is subject to larger structural and visual change between seasons. We include pictures

of the robot during autonomous repeat at different locations along the path under different seasonal

conditions, see Figure 6.24. Images from the robot camera for the different repeats of the path during

September, October, and November can bee seen in Figures 6.25, 6.26, and 6.27, respectively.

6.6 Evaluation Metrics

In order to evaluate the various experiments we have outlined, we use a set of metrics that measure

quantities such as feature matches, the distance we rely on dead-reckoning in case of localization failures,

as well as the path-following autonomy rate and path-tracking error. For each experiment, we will provide

a subset of the metrics depending on the data available.

6.6.1 Feature Matches

A feature-based approach to localization relies on matching keypoints between two images using their

associated descriptors. After the initial feature matching, RANSAC is used to find the inliers, which are
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subsequently passed on to pose estimation. Analysis of the feature matching inliers are provided for all

experiments in sections 6.7.1, 6.7.2, 6.7.3, and 6.7.4.

Inlier Count

Having a high number of inliers is beneficial for accurate and robust localization. Hence, we consider the

number of inliers as a useful indicator of the learned features’ performance in long-term localization. In

our experiments, six inliers are set as the threshold for successful localization. If the number of inliers is

lower, we rely on dead-reckoning from VO until localization is reestablished. We aggregate the number

of inliers for all keyframes in each autonomous traverse of a path. This allows us to compare the number

of inliers for different repeats, i.e., different appearance conditions. Since some areas might be more

challenging than others, we will also look at the inlier count along different parts of the path.

A high number of inliers is not a perfect predictor for pose estimation success. For instance, many

matches can be concentrated in one part of the image or we could get a high number of matches far away

from the robot and fewer matches with small depth. Localization produces an uncertain pose estimate,

which is passed on to other components such as path-tracking control. Path-following performance can

therefore also be affected by issues down stream from localization. Inlier count is therefore a useful proxy

for localization performance, but not a perfect gauge for overall path-following performance on its own.

We include more metrics in the following to help assess performance in different ways.

Inlier Spatial Distribution

The number of inliers alone, is not necessarily a perfect indicator for localization performance. If we

successfully match a lot of features, but all matches are concentrated in one part of the image, this

could lead to poor pose estimates. It is beneficial to have feature matching inliers distributed across

images. In particular, having feature matches close to the robot (smaller depth) is important for a

good translation estimate, while features farther away around the horizon (larger depth) are useful for

constraining heading. We analyze the distribution of the features for different locations along a path

and over time as appearance changes.

6.6.2 Distance on Dead-Reckoning

When the number of matched feature inliers drops below six, we consider localization to have failed

for the given frame. In this case, VT&R will rely on dead-reckoning with VO until localization is

reestablished. If the robot drives on dead-reckoning for more than 20 metres, the robot will stop as

continuing is not considered safe. Measuring the distance the robot drives using VO for a given repeat

gives us an indication of the robustness of localization with learned features and the resulting path-

following performance. We analyze the distance driven on VO for all of the closed-loop experiments in

Sections 6.7.2, 6.7.3, and 6.7.4.

6.6.3 Autonomy Rate

In the pipeline, from feature matching, through localization, and to path tracking, the final indication

of closed-loop performance is whether the robot can successfully follow the path. For all the closed-loop

experiments in Sections 6.7.2, 6.7.3, and 6.7.4, we record any path-following failures during autonomous

operation, where the robot has to be stopped and path repetition has to be restarted.
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Table 6.2: Comparison of the median number of inliers for SuperPoint, D2-Net, R2D2, and our method
for localization of the runs shown in Figure 6.12. The rows list the condition used to teach by date
(dd.mm), while the columns correspond to the repeats. As localization becomes more challenging, our
method keeps a high number of inliers, while the other methods deteriorate.

Repeat

31/01 02.02 10.02 14.02 27.02 10.04 03.05

SP D2 R2D2 Our SP D2 R2D2 Our SP D2 R2D2 Our SP D2 R2D2 Our SP D2 R2D2 Our SP D2 R2D2 Our SP D2 R2D2 Our

T
ea

ch

31.01 70 272 613 311 35 76 284 230 4 2 4 112 4 46 17 201 4 37 7 186 4 39 9 154

02.02 69 263 606 310 77 154 319 248 16 17 10 124 11 47 21 223 6 36 5 206 8 34 5 166

10.02 31 76 283 230 79 155 313 248 24 22 30 117 3 10 3 173 3 8 2 161 2 8 2 131

14.02 5 2 3 114 19 31 15 134 30 31 45 128 2 2 3 121 1 0 0 111 1 1 0 102

27.02 4 45 15 201 12 47 22 223 4 13 5 171 2 2 2 114 15 136 104 257 13 75 25 196

10.04 3 34 7 183 7 31 4 206 3 7 1 158 1 0 0 106 13 136 119 257 15 56 33 208

03.05 4 36 9 153 8 38 4 166 3 10 2 131 1 2 0 98 14 74 25 197 15 55 33 207

6.6.4 Path-Tracking Error

In order to assess the autonomous path-following accuracy, we use a Navtech GPS antenna on the

Clearpath Grizzly robot together with a separate base-station that provide accurate RTK GPS pose

estimates. Since, ultimately, we care about the robot’s ability to follow a path, we measure the path-

tracking error and do not compute localization error. We record the GPS poses during the teach run as

3D positions without orientation. For each GPS pose in a repeat, we find the closest point on the teach

run and compute the distance between them. We compute the RMSE for each repeat individually and

for all repeats as a whole. We collected RTK GPS poses for the lighting-change experiment in Section

6.7.2, but not for the remaining generalization and seasonal experiments. For the first generalization

experiment and seasonal experiment, we drive in an area where tree cover blocks the GPS signal and,

moreover, we often end up too far from the RTK base station, resulting in inaccurate GPS pose estimates.

Fore the second and third generalization experiment we did not have the time to set up the RTK GPS.

6.7 Results

In this section we present and analyze the results of using learned features for long-term localization in

the experiments from Section 6.5.6. The learned features let us autonomously repeat paths across all

lighting conditions, including when driving in areas outside the training data, with a 100% autonomy

rate. We are able to repeat paths across seasonal change from August to November, though we get some

path-following failures, especially when seasonal change is compounded with large lighting change.

6.7.1 Experiment 1: Offline Comparison

We compared our method to state-of-the-art learned features on localization in PyTorch. Keypoints,

descriptors, and scores were extracted using the code provided by the authors, and the same sparse

nearest neighbour feature matching was used for all methods for fairness. For D2-Net and R2D2, we

used multi-scale detection to get the best possible results. All conditions from Figure 6.12 were localized

against each other. We take one run and use it as a teach while using the rest of the runs as repeats.

This is repeated for all conditions.

Since our target application runs on a laptop in real-time, memory consumption and speed matter

in addition to feature matching performance. R2D2 (1531 MB) and our method (2443 MB) used the

lowest memory, whereas SuperPoint (5305MB) and D2-Net (9521MB) would be too large to fit on the



Chapter 6. Deep Learned Features for Long-Term Localization 97

Table 6.3: Overview of the teach and each repeat run for the lighting-change experiment. The teach run
has ID 0.

ID Start Time Duration Distance Dist. VO Failures RMSE Conditions

[hh:mm] [m] [m] [count] [m]

Day 0 02.08.21 12:14 - 265.5 - - - Sun, shadows

1 03.08.21 07:16 00:08 266.8 0.00 0 0.043 Sun flare, long shadows

Sunrise 2 03.08.21 07:33 00:08 266.5 0.00 0 0.045 Sun flare, long shadows

3 03.08.21 07:54 00:09 266.1 0.00 0 0.042 Sun flare, long shadows

4 03.08.21 08:58 00:08 265.1 0.00 0 0.041 Light sun flare, long shadows

5 03.08.21 09:30 00:09 265.1 0.00 0 0.042 Sun, long shadows

6 03.08.21 10:41 00:08 267.0 0.00 0 - Mostly cloudy

7 03.08.21 11:03 00:08 266.4 0.00 0 - Sun, cloud, shadows

8 03.08.21 12:04 00:08 266.5 0.00 0 - Sun, cloud, shadows

9 03.08.21 13:01 00:08 267.0 0.00 0 - Sun, cloud, shadows

Day 10 03.08.21 13:14 00:08 265.9 0.00 0 0.043 Sun, shadows

11 03.08.21 14:00 00:08 266.2 0.00 0 0.044 Sun, shadows

12 03.08.21 14:58 00:08 267.1 0.00 0 0.050 Sun, cloud, shadows

13 03.08.21 16:00 00:08 267.6 0.00 0 0.043 Mostly cloudy

14 03.08.21 17:06 00:09 268.6 0.00 0 0.070 Sun, cloud, shadows

15 03.08.21 17:56 00:08 268.0 0.00 0 0.048 Sun, long shadows

16 03.08.21 18:16 00:08 268.9 0.00 0 0.052 Sun flare, long shadows

17 03.08.21 18:43 00:08 269.2 0.00 0 0.043 Sun flare, long shadows

18 03.08.21 19:11 00:08 269.0 0.00 0 0.048 Sun flare, long shadows

19 03.08.21 19:35 00:08 268.0 0.00 0 0.044 Sun flare, long shadows

Sunset 20 03.08.21 19:57 00:08 268.1 0.00 0 0.046 Sun flare, long shadows

21 03.08.21 20:15 00:08 267.7 0.00 0 0.068 Sun flare

22 03.08.21 20:51 00:09 267.5 0.00 0 0.045 Dusk

23 03.08.21 21:21 00:09 263.4 0.00 0 0.056 Dark

24 03.08.21 21:53 00:08 263.2 0.00 0 0.042 Dark

25 03.08.21 22:18 00:08 263.0 0.37 0 0.057 Dark

Night 26 09.08.21 03:08 00:08 263.1 0.00 0 0.043 Dark, foggy

27 09.08.21 03:57 00:08 263.5 0.00 0 0.061 Dark, foggy

28 09.08.21 04:55 00:08 263.1 0.00 0 0.039 Dark, foggy

29 09.08.21 05:33 00:08 263.4 0.00 0 0.044 Dark

30 09.08.21 05:50 00:08 263.6 0.00 0 0.042 Dawn

31 09.08.21 06:04 00:09 266.4 0.00 0 0.068 Dawn

Sunrise 32 09.08.21 06:21 00:09 266.5 0.00 0 0.052 Cloudy

33 09.08.21 06:45 00:08 266.4 0.00 0 0.048 Cloudy

34 09.08.21 07:19 00:09 266.5 0.00 0 0.047 Cloudy

35 09.08.21 07:49 00:09 266.6 0.00 0 0.056 Sun, cloud

36 09.08.21 08:04 00:08 266.7 0.00 0 0.051 Sun, cloud

37 09.08.21 08:54 00:08 266.7 0.00 0 0.062 Sun, long shadows

Day 38 09.08.21 09:59 00:08 266.5 0.00 0 0.061 Sun, long shadows

39 09.08.21 11:01 00:09 266.7 0.00 0 0.068 Sun, shadows

40 09.08.21 12:25 00:08 266.0 0.00 0 0.052 Sun, shadows

Total 41 05:30 10.9 km 0.37 0

4 GB laptop GPU. Our method was the fastest with 14.8 ms for feature extraction, while SuperPoint

used 37.3 ms and R2D2 used 38.7 ms. D2-Net was the slowest with 477.4 ms, though it would likely be
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faster without multi-scale detection. Our method detects a fixed number of keypoints in one shot, while

both SuperPoint and R2D2 rely on additional NMS to pick a subset of the keypoints.

Feature Inlier Count

We evaluate the median number of feature matching inliers and provide the results in Table 6.2. R2D2

gets the best result localizing the first three conditions to each other. Our method, however, is the

only one with a high number of inliers across all experiments, while the others deteriorate as seasonal

change increases. Table 6.2 shows that the run from 14.02 with snow and high brightness is the most

difficult. Since we test on off-road data from the UTIAS Multiseason dataset, the experiment has limited

usefulness when comparing matching performance. We did this test as a sanity check as our method

trained on relevant data should outperform the others.

Conclusion

Our method gets a high number of feature matching inliers across all seasonal conditions, while other

methods struggle as appearance change increases. This is as expected given that our method has more

relevant training data. Moreover, our method has the fasted inference time, while R2D2 and our method

both have a low enough memory consumption to fit on the GPU of the laptop we use to run VT&R.

6.7.2 Experiment 2: Lighting Change

For this experiment, we ran VT&R with learned features for localization in closed loop. We taught a

new path similar to the one from the UTIAS In-The-Dark dataset on August 2nd at 12:14 and repeated

it autonomously on August 3rd and 9th spanning lighting change between 03:00 and 22:30. An overview

of the teach and all repeat runs with time of day, appearance conditions, length of the repeats, and

more, is provided in Table 6.3. In summary, we trained learned features with data from five years prior

and were able to localize the repeat frames directly to the teach without the need for any intermediate

experiences. The robot repeated the path accurately with a 100% autonomy rate for all conditions

including driving after dark with headlights and during low sun causing long shadows and challenging

sun flares. In the following, we study the results in more detail using the metrics from Section 6.6.

Feature Inlier Count

We start by looking at the number of learned feature matching inliers, which is determined by RANSAC.

Having a high number of feature matching inliers means that we have a high number of points to pass

to the pose estimation. We visualize the inliers in a few different ways. The repeats were conducted

over two days, on which the weather was similar with sun and some occasional clouds. In such a short

time, the physical environment did not change much (as it would in a longer seasonal experiment), and

so the dominant change between runs is the lighting variation. For this reason, we plot our data for the

experiment according to the time of day when it was collected, instead of the date and time. First, we

provide a box plot of the number of inliers for each run of the experiment in Figure 6.28. We also include

Figure 6.29, which displays the median number of inliers together with the 0.25 and 0.75 quantiles as

shaded regions. As opposed to the box plot, this visualization allows us to distribute the runs along the

horizontal axis according to the time of day when they were collected.
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Figure 6.28: A box plot of the number of inlier feature matches for localization for every run of the
lighting-change experiment listed in Table 6.3. The path was taught at 12:14. The horizontal axis shows
the time of day when the runs were traversed, and we colour the boxes according to the day the run
was completed. The red line shows the localization failure threshold of six inliers. The highest number
of inliers occur during the day and the lowest when it is dark. Dips in the number of inliers also occur
at sunrise and sunset.
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Figure 6.29: A plot of the median number of inlier feature matches for all runs of the lighting-change
experiment listed in Table 6.3. The shaded regions represent the 0.25 and 0.75 quantiles. The horizontal
axis lists the time of day when the runs were traversed, and we colour the lines according to the day
the run was completed. The gray line marks when the path was taught (12:14). The highest number of
inliers occur during the day and the lowest when it is dark. Dips in the number of inliers also occur at
sunrise and sunset.

From the two plots, we see that the highest number of inliers occurs during the day, when the

appearance is most similar to the teach run, which was collected at 12:14. The number of inliers are

the lowest when driving during the dark, either at night (21:21, 21:53, and 22:18) or during the early
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Figure 6.30: The CDF of keyframes with a given number of inliers for each repeat in the lighting change
experiment. The red vertical line shows the localization failure threshold of six inliers. The lines are
coloured according to the time of day that they were collected, given by the number of hours before or
after the teach was collected (12:14 pm). As expected, the runs collected at the beginning of the day
and at night (in dark blue and strong yellow) have the lowest number of inliers.

morning (03:08, 03:57, 04:55, and 05:33). Due to fog, the number of inliers is a bit lower for the early

morning runs compared to the night runs. This is a new condition not seen in the UTIAS In-The-Dark

training data. Finally, we also see that the number of inliers dip for some runs in the morning and

evening. This is due to low sun during sunrise and sunset, which causes long shadows and sun flares

in the images seen by the robot. Overall, we retain a high number of inliers across all runs providing

robust localization despite large appearance change.

The previous plots showed the median and quantile results for each repeat of the path. In VT&R

only a subset of the live images frame from the camera are used for localization. Going forward we refer

them as keyframes. We can get more detail on the feature inlier distribution within each run by looking

at the Cumulative Distribution Function (CDF) of live keyframes over the range of number of inliers.

In Figure 6.30, we plot the CDF for every repeat of the experiment. Since there are many repeats, we

colour each line by the difference in hours between the time of day of the autonomous traverse (not

considering the date) and the initial teach run. Consistently with the previous plots, we see that the

runs from early morning (dark blue) and night (strong yellow) have the lowest number of inliers. We

also see that the number of inliers is consistently high across all runs and that all runs have 100 inliers

or more for approximately at least 90% of their keyframes.

Finally, we are also interested in seeing how the number of matched feature inliers may vary along

different parts of the path. Are there any parts of the path where localizing may prove more difficult

than others? To this end, we plot the median number of inliers across all runs of the experiment for

each vertex, or keyframe, in the map. We also include the 0.25 and 0.75 quantiles. Figure 6.31 shows

the plot, where the path is coloured according to the inlier count. The number of inliers is high across

the whole path, but consistently a little lower in the bottom right quarter of the path. This coincides

with an area, where the robot drives on lawn grass instead of asphalt, and at the same time the camera

views an area with somewhat fewer structures.
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Figure 6.31: The plot shows the median number of inliers across all runs for each map vertex along the
path, as well as the 0.25 (Q1) and 0.75 quantiles (Q3). The area in the lower right quadrant, where the
robot drives on lawn grass while facing few structures, proves the most challenging for feature matching.

To summarize, we see that the learned features match well with a high number of inliers despite

drastic lighting change. The features are proving robust to challenging conditions such as driving during

the dark (including fog) with headlights and low sun at sunrise and sunset causing large shadows and

sun flares.

Feature Inlier Distribution

A high number of matched feature inliers alone is not necessarily sufficient for robust pose estimation.

We can imagine getting many matches is one part of the image. Because our approach divides the

image into size 16×16 windows and detects one feature per window, a high number of inliers is a fairly

good indication that features are spread across a substantial part of the image. Even so, it is useful to

understand how the distribution of matched features behaves for different locations along the path and

for different lighting conditions.

To this end, we provide qualitative results that visualize feature matches for selected map vertices

along the path. We aggregate the data for four different times of day - sunrise, day, sunset, and night -

as indicated in Table 6.3. The results can be seen in Figure 6.32. For a vertex in the map, we find all

the runs that have localized to this vertex for a particular time of day (sunrise, day, sunset, or night).

Every map vertex may not have every live run localized to it, but we pick vertices, where at least five live

keyframes have localized for each of sunrise, day, sunset, and night. We divide each image into size 16 ×

16 bins and record the image coordinates of all matched feature inliers. We count how many keypoints

fall into each bin and divide by the number of repeat runs that have localized to this keyframe for each

time of day group. If the bin has final value 1.0, that means a keypoint was matched in this part of the

image for each run that was considered for that condition, for example each night run.

From Figure 6.32, we observe the highest number of feature matches during the day and the lowest

during the night, which is consistent with the inlier count in Section 6.7.2. When the number of matched

features is low, for the more challenging lighting conditions, we tend to loose more keypoints close to

the robot in the lower part of the image, while keypoints detected closer to the horizon seem more

robust. This could result in the translation estimates becoming more uncertain. However, we retain

a high number of inliers throughout this experiment and only run into localization failure for three

frames during one night-time run (see Table 6.3). We can also see some qualitative difference in feature
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(c) Driving in on grass in an area with buildings.

Figure 6.32: Distribution of feature matching inliers for one map vertex along the path. The heat map
counts the number of inliers that fall into the 16×16 windows for all live keyframes localized to the given
map vertex. We normalize by the number of localized live keyframes. On the left we show one example
live image localized to the map vertex for each time of day. When comparing (a) and (b) to (c), we see
that we get somewhat fewer features on the ground close to the robot when driving on grass.

distribution between locations along the path. In particular, it looks like matching features close to the

robot when driving on lawn grass is more difficult than when driving on asphalt.
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Figure 6.33: A CDF over live keyframes for the distance VT&R relies on VO to compensate for local-
ization failures. The horizontal axis lists the distance VT&R has relied on dead-reckoning for a given
live keyframe.

Distance on Dead-reckoning

When the number of feature inliers fall below six, VT&R relies on dead-reckoning from VO to keep

driving until localization is reestablished. As can be seen in Table 6.3, for this experiment, we only

had localization failure after dark during run 25 starting at 22:18 at night. Localization failed for three

frames and we relied on VO for a total of 0.37 m. Figure 6.33 shows the CDF of live keyframes over the

distance driven on VO. The fact that we only rely on VO for a very small number of frames is another

indication that the learned features provide robust localization across challenging lighting change.

Path-tracking Error

We collected the ground truth pose using RTK GPS for most runs, except a few, where we were unable

to establish a GPS fix with sufficiently low pose covariance in time to complete the autonomous traverse

of the path. For a few runs, the pose covariance of the ground truth deteriorated for a short stretch

along the path. This happened sometimes when the robot drove between the Mars Dome building and a

parked trailer temporarily blocking the signal either to the base station or losing connection with one or

more satellites. We report RMSE for each individual run, where ground truth was collected. On runs,

where pose covariance was temporarily high, we exclude these measurement points from the RMSE. The

RMSE for each run are listed in Table 6.3. The RMSE computed from all runs taken together is 0.049

m and the highest RMSE for a single run is 0.070 m. We get low path tracking RMSE across all runs,

which shows that we are able to follow the path accurately across a full range of lighting conditions.

Autonomy Rate

For this experiment autonomous path following succeeded for all runs without any manual intervention

and the experiment was completed with 100% autonomy rate, see Table 6.3.
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Table 6.4: Overview of the teach and each repeat run for the first generalization experiment. The teach
run is the run with ID 0.

ID Start Time Duration Distance Dist. VO Failures Conditions

[hh:mm] [m] [m] [count]

0 14.08.21 13:26 - 763.3 - - Sun, shadows

1 15.08.21 12:02 00:25 761.6 0.00 0 Sun, shadows, light sun flare

2 15.08.21 13:04 00:24 762.2 0.00 0 Sun, shadows, light sun flare

Day 3 15.08.21 14:05 00:24 761.9 0.00 0 Sun, shadows, light sun flare

4 15.08.21 15:12 00:26 763.3 0.00 0 Sun, shadows, light sun flare

5 15.08.21 16:16 00:24 763.3 0.00 0 Sun, shadows, light sun flare

6 15.08.21 17:15 00:24 763.8 0.00 0 Sun, long shadows, sun flare

7 15.08.21 18:14 00:24 766.3 0.00 0 Sun, long shadows, sun flare

Sunset 8 15.08.21 19:21 00:24 769.1 0.00 0 Sun, long shadows, sun flare

9 15.08.21 20:28 00:24 765.0 0.00 0 Sun, long shadows, sun flare

Night 10 16.08.21 03:55 00:26 759.6 9.37 0 Dark

11 16.08.21 05:21 00:28 760.1 10.17 0 Dark

Sunrise 12 16.08.21 06:17 00:26 765.5 0.00 0 Bright, sun not visible

13 16.08.21 07:23 00:27 763.9 0.00 0 Sun, cloud, long shadows, sun flare

Day 14 16.08.21 10:30 00:28 762.6 0.00 0 Sun, shadows, light sun flare

15 16.08.21 12:00 00:26 761.8 0.00 0 Sun, shadows, light sun flare

Sunrise 16 20.08.21 07:09 00:28 764.7 0.00 0 Sun, long shadows, sun flare

17 20.08.21 08:21 00:23 766.8 0.00 0 Sun, long shadows, sun flare

18 20.08.21 09:19 00:27 764.9 0.00 0 Sun, long shadows, sun flare

19 20.08.21 10:20 00:25 765.1 0.00 0 Sun, shadows, light sun flare

Day 20 20.08.21 11:15 00:24 764.6 0.00 0 Sun, shadows, light sun flare

21 20.08.21 12:06 00:24 764.8 0.00 0 Sun, cloud, shadows

22 20.08.21 17:12 00:25 765.9 0.00 0 Cloudy

23 20.08.21 18:06 00:24 766.1 0.00 0 Sun, cloud, long shadows, sun flare

Sunset 24 20.08.21 18:50 00:25 766.7 0.00 0 Sun, long shadows, sun flare

25 20.08.21 19:58 00:25 763.9 0.00 0 Bright, sun not visible

Night 26 20.08.21 20:59 00:25 760.9 9.63 0 Dark

Total 27 10:55 20.6 km 29.17 0

Conclusion

In this closed-loop experiment, we saw that the learned features provided a high number of feature

matching inliers for localization across a full range of lighting change. We trained a network with data

from 31 hours of lighting change from summer 2016 and were able to teach and repeat a path in the

same area five years later. The robot followed the path accurately with a low path-tracking error and

only encountered a very small number of localization failures, where it had to rely on dead-reckoning

for navigation. We have shown that the learned features work well in a closed-loop system when the

spatial area and appearance conditions are similar to those of the training data. In our next experiment,

we teach a more challenging path to investigate the features’ ability to generalize beyond the feature

training dataset.
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Table 6.5: Overview of the teach and each repeat run for the second generalization experiment (driven
in a field). The teach run is the run with ID 0.

ID Start Time Duration Distance Dist. VO Failures Conditions

[hh:mm] [m] [m] [count]

0 11.11.21 09:52 - 276.5 - - Cloudy, light sun, windy

1 11.11.21 10:07 00:09 275.0 0.00 0 Cloudy, light sun, windy

2 11.11.21 17:33 00:09 274.2 1.99 0 Dark, windy

3 12.11.21 09:24 00:09 275.9 0.00 0 Low sun, sun flare, long shadows

4 12.11.21 10:59 00:10 275.3 0.00 0 Low sun, sun flare, long shadows

5 12.11.21 13:00 00:09 274.8 0.00 0 Low sun, clouds, long shadows

6 12.11.21 14:56 00:09 275.4 0.04 0 Low sun, sun flare, long shadows

7 12.11.21 16:19 00:09 275.3 0.00 0 Bright, sun not visible

Total 8 01:04 2.2 km 2.03 0

Table 6.6: Overview of the teach and each repeat run for the third generalization experiment (driven in
a parking lot). The teach run is the run with ID 0.

ID Start Time Duration Distance Dist. VO Failures Conditions

[hh:mm] [m] [m] [count]

0 11.11.21 11:34 - 223.2 - - Cloudy, light sun, windy

1 11.11.21 11:49 00:07 222.8 0.0 0 Cloudy, light sun, windy

2 11.11.21 17:50 00:08 220.1 0.0 0 Dark, windy

3 12.11.21 09:40 00:07 222.8 0.0 0 Low sun, sun flare, long shadows

4 12.11.21 11:15 00:07 223.0 0.0 0 Low sun, sun flare, long shadows

5 12.11.21 13:15 00:07 221.9 0.0 0 Low sun, sun flare, long shadows

6 12.11.21 15:15 00:07 221.3 0.0 0 Low sun, sun flare, long shadows

7 12.11.21 16:34 00:07 222.9 0.0 0 Bright, sun not visible

Total 8 00:50 1.8 km 0.0 0

6.7.3 Experiment 3: Generalization

So far, we have shown that the learned features successfully facilitate long-term localization directly

to the taught map across a full range of lighting change. In this experiment we investigate whether

the features can generalize outside the training data both spatially and in appearance. Ideally, the

network should not just memorize locations along the path or the exact appearance conditions given

in the training data. To this end, we completed three different experiments that test autonomous path

following in new areas, as described in detail in Section 6.5.5.

We taught a longer, approximately 760 metre, path on August 14th at 01:26 p.m, that covers some

of the on-road area from the UTIAS In-The-Dark training dataset and some of the off-road area from

the UTIAS Multiseason training dataset. See Figure 6.16 for an aerial view of the path. In addition,

it covers a new off-road area with more tall grass, trees, and other vegetation than seen in the training

data. Moreover, this experiment is conducted in August, whereas the UTIAS Multiseason dataset was

collected from January until May. Given the difference in vegetation and season, this means that the

new environment’s appearance is also somewhat different from training data. Finally, a shorter, new

section of the path was added in the parking lot, which is outside of path from the UTIAS In-The-Dark

training dataset. We repeated the path over three days across a full range of lighting change with a
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Figure 6.34: A box plot of the number of inlier feature matches for localization for every run of the
first generalization experiment listed in Table 6.4. The path was taught at 13:26. The horizontal axis
shows the time of day when the path was traversed and we colour the boxes according to the day the
run was completed. The dotted red line indicates the threshold of six inliers required for localization.
We compare to feature matching with SURF in yellow. Where data is missing for SURF, path following
failed from the beginning. The highest number of inliers for the learned features occur during the day
and the lowest when it is dark. Dips in the number of inliers also occur at sunrise and sunset.

100% autonomy rate. Detailed information on all runs of the experiment is listed in Table 6.4.

Given that some parts of the path in the first generalization experiment overlap with the training

data, we also taught two additional paths in November that have no spatial overlap with the training

datasets. The first path was taught on November 11th at 09:52 in a field with tall grass and with trees and

bushes along the side, see Figure 6.20 for an overhead view. Given that the path was taught in November,

there is also difference in appearance compared with the most relevant UTIAS Multiseason data. The

second path was taught the same day at 11:34 in a parking lot. An aerial view of the path is given in

Figure 6.20. Both paths were repeated seven times with a 100% autonomy rate under different lighting

conditions, including driving after dark. Details on the second generalization experiment conducted in

the field are listed in Table 6.5. The third generalization experiment from the parking lot is summarized

in Table 6.6. In the following sections discuss the relevant metrics.

Feature Inlier Count

For robust localization across environmental change, we need good feature matching. As we have dis-

cussed earlier, one indication of good feature matching is a high number of feature matching inliers.

In Figure 6.34, we present a box plot of the number of feature inliers across all 26 repeats of the first

generalization experiment. As expected, we get the highest number of inliers during the day close to the

time when the path was taught (13:26). The lowest number of inliers occurs when it is dark. We also

see some dips during sunrise and sunset with low sun causing long shadows and sun flares. Overall, we

consistently get a high enough number of inliers for localization. The plot shows the count only drops

below the localization failure limit (six inliers) for a small portion of the frames when driving during the
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Figure 6.35: A plot of the median number of inlier feature matches for all runs. The shaded regions
above and below the line represent the 0.25 and 0.75 quantiles, respectively. The horizontal axis shows
the time of day when the path was traversed and we colour the lines according to the day the run was
completed. The gray line marks when the path was taught (13:26). The highest number of inliers for
the learned features occur during the day and the lowest when it is dark. Dips in the number of inliers
also occur at sunrise and sunset.

dark. In the same plot, we compare against the performance of handcrafted SURF, which gets a signif-

icantly lower number of inliers. The comparison is done offline by playing the data back in the VT&R

offline tools. For several repeats, localization with SURF fails at the beginning of the path and VT&R

is unable to start path following. As expected, SURF struggles to match features when the appearance

changes beyond a few hours. A possible cause for SURF having a surprisingly low number of inliers even

close to the teach time, is that a large part of the path was taught in an area with abundant vegetation

under windy conditions, causing the grass and leaves to move. Moreover, trees and bushes also created

large moving shadows during teach time, which added to the challenge. Finally, although the repeats

were driven at a similar time of day to the teach, they happened up to several days later, causing further

strain to SURF matching. We plot the median and quantile regions in Figure 6.35, where we spread out

the repeats along the horizontal axis according to hat time of day the repeat was completed.

Since the path contains two sections that overlap with the paths in the training dataset and two new

sections, we also look at the number of inliers for the areas contained in the training data compared to

the ones outside. We divide up the path into an on-road part and an off-road part since the number of

inliers varies between these two environments. In Figure 6.36 (a), we show a box plot for the off-road

area. The number of inliers for the section that falls outside of the training data is consistently lower,

but at the same time it behaves similarly to the inlier count for the area inside the training data across

the different lighting conditions. Despite the inlier count being lower, we still get enough inliers in the

new off-road area to localize across large lighting change. The same type of plot for the on-road part of

the path is presented in Figure 6.36 (b). Here the number of inliers between the area in and outside the

training data is much more similar. This is because the new area in the on-road section is more similar

in appearance to the training data than in the off-road case. In fact, the number of inliers is sometimes

a bit higher for the new area, which can be explained by the fact that the new area is less affected by

low sun during sunset and sunrise.



Chapter 6. Deep Learned Features for Long-Term Localization 108

03:55

05:21

06:17

07:09

07:23

08:21

09:19

10:20

10:30

11:15

12:00

12:02

12:06

13:04

14:05

15:12

16:16

17:12

17:15

18:06

18:14

18:50

19:21

19:58

20:28

20:59

Repeat time (hh:mm)

0

100

200

300

400

500

600

N
u

m
b

e
r

o
f

in
li

e
rs

Area in training data

Area outside training data

(a) For the off-road data, there is a drop in the number of inliers for the area that falls outside of the
training data, but we still get a high enough number of inliers for localization.

03:55

05:21

06:17

07:09

07:23

08:21

09:19

10:20

10:30

11:15

12:00

12:02

12:06

13:04

14:05

15:12

16:16

17:12

17:15

18:06

18:14

18:50

19:21

19:58

20:28

20:59

Repeat time (hh:mm)

0

100

200

300

400

500

600

N
u

m
b

e
r

o
f

in
li

e
rs

Area in training data

Area outside training data
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appearance to the training data.

Figure 6.36: A box plot of the number of inlier feature matches for localization for every run of the first
generalization experiment. The horizontal axis lists the time of day when the path was traversed. We
distinguish between the areas of the path that are contained in and outside the training data and plot
the off-road (a) and on-road (b) portions of the path separately. The red line indicates the threshold of
six inliers needed for localization.

We can get a more detailed view of the distribution of number of inliers for each repeat by plotting

a CDF over keyframes. In Figure 6.37, we plot the CDF for each repeat, which we colour based on

the time of day it was collected. Specifically, we count the number of hours difference to the teach run.

Consistently with the box plot, we see that the conditions with the lowest number of inliers are the runs
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driven during the dark that are coloured in dark purple (early morning) or strong yellow (late night).

Furthermore, the number of inliers is consistently high with over 90% of keyframes having at least 100

inliers across all repeats.
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Figure 6.37: The CDF of keyframes with a given number of inliers for each repeat in the first general-
ization experiment. The red vertical line shows the localization failure threshold of six inliers. The lines
are coloured according to the time of day that they were collected, given by the number of hours before
or after the path was taught (13:26). As expected, the runs collected at the beginning of the day and at
night (in dark blue and strong yellow) have the lowest number of inliers.
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Figure 6.38: The plot shows the median number of inliers across all runs for each map vertex along the
path, as well as the 0.25 (Q1) and 0.75 (Q3) quantiles. The number of inliers is higher in the on-road
compared to the off-road part of the path.

Finally, Figure 6.38 presents the inlier median and quantiles over all runs for each vertex in the map.

This means we plot the path in the xy-plane and colour each map coordinate according to the number of

inliers. This visualization is especially informative for this path that contains both sections that overlap

with and fall outside the training data. First of all, we see that the half of the path that falls in the

structured, on-road area around the Mars Dome (above y = 0 in the plot), predictably has the highest

number of inliers. Consistent with the lighting-change experiment in Section 6.7.2, the number of inliers

decreases a bit for the section where we drive on grass and have less permanent structures in view (the
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Figure 6.39: Box plots of the number of inlier feature matches for localization for every run of the second
and third generalization experiments listed in Tables 6.5 and 6.6, respectively. The paths were taught at
09:52 and 11:34, respectively. The horizontal axis shows the time of day when the path was traversed,
and we colour the boxes according to the day the run was completed. The red line indicates the threshold
of six inliers required for localization.
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(a) Generalization II (field).
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(a) Generalization III (parking lot).

Figure 6.40: The CDF of keyframes with a given number of inliers for each repeat in the third general-
ization experiment. The red vertical line shows the localization failure threshold of six inliers. The lines
are coloured according to the time of day that they were collected, given by the number of hours before
or after the teach was collected.

straight stretch after the sharp turn located in the top right corner of the plot). We also see that the

new section of the on-road path (not seen in training data), has a similarly high number of inliers to the

section that falls in the training data (as we saw in Figure 6.36 comparing number of inliers per repeat).

The bottom loop in the plot (below y = 0) covers the off-road area. Let us consider coordinate (0, 0)

to be the start of the loop. Then the start and end of this loop covers the area included in the UTIAS

Multiseason training data (as seen in Figure 6.16) and we observe that the number of inliers is higher in

this area than for the rest of the loop that falls outside the training data. Again, this is consistent with

the comparison of inliers inside and outside the training data in Figure 6.36.

Next we look at the feature matching inliers for the last two generalization experiments. We present

box plots of the feature matching inliers for the second and third generalization experiments conducted

in a field and a parking lot, respectively, in Figure 6.39. Despite teaching and repeating the paths in

areas that have no spatial overlap with the training data, we get a high number of inliers across the

different times of day. Moreover, we have relied on training data collected in the summer 2016 and

January to May 2017, which means that seasonal appearance is also different. As before, we see that

the repeats after dark (at 17:33 and 17:50, respectively) are the most challenging, though only causing

localization failures in the experiment in the field. In the field there is no artificial lighting other than
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Figure 6.41: The plot shows the median number of inliers across all runs for each map vertex along
the path for the second and third generalization experiments, as well as the 0.25 (Q1) and 0.75 (Q3)
quantiles.

the robot’s headlights, while the parking lot has outdoor lights.

In order to get more detail on the number of inliers for each run, we plot the CDF over keyframes

for both paths in Figure 6.40 and colour the lines according to the time of day when the repeats were

completed. As expected, the repeats after dark (indicated by strong yellow lines) have the lowest

number of inliers. Even so, the path in the parking lot gets 100 or more inliers for at least 90% of the

keyframes for the repeat after dark. For the after-dark repeat in the field, we get at least 100 inliers

for approximately 65% of the keyframes, but as we can see from the figure only few keyframes cross the

localization threshold of six inliers. Again, it is evident that the off-road environment, especially after

dark, is a more challenging scenario for localization than the more structured on-road environment.

Finally, we plot the number of inliers against different locations along the two paths in Figure 6.41.

The number of inliers is fairly similar along the whole path in both instances, except that it drops in

one sharp turn for the experiment conducted in the field. This shows we get robust feature matching

consistently along two paths that were collected in very different environments that have no spatial

overlap with the training data.

Feature Inlier Distribution

As explained in Section 6.6, in addition to a high number of inliers, we prefer that features are well

distributed across the image. We provide qualitative results by illustrating the feature distribution with
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Figure 6.42: Distribution of feature matching inliers for one map vertex along the path. We count the
number of inliers that fall into the 16×16 windows in the heat map for all live keyframes localized to
the given map vertex. We normalize by the number of localized keyframes. On the left we show one
example live image localized to the map vertex for each time of day.
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Figure 6.43: Distribution of feature matching inliers for one map vertex along the path. We count the
number of inliers that fall into the 16×16 windows in the heat map for all live keyframes localized to
the given map vertex. We normalize by the number of localized keyframes. On the left we show one
example live image localized to the map vertex for each time of day.
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Figure 6.44: Distribution of feature matching inliers for one map vertex along the path. We count the
number of inliers that fall into the 16×16 windows in the heat map for all live keyframes localized to
the given map vertex. We normalize by the number of localized keyframes. On the left we show one
example live image localized to the map vertex for each time of day.
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Figure 6.45: We show a box plot of the depth of keypoints for all feature-matching inliers for each repeat.
We compare the on-road and off-road areas.

heat maps as we did for the lighting-change experiment in Section 6.7.2. In Figure 6.42, we include three

heat maps from the off-road area not included in the training data. In all these examples, there were

large shadows or sections with very high brightness in the map vertex from the teach pass (similar to

day images included in the figure). We can see that the areas with large shadows generally gets fewer

feature matching inliers across all the heat maps (see left half of each heat map). In comparison, the first

two scenarios ((a) and (b)) in Figure 6.43, which are also from the off-road area outside of training data,

did not have large shadows in the map vertex. In this case the feature matching inliers are distributed

more evenly across the image. Although, large shadows in the map vertices can cause some reduction

in feature matching in the off-road environment, we still get enough inliers for successful path following.

From both Figures 6.42 and 6.43, it is clear that the number of inliers is significantly lower during night

time, especially in the challenging, unstructured, off-road area. However, localization failures that may

occur are still few enough that we can continue path following with the help of dead-reckoning from VO.

All of the examples contained in Figure 6.43, are from the off-road area. The first two, (a) and (b),

are from locations not contained in the training data, while (c), has overlap with the UTIAS Multiseason

training dataset. We see that the latter example has a higher number of inliers compared to the first

two, though a shadow in the map image is causing some reduction in inliers in the bottom left corner.

The second example, (b), presents a particularly challenging scenario during night time driving because

the robot is looking toward an open area with no bushes or trees close enough to be visible in the range

of the head lights. For the same example, we can also see that the sun flares during some of the sunset

runs have affected matching in the upper part of the image illustrated by an area of light-blue bins.

Finally, Figure 6.44, shows examples from the on-road area, where the first two locations ((a) and

(b)) are not contained in the training data. Overall, it is clear that we get more features matches across

a larger part of the image in the structured on-road examples versus the unstructured off-road examples.

In example (a), interestingly, we get consistently few features matches on the blue container, which is

not contained in the training data, though we get more matches on the building in example (b). The
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Figure 6.46: A CDF over keyframes for the distance VT&R relies on VO to compensate for localization
failures. The horizontal axis lists the distance VT&R has relied on dead-reckoning for a keyframe.

last heat map, (c), is from a location contained in the training data. Here, the grass causes a reduction

in feature matches close to the robot for the sunset and night time conditions.

In addition to looking at qualitative examples, we can also compare the on-road and off-road areas

by looking at the depth of detected features. In Figure 6.45, we show a box plot of the depth of

all landmarks generated from feature-matching inliers across each repeat. Moreover, we differentiate

between landmarks from the off-road and on-road sections of the path. Across all repeats, we detect a

higher proportion of features farther away from the robot in the on-road area compared to the off-road

area. The distribution of feature depth does not change significantly for most runs. However, we see

that driving at night in the off-road area results in a lower proportion of features farther from the robot,

which is explained by driving in a completely dark area with headlights that have limited range. This is

less of an issue in the on-road area due to the presence of artificial light from buildings and street lamps.

In fact, we see the opposite trend in the on-road area. There, the proportion of features with larger

depth is higher during night-time. This is likely caused by feature matching becoming more difficult

close to the robot, especially when driving on grass, while we retain features on farther-away buildings or

other structures (see Figure 6.44 (b) and (c). Finally, we also see a drop in the proportion of father-away

features for the off-road area at 19:21, which is caused by large sun flares at sunset.

To summarize, we see that the distribution of matched features in the image varies between different

environments (on-road and off-road), but can also be affected by challenging lighting conditions in

the map such as large shadows or very bright spots. MEL has the advantage that it keeps adding

new conditions if the initial teach provides some challenging appearance conditions. With the learned

features the initial teach is the only experience available for localization. Even so, we see so far that we

get enough inliers and they are sufficiently spread out across the image that we accomplish successful

path following across a full range of lighting change. Finally, we also saw that there is some difference

between the on-road and off-road areas during night-time, where detecting features with larger depths

is more difficult in a dark area where the robot’s headlights provide the only significant source of light.

Distance on Dead-Reckoning

Whenever the localization fails due to an insufficient number of inliers, we rely on dead-reckoning with

VO until localization is regained. Figure 6.46 shows a CDF over live keyframes for the distance that we
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rely on VO for any repeat that has localization failures. Plot (a) show that we get localization failures

for three runs in the first generalization experiment, all of which were driven during the dark. We never

rely on VO for any longer than 1.0 metre and so localization is quickly regained in all cases. Moreover,

we only rely on VO for less than 2% live of keyframes in any of the three night-time runs. The second

localization experiment driven in the field, (b), has two runs with localization failures, one after dark

and one in the afternoon. VO is used for a maximum of 0.4 metres and for less then 2% of the keyframes.

The third generalization experiment completed in the parking lot had no localization failures. Overall,

we see that localization failures are rare and mostly occur after dark. None of the localization failures

have caused failure in path following as we rely on VO until localization is quickly reestablished.

Autonomy Rate

For all three generalization experiments autonomous path following succeeded for all runs without any

manual intervention and so the experiments were completed with 100% autonomy rate, see Tables 6.4,

6.5, and 6.6.

Conclusion

In this experiment, we used learned features trained on the UTIAS Multiseason and UTIAS In-The-

Dark data from 2017 and 2016, respectively. We tested the features’ ability to generalize to areas

and appearance conditions not seen in the training data. We successfully repeated a 760 metre path

that contains both a challenging off-road area as well as a more structured on-road area. We repeated

the path with a 100% autonomy rate across a full range of lighting change. Additionally, we teach a

path in a field and another one in a parking lot that we repeat seven times each for different lighting

conditions with a 100% autonomy rate. These two paths had no spatial overlap with the training data.

After analyzing the feature matching inliers, we see that the structured on-road areas generally get more

feature matching inliers than more challenging off-road areas. Driving on a road surrounded by buildings

Table 6.7: Overview of the repeat runs completed in September for the seasonal-change experiment.

ID Start Time Duration Distance Dist. VO Failures Conditions

[hh:mm] [m] [m] [count]

1 10.09.21 12:19 00:26 765.9 0.00 0 Sun, cloud, light sun flare, shadows

2 13.09.21 11:55 00:27 765.2 0.00 0 Sun, light sun flare, shadows

3 13.09.21 18:58 00:25 768.2 0.00 0 Low sun

4 17.09.21 12:04 00:22 762.7 0.00 0 Cloudy

5 21.09.21 14:19 00:23 763.4 0.00 0 Sun, light sun flare, shadows, windy

6 24.09.21 09:35 00:29 766.2 0.00 0 Cloud, sun, light sun flare, shadows

7 24.09.21 10:12 00:28 765.1 0.00 0 Cloud, sun, light sun flare, shadows

8 24.09.21 14:29 00:21 763.6 0.00 0 Cloudy

9 24.09.21 17:09 00:22 762.8 0.26 0 Cloudy

10 27.09.21 13:41 00:22 762.4 0.00 0 Sun, light sun flare, shadows

11 27.09.21 17:46 00:26 762.3 0.00 0 Low sun, sun flare, long shadows

12 29.09.21 10:29 00:22 762.0 0.00 0 Low sun, sun flare, long shadows

13 29.09.21 14:20 00:17 762.0 0.00 0 Sun, light sun flare, shadows

14 29.09.21 17:36 00:17 762.3 0.36 0 Low sun, sun flare, long shadows

Total 14 05:27 9.9 km 0.62 0
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Table 6.8: Overview of the repeat runs completed in October for the seasonal-change experiment.

ID Start Time Duration Distance Dist. VO Failures Conditions

[hh:mm] [m] [m] [count]

15 02.10.21 15:02 00:30 762.6 0.31 0 Sun, light sun flare, shadows

16 02.10.21 17:08 00:21 762.3 0.0 0 Low sun, sun flare, long shadows

17 02.10.21 18:15 00:22 762.0 0.0 0 Bright, sun not visible

18 04.10.21 13:52 00:22 766.0 0.0 0 Cloudy, wet ground

19 04.10.21 17:43 00:22 763.3 0.60 0 Cloudy, wet ground

20 04.10.21 19:22 00:08 372.9 88.22 1 Dark, wet ground

21 06.10.21 08:44 00:05 178.1 0.70 1 Low sun, sun flare, long shadows

22 06.10.21 08:56 00:28 762.9 3.30 0 Cloudy

23 06.10.21 10:24 00:22 761.3 2.23 0 Cloudy

24 06.10.21 19:34 00:35 654.6 34.57 2 Dark

25 08.10.21 11:30 00:23 761.9 0.0 1 Cloudy

26 08.10.21 12:14 00:22 762.3 0.0 0 Cloudy

27 08.10.21 16:05 00:22 763.6 0.0 0 Cloudy

28 08.10.21 18:31 00:22 763.2 0.48 0 Bright, sun not visible

29 08.10.21 19:19 00:23 760.0 32.36 1 Dark

30 14.10.21 11:53 00:22 761.9 0.0 0 Sun, light sun flare, shadows

31 14.10.21 15:35 00:22 762.5 0.0 0 Sun, light sun flare, long shadows

32 14.10.21 18:26 00:22 761.5 3.47 0 Bright, sun not visible

33 14.10.21 19:16 00:08 275.9 53.54 1 Dark

34 15.10.21 11:04 00:22 762.9 0.0 0 Cloudy

35 15.10.21 14:04 00:22 763.7 0.0 0 Cloudy

36 15.10.21 16:47 00:22 763.4 0.0 0 Cloudy

37 15.10.21 18:14 00:23 766.5 1.75 1 Dusk, cloudy, wet ground

38 18.10.21 08:34 00:22 764.2 0.0 0 Cloudy

39 18.10.21 09:25 00:22 764.0 0.0 0 Mostly cloudy, some sun

40 18.10.21 10:30 00:22 763.7 0.0 0 Clouds, sun, light sun flare, long shadows

41 18.10.21 11:33 00:25 762.4 0.0 1 Clouds, sun, light sun flare, shadows

42 22.10.21 11:28 00:22 765.1 0.0 0 Clouds, sun, shadows

43 22.10.21 14:40 00:22 760.8 0.0 0 Sun, clouds, light sun flare, shadows

44 22.10.21 15:55 00:22 765.8 0.0 0 Low sun, sun flare, long shadows

45 22.10.21 18:25 00:25 760.5 10.83 2 Dusk to dark

46 27.10.21 07:42 00:22 764.9 3.11 0 Bright, sun not visible

47 27.10.21 08:36 00:23 763.0 1.00 1 Low sun, sun flare, long shadows

48 27.10.21 09:49 00:23 765.2 1.32 0 Low sun, sun flare, long shadows

49 27.10.21 10:49 00:28 764.6 0.34 0 Low sun, light sun flare, long shadows

50 28.10.21 11:32 00:24 761.9 0.25 0 Clouds, sun, light sun flare, shadows

51 28.10.21 13:03 00:24 762.4 0.16 0 Cloudy

52 28.10.21 15:01 00:24 764.4 1.27 0 Sun, light sun flare, shadows

53 28.10.21 16:41 00:28 768.7 0.0 1 Low sun, sun flare, long shadows

54 28.10.21 18:35 00:20 464.6 26.60 1 Dark

Total 40 14:48 20.6 km 266.41 14

or other structures is easier for vision-based path following with learned features than traversing off-road

areas with abundant vegetation and fewer permanent visual markers. We get a reduction in inliers in

areas outside the training data compared to areas contained in the training data. However, across all

the experiments and all conditions, we get enough inliers for successful path following with VT&R.
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Table 6.9: Overview of the repeat runs completed in November for the seasonal-change experiment.

ID Start Time Duration Distance Dist. VO Failures Conditions

[hh:mm] [m] [m] [count]

55 03.11.21 11:48 00:25 761.8 0.27 0 Low sun, light sun flare, long shadows

56 03.11.21 13:16 00:25 764.0 0.00 0 Cloud, sun, shadows

57 03.11.21 15:50 00:24 764.3 0.00 0 Cloudy

58 03.11.21 17:12 00:24 763.4 0.00 0 Cloudy

59 03.11.21 18:15 00:23 770.6 5.85 0 Dusk to dark

60 08.11.21 11:00 00:23 758.6 0.30 0 Low sun, light sun flare, long shadows

61 08.11.21 13:20 00:24 762.6 0.00 0 Low sun, light sun flare, long shadows

62 08.11.21 14:56 00:25 764.0 0.11 0 Low sun, sun flare, long shadows

63 08.11.21 16:33 00:25 763.2 0.00 0 Bright, sun not visible

64 08.11.21 17:27 00:29 761.6 45.57 4 Dark

65 10.11.21 10:11 00:24 759.0 1.22 0 Low sun, light sun flare, long shadows

66 10.11.21 16:01 00:28 765.5 0.69 0 Bright, sun not visible

67 11.11.21 09:19 00:24 762.9 0.00 0 Cloudy

68 11.11.21 15:45 00:24 765.2 0.88 0 Mostly cloudy, low sun

69 19.11.21 11:33 00:25 762.9 1.06 0 Low sun, clouds, light sun flare, long shadows

70 19.11.21 13:11 00:28 766.5 5.09 2 Low sun, clouds, light sun flare, long shadows

71 19.11.21 15:13 00:25 763.1 0.65 0 Clouds, low sun, sun flare, long shadows

72 19.11.21 17:15 00:27 758.0 32.75 3 Dark

Total 18 07:32 13.7 km 94.49 10

6.7.4 Experiment 4: Seasonal Change

Our final experiment attempts to extend testing of the learned features to seasonal appearance change.

We use the same path taught for the first generalization experiment on August 14th and repeat it a

total of 72 times until November 19th, 97 days after the map was created. We keep using the same

network trained with data from the UTIAS Multiseason and UTIAS In-The-Dark datasets, which were

gathered from January until May 2017 and in summer 2016, respectively. This means that we encounter

seasonal appearance conditions not seen in the training data. As before, the path covers both areas that

are spatially contained in the training datasets and sections which are not, see Figure 6.16 for an aerial

view of the path. We repeated the path for different lighting conditions over the three months. Out of

the 72 runs, 15 runs incurred path following failures, for which we, in most cases, restarted and kept

driving. Most of the failures occurred while driving after dark or during low sun, suggesting that the

compound lighting and seasonal change became difficult for the learned features in some cases. Detailed

information on all runs of the experiment is listed in three tables that we have divided by month; Tables

6.7, 6.8, and 6.9.

Feature Inlier Count

We start by investigating the feature matching inlier count for each run of the experiment. Due to

space constraints, we create box plots for each month separately, see Figure 6.47. Starting with the first

repeat on September 10th, the median number of inliers is approximately 200. As time passes through

September and the later months, if we ignore he night-time repeats, we see that med median number

of inliers decreases to around 100 and then also below that in some cases. Although there are some

fluctuations between individual repeats, we see that the median number of inliers gradually decreases

across the months. The runs that contain path-following failures are marked in red colour in the plot.
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Figure 6.47: A box plot of the number of inlier feature matches for localization for every run of the
experiment listed in Tables 6.7, 6.8 and 6.9. The horizontal axis lists the date and time of day when the
path was traversed.
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We note that a few of the runs with failures have a fairly high number of inliers. In some cases path

following failed not due to the lack of features but because the robot drove too close to trees or bushes

near the path, and we had to manually intervene. All the path-following failures will be discussed in

more detail in the later Autonomy Rate section.
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Figure 6.48: A box plot of the number of inlier feature matches divided for the areas inside and outside
the training data. The inliers are computed for every run of the experiment during September listed in
Table 6.7. The horizontal axis lists the date and time of day when the data was collected.

We get the lowest number of inliers when repeating the path after dark. The reason that the repeats

on the 4th (at 19:22), 6th (at 08:44), 14th (at 19:16), and 28th (at 18:35) of October have lower medians
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Figure 6.49: A box plot of the number of inlier feature matches divided for the areas inside and outside
the training data. The inliers are computed for every run of the experiment during October listed in
Table 6.8. The horizontal axis lists the date and time of day when the data was collected.Missing boxes
in (b) are due to runs that failed before reaching he on-road of the path and did not restart.

than the remaining runs, is that we stopped repeating the path after the first failure. This means that

the repeat was cut short before (4th, 6th, 14th) or early on along (28th) the on-road part of the path

that generally gets more inliers. In the first two cases, we did not attempt re-staring VT&R. On October

14th and 28th, we were unable to restart after a failure. During October, seven out twelve repeats with

path-following failures occurred just before or after dark, whereas this was the case for two of three

failures in November. Of the remaining six repeats with failures, five occurred during low sun causing
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Figure 6.50: A box plot of the number of inlier feature matches divided for the areas inside and outside
the training data. The inliers are computed for every run of the experiment during November listed in
Table 6.9. The horizontal axis lists the date and time of day when the data was collected.

long shadows and sun flares. However, not all runs with low sun caused path-following failures. In

fact, more often than not they did not result in failures (fourteen successful runs versus five runs with

failures). The compound appearance change from seasonal changes, such as vegetation changing colour

and leaves falling, together with the lighting change, caused a low number of feature matching inliers

leading to one or more path following failures for these repeats. Despite the number of matched feature

inliers decreasing over time, the median stays high in general and a only a small number of frames fall
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(b) Repeats coloured by time of day of collection.

Figure 6.51: The CDF of keyframes with a given number of inliers for each repeat in the seasonal
experiment. The red vertical line shows the localization failure threshold of six inliers. The repeats
in (a) are coloured according to the number of days since the path was taught, while in (b) they are
coloured by the time of day that path was repeated, given by the number of hours before or after the
time the path was taught.

below the localization failure threshold. As mentioned earlier, localization failures do not necessarily

lead to path-following failures as we can rely on VO.

Since the experiment path has parts that overlap with the training data and parts that fall outside

the training data, we compare the number of inliers between the different sections. We present the

box plots in Figures 6.48, 6.49, and 6.50, each for a different month. In the same way as for the first

generalization experiment in Section 6.7.2, we see that the number of feature matching inliers is lower

for the off-road data that falls outside of the training data compared to the part of the path that has

overlap with the training data. At the same time, the inlier counts mostly vary in the same way across

the different repeats. For the on-road data, we see that the area outside the training data get a slightly

higher inlier count than the areas overlapping with the training data, which again is consistent with the

generalization experiment. The new area is less affected by sun flare when the sun is low in the morning

and evenings and the robot does not drive on grass as it does for part of the path that overlaps with

the training data. We have seen throughout the experiments that feature matching across appearance

change is easier on asphalt than on grass.

After looking at box plots of the inlier count across all repeats, we plot the CDF of live keyframes

over the number of inlier matches for all repeats in Figure 6.51. This provides more detail about the

inliers within each run. Because we have a lot of repeats, we colour each one either according to the

number of days since the path was taught (a) or by the time of day that the repeat was completed (b).

Although we see that the earliest repeats from September (dark blue) all have a high number of inliers

(a), not all repeats towards the end of the experiment, in November, are among the ones with the lowest

number of inliers. Clearly, the number of days since the teach is not the only indicator of how well

features match. Consequently, we also look at the time of day, i.e. the lighting condition, under which

the repeat was completed (b). Although not all dark blue (early) or yellow (late) repeats are among the

ones with the lowest number of inliers, a lot of the runs with poorer performance come from these times.

Taken together, we see that the feature matching is affected both by seasonal change and the lighting

condition when a repeat was completed. This is consistent with the box plots of inliers in Figure 6.47,

where there is some fluctuation between runs at different time of day, but the number of inliers gradually

tends downwards over the three months.
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Figure 6.52: The plot shows the median number of inliers across all runs for each map vertex along the
path, as well as the 0.25 (Q1) and 0.75 (Q3) quantiles. The inliers are plotted separately for each month.

Finally, we look at the number of inliers for map vertices along the path. In Figure 6.52, we have

divided up the data by month. Consistently with Figure 6.38 from the first generalization experiment,

we see that we generally get a higher number of inliers in the structured, on-road part of the path. The

number of inliers is the lowest in the off-road area that was not included in the training data. The off-

road area that was part of the training data (start and end of the loop below y = 0), does a little better.

Relative to the on-road area, however, it does not maintain as high a number of inliers. Similarly, we can

see that the part of the structured area around the Mars Dome, where the robot drives on the lawn, now

does worse relative to the areas driven on asphalt, than was the case in the generalization experiment.

These observations point towards seasonal change being more difficult for the learned features in the

off-road areas, and also when driving on the lawn by the Mars Dome. This can be explained by the fact

that the vegetation in off-road areas makes seasonal changes to grass, trees, and bushes dominant, while

the structured area contain roads, buildings, fences, storage units and so on that do not significantly

change over time. If we look at the plots over the different months, we see that the number of inliers

gradually reduces over time for the whole path.
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Figure 6.53: A CDF over keyframes for the distance VT&R relies on dead-reckoning with VO to compen-
sate for localization failures. The horizontal axis lists the distance VT&R has relied on dead-reckoning
for a keyframe. The repeats in (a) are coloured according to the number of days since the path was
taught, while in (b) they are coloured by the time of day that the path was repeated, given by the
number of hours before or after the time the path was taught.

Distance on Dead-Reckoning

Since the number of feature matching inliers decrease over the seasonal experiment, we expect to have

more cases of localization failures. where the robot relies on dead-reckoning. We plot the CDF of live

keyframes for each repeat, where localization failures occurred, see Figure 6.53. Similarly to the feature

inlier CDF, we provide two plots. In one we colour the repeat according to the number of days since

the teach (a) and in the other by the time of day the repeat was completed (b). As explained earlier,

the feature matching is affected how far along in the experiment we are, but also more ”locally” by

the time of day when the path was traversed. We get a similar behaviour for the distance driven on

dead-reckoning. From the plots, we see that we rely on VO for approximately a quarter of the keyframes

(in repeats where localization failures occur) and the longest distance on VO is less than 5 metres.

Autonomy Rate

The seasonal experiment is the first one, where we get path-following failures and therefore do not

maintain a 100% autonomy rate. A path-following failure happens if we need to manually intervene to

stop the robot because it has driven too far to the side of path and is not able to recover to get back on

the path by itself. In some cases we had to stop the robot although it was not very far to the side of the

path. However, it was driving in an area with, for instance, trees close to the path and would otherwise

crash into them. In Tables 6.7, 6.8, and 6.9, we list the number of failures that occur for each repeat.

Out of the 72 repeats, 15 (or 21%) contain one or more path following failures. The first path-following

failure occurred on October 4th, 51 days after the path was taught on August 14th.

First we look at the conditions under which these failures happen. Nine of the runs with failures

occur just as it is getting dark or after dark. We have a total of ten runs for this condition and so

it is clear that the learned features struggle when seasonal change compounds with the most drastic

illumination change. Four of the runs with failures happen when there is low sun causing sun flares and

long shadows. Again we see that that challenging illumination change on top of seasonal change makes

localization more difficult. The robot repeats the path successfully a total of twenty times with low sun,

indicating that VT&R completes most of the repeats under this condition, unlike the repeats after dark.
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Figure 6.54: The image marks the approximate location of all the path-following failures that occurred
during the seasonal-change experiment. Each coloured dot has a corresponding run ID, which can be
looked up in Tables 6.7, 6.8 and 6.9 to find more information about the repeat. Five out of the total
fifteen runs, have more than one failure.

Finally, the last two runs with failures happens once when there is some light sun flare and once during

cloudy conditions. Hence, the lighting conditions are not very challenging in these two cases.

Out of the fifteen runs with failure, ten runs have one path following failure, three runs have two

failures, one run has three failures, and one run has four failures. One run with two failures happened

during low sun, while the remaining four runs with two or more failures happened after dark. The two

very first times we encountered failures (once on October 4th and once on October 6th), we did not

restart VT&R after the failure to continue the path following and so both these runs have one failure

each. Afterwards, we updated our procedure and restarted VT&R after every manual intervention to

continue the traversal. In two of the subsequent runs, on October 14th at 19:16 and on October 28th

at 18:35, we were unable to continue after the failures due to difficulty reestablishing stable localization

under challenging dark conditions.

In Figure, 6.54, we approximately mark the location of where path following failed along the path

so that we can get an idea of whether failures have anything in common and, if so, which areas have

the most failures. We will explain the errors in each location together. Let us assume that we start at

the beginning of the path, indicated by the red arrow, and move along the path from there. The first

failure is marked in green. In this failure the robot had only drifted about 0.5 - 1.0 metres to the left of

the path, an offset from which VT&R with learned features can recover. We had to manually intervene,
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Figure 6.55: We compare a map image (left) to images from the same location in the two failed repeats
from October 6th at 08:44 (middle) and November 8th at 17:27 (right). The grass on the ground has
changed significantly.

however, because the robot was about to drive into a large rock close to the side of the path. The next

two failures occur on a turn. In both cases the alignment to the map (i.e., the map vertex considered

the closest) suffers at the beginning of the turn resulting in the robot taking the turn too early. This

causes the robot to drive into the bushes to its right and we had to manually intervene. In this particular

turn, the teach images show that the ground has a lot of flattened dry grass. If we compare to the two

failed repeats, we can see how much the ground has changed, see Figure 6.55. This causes a problem,

especially, for night-time driving as the headlights mostly light up the ground in front. Few farther-away

points that may have more visual stability will be lit up.

We move further along the path and look at the next eight failures, which all have the same root

cause. Leading up to these failure locations, we have a longer, mostly straight, stretch of path. The

live keyframe has poor alignment with the map at the end of this straight stretch and before entering

the first turn. Specifically, the live frames localize to map vertices behind them on the path while the

feature matching does not reflect this longitudinal offset well enough. This leads to the robot starting

the turn too late, which subsequently causes it to drive into some bushes or too close to trees resulting

in the failures seen in Figure 6.54. For run 64 (purple), we see multiple failures in this area. After the

first failure, it was difficult to get a good alignment and start again, while operating after dark.

There can be a few reasons for the poor feature matching in the longitudinal direction in this area.

Firstly, the straight stretch of path is fairly open with a lot of grass and some trees on the left side.

This provides fewer stable points for localization that often lie near the horizon. The ground in front

of the robot is subject to larger appearance changes. Furthermore, the area before the turn has large

shadows in the map, which also makes feature matching more difficult, as seen in Figure 6.56. During

the training of the learned features, we found that the longitudinal direction was more challenging

to estimate well compared to the lateral offset and heading angle (concrete examples are provided in

Appendix A). Since VT&R looks at a window of frames for localization and relies on VO to propagate

the pose guess forward, the longitudinal estimate does not have to be perfect in order for VT&R to

localize and move the localization window forward. Lateral offset and heading are more important for

successful path following.

A second issue compounds the problems in this case such that a poor longitudinal estimates results

in poor localization to the map. When a path is taught, VT&R stores a vertex in the map approximately

every 0.3 metres. If the number of feature matching inliers for VO drops below a threshold, VT&R will

create a new vertex. If it is windy, an area with tall grass, bushes, and trees will be especially challenging

for VO, and the number of matched features drops. In our case, it was windy when the path was taught,
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Figure 6.56: We compare a map image (left) before the turn to images from the same location in two
repeats that failed on October 27th at 08:36 (middle) and October 14th at 19:16 (right).

Figure 6.57: We compare a map image (left) from the start of the narrow path segment to images from
the same location in two repeats that failed on October 15th at 18:14 (middle) and October 6th at 19:34
(right).

and VT&R created many vertices close to each other on this part of the path. During localization,

we work with a fixed-size window of frames and cannot increase its size due to real-time performance

considerations. All together, the non-ideal longitudinal estimate combined with having many vertices

in the map, causes the closest vertex in the map (that we want to localize to) to ”lag behind”. While

driving straight this does not matter, but it causes the robot to take the next turn too late. In order to

fix this problem, we would look at ways to improve the learned features’ performance in the longitudinal

direction under challenging conditions. Furthermore, we could also improve the keyframe distribution

in the map by adjusting the feature matching threshold to better fit the off-road environment.

The next four failures occur together in the same location just below the tennis court, see Figure

6.54. Here the robot drives through a narrow passage with tall branches on each side. In each of the

failures, the robot has drifted a little too far left (about 0.5 metres) before entering this area, and we

need to manually intervene so it does not drive into the bushes. Figure 6.57 shows what the area looks

like in the map and from two repeats that fail.

Next, we move to the on-road part of the path. The first three (pink and red) and last four failures

along the road have the same behaviour. The robot is repeating the path well without any significant

lateral offset. We also get a consistently high number of feature matching inliers, which is expected in

this structured area. Then suddenly the robot turns quickly to one side in a twist-like motion, and we

manually intervene to stop the repeat. If we look at the last few live keyframes preceding the abrupt

motion, the live features match to the map features in a way that is consistent with the expected motion.

That is, the feature matches do not indicate that the predicted pose should suddenly change directions.

All the failures happen on repeats as it is getting dark or after dark. After studying the VT&R output
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logs and the feature matches, we do not have a clear answer to the cause of this problem. In the logs,

we get messages about uncertain poses not meeting constraints, but no clear and consistent indication

of what precedes the issue. We would need to spend more time to debug to find the underlying problem.

The last two failures are for runs 25 (green) and 41 (blue), which were driven on October 8th at

11:30 and on October 18th at 11:33, respectively. These stand out from the others because they are

the only ones that occurred under nominal lighting conditions in the middle of the day. Both failures

happened along the road in a structured environment and we were getting a normally high number of

feature matching inliers. In both cases, the robot gradually drifted off the path and did not return to

the path before we manually intervened to stop the traversal. When looking into the localization of

the live frames, and comparing to a successful run in the same area under similar conditions, the live

frames of the failed runs were not localized equally well to the map. While the successful run had a

good estimate of the closest vertex in the map for localization, the two failed runs were localizing to

map vertices slightly ahead and slightly behind the true closest vertex, respectively. Going into a soft

turn, the offset to the map caused the robot to start drifting slowly with respect to the path and was not

recovering immediately. When the path tracker issues velocity commands to the robot, it balances the

scheduled speed and the commanded speed, where the latter is computed based on the pose estimate.

Weighting the influence of these two values affects how the robot drives and must also be adjusted based

on the desired operating speed of the robot. We think that by better adjusting this parameter, we can

make the robot react faster to the commanded speed and better adjust for such slow drifts.

In summary, we have looked at the different failures in path following over a long-term experiment

spanning three months. We found that the features struggled in some situations when seasonal change

was compounded with large illumination change such as driving after dark and when the sun was low in

the sky. Looking more closely at the failures has given us some pointers to future improvements for both

the learned features themselves and their implementation in VT&R. In particular, we want to explore

ways to improve the features’ performance in estimating pose for the longitudinal direction. We can

also make adjustments to parameters in VT&R to reduce the number of map vertices created in off-road

areas, and to improve the velocities sent to the robot during autonomous repetition.

Conclusion

In the seasonal change experiment, we have repeated the path taught on August 14th for three months

until November 19th. The experiment provides not only areas that are spatially different from the

training data, but also unfamiliar appearance conditions through late summer and autumn. The results

show we have generally been able to keep a high number of feature-matching inliers, but that the

number of inliers has been gradually decreasing during the experiment. We encountered path-following

failures, showing that the compounding effect of large lighting change (driving after dark, low sun)

and seasonal change caused challenges for the learned features in 15 out of 72 runs. As in the first

generalization experiment, feature matching is easier in an area with asphalt road and surrounding

permanent structures, compared to off-road conditions with vegetation that changes continually.

6.8 Conclusions and Future Work

In this chapter, we have applied the learned features for relative pose estimation presented in Chapter

5 to long-term localization in VT&R. With these learned features, we have been able to improve on the
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learned pose regression presented in Chapter 4, where we computed the relative pose between images

from different appearance conditions directly using a neural network. Although we were able to tackle

large appearance change, the method did not generalize well to new paths. In this chapter, we have shown

that the learned features can both handle localization across large appearance change and generalize to

new paths not seen in the training data. Moreover, we complete closed-loop path following with VT&R

without the need for intermediate bridging experiences.

We started our experiments by comparing the learned features to other state-of-the-art methods and

showed that our approach had the fastest inference time and second lowest memory consumption, which

are both important to real-time operation. We introduced the learned features into the VT&R system

and conducted three closed-loop experiments. The networks used were trained using the UTIAS In-The-

dark and UTIAS Multiseason datasets, which were gathered four and five years prior, respectively. The

first closed-loop experiment shows that we can repeat a path in a familiar area across a full range of

lighting change, including driving after dark, with a 100% autonomy rate. In our second experiment, we

again showed that the learned features can tackle a full range of lighting-change with a 100% autonomy

rate, however, we also demonstrated that they generalized when we repeated paths containing unfamiliar

areas. Beyond new areas, the experiment also contained seasonal appearance conditions that differed

from the training data. In the third, and final, experiment, we operating on the path we taught in mid-

August until mid-November. This experiment also included unfamiliar areas and seasonal appearance

conditions. We were able to maintain a high number of feature matching inliers across the three months,

but did not achieve a 100% autonomy rate. Compounding seasonal and large lighting change causes

path following failure in 15 out of 72 repeats (or 21%).

The experiments tell us that learning visual features for use in a classical pose estimator clearly out-

performs the method that tried to learn the whole pose estimation pipeline. Moreover, learning features

makes it easy to integrate the approach in the existing VT&R system by simply adding another feature

implementation alongside the existing SURF. Finally, our neural network feature detector is fast and

uses low enough memory that we can operate in real-time on a robot. To the best of our knowledge, Sun

et al. (2021) provide the only other example of testing learned features outdoors on a ground robot for

long-term localization. Their experiments are much less extensive, only testing day to night localization

over a small time frame on two paths in structured environments (a parking lot and by a church).

Future work can be done to improve the learned features for long-term localization. As seen from

our last experiment, the learned features need improved robustness conditions when large seasonal

and lighting change occur simultaneously. This would include work to improve the feature matching

performance in the longitudinal direction. The experiments can be extended to test against larger

seasonal change like snow, or to test generalization in new environments different to those we encounter

at UTIAS. Finally, we can also do more systematic experiments to determine the learned features’

robustness to being off the path and to find out at which point the viewpoint change becomes too large.

As we have discussed earlier, the VT&R datasets have a lot of samples with small viewpoint change.

Therefore it would be beneficial to spend time to improve the resulting training dataset. Possible avenues

include re-balancing the data, changing the sampling to allow for larger relative poses, or artificially

augmenting the samples. Naturally, it would also make sense to try unsupervised learning without using

ground truth poses at all. This would get around our issue of computing poses in SE(2) instead of

SE(3) due to lack of accuracy in some runs of the dataset.

In terms of code method implementation, we can update the learned features in VT&R to use the
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learned scores during pose estimation. Furthermore, we can implement dense matching in VT&R and

compare it to sparse nearest neighbour matching. Further work such as improved parallelization should

also be done to make the implementation more efficient so that we can drive faster. Brief testing with

a newer and faster laptop with a larger GPU has already shown us that the features work well when

driving at 1.5 m/s during nominal lighting conditions on consecutive days. However, we should also test

that this holds for more challenging appearance conditions and possibly higher speeds. Finally, we want

to tune some parameters in the path-tracking controller to improve driving behaviour for our system.

6.9 Novel Contribution

- We learn visual features for localization and incorporate them in the existing VT&R path-following

pipeline.

- We are the first to complete autonomous path following with learned features across a full range

of lighting change, while operating in unfamiliar areas not seen in the training data, and across

seasonal change.

- We are the first to perform autonomous path following in off-road environments with abundant veg-

etation and few permanent structures and show in our experiment that these are more challenging

for localization than structured scenes.

6.10 Associated Material

Publication

Gridseth and Barfoot (2022). Keeping an Eye on Things: Deep Learned Features for Long-Term Visual

Localization. In the 2022 IEEE Robotics and Automation Letters (RAL).

Code

The code for training and testing deep learned features for localization in PyTorch is available at

https://github.com/utiasASRL/deep learned visual features

Videos

- Deep learned features: https://youtu.be/mqDivnIQjl0

- Deep learned features (conference presentation): https://youtu.be/JsEBs9Y5XVg

- Deep learned features and VT&R3 (demo): https://youtu.be/ZYkxevdw7DA

https://github.com/utiasASRL/deep_learned_visual_features
https://youtu.be/mqDivnIQjl0
https://youtu.be/mqDivnIQjl0
https://youtu.be/mqDivnIQjl0
https://youtu.be/JsEBs9Y5XVg
https://youtu.be/ZYkxevdw7DA
https://youtu.be/ZYkxevdw7DA


Chapter 7

Conclusions and Future Work

In this chapter we summarize the contributions made in this thesis. We also discuss possible avenues for

future work.

7.1 Thesis Summary

In this thesis we have worked towards increasing the robustness of visual long-term localization in VT&R

without relying on intermediate bridging experiences. Our aim was to tackle visual localization across

lighting and seasonal change, especially in challenging off-road environments. We started our work,

in Chapter 3, by using a direct method together with a robust cost function for pose estimation in

localization. The direct method used all pixels in the image with a sufficiently high gradient and avoids

the work of extracting and matching sparse features. We showed improved image alignment under

nominal lighting conditions in a challenging scenario with tall moving grass and other vegetation. The

use of the robust cost function, however, was not sufficient to tackle large illumination change. The

results led us to shift focus to deep learning as a tool to tackle large appearance change in images.

In our first learned approach, described in Chapter 4, we trained a deep neural network to directly

regress relative pose between two images. We used the same network architecture to regress relative pose

both for VO and localization, by training networks with different ground truth poses. Deep learning

enabled us to localize across a full range of lighting change in a structured environment and across large

seasonal change from snow cover to green grass in an off-road environment. Although the approach

handled large appearance change, it did not generalize to new paths not seen during training.

In Chapter 5, we aimed to add more structure to the learned method. Instead of learning the whole

pose estimation pipeline, we learned sparse visual features that can be used with a traditional pose

estimation approach. In other words, we used deep learning for the challenging front-end, while relying

on an existing method for the part of the pipeline that already has well-known solutions. Moreover, the

entire pose estimation pipeline is differentiable, which allows for end-to-end training with ground truth

poses. We showed that the learned features can be used successfully for VO in a selection of on-road

and off-road environments under different conditions such as driving during the dark or with snow on

the ground. More importantly, the learned features also generalized to new paths not contained in the

training data, which is an improvement over the previous work from Chapter 4.

The final part our work, in Chapter 6, applies the learned features to localization, which is a more
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challenging task due to the potential appearance change between image frames. Unlike most previous

work, we did not only test the features for stand-alone localization in datasets. Instead, we introduced

the learned features into the full VT&R system that combines VO, localization, and path tracking

to facilitate closed-loop path following with the Clearpath Grizzly robot. We completed closed-loop

experiments with a total of 87.8 km of autonomous driving on both on-road and off-road paths. The

experiments showed that the learned features achieved path following with a 100% autonomy rate across

a full range of lighting change, including driving after dark, without relying on intermediate bridging

experiences. Furthermore, we tested localization for three months of seasonal change from mid-August

until mid-November. In this experiment 21% of runs experienced one or more path-following failures,

mainly due to the compound effect of seasonal and large lighting change from driving after dark or during

low sun. Finally, the closed-loop experiments also demonstrated that the learned features generalized to

new paths not observed during training. From our analysis of feature inliers and path-following failures,

we see that localization across large appearance change is more challenging in an off-road environment

dominated by vegetation compared to a on-road environment with asphalt-covered road and surrounding

permanent structures.

7.2 Novel Contributions

The following novel contributions, towards using deep learning for long-term localization in VT&R, have

been achieved in this thesis.

- We replaced sparse feature-based visual localization in VT&R with a direct method and were the

first to demonstrate direct localization in a challenging off-road example with tall grass and dense

vegetation, but limited appearance change (Gridseth and Barfoot, 2019).

- We regressed relative pose for single-experience visual localization across large appearance change

directly from a pair of images using a deep neural network. We also regressed poses for VO with

the same network architecture and combined localization and VO for visual path following. We

were the first to tackle large seasonal appearance change in a challenging off-road environment

with deep learned pose regression (Gridseth and Barfoot, 2020).

- We estimated the pose for single-experience visual localization using sparse features extracted with

a deep neural network. We included the learned features for localization into the VT&R pipeline

and were the first to achieve real-time autonomous path following across a full range of lighting

change with a 100% autonomy rate with deep learned features. We extended the experiment to

include three months of seasonal change from summer through autumn, where 79% of runs have

no path-following failures. We demonstrated successful generalization to new areas not seen in the

training data (Gridseth and Barfoot, 2022).

7.3 Future Work

We have demonstrated that we can use learned features for real-time single-experience localization for

closed-loop path following with VT&R. There are improvements that can be made in the design and

implementation of our method as well as further testing that can be completed. In this section, we
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suggest improvements and possible avenues for future work. We divide into future work relating to the

data used for training and testing, the algorithm behind our approach, the implementation of learned

features in VT&R, and experiments.

7.3.1 Data

As discussed in previous chapters, we have used the UTIAS Multiseason and UTIAS In-The-Dark

datasets to train our learned methods. The data were collected by previous students while using multi-

experience VT&R for autonomous path following with the Clearpath Grizzly robot. Since VT&R ac-

complishes accurate path following with centimeter-level error on kilometer-scale repeats (Clement et al.,

2017), a lot of the available live and map image pairs have a small viewpoint offset unless the the data

is from a turn in the path. We partially remedied this issue by picking pose graph vertices that were

topologically farther apart to get larger variation in distance between frames and also increase view-

point change. More work can still be done to improve the training data. One option is to re-balance

the training data set such that we get a higher proportion of samples that have a larger viewpoint

change. Another possibility is to synthetically augment the training samples by applying a transform to

the ground truth pose and warp the image accordingly. A more sophisticated approach to augmenting

training data could be to use a neural radiance field (NeRF), which is a fully connected neural network

that generates novel synthetic views of 3D scenes. Training a NeRF requires sets of images of an input

scene and interpolates between them for rendering. Therefore we would need additional data with more

varied viewpoints to train such a network. A final option would be to teach a path and then repeat with

offsets to increase viewpoint change. That way we could force larger offsets to the path for the sake of

data gathering.

Instead of using VT&R to generate the pose ground truth, it is also possible to rely on GPS. In order to

get accurate measurements, we need to combine the GPS on the Grizzly robot with an RTK base station,

which takes a lot of work, and the signal may be impeded by tree cover or large distances. Moreover,

the GPS estimates the robot’s position but does not provide orientation information. Alternatively, we

could imagine using only the GPS on the robot for approximate position estimates. In this case, we

would have to consider how much influence a pose loss would get at training time compared to other

signals.

A question we have not explored in this work, is how much data is required to train visual features

for localization. The data we use takes time to gather, especially since we rely on ground truth poses

for supervised training. Could we get away with using less data than we have so far? How much data

do we need in order to capture different environmental conditions and different scenes?

7.3.2 Algorithm

There are many options to further improve on the learning method we are using, as well as opportunities

to try different approaches altogether. As mentioned in Sections 6.7.4 and 6.8, we especially want to

make improvements to the longitudinal part of our pose estimates on straight stretches of the path.

We can explore adjustments to the network design and do a thorough comparison of performance in

feature matching as well as run-time. This comparison of run-time and memory consumption should be

conducted in the VT&R pipeline on a laptop to gauge the real-world performance on the target system.

Since Barnes and Posner (2020) work with birds-eye view RADAR data, they do not face the com-
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plication of scale present in images. We want to explore whether different ways of computing descriptors

can improve the learned features’ performance in longitudinal pose estimation. Currently, we extract

the output of different encoder layers and concatenate them together to form descriptors. This results

in descriptor vectors with few elements from the shallow layers with high spatial resolution and many

elements from the deeper layers with low resolution. In our method, it is possible that the deep lay-

ers become dominant. Although deep features may provide long-term robustness, features from layers

with higher spatial resolution could be useful to facilitate accurate metric localization. Recall from

Section 5.2.1 that D2-Net (Dusmanu et al., 2019) faces issues with accuracy because the descriptors

and keypoints are both extracted at a deeper layer with lower resolution. There are several approaches

to descriptor extraction and keypoint detection worth exploring. One simple option involving minimal

change, is to apply a convolution to the encoder outputs before concatenating them together. That

way we can adjust the size of and better balance each layer’s contribution to the final descriptor vec-

tor. Since the direct methods such as GN-Net (von Stumberg et al., 2020a) or BA-Net (Tang and Tan,

2019) estimate pose at each spatial resolution of the network, they also extract descriptors at each level.

S2DNet (Germain et al., 2020) also extracts descriptors at each level. In the same way as our method,

the authors match sparse source descriptors to dense descriptors in the target. This leaves them with

correspondence maps from different levels that they can then aggregate together. ASLFeat (Luo et al.,

2020) remedies extracting the descriptor at a deep layer, with multilevel keypoint detection, while R2D2

(Revaud et al., 2019) uses dilated convolutions to maintain spatial resolution.

We have relied on supervised learning using relative poses for ground truth. Such data is time

consuming to collect because we must estimate the ground truth poses, where possible options include

using: a GPS-INS system, a different sensor such as LiDAR, or the camera sensor together a classical

pose estimation algorithm like multi-experience VT&R. The other option is to work with unsupervised

learning instead such as Tang et al. (2020) that learn visual features for VO or Yoon et al. (2021) that

learn features LiDAR odometry.

When training the network that produces visual features, we supply one pair of image frames and

one relative pose for supervision. During closed-loop operation, VT&R relies on a window of frames

for localization and pose estimation. A natural next step would be to align our training method more

closely with the final use of the learned features and hence use a sequence of frames during training as

demonstrated by Yoon et al. (2021).

Although we compute dense descriptors and scores for an image, our work detects keypoints and

uses sparse features for localization. Another is to combine dense descriptor and score learning with a

direct localization method, like the one described in Chapter 3. This approach has shown promising

results for localization across appearance change in outdoor urban environments (von Stumberg et al.,

2020a,b; Kasper et al., 2020). Since direct pose estimation uses the whole image, it has the advantage of

avoiding sparse keypoint detection and feature matching. The downside is that including the the inverse

compositional model for pose optimization (as described in Chapter 3) in VT&R, would require a large

change to the localization pipeline.

As discussed in the previous section, it would be interesting to further investigate what type and

amount of data we need for learning robust visual features. To that end, online learning is a relevant

avenue to explore. If we have a set of data to train visual features, could we use data collected during

robot operation to further train the neural network and improve the visual features? In particular, would

this be helpful when moving operation to a new and unknown environment? Pan et al. (2020) use online
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imitation learning to train a network to provide control outputs from image inputs. In particular, they

improve performance over time by using data collected during autonomous operation to learn to drive

faster and more accurately. Thomas et al. (2021) use data from each session of a robot navigating in a

simulated environment to train offline and improve their algorithm for LiDAR point cloud segmentation.

As we saw in Section 5.2.3, Tang et al. (2020) improve learned features for VO over time by having the

VO back-end label data, which they use for further training.

7.3.3 Implementation

There are several improvements that can be made to our initial implementation of learned features in

VT&R. As discussed in Section 6.4.3, we use the existing sparse nearest neighbour feature matching in

VT&R to match the learned features from different images. During training we matched features densely

and computed target pseudo points. We could implement this in the VT&R pipeline, though one possible

downside is increased memory usage from keeping dense descriptors around after the feature extraction

step. Furthermore, we also did not have enough time before closed-loop experiments to include the

learned scores as weights in the pose estimation. From the experiments, we saw that the pose estimation

worked well, but including the scores has the potential to improve performance further by better weighing

the importance of different points.

The learned features added additional work to the VT&R pipeline, and we had to slow down the

robot from 1.0 m/s to 0.8 m/s for localization to keep up (as explained in Section 6.4.3). Although we

were able to drive at 1.5 m/s during a limited experiment with a newer Lenovo laptop with a 12 GB

GPU and faster processing, it would still be worth making code updates to improve processing speed.

Currently, learned features are detected for incoming frames from the camera. Localization, however, is

not done for every frame, but instead only for new keyframes. With some work, it should be possible

to adjust the visual processing pipeline such that we only extract learned features for keyframes before

they are passed to localization.

We use the VT&R version 3 (VT&R3) software implementation of the VT&R system, which has

seen a complete update from the previous VT&R2. Some of these changes facilitate improvements in

processing time for VT&R with learned features. VT&R3 now has the option to be more flexible about

when localization is run. Previously, the VT&R pipeline would run localization for all new keyframes.

The new code allows the system to skip localization when delays occur, but it also allows VT&R to

localize frames that are not keyframes. This flexibility may provide relief during potential slow-downs.

The second large change allows for easier parallelization of tasks. Parallelizing more tasks in the visual

processing pipeline could be a useful step to improve run time when using learned features.

7.3.4 Experiments

The experiments we conducted can be extended to investigate the same topics in more detail, and we can

add new experiments. The seasonal experiment can be run for a longer time to include larger changes.

For instance, we did not get snow in time before the experiment was concluded. Work can also be done

to further explore the network’s ability to generalize to new environments. Although we added new

paths with new appearance, all our tests were conducted at UTIAS. If we wanted to test generalization

to a more drastically different environment, we would have to test in a new location.

Beyond expanding the experiments for seasonal changes or generalization performance, it would also
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be beneficial to more thoroughly test the learned features robustness to faster driving as well as being

off the path. Since we had to slow down the robot in the initial implementation of learned features for

VT&R, we have only tested the features while the robot drives at 0.8 m/s. Our limited test of driving

1.5 m/s under nominal lighting conditions makes us hopeful that the features will also work at the same

speed under more challenging appearance conditions. This can, however, only be confirmed by driving

at higher speeds under a full range of difficult scenarios.

During our experiments, the robot most often recovered from driving off the path unless we had to

manually intervene because an object was in the way. However, we did not have the time to do a more

rigorous test to uncover the features’ exact level of robustness to viewpoint changes caused by moving

away from the path. We could conduct an experiment solely focused on recovering from off-path motion,

where we test gradually from what distance the robot is able to recover.



Appendix A

Network Training and Testing

Figure A.1: The top row of plots show the training and validation loss for one of the networks we have
trained. We display the keypoint loss, the pose loss, and the combined total loss. The losses for each
’epoch’ listed along the x-axis, are computed after parsing 10,000 samples randomly chosen from the
training dataset and 2,500 samples randomly chosen from the validation dataset. The network was
trained for 391 epochs on the UTIAS Multiseason data, before training on the UTIAS In-The-Dark
dataset. The switch between datasets causes the sudden change in loss values after epoch 391. The
bottom row shows the training and validation error in each DOF. We display longitudinal (x), lateral
(y), and heading (yaw) errors. The vertical axes are in metres for x and y and in degrees for yaw.

In this section, we provide additional results from training and testing one of our networks to learn

features for localization. The network was trained on both the UTIAS In-The-Dark and UTIAS Mul-

tiseason datasets as explained in Section 6.4.2. We started by training the network on the UTIAS

Multiseason dataset and then fine-tuned with samples for the UTIAS In-The-Dark dataset. We trained

on a total of 391 × 10,000 = 3.91 million samples from the UTIAS Multiseason dataset, which took

approximately 14.5 days, and another 194 × 10,000 = 1.94 million samples from UTIAS In-The-Dark,

which took a bit over 6.5 days. Figure A.1 shows the training and validation loss as well as the RMSE for
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Figure A.2: Images taken by the robot from the held-out runs of the UTIAS Multiseason dataset that
we use to test the learned features. Each image is labeled with the collection date (dd.mm) of the
corresponding run. The images on the top row are localized to the corresponding image on the bottom
row, with appearance change difficulty increasing from left to right.

each pose DOF separately. The training loss tells us whether training converges, while the pose errors

show whether training actually improves pose estimation.

Before using the learned features in closed loop with VT&R, we needed to determine if they can

provide sufficiently accurate pose estimates. This can be done by using held-out runs in the test set

and computing poses in sequence for complete runs. We use the test runs from the offline experiment

in Sections 6.5.3 and 6.7.1, that compares the performance of different feature-learning approaches on

held-out runs from the UTIAS Multiseason dataset. We test the different conditions against each other

by picking one run to be the teach and another to be the repeat. The pose estimation is done in PyTorch

with our learning pipeline. This means that we are only using one pair of stereo images and do not use

on a window of several stereo image frames. Moreover, we test localization standalone without a prior

from VO. In Figures A.3, A.4, and A.5, we plot the estimated and target poses in individual DOF for

selected pairs of runs. We choose three pairs of runs with increasingly difficult appearance change, where

the last experiment localizes winter with snow cover to spring with green grass. Images from the robot

camera that illustrate the conditions for each run are shown in Figure A.2.

Since we are doing basic pose estimation with one pair of frames at the time, we do not expect our

predicted poses to be as smooth as the targets that are computed by the full VT&R system, which uses

a window of frames and VO during localization. From the plots, we see that the estimated poses for

the DOF that matter most for localization (lateral translation and heading), hover around the ground

truth. The estimates, however, are less smooth than the targets and have a few large outliers. When

the features are used in the VT&R pipeline, we believe that the additional checks on feature matching

as well as the more advanced localization pipeline, will result in smoother pose estimates. From the

plots, we see that the longitudinal direction is the difficult to estimate. Given that VT&R combines

localization with VO, longitudinal estimates are less important than lateral offset and heading for path

following. We believe that the learned features will work in closed-loop with VT&R.
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Figure A.3: These plots show the estimated and target poses in individual DOF for localizing the run
from 31.01 (dd.mm) to the run from 27.02. We display longitudinal (x), lateral (y), and heading (rot z)
values. The vertical axes are given in metres for x and y and in degrees for heading. The horizontal axis
list the index of the map vertex along the path.
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Figure A.4: These plots show the estimated and target poses in individual DOF for localizing the run
from 10.02 (dd.mm) to the run from 10.04. We display longitudinal (x), lateral (y), and heading (rot z)
values. The vertical axes are given in metres for x and y and in degrees for heading. The horizontal axis
list the index of the map vertex along the path.
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Figure A.5: These plots show the estimated and target poses in individual DOF for localizing the run
from 14.02 (dd.mm) to the run from 03.05. We display longitudinal (x), lateral (y), and heading (rot z)
values. The vertical axes are given in metres for x and y and in degrees for heading. The horizontal axis
list the index of the map vertex along the path.
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