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As the influence of autonomous mobile robots grows stronger on the lives of humans,

so too does the importance of robust and accurate localization (and control). Although

motion-estimation techniques utilizing passive cameras have been a core topic in robotic

research for decades, we note that this technology is unable to produce reliable results in

low-light conditions (which account for roughly half the day). For this reason, sensors that

use active illumination, such as lidar, are an attractive alternative. However, techniques

borrowed from the fields of photogrammetry and computer vision have long steered the

robotics community towards a simultaneous localization and mapping (SLAM) formulation

with a discrete-time trajectory model; this is not well suited for scanning-type sensors,

such as lidar. In this thesis, we assert that a continuous-time model of the trajectory

is a more natural and principled representation for robotic-state estimation. Practical

robotic localization problems often involve finding the smooth trajectory of a mobile

robot. Furthermore, we find that the continuous-time framework lends its abilities quite

naturally to high-rate, unsynchronized, and scanning-type sensors. To this end, we propose

novel continuous-time trajectory representations (both parametric, using weighted basis

functions, and nonparametric, using Gaussian-processes) for robotic state estimation

and demonstrate their use in a batch, continuous-time trajectory estimation framework.

We also present a novel outlier rejection scheme that uses a constant-velocity model

to account for motion distortion. The core algorithms are validated using data from a

two-axis scanning lidar mounted on a robot, collected over a 1.1 kilometer traversal.
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Notation

RM×N : The real coordinate (vector) space of M ×N matrices.
a : Symbols in this font are real scalars, a ∈ R1.
a : Symbols in this font are real column vectors, a ∈ RN .
A : Symbols in this font are real matrices, A ∈ RM×N .
1 : The identity matrix, 1 ∈ RN×N .
0 : The zero matrix, 0 ∈ RM×N .

F−→a : A reference frame in three dimensions.

pc,ba : A vector from point b to point c (denoted by the super-
script) and expressed in F−→a (denoted by the subscript).

pc,ba : The vector pc,ba expressed in homogeneous coordinates.
SO(3) : The special orthogonal group.
so(3) : The Lie algebra associated with SO(3).

Cb,a : The 3 × 3 rotation matrix that transforms vectors from
F−→a to F−→b: vc,bb = Cb,avc,ba , Cb,a ∈ SO(3).

SE(3) : The special Euclidean group.
se(3) : The Lie algebra associated with SE(3).

Tb,a : The 4× 4 transformation matrix that transforms homoge-
neous points from F−→a to F−→b: p

c,b
b = Tb,ap

c,a
a , Tb,a ∈ SE(3).

(·)∧ : The overloaded operator that transforms a vector, φ ∈ R3,
into a 3 × 3 (skew-symmetric) member of so(3), and a
vector, ξ ∈ R6, into a 4× 4 member of se(3).

(·)∨ : The inverse operator of (·)∧.
E[·] : The expectation operator.
p(x) : The a priori probability density of x.

p(x|y) : The posterior probability density of x, given evidence y.
N (µ,Σ) : A Gaussian probability density with mean vector µ and

covariance matrix Σ.
GP(µ(t),Σ(t, t′)) : A Gaussian process with mean function µ(t) and covari-

ance function Σ(t, t′).

(̌·) : An a priori quantity: e.g. p(x) = N (x̌, P̌).

(̂·) : A posterior quantity: e.g. p(x|y) = N (x̂, P̂).
(̄·) : An estimated quantity that acts as an operating point, or

best guess, during nonlinear state estimation.
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Chapter 1

Introduction

(a) An advertisement for the Central Power

and Light Company in 1957. The tag line

suggested that travel would one day be made

more enjoyable and safe through the use of

electricity. (Credit: The Victoria Advocate)

(b) A depiction of Google’s autonomous ve-

hicle prototype in 2015. The driverless ve-

hicle uses a combination of lasers, radars,

and cameras to safely navigate roads shared

with other civilian drivers. (Credit: Google)

Figure 1.1: Self-driving cars.

The dream of having autonomous mobile robots

safely traverse complex civilian settings is becoming

a reality. At the present time, computing power,

sensing capability, and the algorithms to take advan-

tage of them, have peaked at a point where industry

has begun to adopt many of the techniques devel-

oped by the academic robotics community. The

most anticipated result of this ‘collaboration’ is the

arrival of self-driving cars (see Figure 1.1), which

are predicted to be only a few years away from com-

mercialization. Several companies have been very

public about their development (and testing) of au-

tonomous vehicle technology; most notably, Google

Inc. (2015) reports having 48 autonomous vehicles

actively self-driving the public roads of Mountain

View, California, and Austin, Texas, with a collec-

tive 2 million autonomously driven kilometres since

2009. In order to enable this kind of autonomous

navigation in a safe manner, these vehicles must be

able to operate in challenging dynamic situations,

all weather and lighting conditions, and a variety

of environments (e.g., open plains, tunnels, urban

canyons, etc.).

1



Chapter 1. Introduction 2

The focus (and contributions) of this thesis are in the area of mobile robotic localization.

Plainly, a robot localization algorithm is responsible for answering the question: “Where

am I?”. Depending on the intended application, the answer can either be topological (e.g.,

city→ street→ lane), or metric (e.g., translational and rotational coordinates with respect

to a frame of reference). In modern day life, whether driving or walking to a destination,

many citizens have become accustomed to using the Global Positioning System (GPS)

on their cellular devices for real-time localization with respect to a map. Similarly, in

order to navigate an autonomous robot to a destination, we must first determine the

robot’s location in the space that our desired path is defined. However, we note that GPS

technology (although only available on Earth) is often insufficient for terrestrial robot

operation; the reliability and availability of a GPS signal is affected by many typical

operating environments (e.g., urban canyon, underground/mines, indoors/tunnels, or even

forested areas). Furthermore, the installation of infrastructure-based solutions to cover

all of the desired areas of robot operation is often prohibitively expensive, and thus we

rely on onboard sensing to satisfy our localization needs.

Arguably, the most popular onboard sensing modality for three-dimensional motion

estimation is passive camera technology, which has been a core topic in robotics research

for decades (Moravec, 1980). In particular, the use of a stereo camera to perform sparse-

feature-based visual odometry (VO) (Matthies and Shafer, 1987) has remained a leading

paradigm that enables accurate pose estimation over long distances (Sibley et al., 2010);

both the Mars Exploration Rovers (MERs) (Maimone et al., 2007) and the Mars Science

Laboratory (MSL) (Johnson et al., 2008) have used stereo-camera VO for extraterrestrial

motion estimation. Notably, without an a priori map of visual landmarks, exploratory

traverses are forced to localize with respect to a map that is built during the traversal. In

robotics this paradigm is best known as simultaneous localization and mapping (SLAM)

and is mathematically posed as a state estimation problem; that is, given some observations

of the environment, we wish to determine the state of the map, which is typically a set

of positions associated with the landmarks, and the full state of the robot, which is a

temporal set of positions, orientations, velocities, and other quantities (e.g., sensor biases

or calibration parameters), that fully describe the robot and its sensors throughout the

traversal. In contrast to exploratory traverses, we note that autonomous retrotraverse can

be enabled with separate mapping and localization phases (Furgale and Barfoot, 2010).

However, in many cases the most effective way to perform mapping is with SLAM, and

furthermore, because environments are susceptible to change, the map is kept up to date
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(a) A photograph of the ROC6 traversing typical terrain at the Ethier Sand and Gravel pit. Note the large

shadows cast by the robot, and rocks, as the sun begins to set.

(b) A lidar-based reconstruction of the terrain, coloured by elevation. This result uses the appearance-based

lidar pipeline described in Chapter 2, and novel algorithms described in Chapters 4 and 6.

Figure 1.2: This figure shows a photograph and rendering of the ROC6 mobile robot at the

Ethier Sand and Gravel pit in Sudbury, Ontario, Canada. The large black instrument mounted

on the front of the robot is an Autonosys scanning lidar that we use for scanning-while-moving

motion estimation.

by performing SLAM during localization as well.

The downfall of vision-based SLAM, using passive camera technology, is that it relies

on consistent ambient lighting in order to find temporally similar appearance-based

features. In a real-world scenario, such as the test environment shown in Figure 1.2(a),

appearance can differ drastically with changes in lighting conditions; for example, change

in the orientation of shadows, or more severely, the total absence of light. Although

passive cameras have limited use in these severe conditions, the estimation machinery

developed to use sparse appearance-based features is principled and time-tested. Therefore,

a technology we are interested in investigating is the application of these mature visual

techniques to lidar (light radar) data, which is more robust to varying lighting conditions.

This method was originally investigated by McManus et al. (2011), and a detailed review
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of the methodology we follow is described in Chapter 2. In short, due to the scanning

nature of the sensor, assumptions made in the traditional VO pipeline become invalid;

in particular, the methods used for both outlier rejection and the nonlinear numerical

solution require re-evaluation. We overcome these issues by developing new technologies

that consider the temporal nature of the data (see Figure 1.2(b)).

In Chapter 3 we review the mathematical principles underlying the probabilistically

based SLAM estimation problem; this review leads up to, and includes, the recent intro-

duction of a batch continuous-time trajectory estimation framework (Furgale et al., 2012).

In Chapter 4 we introduce a novel Random Sample Consensus (RANSAC) algorithm,

using a constant-velocity model, to perform outlier rejection on our motion-distorted

3D lidar data (Anderson and Barfoot, 2013a; Anderson et al., 2015b). By modelling

the robot trajectory in continuous time, we are able to account for the temporal nature

of scanning-type sensors and expose a subtle generalization of the SLAM problem that

we refer to as simultaneous trajectory estimation and mapping (STEAM). The core

contributions of this thesis adopt the STEAM approach and propose new representations

for the six-degree-of-freedom robot trajectory. Specifically, in Chapter 5 we present a

novel, parametric STEAM algorithm that is able to process loop closures in constant time

(Anderson and Barfoot, 2013b; Anderson et al., 2015b); in essence, this work moves the

relative SLAM formulation (Sibley et al., 2009) into the continuous-time framework by

estimating the body-centric velocity profile of the robot (and the spatial pose changes

associated with loop closures). In Chapter 6 we explore an alternative STEAM formula-

tion based on Gaussian-process (GP) regression; we build upon the initial work of Tong

et al. (2013) and the exactly sparse approach of Barfoot et al. (2014) by introducing:

(i) the use of nonlinear time-varying (NTV) stochastic differential equations (SDE) to

generate exactly sparse GP priors for trajectories in a vectorspace (Anderson et al., 2015a),

and (ii) a novel, exactly sparse, singularity-free, and physically motivated GP prior for

bodies translating and rotating in three-dimensional space (Anderson and Barfoot, 2015).

The core contributions from Chapters 4, 5, and 6 are all validated using a 1.1 kilometre

lidar dataset collected in Sudbury, Ontario, Canada (details in Appendix A). Finally, a

summary of the contributions and discussion of future work are presented in Chapter 7.



Chapter 2

Appearance-Based Lidar Odometry

In this chapter, we review the techniques used in a typical visual odometry (VO) pipeline

and the theory behind using lidar intensity images in lieu of passive camera imagery.

Augmentation of the VO pipeline, for lidar intensity data, was originally investigated by

McManus et al. (2011, 2012), and later followed up by Dong and Barfoot (2012) and Tong

et al. (2014). The methodologies investigated in this thesis build upon these works and are

motivated by the problems described in this chapter. In short, the standard VO pipeline is

not equipped to deal with scanning-type sensors (such as lidar or a rolling-shutter camera)

and requires new technologies to perform outlier rejection and generate a reasonable

nonlinear numerical trajectory estimate.

2.1 Motivation

In cases where an a priori map of the environment does not exist, or localization to

the map has been lost, it is necessary to perform incremental robot localization using

sequential pose change estimates (i.e., odometry) from the available sensor data. In the

most basic sense, odometry can be provided by something as simple as wheel encoders;

however, wheel odometry is fairly undependable in real-world environments. For example,

Matthies et al. (2007) note that (owing to sand) the MERs had a slip rate of 95% on

a 20 degree incline. Although we would typically expect better wheel odometry from a

modern automobile on an asphalt road, more reliable sensing is a necessity.

Vision-based methods have proven to provide reliable and accurate odometric estimates

(in both position and orientation) over long distances (Konolige et al., 2007; Sibley et al.,

2010). These methods operate by identifying and tracking a sparse set of recognizable,

5



Chapter 2. Appearance-Based Lidar Odometry 6

static features across a sequence of images. Camera geometry can then be used to solve

for both the 3D positions of the static features (i.e., landmarks) and the temporal poses1

of the camera. This style of optimization problem is described as bundle adjustment (BA)

and can trace its heritage to the stitching of aerial photography (Brown, 1958). Owing to

the restrictions of computing power, early applications of BA to mobile robotics focused

on a simplified version of the problem, in which stereo-triangulated points were aligned

in a Euclidean frame (Moravec, 1980); this work was later refined (Matthies and Shafer,

1987; Matthies, 1989) and eventually deployed on the MERs (Maimone et al., 2006, 2007)

to provide accurate and reliable odometry estimates on Mars.

As described previously, the problem with using passive cameras as the primary

sensing modality for a robotic platform is that the provided appearance information

is highly dependent on external lighting conditions. The most obvious failure mode of

VO is during low-light conditions (or even complete darkness), when tracking features

reliably becomes difficult (or impossible). Even during ‘daylight’ conditions, Matthies

et al. (2007) specifically note a VO failure on the MERs when the dominant features

were tracking the rover’s own shadow. In an attempt to enable dark navigation with

a passive stereo camera rig, Husmann and Pedersen (2008) used an LED spotlight to

show the promise of High Dynamic Range (HDR) imaging in lunar-analogue conditions;

using this method, it was noted that view range is a limiting factor due to inverse-square

illumination drop off, and that very specialized camera hardware would be required to

enable HDR imaging during continuous locomotion. While vision-based techniques have

been widely adopted due to the low cost and availability of passive camera technology,

we note that photogrammetry techniques are not restricted to the human-visible light

spectrum (this foreshadows the lidar-based technique we review in Section 2.2). An

interesting use of the infrared spectrum was presented by Rankin et al. (2007) in their

work on negative obstacle detection using a thermal camera.

Active sensors, such as lidar, enable more robust odometry under varying lighting

conditions. Furthermore, the wealth of geometric information provided by lidar range mea-

surements have made the sensors very popular for mapping both 2D and 3D environments.

In order to align scans taken from different locations, a wide range of laser-based odometry

techniques have been developed. For 3D pose estimation, a 3D lidar ‘scan’ is traditionally

constructed by concatenating swathes of temporal lidar data into a single point cloud.

1In this thesis, pose is used to indicate both a position and orientation.
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The basis of many point cloud alignment techniques is the Iterative Closest Point (ICP)

algorithm (Besl and McKay, 1992), which iteratively minimizes the least-squared Eu-

clidean error between nearest-neighbour points. Although the basic ICP algorithm is

fairly naive, it can provide impressive odometry estimates when applied sequentially

(Nüchter et al., 2007). There exist a multitude of works based on ICP that typically

modify the optimization problem by using additional information extracted from the point

cloud, such as surface normals or curvatures; Pomerleau et al. (2015) provide an excellent

survey. In general, registration techniques that work with the full dense point clouds tend

to be computationally intensive, and struggle to run online2. An alternative strand of

registration techniques focus on compressing a point cloud into a much smaller number

of points (or features) with a set of associated statistics that retain information about

the original structure. The most successful ‘compression’ techniques in this area of point

cloud registration are the Normalized Distributions Transform (NDT) (Magnusson et al.,

2007) and surfel (surface element) (Zlot and Bosse, 2012) representations; notably, both

techniques use a form of discretization on the points (such as voxelization), followed by an

eigen decomposition of the second-order statistics within each voxel. Pathak et al. (2010)

also achieve online performance with lidar by using a method in which large segments of

lidar data are ‘compressed’ into planar features for fast, closed-form pose-graph-relaxation;

notably their technique relies on stop-and-go motion to avoid motion-distortion over the

large planar features.

Though the use of geometric information has provided impressive odometric results,

it is interesting to note that the secondary lidar data product (i.e., intensity/reflectance

information) is largely discarded by most of the robotic literature. Most applications of

geometric-based lidar odometry have been in urban areas, or mines, where walls, ridges,

and other rich geometric information is typically present; in contrast, a road through

an open plain represents a failure mode for most of these algorithms – using intensity

information, such as the return from white, dashed lane markings, could prevent this

failure. Early work by Neira et al. (1999) investigated the use of intensity and range

images for localization against a known map. Prominent work by Levinson (2011) has

showed the use of lidar intensity information to enable localization and dark navigation

of an autonomous vehicle.

2In robotics, online performance typically implies that the result of an algorithm can be computed
before the next measurement to be processed arrives.
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(a) The ROC6 mobile rover, equipped with an Au-

tonosys LVC0702 lidar and a Thales DG-16 Differ-

ential GPS unit.
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(b) Schematic of the Autonosys LVC0702 (Dong

et al., 2013), showing the nodding and hexagonal

mirrors used to achieve an image-style scan pattern.

Figure 2.1: The Autonosys LVC0702 is a high-framerate amplitude modulated continuous wave

(AMCW) lidar with a pulse repetition rate (PRR) of 500,000 points per second and maximum

range of ∼50 meters. In our experiments, the Autonosys was configured to have a 90◦ horizontal

and 30◦ vertical field of view, and produce 480× 360 images at 2 Hz.

Figure 2.2: This figure depicts corresponding intensity (left) and range (right) images formed

using data from the Autonosys lidar and the methodology developed by McManus et al. (2011).

In this process, image ‘creation’ using lidar is best described as pushing swathes of temporally

sequential lidar scans into a rectilinear image format (where pixel rows and columns roughly

correspond to elevation and azimuth angles). In reality, the robot has moved up to 25 cm during

the 0.5 s it takes to acquire these ‘images’.

2.2 Lidar and the Visual-Odometry Pipeline

Most of the experiments in this thesis leverage a technique, initially explored by McManus

et al. (2011), which fuses the intensity information provided by lidar with the mature

and computationally efficient, vision-based algorithms. The keystone in merging these
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Figure 2.3: This figure shows an example intensity image captured using the Autonosys LVC0702

two-axis scanning lidar. The nonaffine image distortion is caused by a yaw-type motion during

image acquisition. Note the irregular deformation of the square checkerboard pattern.

technologies is the use of a two-axis scanning lidar sensor with high-resolution intensity

information and a fairly high acquisition rate; specifically, we investigate the use of

an Autonosys LVC0702, as seen on our robot in Figure 2.1. We then use the method

developed by McManus et al. (2011) to form the lidar intensity and range data into

images, as seen in Figure 2.2. Sparse appearance-based features are then extracted from

the intensity images and temporally matched. This tactic allows us to perform visual

odometry even in complete darkness (Barfoot et al., 2013).

As with any meshing of technologies, there are often new machineries that need to be

developed. In this case, the development of vision-based algorithms have long assumed

the use of imaging sensors with a global shutter, which are well suited to discrete-time

problem formulations. In contrast to a charge-coupled device (CCD) that has a global

shutter, the slow vertical scan of the Autonosys causes nonaffine image distortion, as

seen in Figure 2.3, based on the velocity of the robot and the capture rate of the sensor.

This is similar in nature to rolling-shutter cameras that use complementary metal-oxide-

semiconductor (CMOS) technology; these scanning-type sensors are often avoided in

robotics due to the added complexity of rolling-shutter-type distortions. In the presence

of motion-distorted imagery, there are three steps in which the traditional visual pipeline

is affected (shown in Figure 2.4): (i) feature extraction, (ii) outlier rejection, and (iii) the

nonlinear numerical solution. In order to adapt these vision-based technologies to use

scanning sensors, this thesis proposes novel methods for both outlier rejection and a

nonlinear numerical solution.
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Figure 2.4: This figure depicts the typical data processing pipeline used for visual odometry

with lidar intensity images (McManus et al., 2013). Beginning with new data, an imagestack is

formed from the intensity, elevation, azimuth, range, and time information. The intensity image

is then post processed, SURF features are extracted, and then matched against features from

the previous image. Outlier rejection (typically a RANSAC algorithm) is then used to qualify a

likely set of inliers from the proposed feature correspondences. In parallel, a place recognition

module may be used to identify whether or not we have visited ‘this’ location previously. Finally,

a nonlinear numerical solution is used to produce a motion/localization estimate. Take special

note that this pipeline is affected by motion distortion in the three highlighted modules: feature

extraction (due to nonaffine image distortion), outlier rejection (due to assumptions made by

traditional RANSAC models), and the nonlinear numerical solution (due to the discrete nature

of the trajectory representation used by typical pose estimation methods).

2.2.1 Keypoint Detection

The experiments in this thesis closely follow the methodology laid out by McManus et al.

(2011) for lidar-based image creation and sparse-feature extraction. In our experiments,

the Autonosys was configured to produce 480× 360 resolution lidar scans at 2 Hz. These

scans are stored as imagestacks, which are a collection of 2D images, containing intensity,

elevation, azimuth, range, and timestamp data. Each pixel in an imagestack corresponds

to a single, individually timestamped, lidar measurement. Notably, the raw intensity

images are post-processed to make them suitable for feature extraction; this is done by

applying an adaptive histogram to equalize areas of high and low reflectance, followed by

a low-pass Gaussian filter.

After processing the intensity images, keypoints are extracted. The goal of keypoint

detection is to find distinctive points in an image that can be robustly tracked as long

as they stay in view. Sparse appearance-based feature extraction is a popular strand

of research in computer vision. Each feature extraction algorithm typically involves

a keypoint detection scheme and a feature descriptor scheme. After the detector has

found an interesting keypoint (typically a corner, edge, or blob), a descriptor algorithm
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Figure 2.5: Qualitative results from the 24-hour experiment conducted by McManus et al.

(2011) comparing intensity images captured from an Optec ILRIS3D survey-grade lidar (top row)

against passive camera imagery (bottom row) at three different times (13:38, 18:12, and 05:43).

Extracted SURF features are overlaid – blue indicating a light blob on a dark background and

red indicating a dark blob on a light background. Note the robustness of SURF detection (in

the top row) despite the drastic changes in lighting.

is used to compress the local image patch into a shorter sequence of values that can be

quickly compared to other keypoints for similarity. In robotics, popular feature extraction

algorithms for VO include Features from Accelerated Segment Test (FAST) (Rosten and

Drummond, 2006), Scale Invariant Feature Transforms (SIFT) (Lowe, 2004), Speeded-Up

Robust Features (SURF) (Bay et al., 2006), and more recently, several binary schemes,

such as Binary Robust Independent Elementary Features (BRIEF) (Calonder et al., 2010),

Binary Robust Invariant Scalable Keypoints (BRISK) (Leutenegger et al., 2011), and

Oriented FAST and Rotated BRIEF (ORB) (Rublee et al., 2011).

Using a survey-grade 3D lidar, McManus et al. (2011) determined that SURF extracted

from intensity imagery could be robustly matched over a 24-hour period, and were

far superior to features extracted from passive camera imagery in low-light conditions

(see Figure 2.5). SURF detects ‘blobs’ of interest at a variety of scales, and encodes
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approximations to the local gradient information used by SIFT into a 64-floating-point-

number descriptor; it has become a very popular choice since being implemented on the

Graphics Processing Unit (GPU), as it can be calculated quickly in parallel, performs well

compared to its ancestor, SIFT, and has even been used to enable quick place recognition

(Cummins and Newman, 2008). Our experiments leverage a highly parallelized SURF

implementation that runs on the GPU.

During continuous movement, intensity imagery is subject to nonaffine motion distor-

tions (due to the temporal nature of lidar technology). It is expected that the performance

of typical feature detectors and descriptors (including SURF) will degrade when the

sensor acquisition rate is inadequate for the platform speed. However, since features are

extracted locally, and the local effect of motion distortion is small, we have found that

SURF performs sufficiently well for our particular configuration (a platform speed of up

to 0.5 m/s, and an Autonosys frame rate of 2 Hz).

2.2.2 Keypoint Tracking and Outlier Rejection

Given a set of temporally acquired images and the extracted features from each image, we

must now determine the feature correspondences (i.e., matches) between the sequential

image pairs. This task is typically accomplished by proposing matches based on the

keypoint’s descriptor similarity, and then performing outlier rejection (usually based on a

geometric model) to eliminate mismatches. In robotics, the most popular way to perform

outlier rejection is RANSAC (Fischler and Bolles, 1981); although arguments can be

made for the benefits of both robust M-estimation (Huber, 1981) and joint-compatibility

methods, such as active matching (Chli and Davison, 2008). RANSAC has become

popularized as an outlier rejection scheme for VO pipelines because it is fast and suitable

for robustly estimating the parameters of a model, despite a large number of outliers.

RANSAC determines the parameters of a model by generating hypotheses and using

consensus to let the data determine the most likely one (i.e., the hypothesis with which

the majority of the data agrees). In order to generate a hypothesis, a set of data (in this

case, matches) are sampled randomly from the proposed set and used to calculate the

model; note that the number of samples that must be drawn to compute a hypothesis

is dependent on the model that is being solved. The challenge in using RANSAC is

that it is not a deterministic algorithm (unless run to exhaustion) and good performance

depends on being able to (probabilistically) draw a set of matches that all belong to
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(a) This figure shows inlying feature tracks after

using a moderate threshold on reprojection error.

Due to fast motion and a slow vertical scan, only a

small temporal band of the features are matched.

(b) This figure shows how relaxing the inlier thresh-

old (for a rigid RANSAC model) allows for a larger

number of inlying matches (green), but also intro-

duces false positives (red outliers).

Figure 2.6: Figures showing the inlying feature tracks after applying a rigid 3-point RANSAC

model on lidar data captured during fairly fast and rough motion.

the inlier set within a reasonable number of iterations. Computational improvements to

RANSAC are usually based on reducing the number of samples required to compute the

model, or determining a criterion that helps bias the random sampler toward selecting

likely inliers. The most general (monocular) model, based on epipolar geometry and the

fundamental matrix, uses 8 points (Longuet-Higgins, 1981; Hartley and Zisserman, 2000).

More suitable models for real-time performance are the monocular 5-point algorithm

(Nistér, 2004), and stereo-pair, 3-point algorithm (Horn, 1987).

Direct application of the traditional 3-point RANSAC algorithm to features extracted

from motion-distorted lidar imagery results in poor outlier rejection, as seen in Figure 2.6;

the scanning nature of lidar violates the assumed rigid rotation and translation model

used by the algorithm. Early experiments conducted by McManus et al. (2013) used

the rigid model and suffered from poor correspondences. Dong and Barfoot (2011) later

employed robust M-estimation as an outlier rejection scheme and more recent work by

Tong et al. (2014) leveraged our novel RANSAC method (contributed in Chapter 4 of this

thesis). The adaptation presented in this thesis is also a 3-point RANSAC algorithm, but

uses a constant-velocity model that can account for the individual timestamps of features.
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(a) In this experiment, a survey grade lidar (Ilris)

was used with a stop-scan-go motion scheme to

judge the potential of lidar intensity imagery for

use in the VO pipeline (McManus et al., 2011).

Notably, the lidar-based odometry performs best
∼100m from the start of the run.
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(b) In this experiment, the Autonosys lidar (run-

ning at 2Hz) was used during continuous locomo-

tion to determine how drastic the effect of motion

distortion is without proper compensation (Mc-

Manus et al., 2013). Note the estimate deteriorates

quickly after a change in orientation.

Figure 2.7: These figures compare VO estimates generated by using both lidar intensity imagery

(blue) and a stereo camera (black). Ground truth was provided by GPS (red).

2.2.3 Nonlinear Numerical Solution

The final step in the VO pipeline is to estimate odometry using the feature tracks that

passed outlier rejection. A rudimentary implementation might simply re-solve the model

used by RANSAC with all of the inliers (rather than the minimal set) in a least-squares

fashion. For example, by taking advantage of depth information, the least-squares 3D-

point-alignment problem (used in the 3-point RANSAC method) can also be solved for

N -points in closed-form (Horn, 1987; Arun et al., 1987; Umeyama, 1991); owing to its

low computational cost and fairly accurate results, this method is ideal for resource

constrained systems, such as the MERs (Matthies et al., 2007).

More recently, easy access to powerful computing has begun to favour more com-

putationally intensive solutions based on batch nonlinear optimization, such as bundle

adjustment (mathematical preliminaries will be provided in Chapter 3). However, owing

to the nature of traditional VO and discrete-time SLAM formulations, they are not

well-suited to handle many challenging sensor outputs; specifically, the use of high-rate,

motion-distorted, or unsynchronized sensors all require special treatments. In our case,

scanning during continuous locomotion causes each SURF feature extracted from the

intensity imagery to be individually timestamped, and in general, traditional discrete-time

batch SLAM estimators require a pose at every measurement time. Placing a discrete

pose at each SURF measurement time causes two problems: (i) the state size becomes

computationally intractable, and (ii) with only one range/bearing measurement at each

discrete pose, the maximum likelihood (ML) problem is ill-conditioned (i.e., unobservable).

Before developing more complex machinery that allows us to properly handle these
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types of sensors, two practical experiments were conducted by McManus et al. (2011).

First, in order to justify lidar intensity imagery as a potentially suitable replacement for

passive camera imagery, an initial experiment compared lidar odometry (using a stop-

scan-go methodology to avoid motion distortion) against stereo VO (see Figure 2.7(a)).

Using the same estimation scheme, the second experiment (seen in Figure 2.7(b)) enabled

continuous locomotion to demonstrate the need for motion compensation.

Outside of research focused on solving the motion-distortion problem, there are two

commonly used strategies to improve odometry estimates from scanning sensors. The

first is to avoid the problem entirely by using a stop-scan-go motion strategy, as employed

by McManus et al. (2011), Nüchter et al. (2007), and Pathak et al. (2010) (although

this strategy has a serious impact on the platform’s freedom of motion). The second, is

to ‘pre-correct’ the distortion by using an estimate of the vehicle’s velocity – provided

by an Inertial Measurement Unit (IMU) or other external sensor. Although this type

of correction leads to satisfactory results, we note that reliance on an additional sensor

is undesirable; in particular, we note that noise from the IMU measurements, failure to

properly estimate IMU biases, and calibration error between the sensors, all become built

into the augmented scans and will contribute to irreversible odometry error. We assert

that a more general approach is to change how the robot’s trajectory is modelled in the

state, such that odometry can be estimated using motion-distorted lidar data alone; then,

additional information about the motion, such as IMU measurements, can be exploited

when, or if, it is available.

In an attempt to augment the discrete-time state formulation for scanning-type sensors,

a few works have employed the use of 3D-pose interpolation (Dong and Barfoot, 2011;

Hedborg et al., 2012; Bosse et al., 2012). The idea behind these techniques is to maintain

a small set of discrete-time keyframes that are used to interpolate a smooth 3D trajectory;

in practice, this is akin to having a discrete pose at each measurement time, where the

chosen interpolation policy enforces a strict smoothness constraint across poses that

exist between keytimes. The result is a (generally) well-conditioned problem, with a

drastically decreased state size. Notably, all three aforementioned works used time as the

interpolation variable between poses, giving rise to a reinterpretation of the formulation

as a continuous-time trajectory estimation problem. Rather than using an ad hoc linear

interpolation scheme, it is proposed that richer trajectory representations can be chosen to

better capture the true motion of the robot. Early investigations of continuous-time batch

estimation have been performed both parametrically, using a weighted sum of temporal
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basis functions (Furgale et al., 2012), and nonparametrically, using a Gaussian Process

(Tong et al., 2012). The core contributions of this thesis are based on these works; in

particular, we explore alternative trajectory representations that aim to improve both

the utility and efficiency of these methods. While more specific information about the

implementation of these methods is left to the later chapters, we note that it is the use of

these continuous-time trajectory formulations that allow us to produce accurate odometry

estimates and maps using motion-distorted lidar imagery.

2.3 Place Recognition

In this thesis, we will go beyond the VO-style nonlinear numerical solutions provided by

Dong and Barfoot (2011) and Tong et al. (2014) by taking advantage of large-scale loop

closures. In essence, by recognizing when the robot has returned to a location that it

has previously traversed, the ‘loop’ can be closed and parameters in the map (i.e., 3D

landmark positions) from the same physical location can be associated – this helps to

improve the metric accuracy of localization, as well as introduce topological linkages that

can be used for navigation. Chapters 5 and 6 each contain a novel algorithm that uses

a relative-pose formulation to process these large-scale loop closures in constant time

(background on the relative SLAM paradigm will be discussed in Chapter 3).

Taking advantage of vision algorithms once again, we note that the use of SURF allows

us to leverage existing Bag-of-Words place-recognition algorithms, such as FAB-MAP

(Cummins and Newman, 2008). However, owing to motion distortion we found that the

standard FAB-MAP methodology did not perform well – instead, we used the extension

of MacTavish and Barfoot (2014). In contrast to the original FAB-MAP algorithm, which

compares a single query image to all of the previously seen images using a Bag-of-Words

descriptor, the modification proposed by MacTavish and Barfoot (2014) describes and

compares groups of images (i.e., they use a bigger bag of words); this modification was

key in enabling more robust place recognition despite motion distortion.

2.4 Summary

In this chapter we reviewed some of the theory and literature related to using lidar

intensity imagery, rather than passive camera imagery, in the VO pipeline. The advantage

of using an active sensor, such as lidar, is that it is almost completely invariant to



Chapter 2. Appearance-Based Lidar Odometry 17

lighting conditions and allows us to operate even in complete darkness. Furthermore, by

extracting sparse appearance-based features from the intensity imagery we are able to

leverage a variety of mature techniques (e.g., feature tracking, RANSAC, Bag-of-Words

place recognition, bundle-adjustment-style estimation). The issue that arises in this fusion

of technologies is motion distortion and the fact that standard vision-based techniques

are not equipped to deal with scanning sensors. Chapters 4, 5, and 6 of this thesis will

propose novel solutions for pieces of the VO pipeline that require special care in order to

account for the temporal nature of the lidar sensor.



Chapter 3

Batch Estimation Theory and

Applications for SLAM

This chapter serves as a mathematical primer on the use of batch estimation for SLAM.

The core contributions of this thesis depend on many of the techniques described in this

chapter. The following sections will introduce: (i) probabilistic theory geared towards the

batch SLAM formulation, (ii) nonlinear optimization using the Gauss-Newton algorithm,

(iii) estimation machinery for the matrix Lie groups SO(3) and SE(3), (iv) variants of the

batch SLAM problem aimed at achieving constant-time performance, and (v) preliminaries

towards estimating a continuous-time robot trajectory.

3.1 Discrete-Time Batch SLAM

Accurately determining a robot’s position with respect to a set of obstacles, landmarks,

or path of interest (i.e., a map), is a precursor to autonomous navigation and control

of a mobile robotic system. In contrast to pure localization (against an a priori map),

simultaneous mapping is absolutely vital in traversing previously unvisited environments.

Since state-of-the-art robotic systems have set their sights on enabling long-term autonomy

in unstructured 3D environments, the importance of robust SLAM technology has only

grown. Even when an a priori map exists, online mapping remains an integral component

of long-term localization engines due to the possibility of vast scene change (e.g., weather,

lighting, or even infrastructure). Recording new ‘experiences’ for life-long SLAM has

enabled some of the most promising results (Churchill and Newman, 2013).

From a mathematical perspective, modern SLAM algorithms continue to leverage

18
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a probabilistic foundation, as it provides a principled and successful model for fusing

measurements from multiple sensors and incorporating a priori knowledge of the state.

The standard state representation for this type of problem continues to be the discrete-

time pose (and sometimes velocity) of the robot, in addition to a set of discrete landmark

positions. The origin of this formulation in the robotics community can be traced back to

the work of Smith et al. (1990), which set the stage for 2D probabilistic SLAM algorithms

to use filtering-based estimation theory (Kalman, 1960). Only much later did Lu and

Milios (1997) derive the full batch problem formulation, using odometry measurements to

smooth the trajectory between landmark observations. Notably, the discrete-time batch

SLAM problem is closely related to that of the (much earlier) bundle adjustment problem

(Brown, 1958); the unique nature of the SLAM problem is that we are estimating the

temporal pose of a single rigid body (in contrast to the individual poses of an unordered

set of aerial cameras). Exploiting the temporal nature of the measurements, a specialized

problem is formed by including an a priori motion model and measurements from other

sensors, such as wheel encoders, compass, IMU, or even lidar.

Despite the batch formulation offering a more accurate solution, filter-based algorithms,

such as the Extended Kalman Filter (EKF) (Kalman, 1960), Sigma-Point Kalman Filter

(Julier and Uhlmann, 1997), and the Particle Filter (Thrun et al., 2001), were widely used

due to their lower computational requirements and ability to run online. However, the

advancement of modern computing power has slowly favoured batch estimation techniques

that were previously too inefficient for practical use. Today, the most successful SLAM

solutions have taken advantage of the batch problem formulation (Thrun and Montemerlo,

2006; Dellaert and Kaess, 2006; Kaess et al., 2008; Sibley et al., 2009; Konolige et al.,

2010), and modern implementations have proven to provide higher accuracy solutions

(per unit of computation) over the filtering-based competitors (Strasdat et al., 2010).

3.1.1 Probabilistic Formulation

In the standard discrete-time batch SLAM formulation, there are two sets of quantities we

are interested in estimating: (i) the pose of the robot at all measurement times, x0:K , and

(ii) a set of static landmarks parameters, `0:L. In order to determine the values of x0:K

and `0:L, we typically use two sources of information. The first is a priori information,

based on our initial knowledge of the robot’s position, x0, and the (known) control inputs,
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u0:K−1, combined with a motion model:

xk+1 = f(xk,uk) + wk, (3.1)

where xk is the pose of the robot at time tk, f(·) is a nonlinear function, uk is the discretized

control input, and wk is the process noise. In order to keep this derivation relatively

straightforward we have assumed that our motion model has an additive process noise.

In general, wk could also be an input parameter of the nonlinear function f(·), as we will

later explore in Chapter 6 (for continuous-time models).

The second piece of information (used to refine the estimate), is an observation

model, which correlates our series of poses, x0:K , through measurements of common static

landmark parameters, `j,

ykj = g(xk, `j) + nkj, (3.2)

where ykj is a sensor measurement, g(·) is a nonlinear measurement model, `j is an

observed point-landmark, and nkj is the sensor noise. In this model, we have again

assumed that the noise, nkj, is additive; however, we note that for observation models

this is a much more common/fair assumption.

Taking the probabilistic approach to discrete-time batch SLAM, the maximum a

posteriori (MAP) problem we wish to solve is

{x̂, ˆ̀} = argmax
x,`

p(x, ` |u, y), (3.3)

where (for convenience) we have defined

x := (x0, . . . , xK) , ` := (`0, . . . , `L) , u := (x̌0,u0, . . . ,uK−1) , y := (y00, . . . , yKL) ,

and {x̂, ˆ̀} is the posterior value of {x, `}. An equivalent solution to (3.3) can be found

by minimizing the negative log likelihood:

{x̂, ˆ̀} = argmin
x,`

(− ln p(x, ` |u, y)) . (3.4)

By assuming that the noise variables, wk and nkj, for k = 0 . . . K, are uncorrelated, we

follow the standard Bayes’ rule derivation1 to rewrite the posterior probability density as,

ln p(x, ` |u, y) = ln p(x0 | x̌0) +
∑
k

ln p(xk+1 | xk,uk) +
∑
kj

ln p(ykj | xk, `j). (3.5)

1The details of the probabilistic SLAM derivation are fairly common knowledge among roboticists.
However, for more details, as well as interesting discussions and demonstrations, I highly recommend
both Barfoot (2016) and Thrun et al. (2005).
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Next, we assume that the above probability densities are Gaussian by setting

x0 ∼ N (x̌0, P̌0), wk ∼ N (0,Qk), nkj ∼ N (0,Rkj), (3.6)

where x̌0 and P̌0 are the prior mean and covariance of the initial position, and the process

noise, wk, and measurement noise, nkj, are normally distributed with covariances Qk

and Rkj, respectively. Finally, by using the models in (3.1) and (3.2), and substituting

the Gaussian distributions into (3.5), and subsequently (3.4), we arrive at the typical

least-squares batch optimization problem:

{x̂, ˆ̀} = argmin
x,`

(
Jp(x) + Jm(x, `) + const.

)
, (3.7)

where Jp(x) is a sum of Mahalanobis distances (i.e., squared-error terms) related to the a

priori data,

Jp(x) :=
1

2
eTp0

P̌−1
0 ep0 +

1

2

∑
k

eTukQ−1
k euk , (3.8)

and similarly, Jm(x, `) is a sum of Mahalanobis distances related to the observations,

Jm(x, `) :=
1

2

∑
kj

eTmkjR
−1
kj emkj , (3.9)

where the error terms are:

ep0 := x0 − x̌0, (3.10a)

euk := xk+1 − f(xk,uk), (3.10b)

emkj := ykj − g(xk, `j). (3.10c)

Defining the objective function,

J(x, `) := Jp(x) + Jm(x, `), (3.11)

the final MAP estimator is simply

{x̂, ˆ̀} = argmin
x,`

J(x, `) . (3.12)

By solving this nonlinear, least-squares problem, we obtain values for x̂ and ˆ̀ that

maximize the joint-likelihood of our data and a priori information. In the absence

of a prior (i.e., the prior is a uniform distribution over all possible robot states), this
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formulation is equivalent to the well understood maximum likelihood (ML) problem. Over

the past decade, an exploding number of works have built upon this probabilistic batch

estimation scheme to solve a variety of problems. Typical extensions include (but are

not limited to): (i) penalty, constraint, and conditioning terms that directly affect the

objective function, (ii) optimization strategies to more efficiently, or robustly, find the

optimal state, and (iii) new parameterizations for the robot or landmark states to improve

utility or performance. The remainder of this chapter will review existing tools and

extensions of the batch framework used by the contributions of this thesis.

3.1.2 Gauss-Newton Algorithm

In this thesis, we take the Gauss-Newton approach to solving the unconstrained nonlinear

optimization problem presented in (3.12). Gauss-Newton is an iterative scheme that

approximates Newton’s method by ignoring the second-order-derivative term in the

Hessian matrix. Defining the joint state vector,

z :=

[
x
`

]
, (3.13)

and the following block quantities,

ep =


ep0

eu0

...

euK−1

 , em =


em00

...

emKL

 ,
Q = diag(P̌0,Q0, . . . ,QK−1), R = diag(R00, . . . ,RKL),

(3.14)

we can rewrite the objective function, J(x, `), in matrix form as

J(z) =
1

2
eTp Q−1ep︸ ︷︷ ︸

prior

+
1

2
eTmR−1em︸ ︷︷ ︸

measurements

, (3.15)

which is quadratic, but not in our state vector, z. In order to linearize the error terms,

we decompose the (desired) posterior state, ẑ, into two components: (i) an operating

point (i.e., best guess of the posterior state), z̄, and (ii) an unknown state perturbation,

δz. Since the state belongs to a vectorspace, we assume that the perturbation is additive:

ẑ = z̄ + δz. (3.16)
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Therefore, by solving the intermediate problem,

δz? = argmin
δz

J(z̄ + δz) , (3.17)

the optimal state perturbation, δz?, can be used to bring our best guess, z̄, closer to the

optimal posterior value, ẑ. In Newton’s method, J(z) is approximated as quadratic by

using a three-term Taylor-series expansion:

J(z̄ + δz) ≈ J(z̄) +

(
∂J(z)

∂z

∣∣∣∣
z̄︸ ︷︷ ︸

Jacobian

)
δz +

1

2
δzT
(
∂2J(z)

∂z∂zT

∣∣∣∣
z̄︸ ︷︷ ︸

Hessian

)
δz. (3.18)

In practice, Newton’s method is seldom used for multivariate problems since the second-

order-derivative terms in the Hessian can be difficult to compute. The Gauss-Newton

method approximates Newton’s method by simply ignoring the second-order derivatives

in the Hessian. Notably, an equivalent approximation is to simply start with a first-order

Taylor-series expansion of the error terms. Following this alternative derivation, the

nonlinear error terms in (3.10) are linearized by substituting the assumption from (3.16),

ep0(z̄ + δz) ≈ ep0(z̄) + δx0, ep0(z̄) = x̄0 − x̌0, (3.19a)

euk(z̄ + δz) ≈ euk(z̄) + δxk+1 − Fk δxk, euk(z̄) = x̄k+1 − f(x̄k,uk), (3.19b)

emkj(z̄ + δz) ≈ emkj(z̄)−Gx,kj δxk −G`,kj δ`j, emkj(z̄) = ykj − g(x̄k, ¯̀j), (3.19c)

where Fk, Gx,kj, and G`,kj are the Jacobian matrices,

Fk :=
∂f(xk,uk)
∂xk

∣∣∣∣
x̄k,uk

, Gx,kj :=
∂g(xk, `j)
∂xk

∣∣∣∣
x̄k,¯̀j

, G`,kj :=
∂g(xk, `j)

∂`j

∣∣∣∣
x̄k,¯̀j

. (3.20)

Rearranging these quantities into matrix form, we write

ep ≈ ēp − F δz, em ≈ ēm −G δz, (3.21)

where

ēp = ep|z̄ , ēm = em|z̄ , F =
∂ep
∂z

∣∣∣∣
z̄
, G =

∂em
∂z

∣∣∣∣
z̄
, (3.22)

and the objective function becomes,

J(z + δz) =
1

2
(ēp − Fδz)TQ−1(ēp − Fδz) +

1

2
(ēm −Gδz)TR−1(ēm −Gδz). (3.23)

Taking the derivative of J(z), with respect to δz, and setting it to zero,

∂TJ(z)

∂δz
= −FTQ−1(ēp − Fδz)−GTR−1(ēm −Gδz) = 0, (3.24)



Chapter 3. Batch Estimation Theory and Applications for SLAM 24

this expression can be rearranged to find the system of linear equations

( Apri︷ ︸︸ ︷
FTQ−1F +

Ameas︷ ︸︸ ︷
GTR−1G︸ ︷︷ ︸

A

)
δz? = FTQ−1ēp + GTR−1ēm︸ ︷︷ ︸

b

, (3.25)

which we can solve for the optimal perturbation, δz? = A−1b. In an iterative fashion,

we then update our best guess, z̄← z̄ + δz?, to convergence, and set the final posterior

estimate, ẑ = z̄. Furthermore, we note that the covariance is simply

cov(δz?, δz?) = A−1. (3.26)

In order to improve the estimator’s convergence and avoid local minima, several strategies

exist to increase the robustness of this nonlinear least-squares solution. In particular,

we make use of robust M-estimation (Huber, 1981) and trust-region solvers, such as

Levenberg-Marquardt (Levenberg, 1944; Marquardt, 1963) and Powell’s Dogleg (Powell,

1970). Increasing robustness remains an active interest in the robotics community due its

importance in online systems; more recent works, such as Sünderhauf and Protzel (2012)

have focused on generalizing outlier rejection within the batch optimization framework.

To aid the following discussion on sparsity, the left- and right-hand side terms of (3.25)

have been labelled; we note that the Apri term comes from the a priori information, and

Ameas is associated with the landmark measurements.

3.1.3 Exploiting Sparsity

In general, the naive complexity of solving the system δz? = A−1b, with K measurement

times and L landmarks, is O((K + L)3). Rewriting the linear system of equations,

A δz? = b, in the 2× 2 block-form,[
Axx Ax`

AT
x` A``

][
δx?

δ`?

]
=

[
bx
b`

]
, (3.27)

we note that the left-hand side has the form,

[
Axx Ax`

AT
x` A``

]
=

Apri︷ ︸︸ ︷[
Y 0
0 0

]
+

Ameas︷ ︸︸ ︷[
U W

WT V

]
, (3.28)

where Y is a block-tridiagonal matrix related to the prior and Ameas is the usual arrowhead

matrix (Brown, 1958), where U and V are block-diagonal, and W is (potentially) dense.
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Figure 3.1: The typical SLAM problem we consider, illustrated as a factor graph. The trajectory

states, xk, are represented as triangles and the landmark parameters, `j , are represented by

hollow circles. The factors (a.k.a. squared-error cost terms) are represented as black dots.

A number of performance-improving techniques have been developed by explicitly

exploiting the sparsity of bundle adjustment problem structure; the estimators presented

in this thesis will primarily leverage the Schur complement and Cholesky decomposition

techniques. Alternatively, we note that factor-graph-based solutions exist (Kaess et al.,

2012); however, for the scope of this thesis, factor graphs are used simply as a tool to

visually represent the structure of a problem, as seen in Figure 3.1.

Schur Complement

The standard sparse bundle adjustment (SBA) algorithm uses the Schur complement to

exploit the sparse structure of A`` by pre-multiplying both sides of (3.27) by[
1 −Ax`A−1

``

0 1

]
, (3.29)

which results in, [
Axx − Ax`A−1

`` AT
x` 0

AT
x` A``

][
δx?

δ`?

]
=

[
b1 − Ax`A−1

`` b2

b2

]
. (3.30)

Using the system above, it is straightforward to solve for δx? while exploiting the block-

diagonal sparsity of A`` to find A−1
`` efficiently. Back-substituting the solution for δx?, we

can then quickly calculate the landmark updates, δ`?. Assuming that the top-left corner,

Axx−Ax`A−1
`` AT

x`, is dense, the complexity is reduced from O((K +L)3) to O(K3 +K2L).

This complexity can be improved further by using a sparse-matrix solver to exploit any

‘secondary sparsity’ that remains in Axx − Ax`A−1
`` AT

x` (Konolige, 2010).
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Sparse Cholesky Decomposition

In Chapter 6, due to the problem formulation and types of experiments, a reverse situation

occurs where we potentially have many more trajectory variables than landmark variables,

L� K, and so we instead wish to exploit the sparsity of Axx. This is a more complicated

situation, as Axx is block-tridiagonal, rather than block-diagonal. In this situation, sparse

(lower-upper) Cholesky decomposition offers an efficient solution,[
Vxx 0
V`x V``

]
︸ ︷︷ ︸

V

[
VT
xx VT

`x

0 VT
``

]
︸ ︷︷ ︸

VT

=

[
Axx AT

`x

A`x A``

]
︸ ︷︷ ︸

A

, (3.31)

in which we are able to decompose VxxVT
xx = Axx in O(K) time; this results in Vxx being

a lower-bidiagonal matrix. Sparing the details, the decomposition phase is performed in

O(L3 + L2K) time. Performing the standard forward-backward passes,

solve for d: V d = b,

solve for δz?: VT δz? = d,

where d is an intermediate variable, the system is then solved in O(L2 + LK) time.

Therefore, the total complexity is dominated by the decomposition, which is O(L3 +L2K).

Notably, this method avoids any direct matrix inversions (which can ruin sparsity and

sometimes cause numerical instability).

3.2 State Estimation Using Matrix Lie Groups

Thus far we have presented the estimation theory and mathematics for solving batch

nonlinear optimization problems with state variables that belong to a vectorspace (i.e.,

z ∈ RN). However, in robotics it is common to have state variables that describe

the orientation, or pose, of the robot in three-dimensional space. The issue with using

rotations and transformations in our probabilistic derivation is that they do not belong to a

vectorspace, but rather to the (noncommutative) matrix Lie groups: the special orthogonal

group, SO(3), and the special Euclidean group, SE(3). Specifically, without special care,

variables that exist on manifolds cannot be directly included in our unconstrained Gauss-

Newton estimator because they violate two of the tools used in our MAP derivation:

(i) the use of an unconstrained additive state perturbation, z = z̄ + δz, δz ∈ RN , and
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(ii) the use of simple Jacobian matrices, F and G, relating the output of our motion and

observation models to changes in the state vector, z ∈ RN .

Notably, several representations exist for three-dimensional rotations; however, naively

choosing a rotation representation can yield undesirable consequences. For example,

a minimal parameterization, such as Euler angles (∈ R3), suffers from singularities,

while over-parameterized representations, such as quaternions (∈ R4), required addi-

tional constraints. In this thesis, we favour using the constraint-sensitive perturbation

schemes detailed in Barfoot and Furgale (2014)2; by using an over-parameterized (but

singularity-free) 4 × 4 homogeneous transformation matrix with a 6 × 1 (constraint-

sensitive) perturbation scheme, the typical downfalls of rotation representations (in the

Gauss-Newton context) are avoided. Note that we do not require a vectorspace state,

z ∈ RN , in order to leverage the iterative Gauss-Newton updates in (3.25), but only a

vectorspace perturbation, δz ∈ RN (assuming that the Gaussian probability densities are

properly handled). The remainder of this chapter section is used to review the mathe-

matical machinery that we leverage for unconstrained nonlinear optimizations involving

rotations, transformations, and homogeneous points.

3.2.1 Rotations, Transformations, and the Exponential Map

We begin by defining the three-dimensional reference frames, F−→a and F−→b, where a vector

from F−→a to F−→b (superscript), expressed in F−→a (subscript), is written vb,aa , and Cb,a is the

3× 3 rotation matrix that transforms vectors from F−→a to F−→b:

vb,ab = Cb,avb,aa , (3.32)

where Cb,a ∈ SO(3) and is subject to the constraints,

Cb,aCT
b,a = 1, det Cb,a = 1. (3.33)

Using the exponential map, we note the closed-form expression

C(φ) := exp(φ∧) = cosφ1 + (1− cosφ)aaT + sinφa∧, (3.34)

2While this thesis provides an overview of the mathematical machinery and identities necessary to
perform Gauss-Newton with transformation matrix state variables, a more detailed understanding of how
the Gaussian uncertainties are handled on SE(3) can be gained by reading Barfoot and Furgale (2014).
Pertaining to optimization, Absil et al. (2009) provides an in-depth discussion of first-order, second-order
and trust-region-based techniques for problems involving matrix manifolds.



Chapter 3. Batch Estimation Theory and Applications for SLAM 28

where φ = ||φ|| is the angle of rotation, a = φ/φ is the axis of rotation, and ∧ turns

φ ∈ R3 into a 3× 3 member of the Lie algebra, so(3)(Murray et al., 1994),

φ∧ :=


φ1

φ2

φ3


∧

:=


0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0

 . (3.35)

Introducing our 4× 4 homogeneous transformation matrix definition,

Tb,a =

[
Cb,a ra,bb
0T 1

]
≡
[

Cb,a −Cb,arb,aa
0T 1

]
, (3.36)

we note that a similar closed-form expression exists by using the exponential map,

T(ξ) := exp(ξ∧) =

[
C Jρ
0T 1

]
∈ SE(3), (3.37)

where ξ ∈ R6, the overloaded operator, ∧, turns ξ into a 4× 4 member of the Lie algebra

se(3)(Murray et al., 1994; Barfoot and Furgale, 2014),

ξ∧ :=

[
ρ

φ

]∧
=

[
φ∧ ρ

0T 0

]
, ρ,φ ∈ R3, (3.38)

the rotation matrix, C, can be computed using (3.34), or the identity

C ≡ 1 + φ∧J, (3.39)

and J is the (left) Jacobian of SO(3), with the closed-form expression

J(φ) :=

∫ 1

0

Cαdα ≡ sinφ

φ
1 +

(
1− sinφ

φ

)
aaT +

1− cosφ

φ
a∧. (3.40)

To gain some intuition about J, we note that when δϕ is small

exp(δφ∧) exp(φ∧) ≈ exp((φ+ δϕ)∧), δφ = J(φ)δϕ, (3.41)

where exp(δφ∧) ∈ SO(3) is a small rotation matrix perturbing exp(φ∧) ∈ SO(3). Simi-

larly, for SE(3), when δε is small (Barfoot and Furgale, 2014, Appendix A),

exp(δξ∧) exp(ξ∧) ≈ exp((ξ + δε)∧), δξ = J (ξ)δε, (3.42)

where J (ξ) is the (left) Jacobian of SE(3),

J (ξ) :=

∫ 1

0

T αdα ≡
[

J(φ) Q(ξ)

0 J(φ)

]
∈ R6×6, (3.43)
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T is the adjoint transformation matrix,

T := Ad(T) = Ad

([
C r
0T 1

])
=

[
C r∧C
0 C

]
= exp (ξf) ∈ R6×6, (3.44)

(·)f is the SE(3) operator,

ξf =

[
ρ

φ

]f
:=

[
φ∧ ρ∧

0 φ∧

]
, (3.45)

and Q(ξ) has the closed-form expression

Q(ξ) :=
1

2
ρ∧ + φ−sinφ

φ3 (φ∧ρ∧ + ρ∧φ∧ + φ∧ρ∧φ∧)− 1−φ
2

2
−cosφ

φ4

(
φ∧φ∧ρ∧ + ρ∧φ∧φ∧

− 3φ∧ρ∧φ∧
)
− 1

2

(
1−φ

2

2
−cosφ

φ4 − 3
φ−sinφ−φ

3

6
φ5

)
(φ∧ρ∧φ∧φ∧ + φ∧φ∧ρ∧φ∧) . (3.46)

Lastly, we introduce the logarithmic map,

φ = ln(C)∨ ∈ R3, ξ = ln(T)∨ ∈ R6, (3.47)

where ∨ is the inverse of the overloaded operator ∧ in (3.35) and (3.38).

3.2.2 Homogeneous Points

Using homogeneous coordinates we rewrite a point vector, pb,aa ∈ R3 as,

pb,aa := η

[
pb,aa
1

]
=

[
ε

η

]
∈ R4, (3.48)

where η is a non-negative scalar that is used to improve Gauss-Newton conditioning issues

when points are infinitely far away (Triggs et al., 2000). For simplicity, the derivations

in this thesis will typically assume that η = 1. One of the key strengths in using 4× 4

homogeneous transformation matrices is how easily we can transform a homogeneous

point expressed in one frame, F−→a, to another, F−→b, in a single multiplication:

pc,bb = Tb,a p
c,a
a . (3.49)

We also make use of the following identities in our later derivations:

ξ∧p ≡ p�ξ, (3.50a)

(Tp)� ≡ Tp�T −1, (3.50b)

where (·)� is the homogeneous coordinate operator (Barfoot and Furgale, 2014),

p� :=

[
ε

η

]�
=

[
η1 −ε∧

0T 0T

]
∈ R4×6. (3.51)
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Figure 3.2: This figure depicts the injection of noise directly onto the SE(3) manifold for the

random variable T, where T = exp(δξ∧) T̄. From left to right: (i) the uncertainty of δξ ∈ R6,

(ii) a depiction of the uncertainty passed through the exponential map, (iii) the operating point,

or mean, of T, and (iv) a depiction of the random variable T on SE(3).

3.2.3 Perturbations

At this point, we have described the necessary mathematical machinery for using trans-

formations and homogeneous points to represent the state of our three-dimensional pose

estimation problem. Recalling the problem formulation set up in Section 3.1.2, we now

write our discrete set of three-dimensional robot poses as

x = {T0,i,T1,i, . . . ,Tk,i, . . . ,TK,i}, F−→k := F−→rob(tk), (3.52)

where F−→rob(tk) is the robot frame at the time of measurement k, and the pose state

variables, Tk,i, represent the robot pose with respect to an inertial frame, F−→i. Note that

we abuse our notation slightly, as x is not a vector; similarly, we also write z = {x, `}.
Next, we must create the connections that allow us to use this state in the probabilistic

batch estimator we derived in Section 3.1.1. As mentioned previously, the key to taking

advantage of this formulation, despite having non-vectorspace state variables, is being

able to formulate a perturbation vector, δz ∈ RN . Similar to the vectorspace case, we

want to decompose our (desired) posterior state, ẑ, into our best guess, z̄, and an unknown

perturbation, δz. For transformation matrices, this is accomplished by leveraging the

exponential map from R6 to the SE(3) manifold:

T̂k,i = exp(δξ∧k,i) T̄k,i, (3.53)

where T̄k,i is our best guess of T̂k,i, and exp(δξ∧k,i) is a small transformation matrix

that uses the perturbation vector δξk,i ∈ R6 (Barfoot and Furgale, 2014). Within our

estimation framework, this style of constraint-sensitive perturbation serves two distinct

purposes: (i) to allow the use of non-vectorspace state variables in an unconstrained

optimization problem, and (ii) to maintain Gaussian probability distributions associated
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with the non-vectorspace state variables. With respect to optimization, we use the implied

(constraint-sensitive) update equation,

T̄k,i ← exp(δξ∧k,i) T̄k,i, (3.54)

to ensure that T̄k,i remains on the SE(3) manifold, despite performing an unconstrained

optimization for the update parameter δξk,i. In order to handle uncertainties, we use the

approach of Barfoot and Furgale (2014), which is to store uncertainty using the probability

density function: p(δξk,i) = N (0,Σk,k), where Σk,k is a 6 × 6 covariance matrix (see

Figure 3.2); similar approaches to storing uncertainty on SE(3) are explored by Wang

and Chirikjian (2006, 2008), Chirikjian (2009), Chirikjian and Kyatkin (2016) and Wolfe

et al. (2011). In particular, Chirikjian and Kyatkin (2016) also provides an excellent

background on stochastic processes and extend the conversation to Brownian motion of

rigid bodies in SO(3)× R3.

To handle the landmark parameters, `, we define the homogeneous points

p
`j ,i
i :=

[
`j

1

]
∈ R4, (3.55)

and employ the straightforward perturbation scheme,

p̂
`j ,i
i = p̄

`j ,i
i + D δ`j, D :=


1 0 0 0

0 1 0 0

0 0 1 0


T

. (3.56)

Finally, we are able to write the full state perturbation for a three-dimensional problem:

δz :=
[
δξT0,i . . . δξ

T
k,i . . . δξ

T
K,i δ`

T
0 . . . δ`Tj . . . δ`

T
L

]T
. (3.57)

To firmly establish how these perturbations are connected with the Gauss-Newton esti-

mator in (3.25), we demonstrate the linearization of a typical vision-based observation

model. Choosing to align the robot frame with the sensor frame, F−→rob(t) = F−→s(t), and

recalling the nonlinear observation error from (3.10), we now write

emkj(z) = ykj − gkj(z), gkj(z) := g(xk, `j) = k(Tk,i p
`j ,i
i ), (3.58)

where Tk,i transforms the homogeneous landmark point, p
`j ,i
i , into the sensor frame, and

k(·) is the nonlinear camera model that projects a homogeneous coordinate into sensor
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coordinates (e.g., pixels coordinates). Noting the composition of two nonlinearities, one

for the sensor model and one for the point transformation, we begin by defining

hkj(z) := Tk,i p
`j ,i
i . (3.59)

Noting the first-order approximation of the exponential map,

exp(δξ∧k,i) ≈ 1 + δξ∧k,i, (3.60)

we substitute our perturbation models to find that

hkj(z̄, δz) ≈
(
1 + δξ∧k,i

)
T̄k,i (p̄

`j ,i
i + D δ`j)

≈ T̄k,i p̄
`j ,i
i + δξ∧k,i T̄k,i p̄

`j ,i
i + T̄k,iD δ`j

= T̄k,i p̄
`j ,i
i +

(
T̄k,i p̄

`j ,i
i

)�
δξk,i + T̄k,iD δ`j

= hkj(z̄) + Hx,kj δξk,i + H`,kj δ`j, (3.61)

correct to first order, where

hkj(z̄) := T̄k,i p̄
`j ,i
i , Hx,kj :=

(
T̄k,i p̄

`j ,i
i

)�
, H`,kj := T̄k,iD. (3.62)

Returning to our measurement error term,

emkj(z̄, δz) ≈ ykj − k(hkj(z̄) + Hx,kj δξk,i + H`,kj δ`j)

≈ ykj − k(hkj(z̄))−KkjHx,kj δξk,i −KkjH`,kj δ`j

= emkj(z̄)−Gx,kjδξk,i −G`,kjδ`j, (3.63)

correct to first order, where

emkj(z̄) := ykj − k(hkj(z̄)), Gx,kj := KkjHx,kj, G`,kj := KkjH`,kj, Kkj :=
∂k
∂hkj

∣∣∣∣
z̄
. (3.64)

Given that (3.63) has the same form as (3.19b), it is straightforward to see how the

Gauss-Newton estimator from (3.25) can be used to solve for an optimal perturbation,

δz?, which includes SE(3) perturbations, δξk,i ∈ R6. Our best guess of the poses, T̄k,i,

are then updated using the (constraint-sensitive) perturbation scheme in (3.54).

3.3 Constant-Time Algorithms

Recalling the VO paradigm discussed in Chapter 2, we note that the addition of a

new frame, xK+1, to a batch SLAM problem that has already been solved, will have
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little effect on the majority of the optimal state values (especially older poses that are

spatially distant); the exception to this case is loop closure, which provides spatial data

associations that can drastically change the structure of our pose-chain estimate. Despite

information gain being incremental, the general computational complexity of the batch

SLAM formulation is O(K3 +K2L), or O(L3 + L2K), and becomes intractable to solve

over long traversals. In contrast, filtering approaches inherently exploit this incremental

nature by only estimating the probability distribution over the most recent pose (and

map); however, even filtering approaches will quickly become intractable without proper

map management, and typically provide less accuracy due to linearization choices that

cannot be undone.

3.3.1 Incremental SLAM

In order to exploit the incremental property of SLAM in a batch context, two paradigms

have arisen: (i) incremental smoothing and mapping (iSAM), which relies on algebraic

manipulation (Kaess et al., 2008), and (ii) the sliding window filter (SWF), which finds a

middle ground between the batch and filter-based solutions (Sibley et al., 2008).

The first method, iSAM, is based on exploiting the structure of the square root

information matrix using QR factorization and column approximate minimal degree

(COLAMD) variable reordering (Dellaert and Kaess, 2006). In essence, this technique

directly updates the linear system of equations in light of new information, while only

occasionally relinearizing Jacobians whose operating point has changed significantly.

Notably, the approach incrementally solves the full nonlinear batch optimization problem

without using marginalization.

In contrast, the SWF uses a sliding time window of the most recent measurements to

incrementally approximate the all-time maximum likelihood solution. This is accomplished

by marginalizing old poses (and landmarks no longer seen by an active pose) into a prior

distribution over the oldest pose in the window and the active landmarks which were seen

by marginalized poses; unlike the typical sparse arrowhead structure, this prior over the

map causes A`` to become dense. Drawing parallels to existing solutions, we note that by

varying the size of the window (in number of poses), the SWF technique scales from the

EKF solution to the full batch nonlinear optimization problem.

Notably, both incremental approaches are challenged at loop closure, as spatially

distant data associations can require relinearization of the entire trajectory (spanning the
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Figure 3.3: In the relative SLAM formulation, the full solution is found by incrementally

performing many small batch optimizations. Each of these batch optimization problems estimate

a subset of the full state, defined as the active state, consisting of a connected set of poses

(and the landmarks upon which they depend). (a) In the open-loop case, the active state is

similar to that of a sliding-window-style filter, and usually spans a few of the most recent poses.

(b) At loop closure, the active state contains a few poses from each side; when a landmark is

observed from poses on both sides of the loop closure, it contributes information to not only

the loop-closure estimate, but also the trajectory estimates on each side of the loop closure. (c)

The relative formulation leads to a map that is locally accurate and can be computed in a fast

and incremental fashion; however, the map is globally inconsistent, as resolving it into a single

privileged coordinate frame, or root frame, causes map tears at the far edges.

size of the loop); this is due to the poses (and landmarks) being expressed in a single,

privileged, Euclidean coordinate frame. Therefore, the pitfall of the standard batch SLAM

problem formulation is that the associated cubic complexity cannot be avoided when a

globally consistent map (including large-scale loop closures) is required.

3.3.2 Relative Formulation

The completely relative formulation of the bundle adjustment problem, by Sibley et al.

(2009), is of particular interest to this thesis. The methodology advocates that a privi-

leged coordinate frame is not required to accomplish many common robotic tasks3. By

reformulating the batch optimization problem to use a graph of relative transformations,

an incremental update strategy can be used to find a close approximation of the full

maximum-likelihood solution in constant time – even at loop closure. In implementation,

3The notion of abandoning global metric accuracy in favour of more efficient local topometric accuracy
(Sibley et al., 2009) aligns with the principles of core technologies used in the ASRL. Specifically, our
core autonomy technology, Visual Teach and Repeat (VT&R), operates on a spatio-temporal pose graph,
with no need for a global frame (Furgale and Barfoot, 2010; Stenning et al., 2013).
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this works by incrementally updating an adaptive region of state variables that are

anticipated to change in light of new information. At loop closure, rather than adjust the

entire pose graph, new topometric information is added to the graph, in constant time.

This technique can be viewed as both a continuous submapping approach and a manifold

representation. Unlike a global coordinate representation, which requires global consistency,

the spatio-temporal linkages in a manifold representation allow for graph nodes to have

many-to-one world correspondences that are locally consistent and Euclidean.

In contrast to the incremental SLAM strategies discussed in the previous section, we

note a few key differences with this approach: (i) the robot localization is represented by

relative transformation matrices across the edges of a graph, (ii) landmark parameters

are estimated with respect to local poses (i.e., graph nodes), rather than a privileged

frame, and (iii) marginalization is avoided by incrementally solving subsets of the full

batch problem. Although leveraging a sliding-window style, this scheme is distinctly

different from the sliding-window filter, as it does not propagate covariances through

marginalization. In short, by holding older poses ‘locked’, while optimizing for newer

poses and common landmarks, the mean pose estimate exhibits good accuracy, but the

covariance estimates are bound to be overconfident. Figure 3.3(a) illustrates the typical

sliding-window-style estimation for a relative bundle-adjustment problem. Each time a

new frame is added to the system, an optimization problem is run using a subset of the

most recent data to estimate the local pose and landmark parameters in the active state

(shaded region). Although the problem has a cubic solve time in the number of poses

being optimized, estimating only a local subset of recent poses keeps this computation

time constant as the estimator progresses. The advantage of using a relative system is

that when a loop closure is observed, the estimator does not need to optimize over all

the poses in the trajectory in order to optimize the new spatial link; as illustrated in

Figure 3.3(b), a window-style optimization can be performed using temporally linked

poses from both places, and the spatial transformation that relates them.

Compared to a traditional SLAM solution, we note that the relative formulation does

not generate a globally consistent map, as seen in Figure 3.3(c). Starting with a root node,

the map can be put into a single coordinate frame by compounding poses in a breadth

first search (BFS) fashion; this causes map tears at the far edges of loops, as the solution

is over-parameterized and therefore multiple pose chains exist between any one pose and

another. With the exception of a few select tasks, such as globally optimal path planning,

the majority of mobile robotic tasks, such as graph-based planning, navigation, or object
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Figure 3.4: This figure depicts four trajectory samples (grey lines) drawn from a continuous-time

prior distribution. Using the common Gaussian-process notation (Rasmussen and Williams,

2006), the prior over x(t) is written as x(t) ∼ GP(x̌(t), P̌(t, t′)), where x̌(t) is the mean function

(black line) and P̌(t, t′) is the covariance function (shaded region). More intuitively, this prior

can be thought of as a time-evolving Gaussian distribution, where the covariance function has

two time parameters to account for cross-temporal correlations.

avoidance, require only locally accurate information and therefore are well-suited to run

with a constant-time relative SLAM formulation.

3.4 Continuous-Time Trajectory Estimation

Recalling the discussion of asynchronous (motion-distorted) SURF measurements for VO,

in Section 2.2.3, we reiterate that discrete-time representations of robot trajectories do not

perform well when estimating motion from certain types of sensors (e.g., rolling-shutter

cameras and scanning laser-range finders) and sensor combinations (e.g., high data rate,

asynchronous). Specifically, the standard discrete-time batch estimation technique requires

a pose variable for each measurement with a unique timestamp and is therefore subject

to a few issues: (i) sensors that provide high-rate measurements cause the state size to

become unmanageable, (ii) asynchronous visual measurements inadequately constrain

the pose variables (without a motion model or odometry-type measurements to correlate

the poses), and (iii) unsynchronized measurements from multiple sensors are not easily

fused to a common set of state variables. Many works have remedied these types of

situations (for discrete-time batch SLAM) by making ad hoc assumptions about the

smoothness of the trajectory; for example, by using a local, piece-wise, constant-velocity

model (Ait-Aider et al., 2006; Davison et al., 2007; Hedborg et al., 2012; Dong and Barfoot,

2012; Anderson and Barfoot, 2013a), or even more general models based on splines (Bosse

and Zlot, 2009; Bibby and Reid, 2010; Bosse et al., 2012; Zlot and Bosse, 2012, 2014).

Given the nature of the trajectories we wish to estimate and inspired by the power of
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interpolation as a smoothness constraint in the discrete-time batch SLAM problem, we

note that batch continuous-time trajectory estimation is the logical next step. However,

rather than choosing a smoothness constraint ad hoc, it is proposed that the smoothness

assumption should be built directly into the estimator by using a prior distribution over

continuous-time trajectories (see Figure 3.4). Furthermore, we bring to attention that

continuous-time estimation is not a new subject, but has been available since the 1960s

(Kalman and Bucy, 1961; Jazwinski, 1970) and has been predominantly ignored in the

(roughly) two decades of SLAM research.

Building on the foundations of discrete-time batch SLAM and continuous-time filtering

techniques, an explicit probabilistic formulation for batch continuous-time trajectory

estimation was introduced for robotics (Furgale et al., 2012, 2015). Recalling (3.3),

Furgale et al. (2012) propose solving the similar probabilistic problem,

{x̂(t), ˆ̀} = argmax
x(t),`

p(x(t), ` |u(t), y), (3.65)

where x(t) is the robot pose at time t, over the interval [t0, tK ], and u(t) is the continuous-

time control signal. As we are now interested in the full continuous-time trajectory, x(t),

we refer to this subtle SLAM generalization as simultaneous trajectory estimation and

mapping (STEAM). The primary deviation from the discrete-time SLAM derivation is

with respect to the motion model. Similar to (3.1), but in continuous-time, the density

p(x(t) |u(t)) can be described using a stochastic differential equation (SDE),

ẋ(t) = f(x(t),u(t)) + w(t), w(t) ∼ GP(0,QCδ(t− t′)), (3.66)

where f(·) is a nonlinear function, and w(t) is a zero-mean, white Gaussian process, with

covariance function QCδ(t− t′) (where QC is a power-spectral-density matrix and δ(·) is

Dirac’s delta function). The objective function cost related to the prior is then

Jp(x(t)) :=
1

2
eTp0

P̌−1
0 ep0 +

1

2

∫ tK

t0

eu(τ)TQ−1
C eu(τ)dτ, (3.67)

where the error terms are:

ep0 := x(t0)− x̌(t0), (3.68a)

eu(t) := eu(x(t)) = ẋ(t)− f(x(t),u(t)). (3.68b)

Alternatively, the prior distribution of trajectories resulting from the solution of (3.66)

can be written as the Gaussian-process prior (see Figure 3.4):

x(t) ∼ GP(x̌(t), P̌(t, t′)), (3.69)
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where x̌(t) is the prior mean function (driven by the control inputs, u(t)) and P̌(t, t′) is

the prior covariance function (which encapsulates the injection of process noise, w(t)).

Concerning the formulation of observation measurements, we note that the discrete-

time state variables, xk, are simply replaced with temporal samples of the continuous-time

trajectory, x(tk). Since we cannot perform state estimation on x(t) directly (as it would

require an infinite number of states) we are forced to choose some sort of discrete

representation. As we will discover, this is not a trivial decision; however, it need not be

direct temporal sampling (as in the discrete-time batch formulation).

Within the STEAM field of research, two paradigms have emerged for continuous-

time trajectory representation: (i) a parametric approach using temporal basis functions

(Furgale et al., 2012; Anderson and Barfoot, 2013b; Lovegrove et al., 2013; Oth et al., 2013;

Anderson et al., 2014; Sommer et al., 2015; Furgale et al., 2015), and (ii) a nonparametric

approach using Gaussian-process regression (Tong et al., 2013; Barfoot et al., 2014;

Anderson et al., 2015a; Anderson and Barfoot, 2015). Additional detail and more specific

references to the existing literature are given in Chapters 5 and 6, where this thesis

provides novel contributions to each of the aforementioned paradigms.

3.5 Summary

In this thesis, we advocate for the use of batch estimation, rather than filtering, in order

to solve the SLAM problem; using modern computing, batch methods have proven to be

more accurate (per unit of computation) than filtering approaches (Strasdat et al., 2010).

In Section 3.1 we reviewed the typical probabilistic formulation for the discrete-time

batch SLAM problem, showed how to perform the optimization using Gauss-Newton, and

described algebraic methods to exploit the general SLAM sparsity patterns. Section 3.2

then presented some relevant Lie group theory that allows us to extend the Gauss-Newton

algorithm to solve six-dimensional problems (involving rotation and translation in three-

dimensions). Strategies to run the batch SLAM estimator incrementally were discussed

in Section 3.3. Finally, Section 3.4 introduced the notion of STEAM, a generalization of

SLAM that uses a batch, continuous-time trajectory estimation scheme. The mathematics

and ideas presented in this chapter form the basis for the contributions and experiments

presented in this thesis. Consequently, it should be expected that the following thesis

chapters will make extensive references to the equations and ideas presented herein.



Chapter 4

Outlier Rejection for

Motion-Distorted 3D Sensors

This chapter describes our novel approach to outlier rejection for sparse-feature data asso-

ciations extracted from sensor data that is susceptible to motion distortion. Recalling our

discussion of the standard VO pipeline in Chapter 2, we note that feature correspondence

(i.e., data association) and outlier rejection are a precursor to finding a trajectory estimate.

Given two sequential sets of sparse features, an initial guess of the data associations

between them is often generated using some type of similarity factor; for vision-based data,

this is an appearance-based feature descriptor, such as the 64-float descriptor used by

SURF. However, descriptors alone do not take into account the geometry of the problem

and are highly prone to generating mismatches. The standard outlier-rejection scheme

for filtering the initial associations is Random Sample Consensus (RANSAC), which

is a nondeterministic algorithm for robustly finding the parameters of a mathematical

model that best describe a likely set of inliers (Fischler and Bolles, 1981). With a global-

shutter camera, the model used in the standard RANSAC algorithm is a single rigid

transformation (i.e., translation and rotation).

The novel contributions of this chapter are: (i) a RANSAC algorithm that uses a 6D

constant-velocity model in order to account for the temporal nature of rolling-shutter-type

images, (ii) approximations to increase the computational efficiency of our algorithm, (iii)

a derivation of the conditions for which our method can be solved, and (iv) an experiment

validation using the 1.1 km lidar intensity image dataset described in Appendix A.

These contributions have appeared in two previous publications. Initial results were first

presented in the proceedings of a full-paper refereed conference (Anderson and Barfoot,

39
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2013a). Combined with the contributions from Chapter 5, this work was later published in

a journal article (Anderson et al., 2015b), which extended the original paper by deriving

the conditions for which our model can be estimated.

4.1 Related Work

The RANSAC algorithm (Fischler and Bolles, 1981) has been highly successful as an

outlier-rejection scheme in the visual pipeline and has become popularized due to its

speed and efficiency. Using global shutter cameras, both the monocular 5-point algorithm

(Nistér, 2004) and stereo-pair, 3-point algorithm (Haralick et al., 1994) are widely used –

most notably on the Mars Exploration Rovers (Maimone et al., 2007). Although the use

of CMOS technology is desirable due to low cost and widespread availability, the addition

of a temporal parameter to the standard camera model causes nontrivial and unhandled

complexities in the mature visual pipeline. Much of the existing rolling-shutter literature

makes use of special cases and there are only a few pieces of work that properly account

for the 6D sensor motion. However, many of these methods stray from using RANSAC as

an outlier-rejection scheme.

Early work by Ait-Aider et al. (2006) develops a nonlinear, least-squares estimator for

the velocity of a monocular rolling-shutter camera over a single frame of data; in order

to find this velocity over only a single image, a known geometric target is used, and the

feature correspondence is supervised. In a separate work, Ait-Aider and Berry (2009)

also develop a batch nonlinear optimization technique for a stereo rig that includes only

one rolling-shutter camera, and one global-shutter camera. Again, this experiment uses a

target with known geometry and easy-to-find feature correspondences. The possibility of

using RANSAC is mentioned, but left as a future extension.

Jia and Evans (2012) apply the extended Kalman filter (EKF) to a monocular rolling-

shutter camera and use predictive measurements from a gyroscope and accelerometer.

In a similar fashion to RANSAC, this algorithm handles outlier rejection by applying

the EKF correction step for multiple feature correspondence hypotheses and checking to

see which update generated the most likely set of inliers. Akin to the classic RANSAC

algorithm, our proposed method does not require additional sensors, such as a gyroscope,

to find feature correspondences.

The primary outlier-rejection scheme for the aforementioned visual pipeline by Hedborg

et al. (2012) is a cross-check method, which forgoes the use of camera geometry and
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instead relies on the use of a feature tracker, such as Kanade-Lucas-Tomasi (KLT) (Lucas

and Kanade, 1981). After an initial bundle-adjustment step, a second stage of outlier

rejection is applied by checking point triangulations from multiple viewpoints. In an

earlier work, Hedborg et al. (2011) noted that the use of a cross check with KLT is ideal for

sensors with a very high framerate. In contrast to the 30Hz camera used by Hedborg et al.

(2011), our method aims to find feature correspondences between rolling-shutter-type

images taken at 2Hz. Furthermore, Hedborg et al. (2011) take advantage of a secondary

rejection step that is tightly coupled with the estimation phase of the visual pipeline. In

the frame-to-frame estimation technique proposed by Dong and Barfoot (2012), a typical

3-point RANSAC algorithm is applied with a very loose threshold that allows for some

outliers. In the estimation phase, a robust M-estimation scheme is then used to try to

minimize the effect of incorrectly matched features. By using a constant-velocity model in

the RANSAC algorithm, the method proposed in this chapter separates outlier rejection

from the estimation phase.

4.2 Problem Formulation

For the feature correspondence problem, we define two sets of corresponding measurements,

ym,1 and ym,2, where m = 1 . . .M . Each measurement pair, m, is extracted from sequential

images 1 and 2 at times, tm,1 and tm,2, with a temporal difference of ∆tm := tm,2 − tm,1.

The sensor models for these measurements are:

ym,1 := k(T(tm,1)pm) + nm,1, (4.1a)

ym,2 := k(T(tm,2)pm) + nm,2, (4.1b)

where k(·) is the nonlinear camera model, T(t) is the 4× 4 homogeneous transform matrix

that specifies the pose of the sensor frame, F−→s(t), with respect to the inertial frame,

F−→i, at time t, and the measurement noises, nm,1 ∼ N (0,Rm,1) and nm,2 ∼ N (0,Rm,2),

are assumed to be normally distributed with covariances Rm,1 and Rm,2. Note that each

measurement pairing, m, is simply the hypothesis of a common landmark, typically

based on the similarity of appearance-based feature descriptors, and may not actually

be projected from the same 3D location, pm := p`m,ii =
[
`Tm 1

]T
. Therefore, the goal of

outlier rejection is to determine the subset of all M measurement pairs, ym,1 and ym,2,
that are truly projected from common 3D locations (i.e., the most likely set of inliers).

The structure of the RANSAC algorithm consists of only a few main steps. It begins
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by selecting N random subsets of S measurement pairs, where S is the minimum number

of pairs needed to solve the mathematical model. When using 3D point correspondences,

such as in stereo camera or lidar data, S is typically 3. The number of required iterations,

N , can be chosen using the equation

N =
ln(1− psucc)

ln(1− pSin)
, (4.2)

where psucc is the probability of choosing S measurement pairs that are all inliers and pin

is the probability of a single pair, m, being an inlier. The first step (for each of the N

subsets) is to solve a chosen mathematical model1, which in turn can be used to find the

unknown pose change of the sensor frame, Tm, between times tm,1 and tm,2,

Tm := T(tm,2)T(tm,1)−1. (4.3)

An estimate of the transform, generated from the chosen model and minimal number

of measurement pairs, is denoted as T̄m. The second step is to apply the transform

hypothesis, T̄m, to the measurements ym,1, using

p̄m,2 := T̄mpm,1, pm,1 := k−1(ym,1), (4.4)

where the calculation of pm,1 is independent of the mathematical model and is performed

only once for all M pairs. Note we take advantage of the invertible camera model available

to 3D sensors. This assumption prevents us from directly applying our method to a

monocular rolling-shutter camera; however, with some special care we believe it is possible

to extend our technique for the monocular case. The transformed measurements, p̄m,2,

are then reprojected back into measurement space:

ȳm,2 := k(p̄m,2). (4.5)

Finally, each model is evaluated by finding the number of measurement pairs, ym,1 and

ym,2, that satisfy the criterion:

(ym,2 − ȳm,2)TR−1
m,2(ym,2 − ȳm,2) < α, (4.6)

where α is a threshold on normalized reprojection error. For simplicity, the model with

the highest number of inliers is chosen.

1At this point in the derivation, we have yet to choose a model. The classic model for vision is simply
a rigid transform. In this thesis, we explore the use of a constant-velocity model.
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4.3 Classic Rigid RANSAC

The mathematical model used in the classic RANSAC algorithm is a single rigid pose

change between two static frames. It does not take into consideration the possibility

of individual measurement times, and in order to use it, we must approximate our

motion-distorted measurements as occurring at nominal image times, t̄1 and t̄2. The

approximation being made is that

∆tm = tm,2 − tm,1 ≈ t̄2 − t̄1. (4.7)

The transform, Tm, is therefore the same for all pairs, m, and can be solved with only

three non-collinear point pairs, in closed form, using the algorithms presented in Horn

(1987), Arun et al. (1987), or Umeyama (1991). This assumption is reasonable for rolling-

shutter-type images that have little to no distortion. However, under significant motion it

quickly becomes clear that the rigid algorithm is unfit for identifying a good set of inliers.

Setting the threshold on reprojection error, α, appropriately, the rigid RANSAC

algorithm is limited to finding inliers that have a similar temporal difference, ∆tm. In

practice, we tuned α to find as many inliers as possible (over the whole trajectory),

without including outliers at standstill. Recalling Chapter 2, due to the slow vertical scan

of our sensor, it is only possible to match a temporal band of features at high vehicle

speeds, as seen Figure 2.6(a). Loosening α to allow for more feature matches at high

vehicle speeds also allows for the inclusion of outliers, as seen in Figure 2.6(b).

4.4 Motion-Compensated RANSAC

To compensate for motion during image capture, it is proposed that we can approximate

the motion of the sensor as a constant velocity, $ :=
[
νT ωT

]T
, where ν and ω are the

linear and angular components, expressed in the sensor frame (Anderson and Barfoot,

2013a). In order to calculate ȳm,2, we derive the relationship between the sensor velocity,

$, and the transform Tm. Assuming constant velocity, the desired transform is simply

Tm = exp(∆tm$
∧). (4.8)

The major difference in moving from a rigid model to a constant-velocity model is that

there now exists a different pose change for each measurement pair, based on their

temporal difference, ∆tm.
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4.4.1 Nonlinear Least-Squares Estimator

For each of the N subsets, the first major RANSAC step is to solve for the optimal

constant velocity, $, that minimizes the S paired measurements’ reprojection error. To

do this, we setup a typical nonlinear least-squares estimation scheme, similar to that of a

bundle adjustment problem. The objective function that we wish to minimize is simply

J($) :=
1

2

M∑
m=1

eTmR−1
m,2em, (4.9)

where the error term is defined as

em := ym,2 − ȳm,2 = ym,2 − k(Tmpm,1). (4.10)

Note that we avoid estimating the landmark positions by assuming perfect knowledge of

pm,1 (i.e., no noise on the measurement ym,1). Similar to our previous estimation schemes,

we formulate a Gauss-Newton problem by linearizing our error, em, with a perturbation

to our state variable, $. Starting with the transformation nonlinearity, we define

hm($) := Tmpm,1. (4.11)

Consider the perturbation to the velocity,

Tm = exp(∆tm$
∧) = exp(∆tm ($̄ + δ$)∧), (4.12)

where $̄ is the nominal solution and δ$ is the perturbation. Recalling the relationship

between an additive and multiplicative perturbation in (3.42), we find that,

Tm ≈ exp(∆tm · (J̄mδ$)∧) exp(∆tm · $̄∧) (4.13a)

= exp(∆tm · (J̄mδ$)∧)T̄m, (4.13b)

where J̄m := J (∆tm$̄). Using the small-pose approximation found in (3.60),

Tm ≈ (1 + ∆tm · (J̄mδ$)∧)T̄m. (4.14)

Applying this perturbation scheme to (4.11), we have

hm($̄ + δ$) ≈ h̄m + Hmδ$, (4.15)

correct to first order, where,

h̄m := T̄mpm,1, Hm := ∆tm(T̄mpm,1)�J̄m. (4.16)
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Returning to our measurement error term, we have

em ≈ ym,2 − k(h̄m + Hmδ$) ≈ ēm −Gmδ$, (4.17)

correct to first order, where

ēm := ym,2 − k(h̄m), Gm := KmHm, Km :=
∂k
∂h

∣∣∣∣
h̄m
. (4.18)

Taking our usual Gauss-Newton approach, described in Section 3.1.2, we find the optimal

state update equation for a single iteration:(∑
m

GT
mR−1

m,2Gm

)
δ$? =

∑
m

GT
mR−1

m,2ēm. (4.19)

Using the normal iterative method, we solve the system of equations for δ$?, and update

the nominal solution, $̄ ← $̄ + δ$?, until convergence. The estimator requires a

minimum of three well-spaced point correspondences (shown in Section 4.6). Note that

three is only the minimum number of correspondences required – the estimator can also

be used to improve the $ estimate after finding a larger set of likely inliers.

4.4.2 Point Transformation

In order to compare each of the N constant-velocity models, we must evaluate the

number of inliers. This is done by transforming each of the measurements, ym,1, into

the corresponding frame, F−→s(tm,2). The required transform, Tm, can be calculated using

(4.8). In contrast to the rigid RANSAC algorithm, which calculates only one transform

per model, our motion-compensated RANSAC algorithm requires that Tm be evaluated

for each pair, m, using each of the N constant-velocity models.

4.5 Fast Motion-Compensated RANSAC

The computation of a transform, Tm, for each measurement pair, m, using each of the N

constant-velocity models, adds a significant amount of overhead to the computational

cost. Furthermore, the iterative estimator has to run for each of the N randomly seeded

measurement subsets. In order to improve the performance of the algorithm, we propose

a Euclidean least-squares estimator and a heuristic for the point-transformation step.
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4.5.1 Euclidean Least-Squares Estimator

We begin by reformulating the error in Euclidean space:

em := pm,2 − p̄m,2, p̄m,2 = Tmpm,1, (4.20)

where, for notational simplicity, we have assumed that η = 1 in our homogeneous point

representation (recall (3.48)). The advantage of this form is that it eliminates the need to

linearize the camera model. The disadvantage is that the algorithm no longer optimizes

with respect to the error that is evaluated in the inlier criterion (4.6).

Given that the two images are sequential, and relatively close in time, we propose

the assumption that Tm is ‘small’, and therefore can be approximated as 1 + ∆tm$
∧.

Inserting this into our error term, we have

em ≈ ēm −Gm$, ēm := pm,2 − pm,1, Gm := ∆tmp
�
m,1. (4.21)

Inserting em into J($) = 1
2

∑
m eTmem and setting ∂J

∂$T = 0, we have(∑
m

GT
mGm

)
$ =

∑
m

GT
mem, (4.22)

which can be solved for $ in one step (i.e., without iteration).

4.5.2 Discretization of Required Transforms

The motion-compensated problem formulation requires the calculation of the transform,

Tm, for each measurement pair, m, using each of the N hypothesized constant-velocity

models. In order to improve computational performance, it is proposed that for each of

the N models, finding only a discretized subset of the transforms is admissible. Based on

the time differences, ∆tm, the measurement pairs, m, are sorted into a set of discrete bins,

uniformly spaced between the minimum and maximum values of ∆tm; a transform is then

calculated for each bin, using its centre time. During the evaluation of each measurement

pair, m, the transform Tm is approximated by the appropriate bin transform.

4.6 Minimal Point Set and Sufficient Conditions

Following from the derivation of our nonlinear motion-compensated RANSAC algorithm,

in Section 4.4.1, we now derive the conditions under which we can solve (4.19) for a
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six-dimensional constant velocity. To simplify the derivation, we assume the use of

Euclidean point measurements, defining our camera model as,

k(v) := v, (4.23)

and using an isotropic covariance,

Rm,2 = σ21. (4.24)

Using these simplifying assumptions, the system of equations in (4.19), becomes,(∑
m

GT
mGm

)
δ$? =

∑
m

GT
m(pm,2 − p̄m,2), (4.25)

correct to first order, where

p̄m,2 := T̄mpm,1 = exp(∆tm$̄
∧)pm,1, (4.26a)

Gm := ∆tmp̄
�
m,2J (∆tm$̄), (4.26b)

and the points, pm,1 and pm,2, are matched point measurements, the temporal difference

between measurements is ∆tm, and $̄ is the nominal constant-velocity estimate. In an

iterative fashion, the nominal solution is updated, using $̄ ← $̄+δ$?, and will converge

to a local minimum determined by the objective function and the initial condition.

At this point in the derivation, we require a simplification in order to show the

conditions under which the system is solvable. Rather than make the harsh assumption

that the product ∆tm$̄ is small, such that T̄m ≈ 1 and J (∆tm$̄) ≈ 1, as we did in the

fast and approximate implementation of our motion-compensated RANSAC algorithm,

we instead make the less restrictive assumption that ∆tm$̄ is small enough, such that,

J (∆tm$̄) ≈ T (1
2
∆tm$̄), (4.27)

where the functions J (ξ) and T (1
2
ξ) are (Barfoot and Furgale, 2014),

J (ξ) =
∞∑
n=0

1

(n+ 1)!
(ξf)n = 1 +

1

2
ξf +

1

6
ξfξf +

1

24
ξfξfξf + . . . , (4.28a)

T (1
2
ξ) =

∞∑
n=0

1

n!
(1

2
ξf)n = 1 +

1

2
ξf +

1

8
ξfξf +

1

48
ξfξfξf + . . . . (4.28b)

The assumption is correct for terms in GT
mGm up to order ∆t3m, and a good approximation

thereafter for small products of ∆tm$̄. In combination with (3.50b), we find that

Gm ≈ ∆tm exp(1
2
∆tm$̄

∧)
(
exp(1

2
∆tm$̄

∧)pm,1
)�
. (4.29)
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It follows that ∑
m

GT
mGm ≈M, (4.30)

where M ∈ R6×6 has the form of a generalized mass matrix (Murray et al., 1994),

M :=
∑
m

∆t2mh�m
Th�m =

[
1 0
−wr∧ 1

][
w1 0
0 I

][
1 wr∧

0 1

]
, (4.31)

where

hm =

[
rm
1

]
= exp(1

2
∆tm$̄

∧)pm,1, w =
∑
m

∆t2m, (4.32a)

r =
1

w

∑
m

∆t2mrm, I = −
∑
m

∆t2m(rm − r)∧(rm − r)∧. (4.32b)

With respect to the conditions under which (4.25) has a unique solution, it follows from

(4.31) that detM = w det I. Given that ∆t2m > 0, we know w > 0, and therefore the

unique solution of δ$ requires only that det I 6= 0. For this to be true, it is sufficient to

show that I is positive definite, which implies that for any x 6= 0, we have that xT I x > 0.

Examining the structure of I, we find that

xT I x = −xT
∑
m

∆t2m(rm − r)∧(rm − r)∧x =
∑
m

∆t2m ((rm − r)∧x)T ((rm − r)∧x)︸ ︷︷ ︸
≥0

≥ 0.

(4.33)

Given that all terms in the summation are non-negative, the total must also be non-

negative. In order for the total to be zero, each term of the summation must be zero,

meaning that for each m, either rm = r, x is parallel to rm − r, or x = 0. Based on the

first two cases (the last case is not true by assumption), the sufficient conditions to ensure

a unique solution are: (i) that there is a minimum of three points, and (ii) that the three

points are not collinear. In contrast to a typical rigid formulation, we note that this

non-collinearity constraint happens in a virtual reference frame, into which the points

pm,1 are transformed based on the current velocity estimate, $̄, and the different time

intervals, ∆tm; interestingly, this means that the system could be solvable using three

points that are collinear in world space, given a non-zero sensor velocity.

4.7 Appearance-Based Lidar Experiment

In this section, we validate our motion-compensated RANSAC algorithm (MC RANSAC),

and its heuristic variant (MC-Fast RANSAC), using the appearance-based lidar pipeline
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(a) Rigid RANSAC (b) Rigid RANSAC (loose α) (c) MC RANSAC

Figure 4.1: This figure shows the inlying data associations after applying various configurations

of the RANSAC algorithm. Note that both (a) and (b) used a classic, rigid RANSAC model,

while (c) uses our motion-compensated RANSAC algorithm. The difference between the results

in (a) and (b) is due to the strictness of the inlier threshold, α. Note that (a) and (c) use the

same tight inlier threshold, while (b) uses a relaxed threshold that allows for a larger number of

inlying matches (green), but also introduces false positives (red outliers). By using a constant

velocity to model the motion of the sensor, our motion-compensated outlier rejection scheme,

seen in (c), is able to better account for the distortion of the image.

presented in Chapter 2 and the experimental setup described in Appendix A. In contrast

to a typical passive camera which produces imagery at a rate of 15-30 Hz, our lidar sensor

produces intensity imagery at a rate of only 2 Hz, and therefore is susceptible to large

amounts of motion-distortion.

4.7.1 Quality

Here, we take three approaches to validating the quality of the proposed outlier-rejection

schemes. The first is a simple visual inspection of the typical feature-track output of our

motion-compensated RANSAC algorithm, as seen in Figure 4.1(c). During this sequence,

the robot was translating forward while exhibiting a roll-type motion, due to the rough

terrain. The quality of these feature tracks are impressive when contrasted against the

results of the rigid model (shown in Figure 4.1(a) and 4.1(b)) – this is especially true

when we consider that the threshold, α, is the same as the one used in Figure 4.1(a).

The second method used to evaluate the quality of outlier rejection is the output of

both a discrete and a continuous-time SLAM algorithm (recalling the methods described

in Chapters 3). Note that the specific implementation of continuous-time SLAM used for

this result will be described in Chapter 5. The output of each RANSAC algorithm was

used to initialize a set of open-loop feature correspondences. Sliding-window-style batch

estimators were then run over each set of matches to produce an odometry estimate that
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Start/End

(a) Discrete-Time SLAM

Start/End

(b) Continuous-Time SLAM (i.e., STEAM)

Figure 4.2: Top and side views of the robot trajectory over the whole 1.1km dataset. DGPS

tracks are in black, and the open-loop integration (OLI) of the discrete and continuous-time

relative bundle adjustment solutions are shown in different colours for various RANSAC outlier

rejection schemes. Note that in order to make the discrete bundle adjustment state tractable

and solvable, we assume no motion distortion in the images.

can be compared to GPS ground truth. The output of the SLAM algorithms can be seen

in Figure 4.2; the important result to note is the dramatic performance improvement

between solutions using rigid and motion-compensated outlier rejection schemes. Due to

the ‘slow’ vertical scan of the lidar, the rigid RANSAC algorithm tends to find horizontal

bands of temporally similar features; without a strong distribution of features in the

vertical direction, it is expected that the pitch parameter of the estimation will suffer.

Lastly, we wish to evaluate the quantity of inliers that the algorithm is able to identify.

Although we do not know the true number of inliers between each pair of images, we

can contrast algorithms by comparing the distribution of filtered feature correspondences

against the initial distribution of possible feature matches. Assuming a relatively constant

ratio between inliers and outliers across images, it is expected that the distributions should

have a similar shape to the initial set, but a lower mean number of feature correspondences.

The results of this distribution comparison can be seen in Figure 4.3. Note that both the

motion-compensated and fast motion-compensated algorithms produce a near-identical
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Figure 4.3: This figure shows the distribu-

tion of sequential image pairs over the number

of successfully matched feature measurements.

The distribution of ‘initial’ matches indicates

the total number of hypothesized matches

before filtering (including outliers). The

rigid, motion-compensated, and fast motion-

compensated filters are then applied to gener-

ate the plotted distribution of qualified inliers.

Figure 4.4: This figure shows the computa-

tional effort for each RANSAC iteration. The

timing is broken down into the three major

pieces of the algorithm: estimating the math-

ematical model (given 3 points), generating

and applying the transform provided by the

model, and reprojecting the Euclidean points

through the spherical camera model. All com-

putations were performed in C++ and timed

with a 2.4GHz processor.

result, which, as expected, is distinctly better than the rigid RANSAC algorithm’s output.

4.7.2 Computational Efficiency

In order to characterize the computational efficiency of each of these algorithms, the time

spent completing each major RANSAC step was recorded over 1500 iterations, for each of

the 6880 frames and averaged, as seen in Figure 4.4. The iteration time is broken down

into three major sections: the time taken to estimate the mathematical model, the time

it takes to generate and apply the transforms, Tm, to each measurement, and the time it

takes to reproject the Euclidean points into spherical coordinates.

The classic rigid RANSAC algorithm is the fastest, as expected; however, quantitative

analysis suggests that the rigid algorithm is completely unfit for use with this sensor.

Moving to the motion-compensated RANSAC algorithm, the large increase in estimation

time is due to the addition of the iterative Gauss-Newton process. The increase in

transformation time is due to the cost of calculating a transformation matrix for each

measurement pair. The fast motion-compensated RANSAC algorithm shows a drastic

reduction in estimation time, although still not as fast as the rigid algorithm. For
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the transformation step, eight discrete transformations were used to approximate the

constant-velocity model, providing a significant speed up, with minimal cost to quality.

4.8 Summary and Conclusions

In this chapter we have proposed a novel adaptation of the standard vision-based RANSAC

algorithm to perform outlier rejection on data associations extracted from motion-distorted

imagery; leveraging both the geometric and temporal measurement data, our algorithm

models the sensor motion as a generalized 6D constant velocity. Using the proposed

constant-velocity model, rather than a rigid transformation model, our algorithm is able

to account for the temporal nature of scanning-type sensors and compensate for motion

distortion in rolling-shutter-type imagery. To improve computational performance, we

propose a variant of the algorithm that uses a Euclidean least-squares estimator and a

heuristic for the point-transformation step. To validate the approach, each algorithm was

applied to a sequence of 6880 lidar intensity/range scans acquired over a 1.1km trajectory.

The methods and results presented in this chapter have previously appeared in both

Anderson and Barfoot (2013a) and Anderson et al. (2015b).

In summary, the contributions of this chapter are:

1. A temporally sensitive adaptation of the vision-based RANSAC algorithm, using a

constant-velocity model to account for motion distortion in 3D data.

2. A heuristic extension of the motion-compensated algorithm that improves computa-

tional performance without any large sacrifice to quality.

3. Derivation of the conditions for which our RANSAC method can be solved.

4. An experimental validation of the algorithm, using SURF features extracted from

a 6880-frame sequence of lidar intensity imagery, captured over a 1.1 kilometer

traversal of rough terrain.

We note that this work was vital in producing the reliable data associations that will be

used for the appearance-based lidar experiments in both Chapters 5 and 6. Furthermore,

our method was also employed by Tong et al. (2014) to produce feature tracks in their

similar lidar-based VO pipeline. Specifically, Tong et al. (2014) used a SICK LMS511

lidar mounted on a panning unit; due to the drastically lower acquisition rate of this lidar,

they experienced even more motion distortion.
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Basis Function Representations for

Trajectories

This chapter describes a novel approach to parametric, continuous-time trajectory es-

timation, in which we adopt the relative coordinate formulation of SLAM (described

in Section 3.3.2). To facilitate the creation of a continuous-time, spatio-temporal pose

graph, the temporal portion of the discrete-time relative approach (which uses a kinematic

chain of relative pose estimates) is transitioned into continuous-time by estimating the

body-centric velocity profile of the robot; this profile can be thought of as a kinematic

chain with an infinite number of relative pose changes. Similar to the discrete solution,

the spatial linkages (i.e., loop closures) remain as relative transformations that describe

the pose change between the robot at two (distant) discrete times. Although (arguably)

not as simple as a privileged coordinate frame solution, the advantage in using relative

coordinates is that a window-style filter can be used to incrementally solve the problem in

constant-time, even at loop closure. Furthermore, the resulting system is locally accurate,

singularity-free, and avoids global consistency issues.

In order to use the Gauss-Newton optimization framework described in Section 3.1.2,

we introduce a discrete set of state variables that parameterize the continuous-time velocity

profile. Specifically, we adopt the approach of Furgale et al. (2012), which uses a weighted

sum of cubic B-spline basis functions. However, unlike Furgale’s original three-dimensional

state parameterization, our velocity-based representation is singularity free. Using basis

functions for interpolation provides an effective means to include high-rate data, such

as IMU measurements, or individually timestamped visual features, without negatively

impacting state size. Our algorithm is validated by using a 1.1 km lidar dataset (presented

53
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in Appendix A) for lidar-based VO and SLAM (as described in Chapter 2).

The novel contributions of this chapter are: (i) a continuous-time adaptation of the

relative-coordinate formulation of SLAM, that estimates the velocity profile of the robot

and relative loop closures, (ii) an explanation of sliding-window-style estimation with basis

functions, and (iii) an evaluation of the algorithm using lidar-style VO and appearance-

based place recognition. These contributions have appeared in two previous publications.

Early (open-loop) results from the continuous-time relative coordinate formulation were

first published in the proceedings of a full-paper refereed conference (Anderson and

Barfoot, 2013b). Later work then used the place-recognition results in Appendix A to

estimate large-scale loop closures on the spatio-temporal manifold; combined with the

contributions from Chapter 4, these results were later published in a journal article

(Anderson et al., 2015b).

5.1 Related Work

Owing to the practicality, effectiveness, and ease of using temporal basis functions

as a continuous-time parameterization, these types of parametric representations have

dominated the early implementations of continuous-time SLAM. The work of Furgale

et al. (2012, 2015), which formally derives the general continuous-time SLAM problem,

also demonstrates the use of temporal basis functions to find a parametric solution for a

typical camera-IMU calibration problem. The use of uniformly spaced cubic B-splines to

parameterize a robot trajectory can also be seen in the estimation schemes previously

proposed by Bibby and Reid (2010) and Fleps et al. (2011). Lovegrove et al. (2013)

formulate a methodology for visual-inertial fusion very similar to the work by Furgale

et al. (2012), but parameterize rotations using the cumulative B-spline representation

introduced in the computer animation field by Kim et al. (1995). Although the connection

was not drawn by Lovegrove, their method shares similar properties to our previously

published work (Anderson and Barfoot, 2013b); both systems are singularity-free, and

perform local estimations that are related to the velocity domain. With an eye towards

spacecraft attitude estimation, Sommer et al. (2015) present an estimation method for

using B-spline curves on unit-length quaternions. The parametric works by Oth et al.

(2013) and Anderson et al. (2014) explore the issue of temporal resolution by investigating

how parameterizations can be chosen adaptively to prevent underfitting and overfitting

the measurements. Finally, in an interesting fusion of state parameterizations, the most
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recent adaptation of the mining work by Zlot and Bosse (2014) uses low-frequency cubic

B-spline perturbations to update a high-frequency set of discrete pose variables.

A few notable algorithms adapt the traditional discrete-time SLAM formulation

to a fundamental form of STEAM by applying pose-interpolation techniques between

keyframes ; although not explicitly shown, these works have parametric continuous-time

SLAM interpretations, which solve the associated maximum likelihood problems. One

such work, by Hedborg et al. (2012), demonstrates the use of inexpensive rolling-shutter

cameras to perform full nonlinear bundle adjustment using SLERP (spherical linear

interpolation). Using appearance-based lidar data in an identical fashion to this research,

Dong and Barfoot (2012) perform frame-to-frame motion-compensated visual odometry

with a piece-wise, constant-velocity model. Finally, using dense range data from a

continuously spinning 2D lidar, Bosse and Zlot (2009) have developed a technique, akin

to the iterative closest point (ICP) algorithm, that is capable of iteratively correcting

point clouds for motion distortion. Adaptations of their work using surfels have been

successful in mapping a large underground mine (Zlot and Bosse, 2012) and estimating

the irregular motion of a 2D lidar attached to the end of a spring (Bosse et al., 2012).

5.2 Background – Parametric Batch Estimation

Recalling that a direct representation of the continuous-time robot trajectory, x(t), would

require an infinite number of states (as discussed in the STEAM problem derivation

in Section 3.4), we now introduce the parametric method to trajectory representation

proposed by Furgale et al. (2012). A finite state vector is formed by leveraging a sum of

weighted (known) temporal basis functions,

x(t) := Ψ(t)c, Ψ(t) :=
[
ψ1(t) ψ2(t) · · · ψD×B(t)

]
, (5.1)

where we have B temporal basis functions in each of the D trajectory dimensions, and

each basis function, ψb(t), is a D × 1 column vector. Since the form of Ψ(t) is chosen,

it can be queried for the value of x(t) at any time, using the coefficients, c; note that

the basis functions’ coefficients, c, are the free parameters that can be used to vary the

trajectory estimate, x(t). Furthermore, depending on our choice of Ψ(t) we also have

access to analytical derivatives, ẋ(t) = Ψ̇(t)c. An important result of the parametric

representation is that the time-varying component, Ψ(t), is separated from the variables

that we wish to estimate, c; this separability is necessary in order to formulate a typical
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nonlinear optimization problem with a set of discrete, time-invariant state variables.

Without even choosing a specific form for Ψ(t), it becomes trivial to draw connections

to the Gauss-Newton algorithm described in Section 3.1.2. Defining the joint state vector,

z =
[
cT `T

]T
, and noting that,

x̂(t) = Ψ(t)ĉ, (5.2)

we are able to use the usual additive perturbation scheme,

ẑ = z̄ + δz, x̂(t) = Ψ(t)(c̄ + δc), (5.3)

to linearize prior and measurement errors, where z̄ is our operating point, or best guess,

and δz is the unknown perturbation that we solve with Gauss-Newton. Using the motion

model error presented in (3.68b) as a demonstration,

eu(t, z) = ẋ(t)− f(x(t),u(t))

= Ψ̇(t)c− f(Ψ(t)c,u(t)), (5.4)

we substitute our perturbations to find

eu(t, z̄ + δz) = Ψ̇(t)(c̄ + δc)− f(Ψ(t)(c̄ + δc),u(t))

≈ Ψ̇(t)c̄− f(Ψ(t)(c̄),u(t))︸ ︷︷ ︸
eu(t,z̄)

−
[
∂f
∂x

∣∣
Ψ(t)c̄,u(t)

Ψ(t)− Ψ̇(t) 0
]

︸ ︷︷ ︸
F(t)

δz. (5.5)

Following from the continuous-time prior cost, Jp(x(t)), in (3.67), and excluding the

term related to initial position1, it is straight-forward to see how the prior portion of the

Gauss-Newton update equation, in (3.25), becomes∫ tK

t0

F(τ)TQ−1
C F(τ)dτ︸ ︷︷ ︸

Apri

δz? =

∫ tK

t0

F(τ)TQ−1
C eu(τ, z̄)dτ,︸ ︷︷ ︸

bpri

(5.6)

where Apri and bpri may have analytical solutions depending on Ψ(t), f(·), and u(t).

The specific form of temporal basis function used by Furgale et al. (2012), and by the

algorithm we present in this chapter, is the cubic B-spline basis function (see Figure 5.1).

1Although we ignore the prior cost on initial position in this example, we note that it is trivial to
include. Furthermore, we note that using robo-centric coordinates for SLAM is quite common; in this
formulation the robot pose (at all times) is estimated with respect to its own initial position (rather than
an inertial frame) and prior information about the global robot pose becomes irrelevant.
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Figure 5.1: This figure illustrates our use of weighted temporal basis functions in one dimension;

the example has nine uniformly spaced cubic B-spline basis functions that are used to define the

weighted sum (black) over six time segments. One can imagine varying the shape of the (black)

sum by scaling the weights (i.e., heights) of the underlying B-splines. A single cubic B-spline is

a smooth piecewise polynomial defined over four time segments; therefore, only four of the basis

functions have a nonzero contribution to the sum at any one query time – this is known as local

support. The points in time that separate two time segments are known as knots.

The use of B-spline basis functions as a parametric representation is common due to

their good representational power, easy analytical derivatives/integrals, and local support

property; local support is desirable to our STEAM framework as it helps to enable

incremental estimation. Using cubic B-splines, with only four basis functions non-zero at

any time, we note that Ψ(t), for the bth time segment, ub ≤ t ≤ ub+1, can be written

Ψ(t) =



ub(t)T B P1,b

...

ub(t)T B Pd,b
...

ub(t)T B PD,b


, ub(t) =


1

( t−ub
ub+1−ub

)

( t−ub
ub+1−ub

)2

( t−ub
ub+1−ub

)3

 , B =
1

6


1 4 1 0

−3 0 3 0

3 −6 3 0

−1 3 −3 1

 , (5.7)

where ub(t) is a cubic interpolation function based on the adjacent knot times, ub and

ub+1, B is a fixed coefficient matrix, and Pd,b ∈ R4×(D×B) is a projection matrix that picks

the relevant four coefficients (for dimension d and time segment b) out of state vector c.

In order to parameterize the non-commutative transformations required for 6D pose

estimation, Furgale et al. (2012) chose to directly estimate the Cayley-Gibbs-Rodrigues

axis-angle parameterization, ϕ(t) ∈ R3, and the translation vector, r(t) ∈ R3, such that

T(x(t)) :=

[
C(ϕ(t)) r(t)

0T 1

]
, x(t) :=

[
r(t)

ϕ(t)

]
= Ψ(t)c, (5.8)

where C(·) and T(·) are mappings to SO(3) and SE(3), respectively. Although this

representation was successful in allowing Furgale et al. (2012) to perform camera/IMU
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calibration with a hugely compressed state vector, we note that it is not singularity-free

and far less useful in a free range of motions.

5.3 Relative Coordinate Formulation Using Velocity

In this section, we describe and formulate the relative, continuous-time SLAM problem. To

attain the desirable properties of both the relative and continuous-time SLAM formulations,

it is proposed that the trajectory be represented by the robot velocity, expressed in the

local robot coordinate frame. The intuition behind this decision is derived from the nature

of both the continuous-time and relative formulations. Consider a discrete-time system

in which we sample the robot’s pose at several times and then construct the series of

relative pose changes that make up that trajectory. Now, if we consider reducing that

sampling period to an infinitesimal level, we note that the series of infinitesimal relative

pose changes is in essence the robot-oriented velocity. Recovering a relative pose change

between any two times is simply a matter of integrating the velocity information between

them. Similar to the typical visual SLAM problem, our goal is to find the optimal solution

for the robot trajectory and the map parameters.

5.3.1 Velocity Profile

To define the velocity profile, we begin by introducing the coordinate frames F−→i, our

inertial reference frame, and F−→s(t), the robot’s instantaneous sensor frame. In the

relative, continuous-time formulation of the problem, our algorithm aims to estimate the

generalized six-dimensional (6D) velocity of the robot,

$(t) :=

[
νt,it

ωt,it

]
, (5.9)

which is expressed in the robot’s sensor frame over the time interval t = [0, T ], where νt,it

and ωt,it are the linear and angular components. Note that for simplicity, all references to

the time-varying sensor frame, F−→s(t), have been replaced with the timestamp that we

wish to reference (e.g., time t in the velocity, νt,it ). Notably, an advantage of the velocity

profile trajectory representation (in contrast to using rotations or transformations) is that

there are no constraints that need to be enforced on the parameters of the solution.
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5.3.2 Kinematics

In order to include measurements that depend on the pose, or pose change, of the robot,

in a batch estimation scheme, we must first derive the relationship between the robot

velocity, $(t), and the robot pose, T(t), at time t. Following the discussion of rotations

and transformations in Section 3.2.1, we note that the well-known kinematic equation

relating angular velocity to rotation is

Ċt,i = ωt,it
∧

Ct,i, (5.10)

where (·)∧ is the skew-symmetric operator in (3.35). Recalling the transformation matrix

definition, in (3.36), and expanding the time derivative of ri,tt , we find that

ṙi,tt = − d

dt
(Ct,irt,ii ) = −Ċt,irt,ii − Ct,iṙt,ii = −ωt,it

∧
Ct,i(−ri,ti )− Ct,iṙt,ii = ωt,it

∧
ri,tt + νt,it ,

(5.11)

where we define νt,it := −Ct,iṙt,ii . Substituting our kinematic equations, (5.10) and (5.11),

into the time derivative of the transformation matrix,

Ṫt,i =

[
Ċt,i ṙi,tt
0T 0

]
=

[
ωt,it

∧
Ct,i ωt,it

∧
ri,tt + νt,it

0T 0

]
=

[
ωt,it

∧
νt,it

0T 0

][
Ct,i ri,tt
0T 1

]
, (5.12)

we derive a nonlinear kinematic equation that relates pose change to $(t):

Ṫt,i = $(t)∧Tt,i. (5.13)

As we are mostly interested in the pose change of the robot between two non-zero times,

ta and tb, we aim to find a general expression involving the matrix Tt,ta . In order to

replace the inertial reference frame, F−→i, in (5.13) with the sensor frame at time ta, F−→s(ta),

we begin with the expression,

Tt,i = Tt,taTta,i, (5.14)

and take the derivative,

Ṫt,i = Ṫt,taTta,i + Tt,taṪta,i︸ ︷︷ ︸
zero

= Ṫt,taTta,i, (5.15)

noting that Tt,taṪta,i is zero due to the fact that Tta,i does not depend on t. By manipulating

(5.13) and (5.15), we find the expected result,

Ṫt,ta = $(t)∧Tt,ta . (5.16)
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In order to find the relationship between a pose change, Ttb,ta , and the robot velocity,

$(t), we must integrate this non-commutative differential equation over the interval

[ta, tb]; notably, this integration must be performed using a method that preserves the

properties of the transformation matrix. Recalling the exponential map, T = exp(ξ∧),

from Section 3.2.1, we note that for a constant velocity, $, we have the relationship

ξ = ∆t ·$. Hence, the initial value problem in (5.16), where Tta,ta = 1, can be solved

using the ordered exponential (i.e., product integral of infinitesimal exponentials):

Ttb,ta =

tb∏
ta

exp($(τ)∧dτ)

≡ lim
∆t→0

exp(∆t$(tb −∆t)∧)︸ ︷︷ ︸
Ttb,tb−∆t

· · · exp(∆t$(ta + ∆t)∧)︸ ︷︷ ︸
Tta+2∆t,ta+∆t

exp(∆t$(ta)
∧)︸ ︷︷ ︸

Tta+∆t,ta

.
(5.17)

Unfortunately, this product integral must be computed numerically. Note that for very

small pose changes, the exponential map can be approximated using

exp(ξ∧) ≈ 1 + ξ∧. (5.18)

Determining an appropriate integration timestep, ∆t, is subject to the required accuracy

of the integration, the typical length of an integration (in time), and the typical magnitude

of $(t); in practice we use a maximum step value of ∆t = 0.01, with smaller steps when

we wish to extract the pose at specific intermediate times (e.g., you may want the pose

change at several measurement times, spaced less than 0.01 seconds apart).

The integral, presented in (5.17) relates the continuous-time velocity profile, $(t), to

a discrete pose change, Ttb,ta , and is an important result, as it allow us to calculate the

value of expected measurements that depend on pose (e.g., visual measurements of an

estimated landmark) in our relative continuous-time formulation.

5.3.3 Perturbations to the Kinematics

In order to linearize terms involving a transform integrated from the velocity profile, using

(5.17), we extend our discussion of kinematics to consider the effect of small changes to

$(t). Using the constraint-sensitive perturbation scheme,

T = exp(ξ∧) = exp(δξ∧) exp(ξ̄
∧
) ≈ (1 + δξ∧)T̄, (5.19)

the kinematic equation, Ṫ = $∧T, becomes

d

dt
((1 + δξ∧)T̄) ≈ ($̄ + δ$)∧(1 + δξ∧)T̄. (5.20)
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By expanding and dropping small terms, we find

˙̄T + δξ∧ ˙̄T + δξ̇
∧

T̄ ≈ $̄∧T̄ + $̄∧δξ∧T̄ + δ$∧T̄. (5.21)

Using the nominal solution, ˙̄T = $̄∧T̄, and the identity, ξ∧1 ξ
∧
2 −ξ∧2 ξ∧1 ≡ (ξf1 ξ2)∧, equation

(5.21) can be manipulated to find,

δξ∧$̄∧T̄ + δξ̇
∧

T̄ ≈ $̄∧δξ∧T̄ + δ$∧T̄

δξ̇
∧ ≈ −δξ∧$̄∧ + $̄∧δξ∧ + δ$∧

= ($̄fδξ)∧ + δ$∧

δξ̇ ≈ $̄fδξ + δ$. (5.22)

Giving us the nominal and perturbed equations:

˙̄T(t) = $̄(t)∧T̄(t), (5.23a)

δξ̇(t) = $̄(t)fδξ(t) + δ$(t), (5.23b)

which can be integrated separately and combined to provide the full solutions. We have

shown in (5.17) how the nonlinear nominal solution can be integrated numerically. The

perturbed equation is a linear time-varying equation of the form

ẋ(t) = A(t)x(t) + B(t)u(t). (5.24)

The general solution to this initial value problem is given by

x(t) = Φ(t, 0)x(0) +

∫ t

0

Φ(t, τ)B(τ)u(τ)dτ, (5.25)

where Φ(t, τ) is called the state transition matrix and satisfies

Φ̇(t, τ) = A(t)Φ(t, τ), (5.26a)

Φ(τ, τ) = 1. (5.26b)

The state transition matrix always exists and is unique, but it cannot always be found

analytically. For our particular perturbed equation, we found that it can be expressed as:

Φ(t, τ) = T̄ (t)T̄ (τ)−1. (5.27)

where we recall that T is the adjoint transformation matrix in (3.44). To verify, we check

that (5.27) satisfies the required conditions of a state transition matrix:

Φ̇(t, τ) =
d

dt
T̄ (t)T̄ (τ)−1 = ˙̄T (t)T̄ (τ)−1 = $̄(t)fT̄ (t)T̄ (τ)−1 = $̄(t)fΦ(t, τ), (5.28a)

Φ(τ, τ) = T̄ (τ)T̄ (τ)−1 = 1, (5.28b)
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where Ṫ (t) = $(t)fT (t) is the adjoint version of Ṫ(t) = $(t)∧T(t). Using the general

solution to the initial value problem, we have that:

δξ(t) = T̄ (t)T̄ (0)−1δξ(0) + T̄ (t)

∫ t

0

T̄ (τ)−1δ$(τ)dτ. (5.29)

To verify again that this is indeed the correct solution, we can differentiate:

δξ̇(t) = ˙̄T (t)T̄ (0)−1δξ(0) + ˙̄T (t)

∫ t

0

T̄ (τ)−1δ$(τ)dτ + T̄ (t)T̄ (t)−1δ$(t)

= $̄(t)f
(
T̄ (t)T̄ (0)−1δξ(0) + T̄ (t)

∫ t

0

T̄ (τ)−1δ$(τ)dτ

)
︸ ︷︷ ︸

δξ(t)

+δ$(t)

= $̄(t)fδξ(t) + δ$(t). (5.30)

We now wish to consider the extension of (5.29) to a general pose change, Ttb,ta , between

two non-zero times, ta and tb. We begin by noting,

Ttb,ta = exp(δξ∧tb,ta)T̄tb,ta ≈
(
1 + δξ∧tb,ta

)
T̄tb,ta . (5.31)

Using the identity, T exp(w∧) ≡ exp((T w)∧)T, we then derive that,

Ttb,ta = T(tb)T(ta)
−1

= exp(δξ(tb)
∧)T̄(tb)

(
exp(δξ(ta)

∧)T̄(ta)
)−1

= exp(δξ(tb)
∧)T̄(tb)T̄(ta)

−1 exp(−δξ(ta)
∧)

= exp(δξ(tb)
∧) exp((−T̄ (tb)T̄ (ta)

−1δξ(ta))
∧)T̄tb,ta

≈ (1 + δξ(tb)
∧)
(
1− (T̄ (tb)T̄ (ta)

−1δξ(ta))
∧) T̄tb,ta

≈
(
1 + (δξ(tb)− T̄ (tb)T̄ (ta)

−1δξ(ta))
∧) T̄tb,ta . (5.32)

Comparing (5.31) and (5.32), we find the relationship,

δξtb,ta ≈ δξ(tb)− T̄ (tb)T̄ (ta)
−1δξ(ta). (5.33)

To simplify the term δξ(tb) − T̄ (tb)T̄ (ta)
−1δξ(ta), and relate the perturbation back to

our velocity profile, $(t), we substitute the solution for δξ(t) found in (5.29):

δξ(tb)− T̄ (tb)T̄ (ta)
−1δξ(ta) =

(
T̄ (tb)T̄ (0)−1δξ(0) + T̄ (tb)

∫ tb

0

T̄ (τ)−1δ$(τ)dτ

)
−T̄ (tb)T̄ (ta)

−1

(
T̄ (ta)T̄ (0)−1δξ(0) + T̄ (ta)

∫ ta

0

T̄ (τ)−1δ$(τ)dτ

)
= T̄ (tb)

(∫ tb

0

T̄ (τ)−1δ$(τ)dτ −
∫ ta

0

T̄ (τ)−1δ$(τ)dτ

)
=

∫ tb

ta

T̄ tb,τ δ$(τ)dτ. (5.34)
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Substituting (5.34) back into (5.31), we find the following relationship between Ttb,ta and

small changes in $(t),

Ttb,ta ≈
(

1 +

(∫ tb

ta

T̄ tb,τ δ$(τ)dτ

)∧)
T̄tb,ta . (5.35)

Although it is initially unclear how one might isolate the time-varying parameter, δ$(t),

since it is embedded in the integral, the following section will show how this is made

manageable with the use of parametric basis functions.

The relationship in (5.35) between a pose change, Ttb,ta , and a perturbation to the

velocity profile, δ$(t), allows us to use this relative continuous-time formulation with

the Gauss-Newton optimization technique described in Section 3.1.2. The nominal pose

change, T̄tb,ta , is integrated from the nominal velocity profile, $̄(t), using (5.17).

5.3.4 Parametric Batch Estimator

Trajectory Parameterization

In the relative, continuous-time formulation of the SLAM problem, we wish to estimate

the 6D velocity of the robot, $(t), which is expressed in the robot’s sensor frame, over the

time interval t = [t0, tK ]. Moving forward in the derivation of the estimator, we define a

parametric representation for the continuous-time state. Similar to the method described

in Section 5.2, we use a weighted sum of temporal basis functions,

$(t) := Ψ(t)c, Ψ(t) :=
[
ψ1(t) ψ2(t) · · · ψ6B(t)

]
, (5.36)

where we have B temporal basis functions in each of the six problem dimensions, and

each basis function, ψb(t), is a 6× 1 column vector. The coefficients (i.e., state variables),

c ∈ R6B, can be used to vary the velocity estimate,$(t); using a parametric representation,

the estimation goal is to simply find the optimal values of these weights.

Owing to the requirement that our basis functions have local support, which will

be discussed later, our implementation uses cubic B-spline basis functions (as seen in

Figure 5.1); note our method is not tied to using only cubic B-splines – any basis function

that exhibits local support is satisfactory.

Loop Closures

In addition to the relative trajectory, we also wish to estimate any loop-closure transfor-

mations between segments of the trajectory from distinctly different times. These loop
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closures are stored as 4× 4 homogeneous transformation matrices,

TLC
t2,t1

:= T(t2)T(t1)−1, (5.37)

between the sensor frame, F−→s(t), at the two distinct times, t1 and t2. As described in

Section 3.3.2, these loop-closure transformations over-parameterize the trajectory solution

provided by $(t), but allow us to perform loop-closure optimizations using a window-style

filter; these optimizations are constant time and generate locally accurate maps.

Landmarks

To complete the traditional SLAM state formulation, we also estimate the positions of the

landmark parameters, `j. The landmarks are stored using homogeneous coordinates, as

described in Section 3.2.2. Adopting the relative formulation of SLAM (with no privileged

coordinates frames), it becomes important that each landmark position is stored locally;

this is implemented by expressing, `j, in frame F−→s(tj), the sensor pose at time tj,

p
`j ,tj
tj :=

[
`j

1

]
∈ R4, `j = P`,j`, (5.38)

where we define tj to be the first measurement time of the jth landmark, and P`,j is a

projection matrix that selects the 3D position `j from the state vector `. In order to

simplify the notation, we also denote tk := tkj, the time of measurement ykj.

Optimization Problem

The joint state that we wish to estimate is defined as z := {θ, `}, where the state θ

contains parameters related to robot pose, and ` is the vector of landmark positions. In

the open-loop case, θ := c; however, if a loop closure is part of the optimization problem,

then θ := {c,TLC
t2,t1
}. Recalling the standard SLAM/STEAM formulations, it follows that

our measurement and prior objective functions are

Jm(z) :=
1

2

∑
kj

eTmkjR
−1
kj emkj , Jp(c) :=

1

2

∫ T

t=0

eu(τ)TQ−1eu(τ)dτ, (5.39)

where Jm is a cost associated with the landmark measurements, and Jp is a cost associated

with motion (i.e., a motion prior). Note that Jp does not include a prior term related to

initial position; our initial uncertainty is zero because all (relative) estimates are performed

with respect to the robocentric frame. Also, we note that loop-closure constraints are
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Closed-Loop Path
t2

t1

Open-Loop Path
T ,t2

TLC
t2,t1

Tt1,

�j tk

tj  tj

tk

Figure 5.2: In order to formulate an expected measurement, gkj(z), the point `j , which is

expressed in the sensor frame at time tj , needs to be transformed to the current observation

time, tk. In the general open-loop case (seen in blue), the transform, Ttk,tj , is found by simply

integrating the continuous-time velocity profile. However, the existence of loop closures create

alternate integration paths (seen in red). Integration of the shortest temporal path is often the

most desirable, as it incurs the least estimation error.

introduced in the estimation problem solely through the landmarks that are observed

from both of the matched trajectory segments, as discussed in the next subsection.

Cost Terms

Recalling the nonlinear observation error from (3.10), and the camera model example

from (3.58), we formulate our measurement errors as

emkj(z) = ykj − gkj(z), gkj(z) := k(hkj(z)), hkj(z) = Ttk,tj p
`j ,tj
tj (5.40)

where ykj is our measurement, gkj(·) is the general nonlinear observation model, k(·) is a

nonlinear camera model, hkj(·) is the transformed homogeneous coordinate, Ttk,tj is the

4× 4 homogeneous transform matrix that specifies the pose change in the sensor frame

between the measurement times tj and tk, and p
`j ,tj
tj is the position of relative landmark

`j in homogeneous coordinates. For our experimental results, using lidar, we model k(·)
as the spherical camera model presented in Appendix Section A.2.

To evaluate this cost using the velocity profile, $(t), we note that in the open-loop

case, the unknown transforms, Ttk,tj , are found by simply integrating over the continuous-

time velocity profile. However, in the case that the shortest temporal path between tj and

tk involves a loop closure, we note that Ttk,tj becomes the composition of the following

transformation matrices,

Ttk,tj = Ttk,t2TLC
t2,t1

Tt1,tj , (5.41)

where Ttk,t2 and Tt1,tj are integrated using the velocity profile, and TLC
t2,t1

exists as a

discrete loop-closure transformation between times t1 and t2. These alternate integration

paths are illustrated in Figure 5.2.
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Assuming no knowledge of the control signal, we model the motion as a zero-mean

white noise on acceleration. This can be written as the Gaussian process

eu(t) := $̇(t) = w(t), w(t) ∼ GP(0,QCδ(t− t′)), (5.42)

where QC is the power-spectral-density matrix and δ(·) is Dirac’s delta function.

Using the Kinematic Perturbation

In order to minimize J(z) using our standard Gauss-Newton approach, we first make

it quadratic in a small perturbation of the state, δz :=
[
δθT δ`T

]T
, and then find the

optimal state update δz? by solving ∂T J
∂δz = 0; in the open-loop case, δθ := δc, and in the

closed-loop case, δθ :=
[
δcT δξLC

t2,t1

T
]T

. We note that the linearization of Jp takes the

same approach as Furgale et al. (2012), described in Section 5.2, and therefore this section

will focus only on the linearization of Jm.

From the temporal basis function definition, $(t) := Ψ(t)c, we can define an additive

perturbation model, $(t) = $̄(t) + δ$(t), such that $̄(t) + δ$(t) = Ψ(t)(c̄ + δc), and

therefore δ$(t) = Ψ(t)δc. Substituting this relationship into (5.35), we find that

Ttb,ta ≈
(

1 +

(∫ tb

ta

T̄ tb,τΨ(τ)dτ δc
)∧)

T̄tb,ta , (5.43)

and therefore our usual perturbation, δξtb,ta , to transform Ttb,ta , is

δξtb,ta ≈
(∫ tb

ta

T̄ tb,τΨ(τ)dτ

)
δc. (5.44)

Recalling the example camera model linearization in (3.63), we apply our constraint-

sensitive perturbations to an open-loop trajectory integration to find that

emkj(z̄ + δz) = ykj − k(T̄tk,tj p̄
`j ,tj
tj )−Gkjδz, (5.45)

Gkj :=
[
KkjHx,kjHc,kj KkjH`,kjP`,j

]
, (5.46)

where Kkj, Hx,kj, and H`,kj were defined in (3.62) and (3.64), and from (5.44) we have

Hc,kj :=

∫ tk

tj

T̄ tk,τΨ(τ)dτ. (5.47)

Note that when a loop closure is present in the shortest pose chain from tj to tk (i.e.,

Ttk,tj = Ttk,t2TLC
t2,t1

Tt1,tj), the formulation changes slightly. Using the same perturbation

scheme, with the additional perturbation δξLC
t2,t1

, it is straightforward to show that

Gkj :=
[
KkjHx,kjHc,kj KkjHx,kjT̄ tk,t2 KkjH`,kjP`,j

]
, (5.48)
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where δz =
[
δcT δξLC

t2,t1

T
δ`T
]T

, and

Hc,kj :=

(∫ tk

t2

T̄ tk,τΨ(τ)dτ +

∫ t1

tj

T̄ tk,τΨ(τ)dτ

)
. (5.49)

Gauss-Newton Algorithm

Finally, connecting our state representation, cost terms, and Jacobians to the Gauss-

Newton update equation in (3.25), we have that

(Ameas + Apri) δz? = bmeas + bpri. (5.50)

where

Ameas :=
∑
kj

GT
kjR

−1
kj Gkj, bmeas :=

∑
kj

GT
kjR

−1
kj emkj(z̄), (5.51)

and it follows from (5.6) and (5.42) that

Apri :=

[∫ T
0

Ψ̇(τ)TQ−1
C Ψ̇(τ) dτ 0

0 0

]
, bpri := −Apriz̄. (5.52)

Note that the term Apri only needs to be calculated once, as it does not depend on the

state parameters. Following the Gauss-Newton approach, the solution to δz? is used

to update the nominal solutions iteratively and to convergence. The pertinent state

update equations are: c̄ ← c̄ + δc?, ¯̀ ← ¯̀ + δ`?, and in the case of a loop closure,

T̄LC
t2,t1
← exp((δξLCt2,t1

?
)∧)T̄LC

t2,t1
.

Implementation Efficiency

There are three major computational costs associated with running this estimator. The

first major cost is the numerical integrations of (5.17) and (5.47). We note from the

derivation of (5.34) that the integral term in Hc,kj can be written as∫ tk

tj

T̄ tk,τΨ(τ)dτ = Ad(T̄(tk))(I(tk)− I(tj)), (5.53)

where,

I(t) :=

∫ t

0

Ad(T̄(τ))−1Ψ(τ)dτ. (5.54)
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Given that many of the required integral calculations will overlap, we aim to compute all

the integral terms efficiently by conducting a single pass over the entire time period that

we are currently optimizing. In the full batch optimization, the following equations are

used iteratively for t = [t0, tK ],

T̄(t+ ∆t)← exp ((∆t ·Ψ(t)c̄)∧) T̄(t), (5.55a)

I(t+ ∆t)← I(t) + ∆t · Ad(T̄(t))−1Ψ(t), (5.55b)

where T̄(0) = 1 and I(0) = 0. The integration step, ∆t, is chosen so that we have

intermediate terms for T̄ and I at each measurement time, tkj. By storing the intermediate

steps, we can compute T̄tk,tj and Gkj for each measurement.

The second major cost in this estimator is building the matrix Ameas. This step can be

exceptionally expensive depending on the choice of basis functions used to parameterize

Ψ(t). Specifically, it is highly beneficial to use a basis function type that has local support.

At any given time, we want only a subset of the basis functions, ψb(t), to be non-zero.

Using local support introduces an exploitable sparsity to the matrix Ψ(t). As mentioned

in Section 5.3.4, our implementation of the estimator uses cubic B-spline basis functions,

because they have local support in addition to simple analytical integrals and derivatives.

The third cost is related to solving the linear system of equations in (5.50). To do

this efficiently, we note that it can be written using the 2× 2 block structure,[
Axx Ax`

AT
x` A``

][
δθ?

δ`?

]
=

[
bx
b`

]
. (5.56)

Notably, the relative, continuous-time formulation of the problem changes the traditional

sparsity pattern of Axx; this is due to the fact that Apri is now band diagonal, and the

relative transforms, Ttk,tj , may depend on long strides of temporally related state variables

in c, and sometimes loop closures, TLC
t2,t1

. However, since A`` is still block-diagonal and is

typically much larger than Axx, we may apply the usual Schur complement, discussed in

Section 3.1.3, with no additional cost.

B-spline Window Filter

Here we describe our continuous-time approach to the incremental optimization method-

ology discussed in Section 3.3.2. In order to run the estimator online we optimize over

a subset of the basis functions used in the time segments leading up to the most recent

measurement. However, in order for this technique to achieve constant-time performance,
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Active Time Segments
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Part of the Static State

Integration
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Figure 5.3: This figure depicts the use of active state parameters in a window-style filter. For

illustration, uniformly weighted cubic B-spline basis functions are used to portray the parametric

velocity profile estimate. The integrated robot trajectory, shown above the velocity profile, is

depicted to align on the time axis, with the landmarks observed at the connected timestamps.

Determining the active state begins by defining the active time segments; any basis function

that influences the active time segments becomes part of the active state. Landmark variables

are considered active if they are observed from a time that overlaps with an active basis function.

The static region is required to calculate expected measurements for landmarks with observations

from both active and static time intervals (e.g., `j).

the subset of basis functions must have temporally local effects on the robot trajectory,

$(t). For this to be true, it is a requirement that the basis functions used in the estimator

have local support.

Before setting up the local batch optimization problem, we begin by identifying the

active state, illustrated in Figure 5.3. The active subset of basis functions and all landmarks

measured during the affected time period are added to a list of active parameters that will

be updated in the optimization. All measurements of these active landmark parameters

are included when building the terms Ameas and bmeas. This may require the full nominal

solution, c̄, as some of the static basis function coefficients may be required to evaluate

$̄(t) near and outside the bounds of the active time period.

In the case of a loop closure, the active state selection changes slightly to include both

the discrete loop-closure transformation and the temporal basis functions on both sides

of the spatial link; the basis functions that are made active are the ones that overlap in

time with any of the landmark observations that were matched across the loop closure.

Pose-Graph Relaxation

Although the relative SLAM problem formulation argues that a global map is not necessary

for many common robotic tasks, a global map may be desirable or required in some
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situations; for example, human inspection of a large-scale map, or human-in-the-loop

decisions, such as macro-level path planning or goal setting.

In order to generate a globally consistent SLAM solution in a computationally tractable

manner, a common practice is to implement pose-graph relaxation or pose-graph SLAM ;

the derivation of which is well known (Olson et al., 2006; Grisetti et al., 2007). The general

concept of the optimization is to use the estimated discrete relative pose transforms as

measurements in a new problem that aims to solve for the global poses.

To relax the relative continuous-time trajectory into global coordinates, we first

discretize our solution into a set of relative transforms, Ttd+1,td , which occur between

times td and td+1, for d = 1 . . . D. Obtaining the relative transforms is straightforward

using the integration scheme in (5.17),

Ttd+1,td = T(td+1)T(td)
−1 =

td+1∏
td

exp($(τ)∧dτ). (5.57)

However, obtaining the uncertainty of the relative pose estimates,

Σd+1,d := E[δξtd+1,td
δξTtd+1,td

], (5.58)

involves some additional derivation. Note that the result from Barfoot and Furgale (2014)

on compounding poses using fourth-order terms is not directly applicable to finding the

uncertainty of the transform, Ttd+1,td , because δξ(td) and δξ(td+1) are correlated.

Using the relationship in (5.35) it is straightforward to see that

δξtd+1,td
≈
(
T̄ (td+1)

∫ td+1

td

T̄ (τ)−1δ$(τ)dτ

)
, (5.59)

and therefore,

Σtd+1,td =E
[
δξtd+1,td

δξTtd+1,td

]
≈E
[(

T̄ (td+1)

∫ td+1

td

T̄ (τ)−1δ$(τ)dτ

)(
T̄ (td+1)

∫ td+1

td

T̄ (τ ′)−1δ$(τ ′)dτ ′
)T]

=T̄ (td+1)

∫ td+1

td

∫ td+1

td

T̄ (τ)−1E
[
δ$(τ)δ$(τ ′)T

]
T̄ (τ ′)−Tdτ ′dτ T̄ (td+1)T . (5.60)

In practice, because we have parameterized the solution using basis functions, δ$(t) =

Ψ(t)δc, it is convenient to compute the covariance as follows,

Σtd+1,td ≈
(
T̄ (td+1)

∫ td+1

td

T̄ (τ)−1Ψ(τ)dτ

)
E
[
δc δcT

](
T̄ (td+1)

∫ td+1

td

T̄ (τ ′)−1Ψ(τ ′)dτ ′
)T

,

(5.61)
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Figure 5.4: Illustration of the local RMS error calculation for a single root node. Note that

open-loop integration (OLI) outside of the local region is needed to find the top two poses, while

closed-loop integration (CLI) can be used to quickly find the lower poses.

where E[δc δcT ] can be evaluated using part of the solution from our Gauss-Newton

optimization problem in (5.50), after convergence. Using the Schur complement for an

open-loop optimization, we know that

cov(δθ?, δθ?) = E
[
δc? δc?T

]
= (Axx − Ax`A−1

`` AT
x`)
−1, (5.62)

and in a closed-loop optimization,

cov(δθ?, δθ?) =

 E
[
δc? δc?T

]
E
[
δc? δξLCt2,t1

?T
]

E
[
δξLCt2,t1

?
δc?T

]
E
[
δξLCt2,t1

?
δξLCt2,t1

?T
]= (Axx − Ax`A−1

`` AT
x`)
−1, (5.63)

where E
[
δξLCt2,t1

?
δξLCt2,t1

?T
]

is the uncertainty associated with TLC
t2,t1

.

5.3.5 Appearance-Based Lidar Experiment

In this section, we test and report results for our relative continuous-time SLAM technique.

The estimator is tested using a set of real data that highlight our algorithm’s ability

to handle high-rate asynchronous measurements, while the robot undergoes motion in

unstructured terrain. The 1.1km traversal, measurements models, and place recognition,

are described in Appendix A.

Local Accuracy Metric

Before discussing the results of the estimator, we begin by introducing the average local-

area root-mean-square (ALARMS) error, a new metric similar to the one introduced by

Sibley et al. (2010), which we use to evaluate local metric accuracy. The ALARMS error

calculation is illustrated in Figure 5.4, and proceeds as follows:
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For each ground-truth node,

1. Search the ground truth (GPS) for all other nodes within some specified distance of

the current (root) node – this is our local region

2. Perform a breadth first search (BFS) using the available topological information,

starting with the root node, to determine the shortest paths to all other local nodes

3. Integrate along the found paths to obtain the pose of local nodes in the root node’s

coordinate frame

4. Fix the root node’s pose to ground truth; in the absence of global orientation

information, align the trajectories using all the integrated local node positions and

ground truth counterparts

5. Compute RMS Euclidean error for the local region subgraph

The ALARMS error is then the average of all the calculated RMS errors terms, where

each error term is generated by using one of the ground-truth nodes to form a local

region. In the absence of loop closures, only temporal links contribute to the topological

connectivity of the graph.

The purpose of this error metric is to evaluate the local (rather than global) metric

accuracy of an algorithm. Enforcing a globally consistent solution (e.g., via pose-graph

relaxation) before comparing to ground-truth prevents us from gaining insight to an

algorithm’s local accuracy. The ALARMS error metric evaluates accuracy within a fixed-

size region (averaged over ‘all of the regions’); by then varying the region size we can

analyze the performance of an algorithm over different scales.

Open-Loop Solution

Processing the 6880 intensity images (in a VO-style fashion), we found 2,010,671 temporally

matched SURF feature measurements, each with a unique timestamp. Assuming the

use of a (brute-force) discrete-time batch estimator (with a motion prior), the state

parameterization would require a pose estimate at each measurement time in the system;

meaning that for the 1.1km dataset, it would naively require 6 × 2,010,671 = 12,064,026

state variables, excluding the 688,481 different landmark positions. Furthermore, the

plain discrete-time solution is ill-conditioned without a motion prior and cannot be solved.

Using basis functions to parameterize our continuous-time state, we show how the number

of required state variables can be drastically reduced.
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Figure 5.5: Example output from the relative continuous-time SLAM estimator using real

data. The linear and angular velocity estimates in (a) directly correspond to the integrated 3D

trajectory in (b); coordinate frames are plotted at a uniform time interval. The direction switch

in forward (x) velocity can be easily observed in the integrated trajectory.

Before running the constant-time estimator on the entire 1.1km trajectory, we must

decide on a spacing for the temporal basis functions and an appropriate window size over

which to optimize. In order to train these two parameters, we use a 250m subsection of

the full trajectory. To compare the results of the estimator to the GPS ground truth, we

consider the integral of our velocity estimate, as seen in Figure 5.5.

To find an appropriate knot spacing, we iterated the full batch estimator on the

training section, varying the number of time segments in the B-spline parameterization

from 5 to 3000. The accuracy of the solutions are quantified by considering both the

total root-mean-square (RMS) Euclidean error, comparing the integrated position of our

velocity estimate to the DGPS tracks, and the ALARMS error, for a 10 metre local region.

The estimate and DGPS tracks were put into a common reference frame by aligning the

first 10 meters of each trajectory.

The result of varying the number of knots can be seen in Figure 5.6 (timing was broken

down into the three major steps described in Section 5.3.4). Using the efficient methods

described earlier, we see that the integration and build steps of the algorithm are relatively

constant in cost as the number of knots increases. As expected, the solution to Aδz? = b
is cubic in complexity and begins to take a larger portion of the total time as the number

of basis functions is increased. As the knot spacing is reduced, the parameterization is

given enough degrees of freedom to properly represent the velocity profile of the robot;

however, there are diminishing returns with respect to reducing error. For this subsection

of the dataset, it was decided that 1200 time segments (a knot spacing of approximately



Chapter 5. Basis Function Representations for Trajectories 74

Chosen basis function spacing

Figure 5.6: The full batch estimator was run

on a 250m subsection of the full dataset. Vary-

ing the number of time segments in the pa-

rameterization from 5 to 3000, we aim to find

an appropriate knot spacing to use over the

entire trajectory. The chosen number of time

segments was 1200 (a knot spacing of approxi-

mately 0.65 seconds).

Chosen window size

Figure 5.7: Using 1200 time segments in the B-

spline parametrization over the 250m training

segment, we varied the number of active time

segments in each optimization window from 1

to 20. The chosen optimization window size

for the final experiment was 5 time segments.

The compute time is the average time it took

to compute a single window optimization.

0.65 seconds) was acceptable to represent the robot trajectory.

In order to limit the growth rate in solve time, we applied our window-style filter

to the 250m trajectory. In a similar fashion to the first experiment, we then varied the

number of active time segments in the optimization window from 1 to 20. The results

in Figure 5.7 indicate that a window size of only 5 time segments would be sufficient to

use over the entire trajectory. The compute time shown in this experiment is the average

amount of time taken to solve a single window optimization. Increasing window size has

a clear negative effect on the amount of time spent integrating and building the terms

needed in the solution.

The final result for the full trajectory estimate, seen in Figure 5.8, is compared

to a discrete-time relative bundle adjustment implementation. To keep the discrete

implementation’s state size tractable and solvable, a single relative pose estimate is used

for each of the image stacks and the laser scans are assumed to be taken instantaneously

(i.e., no motion distortion). The open-loop integration (OLI) of our velocity estimate

and discrete relative bundle adjustment solution are put into a common reference frame
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Start/End Start/End

Figure 5.8: Top and side views of the robot trajectory over the whole 1.1km dataset. Our

Relative CT estimator used a knot spacing of 0.65 seconds, and an active window size of 5 time

segments. The relative discrete-time solution used an active window size of 6 images. DGPS

tracks are in black, the discrete-time relative bundle adjustment solution is in red, and the

open-loop integration (OLI) of the velocity profile estimate is in blue. Note the significant

improvement made by properly accounting for the temporal nature of the lidar measurements.

with the DGPS tracks by aligning the first 30 meters of each trajectory. Compensating

for motion distortion by using our continuous-time estimation scheme clearly produces

superior results in contrast to the traditional discrete-time approach.

As suggested by the results of the first experiment, the estimator used a knot spacing

of 0.65 seconds. This correlated to the use of only 6 × 5,386 = 32,316 state variables in

the parameterization of $(t). In relation to the second experiment, it was decided that

the estimator should use a window size of 5 active time segments; this cost approximately

1.3 seconds per local batch optimization and led to a total run time of 1.6 hours2.

Closed-Loop Solution

Using the visual place-recognition algorithm proposed by MacTavish and Barfoot (2014),

followed by geometric verification, we were able to detect nine loop-closure locations

(discussed in Appendix A.3). An optimization was then performed around each loop-

closure for the spatial transformation and the basis functions overlapping in time with

spatially matched landmark observations. In order to see how merging landmarks across

loop closures improves the open-loop estimate, the solution is integrated using both an

OLI and closed-loop integration (CLI) scheme.

Figure 5.9 shows the trajectory integrations for two 20 metre local regions, selected as

part of ALARMS error calculations, which included loop closures. The first region, in

2Implemented in Matlab and timed with a 2.4GHz processor and 8GB of 1333MHz DDR3 RAM.
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Local Region
Note how closely the 
final solution (green)

follows the GPS

(a) Region 1

Local Region

Note how closely the 
final solution (green)

follows the GPS

(b) Region 2

Figure 5.9: These figures show the trajectory integrations for ALARMS error calculations in

two different areas; each calculation used a 20 m local region size and included a loop closure.

The first region, shown in (a), is near the start/end of the 1.1km trajectory and contains a loop

closure connecting the two trajectory segments. An incremental performance increase is clearly

visible, with the final solution being very near the GPS ground truth. The second region, shown

in (b), includes three trajectory segments, two of which are connected by a loop closure that

spans nearly 200 m. Again, an incremental performance increase is clearly visible.

Figure 5.9(a), includes two trajectory segments, which contain the start and end of the

1.1km traversal. The second region, in Figure 5.9(b), includes three trajectory segments,

two of which are connected by a loop closure that spans roughly 200m. Descriptions of

the algorithms and the resultant RMS error for each region is shown in Table 5.1.

As expected, the discrete algorithm configuration, which does not consider motion

distortion, performs poorly in comparison to all of the continuous-time solutions. Note that

the integration of the trajectory in the second region included less open-loop distance, and

therefore it is expected that the magnitude of errors in the results would be smaller. The

expected reduction in error between the open-loop integrations of the relative continuous-

time trajectory, with and without loop closure, is fairly minimal. In the first region, we

see a fairly substantial improvement, which can be attributed to the small incremental

improvements over the very long open-loop integration distance. In the second region,
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Table 5.1: This table describes the different algorithm configurations that will be contrasted

for local accuracy. The two estimators are the Discrete estimator, that assumes no motion

distortion, and the Relative CT estimator using basis function on body-centric velocity. All

configurations use the feature correspondences provided by the motion-compensated RANSAC

algorithm presented in Chapter 4. The final two configurations take advantage of loop closure

information provided by the place-recognition algorithm, but are integrated in different fashions;

one using open-loop integration (OLI) and one using closed-loop integration (CLI). Finally,

RMS errors are shown for the trajectory integrations investigated in Figure 5.9.

Label Loop

Closures

Integration

Scheme

Region 1 RMS

Err. [m]

Region 2 RMS

Err. [m]

Discrete No OLI 13.95 6.32

Rel. CT No OLI 8.61 2.83

Rel. CT w/ LC (OLI) Yes OLI 4.41 2.89

Rel. CT w/ LC (CLI) Yes CLI 0.40 1.14

there is a slight increase in measured error; although it is possible that the additional

measurements and fusion of landmarks reduced the accuracy of the estimation, it must

be considered that the circular error probability (CEP) of our GPS is only 0.4m in the

horizontal plane. Furthermore, this CEP is reported under ideal conditions and the

vertical dimension is typically worst. Finally, we note the solution using CLI in the second

region had more than double the error of the first region for a trajectory of similar size; if

we consider only the two pieces of trajectory tied by loop closure in the second region,

we find the RMS error of the final solution is only 0.44m, giving some insight to the

importance of place recognition for increasing local estimation accuracy. We contrast

the various algorithm configurations more broadly, over the full 1.1km trajectory, by

comparing the ALARMS error for varying local region sizes, as seen in Figure 5.10. Lastly,

we note that the number of available loop closures in this dataset was fairly low, but that

the algorithm should scale well with additional loop closures; Sibley et al. (2010) show in

their discrete-time relative bundle adjustment algorithm that the addition of many loop

closures significantly reduces mapping error, even before global relaxation.

In an offline process, we discretized the continuous-time trajectory, solved for the

covariance of the relative transforms, and performed pose-graph relaxation using the nine

optimized loop closures. The resulting globally consistent trajectory estimate can be seen

in Figure 5.11. While a globally consistent map of this quality is useful for tasks such as

macro-level path planning, or low-frequency human-in-the-loop decisions, we reiterate

that the strength of the relative formulation is a constant-time, locally accurate solution

aimed at enabling autonomous tasks, such as navigation or object avoidance.
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Figure 5.10: This figure shows ALARMS error

for a number of local region sizes, using trajec-

tory estimates of the entire 1.1km trajectory.

Note the estimation error drift for continuous-

time solutions is far lower than that of the

discrete solution. Furthermore, the addition

of loop closure improves both the open-loop

and closed-loop results.

Figure 5.11: This figure shows the globally

consistent trajectory estimate generated by dis-

cretizing the full 1.1km continuous-time trajec-

tory, and performing a pose-graph relaxation

using the nine available loop closures. The

RMS error for the full trajectory is 2.9m. If

we consider only the x-y plane, then the RMS

error is 0.77m over the full 1.1km path.

From a navigational standpoint, the ability to close loops in constant time and

generate highly accurate local maps is significant; especially with the growing popularity

of techniques that aim to localize against previously traversed paths in order to repeat

routes (Furgale and Barfoot, 2010; Churchill and Newman, 2012).

5.4 Discussion

The relative, parametric approach to STEAM described in this chapter provided good

estimation accuracy and exhibits the properties that we wish to have in our ideal localiza-

tion engine. However, the estimator performs much more slowly than would be hoped.

The core issue being that we require numerical integration of the velocity profile to form

expected measurements and Jacobians. Furthermore, the fully relative solution also adds

a severe amount of density to the problem; while the general complexity is unaffected

(using the Schur complement), the secondary sparsity is very poor.

The major issue that needs to be addressed in the parametric approach is the algorithm

that determines the knot spacing. In this thesis, we made use of a uniform spacing that

needed to be trained prior to the experiment; in general, this is not desirable. Although

the knot-space training in Figure 5.6 would have us believe that it is safe to simply choose

a very fine knot spacing, further experimentation has shown us both ends of the spectrum
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(a) Objective Function Cost

OverfittingUnderfitting

(b) Translational Error

Figure 5.12: These figures illustrate the issue of underfitting and overfitting with uniformly

spaced B-spline basis functions. This experiment used a 200m section of the appearance-based

lidar dataset, but for simplicity, was conducted on a pose-graph relaxation problem. Note that

as we add addition state variables (i.e., knots) the cost function decreases. However, while error

decreases at first, the increased resolution eventually allows it to overfit the measurements.

exhibit poor behavior (see Figure 5.12). In an attempt to rectify this issue, the works of

Oth et al. (2013) and Anderson et al. (2014)3 attempt an adaptive parametric approach

in which the normalized innovation squared (NIS) is to determine whether enough ‘spline

resolution’ is available in a time segment; notably the use of NIS is very dependent

on outlier rejection being performed robustly. Oth et al. (2013) extend the traditional

B-spline method presented here by subdividing time segments with additional knots. The

method that we proposed (Anderson et al., 2014) took an alternative approach in which

a hierarchical wavelet representation was used; in this parametrization, the smoothest

spline level is constructed from uniform B-splines, and is overlaid with hierarchical levels

of finer wavelets functions. If a time segment was determined to need more resolution, we

unlocked finer levels of wavelets in the temporal area. Both techniques showed promise,

but further validation (expressly on the robustness of the algorithms) should be performed.

Looking ahead to Chapter 6, we note that the parametric approach suffers when the

knot spacing is small because it does not focus on accurately modelling the motion prior.

Instead, a weak prior is typically used and the inherent smoothness of the trajectory

is chosen through the knot spacing. While this does provide a level of robustness,

chosen by the engineer, it also begs the question: “Could an extremely fine knot spacing

be used reliably if we had a strong prior over an accurate motion model?”. Although

accurately modelling the prior is no simple feat, it inspires the exploration of Gaussian-

process regression as an alternative trajectory representation. In the weight-space view of

Gaussian-process regression, a GP can be thought of as a parametric spline with infinite

3Our work on wavelets (Anderson et al., 2014) was not included in this thesis due to page constraints.
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temporal basis functions – the solution is constrained by putting much more focus on

modelling a strong prior distribution.

5.5 Summary and Conclusions

In this chapter we have presented a batch, parametric, relative, singularity-free, and

continuous-time SLAM estimator that is able to find an incremental approximation to

the MAP problem in constant-time. The estimator presented in this chapter adopts

the completely relative problem formulation by Sibley et al. (2009). However, as the

proposed relative method is also a continuous-time solution, it maintains the ability to

overcome the state-size tractability issues associated with high-rate and scanning sensors

by using the parametric framework derived by Furgale et al. (2012). To attain this fusion

of techniques, the open-loop trajectory is represented by a continuous-time estimate of the

robot’s velocity, while large-scale loop closures are described by discrete transformations

that relate the robot’s pose at two different times. The algorithm was validated using a

1.1 kilometer dataset of motion-distorted lidar intensity imagery. Using this dataset, we

demonstrate that our algorithm is able to compensate for motion-distortion and provide

odometry results much more suitable to navigation than a discrete-time counterpart. The

methods and results presented in this chapter were initially published without loop-closure

results, by Anderson and Barfoot (2013b), and then fully by Anderson et al. (2015b).

In summary, the contributions of this chapter are:

1. A continuous-time adaptation of the relative-coordinate formulation of SLAM. We

demonstrate that by estimating the velocity profile of the robot, we can devise an

incremental SLAM solution that runs in constant time – even at loop closure.

2. An explanation of how to perform sliding-window-style estimation with basis func-

tions that have a local support greater than two.

3. An evaluation of the algorithm using lidar-style VO and appearance-based place

recognition over a 1.1 kilometer traverse of unstructured, three-dimensional terrain.

This work was an important step towards developing real-time continuous-time solu-

tions on the relative pose manifold. In particular, the knowledge we acquired from the

derivations and experiments presented in this chapter greatly influenced the approach of

our (final) GP-based algorithm (presented at the end of Chapter 6).



Chapter 6

Gaussian-Process Representations

for Trajectories

In this chapter we explore novel extensions of the Gaussian-process (GP) regression

approach to batch continuous-time trajectory estimation. The approach, first introduced

by Tong et al. (2012, 2013), directly models the robot trajectory as a one-dimensional GP

(where time is the independent variable) and uses batch estimation to solve for the robot

state at the measurement times. Barfoot et al. (2014) extend this work by introducing a

class of exactly sparse GP priors based on linear time-varying (LTV) stochastic differential

equations (SDE); a sparse set of trajectory-smoothing terms are generated by using a

physically motivated SDE, driven by white noise, to derive costs associated with temporal

change in the Markovian state variables. The GP approach also provides a principled

interpolation scheme based on the chosen motion model. This interpolation can be used

both to query the robot state at any time and to heuristically compress the state vector

using keytimes (as suggested by Tong et al. (2013)).

Inspired by the work of Tong et al. (2013) and Barfoot et al. (2014), this thesis

extends the GP approach to trajectory estimation and the class of exactly sparse GP

priors in several ways. First, we build upon the exactly sparse approach that used

linear, time-varying SDEs, and show how to use GPs based on nonlinear, time-varying

(NTV) SDEs, while maintaining the same level of sparsity. The algorithmic differences

are discussed in detail and results are provided using comparable linear and nonlinear

priors. Next, we show how the block-tridiagonal sparsity of the kernel matrix can be

exploited to improve the computational performance of log-evidence hyperparameter

training. We also propose a kinematically motivated and exactly sparse GP prior for

81
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bodies that are translating and rotating in 3D space (i.e., x(t) ∈ SE(3)). Using this

fast, singularity-free, and physically-motivated method, we demonstrate the ability to

interpolate measurement times from a sparser set of keytimes and draw connections to the

parametric continuous-time estimation schemes. Furthermore, we describe an approach

to adopt a relative continuous-time solution, drawing inspiration from the work of Sibley

et al. (2009) and the results of Chapter 5. Finally, all of the algorithms are validated using

data from real hardware experiments; the NTV SDE and hyperparameter extensions use

a 2D mobile robot dataset and the 3D method is validated with both a stereo-camera

dataset and the appearance-based lidar dataset described in Appendix A.

The novel contributions of this chapter are: (i) a methodology to use NTV SDEs to

generate an exactly sparse GP prior for trajectories that belong to a vectorspace, (ii) an

analysis of the complexities that arise from needing an operating point consisting of a

full time-varying trajectory, (iii) an analysis of how data-driven hyperparameter training

can also exploit the exactly sparse nature of our GP priors, (iv) an evaluation of both

the nonlinear GP prior and the data-driven hyperparameter training for a 2D mobile

robot dataset, (v) a theoretical extension of our linearization methodology for a NTV

SDE that belongs to SE(3), (vi) a piecewise continuous GP prior that uses a sequence

of local LTI SDEs to closely approximate a desired NTV SDE, (vii) a description of the

methodology we use to extend our GP estimator to the relative coordinate formulation

of STEAM, (viii) an evaluation of our estimator’s accuracy, consistency, computational

performance, and interpolation functions, using a stereo camera dataset, and (ix) an

evaluation using lidar-style VO and place recognition. The contributions presented in this

chapter have appeared in two previous publications. First, the work of Barfoot et al. (2014)

was extended by our work on NTV SDEs and hyperparameter training for publication

in a journal article (Anderson et al., 2015a). Second, our exactly sparse GP prior for

SE(3) was published in the proceedings of a full-paper refereed conference (Anderson

and Barfoot, 2015); note that the relative SLAM extension and appearance-based lidar

results were not included in this publication.

6.1 Related Work

Gaussian processes have been used extensively in the field of machine learning to solve

a variety of classification and regression problems; Rasmussen and Williams (2006) is

an excellent introductory resource on this topic. For regression, GPs are typically used
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to model an unknown continuous function that maps a set of known inputs to a set of

(noisy) measured outputs. The GP model predicts the output (with uncertainty) for

unmeasured input quantities by taking a data-driven approach; in essence, a prediction is

made by querying the posterior (mean and covariance) of the output function, given: (i) a

query input, (ii) continuous prior mean and covariance functions over the output space,

and (iii) a set of measured outputs for known inputs (with uncertainty information). In

contrast to this probabilistic and data-driven approach, parametric regression models

typically require many non-trivial engineering decisions that can affect accuracy (e.g., the

shape and spacing of basis functions).

In robotics, GPs have been used to accomplish a wide variety of tasks, such as modelling

the distortion of a camera lens (Ranganathan and Olson, 2012), assessing terrain for

driveability (Berczi et al., 2015), and even large-scale surface modelling (Vasudevan et al.,

2009). Concerning robotic state estimation, GPs have been used as a dimensionality

reduction technique (Ferris et al., 2007; Lawrence, 2003), a method to represent both

nonlinear observation and motion models (Deisenroth et al., 2012; Ko and Fox, 2009, 2011),

and even to map optical flow vectors directly to metric odometry estimates (Guizilini and

Ramos, 2012). In contrast to these works, the GP-regression approach to continuous-time

trajectory estimation, introduced by Tong et al. (2013), is distinctly different; instead of

modelling the continuous function between an input and output, it proposes modelling

the latent trajectory function, x(t), as a GP, where time is the input and the discrete

observations are generated from a (nonlinear, noninvertible) measurement model, g(x(tk)),

that depends on the hidden trajectory value, x(tk), at input time tk.

Akin to the batch continuous-time estimation problem described in Section 3.4, the

approach of Tong et al. (2013) is built upon the use of a continuous-time GP prior

(consisting of both a mean and covariance function) and a set of discrete-time observations.

Drawing some similarity to the discrete-time batch problem formulation, the GP-regression

approach first solves for the trajectory at the measurement times, x(tk), by formulating

a Gauss-Newton estimator to iteratively improve the best guess of the (discretized)

posterior trajectory. Post optimization, the GP linear prediction equations (Rasmussen

and Williams, 2006) can then be used to query the mean and covariance of the posterior

trajectory at other times of interest. Although the original derivation by Tong et al. (2013)

was general, their early implementations of a GP prior failed to realize the Markovian

nature of the problem and resulted in a profoundly slow batch trajectory estimation

scheme – due to the need to invert a large, dense kernel matrix. The work of Barfoot
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tK

tk tk+1

tK 1

t

query time

Figure 6.1: This figure shows a factor-graph (Dellaert and Kaess, 2006) depiction of an exactly-

sparse, continuous-time, Gaussian-process prior, x(t) ∼ GP(x̌(t), P̌(t, t′)), generated from a

Markovian stochastic differential equation. Barfoot et al. (2014) show that the Markov property

can be exploited in the batch continuous-time context in order to generate this type of prior,

which has only K binary smoothing factors between consecutive measurement times (plus a

unary factor for the initial condition). The triangles are used to depict queries of the trajectory

state, x(t), at the measurement times and the factors (i.e., squared error terms) are represented

by black dots. The most pleasing result of the GP-approach is that it provides a principled

method of interpolating the trajectory (both mean and covariance) at any time, by storing the

mean (triangles) and covariance (shaded ellipses) at the measurement times.

et al. (2014) revived the GP approach by making the retrospective observation that

the Markov property exploited by classical (discrete- and continuous-time) recursive

methods (Kalman, 1960; Kalman and Bucy, 1961) can also be exploited in the batch

continuous-time context. Using LTV SDEs driven by white noise, Barfoot et al. (2014)

derive a class of exactly sparse GP priors; the associated sparse set of prior costs can

be connected to factor-graph theory (Kaess et al., 2008, 2012; Rosen et al., 2014), see

Figure 6.1, and used in incremental estimators (Yan et al., 2014).

These prior works on applying GP regression to batch continuous-time trajectory

estimation have demonstrated both a method to generate exactly sparse GP priors over

trajectories in a vectorspace (Barfoot et al., 2014) and a method to make the (general, slow)

GP approach work for trajectories in three-dimensional space (Tong et al., 2014). Building

upon these works, the two major contributions of this chapter are: (i) the derivation of a

class of exactly sparse GP priors generated from nonlinear time-varying SDEs, and (ii) a

piecewise, linear GP prior that is both exactly sparse and handles trajectories belonging

to the SE(3) manifold.

Recalling the methods described in Chapter 5, we note that parametric continuous-time

trajectory estimation methods are also relevant to this work. From a machine-learning

standpoint, these parametric methods can also be viewed as a solution to the proposed

regression problem, where some simplifying assumptions have been made about the form

of the continuous function we wish to model. In particular, we note that existing literature
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has proposed modelling the true motion using: (i) a set of piecewise constant-velocities

(Ait-Aider et al., 2006; Davison et al., 2007; Hedborg et al., 2012; Dong and Barfoot,

2012; Anderson and Barfoot, 2013a), (ii) curves formed by splines (Bosse and Zlot, 2009;

Bibby and Reid, 2010; Bosse et al., 2012; Zlot and Bosse, 2012, 2014), and (iii) finite

sets of temporal basis functions (Furgale et al., 2012; Anderson and Barfoot, 2013b;

Lovegrove et al., 2013; Oth et al., 2013; Anderson et al., 2014; Furgale et al., 2015). In

addition to determining the type of interpolation that is best suited for a specific trajectory

estimation problem, these parametric schemes must also make difficult choices regarding

the discretization used in the model. For example, in the temporal basis function approach,

decisions concerning knot spacing (which may even be nonuniform) have direct impacts

on the fidelity of the model. In contrast to parametric schemes, the GP approach requires

less micromanagement, but relies heavily on the continuous-time prior distribution to

provide a smooth and sensible result.

6.2 Background – Gaussian Process Gauss-Newton

In this section, we review the mathematical preliminaries underlying the general Gaussian

Process Gauss-Newton (GPGN) batch estimator proposed by Tong et al. (2012, 2013).

In this continuous-time derivation, we will first consider the localization-only case (i.e.,

the map is known) for the state at the trajectory times, then show how the posterior

trajectory can be queried at any time, and lastly, demonstrate how to reintroduce the

landmarks parameters to the state and formulate the full STEAM problem.

6.2.1 GP Regression for Trajectory Estimation

We begin the derivation of the GP-regression approach to trajectory localization by

formulating the problem we wish to solve. Similar to the probabilistic approach described

in (3.65), we define the MAP localization problem

x̂(t) = argmax
x(t)

p(x(t) |u(t), `, y), (6.1)

where x̂(t) is the posterior mean of the continuous-time trajectory, x(t), the control inputs

u(t) and landmarks ` are known a priori, and we define our landmark observations using

the familiar measurement model,

ykj = g(x(tk), `j) + nkj, t1 < · · · < tK , (6.2)
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where ykj is the measurement of (known) landmark `j at time tk, g(·) is the nonlinear

observation model, and nkj ∼ N (0,Rkj) is zero-mean Gaussian measurement noise. In the

GP-regression approach, the prior distribution of trajectories, p(x(t) |u(t)), is represented

by using the Gaussian process

x(t) ∼ GP(x̌(t), P̌(t, t′)), t0 < t, t′, (6.3)

where x̌(t) is the prior mean function and P̌(t, t′) is the prior covariance function. From a

machine-learning standpoint, we note that the prior mean function and prior covariance

(sometimes referred to as the kernel) function can be specified in a variety of manners.

However, given the nature of our physical problem, it is prudent to generate the prior

from a continuous-time motion model (using the control inputs u(t)).

To provide some intuition on how this can be accomplished, we share the white-noise-

on-acceleration (i.e., constant-velocity) prior employed by the majority of the work by

Tong et al. (2012, 2013, 2014). Considering a simple 2D trajectory,

x(t) := p(t) =
[
x(t) y(t) θ(t)

]T
∈ R3, (6.4)

a constant-velocity prior is formed by specifying the process model

ẍ(t) = w(t), w(t) ∼ GP(0,QCδ(t− t′)), u(t) = 0, (6.5)

where the process noise, w(t), is a zero-mean Gaussian process with (symmetric, positive-

definite) power-spectral-density matrix, QC . Avoiding the laborious details, we note that

integrating this expression twice (using the Heaviside function to handle the Dirac delta

function) results in the GP prior mean and covariance functions (Tong et al., 2013):

x̌(t) = x̌(t0), P̌(t, t′) =

(
min(t, t′)2 max(t, t′)

2
− min(t, t′)3

6

)
QC . (6.6)

In order to connect these continuous-time models with the batch estimation ma-

chinery described in Chapter 3, we first discretize our continuous-time functions at the

measurement times, tk, such that

x =


x(t0)

...

x(tK)

 , x̌ =


x̌(t0)

...

x̌(tK)

 , P̌ =
[
P̌(ti, tj)

]
ij
. (6.7)

Using the same vector and matrix discretization schemes, we also define the posterior

mean, x̂, posterior covariance, P̂, operating point, x̄, and state perturbation, δx. As
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usual, we aim to construct an iterative MAP estimator by linearizing the measurement

models about our best guess, x̄, and solving for the optimal update, δx?, where we define

x̂ = x̄ + δx?. This is accomplished (without a specific set of prior functions) by using

Bayesian inference. We begin by writing the joint likelihood

p

([
x
y

])
= N

([
x̌

ḡ + G(x̌− x̄)

]
,

[
P̌ P̌GT

GP̌ GP̌GT + R

])
, (6.8)

where the measurement model is linearized about our best guess,

y =


y00

...

yKL

 , g =


g(x(t0))

...

g(x(tK))

 , ḡ = g|x̄ , G =
∂g
∂x

∣∣∣∣
x̄
, R = diag (R00, . . . ,RKL) .

(6.9)

Conditioning the state on the measurements, we find the Gaussian posterior:

p(x|y) = N
(

x̌ + P̌GT
(
GP̌GT + R

)−1 (y− ḡ−G (x̌− x̄)
)︸ ︷︷ ︸

= x̂, the posterior mean

,

P̌− P̌GT
(
GP̌GT + R

)−1 GP̌︸ ︷︷ ︸
= P̂, the posterior covariance

)
. (6.10)

Using the perturbation, x̂ = x̄ + δx?, and the Sherman-Morrison-Woodbury identities,

AB (CAB + D)−1 ≡
(
A−1 + BD−1C

)−1 BD−1, (6.11)

A− AB (CAB + D)−1 CA ≡
(
A−1 + BD−1C

)−1
, (6.12)

we rearrange the posterior mean expression – via (6.11) – to find that(
P̌−1 + GTR−1G

)
δx? = P̌−1(x̌− x̄) + GTR−1(y− ḡ). (6.13)

Noting that the posterior covariance expression – via (6.12) – is

P̂ =
(
P̌−1 + GTR−1G

)−1
, (6.14)

we recognize that (6.13) can be viewed as the solution to the associated maximum a

posteriori (MAP) problem. Our connection to the Gauss-Newton machinery is complete,

noting that we can solve iteratively for δx? and then update the guess according to

x̄← x̄ + δx?; upon convergence, we set x̂ = x̄.
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Concerning sparsity, we recall from our previous analysis of the batch discrete-time

problem (see Section 3.1.3) that GTR−1G is block-diagonal (this is the upper-left corner of

the typical arrowhead matrix in the full SLAM problem). Note that in this derivation we

have not assumed a specific form for P̌(t, t′); therefore, the inverse covariance, P̌−1, may in

fact be dense if proper care is not taken when modelling the GP prior functions – this is

the case for the prior in (6.6). A naive implementation will therefore lead to a complexity

of O(K3) to solve the system of equations, where K is the number of measurement times.

6.2.2 GP Regression for STEAM

Transitioning to the full STEAM problem is a simple matter. Considering the landmarks

to now be unknown, we formulate the joint state vector and Jacobians:

z :=

[
x
`

]
, ` :=


`1

...

`L

 , G :=
[
Gx G`

]
, Gx :=

∂g
∂x

∣∣∣∣
x̄
, G` :=

∂g
∂`

∣∣∣∣
¯̀
. (6.15)

Noting the similarity of our system of equations in (6.13), to the discrete-time batch

estimation in (3.25), it is straightforward to determine that the Gauss-Newton STEAM

estimator can be formulated using the update equation

( Apri︷ ︸︸ ︷[
P̌−1 0

0 0

]
+

Ameas︷ ︸︸ ︷
GTR−1G

)
δz? =

[
P̌−1(x̌− x̄)

0

]
+ GTR−1(y− ḡ), (6.16)

where the solution for the optimal state perturbation δz? can be used iteratively to

converge our best guess, z̄, to the MAP solution, ẑ.

Recalling the discussion of sparsity in Section 3.1.3, we note that our state update

equation has a familiar 2× 2 block-form – see (3.28). In particular, we note that Ameas

is the familiar arrowhead matrix. However, in contrast to the discrete-time solution,

the contribution of our prior, P̌−1, is not necessarily block-tridiagonal. Using the Schur

complement, or Cholesky decomposition, we can exploit either the structure of Axx or

A``. In cases where P̌−1 is dense (or unknown), we typically exploit the block-diagonal

nature of A`` to solve the STEAM problem in O(K3 +K2L) time.
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6.2.3 Querying the Trajectory

In order to query the posterior mean and covariance of the continuous-time trajectory

at other times of interest, τ , we employ the use of the standard linear GP interpolation

equations (Rasmussen and Williams, 2006; Tong et al., 2013),

x̂(τ) = x̌(τ) + P̌(τ)P̌−1(x̂− x̌), (6.17a)

P̂(τ, τ) = P̌(τ, τ) + P̌(τ)P̌−1
(

P̂− P̌
)

P̌−T P̌(τ)T , (6.17b)

where P̌(τ) =
[
P̌(τ, t0) · · · P̌(τ, tK)

]
. In general, the posterior at some query times,

x̂(τ), could also be found by inserting them into the state vector, x, before performing

the batch optimization; however, the (naive) computational cost of solving (6.13) would

increase to O((K + J)3), where J is the number of query times. In contrast, the above

interpolation equations have a (naive) complexity of only O(K2J). Notably, either method

will result in the same interpolated posterior quantities (for a linear GP prior).

6.2.4 Interpolating Measurement Times

Thus far, we have derived a principled continuous-time batch estimation scheme to solve

for the trajectory state, x(tk), at every measurement time, tk, k = 1 . . . K, and then

query for other times of interest, x(τ) – all without approximation. Given the ability to

interpolate the mean, via (6.17a), storing the state at every measurement time may be

excessive, especially in a scenario where the measurement rate is high in comparison to

the smoothness of the robot kinematics (e.g., a 1000 Hz IMU or individually timestamped

lidar measurements, mounted on a slow indoor platform).

Tong et al. (2013) discuss a heuristic scheme to remove some of the measurement times

from the initial solve, which reduces computational cost at the expense of accuracy. It is

proposed that by defining x to discretize the trajectory at some smaller set of keytimes,

tn, n = 0 . . . N , which may or may not align with some subset of the measurement times,

the interpolation equation can be used to modify our measurement model as follows,

ykj = g(x(tk), `j) = g
(

x̌(tk) + P̌(tk)P̌−1(x− x̌), `j

)
, (6.18)

where the trajectory at the measurement time, x(tk), is now queried from the compressed

(keytime) state vector. The effect on the Jacobian, G, is that each block-row now has

multiple non-zero block columns (based on the sparsity of P̌(tk)P̌−1).
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An important intuition is that the interpolated state at some measurement time, tk,

depends only on the state estimate, x, and the prior functions, x̌(t) and P̌(t, t′). Therefore,

the effect of estimating x at some reduced number of times is that we obtain a smoothed

solution; detailed trajectory information provided by high frequency measurements be-

tween keytimes is lost. Although this detail information is smoothed over, there are

obvious computational savings in having a smaller state and a subtle benefit regarding

the prevention of overfitting measurements.

6.3 Estimating Trajectories in RN

6.3.1 Background – A Class of Exactly Sparse GP Priors

In this section we review the material introduced by Barfoot et al. (2014) to generate

a useful class of exactly sparse GP priors from linear time-varying (LTV) stochastic

differential equations (SDE) of the form

ẋ(t) = F(t)x(t) + v(t) + L(t)w(t), w(t) ∼ GP(0,QC δ(t− t′)), (6.19)

where x(t) is our continuous-time trajectory, v(t) is a (known) exogenous input, w(t) is

the process noise, and F(t), L(t) are time-varying system matrices. The general solution

to this LTV SDE is

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, s) (v(s) + L(s)w(s)) ds, (6.20)

where Φ(t, s) is known as the transition matrix.

Mean and Covariance Functions

Using the first and second moments of (6.20), we note the mean function

x̌(t) = E[x(t)] = Φ(t, t0)x̌0 +

∫ t

t0

Φ(t, s)v(s) ds, (6.21)

and covariance function,

P̌(t, t′) = E
[
(x(t)− x̌(t))(x(t′)− x̌(t′))T

]
= Φ(t, t0)P̌0Φ(t′, t0)T +

∫ min(t,t′)

t0

Φ(t, s)L(s)QCL(s)TΦ(t′, s)T ds,
(6.22)



Chapter 6. Gaussian-Process Representations for Trajectories 91

that fully specify a prior distribution of trajectories, based on the LTV SDE in (6.19). In

order to split up the integrals at the sequence of measurement times, t0 < t1 < t2 < · · · <
tK , we define the quantities

vk(τ) :=

∫ τ

tk

Φ(τ, s)v(s) ds, (6.23a)

Qk(τ) :=

∫ τ

tk

Φ(τ, s)L(s)QCL(s)TΦ(τ, s)T ds, (6.23b)

and note that the expressions can be simplified using the recursive schemes

x̌(τ) = Φ(τ, tk)x̌(tk) + vk(τ), tk < τ < tk+1 (6.24a)

P̌(τ, τ ′) = Φ(τ, tk)P̌(tk, tk)Φ(τ ′, tk)
T + Qk(min(τ, τ ′)), tk < τ, τ ′ < tk+1 (6.24b)

with the initial condition, x(t0) ∼ N (x̌0, P̌0). Recalling the state discretization at the

measurement times, x, we can then write the prior in lifted form

x ∼ N
(
x̌, P̌
)

= N
(
Fv,FQFT

)
, (6.25)

where Q = diag
(
P̌0,Q0(t1), . . . ,QK−1(tK)

)
and

F =



1 0 · · · 0 0

Φ(t1, t0) 1 · · · 0 0

Φ(t2, t0) Φ(t2, t1)
. . .

...
...

...
...

. . . 0 0

Φ(tK−1, t0) Φ(tK−1, t1) · · · 1 0

Φ(tK , t0) Φ(tK , t1) · · · Φ(tK , tK−1) 1


, v =


x̌0

v0(t1)
...

vK−1(tK)

 . (6.26)

Perhaps the most important result of this new structure is that

P̌−1 = (FQFT )−1 = F−TQ−1F−1, (6.27)

is exactly block-tridiagonal, where the inverse of the lifted transition matrix is

F−1 =



1 0 · · · 0 0

−Φ(t1, t0) 1 · · · 0 0

0 −Φ(t2, t1)
. . .

...
...

0 0 . . . 0 0
...

... · · · 1 0

0 0 · · · −Φ(tK , tK−1) 1


, (6.28)

which is a block-lower-bidiagonal matrix.
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Querying the Trajectory

Recalling the linear prediction equations presented in (6.17), Barfoot et al. (2014) make

the keen observation that by applying this sparse structure, the vital term, P̌(τ)P̌−1, has

exactly two non-zero block-columns

P̌(τ)P̌−1 =
[

0 · · · 0 Λ(τ)︸ ︷︷ ︸
block
col. k

Ω(τ)︸ ︷︷ ︸
block

col. k+1

0 · · · 0
]
, (6.29)

where tk ≤ τ < tk+1,

Λ(τ) = Φ(τ, tk)−Ω(τ)Φ(tk+1, tk), Ω(τ) = Qk(τ)Φ(tk+1, τ)TQk(tk+1)−1. (6.30)

Inserting this into (6.17), the interpolation equations simplify to

x̂(τ) = x̌(τ) +
[
Λ(τ) Ω(τ)

] [ x̂k − x̌k
x̂k+1 − x̌k+1

]
, (6.31a)

P̂(τ, τ) = P̌(τ, τ) +
[
Λ(τ) Ω(τ)

]([ P̂k,k P̂k,k+1

P̂k+1,k P̂k+1,k+1

]
−
[

P̌k,k P̌k,k+1

P̌k+1,k P̌k+1,k+1

])[
Λ(τ)T

Ω(τ)T

]
,

(6.31b)

where the prior quantities x̌(τ) and P̌(τ, τ) are computed using (6.24). Notably, the

final sparse interpolation scheme involves only the temporally adjacent terms (i.e., terms

associated with times tk and tk+1); this can be viewed as a product of the Markov property.

Furthermore, the interpolation can be computed efficiently, in O(1) time, and is derived

with no approximations.

Exactly Sparse GP STEAM

Returning to the STEAM problem in (6.16), we note that by using a GP prior generated

from an LTV SDE, we have that P̌−1 = F−TQ−1F−1, which is block-tridiagonal. Recalling

that GTR−1G (for the STEAM problem) is the arrowhead matrix, a factor-graph depiction

of the full problem sparsity is presented in Figure 6.2. The cost of STEAM, using an

exactly sparse GP prior, is either of order O(L3 +L2K+J) or O(K3 +K2L+J), depending

on the way we choose to exploit Axx or A``.

Recalling that the block-tridiagonal term, F−TQ−1F−1, is generated from our continuous-

time motion model, we note that this is the exact form of our discrete-time SLAM problem

in (3.25) – despite having used no approximations and a continuous-time motion model.
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(a) General dense (non-Markovian) GP prior.

0� 2�1�

t1x( ) t2x( ) t3x( ) t4x( ) t5x( )t0x( )

(b) Exactly sparse (Markovian) GP prior.

Figure 6.2: This figure illustrates factor-graph representations (Dellaert and Kaess, 2006) of our

STEAM problem using a general (dense) GP prior and an exactly sparse GP prior (exploiting the

Markov property). Triangles are used to represent temporal samples of the trajectory state at

the measurement times, x(tk), and hollow circles are used to represent the landmark parameters,

`j . The red (binary) factors represent costs associated with the visual measurements, ykj , and

blue factors represent costs (i.e., smoothing terms) associated with the GP prior; note the initial

blue (unary) factor is a prior over the trajectory variables at time t0. The crisscross pattern of

(red) landmark associations depict how a sweeping-type sensor might behave across two ‘frames’;

the landmarks are observed in an initial sweep, (t0, t1, t2), and then again, (t3, t4, t5).

Furthermore, Barfoot et al. (2014) note that when the motion and observation models

are linear, the GP approach is equivalent to classical fixed-interval smoothing. Arguably,

this approach can be viewed as a reinterpretation of the standard discrete-time SLAM

formulation; however, we recall that the continuous-time GP interpretation adds an

important piece of information that is missing from the discrete-time counterpart: an

interpolation equation (for both mean and covariance) that is derived directly from the

chosen continuous-time motion model. It follows that the time-tested, discrete-time

batch SLAM solution can be viewed as a special case of the GP-regression approach

to STEAM, where the motion model has been discretized (i.e., performs an Euler step

on the continuous-time model). This relationship between discrete and continuous-time

approaches has also been discovered in work on recursive estimation (Särkkä, 2006).

An important intuition we draw from this approach is that choosing a LTV SDE that

can be written in the form of (6.19) dictates the parameters that we must estimate in our

trajectory, x(t). In essence, to maintain the block-tridiagonal sparsity we must choose a

Markovian trajectory representation that matches the form of our prior. For example,

the white-noise-on-acceleration prior presented in (6.5) does not exhibit this sparsity

because Tong et al. (2013) only estimated position, x(t) = p(t). Instead, to use a prior on

acceleration, we must estimate both position and velocity, x(t) =
[
p(t)T ṗ(t)T

]T
, or even

just velocity, x(t) = ṗ(t).
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Linear Constant-Velocity Prior Example

In this section, we set up the exactly sparse version of the ‘constant-velocity’ GP prior

presented in (6.5); this prior will be used later in our 2D mobile robot experiment.

Recalling that we set p̈(t) = w(t), where p(t) =
[
x(t) y(t) θ(t)

]T
, we now write the

prior in the form of (6.19) with

x(t) =

[
p(t)

ṗ(t)

]
, F(t) =

[
0 1
0 0

]
, v(t) = 0, L(t) =

[
0
1

]
. (6.32)

The resulting expression is a linear, time-invariant (LTI) SDE, with the associated

transition matrix

Φ(t, s) =

[
1 (t− s)1
0 1

]
. (6.33)

Substituting these terms into (6.23b), it is straightforward to find that

Qk(τ) =

[
1
3
∆τ 3QC

1
2
∆τ 2QC

1
2
∆τ 2QC ∆τQC

]
, (6.34)

where ∆τ := τ − tk and the inverse is

Qk(τ)−1 =

[
12∆τ−3Q−1

C −6∆τ−2Q−1
C

−6∆τ−2Q−1
C 4∆τ−1Q−1

C

]
. (6.35)

Using these expressions, we are able to analytically compute all of the terms in P−1 needed

for our batch continuous-time STEAM update equation.

6.3.2 Nonlinear Time-Varying Stochastic Differential Equations

At this point, we begin to describe our novel contributions towards the GP-regression

approach to batch continuous-time trajectory estimation. In reality, most systems are

inherently nonlinear and cannot be accurately described by a LTV SDE in the form of

(6.19). Moving forward, we show how these results concerning sparsity can be applied to

nonlinear, time-varying (NTV) stochastic differential equations (SDE) of the form

ẋ(t) = f(x(t),u(t),w(t)), (6.36)

where f(·) is a nonlinear function, x(t) is the state, u(t) is a (known) exogenous input, and

w(t) is white process noise. Notably, unlike the previous formulations presented in this

thesis, we have included the noise parameter, w(t), as an input to the nonlinear motion
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model – this allows for greater freedom in describing how process noise is injected into

x(t). To perform GP regression with a nonlinear process model, we begin by linearizing

the SDE about a continuous-time operating point x̄(t),

ẋ(t) = f(x(t),u(t),w(t)) ≈ f(x̄(t),u(t), 0) + F(t)(x(t)− x̄(t)) + L(t)w(t), (6.37)

where

F(t) =
∂f
∂x

∣∣∣∣
x̄(t),u(t),0

, L(t) =
∂f
∂w

∣∣∣∣
x̄(t),u(t),0

. (6.38)

Setting

v(t) = f(x̄(t),u(t), 0)− F(t)x̄(t) (6.39)

lets us rewrite (6.37) in the familiar LTV SDE form,

ẋ(t) ≈ F(t)x(t) + v(t) + L(t)w(t), (6.40)

where F(t), v(t), and L(t) are known functions of time, since x̄(t) is known. Setting the

operating point, x̄(t), to our best guess of the underlying trajectory at each iteration of

GP regression, we note a similarity in nature to the discrete-time, recursive method of Bell

(1994); in essence, our approach offers a continuous-discrete version of the Gauss-Newton

estimator, using the Gaussian-process-regressor type of approximate bridging between

the measurement times.

Mean and Covariance Functions

Although the equations for calculating the mean, x̌, and covariance, P̌, remain the same

as in (6.21) and (6.22), there are a few algorithmic differences and issues that arise due

to the new dependence on the continuous-time operating point, x̄(t). One difference (in

contrast to using a LTV SDE), is that we must now recalculate x̌ and P̌ at each iteration

of the optimization (since the linearization point is updated). The main algorithmic issue

that presents itself is that the calculation of x̌ and P̌ require integrations involving F(t),

v(t), and L(t), which in turn require the evaluation of x̄(t) over the time period t ∈ [t0, tK ].

Since an estimate of the posterior mean, x̄, is stored only at times of interest, we must

make use of the efficient (for our particular choice of process model) GP interpolation

equation derived in Section 6.3.1,

x̄(τ) = x̌(τ) + P̌(τ)P̌−1(x̄− x̌). (6.41)
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The problem is that the above interpolation depends (once again) on x̌ and P̌, which

are the prior variables for which we want to solve. To rectify this circular dependence,

we take advantage of the iterative nature of GP regression and choose to evaluate (6.41)

using the values of x̌(τ), x̌, and P̌(τ)P̌−1 from the previous iteration.

Another issue with nonlinear process models is that identifying an analytical expression

for the state transition matrix, Φ(t, s) (which is dependent on the form of F(t)), can be

very challenging. Fortunately, the transition matrix can also be calculated numerically

via the integration of the normalized fundamental matrix, Υ(t), where

Υ̇(t) = F(t)Υ(t), Υ(0) = 1. (6.42)

Storing Υ(t) at times of interest, the transition matrix can then be computed using

Φ(t, s) = Υ(t)Υ(s)−1. (6.43)

In contrast to the LTV SDE system, using a nonlinear process model causes additional

computational costs (primarily due to numerical integrations), but complexity remains

linear in the length of the trajectory (at each iteration), and therefore continues to be

computationally tractable.

Querying the Trajectory

In this section, we discuss the algorithmic details of the GP interpolation procedure as

it pertains to a NTV SDE process model. Recall the standard linear GP interpolation

formulas presented in (6.17), for a single query time, tk ≤ τ < tk+1:

x̂(τ) = x̌(τ) + P̌(τ)P̌−1(x̂− x̌),

P̂(τ, τ) = P̌(τ, τ) + P̌(τ)P̌−1
(

P̂− P̌
)

P̌−T P̌(τ)T .

The final iteration of GP regression (where x̂ = x̄), provides values for x̌, P̌, x̂, and P̂;

however, obtaining values for x̌(τ), P̌(τ)P̌−1 (recall the sparse structure in (6.29)), and

P̌(τ, τ) is not trivial. The suggestion made previously was to use values from the previous

(or in this case, final) iteration. Thus far, the method of storing these continuous-time

functions has been left ambiguous.

The naive way to store x̌(τ), P̌(τ)P̌−1, and P̌(τ, τ) is to keep the values at all numerical

integration timesteps; the memory requirement of this is proportional to the length of

the trajectory. During the optimization procedure this naive method may in fact be
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preferable as it reduces computation time in lieu of additional storage (which is fairly

cheap using current technology). However, for long-term storage, a method that uses a

smaller memory footprint (at the cost of additional computation) may be desirable. The

remainder of this section will focus on identifying the minimal storage requirements, such

that queries remain O(1) complexity.

We begin by examining the mean function; substituting (6.24a) and (6.39), into the

GP interpolation formula above, we have

x̂(τ) = Φ(τ, tk)x̌k +

∫ τ

tk

Φ(τ, s)
(
f(x̂(s),u(s), 0)− F(s)x̂(s)

)
ds+ P̌(τ)P̌−1(x̂− x̌). (6.45)

It is straightforward to see how x̂(τ) can be simultaneously numerically integrated with the

normalized fundamental matrix from (6.42), provided we can evaluate the term P̌(τ)P̌−1.

Although we chose to examine the mean function, a similar conclusion can be drawn by

examining the covariance function in (6.24b). Recalling the sparse structure of P̌(τ)P̌−1

for an LTV SDE process model, where

Λ(τ) = Φ(τ, tk)−Ω(τ)Φ(tk+1, tk), Ω(τ) = Qk(τ)Φ(tk+1, τ)TQk(tk+1)−1,

we are able to draw two conclusions. First, in the case that an analytical expression

for Φ(t, s) is unavailable, we must store Υ(tk) at the times of interest tk, k = 1 . . . K,

since any numerical integration will involve ‘future’ values of Υ(t) (via the evaluation of

Φ(tk+1, tk), Φ(tk+1, τ), and Qk(tk+1)−1). Second, in the case that L(t) is a time-varying

matrix, we must store Qk(tk+1)
−1, k = 0 . . . K − 1, since the evaluation of Qk(tk+1)

−1

requires L(s) (evaluated at x̂(s)) over the time period [tk−1, tk]. The memory requirements

of this alternative are still proportional to the length of the trajectory, but are greatly

reduced in contrast to the naive method; the added cost is that any new query requires

numerical integration from the nearest time tk to the query time τ (which is order O(1)).

Nonlinear Constant-Velocity Prior Example

Since the main source of acceleration (and probably disturbance) in a standard 2D ground-

robot model is body-centric (i.e., the actuated wheels), we extend the linear GP prior

example from Section 6.3.1 by investigating the use of an alternate ‘constant-velocity’

prior, with white noise affecting acceleration in the robot body frame, ν̇(t) = w(t). This

nonlinear prior can be written as,

ẋ(t) = f(x(t),u(t),w(t)) =

[
0 RIB(θ(t))

0 0

]
x(t) + u(t) +

[
0
1

]
w(t), (6.46)
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where we recall that θ(t) is a component of x(t), and

RIB(θ(t)) =


cos θ(t) − sin θ(t) 0

sin θ(t) cos θ(t) 0

0 0 1

 (6.47)

is a rotation matrix between the inertial and robot body frame. The associated Markovian

state is then x(t) =
[
p(t)T ν(t)T

]T
, where ν(t) =

[
v(t) u(t) ω(t)

]T
= RIB(θ(t))T ṗ(t)

is the robot-oriented velocity (with longitudinal, lateral, and rotational components).

Linearizing about an arbitrary operating point, x̄(t), the components F(t), v(t) and L(t)

from (6.40) are straightforward to derive. Similar to the linear prior example, described in

Section 6.3.1, we define the exogenous input u(t) = 0; however, recalling (6.39), we note

that v(t) 6= 0. Since expressions for Φ(t, s), and by extension Qk(tk+1), are not obvious,

we will rely on numerical integration for their evaluation.

6.3.3 Training the Hyperparameters

As with any GP regression, we have hyperparameters associated with our mean and

covariance functions. In this problem, the pertinent hyperparameters are x̌0, P̌0 and QC .

While we will typically have some information about the initial state (and uncertainty) of

the robot, the matrix QC can be difficult to determine and affects both the smoothness and

length-scale of the class of functions we are considering as motion priors. The standard

approach to selecting this parameter is to use a training dataset (with ground-truth), and

perform optimization using the log marginal likelihood (log-evidence) or its approximation

as the objective function (Rasmussen and Williams, 2006). We begin with the marginal

likelihood equation,

log p(y|QC) = −1

2
(y− x̌)TP−1

σ (y− x̌)− 1

2
log |Pσ| −

n

2
log 2π, (6.48a)

Pσ = P̌(QC) + σ2
w1, (6.48b)

where y is a stacked vector of state observations (ground-truth measurements) with

additive noise N (0, σ2
w1), x̌ is a stacked vector of the mean equation evaluated at the

observation times, tw, w = 1 . . .W , and P̌ is the covariance matrix associated with x̌ and

generated using the hyperparameters QC . Taking partial derivatives of the marginal

likelihood with respect to the hyperparameters, we get

∂

∂QCij

log p(y|QC) =
1

2
(y− x̌)TP−1

σ

∂Pσ
∂QCij

P−1
σ (y− x̌)− 1

2
tr

(
P−1
σ

∂Pσ
∂QCij

)
, (6.49)
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where we have used ∂P−1
σ

∂QCij
= −P−1

σ
∂Pσ
∂QCij

P−1
σ .

The typical complexity of hyperparameter training is bottlenecked at O(W 3) due to

the inversion of Pσ (which is typically dense). Given P−1
σ , the complexity is then typically

bottlenecked at O(W 2) due to the calculation of ∂Pσ
∂QCij

. Fortunately, in the present case,

the computation of the log marginal likelihood can also be done efficiently due to the

sparseness of the inverse kernel matrix, P̌−1. Despite the addition of observation noise,

σ2
w1, causing P−1

σ to be a dense matrix, we are still able to take advantage of our sparsity

by applying the Sherman-Morrison-Woodbury identity to find that

P−1
σ = P̌−1 − P̌−1

(
P̌−1 +

1

σ2
w

1
)−1

P̌−1 = F−TQ−1
σ F−1, (6.50)

where we define

Q−1
σ :=

(
Q−1 −Q−1F−1

(
P̌−1 +

1

σ2
w

1
)−1

F−TQ−1

)
. (6.51)

Although explicitly computing P−1
σ is of order O(W 2), we note that the product with a

vector, P−1
σ v, can be computed in O(W ) time; this is easily observable given that Q−1

is block-diagonal, F−1 is lower block-bidiagonal, and the product (P̌−1 + 1
σ2
w

1)−1v can

be computed in O(W ) time using Cholesky decomposition (since P̌−1 + 1
σ2
w

1 is block-

tridiagonal). While the two terms in (6.49) can be combined into a single trace function,

it is simpler to study their computational complexity separately. Starting with the first

term, we have

1

2
(y− x̌)TP−1

σ

∂Pσ
∂QCij

P−1
σ (y− x̌) =

1

2
(y− x̌)TF−TQ−1

σ

∂Q
∂QCij

Q−1
σ F−1(y− x̌), (6.52)

where

∂Q
∂QCij

= diag

(
0,

∂Q1

∂QCij

, . . . ,
∂QK

∂QCij

)
, (6.53)

and

∂Qj

∂QCij

:=

∫ tj

tj−1

Φ(tj, s)L(s)
∂QC

∂QCij

L(s)TΦ(tj, s)
T ds,

∂QC

∂QCij

= 1i,j, (6.54)

where 1i,j is a projection matrix with a 1 at the ith row and jth column. Taking advantage

of the sparse matrices and previously mentioned fast matrix-vector products, it is clear

that (6.52) can be computed in O(W ) time (in contrast to the typical O(W 3) time).
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Examining the second term, we have

1

2
tr

(
P−1
σ

∂Pσ
∂QCij

)
=

1

2
tr

((
F−TQ−1

σ F−1
)(

F
∂Q
∂QCij

FT
))

=
1

2
tr

(
∂Q
∂QCij

Q−1
σ

)
, (6.55)

which can only be computed in O(W 2), due to the form of Q−1
σ . In general, the total

complexity of training for this sparse class of prior is then bottlenecked at O(W 2). A

complexity of O(W ) can only be achieved by ignoring the additive measurement noise,

σ2
w1; revisiting the second term of (6.49), and setting Pσ = P̌, we find that

1

2
tr

(
P̌−1 ∂P̌

∂QCij

)
=

1

2
tr

(
∂Q
∂QCij

Q−1

)
, (6.56)

which can be computed in time O(W ). The effect of ignoring the measurement noise,

σ2
w1, is that the trained hyperparameters will result in an underconfident prior; the degree

of this underconfidence depends on the magnitude of the noise we are choosing to ignore.

If accurate ground-truth measurements are available and the size of the training dataset

is very large, this approximation may be beneficial.

6.3.4 Mobile Robot Experiment

To validate our nonlinear extension against the linear method of Barfoot et al. (2014)

and the dense method of Tong et al. (2013), we utilize the same 2D mobile robot dataset

(depicted in Figure 6.3). The experiment used a P3-AT mobile robot, equipped with a

Hokuyo URG-04LX-UG01 laser rangefinder, driving through a ‘forest’ of 17 plastic-tube

landmarks. The dataset includes odometry measurements, range/bearing measurements

(to the plastic-tubes), and ground-truth for both the robot trajectory and landmark

positions (provided by a Vicon motion capture system).

Figure 6.3: Photograph of the experi-

ment conducted by Tong et al. (2013).

Four estimators are implemented for comparison:

(i) the algorithm described by Tong et al. (2013),

GP-Pose-Dense, which has a dense inverse kernel

matrix, (ii) a naive version of Markovian STEAM

estimator, GP-Traj-Dense, which is based on the LTI

SDE prior example described in Section 6.3.1, but

does not exploit sparsity, (iii) a sparsity-exploiting

version of the STEAM estimator, GP-Traj-Sparse-

LTI, which uses the same LTI SDE prior, and (iv)

a sparsity-exploiting STEAM estimator, GP-Traj-Sparse-NTV, that uses the NTV SDE
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Table 6.1: This table contains results from the k-folds hyperparameter training for both the

LTI and NTV priors described in Sections 6.3.1 and 6.3.2. Specifically, it contains the mean and

standard deviation of the three hyperparameters (diagonal of QC) and average training time for

a set of hyperparameters

QC,11 [µ± σ] QC,22 [µ± σ] QC,33 [µ± σ] Average Time [s]

LTI 1.679e-2 ± 9.077e-4 7.841e-3 ± 6.863e-4 5.930e-2 ± 1.817e-3 22.56

NTV 2.811e-2 ± 6.022e-4 2.244e-4 ± 1.923e-5 5.993e-2 ± 1.710e-3 65.16

prior example described in Sections 6.3.2. Note that we do not implement nonlinear

versions of the first two estimators, GP-Pose-Dense and GP-Traj-Dense, because they

are only of interest with regard to computational performance.

Measurement Models

We have access to two types of measurements: range/bearing to landmarks (using a laser

rangefinder) and wheel odometry (in the form of robot-oriented velocity). For both state

parameterizations, the range/bearing measurement model takes the form

ykj = grb(x(tk), `j) + nkj =

[√
(`j,1 − x(tk))2 + (`j,2 − y(tk))2

atan2(`j,2 − y(tk), `j,1 − x(tk))

]
+ nkj. (6.57)

The wheel odometry measurement model gives the longitudinal and rotational speeds of

the robot, taking the form

yk = gwo(x(tk)) + nk =

[
cos θ(tk) sin θ(tk) 0

0 0 1

]
ṗ(tk) + nk (6.58)

for the LTI SDE prior, and

yk = gwo(x(tk)) + nk =

[
1 0 0

0 0 1

]
ν(tk) + nk (6.59)

for the NTV SDE prior. Note that in both cases the velocity information is extracted

easily from the state since we are estimating it directly.

Hyperparameters

For this experiment, we obtained QC for both the LTI and NTV priors by constraining it

to be a diagonal matrix and taking the data-driven training approach using log marginal

likelihood (with ground-truth measurements) described in Section 6.3.3. Specifically, five
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Table 6.2: This table contains estimation error results from both the k-folds cross-validation

and roughly 15-minute test set for both the LTI and NTV priors.

Average K-fold Validation Error Test Set Error

Trans.

Err. [m]

Angular

Err. [deg]

Landmark

Err. [m]

Trans.

Err. [m]

Angular

Err. [deg]

Landmark

Err. [m]

LTI 7.493e-2 3.282 0.100 7.419e-2 2.274 8.246e-2

NTV 8.002e-2 3.626 0.111 7.301e-2 2.284 9.059e-2

minutes of the roughly 20-minute dataset were set aside for training; the five minutes of

training data are then split into ten 30-second trajectories (each having 300 ground-truth

measurements) that are used for k-folds training and cross-validation. The remaining 15

minutes of data are used as a test set to perform a final evaluation of the estimator.

Results from the training, validation, and testing can be found in Tables 6.1 and 6.2.

Notably, each of the ten folds of hyperparameter training produced a very similar set of

values for our model of QC . Since the performance metric we are most interested in is the

accuracy of the estimator, the k-fold cross-validations and final test were performed by

solving the proposed GP regression problem with the given sets of hyperparameters and

then comparing the trajectory estimates to ground-truth. The average validation errors

over the ten folds are fairly good for both the LTI and NTV priors, but more importantly

were very representative of the errors on the final test set. An interesting advantage of

the NTV prior is that it is rotationally invariant; note that the values of QC,11 and QC,22

for the LTI prior (related to x and y motions, respectively) are distinctly different (a

product of the training data).

Given that our hyperparameters have a physical interpretation (in this case, related

to our prior knowledge of vehicle accelerations), we note that the goal of training should

be to find a QC that generalizes well for a specific platform (it cannot be assumed that a

single choice of QC will generalize well for different types of vehicles). With regard to the

sensitivity of the hyperparameters, it is our experience that when relatively high-frequency

measurements are available, the estimator is not overly sensitive to a more inclusive

(slightly underconfident) prior; rather, it is more ‘dangerous’ to choose a restrictive

(overconfident) prior that may preclude the true underlying motion.

Computational Cost

In order to quantify the computational gain associated with using an exactly-sparse GP

prior, we time the four batch estimators for varying lengths of the dataset (notably,
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(a) Kernel matrix construction time. (b) Optimization time per iteration.

(c) Interpolation time per additional query time. (d) Total computation time.

Figure 6.4: This figure presents the computational costs associated with the four batch STEAM

estimators. Notably, the sparse algorithms exhibit either constant or linear cost (in trajectory

length) for all of the timed components (including the full solution). The estimators were timed

in Matlab with a 2.4GHz i7 processor and 8GB of 1333MHz DDR3 RAM. Note the change from

a linear to a log scale in the upper part of each plot.

we use the full 20 minutes of data for timing purposes). The timing results, presented

in Figure 6.4, are broken down into several pieces. Note that the GP-Pose-Dense and

GP-Traj-Dense estimators are significantly slower in all aspects since they use/assume a

dense kernel matrix. For the exactly sparse estimators, GP-Traj-Sparse-LTI and GP-Traj-

Sparse-NTV, we verify that the interpolation time is constant for a single query, and that

the kernel construction time, iteration time, and total time are all linear in the number of

measurements; these approaches significantly outperform the other algorithms.

The additional cost of the GP-Traj-Sparse-NTV algorithm over the GP-Traj-Sparse-

LTI algorithm in kernel construction time is due to the linearization and numerical

integration of the prior mean and covariance. The optimization time of the GP-Traj-

Sparse-NTV algorithm is also affected because the kernel matrix must be reconstructed

from a new linearization of the prior during every optimization iteration. Finally, the GP-

Traj-Sparse-NTV algorithm also incurs some numerical integration cost in interpolation

time, but it is constant and very small.

Increasing Nonlinearity

In a problem with fairly accurate and high-rate measurements, we note that both the

GP-Traj-Sparse-LTI and GP-Traj-Sparse-NTV estimators provide similar accuracy; a
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(a) GP-Traj-Sparse-LTI trajectory sample. (b) GP-Traj-Sparse-NTV trajectory sample.

Figure 6.5: The smooth trajectories and 3σ covariance envelope estimates produced by the

GP-Traj-Sparse estimators (both linear and nonlinear) over a short segment of the dataset.

qualitative result is depicted in Figure 6.5, where both the posterior mean and covariance

of the continuous-time trajectory are queried and plotted at a rate of 10 Hz. Notably, the

GP-Traj-Sparse-NTV algorithm differed slightly from the others (the dense estimator result

is not shown, but was remarkably similar to that of the sparse linear prior); qualitatively,

we found that the trajectory estimated by the GP-Traj-Sparse-NTV algorithm more

accurately matched the local shape of the ground-truth on many occasions (note the

insets in Figure 6.5). Also, it is clear from the plotted 3σ covariance envelope that the

estimate from the GP-Traj-Sparse-NTV algorithm tends to be more uncertain.

In order to expose the benefit of a nonlinear prior based on the expected motion of the

vehicle, we increase the nonlinearity of the problem by reducing measurement frequency.

The result of varying range measurement frequency, with and without the use of odometry

measurements, is shown in Figure 6.6. In general, it is clear that as the interval between

range measurements is increased, the GP-Traj-Sparse-NTV estimator is able to produce a

more accurate estimate of the continuous-time pose (translation and rotation) than the

GP-Traj-Sparse-LTI estimator. In the case that the 1 Hz odometry measurements are

available, as seen in Figure 6.6(a), the difference in the rotation estimates is small, because

the GP-Traj-Sparse-LTI estimator has a reasonable amount of information about its

heading; however, in the case that the odometry measurements are unavailable, as seen in

Figure 6.6(b), the advantage of the nonlinear prior, provided by the GP-Traj-Sparse-NTV

estimator, becomes more prominent.

In order to gain some qualitative intuition about how the continuous-time estimates

are affected by the reduction of measurement frequency, Figure 6.7 shows the trajectories
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Increasing Nonlinearity

(a) RMS errors using odometry measurements.

Increasing Nonlinearity

(b) RMS errors without odometry measurements.

Figure 6.6: Plots comparing use of the GP-Traj-Sparse-LTI and -NTV algorithms for an

increasingly nonlinear problem; the dataset was made more nonlinear by varying the interval

between available range measurements. The results in (a) used the odometry measurements

available at 1 Hz, while (b) was made to be even more nonlinear by excluding them. The plots

show that for a small interval between range measurements, both estimators perform similarly;

however, as the interval was increased the estimate provided by the nonlinear prior is consistently

better in both translation and angular error.

for the same small subsection presented in Figure 6.5, where an interval between range

measurements of 7 seconds was used. In both plots, it is clear that the GP-Traj-Sparse-

NTV estimator matches the ground-truth more closely, as previously indicated by the

error plots in Figure 6.6.

6.4 Estimating Trajectories in SE(3)

Using what we have learned from our GP-based STEAM derivations (where thus far

x(t) ∈ RN ), we now wish to formulate a fast and effective GP prior for bodies rotating and

translation in three dimensions (i.e., x(t) ∈ SE(3)). Notably, previous GP approaches

have described a method to work with trajectories in 3D (Tong et al., 2014) and how to

exploit the Markov property in a vector space context (Barfoot et al., 2014), but not at

the same time. This section will provide: (i) a review of the 3D adaptation proposed

by Tong et al. (2014), (ii) analysis on how our method of handling NTV SDEs (from

Section 6.3.2) could be applied to SE(3), (iii) a practical GP prior for SE(3) that is made
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(a) With odometry measurements. (b) Without odometry measurements.

Figure 6.7: Plots showing the GP-Traj-Sparse-LTI and -NTV estimates for the same small

trajectory subsection as Figure 6.5, with an interval between range measurements of 7 seconds.

Results in (a) used odometry measurements, while (b) did not.

efficient by approximating nonlinear kinematics in a piecewise fashion, (iv) a description

of methods that allow us to process high-rate data and loop-closures in real time, and

(v) experimental validation using the appearance-based lidar dataset.

6.4.1 Background – Adapting for SE(3)

We begin by discussing the GP prior formulation and assumptions used by Tong et al.

(2014) to formulate a 3D adaptation of their GPGN algorithm. Recalling the problem

formulation described in Section 6.2.1, we now shift the GP regression problem to consider

state variables that belong to the matrix Lie group SE(3). In continuous-time, Tong et al.

(2014) define the trajectory state as

x(t) := T(t) = Tt,i, F−→t := F−→rob(t), (6.60)

where F−→rob(t) is the time-varying robot frame and T(t) is the transformation that

describes the robot pose (at time t) with respect to an inertial frame, F−→i. Following our

standard approach to GP-based STEAM, we discretize the trajectory at the measurement

times; notably, this process mirrors the standard, three-dimensional, discrete-time SLAM

formulation, discussed in Section 3.2.3, where we have the discrete state collection,

x = {T0,i,T1,i, . . . ,Tk,i, . . . ,TK,i}, F−→k := F−→rob(tk), (6.61)

and the associated perturbation vector

δx :=
[
δξT0,i . . . δξ

T
k,i . . . δξ

T
K,i

]T
, (6.62)
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where the elements of δx can be used to update the states in x with the constraint-sensitive

scheme, T̄k,i ← exp(δξ∧k,i)T̄k,i. It is straightforward to see how the ‘observation portion’ of

the 3D estimation problem can be handled in the same way as the discrete-time solution:

recalling the discrete-measurement cost terms, from (3.58),

emkj(z) = ykj − gkj(z), gkj(z) := g(xk, `j) = k(Tk,i p
`j ,i
i ),

where z = {x, `}, Tk,i transforms the homogeneous landmark point, p
`j ,i
i , into the sensor

frame at time tk, and k(·) is a nonlinear sensor model. However, it is not obvious how a

GP (which describes a continuous distribution over a vectorspace) can be used to represent

a trajectory prior that belongs to SE(3). In the formulation proposed by Tong et al.

(2014), the ‘constant-velocity’ prior from (6.5) is (naively) applied to the vector space

ξ(t) = ln(T(t))∨ ∈ R6, such that

ξ̈(t) = w(t), w(t) ∼ GP(0,QCδ(t− t′)), u(t) = 0, (6.63)

which results in the GP prior,

ξ(t) ∼ GP
(
ξ̌(t0),

min(t, t′)2 max(t, t′)

2
− min(t, t′)3

6

)
. (6.64)

Tong et al. (2014) then employ a dual-state formulation, such that when a SE(3) term is

required, we have x(t) = T(t) = exp(ξ(t)∧), and when a vector-space term is required, we

have x(t) = ξ(t) = ln(T(t))∨. There are two downfalls to this approach: (i) estimating

only the pose variables, T(t), causes the ‘constant-velocity’ GP prior to become dense over

the discrete state, x, and (ii) the 3× 1 angular component of ξ(t) violates the assumed

vector space by exhibiting discontinuities over large rotations. From our experience using

Markov trajectories, we know that the former issue can be rectified by re-introducing the

velocity variables, ξ̇(t); however, we will expand upon the latter issue to ensure that we

avoid it in our future GP prior proposals.

Specifically, we note that the discontinuity issue presents itself through the term

P̌−1(x̄− x̌), which is found in both the Gauss-Newton update, (6.13), and interpolation

equation, (6.17a). In essence, the assumption made by the GP is that the elements,

ln(T̄k,i)
∨ − ln(Ťk,i)

∨, of the column vector difference, x̄− x̌, will change smoothly across

the temporally sequential discretization, t0 < t1 < . . . < tK . The repercussion of violating

this assumption is most easily viewed in the exactly sparse version of the problem, where

we can write the cost of the prior in the ‘factor’ form:

Jp =
1

2
(x− x̌)T P̌−1(x− x̌) =

1

2
(x0 − x̌0)T P̌−1

0 (x0 − x̌0) +
1

2

∑
k

eTukQk(tk+1)−1euk (6.65)
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where the errors terms, euk , are exactly (Barfoot et al., 2014)

euk = (xk+1 − x̌k+1)−Φ(tk+1, tk)(xk − x̌k). (6.66)

Notably, use of the ln(·)∨ operator will cause a large discontinuity to occur between xk and

xk+1 when the two rotation parameters straddle the −π/π radian threshold; the GP prior

will view this discontinuity as a large angular ‘error’ and will inflict a strong penalization

that is not warranted. In effect, priors that exhibit this issue are only useful for short

or specific trajectories that do not exhibit large rotations. Finally, we note that Tong

et al. (2014) make the (ad hoc) assumption that vector space differences, ln(T̄)∨− ln(Ť)∨,

can be replaced with the operation ln(T̄Ť−1)∨; although their proposed prior mean is not

time-varying (i.e., Ť(t) = Ť(t0)), it is noted that this assumption would help to avoid

discontinuities if the prior quantities, Ťk,i, closely modelled the estimates T̄k,i.

6.4.2 Nonlinear GP Regression for SE(3)

Moving forward, we now wish to exploit the exactly sparse GP priors described in

Section 6.3 for trajectories that belong to SE(3). Recalling the nonlinear kinematics

discussed in Chapter 5, we are motivated to use the nonlinear SDE

Ṫ(t) = $(t)∧T(t), (6.67a)

$̇(t) = w′(t), w′(t) ∼ GP(0,Q′Cδ(t− t′)), (6.67b)

where$(t) =
[
ν(t)
ω(t)

]
∈ R6 is the body-centric velocity (with linear and angular components,

ν(t) and ω(t)), and the zero-mean, white-noise Gaussian process, w′(t), is injected directly

onto the body-centric acceleration, $̇(t). It follows that the Markovian trajectory state

we wish to estimate is

x(t) = {T(t),$(t)} ∈ SE(3)× R6. (6.68)

Recalling the (novel) GP linearization methodology, presented in Section 6.3.2, we

now show how it can be extended to SE(3) by using the familiar constraint-sensitive

perturbations

T(t) = exp(δξ(t)∧)T̄(t), $(t) = $̄(t) + δ$(t). (6.69)
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Recalling the perturbed kinematics derived in Chapter 5, (5.23), we apply a similar

methodology to the SDE in (6.67) to find the nominal and perturbed components:

˙̄T(t) = $̄(t)∧T̄(t), (6.70a)[
δξ̇(t)

δ$̇(t)

]
︸ ︷︷ ︸

δẋ(t)

≈
[
$̄(t)f 1

0 0

]
︸ ︷︷ ︸

F(t)

[
δξ(t)

δ$(t)

]
︸ ︷︷ ︸

δx(t)

+

[
0

− ˙̄$(t)

]
︸ ︷︷ ︸

v(t)

+

[
0
1

]
︸︷︷︸
L(t)

w′(t). (6.70b)

Following the standard GP approach, we discretize the trajectory state, x(t), at the

measurement times, tk, to form the discrete state collection,

x = {T0,i,$0, . . . ,Tk,i,$k . . . ,TK,i,$K}, F−→k := F−→rob(tk), (6.71)

with the associated perturbation vector

δx :=
[
δξ(t0)T δ$(t0)T . . . δξ(tk)

T δ$(tk)
T . . . δξ(tK)T δ$(tK)T

]T
. (6.72)

In order to utilize the nonlinear SDE (which includes non-vectorspace state variables)

in the GP-regression-based localization problem, (6.13), we first note that the vector

difference, x̌ − x̄, can be replaced with expected value of the perturbation, E[δx]. In

essence, E[δx] can be thought of as the difference between x̌ and x̄ (e.g., over the SE(3)

manifold). This gives us the equivalent Gauss-Newton update equation:

(
P̌−1 + GTR−1G

)
δx? = P̌−1E[δx] + GTR−1(y− ḡ), (6.73)

where we require expressions for the ‘expected’ perturbation, E[δx], and inverse covariance,

P̌−1. Recalling the methodology from Section 6.3.2 once more, we note that these terms

can be found by numerically integrating the SDE in (6.70b), via (6.21) and (6.22). With

some effort, we also determine that the corresponding transition function for (6.70b) is:

Φ(t, τ) =

[
T̄ (t)T̄ (τ)−1 T̄ (t)

∫ t
τ
T̄ (s)−1ds

0 1

]
, (6.74)

which can be verified by checking the conditions

Φ̇(t, τ) = F(t)Φ(t, τ), Φ(τ, τ) = 1. (6.75)



Chapter 6. Gaussian-Process Representations for Trajectories 110

The first condition is verified by using the second fundamental theorem of calculus,

Φ̇(t, τ) =

 ddt T̄ (t)T̄ (τ)−1 d

dt
T̄ (t)

∫ t
τ
T̄ (s)−1ds

0 0


=

[
˙̄T (t)T̄ (τ)−1 ˙̄T (t)

∫ t
τ
T̄ (s)−1ds+ T̄ (t)T̄ (t)−1

0 0

]

=

[
$̄(t)fT̄ (t)T̄ (τ)−1 $̄(t)fT̄ (t)

∫ t
τ
T̄ (s)−1ds+ 1

0 0

]

=

[
$̄(t)f 1

0 0

]
Φ(t, τ) = F(t)Φ(t, τ), (6.76)

and the second by simple substitution

Φ(τ, τ) =

[
T̄ (τ)T̄ (τ)−1 T̄ (τ)

∫ τ
τ
T̄ (s)−1ds

0 1

]
=

[
1 0
0 1

]
. (6.77)

To evaluate all of the numerical integrals (such as the one in Φ(t, τ)), we recall that

we must maintain a continuous-time operating point, x̄(t). Furthermore, to construct

the terms Qk(tk+1)−1 (which can be used to build P̌−1), the substitution of Φ(t, τ) into

(6.23b) results in a double numerical integral of T̄ (t). Alas, while this 3D extension of

the nonlinear technique presented in Section 6.3.2 could be used to formulate an MAP

estimator for the dynamically motivated GP prior in (6.67), the amount of numerical

integration and bookkeeping required in this scheme is off-putting. Instead, since our

goal is to produce a scheme that is both fast and effective, we will investigate the use of a

piecewise approximation that allows us to closely model the nonlinear kinematics in (6.67)

when the motion between measurement times is small, or of nearly ‘constant-velocity’.

6.4.3 A Piecewise, Locally Linear GP Prior for SE(3)

Motivated by our investigation of the global nonlinear kinematics in (6.67), we note that

many of the laborious numerical integrals that arise from linearization can be (greatly)

simplified by assuming that the velocity estimate, $̄(t), is piecewise-constant (disjoint at

the measurement times). This observation motivates us to more closely inspect the nature

of the nonlinear SDE. Specifically, our aim is to break the global nonlinear SDE into an

equivalent, piecewise sequence of local SDEs (using the Markov property) and then to find

a reasonable approximation that can be used to make the piecewise segments linear.
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Temporal Discretization of the Nonlinear Kinematics

The formulation of our approximation begins by deriving an equivalent expression for the

nonlinear kinematics in (6.67), using the Lie algebra space, se(3). Using the identity

d

dt
exp(A(t)) =

∫ 1

0

exp(αA(t))
dA(t)

dt
exp((1− α)A(t))dα, (6.78)

and the exponential map, T(t) = exp(ξ(t)∧), we rearrange (6.67) to find that

$(t) =
(

Ṫ(t)T(t)−1
)∨

=

(∫ 1

0

T(t)αξ̇(t)∧T(t)−αdα

)∨
=

∫ 1

0

T (t)αdα ξ̇(t). (6.79)

Recalling the definition of J (·), the (left) Jacobian of SE(3), in (3.43), it follows that

ξ̇(t) = J (ξ(t))−1$(t), (6.80)

which is an equivalent expression for the nonlinear kinematics in (6.67a). Using this new

relationship, the nonlinear SDE in (6.67) can be written as[
ξ̇(t)

$̇(t)

]
=

[
0 J (ξ(t))−1

0 0

][
ξ(t)

$(t)

]
+

[
0
1

]
w′(t). (6.81)

Notably, linearizing this new expression for the NTV SDE will result in an equally

overwhelming collection of numerical integrals. However, this new form reveals an

interesting case (i.e., J (ξ(t)) ≈ 1) where the NTV SDE may be closely approximated

by a LTI SDE. Analyzing the relationship in (6.80), we note two conditions for which

ξ̇(t) ≈ $(t): (i) when ξ(t) is small, we have that J (ξ(t)) ≈ 1, and (ii) when ξ(t) and

$(t) are nearly parallel (i.e., ξ(t)f$(t) ≈ 0) we have that J (ξ(t))−1$(t) ≈$(t); this

second condition is fulfilled when velocity is near constant (i.e., ξ(t) ≈ (t− t0)$(t)).

In general, it is not reasonable to assume that ξ(t) will remain small or parallel to

$(t) over long trajectories. However, we note that the Markov property allows us to

discretize the NTV SDE in a piecewise fashion. In the context of our GP regression

problem, it is logical for us to perform this discretization at the sequence of measurement

times, t0 < t1 < . . . < tK . Injecting a discretization point into Ṫ(t), we have that

Ṫ(t) =
d

dt

(
T(t)T(tk)

−1T(tk)
)

= Ṫt,tkT(tk), F−→t := F−→rob(t). (6.82)

Equating this to (6.67a) and rearranging, we (unsurprisingly) find that

Ṫt,tk = $(t)∧T(t)T(tk)
−1 = $(t)∧Tt,tk . (6.83)
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Defining the local pose variable

ξk(t) := ln(T(t)T(tk)
−1)∨, tk ≤ t ≤ tk+1, (6.84)

we also (unsurprisingly) find that

ξ̇k(t) = J (ξk(t))
−1$(t). (6.85)

Therefore, by using the local pose variable definition, ξk(t), the NTV SDE in (6.81) can

be broken up into the sequence of local NTV SDEs:[
ξ̇k(t)

$̇(t)

]
=

[
0 J (ξk(t))

−1

0 0

][
ξk(t)

$(t)

]
+

[
0
1

]
w′(t), tk ≤ t ≤ tk+1. (6.86)

Notably, the concatenation of these local NTV SDEs results in a global NTV SDE that

is equivalent to both (6.67) and (6.81). Recalling our analysis of (6.80), we are now

able to make the (far more) reasonable assumption that ξ̇k(t) ≈$(t) (and by extension

ξ̈k(t) ≈ $̇(t)) when the local motion, ξk(t), is small or of nearly constant velocity, over

the (short) time interval t ∈ [tk, tk+1]. However, rather than make approximations directly

to (6.86) (i.e., J (ξk(t))
−1 ≈ 1), we instead choose to construct an exact sequence of local

LTI SDEs (that approximate the local NTV SDEs):

γ̇k(t)︷ ︸︸ ︷[
ξ̇k(t)

ξ̈k(t)

]
=

F(t)︷ ︸︸ ︷[
0 1
0 0

] γk(t)︷ ︸︸ ︷[
ξk(t)

ξ̇k(t)

]
+

L(t)︷︸︸︷[
0
1

]
w(t), tk ≤ t ≤ tk+1, (6.87)

where we assert that w′(t) ≈ w(t) ∼ GP(0,QCδ(t− t′)), when velocity is near constant.

Notably, by choosing to use an exact SDE, we will also have exact expressions for both

the GP-prior cost terms and the interpolation equations. It follows from the (familiar)

form of (6.87) that the general solution to our local LTI SDE is

γk(t) = Φ(t, tk)γk(tk) +

∫ t

tk

Φ(t, s)L(t)w(s) ds, tk ≤ t ≤ tk+1, (6.88)

where the state transition function is simply

Φ(t, t′) =

[
1 (t− t′)1
0 1

]
. (6.89)

Notably, in the absence of noise (i.e., w′(t) = w(t) = 0), the integral of the global SDE

and concatenated local LTI SDEs will produce equivalent constant-velocity trajectories
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local

global

Figure 6.8: This figure depicts the relationships between the local pose variable, ξk(t), and

the global trajectory state, x(t) = {T(t),$(t)}. The proposed piecewise GP prior approximates

the kinematically motivated SDE in (6.67) by defining a sequence of local LTI SDEs, where we

assume that the local variable, ξ̈k(t), is noisy between the measurements times, tk and tk+1.

(using the same initial conditions). Relating this local GP prior definition back to our

(desired) global state representation, (6.68), we note that it is simple to convert from

x(t) = {T(t),$(t)} to γk(t) = {ξk(t), ξ̇k(t)} by using the equations in (6.84) and (6.85);

the relationship between ξk(t) and the global state variables is depicted in Figure 6.8.

Exploiting these relationships (through substitution), it becomes straightforward to define

a GP prior from the sequence of local LTI SDEs in (6.87), while estimating the state

representation x(t) = {T(t),$(t)} – all without approximation. Furthermore, we note

that the mean and covariance associated with x(t) can be propagated continuously across

the measurement times (from one local SDE to the next).

In summary our sequence of local LTI SDEs: (i) accomplish the result of a global

SDE in a piecewise fashion, and (ii) approximate the full nonlinear SDE in (6.67) when

motion between each pair of measurement times, tk and tk+1, is either small or of nearly

constant velocity. This is verified experimentally by comparing the mean and covariance

of our concatenated GP prior to a Monte Carlo simulation of (6.67) (see Figure 6.9).

Analytical Nonlinear Smoothing Factors for SE(3)

In order to linearize our GP prior cost with respect to the global state representation, x(t),

we opt to take a factor-graph view of the STEAM problem (recall Figure 6.2). Notably,

the objective function cost associated with the exactly sparse class of GP priors can be
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(a) Low Angular Velocity (b) High Angular Velocity

Figure 6.9: This figure compares the GP prior formed from our concatenated local LTI

SDEs (solid black constant-velocity mean and 3σ ‘banana’ covariances) against a Monte Carlo

simulation of the nonlinear SDE from equation (6.67) (the 2000 blue trajectory samples).

To make the comparison easier to visualize, noise was injected only in the (body-centric) x-

component of translation and z-component of rotation. The banana shapes are 3σ great circles

of the six-degree-of-freedom uncertainty hyperellipsoid, mapped onto the xy-plane.

reformulated as (Barfoot et al., 2014):

Jp(x) =
1

2
(x− x̌)T P̌−1(x− x̌) =

1

2
eTp0

P̌−1
0 ep0 +

1

2

∑
k

eTukQk(tk+1)−1euk , (6.90)

where eTp0
P̌−1

0 ep0 is a unary factor associated with position and velocity at the initial time,

t0, and the (binary) smoothing terms have the exact form:

euk = γk(tk+1)− γ̌k(tk+1)−Φ(tk+1, tk) (γk(tk)− γ̌k(tk)) , (6.91)

with the (familiar) analytical covariance expression

Qk(τ) =

[
1
3
∆τ 3

kQC
1
2
∆τ 2

kQC

1
2
∆τ 2

kQC ∆τ kQC

]
, Qk(τ)−1 =

[
12∆τ−3

k Q−1
C −6∆τ−2

k Q−1
C

−6∆τ−2
k Q−1

C 4∆τ−1
k Q−1

C

]
, (6.92)

where ∆τ k := τ − tk. Without exogenous control inputs, the prior mean is simply

γ̌k(t) = E[γk(t)] = Φ(t, tk)γ̌k(tk), (6.93)

and our expression for euk simplifies to

euk = γk(tk+1)−Φ(tk+1, tk)γk(tk). (6.94)
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Substituting the expressions from (6.84) and (6.85) into γk(t),

γk(t) =

[
ξk(t)

ξ̇k(t)

]
=

[
ln(T(t)T−1

k,i )
∨

J (ln(T(t)T−1
k,i )
∨)−1$(t)

]
, (6.95)

it follows that our smoothing terms have the exact nonlinear form:

euk =

[
ln(Tk+1,iT−1

k,i )
∨ − (tk+1 − tk)$k

J (ln(Tk+1,iT−1
k,i )
∨)−1$k+1 −$k

]
, (6.96)

where Tk,i, $k, Tk+1,i, and$k+1 are temporally adjacent elements of the discretized global

state vector, x, defined in (6.71). Inspecting (6.96), it is pleasing that the result is intuitive:

beginning with a prior akin to white-noise-on-acceleration (i.e., ξ̈k(t) = w(t)), the global

state variables are penalized for deviating from a body-centric, constant-velocity trajectory.

In the case that $k = $k+1, and Tk+1,i = exp((tk+1 − tk)$∧k ) Tk,i (which agrees with

the nonlinear kinematics in (6.67)), we have that euk = 0. Furthermore, these local

errors are unaffected by discontinuities (assuming that the rotation between consecutive

measurement times is less than π). At this point, we may wish to make the simplifying

assumption that J (ln(Tk+1,iT−1
k,i )
∨)−1$k+1 ≈ $k+1; however, for completeness, this

thesis will continue to use the exact form above.

Concerning the initial factor, eTp0
P̌−1

0 ep0 , we note that in the STEAM context we will

typically lock the initial pose (but not the velocity). Defining ep0 := $0 − $̌0, the total

set of hyperparameters in our approach is: QC , $̌0, and P̌0. In practice, when little is

known about the a priori initial velocity, $̌0, it is often safe to over-inflate the covariance

matrix P̌0; this allows the initial posterior estimate, $̂0, to be determined primarily

through the binary smoothing terms.

Efficient GP-Based STEAM for SE(3)

In this section, we demonstrate how our sparse set of nonlinear prior factors can be

incorporated into the STEAM problem. We begin by recalling the optimization problem

we wish to solve

ẑ = argmin
z

J(z), J(z) = Jm(z) + Jp(x), (6.97)

where z = {x, `}, J(z) is our objective function, Jm(z) contains the costs associated with

the measurements/observations, and Jp(x) is the cost of our GP prior. The form of our

GP prior cost, Jp(x), was previously shown in (6.90), where the exact nonlinear cost terms,
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euk , are defined in (6.91). Since the trajectory state, x(t), has been discretized at the

measurement times, it is straightforward to see that Jm(z) has the familiar form

Jm(z) :=
1

2

∑
kj

eTmkjR
−1
kj emkj , (6.98)

where

emkj(z) = ykj − gkj(z), gkj(z) := k(hkj(z)), hkj(z) = Tk,i p
`j ,i
i , (6.99)

and Rkj is the covariance of the measurement noise.

In order to leverage our standard Gauss-Newton machinery, described in Section 3.1.2,

we linearize our cost terms using the constraint-sensitive perturbations:

T̂k,i = exp((δξk,i)
∧)T̄k,i, $̂k = $̄k + δ$k, ˆ̀

j = ¯̀
j + δ`j. (6.100)

It follows that the standard linearized measurement costs are simply

emkj(z̄ + δz) = ykj − k(T̄k,i p̄
`j ,i
i )−Gkjδz, (6.101)

Gkj :=
[
KkjHx,kjPx,k KkjH`,kjP`,j

]
, (6.102)

where Kkj, Hx,kj, and H`,kj were defined in (3.62) and (3.64), and Px,k and P`,j are

projection matrices that select the kth element of x and the jth of `. The linearization of

the prior costs, in (6.96), require more effort. We begin by deriving the (approximate)

relationships we require; recalling the relationship from Chapter 3, in (3.42):

Tb,a = exp(ξ∧b,a) ≈ exp(δξ∧b,a) exp(ξ̄
∧
b,a) ≈ exp

(
(ξ̄b,a + J (ξ̄b,a)

−1δξb,a)
∧), (6.103)

it is straightforward to see that

ln(Tb,a)
∨ ≈ ln(T̄b,a)

∨ + J −1
b,aδξb,a, J b,a := J (ln(T̄b,a)

∨), (6.104)

which leads us to the (approximate) linearization

J (ln(Tb,a)
∨)−1$ ≈ J

(
ln(T̄b,a)

∨ + J (ln(T̄b,a)
∨)−1δξb,a

)−1
($̄ + δ$)

≈ J −1
b,a$̄ −

1

2

(
J −1

b,aδξb,a
)f
$̄ + J −1

b,aδ$,

= J −1
b,a$̄ +

1

2
$̄fJ −1

b,aδξb,a + J −1
b,aδ$. (6.105)

Finally, using the relationship δξb,a ≈ δξb − T b,aδξa, combined with the expressions in

(6.104) and (6.105), our linearized prior costs are

euk ≈
[

ln(Tk+1,iT−1
k,i )
∨ − (tk+1 − tk)$k

J (ln(Tk+1,iT−1
k,i )
∨)−1$k+1 −$k

]
− Fk δz, (6.106)
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correct to first order, where

Fk=

[
J −1

k+1,kT̄ k+1,k (tk+1 − tk)1 −J −1
k+1,k 0

1
2
$f

k+1J −1
k+1,kT̄ k+1,k 1 −1

2
$f

k+1J −1
k+1,k −J −1

k+1,k

][
Pxk

Pxk+1

]
. (6.107)

Although our analytical Jacobian, Fk, uses some fairly approximate relationships, we

note that this will only affect the optimal Gauss-Newton step direction, δz?, and not

the optimal posterior value, ẑ. Continuing with the standard Gauss-Newton approach,

we substitute the linearized error terms into the cost function, J(z̄ + δz), and take the

derivative with respect to δz to reveal the familiar update equation:

(Ameas + Apri) δz? = bmeas + bpri, (6.108)

where

Ameas :=
∑
kj

GT
kjR

−1
kj Gkj, bmeas :=

∑
kj

GT
kjR

−1
kj emkj(z̄), (6.109a)

Apri :=

[∑
k FTk Qk(tk+1)−1Fk 0

0 0

]
, bpri :=

[∑
k FTk Qk(tk+1)−1euk(x̄)

0

]
. (6.109b)

Similar to our previous exactly sparse STEAM derivations, in Section 6.3, we note that

Ameas is the standard arrowhead matrix and the non-zero corner of Apri is block-tridiagonal.

The MAP solution is then found by solving for the optimal perturbation, δz?, and updating

the best guess of the posterior mean, z̄, iteratively and to convergence. The pertinent

state update equations are: T̄k,i ← exp((δξ?k,i)
∧)T̄k,i, $̄k ← $̄k + δ$?

k, and ¯̀← ¯̀ + δ`?.

Querying the Trajectory Mean

In order to query the posterior trajectory, x̂(t), at other times of interest, we now show

how the standard linear prediction equations (Rasmussen and Williams, 2006) can be

used with our piecewise prior. Beginning with the trajectory mean, we recall the sparse

interpolation formulas from (6.31) (Barfoot et al., 2014):

γ̂k(τ) = γ̌k(τ) +
[
Λ(τ) Ω(τ)

] [ γ̂k(tk)− γ̌k(tk)
γ̂k(tk+1)− γ̌k(tk+1)

]
, tk ≤ τ ≤ tk+1 (6.110)

where

Λ(τ) = Φ(t, tk)−Ω(τ)Φ(tk+1, tk), Ω(τ) = Qk(τ)Φ(tk+1, t)
TQk(tk+1)−1.
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Recalling that the terms γ̌k(tk) and γ̌k(tk+1) do not appear in (6.96), it is unsurprising

that the interpolation can be simplified to

γ̂k(τ) = Λ(τ)γ̂k(tk) + Ω(τ)γ̂k(tk+1). (6.111)

where

γ̂k(tk) =

[
0

$̂(tk)

]
, γ̂k(tk+1) =

[
ln(T̂k+1,iT̂−1

k,i )
∨

J (ln(T̂k+1,iT̂−1
k,i )
∨)−1 $̂k+1

]
. (6.112)

Reformulating this expression for our global state representation, using (6.84) and (6.85),

we are able to write the exact formulas:

T̂(τ) = exp
(

(Λ1(τ)γ̂k(tk) + Ω1(τ)γ̂k(tk+1))∧
)

T̂k,i, (6.113a)

$̂(τ) = J (ln(T̂(τ)T̂−1
k,i )
∨) (Λ2(τ)γ̂k(tk)+Ω2(τ)γ̂k(tk+1)) , (6.113b)

where Λ(τ) =
[
Λ1(τ)
Λ2(τ)

]
, Ω(τ) =

[
Ω1(τ)
Ω2(τ)

]
. Note that the interpolation of $̂(τ) depends on

T̂(τ) due to the term J (ln(T̂(τ)T̂−1
k,i )
∨); in essence, it is this element that enforces the

nonlinear kinematics during interpolation. The cost to query the trajectory at a single

time of interest is O(1), as it involves only the two trajectory states that are temporally

adjacent to the query time.

Querying the Trajectory Covariance

In order to interpolate the posterior covariance of our trajectory estimate, we recall the

form of the sparse linear prediction equations from (6.31),

P̂k(τ, τ) = P̌k(τ, τ) +
[
Λ(τ) Ω(τ)

] (
P̂ 2×2
k − P̌ 2×2

k

) [Λ(τ)T

Ω(τ)T

]
, (6.114)

P̂ 2×2
k :=

[
P̂k(tk, tk) P̂k(tk, tk+1)

P̂k(tk, tk+1)T P̂k(tk+1, tk+1)

]
, P̌ 2×2

k :=

[
P̌k(tk, tk) P̌k(tk, tk+1)

P̌k(tk, tk+1)T P̌k(tk+1, tk+1)

]
,

where the new covariance notations, P̌k(t, t′) and P̂k(t, t′), are used to distinguish that

these quantities are related to the local variable, γk(t) ∼ GP(γ̌k(t), P̌k(t, t′)); consistent

with our previous notation, P(t, t′) is the covariance related to the global state, x(t).

Unlike our previous expressions that involved both posterior and prior terms, we

note that the prior covariances, P̌k(τ, τ) and P̌ 2×2
k , do not cancel (entirely). Rather than

construct them recursively, via (6.24b), we make the retrospective observation that the
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exactly sparse covariance interpolation scheme presented in Barfoot et al. (2014) can be

simplified by substituting the following exact relationships into P̌ 2×2
k :

P̌k(tk, tk+1) = P̌k(tk, tk)Φ(tk+1, tk)
T , (6.115a)

P̌k(tk+1, tk+1) = Φ(tk+1, tk)P̌k(tk, tk)Φ(tk+1, tk)
T + Qk(tk+1), (6.115b)

P̌k(τ, τ) = Φ(τ, tk)P̌k(tk, tk)Φ(τ, tk)
T + Qk(τ). (6.115c)

Expanding the products of P̌ 2×2
k , Λ(τ) and Ω(τ), we have the equivalent expression,

P̂k(τ, τ) =
[
Λ(τ) Ω(τ)

]
P̂ 2×2
k

[
Λ(τ)T

Ω(τ)T

]
+ Q̌k(τ),

Q̌k(τ) := Qk(τ)−Qk(τ)Φ(tk+1, τ)TQk(tk+1)−TΦ(tk+1, τ)Qk(τ)T , (6.116)

where P̌k(τ, τ) and P̌ 2×2
k have been eliminated in favour of Q̌k(τ). Note that this new

term, Q̌k(τ), captures the relative drift of uncertainty over the time interval, using Qk(t)

from (6.92) – or more generally, (6.23b).

Unfortunately, we are unable to formulate an exact expression for the global covariance

at the query time, P̂(τ, τ), since the posterior covariance block, P̂ 2×2, that we extract from

the Gauss-Newton solution, (Apri + Ameas)
−1, must be (approximately) translated to the

local covariances, P̂ 2×2
k , interpolated for P̂k(τ, τ), and then (approximately) translated back

to P̂(τ, τ). To derive this mapping between the local and global covariances, P̂(t, t′) and

P̂k(t, t′), we linearize γk(t), in (6.95), with respect to the involved global state variables,

{x(t), x(tk)} and then take the expected value of the second-moments. This linearization

is performed carefully by introducing the intermediate variable:

ϑ(t) := {Tt,k,$(t)} = {T(t)T(tk)
−1,$(t)}, δϑ =

[
δξt,k

δ$(t)

]
. (6.117)

Perturbing our expression for γk(t), in (6.95), with respect to ϑ(t), we use the relationships

we derived in (6.104) and (6.105) to find

γk(t) =

[
ξk(t)

ξ̇k(t)

]
≈
[

ln(T̄(t)T̄−1
k,i )
∨

J k(t)
−1 $̄(t)

]
︸ ︷︷ ︸

γ̄k(t)

+

[
J k(t)

−1 0
1
2
$̄(t)fJ k(t)

−1 J k(t)
−1

]
︸ ︷︷ ︸

Γ(t)

δϑ(t), (6.118)

where

J k(t) := J (ln(T̄(t)T̄−1
k,i )
∨), Γ(t)−1 =

[
J k(t) 0

−1
2
J k(t)$̄(t)f J k(t)

]
. (6.119)
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Taking the expected value of the second moment, we have the relationship

Pk(t, t′) = E[(γk(t)− γ̄k(t))(γk(t′)− γ̄k(t′))T ] ≈ Γ(t)E[δϑ(t)δϑ(t′)T ]Γ(t′)T . (6.120)

In order to relate δϑ(t) to δx(t), we use δξb,a ≈ δξb − T b,aδξa to find

δϑ(t) =

[
δξt,k

δ$(t)

]
≈
[
δξ(t)− T̄ t,kδξ(tk)

δ$(t)

]
=

[
δξ(t)

δ$(t)

]
︸ ︷︷ ︸

δx(t)

−
[
T̄ t,k 0

0 0

]
︸ ︷︷ ︸

Ξ(t)

[
δξ(tk)

δ$(tk)

]
︸ ︷︷ ︸

δx(tk)

. (6.121)

Rearranging this expression for δx(t), δx(t) ≈ δϑ(t) + Ξ(t)δx(tk), it follows that,

P(t, t′) = E[δx(t)δx(t′)T ] ≈ E[(δϑ(t) + Ξ(t)δx(tk))(δϑ(t′) + Ξ(t′)δx(tk))
T ]. (6.122)

Analyzing the cross-covariance over the time interval tk ≤ t′ ≤ tk+1, we note

E[δx(tk)δϑ(t′)T ] =

[
E[δξ(tk)δξ

T
t′,k] E[δξ(tk)δ$(t′)T ]

E[δ$(tk)δξ
T
t′,k] E[δ$(tk)δ$(t′)T ]

]

=

[
0 0

E[δ$(tk)δξ
T
t′,k] E[δ$(tk)δ$(t′)T ]

]
. (6.123)

Recalling the structure of Ξ(t), we find that

Ξ(t)E[δx(tk)δϑ(t′)T ] = 0, (6.124)

and therefore the expansion of (6.122) is simplified to

P(t, t′) ≈ E[δϑ(t)δϑ(t′)T ] + Ξ(t)P(tk, tk)Ξ(t′)T . (6.125)

Finally, relating (6.120) and (6.125) through E[δϑ(t)δϑ(t′)T ], we arrive at

Pk(t, t′) = Γ(t)
(

P(t, t′)−Ξ(t)P(tk, tk)Ξ(t′)T
)
Γ(t′)T , (6.126)

which can also be rearranged for

P(t, t′) = Γ(t)−1Pk(t, t′)Γ(t′)−T + Ξ(t)P(tk, tk)Ξ(t′)T . (6.127)

Notably, this completes our ability to approximately interpolate for P̂(τ, τ): we first use

(6.126) to translate P̂ 2×2 to P̂ 2×2
k , then interpolate the local posterior covariance, P̂k(τ, τ),

using (6.116), and finally use (6.127) to calculate P̂(τ, τ).
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6.4.4 Stereo Camera Experiment

In this section, we experimentally validate the proposed estimator on a STEAM problem.

For comparison, we also implement the (dense) Gaussian-process regression approach

taken by Tong et al. (2014). The dataset that we utilize was gathered by rotating and

translating a stereo camera above 20 reflective markers (that act as our point landmarks).

The position and orientation of the camera, as well as the positions of the markers were

tracked with a Vicon motion capture system. Stereo images were logged at roughly 15 Hz

and data associations were provided by the ground truth. It is interesting to validate

our approach on this dataset (despite its small scale) for two reasons: (i) ground truth

is available for both the trajectory and the map, and (ii) the pose of the camera is

often underconstrained (without a motion prior) due to the small number of landmarks

observed in each frame; over 40% of the stereo images in the dataset contain less than

three landmarks (the minimum number for a unique pose solution).

Since our hyperparameters, $̌0 and QC , have physical meaning for our GP prior, we

chose to set $̌0 = 0 (a fair assumption, given no a priori information) and model QC as

a diagonal matrix (with its elements populated by Gaussians fit to training data).

Trajectory Estimate

The estimator described by Tong et al. (2014), GP-Pose-Dense, as well as our piecewise

method, GP-Traj-Sparse, are evaluated using 1000 stereo images (roughly 80 seconds

of data). The estimated trajectories are displayed in Figure 6.10. Notably, the mean

trajectories produced by the algorithms are very similar, even in time segments that relied

heavily on the GP prior. Although we expect that our (physically motivated) prior, GP-

Traj-Sparse, will provide a more accurate result than GP-Pose-Dense on many actuated

robotic systems, this is an acceptable result since our main advantage is computational

efficiency. To verify quantitatively that our estimator is performing well, both translational

and rotational errors are shown in Figure 6.10(d). The trajectory estimate and ground

truth are aligned by minimizing the squared error between the estimated and ground

truth landmark positions. The 3σ covariance envelope is plotted in each result to verify

that our estimate is consistent. When a unique solution is available without using the GP

prior, the error is plotted in green; when the GP prior is required (two or fewer visible

landmarks), we expect some drift in the estimate and the error is plotted in red. We can

see that the covariance grows in the red areas and shrinks in the green areas.
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Large measurement 
dropout [see ~50-55 

seconds in (d)]

(b) Vicon Motion Capture Room (c) Bumblebee XB3 (d) Translational and Rotational Errors

(a) Trajectory Estimate

Figure 6.10: This figure depicts our trajectory estimation experiment using a stereo camera.

(a) The trajectory and landmark positions for the 1000 image (roughly 80 seconds) dataset. The

trajectory estimates from the GP-Pose-Dense and GP-Traj-Sparse algorithms are shown in blue

and red, respectively, and the ground truth (from Vicon) is shown in black. (b) Photograph of

our motion capture room. (c) Photograph of the stereo camera with IR tracking balls. (d) Error

plots depicting the metric accuracy of the proposed GP-Traj-Sparse algorithm. The error at

poses that simultaneously observe three or more landmarks are plotted in green, less than three

in red; note the long observation dropout around 50-55 seconds (also annotated in (a)). To show

that our estimate is consistent, the 3σ covariance envelopes are plotted as black dashed lines.

Computational Efficiency

To verify the computational savings introduced by our Markovian state and prior, both

estimators were implemented in Matlab and tested on a 2.4GHz i7 processor with 8GB of

1333MHz DDR3 RAM. State variables are placed at the 1000 stereo-image times (over 80

seconds) and the final solution is queried at 30Hz.

To visualize the computational complexity associated with each phase of the algorithms,

the estimators were run multiple times for increasingly long subsets of the dataset; the

results of this timing experiment are shown in Figure 6.11. Since we have many more

measurement times, K, than landmarks, L, the arrowhead structure of the problem can
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(a) Inverse kernel matrix construction time. (b) Optimization time per iteration.

(c) Interpolation time per additional query time. (d) Total computation time.

Figure 6.11: Comparison of the computation time required by both the GP-Pose-Dense

algorithm (as described by Tong et al. (2014)) and the GP-Traj-Sparse algorithm. The algorithms

were tested on varying dataset lengths. State variables were placed at the stereo image times

(roughly 15Hz) and then interpolated at 30Hz. The plots confirm the theoretical complexities of

the various algorithm phases. The total compute time required by the GP-Traj-Sparse algorithm

is linear in trajectory length. Note the linear-to-log scale transition in each plot.

be exploited by our GP-Traj-Sparse algorithm to solve the system in O(L3 + L2K) time,

using sparse lower-upper Cholesky decomposition and forward-backward passes. The

final solution is then queried J times (each in O(1) time), making the total algorithm

complexity O(L3 + L2K + J). Solving for only pose, the GP-Pose-Dense algorithm has a

half-size state vector, but a dense P̌−1; furthermore, no special form exists for P̌−1 and it

is computed by inverting the dense covariance matrix, P̌, which is a O(K3) operation.

Interpolation Quality

The last feature of our algorithm that we wish to demonstrate is its ability to predict the

state (and uncertainty) at times for which we do not have any measurements. To test this,

we repeated the batch estimation experiment, using the 80-second dataset, but removed a

block of 30 stereo images (spanning a roughly 2.3 second duration). Post optimization, we

interpolate the mean using (6.113) and the covariance using (6.127). The result, near the

subsection of interest, is shown in Figure 6.12. The estimated mean and covariance (at

the measurement times) are shown in blue. The interpolated mean (dashed red line) does

a reasonable job of predicting the intermediate behaviour shown by the ground truth (in
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Figure 6.12: This plot shows interpolated mean and covariance estimates from the GP-Traj-

Sparse algorithm. For this experiment, the dataset was modified by removing 30 images (spanning

roughly 2.3 seconds) from the trajectory section depicted in red. The mean and covariance of

state variables that bounds the region of interest are displayed in blue. The interpolated mean

(dashed red line) and covariance (shaded red ellipses) depict our prediction of the unobserved

behaviour between the bounding posterior estimates. Covariances are depicted using 3σ ellipses.

black). Furthermore, we note that the covariance interpolation (shaded red) is continuous

and reflects the growth of uncertainty from the prior between the two endpoints.

6.4.5 Practical Extensions

Moving forward, we recall that our original motivation for the continuous-time problem

formulation was to use the appearance-based lidar technology described in Chapter 2.

Unlike the problems we have tackled with GPs thus far, the VO-style problem (with a

scanning-type sensor) contains many measurement times and many landmarks parameters.

Furthermore, we also wish to leverage place recognition results in order to improve our

local metric accuracy and provide topometric information in our STEAM solution. To

accomplish these goals, we describe two practical extensions to our GP formulation:

(i) exactly sparse measurement interpolation, and (ii) a method to adopt the relative

coordinate formulation of STEAM (similar to the work of Sibley et al. (2009)).

Interpolating Measurement Times

First, in order to keep computation time tractable we will leverage the heuristic keyframing

strategy proposed by Tong et al. (2014) (previously discussed in Section 6.2.4). Rather
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than discretize the state trajectory, x(t), at the K measurement times, this strategy

advocates discretizing the state at a much coarser resolution of keytimes, N � K.

Recalling the general form of our linearized observation model:

emkj(z̄ + δz) ≈ ykj − g(T̄(tk), p̄
`j ,i
i )−Gx,kj δξ(tk)−G`,kj δ`j, (6.128)

we evaluate the observation model, g(·), and Jacobians, Gx,kj and G`,kj, by exploiting

the GP prediction equation, (6.113a), to calculate the interpolated transform, T̄(tk),

tn ≤ tk < tn+1. Since our trajectory state is no longer discretized at time tk, we must

also relate the ‘interpolated’ perturbation, δξ(tk), back to the discretized state, x; note

that our exactly sparse interpolation relies only on the temporally adjacent variables,

xn = {Tn,i,$n}, xn+1 = {Tn+1,i,$n+1}. Sparing the laborious details, we note that by

using our standard constraint-sensitive perturbations, along with the relationships we

derived in (6.118) and (6.121), we find that

δξ(tk) ≈
[
An(tk) Bn(tk)

]
δxn+1 +

[
Cn(tk) Dn(tk)

]
δxn, tn ≤ tk < tn+1, (6.129)

with the analytical elements,

An(tk) :=J n(tk)
(
Ω11(tk) + 1

2
Ω12(tk)$

f
n+1

)
J n(tn+1)−1,

Bn(tk) :=J n(tk)Ω12(tk)J n(tn+1)−1, Cn(tk) := T̄ tk,tn −An(tk)T̄ tn+1,tn , (6.130)

Dn(tk) :=J n(tk)Λ12(tk), where J n(t) := J (ln(T̄(t)T̄−1
n,i)
∨).

From a factor-graph perspective, we note that this causes our (originally) binary obser-

vation factors (dependent on xk and `j) to become ternary factors (dependent on xn,

xn+1, and `j). Concerning the sparsity of our Gauss-Newton problem, the (now) ternary

observation factors cause the top-left corner of the arrowhead matrix, GTR−1G, to become

block-tridiagonal (rather than block-diagonal). Since this new sparsity matches our

(already) block-tridiagonal prior term, F−TQ−1F−1, there is no adverse effect on the total

sparsity pattern. In fact, by estimating the state at N keytimes, N � K, and exploiting

the sparsity of A``, the batch Gauss-Newton iterations become order O(N3 +N2L+K),

which is the same complexity as a traditional discrete-time SLAM problem (with N

keyframes and K measurements).

In this thesis we make the retrospective observation that the application of this

measurement interpolation scheme (in essence) transforms our nonparametric GP model

into a parametric one (using basis functions). Revisiting the general GP interpolation
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equation, (6.17a), from this new perspective (where the discretized state, x, does not

necessarily coincide with measurement times), we draw a similarity to the parametric

approach, discussed in Chapter 5, (5.1):

x(τ) = P̌(τ)P̌−1︸ ︷︷ ︸
Ψ(t)

x + x̌(τ)− P̌(τ)P̌−1x̌︸ ︷︷ ︸
time-varying constant

, (6.131)

where P̌(τ)P̌−1 can be viewed as a set of parametric basis functions, Ψ(t), weighted by state

vector x. Note that the additive, time-varying constant is simply zero for linear GP priors

that do not include control inputs (such as our piecewise, constant-velocity GP prior).

Unlike standard parametric approaches that tend to choose an interpolation scheme ad

hoc, we reiterate that the interpolation kernel, P̌(τ)P̌−1, can be derived directly from a

LTV SDE. We assert that this is a more principled way to arrive at a parametric model,

since the (now) physically motivated basis, Ψ(t), can also be viewed as a smoothness

constraint that enforces the optimal trajectory prediction between the keytimes (using

the continuous-time motion model).

To deepen this relationship, we derive the exact form of the basis for the white-noise-

on-acceleration prior used by our piecewise GP approach in Section 6.4.3. Recalling that

our LTI SDE results in a P̌(τ)P̌−1 with the two non-zero block-column entries

Λ(τ) = Φ(τ, tk)−Qk(τ)Φ(tk+1, τ)TQk(tk+1)−1Φ(tk+1, tk),

Ω(τ) = Qk(τ)Φ(tk+1, τ)TQk(tk+1)−1,

and analytical expressions for Φ(t, t′) and Qk(t), in (6.92) and (6.89), it follows that:

Λ(τ) =

[
Λ11(τ) Λ12(τ)

Λ21(τ) Λ22(τ)

]
=

[
(2λ3 − 3λ2 + 1)1 ∆(λ3 − 2λ2 + λ)1

6
∆

(λ2 − λ)1 (3λ2 − 4λ+ 1)1

]
(6.132a)

Ω(τ) =

[
Ω11(τ) Ω12(τ)

Ω21(τ) Ω22(τ)

]
=

[
(3λ2 − 2λ3)1 ∆(λ3 − λ2)1

6
∆

(λ− λ2)1 (3λ2 − 2λ)1

]
(6.132b)

where λ := τ−tn
tn+1−tn , ∆ := tn+1 − tn. Although this cubic interpolation scheme may not

seem special, we note that the top rows of coefficients form the exact expression used by

cubic Hermite splines and that the bottom rows are simply the derivatives. While we

advocate that the nonparametric approach to STEAM is more probabilistically justified,

we note that in situations where a parametric model must be used (e.g., for computational

reasons), it is motivating to generate the basis using the GP approach presented herein1.

1For the mathematically lazy, we suggest using cubic Hermite splines for parametric estimation since
they are physically motivated, easy to implement, and efficient (with a local support of only two).
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Adopting the Relative Pose-Graph

In order to process large-scale loop closures in constant time (similar to the relative,

continuous-time method described in Chapter 5), we propose a hybrid approach to

incremental STEAM that maintains a relative state representation for the trajectory at

storage time (see Figure 6.13a), but converts to a privileged coordinate frame representation

to perform incremental, window-style batch optimizations (see Figure 6.13b). Recalling

that our trajectory state discretization, x, is already in the standard discrete-time form, we

note that it is trivial to convert our state parameterization to that of a relative pose-graph

(where we must also store body-centric velocities at the graph nodes). However, when it

comes to performing a window-style batch optimization (as described in Section 3.3.2), we

must choose to either: (i) re-factor the GP prior cost terms, in (6.96), and the interpolation

equations, in (6.113), to instead use the relative pose variables, Ttk+1,tk , or (ii) convert

the window of relative poses that we wish to optimize into a privileged coordinate frame.

Notably, the former approach can be used to augment an existing implementation of

discrete-time, relative SLAM (Sibley et al., 2009) with our exactly sparse set of GP

prior smoothing terms. However, we present two subtle advantages to taking the second

approach (which also apply to the discrete-time case).

The first advantage concerns the sparsity of the incremental batch estimation problems.

After selecting an active region of poses for the incremental batch optimization, it is

trivial to compound the relative pose chains back into a privileged root frame, F−→rob(tr),

where the root time, tr, aligns with one of the pose-graph node times, tk. Recalling that

the relative landmark parameters, p
`j ,tj
tj , are expressed in the frame where they are first

observed, F−→rob(tj), we note that the observation cost terms have the form:

emkj(z) = ykj − g(Ttk,tj p
`j ,tj
tj ) = ykj − g(Ttk,trT

−1
tj ,tr

p
`j ,tj
tj ), (6.133)

where we have used the root frame to break the relative transforms, Ttk,tj , into exactly two

pose variables (rather than a chain of relative poses); by extension, this also results in a

much sparser set of Jacobians (for long feature tracks). Post optimization, the pose changes

can be extracted back into the relative storage format by using Ttk+1,tk = Ttk+1,trT
−1
tk,tr

.

Note that while even more sparsity can be obtained by temporarily expressing the

landmarks in the root frame, we find that the relative landmark formulation reduces the

number of required Gauss-Newton iterations dramatically. The intuition behind this is

that a global landmark representation (with a poor initial condition) can act as a damper

that causes the iterative trajectory updates to take small steps. In contrast, the global
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(a) In order to store our trajectory state in a relative fashion, the standard relative pose-graph is augmented

to include body-centric velocity estimates at the nodes. Also, note that the landmark variables are stored

relative to the first frame in which they are observed.

Observation Factor Prior Factor Pose Constraint Root Pose

{T2,4,�2} {T3,4,�3} {T4,r,�4} {T5,r,�5} {T6,r,�6} {T7,6,�7}

{T10,11,�10} {T11,r,�11} {T12,r,�12} {T13,r,�13}
{Tr,r,�14}

2�
11� 4� 5�

Static Pose

(b) This figure illustrates a factor-graph view of our local batch optimization. Note that the active region

(shaded blue) of the relative pose-graph is transitioned to use the root pose as a privileged coordinate

frame. In contrast, static poses are expressed with respect to their nearest active leaf node; in essence,

these static regions form fixed submaps that float with the active pose to which they are constrained.

Ternary observation factors arise due to the landmarks being expressed in a relative fashion. Lastly, we

note that prior factors in parallel with a pose constraint still affect the active velocity variables.

Figure 6.13: This figure depicts our state representation at storage and optimization time.

structure of relative landmarks deforms ‘freely’ with changes to the trajectory estimate.

The second advantage of our approach involves the case where a loop exists within

the active sub-graph of relative poses that we are optimizing (i.e., when the active state

is over-parameterized). Rather than choose a minimal parameterization of relative states

to optimize, we note that converting to a set of privileged coordinates naturally enforces

a locally consistent solution.

In summary, our incremental STEAM technique operates in five stages: (i) perform a

breadth-first search from a root node to select an active region of the relative pose graph

to optimize, (ii) determine the active landmarks and the corresponding static region of

poses, (iii) concatenate the relative poses into a temporary, privileged state representation,

(iv) perform a local batch optimization using all of the relevant observation factors, as
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well as the GP prior factors between temporally adjacent trajectory states, and (v) push

updated pose, velocity, and landmark estimates back into the relative storage format.

6.4.6 Appearance-Based Lidar Experiment

In this section, we validate that our piecewise GP approach, combined with measurement

interpolation and our relative storage method, can be used to perform incremental

STEAM with high-rate asynchronous measurements in unstructured three-dimensional

terrain. Once again, we employ the use of our 1.1km appearance-based lidar dataset

described in Appendix A. Comparison is performed against an open-loop, discrete-time

solution and the closed-loop (parametric, relative) continuous-time method described in

Chapter 5. Furthermore, all compared estimators use the same SURF feature extractions,

preprocessed feature associations (i.e., outlier rejection), and loop closure proposals.

In contrast to the standard parametric approach, which focuses on proper knot spacing

to model smoothness (recall the tedious training in Chapter 5), our GP approach will

primarily rely on the prior model to prevent overfitting. Notably, spacing the keytimes

too far apart will still cause underfitting (i.e., over-smoothing); however, assuming that

the GP prior is well tuned, placing keytimes too close together will only have an adverse

affect on computational performance. Therefore, we must simply choose a knot spacing

large enough to enable online operation, but not too large as to over-smooth the solution.

For convenience, we choose to place a keytime at each lidar imagestack acquisition time

(a roughly half-second spacing) and found no adverse effects on accuracy. Concerning the

hyperparameters, we set our initial velocity prior, $̌0, to zero (with a high uncertainty),

and model QC as a diagonal matrix with its elements populated by Gaussians fit to

training data. Recalling that our GP prior approximates the nonlinear kinematic SDE in

(6.67), we note that the diagonal elements of QC can be interpreted as the variances of

the six body-centric acceleration (in rotation and translation).

Trajectory Estimation Performance

The open-loop trajectory estimates produced by our piecewise GP algorithm, GP-Traj-

Sparse, the parametric continuous-time algorithm from Chapter 5, Relative CT, and a

simple discrete-time implementation, Discrete, can be seen in Figure 6.14. The roughly

53 minute and 1.1km traversal contains 6880 intensity images, with 2,010,671 temporally

matched SURF features associated with 688,481 unique landmarks. As expected, both
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Start/End Start/End

Figure 6.14: Top and side views of the open-loop trajectory estimation results for the 1.1km

dataset. DGPS tracks are in black, the discrete-time estimate is in red, the parametric Relative

CT estimate (from Chapter 5) is in blue, and the GP-Traj-Sparse estimate (using measurement

interpolation) is in green.

continuous-time solutions perform much better than the discrete-time counterpart; note

that the discrete solution does not perform motion compensation in batch estimation, but

does leverage the motion-compensated RANSAC outlier rejection (described in Chapter 4).

Notably, both continuous-time solutions produce very similar results in the x-y plane; we

attribute the GP-Traj-Sparse algorithm’s improved elevation estimate to the trained GP

prior, which restricts large jumps in both the robo-centric z-axis and pitch velocity.

Since our continuous-time solutions also take advantage of loop-closures (in a topo-

metric sense), we are interested in comparing their local metric accuracy. Recalling the

ALARMS metric presented in Section 5.3.5, we provide a comparison in Figure 6.15.

Although the open-loop integration (OLI) result of our GP-Traj-Sparse algorithm is much

better that the OLI result of the Relative CT algorithm, we note that the improvement

in closed-loop integration (CLI) is marginal. This suggests that locally accurate results

can be obtained with either form of motion-compensation.

Despite the trajectory estimate of our GP approach being only marginally better that

the parametric method in Chapter 5, we note two other improvements: (i) a cleaner

state discretization, and (ii) faster computational performance. With respect to state

discretization, we note that being able to use the (fairly) standard relative pose-graph

storage (depicted in Figure 6.13) is much simpler than book-keeping overlapping basis

functions. Furthermore, it allows many existing discrete-time SLAM implementations to

be augmented with our GP prior smoothing terms and interpolation scheme. In contrast,

we note that using cubic B-splines (or other basis functions with a local support greater

than two) causes a tedious amount of book-keeping and special storage.

Although it is somewhat unfair to compare our computational results directly, since
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Figure 6.15: This figure shows the ALARMS error for a varying local region size. The continuous-

time estimates perform much better than the discrete-time counterpart. Furthermore, utilizing

the topological information to perform closed-loop integration results in the most accurate

local estimates. Notably, our GP-Traj-Sparse algorithm performs marginally better than the

parametric Relative CT algorithm.

the Relative CT method was implemented in Matlab and the GP-Traj-Sparse method

was implemented in C++, we note that the difference was substantial. In contrast to the

Relative CT algorithm, which required 1.6 hours of computation to process the 53 minute

dataset, our GP-Traj-Sparse method took a mere 15.6 minutes; coding language aside,

we note that this large speed up can be primarily attributed to the increased problem

sparsity and lack of burdensome numerical integration. The active window size used

in each algorithm was roughly the same (three seconds); using the relative pose-graph,

our GP approach performs a breadth-first search of depth six (where the keytimes are

spaced roughly half-seconds apart). Breaking the timing results down, the Relative

CT algorithm processed an average window in ∼0.84 seconds, while the GP-Traj-Sparse

method took only ∼0.14 seconds (which is fast enough to use the 2 Hz lidar scans online).

For context, we note that a typical window of six active frames (and another ∼10 static

frames) contains ∼2000 ‘visual’ measurements of ∼700 active landmarks. Furthermore, the

pose at each measurement time is individually interpolated and has a unique Jacobian

(∈ R6×(12+12)) that relates it to the adjacent keyframe poses and velocities. In comparison,

the computational cost of the GP smoothing factors is almost negligible.

Local Mapping Quality

Although it is common practice to validate SLAM algorithms using long trajectory plots

and error metrics based on (rough) GPS ground-truth, we note that the resolution of

these (typically) translation-only comparisons do not always indicate the usability of the
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(a) Before Motion Compensatation

(b) After Motion Compensatation

Figure 6.16: This figure depicts the effect of motion compensation for a sequence of lidar scans

acquired during continuous locomotion. In particular, we note that without compensating for

motion, a point cloud reprojection is susceptible to close objects being ‘echoed’, while the distant

reprojection is almost unusable. In contrast, by accounting for the temporal nature of the data

we are able to produce a very clean and consistent map.

localization and mapping for navigation purposes. Realistically, successful autonomous

systems do not depend on open-loop estimation for hundreds of meters at a time. In

order to gain intuition about an estimator’s ability to be used for obstacle detection and

safe, local navigation, it is interesting to inspect a dense (human-readable) map.

The first qualitative result that we wish to share about our continuous-time algorithm

is on the effects of motion compensation. In particular, we demonstrate the difference in

point-cloud construction, with and without using the continuous-time solution to properly
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Figure 6.17: This figure shows reprojected dense lidar data, coloured by elevation, from a local

region of our estimate that included loop closure. Furthermore, photographs of the experiment

provide context for the types of unstructured terrain we traversed with a scanning lidar sensor.

re-project lidar measurements from the spatiotemporal pose they were acquired at (see

Figure 6.16). Notably, without motion compensation our map is susceptible to ‘echoed’

ground planes and obstacles, as well as ‘blurry’ reprojections at distances greater than

∼5-10 meters. In contrast, our GP approach is able to produce a very clean point cloud.

The other qualitative result that we wish to share is a locally consistent point cloud

generated by reprojecting dense lidar data from an area involving loop closure (see

Figure 6.17). Notably, the reprojection uses lidar data from both passes of the area and

does not display any visible inconsistency.

6.5 Discussion

The GP-approach to trajectory estimation described in this chapter has provided a

theoretically pleasing batch optimization framework that is probabilistically founded on

continuous-time motion priors generated from stochastic models. Furthermore, it is clear
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Table 6.3: This table summarizes our sparsity conclusions with respect to the parameterization

of the robot state (while using a white-noise-on-acceleration prior). Concerning the standard

arrowhead matrix, GTR−1G, we report sparsity for the top-left corner (related to pose).

State Parameterization Sparsity of P̌ Sparsity of GT R−1G,

pose only, T(t) dense block-diagonal

pose and velocity, {T(t),$(t)} block-tridiagonal block-diagonal

velocity only, $(t) block-tridiagonal dense (over integrated times)

(from a theoretical standpoint) that an accurately modelled GP prior eliminates the need

for ad hoc interpolation schemes or parametric models (such as B-splines). However, while

the purely nonparametric approach is both fast and effective for STEAM problems with

a small number of measurement times (or a small number of landmarks), we note that

current computing technology limits us from applying it to many of the interesting robotic

problems that we wish to solve (e.g., sweeping, motion-distorted lidar). In order to handle

high-rate or sweeping-type sensors in an online algorithm (with current technology), some

form of parametric model is required (such as the Hermite splines that arise from our GP

interpolation scheme). Nevertheless, the exactly sparse GP priors derived in this thesis

can be applied to many existing computationally tractable algorithms, such as keyframed

VO, and can be used to query the solution at other times of interest (post optimization).

Looking back on our GP formulation for SE(3), we note that the (desirable) nonlinear

SDE in (6.67) has a very simple linear form that depends on the state parameterization.

By marginalizing the pose variables and estimating only velocity (i.e., x(t) = $(t)),

the second half of the nonlinear SDE, $̇(t) = w(t) ∈ R6, becomes a LTI SDE for the

same problem. In fact, this is the exact prior model used by our parametric relative

continuous-time method in Chapter 5. However, we note that there is a cost associated

with marginalizing the pose variables: any pose-based observation (such as a visual

measurement) requires numerical integration of the velocity. Furthermore, the Jacobians

of the pose-based measurements also become dense over the length of velocity that must

be integrated. This finding concerning sparsity is similar in nature to the observation

of Barfoot et al. (2014), who found that marginalizing velocity variables caused an

acceleration-based prior to become dense over the pose variables. Table 6.3 summarizes

these conclusions; note that the most problem-sparsity is exploited by our GP-based

approach, which estimates both the position and velocity variables.
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6.6 Summary and Conclusions

In this chapter we have explored extensions to the nonparametric, Gaussian-process-

regression approach to batch continuous-time trajectory estimation. The approach was

originally proposed by Tong et al. (2012) and later matured by Barfoot et al. (2014)

to generate exactly sparse GP priors from linear time-varying SDEs. Within this field

of research, the contributions of this thesis are split into roughly two sections: (i) a

linearization methodology to generate exactly sparse GP priors from nonlinear time-

varying SDEs (for trajectories ∈ RN), and (ii) the application of this class of exactly

sparse GP priors to trajectories that belong to the matrix Lie group SE(3).

In the first portion of this chapter, we extended the work of Barfoot et al. (2014) by

showing how nonlinear time-varying SDEs can be used to generate an exactly sparse GP

prior. This is accomplished by linearizing the stochastic motion model about a continuous-

time operating point and then leveraging the existing linear procedures. Furthermore,

we perform an analysis of the complexities of this approach and explain how it can be

implemented in practice. We also show how both linear and nonlinear exactly sparse GP

priors can be exploited to improve the computational performance of data-driven hyper-

parameter training. Both our linearization methodology and data-driven hyperparameter

training are validated on a 2D indoor experimental dataset with accurate ground-truth.

These methods and results have previously appeared in Anderson et al. (2015a).

In summary, the contributions of this early work are:

1. A methodology to use NTV SDEs, driven by white noise, to generate an exactly

sparse GP prior for continuous-time trajectories that belong to a vectorspace.

2. An analysis of the complexities that arise from needing a continuous-time lineariza-

tion point. Specifically, we identify a circular dependence in the linearization,

propose a remedy that exploits the iterative nature of the estimation scheme, and

determine the minimal storage requirements.

3. An analysis of how data-driven hyperparameter training can also exploit the exactly

sparse nature of our GP priors.

4. An evaluation of both the nonlinear GP prior, formed from a NTV SDE, and the

data-driven hyperparameter training for a 2D mobile robot dataset.

In the later portion of the chapter, we investigate how the Markov property can be

exploited to make the GP-regression approach to STEAM efficient for bodies that are
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rotating and translating in 3D space. We first analyze how our linearization methodology

for vectorspaces can be extended to SE(3), for a (ideal) nonlinear prior, and then

demonstrated how a sequence of local, LTI SDEs can be used to form a close approximation.

Using this piecewise, linear GP prior, we propose a STEAM estimator for SE(3) that is

fast, singularity-free, and physically motivated. Furthermore, we demonstrate practical

extensions that allow us to use this technique with high-rate, motion-distorted lidar and

perform constant-time loop closure on a relative pose-graph. The methods are verified

experimentally for two different STEAM problems. Note that our exactly sparse GP prior

for SE(3), along with the stereo camera results, has previously appeared in Anderson

and Barfoot (2015); however, the relative extension and appearance-based lidar results

have not been previously published.

In summary, the contributions of this later work are:

1. A theoretical extension of our previous linearization methodology to generate an

exactly sparse GP prior from a NTV SDE that belongs to SE(3).

2. A piecewise GP prior that uses a sequence of local LTI SDEs to closely approximate

the desired NTV SDE (when velocity is near constant); the resultant GP-based

estimator is fast, singularity-free, and can be used to query the mean and covariance

of the posterior estimate at any time.

3. A description of the methodology we use to extend our GP estimator to the relative

coordinate formulation of STEAM.

4. An evaluation of our estimator’s accuracy, consistency, computational performance,

and ability to continuously interpolate both the mean and covariance functions,

using a stereo camera dataset.

5. An evaluation using lidar-style VO and place recognition over a 1.1 km traverse of

unstructured, three-dimensional terrain.

Notably, owing to the interesting parallel between the GP-regression approach to

STEAM and the standard discrete-time approach to SLAM, it is simple to apply our work

to most existing discrete-time batch SLAM implementations. Minimally, we note that

it is trivial to incorporate our three-dimensional GP prior factors into an existing batch

SLAM solution. Furthermore, this allows for the discrete-time posterior to be queried in

a continuous-time fashion; this may be useful for estimating a trajectory with a camera

and then reprojecting lidar data post optimization.



Chapter 7

Conclusion

In this chapter, we provide a short summary of the contributions and publications that

arose from the work presented in this thesis. Furthermore, we provide some narrative on

interesting directions for future work in the area of continuous-time trajectory estimation.

7.1 Summary of Contributions

Our motivation to work on batch continuous-time trajectory estimation originated from

the desire to use appearance-based lidar as a passive camera substitute (as described

in Chapter 2). Specifically, the original aim of this thesis was to extend the relative

coordinate formulation of batch discrete-time SLAM (as described in Chapter 3) to

estimate a continuous-time trajectory; we postulated that this would allow us to perform

incremental SLAM with high-rate asynchronous sensors, such as lidar – even at loop

closure. Along this journey we have learned much about batch continuous-time trajectory

estimation, made several contributions and publications towards the use of appearance-

based lidar for online STEAM, and what we hope are both theoretical and practical

contributions to the field of trajectory estimation for robotics.

The methods and experiments presented in Chapter 4, where we proposed a novel

RANSAC variant for motion-distorted sensors, first appeared in the publication:

• Anderson, S. and Barfoot, T. D. (2013a). RANSAC for motion-distorted 3D visual

sensors. In Proceedings of the International Conference on Intelligent Robots and

Systems (IROS), Tokyo, Japan.

The results were then combined with those of Chapter 5 and published in the article:

137
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• Anderson, S., MacTavish, K., and Barfoot, T. D. (2015b). Relative continuous-time

SLAM. International Journal of Robotics Research, 34(12):1453-1479.

In summary, the contributions of Chapter 4 are:

1. A temporally-sensitive adaptation of the vision-based RANSAC algorithm, using a

constant-velocity model to account for motion-distortion in 3D data.

2. A heuristic extension of the motion-compensated algorithm that improves computa-

tional performance without any large sacrifice to quality.

3. Derivation of the conditions for which our constant-velocity model can be solved.

4. An experimental validation of the algorithm, using SURF features extracted from a

6880 frame sequence of lidar intensity imagery.

The methods and experiments presented in Chapter 5, where we explored relative,

parametric continuous-time estimation, have appeared in two previous publications:

• Anderson, S. and Barfoot, T. D. (2013). Towards relative continuous-time SLAM.

In Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA), Karlsruhe, Germany.

• Anderson, S., MacTavish, K., and Barfoot, T. D. (2015b). Relative continuous-time

SLAM. International Journal of Robotics Research, 34(12):1453-1479.

In summary, the contributions of Chapter 5 are:

1. A continuous-time adaptation of the relative-coordinate formulation of SLAM. We

demonstrate that by estimating the velocity profile of the robot, we can devise an

incremental SLAM solution that runs in constant time – even at loop closure.

2. An explanation of how to perform sliding-window-style estimation with basis func-

tions that have a local support greater than two.

3. An evaluation of the algorithm using lidar-style VO and appearance-based place

recognition over a 1.1 kilometer traverse of unstructured, three-dimensional terrain.

Most of the methods and experiments presented in Chapter 6, where we explored both

nonlinear and 3D extensions to a class of exactly sparse GP priors, have appeared in two

previous publications. First, the work of Barfoot et al. (2014) was extended by our work

on NTV SDEs and hyperparameter training for publication in a journal article:

• Anderson, S., Barfoot, T. D., Tong, C. H., and Sarkka, S. (2015a). Batch nonlinear

continuous-time trajectory estimation as exactly sparse gaussian process regression.

Autonomous Robots, special issue on Robotics Science and Systems, 39(3):221-238.
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Second, our exactly sparse GP prior for SE(3) was published in the proceedings of a

full-paper refereed conference, along with the stereo camera results:

• Anderson, S. and Barfoot, T. D. (2015). Full STEAM Ahead: Exactly sparse

gaussian process regression for batch continuous-time trajectory estimation on

SE(3). In Proceedings of the International Conference on Intelligent Robots and

Systems (IROS), pages 157-164, Hamburg, Germany.

Note that the relative extension and appearance-based lidar results have not been previ-

ously published. In summary, the contributions of Chapter 6 are:

1. A methodology to use NTV SDEs, driven by white noise, to generate an exactly

sparse GP prior for continuous-time trajectories that belong to a vectorspace.

2. An analysis of the complexities that arise from needing a continuous-time lineariza-

tion point and a description of the methods that allow us to implement a STEAM

estimator based on the nonlinear GP priors.

3. An analysis of how data-driven hyperparameter training can also exploit the exactly

sparse nature of our GP priors.

4. An evaluation of both the nonlinear GP prior, formed from a NTV SDE, and the

data-driven hyperparameter training for a 2D mobile robot dataset.

5. A theoretical extension of our linearization methodology to generate an exactly

sparse GP prior from a NTV SDE that belongs to SE(3).

6. A piecewise GP prior that uses a sequence of local LTI SDEs to closely approximate

the desired NTV SDE (when velocity is near constant).

7. A description of the methodology we use to extend our GP estimator to the relative

coordinate formulation of STEAM.

8. An evaluation of our estimator’s accuracy, consistency, computational performance,

and ability to continuously interpolate both the mean and covariance functions,

using a stereo camera dataset.

9. An evaluation of our estimator’s ability to perform lidar-style VO using a 1.1 km

traverse of unstructured, three-dimensional terrain.

7.2 Future Work

In this section we discuss possible avenues of future work. The suggestions are partitioned

into those that concern the parametric and nonparametric approaches to STEAM.

The biggest challenge for the parametric approach to trajectory estimation is choosing

a knot spacing that will reliably fit the true motion of the vehicle. Although we propose
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that a more realistic motion prior can help alleviate the chance of overfitting, we note

that knot spacing is a more intuitive and predictable method for an engineer to tune

the smoothness of a trajectory curve. Along this line of thought, we make the following

suggestions for possible extensions to the parametric approach:

1. The work of Oth et al. (2013) proposes using a normalized innovation squared (NIS)

test to determine when higher knot resolution is required. This avenue is very

promising, but it is not clear that a naive implementation of this approach will be

robust to outliers. Further work is required in this area.

2. An alternative approach is to try and use a priori information to choose a knot

spacing. For example, one could characterize the behaviour of a specific vehicle and

then choose the knot spacing based on the commanded control inputs.

Our suggestions for the nonparametric approach are primarily comprised of improvements

and extensions to the GP prior model:

1. The most straightforward extension of our 3D approach would be to consider other

kinematic models that might be more suitable for non-ground vehicles; for example,

one might expect the primary disturbances on quadrotor control to be more prevalent

in an inertial frame, rather than the body-centric frame.

2. Reintroducing the control inputs into our piecewise GP prior could be beneficial.

However, we note that wheel slip and other unanticipated forces prevent us from

trusting the control inputs too heavily. An interesting exercise would be to model the

smoothing term, QC , as a time-varying function that takes the control inputs as a

parameter (e.g., when the control inputs are zero, we expect almost no acceleration).

3. In general, it would be interesting to exploit as much a priori knowledge in the

GP prior as possible. For example, dynamical models can be used by including

vehicle mass, the gravity vector, motor torques, and even terrain interactions. The

surface upon which a ground vehicle drives is a relatively unexploited prior in

three-dimensions. Given a model of the terrain (e.g., using lidar scans) one could

include cost terms that penalize the pose estimate if it tries to ‘float away’.

These avenues of future work represent some of the next steps in maturing the use of

continuous-time trajectory representations for robotic localization. It is my belief that

this field of research is very promising and it is my hope that these types of techniques

become more widely adopted in the many fields of robotic state estimation.



Appendix A

Appearance-Based Lidar Dataset

In order to generate repeatable experimental results for this thesis, the appearance-based

lidar experiments conducted by McManus et al. (2012) were packaged into the publicly

available1 Gravel Pit Lidar-Intensity Imagery Dataset (Anderson et al., 2012). The general

pipeline used to process lidar data in these experiments is reviewed in Chapter 2. The

experiments used a ROC6 field robot, equipped with an Autonosys LVC0702 lidar, to

capture intensity, range, azimuth, elevation, and timestamp images, with a resolution of

480× 360, at 2Hz; the hardware configuration is presented in Figure 2.1(a) and typical

intensity/range images are shown in Figure 2.2. The purpose of this appendix is to provide

additional detail on the data products, models, and post-processed results used by the

experimental results in this thesis.

1The dataset is available at http://asrl.utias.utoronto.ca/datasets/abl-sudbury/, along with
detailed descriptions of the various post-processed data products and coordinate frames.

Figure A.1: The Ethier Sand and Gravel pit in Sudbury, Ontario, Canada.

141
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Figure A.2: Point cloud coloured by lidar intensity data for the entire 1.1km traversal. Lidar

measurements were reprojected using the trajectory estimation results from Chapter 6. The

inset shows satellite imagery and ground-truth DGPS tracks for the traversal.

A.1 Gravel Pit Traversal

The appearance-based lidar experiments presented in this thesis make use of data acquired

during a one hour and roughly 1.1km traversal from a VT&R experiment in Sudbury,

Ontario, Canada (see Figures A.1 and A.2). During the traversal, the robot traveled

between 0 and 0.5 m/s and captured 6880 lidar imagestacks. Ground truth is provided by

a Thales DG-16 Differential GPS unit, with a Circular Error Probability (CEP) of 0.4m

(with 95% of measurements occurring within 0.9m).

All intermediate data products in our VO pipeline have been stored to make our esti-

mation results completely repeatable and enable fair comparisons between all algorithms;

arguably, the most important being the data associations provided by RANSAC (since

it is not a deterministic algorithm). Specifically, we store: (i) the raw lidar imagestacks,

(ii) post-processed 8-bit intensity images, (iii) DGPS measurements from the Thales

DG-16, (iv) SURF extracted from the 8-bit intensity imagery, (v) azimuth, elevation,

range, and time measurements interpolated for each SURF feature, (vi) initial temporal

matches determined using SURF feature descriptor similarity, (vii) outlier rejection on the

temporal data associations (provided by the RANSAC algorithm described in Chapter 4),

and (viii) place-recognition results provided by MacTavish and Barfoot (2014).
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A.2 Measurement Model

Owing to the nature of the ray-like measurements (i.e. azimuth, elevation, and range), a

spherical observation model was used for the vision-based algorithms in Chapters 4, 5,

and 6. Noting the observation-model linearization performed in Chapter 3 – equation

(3.63) – we define the following spherical model for our lidar SURF measurements:

k(p`,ss ) :=


atan2(ε2,

√
ε2

1 + ε2
3)

atan2(ε3, ε1)√
ε21+ε22+ε23

η

 , p`,ss =

[
ε

η

]
, (A.1)

where p`,ss is the homogeneous coordinate for the position of point `, expressed in sensor

frame F−→s, and k(·) is the nonlinear sensor model that transforms the point into the

spherical sensor space. The observation model Jacobian, Kkj, needed to complete the

linearization is therefore

Kkj :=


− ε1 ε2
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√
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√
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Lastly, we note that in order to use a simple spherical model for our measurements,

the raw azimuth, elevation, and range measurements, y′kj, require an intrinsic calibration

due to the true nature of the sensor (see Figure 2.1(b)). This is accomplished by using

the generalized distortion model presented by Dong et al. (2013). The augmented (i.e.

undistorted) spherical measurement, ykj, is found using the model:

ykj = y′kj + Ψ(α′, β′)c, y′kj =
[
α′ β′ r′

]T
, (A.3)

where Ψ(α′, β′) is a set of basis functions (e.g. grid-based bilinear interpolation) that

takes the raw azimuth and elevation as inputs, and c is a set of pre-optimized weighting

coefficients that determine the additive correction.

A.3 Place Recognition

Loop-closure proposals were generated for the Chapter 5 and 6 experiments by using

the place-recognition algorithm proposed by MacTavish and Barfoot (2014). Based

on FAB-MAP (Cummins and Newman, 2008), the augmented algorithm describes and
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Figure A.3: This figure shows the precision-

recall curve of place recognition for different

image-group sizes. Note the significant im-

provement of group matching over the single-

image representation. The selected group size

of 32 and threshold of p ≥ 0.85 resulted in

61% precision and 25% recall.

Loops 1-2

Loop 3

Loops 4-7

Loops 8-9

Figure A.4: This figure shows the loop closure

proposals overlaid onto the GPS data. The

nine accepted loop closures are shown in green,

while the rejected loop closures are shown in

red. Note that the blue trajectory segment

was used for training, and was not evaluated

for loop closures.

compares groups of images; loop closures are proposed by computing the likelihood that

a query intensity image (or group of images) came from each previously visited location.

Due to the (poor) quality of features extracted from our motion-distorted lidar intensity

imagery we found that this modification was necessary to get reasonable place-recognition

performance (see Figure A.3).

In order to geometrically validate the proposed loop closures, the SURF feature

measurements from the blocks of 32 images are undistorted into a privileged coordinate

frame (using the continuous-time trajectory solutions from Chapters 5 and 6). A standard

RANSAC algorithm is then run to find a transformation between the two temporal

segments that validates the loop closure; of the proposed 21 matches, seen in Figure A.4,

the nine shown in green were accepted (in both STEAM experiments).
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