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As the influence of autonomous mobile robots grows stronger on the lives of humans,
so too does the importance of robust and accurate localization (and control). Although
motion-estimation techniques utilizing passive cameras have been a core topic in robotic
research for decades, we note that this technology is unable to produce reliable results in
low-light conditions (which account for roughly half the day). For this reason, sensors that
use active illumination, such as lidar, are an attractive alternative. However, techniques
borrowed from the fields of photogrammetry and computer vision have long steered the
robotics community towards a simultaneous localization and mapping (SLAM) formulation
with a discrete-time trajectory model; this is not well suited for scanning-type sensors,
such as lidar. In this thesis, we assert that a continuous-time model of the trajectory
is a more natural and principled representation for robotic-state estimation. Practical
robotic localization problems often involve finding the smooth trajectory of a mobile
robot. Furthermore, we find that the continuous-time framework lends its abilities quite
naturally to high-rate, unsynchronized, and scanning-type sensors. To this end, we propose
novel continuous-time trajectory representations (both parametric, using weighted basis
functions, and nonparametric, using Gaussian-processes) for robotic state estimation
and demonstrate their use in a batch, continuous-time trajectory estimation framework.
We also present a novel outlier rejection scheme that uses a constant-velocity model
to account for motion distortion. The core algorithms are validated using data from a

two-axis scanning lidar mounted on a robot, collected over a 1.1 kilometer traversal.
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Notation

The real coordinate (vector) space of M x N matrices.
Symbols in this font are real scalars, a € R!.

Symbols in this font are real column vectors, a € RY.
Symbols in this font are real matrices, A € RM*V,
The identity matrix, 1 € RV*V,

The zero matrix, 0 € RM*V,

A reference frame in three dimensions.

A vector from point b to point ¢ (denoted by the super-
script) and expressed in ga (denoted by the subscript).

The vector p&® expressed in homogeneous coordinates.
The special orthogonal group.

The Lie algebra associated with SO(3).

The 3 x 3 rotation matrix that transforms vectors from
FEato Fy: v;" = Cpave?, Gy € SO(3).

The special Euclidean group.

The Lie algebra associated with SFE(3).

The 4 x 4 transformation matrix that transforms homoge-
neous points from .7_>:a to .7;;,: pg’b =Ty aps®, Tho € SE(3).
The overloaded operator that transforms a vector, ¢ € R3,
into a 3 x 3 (skew-symmetric) member of s0(3), and a
vector, £ € R® into a 4 x 4 member of se(3).

The inverse operator of (-)".

The expectation operator.

The a priori probability density of x.

The posterior probability density of x, given evidence y.
A Gaussian probability density with mean vector g and
covariance matrix 3.

A Gaussian process with mean function p(t) and covari-
ance function (¢, ).

An a priori quantity: e.g. p(x) = N(x,P).

A posterior quantity: e.g. p(x|y) = N(x, P).

An estimated quantity that acts as an operating point, or
best guess, during nonlinear state estimation.

viil



Chapter 1
Introduction

The dream of having autonomous mobile robots
safely traverse complex civilian settings is becoming
a reality. At the present time, computing power,
sensing capability, and the algorithms to take advan-
tage of them, have peaked at a point where industry
has begun to adopt many of the techniques devel-
oped by the academic robotics community. The
most anticipated result of this ‘collaboration’ is the
arrival of self-driving cars (see Figure 1.1), which
are predicted to be only a few years away from com-
mercialization. Several companies have been very
public about their development (and testing) of au-
tonomous vehicle technology; most notably, Google
Inc. (2015) reports having 48 autonomous vehicles
actively self-driving the public roads of Mountain
View, California, and Austin, Texas, with a collec-
tive 2 million autonomously driven kilometres since
2009. In order to enable this kind of autonomous
navigation in a safe manner, these vehicles must be
able to operate in challenging dynamic situations,
all weather and lighting conditions, and a variety
of environments (e.g., open plains, tunnels, urban

canyons, etc.).

(a) An advertisement for the Central Power
and Light Company in 1957. The tag line
suggested that travel would one day be made
more enjoyable and safe through the use of
electricity. (Credit: The Victoria Advocate)

(b) A depiction of Google’s autonomous ve-
hicle prototype in 2015. The driverless ve-
hicle uses a combination of lasers, radars,
and cameras to safely navigate roads shared
with other civilian drivers. (Credit: Google)

Figure 1.1: Self-driving cars.
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The focus (and contributions) of this thesis are in the area of mobile robotic localization.
Plainly, a robot localization algorithm is responsible for answering the question: “Where
am I?”. Depending on the intended application, the answer can either be topological (e.g.,
city — street — lane), or metric (e.g., translational and rotational coordinates with respect
to a frame of reference). In modern day life, whether driving or walking to a destination,
many citizens have become accustomed to using the Global Positioning System (GPS)
on their cellular devices for real-time localization with respect to a map. Similarly, in
order to navigate an autonomous robot to a destination, we must first determine the
robot’s location in the space that our desired path is defined. However, we note that GPS
technology (although only available on Earth) is often insufficient for terrestrial robot
operation; the reliability and availability of a GPS signal is affected by many typical
operating environments (e.g., urban canyon, underground /mines, indoors/tunnels, or even
forested areas). Furthermore, the installation of infrastructure-based solutions to cover
all of the desired areas of robot operation is often prohibitively expensive, and thus we

rely on onboard sensing to satisfy our localization needs.

Arguably, the most popular onboard sensing modality for three-dimensional motion
estimation is passive camera technology, which has been a core topic in robotics research
for decades (Moravec, 1980). In particular, the use of a stereo camera to perform sparse-
feature-based visual odometry (VO) (Matthies and Shafer, 1987) has remained a leading
paradigm that enables accurate pose estimation over long distances (Sibley et al., 2010);
both the Mars Exploration Rovers (MERs) (Maimone et al., 2007) and the Mars Science
Laboratory (MSL) (Johnson et al., 2008) have used stereo-camera VO for extraterrestrial
motion estimation. Notably, without an a priori map of visual landmarks, exploratory
traverses are forced to localize with respect to a map that is built during the traversal. In
robotics this paradigm is best known as simultaneous localization and mapping (SLAM)
and is mathematically posed as a state estimation problem; that is, given some observations
of the environment, we wish to determine the state of the map, which is typically a set
of positions associated with the landmarks, and the full state of the robot, which is a
temporal set of positions, orientations, velocities, and other quantities (e.g., sensor biases
or calibration parameters), that fully describe the robot and its sensors throughout the
traversal. In contrast to exploratory traverses, we note that autonomous retrotraverse can
be enabled with separate mapping and localization phases (Furgale and Barfoot, 2010).
However, in many cases the most effective way to perform mapping is with SLAM, and

furthermore, because environments are susceptible to change, the map is kept up to date
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(a) A photograph of the ROC6 traversing typical terrain at the Ethier Sand and Gravel pit. Note the large
shadows cast by the robot, and rocks, as the sun begins to set.

(b) A lidar-based reconstruction of the terrain, coloured by elevation. This result uses the appearance-based
lidar pipeline described in Chapter 2, and novel algorithms described in Chapters 4 and 6.

Figure 1.2: This figure shows a photograph and rendering of the ROC6 mobile robot at the
Ethier Sand and Gravel pit in Sudbury, Ontario, Canada. The large black instrument mounted
on the front of the robot is an Autonosys scanning lidar that we use for scanning-while-moving
motion estimation.

by performing SLAM during localization as well.

The downfall of vision-based SLAM, using passive camera technology, is that it relies
on consistent ambient lighting in order to find temporally similar appearance-based
features. In a real-world scenario, such as the test environment shown in Figure 1.2(a),
appearance can differ drastically with changes in lighting conditions; for example, change
in the orientation of shadows, or more severely, the total absence of light. Although
passive cameras have limited use in these severe conditions, the estimation machinery
developed to use sparse appearance-based features is principled and time-tested. Therefore,
a technology we are interested in investigating is the application of these mature visual
techniques to lidar (light radar) data, which is more robust to varying lighting conditions.

This method was originally investigated by McManus et al. (2011), and a detailed review
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of the methodology we follow is described in Chapter 2. In short, due to the scanning
nature of the sensor, assumptions made in the traditional VO pipeline become invalid;
in particular, the methods used for both outlier rejection and the nonlinear numerical
solution require re-evaluation. We overcome these issues by developing new technologies
that consider the temporal nature of the data (see Figure 1.2(b)).

In Chapter 3 we review the mathematical principles underlying the probabilistically
based SLAM estimation problem; this review leads up to, and includes, the recent intro-
duction of a batch continuous-time trajectory estimation framework (Furgale et al., 2012).
In Chapter 4 we introduce a novel Random Sample Consensus (RANSAC) algorithm,
using a constant-velocity model, to perform outlier rejection on our motion-distorted
3D lidar data (Anderson and Barfoot, 2013a; Anderson et al., 2015b). By modelling
the robot trajectory in continuous time, we are able to account for the temporal nature
of scanning-type sensors and expose a subtle generalization of the SLAM problem that
we refer to as simultaneous trajectory estimation and mapping (STEAM). The core
contributions of this thesis adopt the STEAM approach and propose new representations
for the six-degree-of-freedom robot trajectory. Specifically, in Chapter 5 we present a
novel, parametric STEAM algorithm that is able to process loop closures in constant time
(Anderson and Barfoot, 2013b; Anderson et al., 2015b); in essence, this work moves the
relative SLAM formulation (Sibley et al., 2009) into the continuous-time framework by
estimating the body-centric velocity profile of the robot (and the spatial pose changes
associated with loop closures). In Chapter 6 we explore an alternative STEAM formula-
tion based on Gaussian-process (GP) regression; we build upon the initial work of Tong
et al. (2013) and the exactly sparse approach of Barfoot et al. (2014) by introducing:
(i) the use of nonlinear time-varying (NTV) stochastic differential equations (SDE) to
generate exactly sparse GP priors for trajectories in a vectorspace (Anderson et al., 2015a),
and (ii) a novel, exactly sparse, singularity-free, and physically motivated GP prior for
bodies translating and rotating in three-dimensional space (Anderson and Barfoot, 2015).
The core contributions from Chapters 4, 5, and 6 are all validated using a 1.1 kilometre
lidar dataset collected in Sudbury, Ontario, Canada (details in Appendix A). Finally, a

summary of the contributions and discussion of future work are presented in Chapter 7.



Chapter 2
Appearance-Based Lidar Odometry

In this chapter, we review the techniques used in a typical visual odometry (VO) pipeline
and the theory behind using lidar intensity images in lieu of passive camera imagery.
Augmentation of the VO pipeline, for lidar intensity data, was originally investigated by
McManus et al. (2011, 2012), and later followed up by Dong and Barfoot (2012) and Tong
et al. (2014). The methodologies investigated in this thesis build upon these works and are
motivated by the problems described in this chapter. In short, the standard VO pipeline is
not equipped to deal with scanning-type sensors (such as lidar or a rolling-shutter camera)
and requires new technologies to perform outlier rejection and generate a reasonable

nonlinear numerical trajectory estimate.

2.1 Motivation

In cases where an a priori map of the environment does not exist, or localization to
the map has been lost, it is necessary to perform incremental robot localization using
sequential pose change estimates (i.e., odometry) from the available sensor data. In the
most basic sense, odometry can be provided by something as simple as wheel encoders;
however, wheel odometry is fairly undependable in real-world environments. For example,
Matthies et al. (2007) note that (owing to sand) the MERs had a slip rate of 95% on
a 20 degree incline. Although we would typically expect better wheel odometry from a
modern automobile on an asphalt road, more reliable sensing is a necessity.
Vision-based methods have proven to provide reliable and accurate odometric estimates
(in both position and orientation) over long distances (Konolige et al., 2007; Sibley et al.,

2010). These methods operate by identifying and tracking a sparse set of recognizable,
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static features across a sequence of images. Camera geometry can then be used to solve
for both the 3D positions of the static features (i.e., landmarks) and the temporal poses!
of the camera. This style of optimization problem is described as bundle adjustment (BA)
and can trace its heritage to the stitching of aerial photography (Brown, 1958). Owing to
the restrictions of computing power, early applications of BA to mobile robotics focused
on a simplified version of the problem, in which stereo-triangulated points were aligned
in a Euclidean frame (Moravec, 1980); this work was later refined (Matthies and Shafer,
1987; Matthies, 1989) and eventually deployed on the MERs (Maimone et al., 2006, 2007)

to provide accurate and reliable odometry estimates on Mars.

As described previously, the problem with using passive cameras as the primary
sensing modality for a robotic platform is that the provided appearance information
is highly dependent on external lighting conditions. The most obvious failure mode of
VO is during low-light conditions (or even complete darkness), when tracking features
reliably becomes difficult (or impossible). Even during ‘daylight’ conditions, Matthies
et al. (2007) specifically note a VO failure on the MERs when the dominant features
were tracking the rover’s own shadow. In an attempt to enable dark navigation with
a passive stereo camera rig, Husmann and Pedersen (2008) used an LED spotlight to
show the promise of High Dynamic Range (HDR) imaging in lunar-analogue conditions;
using this method, it was noted that view range is a limiting factor due to inverse-square
illumination drop off, and that very specialized camera hardware would be required to
enable HDR imaging during continuous locomotion. While vision-based techniques have
been widely adopted due to the low cost and availability of passive camera technology,
we note that photogrammetry techniques are not restricted to the human-visible light
spectrum (this foreshadows the lidar-based technique we review in Section 2.2). An
interesting use of the infrared spectrum was presented by Rankin et al. (2007) in their

work on negative obstacle detection using a thermal camera.

Active sensors, such as lidar, enable more robust odometry under varying lighting
conditions. Furthermore, the wealth of geometric information provided by lidar range mea-
surements have made the sensors very popular for mapping both 2D and 3D environments.
In order to align scans taken from different locations, a wide range of laser-based odometry
techniques have been developed. For 3D pose estimation, a 3D lidar ‘scan’ is traditionally

constructed by concatenating swathes of temporal lidar data into a single point cloud.

'In this thesis, pose is used to indicate both a position and orientation.
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The basis of many point cloud alignment techniques is the Iterative Closest Point (ICP)
algorithm (Besl and McKay, 1992), which iteratively minimizes the least-squared Eu-
clidean error between nearest-neighbour points. Although the basic ICP algorithm is
fairly naive, it can provide impressive odometry estimates when applied sequentially
(Niichter et al., 2007). There exist a multitude of works based on ICP that typically
modify the optimization problem by using additional information extracted from the point
cloud, such as surface normals or curvatures; Pomerleau et al. (2015) provide an excellent
survey. In general, registration techniques that work with the full dense point clouds tend
to be computationally intensive, and struggle to run online?. An alternative strand of
registration techniques focus on compressing a point cloud into a much smaller number
of points (or features) with a set of associated statistics that retain information about
the original structure. The most successful ‘compression’ techniques in this area of point
cloud registration are the Normalized Distributions Transform (NDT) (Magnusson et al.,
2007) and surfel (surface element) (Zlot and Bosse, 2012) representations; notably, both
techniques use a form of discretization on the points (such as voxelization), followed by an
eigen decomposition of the second-order statistics within each voxel. Pathak et al. (2010)
also achieve online performance with lidar by using a method in which large segments of
lidar data are ‘compressed’ into planar features for fast, closed-form pose-graph-relaxation;
notably their technique relies on stop-and-go motion to avoid motion-distortion over the

large planar features.

Though the use of geometric information has provided impressive odometric results,
it is interesting to note that the secondary lidar data product (i.e., intensity/reflectance
information) is largely discarded by most of the robotic literature. Most applications of
geometric-based lidar odometry have been in urban areas, or mines, where walls, ridges,
and other rich geometric information is typically present; in contrast, a road through
an open plain represents a failure mode for most of these algorithms — using intensity
information, such as the return from white, dashed lane markings, could prevent this
failure. Early work by Neira et al. (1999) investigated the use of intensity and range
images for localization against a known map. Prominent work by Levinson (2011) has
showed the use of lidar intensity information to enable localization and dark navigation

of an autonomous vehicle.

2Tn robotics, online performance typically implies that the result of an algorithm can be computed
before the next measurement to be processed arrives.
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ential GPS unit. mirrors used to achieve an image-style scan pattern.

Figure 2.1: The Autonosys LVC0702 is a high-framerate amplitude modulated continuous wave
(AMCW) lidar with a pulse repetition rate (PRR) of 500,000 points per second and maximum
range of ~50 meters. In our experiments, the Autonosys was configured to have a 90° horizontal
and 30° vertical field of view, and produce 480 x 360 images at 2 Hz.

Figure 2.2: This figure depicts corresponding intensity (left) and range (right) images formed
using data from the Autonosys lidar and the methodology developed by McManus et al. (2011).
In this process, image ‘creation’ using lidar is best described as pushing swathes of temporally
sequential lidar scans into a rectilinear image format (where pixel rows and columns roughly
correspond to elevation and azimuth angles). In reality, the robot has moved up to 25cm during
the 0.5s it takes to acquire these ‘images’.

2.2 Lidar and the Visual-Odometry Pipeline

Most of the experiments in this thesis leverage a technique, initially explored by McManus
et al. (2011), which fuses the intensity information provided by lidar with the mature

and computationally efficient, vision-based algorithms. The keystone in merging these



CHAPTER 2. APPEARANCE-BASED LIDAR ODOMETRY 9

Figure 2.3: This figure shows an example intensity image captured using the Autonosys LVC0702

two-axis scanning lidar. The nonaffine image distortion is caused by a yaw-type motion during
image acquisition. Note the irregular deformation of the square checkerboard pattern.

technologies is the use of a two-axis scanning lidar sensor with high-resolution intensity
information and a fairly high acquisition rate; specifically, we investigate the use of
an Autonosys LVC0702, as seen on our robot in Figure 2.1. We then use the method
developed by McManus et al. (2011) to form the lidar intensity and range data into
images, as seen in Figure 2.2. Sparse appearance-based features are then extracted from
the intensity images and temporally matched. This tactic allows us to perform visual

odometry even in complete darkness (Barfoot et al., 2013).

As with any meshing of technologies, there are often new machineries that need to be
developed. In this case, the development of vision-based algorithms have long assumed
the use of imaging sensors with a global shutter, which are well suited to discrete-time
problem formulations. In contrast to a charge-coupled device (CCD) that has a global
shutter, the slow vertical scan of the Autonosys causes nonaffine image distortion, as
seen in Figure 2.3, based on the velocity of the robot and the capture rate of the sensor.
This is similar in nature to rolling-shutter cameras that use complementary metal-oxide-
semiconductor (CMOS) technology; these scanning-type sensors are often avoided in
robotics due to the added complexity of rolling-shutter-type distortions. In the presence
of motion-distorted imagery, there are three steps in which the traditional visual pipeline
is affected (shown in Figure 2.4): (i) feature extraction, (ii) outlier rejection, and (iii) the
nonlinear numerical solution. In order to adapt these vision-based technologies to use
scanning sensors, this thesis proposes novel methods for both outlier rejection and a

nonlinear numerical solution.
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Figure 2.4: This figure depicts the typical data processing pipeline used for visual odometry
with lidar intensity images (McManus et al., 2013). Beginning with new data, an imagestack is
formed from the intensity, elevation, azimuth, range, and time information. The intensity image
is then post processed, SURF features are extracted, and then matched against features from
the previous image. Outlier rejection (typically a RANSAC algorithm) is then used to qualify a
likely set of inliers from the proposed feature correspondences. In parallel, a place recognition
module may be used to identify whether or not we have visited ‘this’ location previously. Finally,
a nonlinear numerical solution is used to produce a motion/localization estimate. Take special
note that this pipeline is affected by motion distortion in the three highlighted modules: feature
extraction (due to nonaffine image distortion), outlier rejection (due to assumptions made by
traditional RANSAC models), and the nonlinear numerical solution (due to the discrete nature
of the trajectory representation used by typical pose estimation methods).

2.2.1 Keypoint Detection

The experiments in this thesis closely follow the methodology laid out by McManus et al.
(2011) for lidar-based image creation and sparse-feature extraction. In our experiments,
the Autonosys was configured to produce 480 x 360 resolution lidar scans at 2 Hz. These
scans are stored as imagestacks, which are a collection of 2D images, containing intensity,
elevation, azimuth, range, and timestamp data. Each pizel in an imagestack corresponds
to a single, individually timestamped, lidar measurement. Notably, the raw intensity
images are post-processed to make them suitable for feature extraction; this is done by
applying an adaptive histogram to equalize areas of high and low reflectance, followed by

a low-pass Gaussian filter.

After processing the intensity images, keypoints are extracted. The goal of keypoint
detection is to find distinctive points in an image that can be robustly tracked as long
as they stay in view. Sparse appearance-based feature extraction is a popular strand
of research in computer vision. Each feature extraction algorithm typically involves
a keypoint detection scheme and a feature descriptor scheme. After the detector has

found an interesting keypoint (typically a corner, edge, or blob), a descriptor algorithm
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Figure 2.5: Qualitative results from the 24-hour experiment conducted by McManus et al.

(2011) comparing intensity images captured from an Optec ILRIS3D survey-grade lidar (top row)
against passive camera imagery (bottom row) at three different times (13:38, 18:12, and 05:43).
Extracted SURF features are overlaid — blue indicating a light blob on a dark background and
red indicating a dark blob on a light background. Note the robustness of SURF detection (in
the top row) despite the drastic changes in lighting.

is used to compress the local image patch into a shorter sequence of values that can be
quickly compared to other keypoints for similarity. In robotics, popular feature extraction
algorithms for VO include Features from Accelerated Segment Test (FAST) (Rosten and
Drummond, 2006), Scale Invariant Feature Transforms (SIFT) (Lowe, 2004), Speeded-Up
Robust Features (SURF) (Bay et al., 2006), and more recently, several binary schemes,
such as Binary Robust Independent Elementary Features (BRIEF) (Calonder et al., 2010),
Binary Robust Invariant Scalable Keypoints (BRISK) (Leutenegger et al., 2011), and
Oriented FAST and Rotated BRIEF (ORB) (Rublee et al., 2011).

Using a survey-grade 3D lidar, McManus et al. (2011) determined that SURF extracted
from intensity imagery could be robustly matched over a 24-hour period, and were
far superior to features extracted from passive camera imagery in low-light conditions

(see Figure 2.5). SURF detects ‘blobs’ of interest at a variety of scales, and encodes
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approximations to the local gradient information used by SIFT into a 64-floating-point-
number descriptor; it has become a very popular choice since being implemented on the
Graphics Processing Unit (GPU), as it can be calculated quickly in parallel, performs well
compared to its ancestor, SIF'T, and has even been used to enable quick place recognition
(Cummins and Newman, 2008). Our experiments leverage a highly parallelized SURF
implementation that runs on the GPU.

During continuous movement, intensity imagery is subject to nonaffine motion distor-
tions (due to the temporal nature of lidar technology). It is expected that the performance
of typical feature detectors and descriptors (including SURF) will degrade when the
sensor acquisition rate is inadequate for the platform speed. However, since features are
extracted locally, and the local effect of motion distortion is small, we have found that
SURF performs sufficiently well for our particular configuration (a platform speed of up

to 0.5m/s, and an Autonosys frame rate of 2 Hz).

2.2.2 Keypoint Tracking and Outlier Rejection

Given a set of temporally acquired images and the extracted features from each image, we
must now determine the feature correspondences (i.e., matches) between the sequential
image pairs. This task is typically accomplished by proposing matches based on the
keypoint’s descriptor similarity, and then performing outlier rejection (usually based on a
geometric model) to eliminate mismatches. In robotics, the most popular way to perform
outlier rejection is RANSAC (Fischler and Bolles, 1981); although arguments can be
made for the benefits of both robust M-estimation (Huber, 1981) and joint-compatibility
methods, such as active matching (Chli and Davison, 2008). RANSAC has become
popularized as an outlier rejection scheme for VO pipelines because it is fast and suitable
for robustly estimating the parameters of a model, despite a large number of outliers.
RANSAC determines the parameters of a model by generating hypotheses and using
consensus to let the data determine the most likely one (i.e., the hypothesis with which
the majority of the data agrees). In order to generate a hypothesis, a set of data (in this
case, matches) are sampled randomly from the proposed set and used to calculate the
model; note that the number of samples that must be drawn to compute a hypothesis
is dependent on the model that is being solved. The challenge in using RANSAC is
that it is not a deterministic algorithm (unless run to exhaustion) and good performance

depends on being able to (probabilistically) draw a set of matches that all belong to
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(a) This figure shows inlying feature tracks after (b) This figure shows how relaxing the inlier thresh-
using a moderate threshold on reprojection error. old (for a rigid RANSAC model) allows for a larger
Due to fast motion and a slow vertical scan, only a number of inlying matches (green), but also intro-
small temporal band of the features are matched. duces false positives (red outliers).

Figure 2.6: Figures showing the inlying feature tracks after applying a rigid 3-point RANSAC
model on lidar data captured during fairly fast and rough motion.

the inlier set within a reasonable number of iterations. Computational improvements to
RANSAC are usually based on reducing the number of samples required to compute the
model, or determining a criterion that helps bias the random sampler toward selecting
likely inliers. The most general (monocular) model, based on epipolar geometry and the
fundamental matrix, uses 8 points (Longuet-Higgins, 1981; Hartley and Zisserman, 2000).
More suitable models for real-time performance are the monocular 5-point algorithm
(Nistér, 2004), and stereo-pair, 3-point algorithm (Horn, 1987).

Direct application of the traditional 3-point RANSAC algorithm to features extracted
from motion-distorted lidar imagery results in poor outlier rejection, as seen in Figure 2.6;
the scanning nature of lidar violates the assumed rigid rotation and translation model
used by the algorithm. Early experiments conducted by McManus et al. (2013) used
the rigid model and suffered from poor correspondences. Dong and Barfoot (2011) later
employed robust M-estimation as an outlier rejection scheme and more recent work by
Tong et al. (2014) leveraged our novel RANSAC method (contributed in Chapter 4 of this
thesis). The adaptation presented in this thesis is also a 3-point RANSAC algorithm, but

uses a constant-velocity model that can account for the individual timestamps of features.
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(a) In this experiment, a survey grade lidar (Ilris)  (b) In this experiment, the Autonosys lidar (run-
was used with a stop-scan-go motion scheme to  ning at 2Hz) was used during continuous locomo-
judge the potential of lidar intensity imagery for  tion to determine how drastic the effect of motion
use in the VO pipeline (McManus et al., 2011).  distortion is without proper compensation (Mc-
Notably, the lidar-based odometry performs best =~ Manus et al., 2013). Note the estimate deteriorates
~100m from the start of the run. quickly after a change in orientation.

Figure 2.7: These figures compare VO estimates generated by using both lidar intensity imagery
(blue) and a stereo camera (black). Ground truth was provided by GPS (red).

2.2.3 Nonlinear Numerical Solution

The final step in the VO pipeline is to estimate odometry using the feature tracks that
passed outlier rejection. A rudimentary implementation might simply re-solve the model
used by RANSAC with all of the inliers (rather than the minimal set) in a least-squares
fashion. For example, by taking advantage of depth information, the least-squares 3D-
point-alignment problem (used in the 3-point RANSAC method) can also be solved for
N-points in closed-form (Horn, 1987; Arun et al., 1987; Umeyama, 1991); owing to its
low computational cost and fairly accurate results, this method is ideal for resource
constrained systems, such as the MERs (Matthies et al., 2007).

More recently, easy access to powerful computing has begun to favour more com-
putationally intensive solutions based on batch nonlinear optimization, such as bundle
adjustment (mathematical preliminaries will be provided in Chapter 3). However, owing
to the nature of traditional VO and discrete-time SLAM formulations, they are not
well-suited to handle many challenging sensor outputs; specifically, the use of high-rate,
motion-distorted, or unsynchronized sensors all require special treatments. In our case,
scanning during continuous locomotion causes each SURF feature extracted from the
intensity imagery to be individually timestamped, and in general, traditional discrete-time
batch SLAM estimators require a pose at every measurement time. Placing a discrete
pose at each SURF measurement time causes two problems: (i) the state size becomes
computationally intractable, and (ii) with only one range/bearing measurement at each
discrete pose, the mazimum likelihood (ML) problem is ill-conditioned (i.e., unobservable).

Before developing more complex machinery that allows us to properly handle these
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types of sensors, two practical experiments were conducted by McManus et al. (2011).
First, in order to justify lidar intensity imagery as a potentially suitable replacement for
passive camera imagery, an initial experiment compared lidar odometry (using a stop-
scan-go methodology to avoid motion distortion) against stereo VO (see Figure 2.7(a)).
Using the same estimation scheme, the second experiment (seen in Figure 2.7(b)) enabled

continuous locomotion to demonstrate the need for motion compensation.

Outside of research focused on solving the motion-distortion problem, there are two
commonly used strategies to improve odometry estimates from scanning sensors. The
first is to avoid the problem entirely by using a stop-scan-go motion strategy, as employed
by McManus et al. (2011), Niichter et al. (2007), and Pathak et al. (2010) (although
this strategy has a serious impact on the platform’s freedom of motion). The second, is
to ‘pre-correct’ the distortion by using an estimate of the vehicle’s velocity — provided
by an Inertial Measurement Unit (IMU) or other external sensor. Although this type
of correction leads to satisfactory results, we note that reliance on an additional sensor
is undesirable; in particular, we note that noise from the IMU measurements, failure to
properly estimate IMU biases, and calibration error between the sensors, all become built
into the augmented scans and will contribute to irreversible odometry error. We assert
that a more general approach is to change how the robot’s trajectory is modelled in the
state, such that odometry can be estimated using motion-distorted lidar data alone; then,
additional information about the motion, such as IMU measurements, can be exploited

when, or if, it is available.

In an attempt to augment the discrete-time state formulation for scanning-type sensors,
a few works have employed the use of 3D-pose interpolation (Dong and Barfoot, 2011;
Hedborg et al., 2012; Bosse et al., 2012). The idea behind these techniques is to maintain
a small set of discrete-time keyframes that are used to interpolate a smooth 3D trajectory;
in practice, this is akin to having a discrete pose at each measurement time, where the
chosen interpolation policy enforces a strict smoothness constraint across poses that
exist between keytimes. The result is a (generally) well-conditioned problem, with a
drastically decreased state size. Notably, all three aforementioned works used time as the
interpolation variable between poses, giving rise to a reinterpretation of the formulation
as a continuous-time trajectory estimation problem. Rather than using an ad hoc linear
interpolation scheme, it is proposed that richer trajectory representations can be chosen to
better capture the true motion of the robot. Early investigations of continuous-time batch

estimation have been performed both parametrically, using a weighted sum of temporal



CHAPTER 2. APPEARANCE-BASED LIDAR ODOMETRY 16

basis functions (Furgale et al., 2012), and nonparametrically, using a Gaussian Process
(Tong et al., 2012). The core contributions of this thesis are based on these works; in
particular, we explore alternative trajectory representations that aim to improve both
the utility and efficiency of these methods. While more specific information about the
implementation of these methods is left to the later chapters, we note that it is the use of
these continuous-time trajectory formulations that allow us to produce accurate odometry

estimates and maps using motion-distorted lidar imagery.

2.3 Place Recognition

In this thesis, we will go beyond the VO-style nonlinear numerical solutions provided by
Dong and Barfoot (2011) and Tong et al. (2014) by taking advantage of large-scale loop
closures. In essence, by recognizing when the robot has returned to a location that it
has previously traversed, the ‘loop’ can be closed and parameters in the map (i.e., 3D
landmark positions) from the same physical location can be associated — this helps to
improve the metric accuracy of localization, as well as introduce topological linkages that
can be used for navigation. Chapters 5 and 6 each contain a novel algorithm that uses
a relative-pose formulation to process these large-scale loop closures in constant time
(background on the relative SLAM paradigm will be discussed in Chapter 3).

Taking advantage of vision algorithms once again, we note that the use of SURF allows
us to leverage existing Bag-of-Words place-recognition algorithms, such as FAB-MAP
(Cummins and Newman, 2008). However, owing to motion distortion we found that the
standard FAB-MAP methodology did not perform well — instead, we used the extension
of MacTavish and Barfoot (2014). In contrast to the original FAB-MAP algorithm, which
compares a single query image to all of the previously seen images using a Bag-of-Words
descriptor, the modification proposed by MacTavish and Barfoot (2014) describes and
compares groups of images (i.e., they use a bigger bag of words); this modification was

key in enabling more robust place recognition despite motion distortion.

2.4 Summary

In this chapter we reviewed some of the theory and literature related to using lidar
intensity imagery, rather than passive camera imagery, in the VO pipeline. The advantage

of using an active sensor, such as lidar, is that it is almost completely invariant to
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lighting conditions and allows us to operate even in complete darkness. Furthermore, by
extracting sparse appearance-based features from the intensity imagery we are able to
leverage a variety of mature techniques (e.g., feature tracking, RANSAC, Bag-of-Words
place recognition, bundle-adjustment-style estimation). The issue that arises in this fusion
of technologies is motion distortion and the fact that standard vision-based techniques
are not equipped to deal with scanning sensors. Chapters 4, 5, and 6 of this thesis will
propose novel solutions for pieces of the VO pipeline that require special care in order to

account for the temporal nature of the lidar sensor.



Chapter 3

Batch Estimation Theory and
Applications for SLAM

This chapter serves as a mathematical primer on the use of batch estimation for SLAM.
The core contributions of this thesis depend on many of the techniques described in this
chapter. The following sections will introduce: (i) probabilistic theory geared towards the
batch SLAM formulation, (ii) nonlinear optimization using the Gauss-Newton algorithm,
(ili) estimation machinery for the matrix Lie groups SO(3) and SE(3), (iv) variants of the
batch SLAM problem aimed at achieving constant-time performance, and (v) preliminaries

towards estimating a continuous-time robot trajectory.

3.1 Discrete-Time Batch SLAM

Accurately determining a robot’s position with respect to a set of obstacles, landmarks,
or path of interest (i.e., a map), is a precursor to autonomous navigation and control
of a mobile robotic system. In contrast to pure localization (against an a priori map),
simultaneous mapping is absolutely vital in traversing previously unvisited environments.
Since state-of-the-art robotic systems have set their sights on enabling long-term autonomy
in unstructured 3D environments, the importance of robust SLAM technology has only
grown. Even when an a priori map exists, online mapping remains an integral component
of long-term localization engines due to the possibility of vast scene change (e.g., weather,
lighting, or even infrastructure). Recording new ‘experiences’ for life-long SLAM has
enabled some of the most promising results (Churchill and Newman, 2013).

From a mathematical perspective, modern SLAM algorithms continue to leverage

18
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a probabilistic foundation, as it provides a principled and successful model for fusing
measurements from multiple sensors and incorporating a priori knowledge of the state.
The standard state representation for this type of problem continues to be the discrete-
time pose (and sometimes velocity) of the robot, in addition to a set of discrete landmark
positions. The origin of this formulation in the robotics community can be traced back to
the work of Smith et al. (1990), which set the stage for 2D probabilistic SLAM algorithms
to use filtering-based estimation theory (Kalman, 1960). Only much later did Lu and
Milios (1997) derive the full batch problem formulation, using odometry measurements to
smooth the trajectory between landmark observations. Notably, the discrete-time batch
SLAM problem is closely related to that of the (much earlier) bundle adjustment problem
(Brown, 1958); the unique nature of the SLAM problem is that we are estimating the
temporal pose of a single rigid body (in contrast to the individual poses of an unordered
set of aerial cameras). Exploiting the temporal nature of the measurements, a specialized
problem is formed by including an a priori motion model and measurements from other

sensors, such as wheel encoders, compass, IMU, or even lidar.

Despite the batch formulation offering a more accurate solution, filter-based algorithms,
such as the Extended Kalman Filter (EKF) (Kalman, 1960), Sigma-Point Kalman Filter
(Julier and Uhlmann, 1997), and the Particle Filter (Thrun et al., 2001), were widely used
due to their lower computational requirements and ability to run online. However, the
advancement of modern computing power has slowly favoured batch estimation techniques
that were previously too inefficient for practical use. Today, the most successful SLAM
solutions have taken advantage of the batch problem formulation (Thrun and Montemerlo,
2006; Dellaert and Kaess, 2006; Kaess et al., 2008; Sibley et al., 2009; Konolige et al.,
2010), and modern implementations have proven to provide higher accuracy solutions

(per unit of computation) over the filtering-based competitors (Strasdat et al., 2010).

3.1.1 Probabilistic Formulation

In the standard discrete-time batch SLAM formulation, there are two sets of quantities we
are interested in estimating: (i) the pose of the robot at all measurement times, Xo., and
(ii) a set of static landmarks parameters, £y.;. In order to determine the values of x¢.x
and £y.;,, we typically use two sources of information. The first is a priori information,

based on our initial knowledge of the robot’s position, Xg, and the (known) control inputs,
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Ug.x 1, combined with a motion model:
Xpr1 — f(Xk, llk) + Wi, (31)

where X, is the pose of the robot at time ¢, f(-) is a nonlinear function, uy, is the discretized
control input, and wy is the process noise. In order to keep this derivation relatively
straightforward we have assumed that our motion model has an additive process noise.
In general, wy could also be an input parameter of the nonlinear function f(-), as we will
later explore in Chapter 6 (for continuous-time models).

The second piece of information (used to refine the estimate), is an observation
model, which correlates our series of poses, Xq.x, through measurements of common static

landmark parameters, £;,

Yie; = g(xlmej) + Ny, (3'2)

where y; is a sensor measurement, g(-) is a nonlinear measurement model, £; is an
observed point-landmark, and ny; is the sensor noise. In this model, we have again
assumed that the noise, ny;, is additive; however, we note that for observation models
this is a much more common /fair assumption.
Taking the probabilistic approach to discrete-time batch SLAM, the mazimum a
posteriori (MAP) problem we wish to solve is
{x,0} = argnelax p(x,£|u,y), (3.3)
X,

where (for convenience) we have defined

X:= (Xp,...,Xg), £:= (Lo,..., L), w:= (Xo,U,...,Ux_1), Y:= (Yoo,---,¥YKL)

and {x, £} is the posterior value of {x,£}. An equivalent solution to (3.3) can be found

by minimizing the negative log likelihood:
{x,£} = argmin (—Inp(x,£|u,y)). (3.4)
X,

By assuming that the noise variables, w;, and ny;, for £ = 0... K, are uncorrelated, we

follow the standard Bayes’ rule derivation® to rewrite the posterior probability density as,

Inp(x, £|u,y) = Inp(xo | Xo) + Y Ip(Xpir [ X6, ) + > Inp(ye; [ %6, €5).  (3.5)
% kj

IThe details of the probabilistic SLAM derivation are fairly common knowledge among roboticists.
However, for more details, as well as interesting discussions and demonstrations, I highly recommend
both Barfoot (2016) and Thrun et al. (2005).
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Next, we assume that the above probability densities are Gaussian by setting
Xp ~~ N(Xo, lv)o), W ~ N(O, Qk), nkj ~ N(O, Rkj)7 (36)

where X, and Py are the prior mean and covariance of the initial position, and the process
noise, wy, and measurement noise, ny;, are normally distributed with covariances Qy,
and Ry, respectively. Finally, by using the models in (3.1) and (3.2), and substituting
the Gaussian distributions into (3.5), and subsequently (3.4), we arrive at the typical
least-squares batch optimization problem:

{%, £} = argmin (Jp(x) + Jin(x, £) + const.), (3.7)
x4

where J,,(x) is a sum of Mahalanobis distances (i.e., squared-error terms) related to the a

priort data,
L g1 1 T -1
Jp(X) 1= §epoPO e, + 3 Zequk [ (3.8)
k

and similarly, J,,(x,£) is a sum of Mahalanobis distances related to the observations,

Tl 8) = 53k, Rylen, (3.9)
kj
where the error terms are:
e,, ‘= Xo — Xo, (3.10a)
€y, = X1 — f(Xp, ug), (3.10Db)
€y, ‘= Yij — 8(Xk, £;). (3.10¢)

Defining the objective function,
J(x,£) = Jp(x) + Jn(x, £), (3.11)
the final MAP estimator is simply

{x,£} = argmin J(x,£) . (3.12)
x,£

By solving this nonlinear, least-squares problem, we obtain values for x and 2 that
maximize the joint-likelihood of our data and a prior: information. In the absence

of a prior (i.e., the prior is a uniform distribution over all possible robot states), this
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formulation is equivalent to the well understood mazimum likelihood (ML) problem. Over
the past decade, an exploding number of works have built upon this probabilistic batch
estimation scheme to solve a variety of problems. Typical extensions include (but are
not limited to): (i) penalty, constraint, and conditioning terms that directly affect the
objective function, (ii) optimization strategies to more efficiently, or robustly, find the
optimal state, and (iii) new parameterizations for the robot or landmark states to improve
utility or performance. The remainder of this chapter will review existing tools and

extensions of the batch framework used by the contributions of this thesis.

3.1.2 Gauss-Newton Algorithm

In this thesis, we take the Gauss-Newton approach to solving the unconstrained nonlinear
optimization problem presented in (3.12). Gauss-Newton is an iterative scheme that
approximates Newton’s method by ignoring the second-order-derivative term in the

Hessian matrix. Defining the joint state vector,

X
Z:= L] ) (3.13)

and the following block quantities,

epo
€moo
€y
€ = ) v €m = ’
(3.14)
emKL
_euK_l_
Q= diag(Pon, e aQK—l)a R = diag(Rocn e ,RKL),
we can rewrite the objective function, J(x, £), in matrix form as
L pa |
J(z) = EepQ e,+-¢,R e, (3.15)
p;i:)r measu;gments

which is quadratic, but not in our state vector, z. In order to linearize the error terms,
we decompose the (desired) posterior state, z, into two components: (i) an operating
point (i.e., best guess of the posterior state), Z, and (ii) an unknown state perturbation,

0z. Since the state belongs to a vectorspace, we assume that the perturbation is additive:

A

Z =17+ 0z (3.16)
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Therefore, by solving the intermediate problem,
dz" = argmin J(z + 0z) , (3.17)
oz
the optimal state perturbation, z*, can be used to bring our best guess, z, closer to the
optimal posterior value, z. In Newton’s method, J(z) is approximated as quadratic by

using a three-term Taylor-series expansion:

i Y ) 1 2(z)
J(z+5z)~J(z)+<72>5z+§5z ( ade" |, oz. (3.18)
——
Jacobian Hessian

In practice, Newton’s method is seldom used for multivariate problems since the second-
order-derivative terms in the Hessian can be difficult to compute. The Gauss-Newton
method approximates Newton’s method by simply ignoring the second-order derivatives
in the Hessian. Notably, an equivalent approximation is to simply start with a first-order
Taylor-series expansion of the error terms. Following this alternative derivation, the

nonlinear error terms in (3.10) are linearized by substituting the assumption from (3.16),

Xo — Xo, (3.19a)
k1 — f(Xp,ug),  (3.19b)

Yij — 8(Xk, £;), (3.19¢)

e, (Z+0z) ~ e,,(Z) + X, e, (z)
) =

€, (z+0z) ~ €y, (Z) — Gxij 0X — Gy i 04, €y, (z)

NI
el

e, (Z+0z) ~ e, (Z) + 0Xpr1 — Fi 0Xg, e, (

where Fy, Gy rj, and Ggy; are the Jacobian matrices,

_ Of(x;, ug ) G, — Og(x, £))
an ) x,kj -

Xp, Uk

an o Gl,k] - a—ej - (320)

)_(k,éj ik,fj

Fki

Rearranging these quantities into matrix form, we write

e,~e,—Foz, e,~e,—Goz, (3.21)
where
_ _ oe oe,,
€, =¢e)l ., €,=e,,, an_zp,’ = 5| (3.22)

and the objective function becomes,
[y Ty-1(a L TR-1(a
J(z+ oz) = i(ep —Foz)' Q (e, — Foz) + §(em — Goz)' R (e,, — Goz). (3.23)

Taking the derivative of J(z), with respect to dz, and setting it to zero,

o7 J (z)

i —F"Q '(e, —Foz) — G'R'(e,, — Goz) = 0, (3.24)
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this expression can be rearranged to find the system of linear equations

Apri Ameas
T —1 Tp—1 * TN—1= Top—1=
(y Q 'F+G'R q)(sz =F'Q ', + G'R 'e,, (3.25)
A b

which we can solve for the optimal perturbation, dz* = A~'b. In an iterative fashion,
we then update our best guess, Z < Z + dz*, to convergence, and set the final posterior

estimate, Z = Z. Furthermore, we note that the covariance is simply
cov(0z*,6z") = A~ (3.26)

In order to improve the estimator’s convergence and avoid local minima, several strategies
exist to increase the robustness of this nonlinear least-squares solution. In particular,
we make use of robust M-estimation (Huber, 1981) and trust-region solvers, such as
Levenberg-Marquardt (Levenberg, 1944; Marquardt, 1963) and Powell’s Dogleg (Powell,
1970). Increasing robustness remains an active interest in the robotics community due its
importance in online systems; more recent works, such as Siinderhauf and Protzel (2012)
have focused on generalizing outlier rejection within the batch optimization framework.
To aid the following discussion on sparsity, the left- and right-hand side terms of (3.25)
have been labelled; we note that the A,,; term comes from the a priori information, and

A eas 18 associated with the landmark measurements.

3.1.3 Exploiting Sparsity

In general, the naive complexity of solving the system dz* = A~'b, with K measurement
times and L landmarks, is O((K + L)3). Rewriting the linear system of equations,
Ao0z" = b, in the 2 x 2 block-form,

Azm Am€ 5X* bx
=11 (3.27)
N IREY. b,

we note that the left-hand side has the form,

Apri Ameas
—
- , (3.28)
AT, Ayl |0 0 WPV

where Y is a block-tridiagonal matrix related to the prior and A .5 is the usual arrowhead

matrix (Brown, 1958), where U and V are block-diagonal, and W is (potentially) dense.
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Figure 3.1: The typical SLAM problem we consider, illustrated as a factor graph. The trajectory
states, Xj, are represented as triangles and the landmark parameters, £;, are represented by
hollow circles. The factors (a.k.a. squared-error cost terms) are represented as black dots.

A number of performance-improving techniques have been developed by explicitly
exploiting the sparsity of bundle adjustment problem structure; the estimators presented
in this thesis will primarily leverage the Schur complement and Cholesky decomposition
techniques. Alternatively, we note that factor-graph-based solutions exist (Kaess et al.,
2012); however, for the scope of this thesis, factor graphs are used simply as a tool to

visually represent the structure of a problem, as seen in Figure 3.1.

Schur Complement

The standard sparse bundle adjustment (SBA) algorithm uses the Schur complement to
exploit the sparse structure of Ay, by pre-multiplying both sides of (3.27) by

1 —A A}
| (3.29)
0 1
which results in,
Aue — AceAy/ AL, 0| [0X7| by — AgAy 'y (3.30)
Agz Ayl |0€F b,

Using the system above, it is straightforward to solve for 0x* while exploiting the block-
diagonal sparsity of Ay to find A,;' efficiently. Back-substituting the solution for §x*, we
can then quickly calculate the landmark updates, 6£*. Assuming that the top-left corner,
A, — A AL AL, is dense, the complexity is reduced from O((K + L)?) to O(K3 + K2L).

This complexity can be improved further by using a sparse-matrix solver to exploit any

‘secondary sparsity’ that remains in A,, — Ang;glAfe (Konolige, 2010).
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Sparse Cholesky Decomposition

In Chapter 6, due to the problem formulation and types of experiments, a reverse situation
occurs where we potentially have many more trajectory variables than landmark variables,
L <« K, and so we instead wish to exploit the sparsity of A,,. This is a more complicated
situation, as A, is block-tridiagonal, rather than block-diagonal. In this situation, sparse

(lower-upper) Cholesky decomposition offers an efficient solution,

Ve 0| [|VE VP A,.. AL
Vi Vi 0 V), A, Ay

(. AN J/ (. J/
~~ ~ ~

A\ vT A

: (3.31)

in which we are able to decompose Vngm = A, in O(K) time; this results in V,, being
a lower-bidiagonal matrix. Sparing the details, the decomposition phase is performed in

O(L? + L?K) time. Performing the standard forward-backward passes,

solve for d: Vd=b,

solve for §z*: V7%z* =d,

where d is an intermediate variable, the system is then solved in O(L? + LK) time.
Therefore, the total complexity is dominated by the decomposition, which is O(L?+ L*K).
Notably, this method avoids any direct matrix inversions (which can ruin sparsity and

sometimes cause numerical instability).

3.2 State Estimation Using Matrix Lie Groups

Thus far we have presented the estimation theory and mathematics for solving batch
nonlinear optimization problems with state variables that belong to a vectorspace (i.e.,
z € RY). However, in robotics it is common to have state variables that describe
the orientation, or pose, of the robot in three-dimensional space. The issue with using
rotations and transformations in our probabilistic derivation is that they do not belong to a
vectorspace, but rather to the (noncommutative) matrix Lie groups: the special orthogonal
group, SO(3), and the special Fuclidean group, SE(3). Specifically, without special care,
variables that exist on manifolds cannot be directly included in our unconstrained Gauss-
Newton estimator because they violate two of the tools used in our MAP derivation:

(i) the use of an unconstrained additive state perturbation, z = z + dz, 6z € RY, and
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(ii) the use of simple Jacobian matrices, F and G, relating the output of our motion and
observation models to changes in the state vector, z € RY.

Notably, several representations exist for three-dimensional rotations; however, naively
choosing a rotation representation can yield undesirable consequences. For example,
a minimal parameterization, such as Euler angles (€ R?), suffers from singularities,
while over-parameterized representations, such as quaternions (€ R*), required addi-
tional constraints. In this thesis, we favour using the constraint-sensitive perturbation
schemes detailed in Barfoot and Furgale (2014)2; by using an over-parameterized (but
singularity-free) 4 x 4 homogeneous transformation matrix with a 6 x 1 (constraint-
sensitive) perturbation scheme, the typical downfalls of rotation representations (in the
Gauss-Newton context) are avoided. Note that we do not require a vectorspace state,
z € RY | in order to leverage the iterative Gauss-Newton updates in (3.25), but only a
vectorspace perturbation, 6z € RY (assuming that the Gaussian probability densities are
properly handled). The remainder of this chapter section is used to review the mathe-
matical machinery that we leverage for unconstrained nonlinear optimizations involving

rotations, transformations, and homogeneous points.

3.2.1 Rotations, Transformations, and the Exponential Map

We begin by defining the three-dimensional reference frames, .7_>-'a and .7_>:b, where a vector

from .7_>:a to .7_>-'b (superscript), expressed in .7_>:a (subscript), is written v2¢, and Cy,, is the
3 x 3 rotation matrix that transforms vectors from .7_>:'a to ‘l>:b:
ba b.a
v, =Cpav,”, (3.32)
where Cp, € SO(3) and is subject to the constraints,
CCl, =1, detCp,=1. (3.33)

Using the exponential map, we note the closed-form expression

C(¢) :=exp(¢”) = cos ¢l + (1 — cos p)aa’ + sin pa”, (3.34)

2While this thesis provides an overview of the mathematical machinery and identities necessary to
perform Gauss-Newton with transformation matrix state variables, a more detailed understanding of how
the Gaussian uncertainties are handled on SFE(3) can be gained by reading Barfoot and Furgale (2014).
Pertaining to optimization, Absil et al. (2009) provides an in-depth discussion of first-order, second-order
and trust-region-based techniques for problems involving matrix manifolds.
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where ¢ = ||¢|| is the angle of rotation, a = ¢/¢ is the axis of rotation, and A turns
¢ € R? into a 3 x 3 member of the Lie algebra, so(3)(Murray et al., 1994),
A
¢1 0 —¢3 ¢
"= | ¢a| = | & 0 —¢if- (3.35)
¢3 —¢2 ¢ 0
Introducing our 4 x 4 homogeneous transformation matrix definition,
Cpo 17’ Cpo —Cparb®
Tou=| 0 P =] bata | (3.36)
0" 1 (I 1
we note that a similar closed-form expression exists by using the exponential map,
CcCJ
T(E) = exp(e) = | o | € SEE) (3.37)

where & € RS, the overloaded operator, A, turns £ into a 4 x 4 member of the Lie algebra

se(3)(Murray et al., 1994; Barfoot and Furgale, 2014),

AN
p ¢" p 3
¢ = = , PR’ 3.38
5 o 0 (3.38)
the rotation matrix, C, can be computed using (3.34), or the identity

C=1+¢"], (3.39)

and J is the (left) Jacobian of SO(3), with the closed-form expression

J(¢) = /01 Coda = Siz¢1 + (1 - Sing)aaT + “%ba& (3.40)

To gain some intuition about J, we note that when d¢p is small

exp(56") exp(¢") ~ exp((d +39)"), 00 = J($)dp, (3.41)

where exp(d¢”) € SO(3) is a small rotation matrix perturbing exp(¢”) € SO(3). Simi-
larly, for SE(3), when de is small (Barfoot and Furgale, 2014, Appendix A),

exp(0€") exp(£") ~ exp((§ + d€)"), 0§ = T(€)de, (3.42)
where J (&) is the (left) Jacobian of SE(3),

J(@) Q(&)

J (&) ::/0 Tadazl 0 1) € R%™ (3.43)
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T is the adjoint transformation matrix,

C C r'C]
T := Ad(T) = Ad < o I ) =14 rC = exp (¢) € R%, (3.44)
(1)* is the SE(3) operator,
A -
P ¢" p
and Q(&) has the closed-form expression
1 sin ¢— cos¢>
Q(¢) = ;p" + 452 (870" + p'¢" +¢APA¢) —25—(¢"¢"p" + p"p"¢"
1—¢—2—cos¢ o— smd)—
] ) (600" 6" + &' p" ") . (3.46)
Lastly, we introduce the logarithmic map,
¢ =In(C)Y € R?, €& =In(T)" € R, (3.47)

where V is the inverse of the overloaded operator A in (3.35) and (3.38).

3.2.2 Homogeneous Points

Using homogeneous coordinates we rewrite a point vector, pZ’“ € R? as,
€

b,a
u |
Py :Zn[ ]:
1 Ul

where 7 is a non-negative scalar that is used to improve Gauss-Newton conditioning issues

€ R*, (3.48)

when points are infinitely far away (Triggs et al., 2000). For simplicity, the derivations
in this thesis will typically assume that n = 1. One of the key strengths in using 4 x 4
homogeneous transformation matrices is how easily we can transform a homogeneous

point expressed in one frame, ga, to another, F5, in a single multiplication:
Py’ = Tya " (3.49)
We also make use of the following identities in our later derivations:
§'p=p°¢, (3.50a)
(Tp)® = Tp° T, (3.50D)
where (+)® is the homogeneous coordinate operator (Barfoot and Furgale, 2014),

©
1 —eN
p° = [:] — [ZT OET € R4XS, (3.51)
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5& ~ N(0,%) exp(6¢") € SE(3) TESE(3) T~ N(T,%)

Figure 3.2: This figure depicts the injection of noise directly onto the SFE(3) manifold for the
random variable T, where T = exp(6¢”) T. From left to right: (i) the uncertainty of 6¢ € RS,
(ii) a depiction of the uncertainty passed through the exponential map, (iii) the operating point,
or mean, of T, and (iv) a depiction of the random variable T on SE(3).

3.2.3 Perturbations

At this point, we have described the necessary mathematical machinery for using trans-
formations and homogeneous points to represent the state of our three-dimensional pose
estimation problem. Recalling the problem formulation set up in Section 3.1.2, we now

write our discrete set of three-dimensional robot poses as
x={To;, Tris.. ., Tris-- . Trit,  Er:= Eron(te), (3.52)

where .7_>:r0b(tk) is the robot frame at the time of measurement k, and the pose state
variables, Ty ;, represent the robot pose with respect to an inertial frame, 51 Note that
we abuse our notation slightly, as x is not a vector; similarly, we also write z = {x, £}.
Next, we must create the connections that allow us to use this state in the probabilistic
batch estimator we derived in Section 3.1.1. As mentioned previously, the key to taking
advantage of this formulation, despite having non-vectorspace state variables, is being
able to formulate a perturbation vector, 6z € RY. Similar to the vectorspace case, we
want to decompose our (desired) posterior state, z, into our best guess, z, and an unknown
perturbation, 6z. For transformation matrices, this is accomplished by leveraging the

exponential map from R® to the SE(3) manifold:
Tr; = exp(d&p,) Trs, (3.53)

where Ty, is our best guess of Tk,i, and exp((5££7i) is a small transformation matrix
that uses the perturbation vector 6§, ; € R® (Barfoot and Furgale, 2014). Within our
estimation framework, this style of constraint-sensitive perturbation serves two distinct
purposes: (i) to allow the use of non-vectorspace state variables in an unconstrained

optimization problem, and (ii) to maintain Gaussian probability distributions associated
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with the non-vectorspace state variables. With respect to optimization, we use the implied

(constraint-sensitive) update equation,
Tj.i ¢ exp(0&y;) Ths, (3.54)

to ensure that Tj,; remains on the SE(3) manifold, despite performing an unconstrained
optimization for the update parameter 6§, ;. In order to handle uncertainties, we use the
approach of Barfoot and Furgale (2014), which is to store uncertainty using the probability
density function: p(0€,,;) = N(0,Xy), where 3y, is a 6 X 6 covariance matrix (see
Figure 3.2); similar approaches to storing uncertainty on SFE(3) are explored by Wang
and Chirikjian (2006, 2008), Chirikjian (2009), Chirikjian and Kyatkin (2016) and Wolfe
et al. (2011). In particular, Chirikjian and Kyatkin (2016) also provides an excellent
background on stochastic processes and extend the conversation to Brownian motion of
rigid bodies in SO(3) x R3,
To handle the landmark parameters, £, we define the homogeneous points

L
pt = [J e R, (3.55)

1

and employ the straightforward perturbation scheme,

T
1000
P =p +Do, D=0 1 0 0 (3.56)
0010

Finally, we are able to write the full state perturbation for a three-dimensional problem:

T
o= (668, .. o€l ... o€k sey el . otk] (3.57)

To firmly establish how these perturbations are connected with the Gauss-Newton esti-
mator in (3.25), we demonstrate the linearization of a typical vision-based observation
model. Choosing to align the robot frame with the sensor frame, grob(t) = gs(t), and
recalling the nonlinear observation error from (3.10), we now write

€, (2) = Yiy — 815(2),  8kj(2) == 8(x4, £;) = K(Ty; py), (3.58)

) G-
where Tj; transforms the homogeneous landmark point, p,””, into the sensor frame, and

k(+) is the nonlinear camera model that projects a homogeneous coordinate into sensor
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coordinates (e.g., pixels coordinates). Noting the composition of two nonlinearities, one

for the sensor model and one for the point transformation, we begin by defining
hy(z) =T, p" (3.59)
Noting the first-order approximation of the exponential map,
exp(ééfg\’i) ~1+ 552@» (3.60)
we substitute our perturbation models to find that
_ A = _l;i
hkj (Z, (SZ) =~ (1 + (5€ka) Tkﬂ' (pZ +D (5£J)
~ T by + 060 Ty + Ty D 6L,
_ iy A\ O _
=Tuip," + (Tk,i B, ) 0 ; + Tr:D 0L;
=hy;(z) + Hy ; 6&; ; + Hygj 645, (3.61)
correct to first order, where
= T 7£j,i - 7[].’@' © _
hkj(Z) = Tk,i pz s Hx,kj = (T;w pz > s Hg’kj = T]wD (362)
Returning to our measurement error term,
€, (2,02) = yij — K(hy;(z) + Hyr; 08 ; + He; 045)
~ Vi — K(hy;(2)) — KijHy g 085 ; — KijHe; 045
= emkj (2) — Gx,kj(sék,i — Gg’kjéﬁj, (363)

correct to first order, where

emkj (i) =Yr — k(hkj(i)), Gx,kj = Kk:ij,kja Ge,kzj = KijE,kja Kkj = (364)

ahkj 2‘
Given that (3.63) has the same form as (3.19b), it is straightforward to see how the
Gauss-Newton estimator from (3.25) can be used to solve for an optimal perturbation,
0z", which includes SE(3) perturbations, 6§, ; € RS. Our best guess of the poses, Ty,

are then updated using the (constraint-sensitive) perturbation scheme in (3.54).

3.3 Constant-Time Algorithms

Recalling the VO paradigm discussed in Chapter 2, we note that the addition of a

new frame, Xx .1, to a batch SLAM problem that has already been solved, will have
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little effect on the majority of the optimal state values (especially older poses that are
spatially distant); the exception to this case is loop closure, which provides spatial data
associations that can drastically change the structure of our pose-chain estimate. Despite
information gain being incremental, the general computational complexity of the batch
SLAM formulation is O(K?® + K2L), or O(L?® + L*K), and becomes intractable to solve
over long traversals. In contrast, filtering approaches inherently exploit this incremental
nature by only estimating the probability distribution over the most recent pose (and
map); however, even filtering approaches will quickly become intractable without proper
map management, and typically provide less accuracy due to linearization choices that

cannot be undone.

3.3.1 Incremental SLAM

In order to exploit the incremental property of SLAM in a batch context, two paradigms
have arisen: (i) incremental smoothing and mapping (iISAM), which relies on algebraic
manipulation (Kaess et al., 2008), and (ii) the sliding window filter (SWF), which finds a
middle ground between the batch and filter-based solutions (Sibley et al., 2008).

The first method, iISAM, is based on exploiting the structure of the square root
information matriz using QR factorization and column approximate minimal degree
(COLAMD) variable reordering (Dellaert and Kaess, 2006). In essence, this technique
directly updates the linear system of equations in light of new information, while only
occasionally relinearizing Jacobians whose operating point has changed significantly.
Notably, the approach incrementally solves the full nonlinear batch optimization problem
without using marginalization.

In contrast, the SWF uses a sliding time window of the most recent measurements to
incrementally approximate the all-time maximum likelihood solution. This is accomplished
by marginalizing old poses (and landmarks no longer seen by an active pose) into a prior
distribution over the oldest pose in the window and the active landmarks which were seen
by marginalized poses; unlike the typical sparse arrowhead structure, this prior over the
map causes Ay to become dense. Drawing parallels to existing solutions, we note that by
varying the size of the window (in number of poses), the SWF technique scales from the
EKF solution to the full batch nonlinear optimization problem.

Notably, both incremental approaches are challenged at loop closure, as spatially

distant data associations can require relinearization of the entire trajectory (spanning the
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Figure 3.3: In the relative SLAM formulation, the full solution is found by incrementally
performing many small batch optimizations. Each of these batch optimization problems estimate
a subset of the full state, defined as the active state, consisting of a connected set of poses
(and the landmarks upon which they depend). (a) In the open-loop case, the active state is
similar to that of a sliding-window-style filter, and usually spans a few of the most recent poses.
(b) At loop closure, the active state contains a few poses from each side; when a landmark is
observed from poses on both sides of the loop closure, it contributes information to not only
the loop-closure estimate, but also the trajectory estimates on each side of the loop closure. (c)
The relative formulation leads to a map that is locally accurate and can be computed in a fast
and incremental fashion; however, the map is globally inconsistent, as resolving it into a single
privileged coordinate frame, or root frame, causes map tears at the far edges.

size of the loop); this is due to the poses (and landmarks) being expressed in a single,
privileged, Euclidean coordinate frame. Therefore, the pitfall of the standard batch SLAM
problem formulation is that the associated cubic complexity cannot be avoided when a

globally consistent map (including large-scale loop closures) is required.

3.3.2 Relative Formulation

The completely relative formulation of the bundle adjustment problem, by Sibley et al.
(2009), is of particular interest to this thesis. The methodology advocates that a privi-
leged coordinate frame is not required to accomplish many common robotic tasks®. By
reformulating the batch optimization problem to use a graph of relative transformations,
an incremental update strategy can be used to find a close approximation of the full

maximum-likelihood solution in constant time — even at loop closure. In implementation,

3The notion of abandoning global metric accuracy in favour of more efficient local topometric accuracy
(Sibley et al., 2009) aligns with the principles of core technologies used in the ASRL. Specifically, our
core autonomy technology, Visual Teach and Repeat (VT&R), operates on a spatio-temporal pose graph,
with no need for a global frame (Furgale and Barfoot, 2010; Stenning et al., 2013).



CHAPTER 3. BATCH ESTIMATION THEORY AND APPLICATIONS FOR SLAM 35

this works by incrementally updating an adaptive region of state variables that are
anticipated to change in light of new information. At loop closure, rather than adjust the
entire pose graph, new topometric information is added to the graph, in constant time.
This technique can be viewed as both a continuous submapping approach and a manifold
representation. Unlike a global coordinate representation, which requires global consistency;,
the spatio-temporal linkages in a manifold representation allow for graph nodes to have

many-to-one world correspondences that are locally consistent and Euclidean.

In contrast to the incremental SLAM strategies discussed in the previous section, we
note a few key differences with this approach: (i) the robot localization is represented by
relative transformation matrices across the edges of a graph, (ii) landmark parameters
are estimated with respect to local poses (i.e., graph nodes), rather than a privileged
frame, and (iii) marginalization is avoided by incrementally solving subsets of the full
batch problem. Although leveraging a sliding-window style, this scheme is distinctly
different from the sliding-window filter, as it does not propagate covariances through
marginalization. In short, by holding older poses ‘locked’; while optimizing for newer
poses and common landmarks, the mean pose estimate exhibits good accuracy, but the
covariance estimates are bound to be overconfident. Figure 3.3(a) illustrates the typical
sliding-window-style estimation for a relative bundle-adjustment problem. Each time a
new frame is added to the system, an optimization problem is run using a subset of the
most recent data to estimate the local pose and landmark parameters in the active state
(shaded region). Although the problem has a cubic solve time in the number of poses
being optimized, estimating only a local subset of recent poses keeps this computation
time constant as the estimator progresses. The advantage of using a relative system is
that when a loop closure is observed, the estimator does not need to optimize over all
the poses in the trajectory in order to optimize the new spatial link; as illustrated in
Figure 3.3(b), a window-style optimization can be performed using temporally linked

poses from both places, and the spatial transformation that relates them.

Compared to a traditional SLAM solution, we note that the relative formulation does
not generate a globally consistent map, as seen in Figure 3.3(c). Starting with a root node,
the map can be put into a single coordinate frame by compounding poses in a breadth
first search (BFS) fashion; this causes map tears at the far edges of loops, as the solution
is over-parameterized and therefore multiple pose chains exist between any one pose and
another. With the exception of a few select tasks, such as globally optimal path planning,

the majority of mobile robotic tasks, such as graph-based planning, navigation, or object
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continuous-time
Gaussian process prior

x(t) ~ GP(X(t), P(t,t"))

Figure 3.4: This figure depicts four trajectory samples (grey lines) drawn from a continuous-time
prior distribution. Using the common Gaussian-process notation (Rasmussen and Williams,
2006), the prior over x(¢) is written as x(t) ~ GP(X(t),P(t,t')), where X(t) is the mean function
(black line) and P(t,t') is the covariance function (shaded region). More intuitively, this prior
can be thought of as a time-evolving Gaussian distribution, where the covariance function has
two time parameters to account for cross-temporal correlations.

avoidance, require only locally accurate information and therefore are well-suited to run

with a constant-time relative SLAM formulation.

3.4 Continuous-Time Trajectory Estimation

Recalling the discussion of asynchronous (motion-distorted) SURF measurements for VO,
in Section 2.2.3, we reiterate that discrete-time representations of robot trajectories do not
perform well when estimating motion from certain types of sensors (e.g., rolling-shutter
cameras and scanning laser-range finders) and sensor combinations (e.g., high data rate,
asynchronous). Specifically, the standard discrete-time batch estimation technique requires
a pose variable for each measurement with a unique timestamp and is therefore subject
to a few issues: (i) sensors that provide high-rate measurements cause the state size to
become unmanageable, (ii) asynchronous visual measurements inadequately constrain
the pose variables (without a motion model or odometry-type measurements to correlate
the poses), and (iii) unsynchronized measurements from multiple sensors are not easily
fused to a common set of state variables. Many works have remedied these types of
situations (for discrete-time batch SLAM) by making ad hoc assumptions about the
smoothness of the trajectory; for example, by using a local, piece-wise, constant-velocity
model (Ait-Aider et al., 2006; Davison et al., 2007; Hedborg et al., 2012; Dong and Barfoot,
2012; Anderson and Barfoot, 2013a), or even more general models based on splines (Bosse

and Zlot, 2009; Bibby and Reid, 2010; Bosse et al., 2012; Zlot and Bosse, 2012, 2014).

Given the nature of the trajectories we wish to estimate and inspired by the power of
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interpolation as a smoothness constraint in the discrete-time batch SLAM problem, we
note that batch continuous-time trajectory estimation is the logical next step. However,
rather than choosing a smoothness constraint ad hoc, it is proposed that the smoothness
assumption should be built directly into the estimator by using a prior distribution over
continuous-time trajectories (see Figure 3.4). Furthermore, we bring to attention that
continuous-time estimation is not a new subject, but has been available since the 1960s
(Kalman and Bucy, 1961; Jazwinski, 1970) and has been predominantly ignored in the
(roughly) two decades of SLAM research.

Building on the foundations of discrete-time batch SLAM and continuous-time filtering
techniques, an explicit probabilistic formulation for batch continuous-time trajectory
estimation was introduced for robotics (Furgale et al., 2012, 2015). Recalling (3.3),
Furgale et al. (2012) propose solving the similar probabilistic problem,

{x(1), £} = argimax p(x(t), £|u(t),y), (3.65)

x(t),
where x(t) is the robot pose at time ¢, over the interval [t(, tx], and u(t) is the continuous-
time control signal. As we are now interested in the full continuous-time trajectory, x(t),
we refer to this subtle SLAM generalization as simultaneous trajectory estimation and
mapping (STEAM). The primary deviation from the discrete-time SLAM derivation is
with respect to the motion model. Similar to (3.1), but in continuous-time, the density

p(x(t)|u(t)) can be described using a stochastic differential equation (SDE),
() = £(x(t), u(t)) + w(t), w(t) ~ GP(0.Qes(t — 1), (3.66)

where f(-) is a nonlinear function, and w(t) is a zero-mean, white Gaussian process, with
covariance function Qgd(t — t') (where Q¢ is a power-spectral-density matrix and d(-) is

Dirac’s delta function). The objective function cost related to the prior is then

B0) = geien 3 [ eun Qe (3.67)

where the error terms are: O
&, = x(fo) — X(to), (3.68a)
e, (t) == e (x(t)) = x(t) — f(x(t),u(t)). (3.68Db)

Alternatively, the prior distribution of trajectories resulting from the solution of (3.66)

can be written as the Gaussian-process prior (see Figure 3.4):

x(t) ~ GP(x(t), P(t,t)), (3.69)
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where X(t) is the prior mean function (driven by the control inputs, u(t)) and P(t,t) is
the prior covariance function (which encapsulates the injection of process noise, w(t)).

Concerning the formulation of observation measurements, we note that the discrete-
time state variables, X;, are simply replaced with temporal samples of the continuous-time
trajectory, X(¢;). Since we cannot perform state estimation on x(¢) directly (as it would
require an infinite number of states) we are forced to choose some sort of discrete
representation. As we will discover, this is not a trivial decision; however, it need not be
direct temporal sampling (as in the discrete-time batch formulation).

Within the STEAM field of research, two paradigms have emerged for continuous-
time trajectory representation: (i) a parametric approach using temporal basis functions
(Furgale et al., 2012; Anderson and Barfoot, 2013b; Lovegrove et al., 2013; Oth et al., 2013;
Anderson et al., 2014; Sommer et al., 2015; Furgale et al., 2015), and (ii) a nonparametric
approach using Gaussian-process regression (Tong et al., 2013; Barfoot et al., 2014;
Anderson et al., 2015a; Anderson and Barfoot, 2015). Additional detail and more specific
references to the existing literature are given in Chapters 5 and 6, where this thesis

provides novel contributions to each of the aforementioned paradigms.

3.5 Summary

In this thesis, we advocate for the use of batch estimation, rather than filtering, in order
to solve the SLAM problem; using modern computing, batch methods have proven to be
more accurate (per unit of computation) than filtering approaches (Strasdat et al., 2010).
In Section 3.1 we reviewed the typical probabilistic formulation for the discrete-time
batch SLAM problem, showed how to perform the optimization using Gauss-Newton, and
described algebraic methods to exploit the general SLAM sparsity patterns. Section 3.2
then presented some relevant Lie group theory that allows us to extend the Gauss-Newton
algorithm to solve six-dimensional problems (involving rotation and translation in three-
dimensions). Strategies to run the batch SLAM estimator incrementally were discussed
in Section 3.3. Finally, Section 3.4 introduced the notion of STEAM, a generalization of
SLAM that uses a batch, continuous-time trajectory estimation scheme. The mathematics
and ideas presented in this chapter form the basis for the contributions and experiments
presented in this thesis. Consequently, it should be expected that the following thesis

chapters will make extensive references to the equations and ideas presented herein.



Chapter 4

Outlier Rejection for

Motion-Distorted 3D Sensors

This chapter describes our novel approach to outlier rejection for sparse-feature data asso-
ciations extracted from sensor data that is susceptible to motion distortion. Recalling our
discussion of the standard VO pipeline in Chapter 2, we note that feature correspondence
(i.e., data association) and outlier rejection are a precursor to finding a trajectory estimate.
Given two sequential sets of sparse features, an initial guess of the data associations
between them is often generated using some type of similarity factor; for vision-based data,
this is an appearance-based feature descriptor, such as the 64-float descriptor used by
SURF. However, descriptors alone do not take into account the geometry of the problem
and are highly prone to generating mismatches. The standard outlier-rejection scheme
for filtering the initial associations is Random Sample Consensus (RANSAC), which
is a nondeterministic algorithm for robustly finding the parameters of a mathematical
model that best describe a likely set of inliers (Fischler and Bolles, 1981). With a global-
shutter camera, the model used in the standard RANSAC algorithm is a single rigid
transformation (i.e., translation and rotation).

The novel contributions of this chapter are: (i) a RANSAC algorithm that uses a 6D
constant-velocity model in order to account for the temporal nature of rolling-shutter-type
images, (ii) approximations to increase the computational efficiency of our algorithm, (iii)
a derivation of the conditions for which our method can be solved, and (iv) an experiment
validation using the 1.1 km lidar intensity image dataset described in Appendix A.
These contributions have appeared in two previous publications. Initial results were first

presented in the proceedings of a full-paper refereed conference (Anderson and Barfoot,

39
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2013a). Combined with the contributions from Chapter 5, this work was later published in
a journal article (Anderson et al., 2015b), which extended the original paper by deriving

the conditions for which our model can be estimated.

4.1 Related Work

The RANSAC algorithm (Fischler and Bolles, 1981) has been highly successful as an
outlier-rejection scheme in the visual pipeline and has become popularized due to its
speed and efficiency. Using global shutter cameras, both the monocular 5-point algorithm
(Nistér, 2004) and stereo-pair, 3-point algorithm (Haralick et al., 1994) are widely used —
most notably on the Mars Exploration Rovers (Maimone et al., 2007). Although the use
of CMOS technology is desirable due to low cost and widespread availability, the addition
of a temporal parameter to the standard camera model causes nontrivial and unhandled
complexities in the mature visual pipeline. Much of the existing rolling-shutter literature
makes use of special cases and there are only a few pieces of work that properly account
for the 6D sensor motion. However, many of these methods stray from using RANSAC as
an outlier-rejection scheme.

Early work by Ait-Aider et al. (2006) develops a nonlinear, least-squares estimator for
the velocity of a monocular rolling-shutter camera over a single frame of data; in order
to find this velocity over only a single image, a known geometric target is used, and the
feature correspondence is supervised. In a separate work, Ait-Aider and Berry (2009)
also develop a batch nonlinear optimization technique for a stereo rig that includes only
one rolling-shutter camera, and one global-shutter camera. Again, this experiment uses a
target with known geometry and easy-to-find feature correspondences. The possibility of
using RANSAC is mentioned, but left as a future extension.

Jia and Evans (2012) apply the extended Kalman filter (EKF) to a monocular rolling-
shutter camera and use predictive measurements from a gyroscope and accelerometer.
In a similar fashion to RANSAC, this algorithm handles outlier rejection by applying
the EKF correction step for multiple feature correspondence hypotheses and checking to
see which update generated the most likely set of inliers. Akin to the classic RANSAC
algorithm, our proposed method does not require additional sensors, such as a gyroscope,
to find feature correspondences.

The primary outlier-rejection scheme for the aforementioned visual pipeline by Hedborg

et al. (2012) is a cross-check method, which forgoes the use of camera geometry and
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instead relies on the use of a feature tracker, such as Kanade-Lucas-Tomasi (KLT) (Lucas
and Kanade, 1981). After an initial bundle-adjustment step, a second stage of outlier
rejection is applied by checking point triangulations from multiple viewpoints. In an
earlier work, Hedborg et al. (2011) noted that the use of a cross check with KLT is ideal for
sensors with a very high framerate. In contrast to the 30Hz camera used by Hedborg et al.
(2011), our method aims to find feature correspondences between rolling-shutter-type
images taken at 2Hz. Furthermore, Hedborg et al. (2011) take advantage of a secondary
rejection step that is tightly coupled with the estimation phase of the visual pipeline. In
the frame-to-frame estimation technique proposed by Dong and Barfoot (2012), a typical
3-point RANSAC algorithm is applied with a very loose threshold that allows for some
outliers. In the estimation phase, a robust M-estimation scheme is then used to try to
minimize the effect of incorrectly matched features. By using a constant-velocity model in
the RANSAC algorithm, the method proposed in this chapter separates outlier rejection

from the estimation phase.

4.2 Problem Formulation

For the feature correspondence problem, we define two sets of corresponding measurements,
Ym,1 and y,, 2, where m = 1... M. Each measurement pair, m, is extracted from sequential
images 1 and 2 at times, t,,; and t,, 2, with a temporal difference of At,, ==, 2 — t;m1.

The sensor models for these measurements are:

ym,l = k(T(tm,l)pm) + nm,la (41&)
Ym,2 = k(T(tm,2)pm) + nm,27 (41b)

where K(-) is the nonlinear camera model, T(¢) is the 4 x 4 homogeneous transform matrix
that specifies the pose of the sensor frame, gs(t), with respect to the inertial frame,
Zi, at time ¢, and the measurement noises, ny,1 ~ N(0,R,, 1) and n,, 2 ~ N(0,R;,5),
are assumed to be normally distributed with covariances R, ; and R,, ». Note that each
measurement pairing, m, is simply the hypothesis of a common landmark, typically
based on the similarity of appearance-based feature descriptors, and may not actually
be projected from the same 3D location, p,, := pfm’i = [EZL 1]T. Therefore, the goal of
outlier rejection is to determine the subset of all M measurement pairs, y,, 1 and y, 2,
that are truly projected from common 3D locations (i.e., the most likely set of inliers).

The structure of the RANSAC algorithm consists of only a few main steps. It begins
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by selecting N random subsets of S measurement pairs, where S is the minimum number
of pairs needed to solve the mathematical model. When using 3D point correspondences,
such as in stereo camera or lidar data, S is typically 3. The number of required iterations,

N, can be chosen using the equation

o ln(l - psucc)
- In(1-p3)

where pguee is the probability of choosing S measurement pairs that are all inliers and py,

(4.2)

is the probability of a single pair, m, being an inlier. The first step (for each of the N
subsets) is to solve a chosen mathematical model®, which in turn can be used to find the

unknown pose change of the sensor frame, T,,, between times ¢,,; and t,, 2,
T, = T(tp2)T(tm1) " (4.3)

An estimate of the transform, generated from the chosen model and minimal number
of measurement pairs, is denoted as T,,. The second step is to apply the transform

hypothesis, T,,, to the measurements y,, 1, using

P2 =TpDm1, Pmi =K " (¥m1), (4.4)
where the calculation of p,,; is independent of the mathematical model and is performed
only once for all M pairs. Note we take advantage of the invertible camera model available
to 3D sensors. This assumption prevents us from directly applying our method to a
monocular rolling-shutter camera; however, with some special care we believe it is possible
to extend our technique for the monocular case. The transformed measurements, p,, 2,

are then reprojected back into measurement space:

ym,Q = k(ﬁm,Q) (45)

Finally, each model is evaluated by finding the number of measurement pairs, y,,; and

Ym.2, that satisfy the criterion:

(Ym2 = ¥m2) Rya(Ym2 = ¥mp2) < @, (4.6)

where « is a threshold on normalized reprojection error. For simplicity, the model with

the highest number of inliers is chosen.

LAt this point in the derivation, we have yet to choose a model. The classic model for vision is simply
a rigid transform. In this thesis, we explore the use of a constant-velocity model.
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4.3 Classic Rigid RANSAC

The mathematical model used in the classic RANSAC algorithm is a single rigid pose
change between two static frames. It does not take into consideration the possibility
of individual measurement times, and in order to use it, we must approximate our
motion-distorted measurements as occurring at nominal image times, t; and f,. The

approximation being made is that
Atm = tm,g — tm71 ~ 52 — LTl. (47)

The transform, T,,, is therefore the same for all pairs, m, and can be solved with only
three non-collinear point pairs, in closed form, using the algorithms presented in Horn
(1987), Arun et al. (1987), or Umeyama (1991). This assumption is reasonable for rolling-
shutter-type images that have little to no distortion. However, under significant motion it
quickly becomes clear that the rigid algorithm is unfit for identifying a good set of inliers.

Setting the threshold on reprojection error, «, appropriately, the rigid RANSAC
algorithm is limited to finding inliers that have a similar temporal difference, At,,. In
practice, we tuned « to find as many inliers as possible (over the whole trajectory),
without including outliers at standstill. Recalling Chapter 2, due to the slow vertical scan
of our sensor, it is only possible to match a temporal band of features at high vehicle
speeds, as seen Figure 2.6(a). Loosening « to allow for more feature matches at high

vehicle speeds also allows for the inclusion of outliers, as seen in Figure 2.6(b).

4.4 Motion-Compensated RANSAC

To compensate for motion during image capture, it is proposed that we can approximate
the motion of the sensor as a constant velocity, zo := [UT wT] T, where v and w are the
linear and angular components, expressed in the sensor frame (Anderson and Barfoot,
2013a). In order to calculate ¥,, 2, we derive the relationship between the sensor velocity,

=z, and the transform T,,. Assuming constant velocity, the desired transform is simply
T,, = exp(At,, =@"). (4.8)

The major difference in moving from a rigid model to a constant-velocity model is that
there now exists a different pose change for each measurement pair, based on their

temporal difference, At,,.
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4.4.1 Nonlinear Least-Squares Estimator

For each of the N subsets, the first major RANSAC step is to solve for the optimal
constant velocity, zo, that minimizes the S paired measurements’ reprojection error. To
do this, we setup a typical nonlinear least-squares estimation scheme, similar to that of a

bundle adjustment problem. The objective function that we wish to minimize is simply

M
1 _
J(w) = 3 mE:1 el R Le,, (4.9)
where the error term is defined as

€, = ym,2 — ym’Q = ym,2 — k(Tmpm,l)- (410)

Note that we avoid estimating the landmark positions by assuming perfect knowledge of
Pm.1 (i-e., no noise on the measurement y,, 1). Similar to our previous estimation schemes,
we formulate a Gauss-Newton problem by linearizing our error, e,,, with a perturbation

to our state variable, zo. Starting with the transformation nonlinearity, we define
h,, () := Trpu,1- (4.11)
Consider the perturbation to the velocity,
T,, = exp(At,, @") = exp(At,, (@ + dw=)"), (4.12)

where ©o is the nominal solution and dzo is the perturbation. Recalling the relationship

between an additive and multiplicative perturbation in (3.42), we find that,

T,, ~ exp(Aty, - (T mdw)") exp(At,, - ") (4.13a)
= exp(Aty - (T b)) T, (4.13b)

where J,, := J(At,,&). Using the small-pose approximation found in (3.60),
T, ~ (14 Aty - (T m6w)") T (4.14)
Applying this perturbation scheme to (4.11), we have
h, (@ + dw) ~ h,, + H,,dw, (4.15)
correct to first order, where,

h, = T,pm1, H, =AW (TnDm1)°T m. (4.16)
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Returning to our measurement error term, we have

en X Ymo — k(h,, + H,,0w) ~ e,, — G,,,070, (4.17)

correct to first order, where

] Ok

€, :=YVm2— k(h,), G, =K,H,, K, = — 4.18
€ y 2 ( ) ah ( )

hy,
Taking our usual Gauss-Newton approach, described in Section 3.1.2, we find the optimal

state update equation for a single iteration:

<Z GﬁR;;QGm) 0w* =Y GIR, e, (4.19)

Using the normal iterative method, we solve the system of equations for dzo*, and update
the nominal solution, @ < @ + 0w, until convergence. The estimator requires a
minimum of three well-spaced point correspondences (shown in Section 4.6). Note that
three is only the minimum number of correspondences required — the estimator can also

be used to improve the zo estimate after finding a larger set of likely inliers.

4.4.2 Point Transformation

In order to compare each of the N constant-velocity models, we must evaluate the
number of inliers. This is done by transforming each of the measurements, y,, 1, into
the corresponding frame, Z)S(th). The required transform, T,,, can be calculated using
(4.8). In contrast to the rigid RANSAC algorithm, which calculates only one transform
per model, our motion-compensated RANSAC algorithm requires that T,, be evaluated

for each pair, m, using each of the N constant-velocity models.

4.5 Fast Motion-Compensated RANSAC

The computation of a transform, T,,, for each measurement pair, m, using each of the N
constant-velocity models, adds a significant amount of overhead to the computational
cost. Furthermore, the iterative estimator has to run for each of the N randomly seeded
measurement subsets. In order to improve the performance of the algorithm, we propose

a Euclidean least-squares estimator and a heuristic for the point-transformation step.
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4.5.1 Euclidean Least-Squares Estimator

We begin by reformulating the error in Euclidean space:

€n = Pm2 — ﬁm,2; ﬁm,2 - Tmpm,la (420)

where, for notational simplicity, we have assumed that n = 1 in our homogeneous point
representation (recall (3.48)). The advantage of this form is that it eliminates the need to
linearize the camera model. The disadvantage is that the algorithm no longer optimizes
with respect to the error that is evaluated in the inlier criterion (4.6).

Given that the two images are sequential, and relatively close in time, we propose
the assumption that T,, is ‘small’, and therefore can be approximated as 1 + At,,wo”.

Inserting this into our error term, we have

en X €y — G, €y :=Pna—Pmi, Gmi=Atyp) . (4.21)

Inserting e, into J(ww) = 13" ele,, and setting 22 = 0, we have

-2
(Z chm> w =) Ghen. (4.22)

which can be solved for zo in one step (i.e., without iteration).

4.5.2 Discretization of Required Transforms

The motion-compensated problem formulation requires the calculation of the transform,
T,,, for each measurement pair, m, using each of the N hypothesized constant-velocity
models. In order to improve computational performance, it is proposed that for each of
the N models, finding only a discretized subset of the transforms is admissible. Based on
the time differences, At,,, the measurement pairs, m, are sorted into a set of discrete bins,
uniformly spaced between the minimum and maximum values of At,,; a transform is then
calculated for each bin, using its centre time. During the evaluation of each measurement

pair, m, the transform T,, is approximated by the appropriate bin transform.

4.6 Minimal Point Set and Sufficient Conditions

Following from the derivation of our nonlinear motion-compensated RANSAC algorithm,

in Section 4.4.1, we now derive the conditions under which we can solve (4.19) for a
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six-dimensional constant velocity. To simplify the derivation, we assume the use of

Euclidean point measurements, defining our camera model as,

k(v) :=v, (4.23)
and using an isotropic covariance,

R, 2 = 0’1, (4.24)

Using these simplifying assumptions, the system of equations in (4.19), becomes,

(Z GgGm> 0w* =Y Gl (Pma — Pma), (4.25)

correct to first order, where

ﬁm,2 = Tmpm,l = eXp(Atmﬁ/\)pm,lv (4263>
G, == Atypy, , T (At @), (4.26Db)

and the points, p,,1 and p,, 2, are matched point measurements, the temporal difference
between measurements is At,,, and @ is the nominal constant-velocity estimate. In an
iterative fashion, the nominal solution is updated, using ¢ < ©o +dw™, and will converge
to a local minimum determined by the objective function and the initial condition.

At this point in the derivation, we require a simplification in order to show the
conditions under which the system is solvable. Rather than make the harsh assumption
that the product At,, @ is small, such that T,, ~ 1 and J (At,, &) ~ 1, as we did in the
fast and approximate implementation of our motion-compensated RANSAC algorithm,

we instead make the less restrictive assumption that At,,zo is small enough, such that,
J (At @) ~ T (AL, @), (4.27)

where the functions J(€) and T (3€) are (Barfoot and Furgale, 2014),

- ]' ]‘A)\ A
nZ:O n+1 V=148 8 Eéé +. (4.282)
T(36) = %(5)—1+£+££+ REEE (1.28b)
n=0

The assumption is correct for terms in G1 G,,, up to order At? , and a good approximation

thereafter for small products of At,,zo. In combination with (3.50b), we find that

G, ~ Aty exp(3At, ") (exp(%Atm@/\)pmJ)@ . (4.29)
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It follows that
> GG, ~ M, (4.30)

where M € R%%6 has the form of a generalized mass matriz (Murray et al., 1994),

M::ZAt;hgThgzl ! 0] [wl 0] [1 er], (4.31)

—wr 1 0 I([(0 1
where
rm _
h,, = [1] = exp(3 At @" )P, w = Zm:Atfn, (4.32a)
1
=— S At’r, I=—-) A (r, —r)\(r, —1r)" 4.32b
SR ML SR (42)

With respect to the conditions under which (4.25) has a unique solution, it follows from
(4.31) that det M = wdetI. Given that At?, > 0, we know w > 0, and therefore the
unique solution of dzo requires only that detI # 0. For this to be true, it is sufficient to
show that I is positive definite, which implies that for any x # 0, we have that x'Ix > 0.

Examining the structure of I, we find that

x'Ix = —XTZAtfn(rm —)r, —r)'x = Z A ((r, — 1)) ((1,, — 1r)"x) > 0.

S

~—

\

Y4

0

(4.33)
Given that all terms in the summation are non-negative, the total must also be non-
negative. In order for the total to be zero, each term of the summation must be zero,
meaning that for each m, either r,, = r, x is parallel to r,, — r, or x = 0. Based on the
first two cases (the last case is not true by assumption), the sufficient conditions to ensure
a unique solution are: (i) that there is a minimum of three points, and (ii) that the three
points are not collinear. In contrast to a typical rigid formulation, we note that this
non-collinearity constraint happens in a wvirtual reference frame, into which the points
Pm,1 are transformed based on the current velocity estimate, zo, and the different time
intervals, At,,; interestingly, this means that the system could be solvable using three

points that are collinear in world space, given a non-zero sensor velocity.

4.7 Appearance-Based Lidar Experiment

In this section, we validate our motion-compensated RANSAC algorithm (MC RANSAC),
and its heuristic variant (MC-Fast RANSAC), using the appearance-based lidar pipeline
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(a) Rigid RANSAC (b) Rigid RANSAC (loose «) (¢) MC RANSAC

Figure 4.1: This figure shows the inlying data associations after applying various configurations
of the RANSAC algorithm. Note that both (a) and (b) used a classic, rigid RANSAC model,
while (c) uses our motion-compensated RANSAC algorithm. The difference between the results
in (a) and (b) is due to the strictness of the inlier threshold, . Note that (a) and (c) use the
same tight inlier threshold, while (b) uses a relaxed threshold that allows for a larger number of
inlying matches (green), but also introduces false positives (red outliers). By using a constant
velocity to model the motion of the sensor, our motion-compensated outlier rejection scheme,
seen in (c), is able to better account for the distortion of the image.

presented in Chapter 2 and the experimental setup described in Appendix A. In contrast
to a typical passive camera which produces imagery at a rate of 15-30 Hz, our lidar sensor
produces intensity imagery at a rate of only 2 Hz, and therefore is susceptible to large

amounts of motion-distortion.

4.7.1 Quality

Here, we take three approaches to validating the quality of the proposed outlier-rejection
schemes. The first is a simple visual inspection of the typical feature-track output of our
motion-compensated RANSAC algorithm, as seen in Figure 4.1(c). During this sequence,
the robot was translating forward while exhibiting a roll-type motion, due to the rough
terrain. The quality of these feature tracks are impressive when contrasted against the
results of the rigid model (shown in Figure 4.1(a) and 4.1(b)) — this is especially true
when we consider that the threshold, a, is the same as the one used in Figure 4.1(a).
The second method used to evaluate the quality of outlier rejection is the output of
both a discrete and a continuous-time SLAM algorithm (recalling the methods described
in Chapters 3). Note that the specific implementation of continuous-time SLAM used for
this result will be described in Chapter 5. The output of each RANSAC algorithm was
used to initialize a set of open-loop feature correspondences. Sliding-window-style batch

estimators were then run over each set of matches to produce an odometry estimate that
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Figure 4.2: Top and side views of the robot trajectory over the whole 1.1km dataset. DGPS
tracks are in black, and the open-loop integration (OLI) of the discrete and continuous-time
relative bundle adjustment solutions are shown in different colours for various RANSAC outlier
rejection schemes. Note that in order to make the discrete bundle adjustment state tractable
and solvable, we assume no motion distortion in the images.

can be compared to GPS ground truth. The output of the SLAM algorithms can be seen
in Figure 4.2; the important result to note is the dramatic performance improvement
between solutions using rigid and motion-compensated outlier rejection schemes. Due to
the ‘slow’ vertical scan of the lidar, the rigid RANSAC algorithm tends to find horizontal
bands of temporally similar features; without a strong distribution of features in the

vertical direction, it is expected that the pitch parameter of the estimation will suffer.

Lastly, we wish to evaluate the quantity of inliers that the algorithm is able to identify.
Although we do not know the true number of inliers between each pair of images, we
can contrast algorithms by comparing the distribution of filtered feature correspondences
against the initial distribution of possible feature matches. Assuming a relatively constant
ratio between inliers and outliers across images, it is expected that the distributions should
have a similar shape to the initial set, but a lower mean number of feature correspondences.
The results of this distribution comparison can be seen in Figure 4.3. Note that both the

motion-compensated and fast motion-compensated algorithms produce a near-identical



CHAPTER 4. OUTLIER REJECTION FOR MOTION-DISTORTED 3D SENSORS 51

1600 I

m— Rigid
= MC
— )[C-Fast
== Initial

1400 —

,_

5]

=]

S
T

1000

600

Number of Image Pairs
o]
£
S

'
S
S

200

I I JJJl

0 100 200 300 400 500 600

Number of Feature Correspondences

Figure 4.3: This figure shows the distribu-
tion of sequential image pairs over the number
of successfully matched feature measurements.
The distribution of ‘initial’ matches indicates
the total number of hypothesized matches
The
rigid, motion-compensated, and fast motion-

before filtering (including outliers).

compensated filters are then applied to gener-
ate the plotted distribution of qualified inliers.

200 :

180 —

160 —

140 =

120 — ,

100 — -

80— —

60— —

Time per iteration (ys)

40~ B

Rigid MC MC-Fast

Figure 4.4: This figure shows the computa-
tional effort for each RANSAC iteration. The
timing is broken down into the three major
pieces of the algorithm: estimating the math-
ematical model (given 3 points), generating
and applying the transform provided by the
model, and reprojecting the Euclidean points
through the spherical camera model. All com-
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with a 2.4GHz processor.

result, which, as expected, is distinctly better than the rigid RANSAC algorithm’s output.

4.7.2 Computational Efficiency

In order to characterize the computational efficiency of each of these algorithms, the time
spent completing each major RANSAC step was recorded over 1500 iterations, for each of
the 6880 frames and averaged, as seen in Figure 4.4. The iteration time is broken down
into three major sections: the time taken to estimate the mathematical model, the time
it takes to generate and apply the transforms, T,,, to each measurement, and the time it
takes to reproject the Euclidean points into spherical coordinates.

The classic rigid RANSAC algorithm is the fastest, as expected; however, quantitative
analysis suggests that the rigid algorithm is completely unfit for use with this sensor.
Moving to the motion-compensated RANSAC algorithm, the large increase in estimation
time is due to the addition of the iterative Gauss-Newton process. The increase in
transformation time is due to the cost of calculating a transformation matrix for each

measurement pair. The fast motion-compensated RANSAC algorithm shows a drastic

reduction in estimation time, although still not as fast as the rigid algorithm. For
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the transformation step, eight discrete transformations were used to approximate the

constant-velocity model, providing a significant speed up, with minimal cost to quality.

4.8 Summary and Conclusions

In this chapter we have proposed a novel adaptation of the standard vision-based RANSAC
algorithm to perform outlier rejection on data associations extracted from motion-distorted
imagery; leveraging both the geometric and temporal measurement data, our algorithm
models the sensor motion as a generalized 6D constant velocity. Using the proposed
constant-velocity model, rather than a rigid transformation model, our algorithm is able
to account for the temporal nature of scanning-type sensors and compensate for motion
distortion in rolling-shutter-type imagery. To improve computational performance, we
propose a variant of the algorithm that uses a Euclidean least-squares estimator and a
heuristic for the point-transformation step. To validate the approach, each algorithm was
applied to a sequence of 6880 lidar intensity /range scans acquired over a 1.1km trajectory.
The methods and results presented in this chapter have previously appeared in both
Anderson and Barfoot (2013a) and Anderson et al. (2015b).

In summary, the contributions of this chapter are:

1. A temporally sensitive adaptation of the vision-based RANSAC algorithm, using a

constant-velocity model to account for motion distortion in 3D data.

2. A heuristic extension of the motion-compensated algorithm that improves computa-

tional performance without any large sacrifice to quality.
3. Derivation of the conditions for which our RANSAC method can be solved.

4. An experimental validation of the algorithm, using SURF features extracted from
a 6880-frame sequence of lidar intensity imagery, captured over a 1.1 kilometer

traversal of rough terrain.

We note that this work was vital in producing the reliable data associations that will be
used for the appearance-based lidar experiments in both Chapters 5 and 6. Furthermore,
our method was also employed by Tong et al. (2014) to produce feature tracks in their
similar lidar-based VO pipeline. Specifically, Tong et al. (2014) used a SICK LMS511
lidar mounted on a panning unit; due to the drastically lower acquisition rate of this lidar,

they experienced even more motion distortion.



Chapter 5

Basis Function Representations for

Trajectories

This chapter describes a novel approach to parametric, continuous-time trajectory es-
timation, in which we adopt the relative coordinate formulation of SLAM (described
in Section 3.3.2). To facilitate the creation of a continuous-time, spatio-temporal pose
graph, the temporal portion of the discrete-time relative approach (which uses a kinematic
chain of relative pose estimates) is transitioned into continuous-time by estimating the
body-centric velocity profile of the robot; this profile can be thought of as a kinematic
chain with an infinite number of relative pose changes. Similar to the discrete solution,