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Abstract

This dataset contains intensity and range data collected using a high-framerate, two-axis scanning lidar over ten individual
traversals of the same 1.1km path. The experiment was conducted over a full diurnal cycle at a planetary analogue in Sudbury,
Ontario, Canada and should be of interest to researchers who develop algorithms for visual odometry, simultaneous localization
and mapping (SLAM) or place recognition in three-dimensional, unstructured, and natural environments. Catering to the
strength of state-of-the-art SLAM techniques, this dataset creates ample opportunity for loop closure; in addition to having
multiple traversals of the same path, the trajectory was specifically chosen to include both small- and large-scale loops. The
lidar scans were taken with a 480×360 resolution at 2Hz, while driving roughly 0.3-0.4 meters per second; therefore, one of the
challenges in using this dataset is to compensate for the motion distortion present in the data (resulting from the ‘rolling-shutter’
effect). Ground truth position is provided by means of a Thales DG-16 Differential GPS unit.

1 Introduction

The Gravel Pit Lidar Intensity Imagery Dataset is a collection of 77,754 high-framerate laser range and intensity images gath-
ered at a planetary analogue environment in Sudbury, Ontario, Canada, as seen in Figure 1. The data were collected during
a visual teach and repeat experiment (McManus et al., 2012) in which a 1.1km route was taught and then autonomously re-
traversed (i.e., the robot drove in its own tracks) every 2-3 hours for 25 hours. The dataset is subdivided into the individual
1.1km traversals of the same route, at varying times of day (ranging from full sunlight to full darkness).

Figure 1: The ROC6 at the Ethier Sand and Gravel pit in Sudbury, Ontario, Canada.
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The lidar scanner used in this dataset, the Autonosys LVC0702, captured both intensity and range images with a resolution
of 480x360 at 2Hz. The unique output of this sensor makes this dataset an interesting candidate for 6D motion estimation in
unstructured environments. Not only can the range data be used for scan alignment algorithms, but appearance-based features
extracted from the intensity imagery have enabled visual estimation schemes to also be possible with this sensor (McManus
et al., 2011). To encourage the use of this dataset and lower the barrier to entry, we provide both the raw features outputted by
our Speeded-Up Robust Feature (SURF) implementation and a set of temporally tracked features that can be used for motion
estimation.

This dataset should be useful for field robotics researchers developing algorithms for visual odometry, simultaneous lo-
calization and mapping (SLAM) or place recognition in three-dimensional, unstructured, natural terrain. Unlike many of the
prominent 3D laser scan datasets, such as the Osnabrück Robotic 3D Scan Repository (Nüchter and Lingemann, 2009) and The
Canadian Planetary Emulation Terrain 3D Mapping Dataset (Tong et al., 2012), which are suited for survey-style mapping and
take long panoramic scans from a select number of static locations, this dataset is geared towards using high-rate scanning lidar
as an active localization method. Therefore, regardless of whether the data is being used in a scan-alignment or sparse-visual-
feature method, such as bundle adjustment, one of the greatest challenges in using this dataset will be compensating for the
motion distortion present in the scans, resulting from the ‘rolling-shutter’ effect. This distortion is due to vehicle motion and
the scanning nature of lidar, akin to a slow rolling shutter camera.

A similar style of online 3D laser scan acquisition is provided by the Velodyne-3D lidar scanner in the Ford Campus Vision
and Lidar Data Set (Pandey et al., 2011); however, the dataset was acquired in an urban area, and the vertical resolution of the
Velodyne-3D scanner is unsuitable for use with our intensity-based feature extraction scheme. To the authors’ knowledge, the
only other dataset to provide lidar intensity information is the New College Vision and Laser Data Set (Smith et al., 2009);
however, due to the static vertical mounting of the laser scanners, the laser data alone cannot be used for odometric estimation.

Figure 2: GPS during a single 1.1km path traversal. Figure 3: The ROC6 mobile platform

Another key feature of this dataset is the opportunity for place recognition and loop closure. As seen in Figure 2, the shape
of the path traversed in this dataset provides both small local loop closures, as well as a large-scale loop closure over the whole
1.1km traverse. Furthermore, we provide 10 runs of the same 1.1km route (with the robot driving in its own tracks), allowing
for both place recognition and loop closure between runs.

The datasets, detailed packaging descriptions, and videos are available at http://asrl.utias.utoronto.ca/datasets/abl-sudbury/ .
The various data products are provided as either human-readable text files or images and are accompanied by Matlab parsing
scripts for ease of use.
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2 Hardware Setup

The ROC6, seen in Figure 3, is an articulated and skid-steered mobile platform consisting of three individual pods; the front
and rear pods are able to pitch and roll relative to the central one. During each traversal of the 1.1km route, the rover travelled
at roughly 0.3-0.4 meters per second.

The payloads most relevant to this dataset are the high-framerate Autonosys LVC0702 lidar, and a Thales DG-16 Differential
GPS unit. The Autonosys LVC0702 lidar provides 500,000 measurements per second with a 15-bit intensity at a maximum
range of 53.5m. In this dataset, the lidar was configured to have a 90◦H/30◦V field of view, and capture images with a resolution
of 480 × 360 at 2Hz. The Thales DG-16 Differential GPS unit has a Circular Error Probability (CEP) of 0.4m, with 95% of
measurements occuring within 0.9m.

3 Overview of Datasets

Each dataset in this collection corresponds to a unique traversal of the same 1.1km route (conducted at different times of day).
For ease of use, the data have been post-processed and packaged into a few different products. This section will provide an
overview of the available dataproducts. The specifics of each traversal can be found in Table 1.

The first major dataproduct we provide is the sequence of Autonosys imagery, generated from the raw sensor data, in the
Tagged Image File Format (TIFF). Each intensity image in the sequence is accompanied by a corresponding azimuth, elevation,
range, mask and timestamp image. TIFF was chosen as it supports 32/64-bit floating point images and is simple to load using
either Matlab, or OpenCV (which leverages LibTiff).

The second major dataproduct we provide is SURF features and frame-to-frame matches for all the intensity imagery. SURF
features are extracted using a GPU-accelerated SURF implementation and two sets of frame-to-frame matches are provided.
The first set of matches is simply the initial guesses based on only the SURF descriptor. The second set of matches is the inliers
after a being passed through a RANdom SAmple Consensus (RANSAC) algorithm that accounts for the motion distortion in
the image.

4 Description of Data Products

In this section, we detail the format of the data in addition to specifics such as experimental considerations and post-processing
details. Each dataset contains a set of folders corresponding to the various data products. Each of these folders contain a full
sequence of either TIFF images or comma-delimited, human-readable text files. All comma-delimited text files begin with a
single comma-delimited header line that contains titles corresponding to the data items.

4.1 Dataset Header File

Each dataset contains a single human-readable, comma-delimited header file with information pertaining to the contents of the
dataset. In order, each line of the header file contains:

• id: The identification number used throughout the dataset to associate data belonging to a specific image stack.

• timestamp: Although each image is captured over a period of time, this is nominal time we consider the frame to be
captured at. It is calculated as the average of the first and last measurement timestamp. This number is expressed in
seconds since the beginning of the experiment.

• validpx: Due to packet loss, some images may have a few blank pixel rows. This value is the fraction of valid data in the
frame (floating-point between 0 and 1).
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Traverse Number of Frames Start Time End Time Special Notes
Teach 1 6880 19:45:xx xx:xx:xx All other runs track this teach traversal.
Run 1 7039 23:03:27 00:03:39 none

Run 4 6741 05:00:28 05:56:26 Missing approximately 250 meters of DGPS data
at the beginning of the traversal.

Run 5 8679 09:47:12 10:57:13 Missing approximately 100 meters of DGPS data
at the beginning of the traversal.

Run 6 9694 11:51:36 13:20:19

After frame 5879, there is a break in the imagery
where the robot was paused and the lidar scanner
was reset. The translation between the break is
only 1.5-2 meters and significant overlap between
the frames still exists.

Run 7 9644 14:15:54 15:35:51 none

Run 8 8691 16:25:05 17:32:41 Missing approximately 50 meters of DGPS data
at the beginning of the traversal.

Run 9 6456 18:24:19 19:18:41 none
Run 10 7863 20:31:06 21:37:36 none
Run 11 6067 22:58:43 23:50:06 none

Table 1: This table gives an overview of the available traverse data. Note that runs 2 and 3 have been excluded from the dataset
as they were compromised by hardware malfunction and data loss. Preview videos for each traverse, including feature tracks,
are available on the website.

4.2 GPS Data File

The GPS data file is a human-readable, comma-delimited text file containing the GPS coordinate at each frame capture. During
the collection phase, the GPS and lidar were not synchronized. To account for this, the GPS coordinates that are provided have
been interpolated to occur at the nominal timestamp at each frame. Following the header line, each line of the GPS file contains:

• id: The frame identification number.

• x, y, z: Recentered UTM coordinates (in meters).

4.3 Alignment Matrices

As depicted in Figure 4, the three frames related to the measurement data are the sensor frame, F
~
c, the GPS frame, F

~
gps, and

the inertial frame, F
~
i. This dataset uses homogeneous transformation matrices to express the translation and rotation between

frames. For example, a point in F
~
b can be transformed into F

~
a using the matrix Ta,b in the following manner:

[
pl,a
a

1

]
= Ta,b

[
pl,b
b

1

]
=

[
Ca,b ρb,a

a

0T 1

] [
pl,b
b

1

]
, or using components, pl,a

a = Ca,bpl,b
b + ρb,a

a ,

where pl,a
a is the vector from F

~
a to point l, expressed in F

~
a, similarly pl,b

b is the vector from F
~
b to point l, expressed in F

~
b,

Ca,b is the rotation matrix from F
~
b to F

~
a, and ρb,a

a is the translation from F
~
a to F

~
b, expressed in F

~
a. More detailed and

practical examples of using homogeneous transformation matrices can be found in the example estimation Matlab code.
The first matrix we provide is the 4 × 4 homogeneous transformation matrix relating the sensor frame and GPS frame,

Tc,gps. For simplicity and due to the scale of the CEP, this transform is assumed static, and provided only for the nominal
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Figure 4: Coordinate Frame Definitions Figure 5: Camera model

(a) Example 8-bit intensity image (b) Example 32-bit range image

Figure 6: A typical pair of Autonosys intensity and range images

position of the pods. Second, each traverse dataset contains a transformation matrix, Tgps,i, to bring the initial local GPS frame
into angular alignment with the inertial GPS data. This alignment matrix is calculated by performing a simple point-to-point,
least-squares optimization between the first 30 meters of our visual odometry estimate and the GPS data.

The file format for matrices, matrix <name>.txt, is straightforward. The first line contains the comma separated number
of rows and columns in the matrix. The following lines contain the floating-point data of the matrix (comma separated for
columns and and line separated for rows).

4.4 Image Stacks

For each frame listed in the header file, there exists a set of .tif images that make up a single image stack. Each image
stack has a resolution of 480× 360 and consists of two 8-bit unsigned integer images (post-processed intensity and mask), one
16-bit unsigned integer image (raw intensity), three 32-bit floating point images (azimuth, elevation and range) and one 64-bit
floating point image (time). An example intensity and range image can be seen in Figure 6. The 8-bit intensity image is a range
corrected version of the 16-bit raw intensity image. Due to the occurance of packet loss, the mask image has been provided to
mark valid pixel data; 255 corresponding to valid data, and 0 to invalid data. The raw azimuth, elevation and range images make
up the geometric portion of the scans and the associated spherical camera model is depicted in Figure 5. Note that these raw
measurements do not yet include the intrinsic calibration, which was performed using the generalized distortion model found
in (Dong et al., 2013). The undistortion function is straightforward and has been made available in the Matlab code. Finally,

5



UTIAS

UNIVERSITY OF TORONTO
INSTITUTE FOR AEROSPACE STUDIES

ASRL-2012-ABL001
Rev: 1.0

September 25, 2013

(a) Intensity image k with SURF features (b) Image k + 1 with filtered matches to image k

Figure 7: A pair of sequenced Autonosys intensity images with SURF features and tracks.

the time image provides per-pixel timing information for the measurements (in seconds since the beginning of the experiment).

4.5 SURF Feature File

The SURF feature files contain a list of SURF features extracted from the Autonosys lidar intensity data. There is one SURF fea-
ture file for every image stack in the dataset. When using the sub-pixel (u, v) coordinate to extract measurements from the image
stacks, the four surrounding pixels were used for bilinear interpolation. Additionally, the azimuth, elevation, and range mea-
surements have already been idealized using the supplied intrinsic calibration model (see the autonosys apply calib
helper function). An example intensity image with SURF features can be seen in Figure 7a.

Within each comma-delimited SURF feature file, we have recorded, in order, the horizontal and vertical pixel coordinate,
8-bit intensity, azimuth, elevation, range, time, feature size, feature response strength, feature orientation, octave, angular
response strength, covariances, laplacian and the 64 floating-point value SURF descriptor. Additional information about each
of these values can be found on the website.

4.6 SURF Feature Match File

The feature match file contains a list of indices that relate SURF features in sequential frames. Two types of match files
have been provided. The first are the raw matches, which are based solely on the SURF feature descriptors. The second
are the filtered matches, which provide only inlier matches based on a RANSAC algorithm that considers motion distortion.
An example intensity image with filtered SURF feature tracks can be seen in Figure 7b. Each feature match file contains a
comma-delimited list of index pairings that specify the matches between frames k and k + 1.

5 Helpful Tools

This dataset is accompanied by a set of useful Matlab scripts aimed at reducing the amount of effort required to start using this
data. These scripts include: parsing code for all comma-delimited files, a loading function for image stacks, display functions,
a function to apply intrinsic calibration, conversions between spherical and Cartesian coordinates and three pieces of example
code. The first example opens and displays image stacks, the second displays SURF features and tracks, the third is posed
toward setting up an estimation problem between sequential images. Refer to the website for further details.
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