
Evolving Distributed Control for an Object
Clustering Task

Timothy D. Barfoot�

Controls and Analysis,
MDA Space Missions,
9445 Airport Road,
Brampton, Ontario L6S 4J3, Canada

Gabriele M. T. D’Eleuterio

Institute for Aerospace Studies,
University of Toronto,
4925 Dufferin Street,
Toronto, Ontario M3H 5T6, Canada

Motivated by social insects, the possibility of evolving distributed control
for a task requiring global coordination is investigated. The task is object
clustering. A key aspect of this work is that a population of robot-like
agents is allowed to select the cluster location. A detailed examination
of how solutions evolved by a genetic algorithm are able to scale as key
parameters are varied is presented, allowing commentary on the sensitiv-
ity of the evolved solution to changes in the environment. In most of the
scaling experiments, the solution degrades gracefully about the evolution-
ary design point. However, in the case of constant-density scaling, the
solution maintains its effectiveness as the problem is made larger.

1. Introduction

The phrase multiagent system encompasses large bodies of work from
engineering, computer science, and mathematics. Examples include net-
works of mobile robots [1], software agents [2], and cellular automata
(CA) [3]. A common thread in all multiagent systems is the issue of
coordination. How are a large number of sparsely coupled agents able
to produce a coherent global behavior using simple rules? Answering
this question will not only permit the construction of interesting and
useful artificial systems but may allow us to understand more about
the natural world. Ants and the other social insects are examples of
local interaction producing a coherent global behavior. It is possible
for millions of ants to act as a superorganism through local pheromone
communication [4].

�Work carried out while at the University of Toronto Institute for Aerospace Studies.

Complex Systems, 15 (2005) 183–201; � 2005 Complex Systems Publications, Inc.

184 T. D. Barfoot and G. M. T. D’Eleuterio

Figure 1. Preview of the object clustering task. Agents (pentagons) must cluster
objects (dark circles) into a single heap (bottom right) from a random initial
distribution (top left). The location of the heap is not predetermined in this
self-organizing system.

Lewis Thomas [5] perhaps describes this phenomenon best:

A solitary ant, afield, cannot be considered to have much of any-
thing on his mind. Four ants together, or ten, encircling a dead
moth on a path, begin to look more like an idea. But it is only
when you watch the dense mass of thousands of ants, blackening
the ground that you begin to see the whole beast, and now you
observe it thinking, planning, calculating. It is an intelligence, a
kind of live computer, with crawling bits for its wits.

We seek to reproduce this ability on a fundamental level in order to
coordinate artificial systems.

It can be argued that CA are the simplest example of a multiagent
system. Originally studied by von Neumann [6], CA were used to de-
scribe systems of sparsely coupled difference equations. Despite their
simple mechanics, some extremely interesting behaviors have been cat-
aloged, Conway’s “The Game of Life” is one example. The term self-
organization is used in many contexts when discussing multiagent sys-
tems, which can lead to confusion. Here we use it to mean “multiagent
coordination in the face of more than one alternative.” For example, in
our task of object clustering (see Figure 1) we do not specify where the
heap of objects should form but instead rely on self-organization.

Researchers in collective robotics often use social insects to explain
the motivation behind their work [7–10]. In the absence of a central
controlling agent, colonies of ants are able to work together to the

Complex Systems, 15 (2005) 183–201

Evolving Distributed Control for an Object Clustering Task 185

benefit of the society as a whole [4]. Each ant behaves according to
its local situation yet interesting and coherent global behaviors result.
No particular ant is essential to the overall dynamics. We hope to
reproduce basic aspects of social insect behavior in a simple artificial
system. This may be a key step to developing control methods for
colonies of robots, for example. It is hoped that the benefits of such
work indeed may be twofold in that it may guide the engineer in the
design of distributed systems while also furthering our knowledge of
how biological collectives achieve coordination.

In this paper, we investigate a problem in which a large collective
of agents must come to a common decision. The goal is to have the
collective choose a location in a grid world to create a single large
cluster of objects [11]. We maintain that rules able to succeed at this
task are self-organizing because the agents are not told where to form
the pile, yet they must all coordinate their choices to produce a globally
coherent decision. If we told the agents where to create the cluster, the
task would be easier and no communication between the agents would
be necessary. This is an example of centralized organization and is in
stark contrast to self- or decentralized organization. We believe that
coordination in the face of more than one alternative is a key aspect of
multiagent systems [12].

Das [13] showed that genetic algorithms (GAs) are able to evolve CA
that perform prescribed tasks requiring the type of global coordination
in which we are interested. Motivated by this CA work, we used an
evolutionary approach to learn rules that were successful at the object
clustering task [11]. Our agents are different from CA as they are mobile
and live in a grid-type environment. Once successful rules were found,
we carried out extensive experiments to determine whether our solution
would scale up (and down) to larger (and smaller) problem sizes. The
results of this sensitivity analysis suggest that the densities of the agents
and objects are key parameters of the system. The effectiveness of the
solution is found to degrade when the densities are varied too far from
the evolutionary design point.

2. Agent description

This section describes the nature of our robot-like agents. Each agent has
a number of sensors and actuators. To relate this to real robots, it will
be assumed that some transformation may be performed on raw sensor
data so as to achieve a set of independent (sometimes called orthogonal
[9]) virtual sensors that output a discrete value. Orthogonality can be
divided into two types: spatial and modal. Spatially orthogonal sensors
do not look at the same region of space. Modally orthogonal sensors
do not look at the same type of datum (e.g., imagine two sensors, one
only detects other agents and another which only detects obstacles),

Complex Systems, 15 (2005) 183–201

186 T. D. Barfoot and G. M. T. D’Eleuterio

Robot

1

2

3

4

5

6

7

8

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

Obstacle Ball

Boolean Sensor Inputs

#

Modally Orthogonal

Sp
at

ia
lly

 O
rt

ho
go

na
l

Obstacle

Ball
1

2
3

4
5

6

8

7

Sensor
Template

(a)
Ph

ys
ic

al
 S

en
so

rs

BB M

BB 1

BB 2?
Ph

ys
ic

al
 E

ff
ec

to
rs

BS N

BS 2

BS 1

Discrete Dynamics

Boolean
Sensors

Arbitration
Scheme

Basis
Behaviours

Robot
Behaviour

Robot
View

(b)

Figure 2. (a) A robot-like sensor array. (b) Schematic of control scheme. Internal
dynamics are discrete.

Figure 2(a) provides a visualization. The transformation is essentially
a preprocessing step that reduces the raw sensor data to more readily
usable discretized inputs.

Let us further assume that the output of our control system may
be discrete. This may be done by way of a set of basis behaviors
[14]. Rather than specify the actuator positions (or velocities), we
assume that we may select a simple behavior from a finite predefined
palette. This may be considered a postprocessing step that takes a
discretized output and converts it to the actual actuator control. Neither
the preprocessing nor the postprocessing steps will be allowed to change
once set. The actual construction of these transformations requires
careful consideration but is also somewhat arbitrary, as will be seen.
Figure 2(b) shows what the control system in each robot-like agent is
beginning to look like. The internal dynamics may now be considered
as entirely discrete.

Once all the pre/postprocessing has been set up, the challenge remains
to find an appropriate arbitration scheme that takes in a discrete input
sequence (size N) and outputs the appropriate discrete output (one of M
basis behaviors). There are several candidates for this role but the one
affording the most general decision surfaces between input and output

Complex Systems, 15 (2005) 183–201

Evolving Distributed Control for an Object Clustering Task 187

is a straightforward lookup table similar to CA. In various papers [13,
15–17], it has been shown that GAs are able to evolve CA that perform
prescribed tasks requiring global coordination. This is essentially what
we wish to achieve, but have the added difficulty of dealing with the
environment of our robot-like agents.

This type of lookup table control in autonomous robots is often
called reactive. For every possible input sequence, the CA scheme stores
a discrete output value. In other words, for every possible input view
there is an output corresponding to one of the basis behaviors. At each
time step, the agent looks up the action that corresponds to its current
view and executes it. The size of the lookup table (for binary sensors)
will be 2N so if there are too many input sensors, the CA lookup table
will be very large; the approach is therefore usually rendered feasible
for only modest numbers. Although the number of basis behaviors M
does not directly affect the size of the CA lookup table, it does affect
the number of all such possible tables, which is M2N

for binary sensors.
Again, modest numbers of basis behaviors keep the size of the search
space reasonable.

The crucial step in this whole approach is the discovery of particular
CA lookup tables that cause a collection of identical agents to succeed
at a task requiring global coordination. The obvious first method to
attempt is to design the local rules by hand. How hard can it be? It turns
out to be very difficult to do for all but the most trivial examples. Even
when working with simple one-dimensional CA models (a far cry from
a fleet of robot-like agents) there can be millions if not billions of sets
of local rules from which to choose. We are faced with a combinatorial
explosion. To combat this, we employed an evolutionary optimization
process to search for good solutions.

A GA is a global-optimization technique loosely based on biological
evolution [18]. A random initial population of P CA lookup tables is
evolved over G generations. Each CA lookup table Φ has a chromosome
that consists of a sequence of all the discrete values taken from the
table. In our implementation, a fitness is assigned to each CA lookup
table at each generation (based on how well a collection of agents, each
containing the CA lookup table, conforms to our prescribed behavior
[19]). A CA lookup table’s fitness determines its representation in the
next generation. Genetic crossovers and mutations introduce new CA
lookup tables into the population. The best K � P CA lookup tables are
copied exactly from one generation to the next. The remaining (P � K)
CA lookup tables are subjected to a single site crossover at a random
location with probability pc. Furthermore, they are subjected to random
site mutations with probability pm per site.

Complex Systems, 15 (2005) 183–201

188 T. D. Barfoot and G. M. T. D’Eleuterio

3. Object clustering task

Sometimes called the shepherding or heap-formation task, object cluster-
ing has an established history in the literature and is directly comparable
to the behavior of some insect societies [7, 8, 20]. It is believed that
this task requires global coordination for a group of agents, existing in
a two-dimensional space, to move some initially randomly distributed
objects into a single large cluster. However, there is no central control-
ling agent that says where to put the cluster. The agents must come to
a common decision among themselves without any external help (anal-
ogous to the global partitioning task in CA work [16]). The absence
of any central controlling agent or goal beacon makes this a difficult
computation to be performed by this spatially-extended system.

Traditional GAs require a fitness function to be defined (on which se-
lection is based). For the heap-formation problem, the physical space in
which the agents exist is broken into J cells Aj as depicted in Figure 3(b)
and the fitness function is defined to be

ftotal �
�

I
i�1 fi

I
(1)

where I is the number of random initial conditions over which fi is
averaged. fi is the fitness on one initial condition only, given by

fi � 1.0 �
�

J
j�1 pj ln pj

ln J
(2)

where pj � n(Aj)/�
J
j�1 n(Aj) and n(Aj) is the number of objects in cell

Aj. This is a modified Shannon entropy [21] function that is 0 when the
objects are equally distributed over all cells, and 1 when all the objects
are in a single cell.

To summarize, fitness is assigned to a CA lookup table by equipping
each agent in a collective with that CA lookup table. The collective is
allowed to roam around in a two-dimensional space that has a random
initial distribution of objects. At the end of T time steps, fi is calculated,
which indicates how well the objects are clustered. This is all repeated I
times to allow some statistical averaging and ftotal, the fitness of the CA
lookup table, is determined.

4. Simulation results

The space in which the agents roam will be a two-dimensional lattice
with square cells and periodic boundary conditions in both spatial di-
rections (i.e., the surface of a torus). Note, if we did not use periodic
boundaries the object clustering problem is much easier. For example,
the agents could learn to simply cluster objects in a corner. This would

Complex Systems, 15 (2005) 183–201

Evolving Distributed Control for an Object Clustering Task 189

(a) (b)

Figure 3. (a) Typical view of a software agent. Each agent sees only six squares
(local information). Dark circles are objects. The pentagons (with the point
indicating orientation) is the agent itself. (b) Partition of grid world into bins
for fitness calculation.

not demonstrate the kind of global coordination we are after. Also note,
with periodic boundary conditions there is no “edge” to the world. To
ensure that all of the objects will be in a single fitness cell if they are well
clustered (as opposed to being divided across two cells), we move the
fitness grid in Figure 3(b) about on the surface of the torus, in order to
determine the best fitness value for a particular configuration of objects.
This is important as we are allowing the agents to select where to cluster
the objects and do not want to penalize them for placing the cluster on
the boundary of two fitness cells.

Each agent will be able to see only six squares as depicted in Fig-
ure 3(a). Each agent is able to carry one object at a time and can tell
whether or not it possesses an object. In five of the squares an agent sees
there are three possibilities (nothing, object, agent); in the sixth square,
the one occupied by the agent, there are two possibilities (carrying or
not carrying an object). This means there are 35 �2 � 486 entries in the
CA lookup table. Only two basis behaviors will be defined for this task.

Move self. The agent moves forward if the cell in front is empty; otherwise
turns left if the cell to the left is empty; otherwise turns right.

Manipulate object. The agent picks up/puts down an object from directly
ahead (if possible); otherwise picks up/puts down an object left of center
(if possible); otherwise picks up/puts down an object right of center (if
possible); otherwise activates the Move self basis behavior. (Whether the
agent is picking up or putting down an object depends on whether it
already has one in its possession or not.)

The choice of these behavior modules is arbitrary yet natural. With two
basis behaviors and a CA lookup table of size 486 there are 2486 	 10146

Complex Systems, 15 (2005) 183–201

190 T. D. Barfoot and G. M. T. D’Eleuterio

0 50 100 150
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Generation

F
itn

es
s

Fitness convergence for GA run

Population best
Population average

Figure 4. Convergence history (ftotal vs. generation) of a typical GA run. The
population size was 50 for this case.

possible CA lookup tables. This number is quite large but, as we will
see, good solutions can still be found. It should be pointed out that our
agents will be functioning in a completely deterministic manner. From
a particular initial condition, the system will always unfold in the same
particular way.

In our experiments, we have used a GA population size of P � 50,
number of generations G � 150, keepsize K � 5, crossover probability
pc � 0.6, and mutation probability pm � 0.005. For the purposes of
finding good rules we have used a two-dimensional world of size 31�30,
30 agents, 60 objects, a training time of T � 2000 time steps, number
of areas involved in the fitness calculation J � 9, and number of random
initial conditions per fitness evaluation I � 30. Figure 4 shows a typical
convergence history of the GA.

At the end of 150 generations, we take the best CA lookup table in
the GA population to be our solution. Figure 1 shows some snapshots
of one solution, dubbed Φheap, in action. Starting from an initial random
distribution of objects, the agents start by forming little piles that they
eventually merge into one large cluster. This strategy is similar, for
example, to that employed by Pheidole pallidula (ants) in the clustering
of corpses or Leptothorax unifasciatus (also ants) in the clustering of
larvae [8].

Complex Systems, 15 (2005) 183–201

Evolving Distributed Control for an Object Clustering Task 191

If one plots the fitness time series of the system starting from a ran-
dom initial condition, a curve like the plot in Figure 5(a) is the result.
However, if one averages the fitness time series over say 1000 initial
conditions, the much smoother curve in the plot of Figure 5(b) results.
Based on this average time series, an emergence time [22] may be cal-
culated which for us represents how long the system takes, on average,
to go to a steady state fitness (0.95 of maximum fitness). For the pa-
rameters used to evolve the Φheap solution (31 � 30 world, 30 agents,
60 objects), it takes 5200 time steps for the system to self-organize.

5. Scaling the solution

A very important issue for multiagent systems is that of scaling. We
evolved the solution Φheap with one particular set of parameters (31�30
world, 30 agents, 60 objects). Scaling refers to changing the size of
the problem under investigation while keeping the CA lookup table the
same. We can change the size of this problem in the following ways.

Vary the number of agents in the simulation while keeping all other
parameters the same.

Vary the number of objects in the simulation while keeping all other
parameters the same.

Vary the size of the world while keeping all other parameters the same.

Vary the number of agents, number of objects, and size of the world in
unison so that agent density and object density remain constant.

Figure 6 shows some snapshots of the Φheap solution in action with a
91 � 90 world, 270 agents, and 540 objects, which is an example of
constant density scaling. Again, smaller piles of objects are formed first
and eventually merged into a single large heap. Obviously it takes much
longer for this larger system to form a single heap. This is not unrea-
sonable especially if one takes the view that the collective is performing
a computation; more complicated computations should take longer. A
more detailed study of constant density scaling may be found below.

In the following subsections, a systematic investigation of scaling
is presented. Each of these scaling experiments can tell us important
things about the robustness of the solution and aid in the application of
such methods to real problems. For example, we may want to evolve
good solutions on a reduced problem size (in order to save time) and
then predict how well our solution will perform once it is “scaled up”
to the actual problem size. In another scenario we might have a very
hazardous work environment, which means we would like to be able to
know how many agents can cease to function such that the problem is
still solved in a timely manner (if at all).

Complex Systems, 15 (2005) 183–201

192 T. D. Barfoot and G. M. T. D’Eleuterio

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (emergence time: 5149)

F
itn

es
s

(e
m

er
ge

nc
e

th
re

sh
ol

d:
 0

.6
)

Fitness Time Series Averaged over1000 Simulations

Av + std dev
Average
Av − std dev

(b)

Figure 5. (a) Typical fitness time series (fi vs. time) for a 31 � 30 world with
30 agents and 60 objects. Best so far and time averaged fitness are shown for
interest only and are not used in any calculations. (b) Time series resulting from
an average over I � 1000 simulations with different random initial conditions.
The value of the bottom plot at the maximum time (e.g., 10000) is the ftotal that
is used as the fitness in the GA optimization. An emergence time is calculated.

Complex Systems, 15 (2005) 183–201

Evolving Distributed Control for an Object Clustering Task 193

Figure 6. Typical snapshots of system at various times (0, 1010, 6778, 14924,
20153, 58006). The world size is 91�90, there are 270 agents, and 540 objects.
Only the objects (dark circles) are shown for clarity. The gradual merging of
objects into larger and larger piles is similar to techniques observed in some
species of ant.

5.1 Scaling the number of agents

For a fixed world size (31 � 30) and number of objects (60), what is
the effect on varying the number of agents in a simulation? This is an
important question as we would like to know how many agents to use
for a certain task. Figure 7 shows some maximum fitness values and
emergence times for different numbers of agents. The datum at 37 agents
in Figure 7(b) deviates from the general trend owing to a finite sample
size (i.e., only 1000 simulations from random initial conditions were
averaged). It should be stressed that the solution under investigation

Complex Systems, 15 (2005) 183–201

194 T. D. Barfoot and G. M. T. D’Eleuterio

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Robots

F
itn

es
s

(1
00

0
si

m
ul

at
io

n
av

er
ag

e)

Scalability of Solution Trained on a 31 by 30 World with 30 Robots

Max + std dev
Maximum during 10000 time−steps
Max − std dev

(a)

26 28 30 32 34 36 38 40 42 44 46
3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

Number of Robots

E
m

er
ge

nc
e

T
im

e
(1

00
0

si
m

ul
at

io
n

av
er

ag
e)

Effect of Number of Robots on Emergence Time

(b)

Figure 7. (a) The effect on the maximum fitness and (b) emergence time when
the number of agents is changed (the rest of the problem stays the same).

here was evolved based on 30 agents exactly. It is not surprising then
that the highest fitness values correspond to numbers of agents near
30. Too few agents and the problem does not get adequately solved
(underpopulated). Too many and the agents begin to hinder the progress
of one another (sometimes called antagonism [7]). Clearly, antagonism
is not as strong an effect as underpopulation in this system.

Complex Systems, 15 (2005) 183–201

Evolving Distributed Control for an Object Clustering Task 195

5.2 Scaling the number of objects

For a fixed world size (31 � 30) and number of agents (30), what is the
effect on varying the number of objects in a simulation? We would like
to answer this in order to know how many objects the agents are able to
successfully handle. Figure 8 shows some maximum fitness values and
emergence times for different numbers of objects. It is again important
to state that the solution under investigation here was evolved using
exactly 60 objects. Here we are seeing some interesting results. If there
are too few objects in the system, the performance of the agents drops
off rather quickly as seen in Figure 8. This can be explained by the fact
that to move objects, the agents activate the Manipulate object module
which means they must “pick up” and carry them. If there are too few
objects compared to the number of agents it is conceivable that all the
objects are being carried which makes it difficult for piles to get started.
Presumably one would not use more agents than the number of objects
in this system. Less surprisingly, as the number of objects becomes
larger it becomes difficult for the agents to adequately organize the
system (in 10000 time steps). Intuitively this makes a great deal of
sense, especially if one believes that computation and complex systems
are intimately entangled. It should take longer to perform a more
complicated computation (see Figure 8(b) for the effect on emergence
time).

5.3 Scaling the size of the world

For a fixed number of objects (60) and number of agents (30), what is
the effect on varying the size of the world? Figure 9 shows what happens
to the maximum fitness during a 10000 time-step simulation as world
size varies (all these graphs are based on 1000 simulation averages).
Note that the solution under investigation was trained on a 31 � 30
world so it is not surprising that, at first glance, the agents did best on
this size of world while doing poorly on both smaller and larger ones.
However, Figure 9 is not perhaps as bad as it looks. When the world is
smaller than the training size of 30, each area Ai is also smaller (with
J fixed) so that in fact with the same number of objects, the maximum
fitness achievable is not as high. What really should be done is to allow
the number of areas involved in the fitness calculation J to change with
the world size. This would give a better comparison. When the world
is larger, there are two effects to consider. First, in a larger world one
might expect the agents (that move at finite speed) to take longer to
move between piles of objects. Here we are only allowing them to work
for 10000 time steps so we should expect to see some drop in their
performance as the world size increases. One might then think that if
given enough time, the agents should ultimately do as well as on smaller
worlds. Second, however, the density of agents decreases as the world

Complex Systems, 15 (2005) 183–201

196 T. D. Barfoot and G. M. T. D’Eleuterio

20 30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Objects

F
itn

es
s

(1
00

0
si

m
ul

at
io

n
av

er
ag

e)

Scalability of Solution Trained on a 31 by 30 World with 60 Objects

Max + std dev
Maximum during 10000 time−steps
Max − std dev

(a)

30 35 40 45 50 55 60 65
2500

3000

3500

4000

4500

5000

5500

6000

6500

Number of Objects

E
m

er
ge

nc
e

T
im

e
(1

00
0

si
m

ul
at

io
n

av
er

ag
e)

Effect of Number of Objects on Emergence Time

(b)

Figure 8. (a) The effect on the maximum fitness and (b) emergence time when
the number of objects is changed (the rest of the problem stays the same).

size increases. This means that there should be fewer collisions between
agents. This lack of collisions has a tendency to allow agents to fall into
fixed loop patterns in which they remain stuck for all subsequent times.
Because a short simulation time was used, it is difficult to distinguish
between the former and latter effects. In the next experiment, longer
times will be allowed in order to make such a distinction. A plot of
emergence time was not available for this experiment.

Complex Systems, 15 (2005) 183–201

Evolving Distributed Control for an Object Clustering Task 197

10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Size of World

F
itn

es
s

(1
00

0
si

m
ul

at
io

n
av

er
ag

e)

Scalability of Solution Trained on a 31 by 30 World with 60 Objects, 30 Robots

Max + std dev
Maximum during 10000 time−steps
Max − std dev

Figure 9. The effect on maximum fitness when the size of the world is changed
(the rest of the problem stays the same). Note that the “Size of World” axis label
refers to the y world dimension and the x dimension is this number augmented
by 1 to avoid cyclic behaviors.

5.4 Constant density scaling

Perhaps the most natural way to scale such problems would be to change
the world size, number of agents, and number of objects simultaneously
such that the densities of agents and objects in the world remain con-
stant. We will use the training densities, which were 1 agent per 30
squares and 1 object per 15 squares. It also turns out that the issue
with the fitness function and number of areas J disappears for constant
density scaling (J � 9 areas will be used throughout) since the density
of agents and objects within any such area should also remain constant.
Figure 10 shows how the maximum fitness and emergence time fare over
an extended 100000 time-step run. The “problem size” will be taken as
the size of the y dimension of the world (as in the previous subsection
but this time the agent and object densities are constant). The problem
size may be thought of as a characteristic length. The maximum fitness
curve remains very high even for the largest case (91 � 90) which is
almost an order of magnitude larger than the training case in terms of
number of agents and objects. It is interesting to note that there is a
fairly linear relationship between the problem size and the emergence
time.

Complex Systems, 15 (2005) 183–201

198 T. D. Barfoot and G. M. T. D’Eleuterio

20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size of Problem

F
itn

es
s

(1
00

 s
im

ul
at

io
n

av
er

ag
e)

Scalability of Solution Trained on a 31 by 30 World with 60 Objects, 30 Robots

Max + std dev
Maximum during 100000 time−steps
Max − std dev

(a)

20 30 40 50 60 70 80 90
−1

0

1

2

3

4

5

6

7
x 10

4

Size of Problem

E
m

er
ge

nc
e

T
im

e
(1

00
 s

im
ul

at
io

n
av

er
ag

e)

Effect of Problem Size on Emergence Time (95% of Maximum Fitness)

Emergence Times
Linear Fit

(b)

Figure 10. (a) Maximum fitness and (b) emergence time during an extended
100000 time-step set of 100 simulations.

6. Conclusions

It is quite encouraging that our method of evolving global behaviors in
a group of robot-like agents has been successful at the object clustering
task. The approach is perhaps not immediately applicable to real-world
engineering projects but there is a growing belief that decentralized, self-
organizing systems will have their place in future technologies. They

Complex Systems, 15 (2005) 183–201

Evolving Distributed Control for an Object Clustering Task 199

might be used in environmental cleanups, surface explorations, or min-
ing. Decentralized control could be very useful in nanotechnology. At
the very least this experiment helps further the notion that these types
of systems must be designed with the whole system (agents plus envi-
ronment) in mind. Each agent has no idea that it is helping to cluster
objects, it just follows the rules laid out for it. In fact, it would be very
difficult to predict just what would happen to the objects by analyzing
a single agent. However, it has been shown here that it is possible to
evolve successful behaviors on a reduced problem size and then scale up
the solution to the desired full problem size. From our detailed study of
scaling for this system we can see that the Φheap solution degrades grace-
fully around the design point of 30 agents, 60 objects, and the 31 � 30
grid size. It is also important that by keeping the density of agents and
objects constant as the grid size is increased did not cause the solution
to degrade. It naturally took longer for the system to self-organize for
larger problems but this is to be expected if we interpret object clustering
as a computation [23]. It is also quite intriguing that the solutions we
found to the object clustering task exhibit behavior that is quite similar
to clustering behavior of ants. First small piles are formed, then larger
ones, and this continues until there is just one pile. It is not difficult to
see that this type of solution should scale nicely as the problem size is
increased.

Although the grid-world model presented here is more realistic than
cellular automata as an approach to collective robotics, the added com-
plexity of the system makes its analysis quite difficult. We have shown
that, on average, our solution Φheap produces the desired system behav-
ior after a certain emergence time. This is nice from an engineering
perspective but does not further our general understanding of multi-
agent systems. Are there some basic mechanisms of self-organizing
systems [12]? Even though the system presented here is barely complex
enough to do anything useful, it is almost too complex to help us answer
this question. We are certainly in need of a mathematical framework
in which to analyze these types of systems. This may help us to give
something back to our understanding of natural and biological systems
whence our inspiration came. Computational mechanics [22, 24], sta-
tistical mechanics, and information theoretic approaches to multiagent
systems are all candidates for this framework.

Acknowledgments

The research was funded in part by the Centre for Research in Earth and
Space Technology and the Natural Sciences and Engineering Research
Council of Canada.

Complex Systems, 15 (2005) 183–201

200 T. D. Barfoot and G. M. T. D’Eleuterio

References

[1] T. D. Barfoot, E. J. P. Earon, and G. M. T. D’Eleuterio, “A New Breed:
Development of a Network of Mobile Robots for Space Exploration,”
in Proceedings of the Sixth International Symposium on Artificial Intelli-
gence, Robotics and Automation in Space (iSAIRAS), Montréal, Canada,
June 19–21, 2001.

[2] Eric Bonabeau, Guy Theraulaz, Eric Arpin, and Emmanual Sardet, “The
Building Behaviour of Lattice Swarms,” in Artificial Life IV: Proceedings
of the Fourth International Workshop on the Synthesis and Simulation of
Living Systems, edited by Rodney A. Brooks and Pattie Maes (MIT Press,
1994).

[3] Stephen Wolfram, “Universality and Complexity in Cellular Automata,”
Physica D, 10 (1984) 1–35.

[4] Erick Hoyt, The Earth Dwellers: Adventures in the Land of Ants (Simon
and Schuster, New York, 1996).

[5] Lewis Thomas, The Lives of a Cell (Viking Press, New York, 1974).

[6] Jon von Neumann, Theory of Self-Reproducing Automata (University of
Illinois Press, Urbana and London, 1966).

[7] Thierry Dagaeff, Fabrice Chantemargue, and Beat Hirsbrunner,
“Emergence-based Cooperation in a Multi-agent System,” Technical re-
port, University of Fribourg, Computer Science Department, PAI Group,
1997.

[8] J. L. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain, and
L. Chrétien, “The Dynamics of Collective Sorting: Robot-like Ants and
Ant-like Robots,” in Simulation of Adaptive Behaviour: From Animals
to Animats, edited by J. A. Meyer and S. Wilson (MIT Press, 1990).

[9] Ronald C. Kube and Hong Zhang, “The Use of Perceptual Cues in Multi-
robot Box-pushing,” in Proceedings IEEE International Conference on
Robotics and Automation, 1996.

[10] G. Theraulaz, S. Goss, J. Gervet, and J. L. Deneubourg, “Task Differenti-
ation in Polistes Wasp Colonies: A Model for Self-organizing Groups of
Robots,” in Simulation of Adaptive Behaviour: From Animals to Animats,
edited by J. A. Meyer and S. Wilson (MIT Press, 1990).

[11] T. D. Barfoot and G. M. T. D’Eleuterio, “An Evolutionary Approach to
Multiagent Heap Formation,” in Proceedings of the Congress on Evolu-
tionary Computation, Washington DC, USA, July 6–9 1999.

[12] T. D. Barfoot and G. M. T. D’Eleuterio, “Stochastic Self-organization,”
Submitted to Complex Systems, 2004.

[13] Rajarshi Das, James P. Crutchfield, Melanie Mitchell, and James E. Han-
son, “Evolving Globally Synchronized Cellular Automata,” in Proceed-
ings of the Sixth International Conference on Genetic Algorithms, edited
by L. J. Eshelman, San Fransisco, CA, April, 1995.

Complex Systems, 15 (2005) 183–201

Evolving Distributed Control for an Object Clustering Task 201

[14] Maja J. Matarić, “Behaviour-based Control: Examples from Navigation,
Learning, and Group Behaviour,” Journal of Experimental and Theoreti-
cal Artificial Intelligence, 9(2) (1997) 232–336. Special Issue on Software
Architectures for Physical Agents, edited by H. Hexmoor, I. Horswill, and
D. Kortenkamp.

[15] Melanie Mitchell, Peter T. Hraber, and James P. Crutchfield, “Revisiting
the Edge of Chaos: Evolving Cellular Automata to Perform Computa-
tions,” Complex Systems, 7 (1993) 89–130. Santa Fe Institute Working
Paper 93-03-014.

[16] Melanie Mitchell, James P. Crutchfield, and Rajarshi Das, “Evolving Cel-
lular Automata with Genetic Algorithms: A Review of Recent Work,” in
Proceedings of the First International Conference on Evolutionary Com-
putation and Its Applications, Moscow, Russia, 1996. Russian Academy
of Sciences.

[17] Win Hordijk, James P. Crutchfield, and Melanie Mitchell, “Mechanisms
of Emergent Computation in Cellular Automata,” Working Paper 98-04-
034, Santa Fe Institute, 1998. In Fifth International Conference on Parallel
Problem Solving from Nature PPSN-V, edited by A. E. Eiben (Springer,
New York).

[18] David E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning (Addison-Wesley, Reading, MA, 1989).

[19] Melanie Mitchell and Stephanie Forrest, “Genetic Algorithms and Arti-
ficial Life,” in Artificial Life: An Overview, edited by Chris G. Langton
(MIT Press, 1995). Santa Fe Institute Working Paper 93-11-072.

[20] Marinus Maris and René te Boekhorst, “Exploiting Physical Constraints:
Heap Formation Through Behavioural Error in a Group of Robots,” in
Proceedings IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Senri Life Science Center, Osaka, Japan, November
4–8, 1996.

[21] C. E. Shannon, “A Mathematical Theory of Communication,” The Bell
System Technical Journal, 27 (1948) 379–423.

[22] James E. Hanson and James P. Crutchfield, “Computational Mechanics
of Cellular Automata: An Example,” Working Paper 95-10-095, Santa
Fe Institute, 1995. Physica D, 103 (1997) 169–189; Proceedings of the
International Workshop on Lattice Dynamics.

[23] Stephen Wolfram, A New Kind of Science (Wolfram Media, Inc., Cham-
paign, IL, 2002).

[24] David P. Feldman and James P. Crutchfield, “Discovering Noncritical Or-
ganization: Statistical Mechanical, Information Theoretic, and Compu-
tational Views of Patterns in One-dimensional Spin Systems,” Working
Paper 98-04-026, Santa Fe Institute, 1998.

Complex Systems, 15 (2005) 183–201

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Web Coated \050Ad\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

