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Abstract— This paper describes the design and testing of a
technique to enable long-range autonomous navigation using
a stereo camera as the only sensor. During a learning phase,
the rover is piloted along a route capturing stereo images. The
images are processed into a manifold map of topologically-
connected submaps that may be used for localization during
an autonomous repeat traverse. Path following in non-planar
terrain is handled by moving from localization in three dimen-
sions, to path following in two dimensions using a local ground
plane associated with each submap. The use of small submaps
decouples the computational complexity of route repeating
from the length of the path. We validate the algorithm by
demonstrating its performance on a difficult three-dimensional
route. Using this technique, a rover may autonomously traverse
a multi-kilometer route in unstructured, three-dimensional
terrain, without an accurate global reconstruction.

I. INTRODUCTION

In environments lacking a Global Positioning System
(GPS) or equivalent, long-range autonomous navigation for
rovers becomes a very difficult problem. Relative localization
systems based on some combination of visual, inertial,
and odometric sensing have become increasingly accurate.
However, regardless of the level of accuracy, the error in the
position estimate for any of these methods will grow without
bound as the rover travels, unless periodic global corrections
are made.

Manifold mapping has been used to enable autonomous
robot mapping and localization in planar environments [1],
[2], [3]. Embedding a robot’s path in a higher-dimensional
space allows for mapping without internal inconsistencies
resulting from drift in motion estimates. Extending this idea
to three-dimensional mapping results in a hybrid topologi-
cal/metric representation [4].

We have developed a complete system for long-range,
autonomous operation of a mobile robot (Figure 1) in out-
door, unstructured environments. This is achieved using only
a stereo camera for sensing, a teach-and-repeat operational
strategy, and a manifold map. During a learning phase—
the teach pass—the rover is piloted over the desired route
(either manually or using some external autonomous system),
while the localization system builds a series of overlapping
submaps. These submaps are then used for localization
during the autonomous traversal phase—the repeat pass. The
contribution of this paper is to outline a method suitable
for long-range navigation in unstructured, three-dimensional

Fig. 1. The six-wheeled rover platform used in our visual path-following
experiments. The stereo camera used for localization and mapping was a
Point Grey Research Bumblebee XB3.

terrain. Furthermore, we evaluate this method on a route with
significant non-planar camera motion. While [5] evaluates
the three-dimensional localization system in detail, this paper
describes the hybrid topological/metric path representation
we developed to bring path following on a manifold out of
the plane and into unstructured, three-dimensional environ-
ments.

II. RELATED WORKS

In an early paper on vision-based map building, Brooks
[6] outlined some basic principles for robotic mapping:

• The world is inherently three-dimensional. Localization
and mapping should reflect this.

• Uncertainty in sensing will lead to maps that are glob-
ally inconsistent. However, to enable robot autonomy,
maps only need to be locally consistent.

To deal with this, he proposed a map composed of freespace
primitives in a graph. Similar in concept, [2] designed
and implemented a multi-agent system that represented the
robot’s map as a manifold embedded in a higher-dimensional
space. Manifold mapping changes the way a map represents
the world. A map becomes topological in the sense that
it defines a sequence of connected spaces, but the spaces
in the map may have a many-to-one correspondence with
the world. This topology is represented by dividing the
map into a graph of submaps [7], [2], [3], or using a
continuous relative representation [4]. Incremental errors
that would cause inconsistencies in a purely metric map
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disappear within the manifold representation. As a result,
loop-closing decisions may be delayed [2] and loops may
be closed in constant time, regardless of the size of the map
[4]. Manifold mapping removes the constraint that maps be
globally consistent, but in order to be useful for localization,
the neighborhood around the robot must still appear locally
Euclidean.

To see where this constraint expresses itself in the SLAM
problem we examine the structure of the basic SLAM equa-
tions. The SLAM problem is formulated probabilistically
as the task of estimating the joint posterior density of the
map, m, and vehicle state at time k, vk, given all previous
measurements, z0:k, control inputs, u0:k, and prior knowledge,
x0 [8]:

p(xk,m|z0:k,u0:k,x0) (1)

Most solutions to this problem involve computing
p(zk|xk,m), the likelihood of the measurement vector,
zk, given the current state and map estimates. The likelihood
is then expressed using an observation model, h(·), such
that

zk = h(xk,m)+vk, (2)

where vk is observation noise. The properties of (2) deter-
mine the form of the constraint. Most navigation sensors
discern something about the geometry in the robot’s local
neighborhood and, for a map to be useful, the neighborhood
must appear Euclidean to the sensor suite. Any deviation
must be small enough to hide in vk. This is the motivation
behind the adaptive window selection in [4], and the choice
of submap size in [3]. If this constraint is satisfied, the map is
still useful for localization, even if the global reconstruction
is very inaccurate.

Visual teach-and-repeat navigation systems have been
built on this very concept, using topologically-connected
keyframes and a path-tracking system that attempts to
drive the robot to the same viewpoints along the path.
These algorithms may be classified as appearance-based,
which correlate large portions of the input image with the
keyframes [9][10], and feature-based, which track sparse fea-
ture points found in the keyframes [11][12][13]. Appearance-
based systems generally require planar camera motion, so
only feature-based algorithms are suitable for localization
in three-dimensional environments. Royer et al. [11] use a
global bundle adjustment to create a consistent map whereas
similar path-following performance is reported by Šegvić et
al. [12] who use only local reconstructions and a simple
visual servoing scheme. These results suggest that large-scale
autonomy is possible without a globally-consistent recon-
struction. However, none of the teach-and-repeat algorithms
published to date have been tested in unstructured, highly
three-dimensional environments.

III. SYSTEM DESCRIPTION

We have developed a complete system for mapping and
localization using a stereo camera as the only sensor. The
major processing blocks of our system are depicted in
Figure 2.
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Fig. 2. An overview of the major processing blocks in our system.
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Fig. 3. An overview of the mapping process.

The map frame F−→m is the frame in which three-
dimensional estimation occurs. We define F−→ck to be a
coordinate frame attached to the left camera of a stereo
pair at time k. The attitude of the camera at this time may
be described by Cm,ck , the rotation matrix that transforms
vectors from F−→ck to F−→m. Similarly, we define the camera’s
position as ρck,m

m , a vector from the origin of F−→m to the
origin of F−→ck (denoted by the superscript), and expressed
in F−→m (denoted by the subscript). Together, Cm,ck and ρck,m

m
define the camera’s pose in F−→m.

The localization system used in this work is fully described
and evaluated in [5]. Each stereo pair is processed using
a sparse stereo pipeline based on our own implementation
of the Speeded Up Robust Features (SURF) algorithm [14].
For each keypoint j found at time k, the pipeline returns
the stereo image coordinates, yk, j, 64-dimensional SURF
descriptor, dk, j, and the three-dimensional position of the
feature with respect to F−→ck , p j,ck

ck . For every timestep k, the
localization algorithm returns the pose of the camera in F−→m.

A. Route Learning

The route learning process is shown in Figure 3. A lo-
calization loop incrementally builds a sequence of submaps,
each composed of a reference path, three-dimensional feature
points, and associated SURF descriptors. When the reference
path reaches a maximum length (5 meters for all experi-
ments), the submap is saved to disk and packaged for use in
the repeat pass.

First, the poses in the reference path are subsampled to
satisfy a minimum-spacing constraint. This smoothes the
path and puts it in a format suitable for our path tracker.
All experiments in this paper use a 0.5 m spacing. Features
that were never tracked (i.e., seen by one frame but never
seen by another) are removed from the map.

The subsampled reference poses give the path of the
camera in F−→m, but our path tracker controls the position
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of the vehicle, not the camera. As the global reconstruction
is inconsistent, we must determine a suitable frame in which
to perform path following.

We define a frame, F−→vk attached to the vehicle. At time k,
we may compute the vehicle position using the rotation and
translation between the camera and vehicle frames: Cck,vk
and ρck,vk

vk . The reference path of the vehicle, ρvk,m
m , is

ρvk,m
m := (ρck,m

m −Cm,ck Cck,vk ρck,vk
vk

) , (3)

and its attitude is

Cvk,m = CT
ck,vk

Cck,m . (4)

The projection from three dimensions to two is determined
by fitting a plane to the map’s features. Each feature, qi,m

m ,
has passed an outlier rejection step in the localization loop;
to the camera, the reconstruction is locally Euclidean. For
each feature i, at position qi,m

m in the map, we find di, the
minimum distance between the feature and one of the vehicle
reference poses:

di := min
k

��ρvk,m
m −qi,m

m
��

From this distance, we compute a weight, wi, used in the
plane fitting:

wi =

�
1

di+σp
if di ≤ τd

0 otherwise

The threshold, τd , ensures that distant features outside of the
vehicle corridor are not used for the plane fit, and σd controls
the maximum possible weight. For all experiments in this
paper, we use σd = 0.01, and τd = 1.5. We parameterize the
plane by a unit vector, n, and offset, b, such that any point
x on the plane satisfies

nT x+b = 0 .

From this equation, we define a weighted least-squares
problem to solve for n and b by minimizing Jp:

Jp :=
1
2

N

∑
i=1

wi(nT qi,m
m +b)2− 1

2
λ

�
nT n−1

�
, (5)

where N is the number of features in the map and λ is a
Lagrange multiplier that ensures n is a unit vector. Solving
for the minimum of this equation results in the eigenproblem

An� =−λn� ,

where

W :=
N

∑
i=1

wi ,

A :=
N

∑
i=1

wi
�
qi,m

m
��

qi,m
m

�T − 1
W

�
N

∑
i=1

wiqi,m
m

��
N

∑
i=1

wiqi,m
m

�T

,

and n�, the unit vector that minimizes Jp, is the eigenvector
of A corresponding to its minimum eigenvalue. Figure 4
illustrates this process, showing the camera and vehicle
poses, the weighted sparse feature points, and the resulting
plane fit.
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Fig. 4. Side view of a single submap showing the camera frames, F−→ck ,
the vehicle frames, F−→vk , the sparse feature points, and the ground plane fit
to the features.

The unit vector n� is the normal of the xy-plane of the
projection frame, F−→p, expressed in F−→m. We now calculate
the rotation, Cm,p, that transforms vectors from F−→p to
F−→m. Using the shorthand ca := cos(a) and sb := sin(b),
the rotation Cm,p may be parameterized by Euler angles,
(α,β ,γ), such that

Cm,p =




cα cβ sα cβ −sβ

cα sβ sγ − sα cγ −sα sβ sγ + cα cγ cβ sγ
cα sβ cγ + sα cγ −sα sβ cγ − cα sγ cβ cγ



 . (6)

We know that n� expressed in F−→p is
�
0 0 1

�T , which
leads to the following constraint:

n� = Cm,p




0
0
1



 =




−sβ
cβ sγ
cβ cγ





Defining the components of n� =:
�
n1 n2 n3

�T , we can
solve for β and γ:

β = asin(−n1) (7)
γ = atan2(cβ n2,cβ n3) (8)

The last Euler angle, α , is ambiguous (the plane normal is
only a two-degree-of-freedom constraint) so we introduce a
final constraint that the x-axis of F−→v0 lies in the xz-plane of
F−→p. Using Cm,p and the vehicle path from (3) and (4), we
can transform the reference path to the projection frame:

ρvk,v0
m = ρvk,m

m +Cr0,v0ρr0,v0
v0

(9)

ρvk,v0
p = CT

m,pρvk,v0
m (10)

Cvk,p = Cvk,mCm,p (11)

At this point, the map is saved to disk with the following
information:

• a vehicle reference path with L poses (indexed by �),
{ρ�,p

p }, expressed in F−→p, calculated from (3), (9), and
(10)

• a rotation Cp,m that defines the projection to a local
ground plane, calculated from (7), (8), and (6)

• a set of N features (indexed by i), each with position
qi,m

m and SURF descriptor vi

After saving the map to disk, older poses and features
are removed from the database in memory. We build the
submaps to overlap by 50% as the common data between
maps smooths out the transitions [3]. Figure 5 shows a short
section of a map database, the ground plane of each submap,
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Fig. 5. A view of six overlapping submaps with the reference path plotted
above.

and the reference path. When the teach pass is complete, a
database of maps is available for use in the repeat pass.

Each submap is between 500 kilobytes and 2 megabytes
depending on the number of features tracked (which is scene
dependent). This size includes extra data that is used solely
for algorithm evaluation and not to repeat the route. Averaged
over all teach passes, this amounts to 348 megabytes per
kilometer. The teach pass processes an image approximately
every 0.2 meters, 5000 images per kilometer. An appearance-
based approach using the rectified stereo images would
occupy 2.9 gigabytes per kilometer and saving all of the
keypoints and descriptors would take up 1.3 gigabytes per
kilometer (assuming 500 stereo keypoints per frame). By
aggregating data, our system offers a significant savings in
storage over a pure appearance-based approach.

B. Route Repeating
Using the map database described in the previous section,

the rover is able to repeat a learned route in either direction
any number of times, provided the camera is facing the
same direction as it was when the route was learned. Neither
direction switching during path following nor local obstacle
detection have been implemented, although both should be
possible [3].

Only a single map is loaded into memory at a time, and the
localization module interleaves relative localization (visual
odometry), and global localization against the current map.
The localization block estimates the camera’s position, ρck,m

m ,
and attitude, Cck,m. Equations (3), (9), and (10) are then
used to produce ρvk,p

p , the position of the vehicle in the
projection frame. The attitude of the vehicle in the projection
frame, Cp,vk is computed using (11), then decomposed into a
yaw-pitch-roll Euler-angle sequence. The yaw value of this
sequence is the vehicle’s heading in the projection frame,
θk. Defining the components, ρvk,p

p =: [xk yk zk]T , we can
express the two-dimensional robot pose, ρk = [xk yk θk]T

This planar pose of the robot and the projected reference
path are passed to a unicycle-model version of the planar
path-tracking algorithm described by [3].

This planar pose estimate feeds in to a route management
system that triggers map handoffs, and monitors the route-
following system for errors. The route manager tracks the
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Fig. 6. The visual reconstruction of a five kilometer rover traverse plotted
against GPS (Top). Although the reconstruction is wildly inaccurate at this
scale, locally it is good enough to enable retracing of the route. The bottom
images show views from either end of the path, with the reference path
plotted as a series of chevrons. To the rover, the map is locally Euclidean.

closest point on the current reference path. When the vehicle
reaches the middle of a reference path, a map handoff is
triggered. This involves the following steps:

• Loading the next map from disk
• Updating the feature database used for localization
• Updating the reference path used by the path tracker
• Updating the transformation from F−→m to F−→p

The topologically-connected sequence of small, overlapping
submaps, enables long-range path following despite an in-
accurate global reconstruction. Figure 6 shows a plot of the
recorded GPS and reconstructed path for a route approxi-
mately 5 kilometers long. The two paths have been aligned
at the start but the reconstruction quickly diverges, flying a
kilometer into the air. However, when the rover is traveling
along the path, only one of this route’s 1732 submaps is
loaded into memory. The rover localizes against the features
in the map and attempts to repeat the same path within a
local ground plane. As the images at the bottom of Figure 6
show, to the robot, there is no inconsistency as the map is
locally Euclidean.

IV. SYSTEM EVALUATION

We have tested our algorithm in the urban environment
surrounding the University of Toronto Institute for Aerospace
Studies (UTIAS) and in planetary analog terrain on Devon
Island, near the Haughton-Mars Project in the Canadian
High Arctic. Out of 32.919 kilometers traveled, only 0.128
kilometers were piloted manually, an autonomy rate of
99.6%. The path-following experiments are described more
fully in [5]. The evaluation in this paper focuses on showing
that our manifold map enables path following in non-planar
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Fig. 7. An overhead view of the route built to test non-planar camera
motion.
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Fig. 8. The pitch and roll of the rover during the first teach pass of this
route.

environments. To test this, we built a route at UTIAS where
the rover experienced large three-dimensional motion. An
overhead view of the route is shown in Figure 7 and the pitch
and roll of the camera (as measured by an inclinometer) is
shown in Figure 8.

The rover started inside our indoor test facility on a raised
platform. It descended a slope, climbed two hills, ascended
a ramp, and then drove through a narrow corridor leading
outdoors. There, it traversed an obstacle course, crossed the
road, and finished the route by parking in our laboratory. The
platform experienced pitch and roll up to 27◦ and moved
from an indoor, low-light environment to outdoors and back.
The video attachment to this paper shows the rover driving
this route as well the rover’s view.

We taught this route twice, once during development of
the obstacles, and once after they were complete. The routes
were repeated 7 and 5 times, respectively. Every repeat pass
was successful, despite the three-dimensional motion of the
camera. Figure 9 shows the teach pass corridor (the track of
the teach pass laterally extended ±2 meters for illustration)
with the tracks of the repeat passes overlaid. Sections where
the algorithm experienced global localization dropouts are
highlighted in blue. Figure 10 shows some sequences from
the repeat pass that convey the magnitude of the camera
motion on this route.

The localization had the most trouble during the steep hills
and at the end of the route. The steep hills were constructed
of gravel that moved as the rover drove over them, changing
the appearance of the route every time it was repeated. In
these cases, the relative localization would carry the algo-
rithm through sections with appearance changes. Descending
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Fig. 9. Results from the two experiments run on a three-dimensional
route. The top plot is one teach pass and seven repeat passes made while
building the route. The bottom plot is one teach pass and five repeat passes
done after the route was complete. All repeat passes were completed fully
autonomously despite significant non-planar camera motion.

the slope of each hill also caused significant motion blur
in the low-light environment. Motion-blurred images caused
failures in both the relative and global localization systems.
At the bottom of the slope, the rover would successfully
relocalize against the current submap, correct for the motion
of the rover during the motion-blurred frames, and continue
along the route.

This experiment was performed before our field trials
on Devon Island to prove that the teach-and-repeat system
would work on three-dimensional terrain. During our field
trials we tested the algorithm over many three-dimensional
routes. In all cases, three-dimensional motion of the camera
was not a limiting factor for route following.

V. CONCLUSION

We have designed and tested a stereo teach-and-repeat
navigation system capable of dealing with non-planar camera
motion. To achieve this, we have used concepts from mani-
fold mapping to show how to move from three-dimensional
localization, to two-dimensional path following. Further-
more, we show that the computational complexity of route
following can be decoupled from the path length by us-
ing a sequence of small, topologically-connected submaps.
Through this technique, a rover may autonomously traverse
a multi-kilometer route in unstructured, three-dimensional
terrain, without an accurate global reconstruction. We have
tested this algorithm on a short route designed to cause
extremely non-planar camera motion. The route was taught
twice and repeated 12 times. All repeat passes were com-
pleted fully autonomously, despite difficult lighting condi-
tions and extreme camera motion.

Future work may involve implementing a better recon-
struction method such as the one described in [4]. Further-
more, we would like to integrate our mapping and local-
ization system with an autonomous terrain assessment/path-
planning algorithm capable of detecting changes in the envi-
ronment, planning around them, and finding the previously
taught route.
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