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Starting from a random initial predisposition, the creation of a common
piece of information in a network of sparsely communicating agents is
the first step towards showing how order can be built from the bottom up
rather than imposed from the top down. The model used for this study has
been termed stochastic cellular automata (SCA). We identify three impor-
tant elements of self-organization using SCA: instability, averaging, and
fluctuations, all of which have been identified in other nonlinear phenom-
ena. From a practical point of view, a simple coordination mechanism
for a group of autonomous agents or robots is provided.

1. Introduction

A common thread in all multiagent systems is the issue of coordination.
How are a large number of sparsely coupled agents able to produce a
coherent global behavior using simple rules? Answering this question
will not only permit the construction of interesting and useful artifi-
cial systems but may allow us to understand more about the natural
world. Ants and the other social insects are perfect examples of lo-
cal interaction producing a coherent global behavior. It is possible for
millions of ants to act as a “superorganism” through local pheromone
communication [1].

With ants as our inspiration, we look to create self-organizing coordi-
nation mechanisms for large-scale artificial systems. In particular, we are
motivated to carry out truly decentralized decision making in a group of
sparsely communicating autonomous robots such as those shown in Fig-
ure 1. Our interest in groups of robots stems from planetary exploration
applications such as distributed sensing [2]. To maximize robustness, it
is extremely important that every robot is treated exactly equally. This
removes the possibility of having a leader robot. Moreover, we cannot
even afford to have a centralized “polling station” wherein votes are
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Figure 1. Examples of small groups of autonomous mobile robots. The coor-
dination mechanisms studied would benefit small groups such as these but are
also intended to scale to much larger groups.

tabulated to elect a leader. Agreeing upon a leader, or any other piece
of information, must be accomplished through self-organization.

The word self-organization is used in many contexts when discussing
multiagent systems, which can lead to confusion. Here we use it to
mean: multiagent coordination in the face of more than one alternative.
We will be describing a stochastic version of cellular automata (CA). The
goal will be to have all cells agree on the same symbol from a number
of possibilities using only sparse communication. An example can be
found in Figure 2. We maintain that rules able to succeed at this task are
self-organizing because the cells are not told which symbol to choose,
yet they must all coordinate their choices to produce a globally coherent
decision. If we told the cells which symbol to choose, the task would be
very easy and no communication between cells would be necessary. This
can be dubbed centralized organization and is in stark contrast to self- or
decentralized organization. We believe that coordination in the face of
more than one alternative is at the very heart of all multiagent systems.

The difference between centralized and decentralized decision making
is already familiar to most people but likely not thought of in this way.
It is essentially the difference between flipping a coin and using “rock,
paper, scissors” when two people are trying to resolve a dilemma. In
flipping a coin, both parties rely on the coin (a centralized agency) to
make the decision and then abide by its ruling. In “rock, paper, scissors”
a decision is also quickly achieved if both people follow the same rules,
but it occurs in a decentralized manner. Note, however, in “rock, paper,
scissors” it can take repeated trials to finally come to a consensus as
there can be a tie. In fact, there is no guarantee that a consensus will
ever be achieved. But, we may compute the (high) probability with
which a decision is made after a certain number of trials.

This paper is organized as follows. Related work is described, fol-
lowed by a description of the model under consideration. Results of its
performance on the multiagent coordination task are presented. Analy-
ses of the model are provided followed by discussions and conclusions.
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Figure 2. (a) Example of 100 SCA. Cells are indicated by circles and bidirectional
connections by lines. The color of each cell represents its state chosen from an
alphabet of size K � 2. (b) An example of how the states change over time. In
this case a consensus is reached as demonstrated by all cells adopting the same
color in a single time-slice (column).

2. Related work

Note that unless explicitly stated, the term cellular automata (CA) will
imply determinism (as opposed to stochasticity) in this section.

Von Neumann [3] originally studied CA in the context of self-repro-
ducing mechanisms. The goal was to devise local rules which would
reproduce and thus spread an initial pattern over a large area of cells,
in a tiled fashion. The current work can be thought of as a simple case
of this where the tile size is only a single cell but there are multiple
possibilities for that tile. Furthermore, we wish our rules to work
starting from any random initial condition of the system.

CA were categorized by the work of Wolfram [4] in which four
universality classes were identified. All rules were shown to belong to
one of these classes: Class I (fixed point), Class II (oscillatory), Class III
(chaotic), or Class IV (long transient). These universality classes can
also be identified in stochastic cellular automata (SCA) and we will
show that in our particular model, choosing a parameter such that the
system displays long transient behavior (e.g., Class IV) results in the
best performance on our decentralized coordination task. Wolfram [5]
provides some examples of CA involving probabilities.

Langton [6, 7] has argued that natural computation may be linked
to the universality classes. It was shown that by tuning a parameter
to produce different CA rules, a phase transition was exhibited. The
relation between the phase transition and the universality classes was
explored. It was found that Class IV behavior appears in the vicinity
of the phase transition. The current work is very comparable to Lang-
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ton’s study in that we also have a parameter which can be tuned to
produce different CA rules. However, our parameter varies the amount
of randomness that is incorporated into the system. At one end of the
spectrum, completely random behavior ensues while at the other com-
pletely deterministic behavior ensues (which is simple voting). We also
relate the universality classes to particular ranges of our parameter and
find a correlation between performance on our decentralized coordina-
tion task and Class IV behavior. We attempt to use similar statistical
measures as Langton [6] to quantify our findings.

Mitchell et al. [8] and Das et al. [9] study the same coordination
task that is examined here in the case of deterministic CA. However,
their approach is to use a genetic algorithm to evolve deterministic rules
successful at the task whereas here hand-coded stochastic rules are de-
scribed. They found that the best solutions were able to send long range
particles [10] (similar to those in the Game of Life) to achieve coordina-
tion. These particles rely on the underlying structure of the connections
between cells, specifically that each cell is connected to its neighbors in
an identical manner. The current work assumes that no such underlying
structure may be exploited and that the same mechanism should work
for different connective architectures. The cost for this increased ver-
satility is that the resulting rules are less efficient (in terms of time to
coordinate) than their particle-based counterparts.

Tanaka-Yamawaki et al. [11] study a similar problem to that con-
sidered here. They use totalistic [4] rules which do not exploit the
underlying structure of the connections between cells but rather rely
on the intensity of each incoming symbol. They vary a parameter to
produce different rules and find that above a certain threshold, “global
consensus” occurs but below it does not. The connectivity between cells
is regular and success was found to depend in part on the connective ar-
chitecture used. However, they consider large clusters of symbols to be a
successful global consensus. For our practical problem of coordinating
a group of agents, clusters indicate that consensus has not been reached
and thus does not permit us to use these results directly. The Tanaka-
Yamawaki study does not consider all possible deterministic totalistic
rules and thus is not a complete view of how such rules fair against the
problem at hand.

For the problem of developing a practical coordination mechanism
we decided it would not be possible to rely on the types of regular con-
nections between nodes used in the earlier studies mentioned. For a
group of mobile robots, the connections were more likely to be based
on proximity as communication is typically local. Totalistic rules were
attractive to us, however, because it is impossible to predict exactly
how many robots will be within range of one another. Moreover, the
connections change as the robots move. Dynamic connections implied
to us that we could not have a period in which the structure of the
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connections could be learned and then coordination optimized for that
particular structure. In the end we found the work of Tanaka-Yamawaki
to be most similar to our problem but decided to turn to a stochastic
version of their totalistic rules in an attempt to destroy the remain-
ing clusters and complete the job of global coordination. Barfoot and
D’Eleuterio describe a subset of the results presented here in [12].

The essential idea used in the model described here has been bor-
rowed from nonlinear physics. To force the system away from a uniform
density of symbols (which may be viewed as a stable equilibrium), an
instability is introduced in the local update rule of each decision maker.
This local instability drives the system away from a uniform density and,
as we will see, towards global consensus. The notion of an instability
forcing a system far-from-equilibrium thus creating “order” has been
seen in nonlinear physics [13] and chemistry [14]. At the single tra-
jectory level, an instability may be seen as breaking symmetry between
more than one alternative while at the ensemble level, symmetry is once
again restored.

The use of instabilities in the coordination of artificial systems is
not new. Haken [15–17] led a movement to describe all structure in
nature in these terms and exploit these ideas in the design of artificial
systems. Instabilities have even been used to describe coordination in
the wavelength population dynamics of lasers [18].

3. Stochastic cellular automata

In deterministic CA there is an alphabet of K symbols, one of which
may be adopted by each cell. Incoming connections each provide a
cell with one of these symbols. The combination of all incoming sym-
bols uniquely determines which symbol the cell will display as output.
Stochastic cellular automata (SCA) work in the very same way except
at the output level. Instead of there being a single unique symbol which
is adopted with probability 1, there can be multiple symbols adopted
with probability less than 1. Based on this outgoing probability density
over the K symbols, a single unique symbol is drawn to be the output
of the cell. This is done for all cells simultaneously. It should be noted
that deterministic CA are a special case of SCA.

We consider a specific subcase of SCA in this paper which corresponds
to the totalistic rules of CA. Assume that cells cannot tell which symbols
came from which connections. In this case, it is only the intensity of
each incoming symbol which becomes important. Furthermore, we
desire that our rules work with any number of incoming connections.
Thus, rather than using the number of each of the incoming K symbols,
we use this number normalized by the number of connections, which
can be thought of as an incoming probability density. In summary the
model we consider is as follows.

Complex Systems, 16 (2005) 95–121
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Totalistic SCA. Consider a system of N cells, each of which is connected
to a number of other cells. Let � represent an alphabet of K symbols,
represented by the integers 1 through K. The state of cell i at time step
t is xi[t] � �. The input probability density pin for cell i is given by

pin[t] � Σi�x1[t], . . . , xN[t] � (1)

where Σi accounts for the connections of cell i to the other cells. More
specifically, if we define cij to be 1 if cell i is connected to cell j, and 0
otherwise, then for cell i we have the input probability density given by

pk,in[t] �
N

�
j�1

cij

�N
m�1 cim

∆(k, xj[t]) (2)

where the Kronecker delta ∆(k, xj[t]) is 1 when xj[t] � k and 0 otherwise.
The output probability density pout is given by the map �:

pout[t � 1] � �� pin[t]�. (3)

The probability densities pin and pout are stochastic columns. The new
state of cell i at time step t � 1 is randomly drawn according to the
density pout[t � 1] and is represented by xi[t � 1].

It should be noted that in equation (1) if the connections between the
cells are not changing over time then the functions Σi(�) will not be
functions of time. However, we could allow these connections to change
which would make them functions of time.

Once the connections are described through the Σi(�) functions, the
only thing that remains to be defined is the �-map. We assume that each
cell has the same �-map but this need not be the case. The possibilities
for this map are infinite and thus for the remainder of this paper we
discuss parameterized subsets of these possibilities. One subset will be
called piecewise-� and is defined as follows.

Piecewise-�. Let

pin � � p1,in . . . pK,in �T. (4)

The (unnormalized) output probabilities are given by

pk,out �

�					
					
�

1, if 1
K � Β(pk,in 


1
K ) � 1

0, if 1
K � Β(pk,in 


1
K ) � 0

1
K � Β(pk,in 


1
K ), otherwise

(5)

where Β is derived from the tunable parameter Λ as follows:

Β �
�		
		
�

2Λ, if 0 � Λ � 1
2

1
2 (1 
 Λ)
1, if 1

2 � Λ < 1.
(6)
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Figure 3. The piecewise-� rule for different values of Λ and K � 2. Note that in
the diagrams Pin � p1,in since there is only one degree of freedom in pin with
K � 2 (by the theorem of total probability). Similarly, Pout � p1,out.

The (normalized) output probability column is

pout �
1

p�,out
�p1,out . . . pK,out �T (7)

where p�,out � �K
k�1 pk,out.

Note that in equation (6), the tunable parameter, Λ acts in a similar
manner to a temperature parameter. When Λ � 1 we have a completely
deterministic rule while when Λ � 0 we have a completely random rule.
Figure 3 shows what the rule looks like for different Λ when K � 2.
Another possibility for the �-map will be called linear-� and is defined
as follows.

Linear-�. Let

pin � � p1,in . . . pK,in �T. (8)

The (unnormalized) output probabilities are given by

pk,out � p
Β
k,in (9)

where Β is derived from the tunable parameter Λ as follows:

Β �
�		
		
�

2Λ, if 0 � Λ � 1
2

1
2 (1 
 Λ)
1, if 1

2 � Λ < 1.
(10)

The (normalized) output probability column is

pout �
1

p�,out
�p1,out . . . pK,out �T (11)

where p�,out � �K
k�1 pk,out.
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Figure 4. The linear-� rule for different values of Λ and K � 2. Note that in the
diagrams Pin � p1,in since there is only one degree of freedom in pin with K � 2
(by the theorem of total probability). Similarly, Pout � p1,out.

The tunable parameter Λ behaves as for the piecewise-� map. Figure 4
shows what the rule looks like for different Λ when K � 2. This rule
has been called “linear” as there exists an algebra in which this map is
simply scalar multiplication, but that topic is beyond the scope of this
paper [19].

An equilibrium point p� in a �-map is one for which the following is
true

p� � �� p��. (12)

The idea behind the piecewise-� and linear-� rules was to create an in-
stability in the probability map at the uniform density equilibrium point

p�uni � � 1
K

1
K
�

1
K
�T (13)

such that a small perturbation from this point would drive the proba-
bility towards one of the stable equilibria

p�1 � � 1 0 . . . 0 �T (14)

p�2 � � 0 1 . . . 0 �T (15)

�

p�K � � 0 0 . . . 1 �T (16)

It turns out that when 0 � Λ < 1/2, the equilibrium point p�uni is the only
stable equilibrium. However when 1/2 < Λ � 1, p�uni becomes unstable
and the other equilibria p�1, . . . , p�K become stable. This is similar to the
classic pitchfork bifurcation as depicted in Figure 5 for K � 2. However,
with K symbols in the alphabet the pitchfork will have K tines.

There certainly are other stochastic functions which may work as
�-maps but two will be enough for our purposes here. It is important
to stress that we have designed the stability of our system at a local
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Figure 5. Pitchfork stability of the piecewise-� rule for K � 2. Λ is a parameter
analogous to a temperature.

level. The question of global stability and success on the decentralized
coordination problem does not follow directly from the local stability
of each cell. As we show, it is possible to study the global stability of a
large system of cells (e.g., N � 100) with a piecewise-� or linear-� rule
analytically. However, there is an explosion in the number of global
states as K is increased. For example, with N � 100 and K � 2 there
are 2100

� 1.3 � 1030 possible global states. The approach in section 4
is to study them through simulation and statistical analysis. This is an
important issue for stochastic decentralized systems. If it is computa-
tionally intractable to study large systems analytically and prove they
will work, then are they still useful? The hope is that by designing
large decentralized systems from the bottom up, the interactions that
we design on a small scale will still work on a very large scale. This is
typically called scaling up and is investigated here through simulation.

4. Simulation

We now present simulations of cells employing the piecewise-� rule. In
order to ensure that the connections between cells are not regular, we
consider each cell to exist in a cartesian box (of size 1 by 1). The N cells
are randomly positioned in this box and symmetrical connections are
formed between two cells if they are closer than a threshold euclidean
distance d from one another. Figure 2 shows example connections be-
tween N � 100 cells with d � 0.2. Figure 6 shows example time series
for different values of Λ. When Λ < 0.5 chaotic global behavior arises,
with 0.5 < Λ < 1 fairly successful behavior results, but with Λ � 1 clus-
ters form. The formation of clusters means that the global system has
stable equilibria which we did not predict from the local rule. However,
as Λ is decreased towards 0.5, these equilibria are no longer stable and
the system continues to coordinate.

It would seem that there is a good correlation between the sta-
bility on the local level and the behavior type of the global system.
As Λ moves from below 0.5 to above, it appears there is a dramatic
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Figure 6. Example time series for different values of Λ and N � 100, K � 2,
and d � 0.2. (a) chaotic behavior, (b) successful coordination, and (c) clusters.
The two colors represent the two symbols of the alphabet. The cells are listed
vertically in no particular order. The piecewise-� rule was used but plots are
qualitatively the same for linear-�.
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phase transition in the behavior of the system (totally chaotic to fixed
point). In the neighborhood of 0.5 there is long transient behavior. It
turns out that the best value for Λ, from the point of view of multia-
gent coordination, is approximately Λ � 0.6. Figures 17, 18, and 19 in
the appendix show examples of SCA with random states, clusters, and
consensus.

5. Statistical analysis

In an attempt to quantify the qualitative observations of section 4 a num-
ber of statistical measures were employed in the analysis of the SCA time
series. These were used also by Langton in [6]. The first measure is taken
from [20] and will be referred to as entropy (H). It is defined as follows.

Entropy. Given a sequence of M symbols

s � � s1 s2 . . . sM�T (17)

from an alphabet of size K, the entropy of the sequence may be computed
as follows. First compute the frequency nk of each of the K symbols
�k � 1 . . . K, which is simply the number of occurrences of symbol k
in the sequence s. From the frequencies, compute the probability pk of
each of the K symbols �k � 1 . . . K as

pk �
nk

n�
(18)

where n� � �K
i�1 ni. Finally, the entropy of sequence H(s) is defined as

H(s) �

�K

k�1 pk ln(pk)
ln(K)

(19)

where the ln(K) denominator is a normalization constant to make
H(s) � [0, 1].

This entropy function produces a value of 0 when all the symbols in s are
identical and a value of 1 when all K symbols are equally common. The
second measure is based on the first and will be referred to as mutual
information (I). It is defined as follows.

Mutual information. Given two sequences of M symbols

s1 � � s1,1 s1,2 . . . s1,M�T (20)

s2 � � s2,1 s2,2 . . . s2,M�T (21)

from an alphabet of size K, the mutual information of the sequence
I(s1, s2) may be defined as

I(s1, s2) � H(s1) �H(s2) 
H(s1, s2) (22)
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where H(s1, s2) is the entropy of the two sequences considered as a joint
process (i.e., with an alphabet of size K � K).

The entropy and mutual information measures may be computed on
any sequence of symbols. We tested them on spatial sequences (e.g.,
time series columns from Figure 6) and temporal sequences (e.g., time
series rows from Figure 6). The most interesting measures were average
spatial entropy (average of entropies computed from all columns in a
time series) and average temporal mutual information (average of all Is
computed from all rows in a time series: I was computed between a row
and itself shifted by one time step).

Figures 7, 8, and 9 show various measures for piecewise-� and 1000
values of Λ. At each value of Λ, 100 simulations were done on differ-
ent random connections between cells and initial conditions. Thus, all
displayed measures are actually averaged over 100 simulations. Each
simulation was run for 300 time steps with N � 100, K � 2, and d � 0.2.
Figures 10, 11, and 12 show the same measures for linear-�.

Figures 7 and 10 show the average number of clusters at the final
time step for different values of Λ. The phase transition is quite obvious
at Λ � 0.5. The optimal value (in terms of the fewest clusters formed
on average) for Λ is near 0.6 for piecewise-� and 0.53 for linear-�. Fig-
ures 8 and 11 show average spatial entropy for different values of Λ.
This measure has a good correlation with average number of clusters.
Again, there is a minimum occurring which corresponds to the best
performance at multiagent coordination.

Figures 9 and 12 display average temporal mutual information for
different values of Λ. These are very interesting plots. Temporal mutual

Figure 7. Average number of clusters at the final time step for 1000 values of Λ.
Plot shows average of 100 simulations at each value of Λ. Number of clusters
was computed by considering the SCA as a Markov chain with connections
deleted between cells displaying different symbols. The number of clusters is
then the number of eigenvalues equal to 1 from the Markov transition matrix.
The piecewise-� rule was used.
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Figure 8. Average spatial entropy for 1000 values of Λ. Plot shows average of
100 simulations at each value of Λ. The piecewise-� rule was used.

Figure 9. Average temporal mutual information for 1000 values of Λ. Plot shows
average of 100 simulations at each value of Λ. The piecewise-� rule was used.
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Figure 10. Average number of clusters at the final time step for 1000 values of Λ.
Plot shows average of 100 simulations at each value of Λ. Number of clusters
was computed by considering the SCA as a Markov chain with connections
deleted between cells displaying different symbols. The number of clusters is
then the number of eigenvalues equal to 1 from the Markov transition matrix.
The linear-� rule was used.
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Figure 11. Average spatial entropy for 1000 values of Λ. Plot shows average of
100 simulations at each value of Λ. The linear-� rule was used.
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Figure 12. Average temporal mutual information for 1000 values of Λ. Plot
shows average of 100 simulations at each value of Λ. The linear-� rule was
used.

information seems to capture the length of the global transient behavior
of the system. As discussed by Langton in [6], the random pattern in
the chaotic region is not considered transient but rather the steady-state
behavior. The peak in temporal mutual information occurs at Λ � 0.5,
the phase transition, and drops away on either side (for both rules).
Langton has a similar plot in [6].

Figure 13 shows how the average number of clusters at the final time
step varies as the problem is scaled up from N � 100 cells to N � 1000
cells. The plot shows an average of 100 simulations, each run for 300
time steps with K � 2, Λ � 0.6, and d � 2/

	
N. The parameter d was

made to depend on the number of cells in order to keep the average
density of connections the same. This was required as the cartesian box
in which the cells live was always of size 1 by 1. As more cells are added
they are closer together and thus to keep the density of connections
between cells constant (on average), the factor of 2/

	
N was needed.

The resulting relationship between number of clusters and number of
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Figure 13. Average number of clusters (at the final time step) as the number of
cells N is varied from 100 to 1000. The parameters were: 300 time steps, K � 2,
Λ � 0.6, and d � 2/

	
N. The piecewise-� rule was used. Plot shows average

from 100 simulations at each value of N.

Figure 14. Average number of clusters (at the final time step) as the alphabet size
K is varied from 2 (1 bit) to 256 (8 bits). The parameters were: 300 time steps,
N � 100, Λ � 0.6, and d � 0.2. The piecewise-� rule was used. Plot shows
average from 100 simulations at each value of K.

cells is quite linear, about 0.47 clusters for every 100 cells added. Bar-
foot and D’Eleuterio show a qualitatively similar scaling plot for a heap
formation problem in [21].

Figure 14 shows how the average number of clusters, again at the
final time step, varies as the problem is scaled up from an alphabet size
K of 2 (a single bit) to 256 (8 bits or 1 byte). The plot shows an average
of 100 simulations, each run for 300 time steps with N � 100, Λ � 0.6,
and d � 0.2.
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6. Markov chain

Another approach we have employed in the analyses of SCA is to con-
struct a Markov chain [22] for the global state of the system and look
at its structure. As we will show, it is possible to predict some of the
behavior seen in the simulations by examining the eigenvalues of the
Markov transition matrix. We desire a Markov chain of the form

z[t � 1] � Az[t] (23)

where z � [zi] is the joint probability density for all the cells and A � [aij]
is the transition matrix. The joint density will be a column of size
KN � 1 whose entries are probabilities which sum to 1. The transition
matrix will be of size KN�KN whose entries are probabilities and whose
columns sum to 1. The transition probabilities (using the linear-� rule)
may then be written as

aij �
Α
Β
ij

�KN

k�1 Α
Β
kj

(24)

Αij �
N



k�1

������
�

K

�
m�1

pk,mi

N

�
l�1

ĉklpl,mj

������
�

(25)

pk,ij � ∆ �i, � j 
 1

Kk
1

 mod K � 1� (26)

ĉkl �
ckl

�N
m�1 ckm

(27)

where ∆(�, �) is the Kronecker delta, ��� rounds down to the nearest integer,
and mod(�) refers to modular arithmetic. The cell connection informa-
tion is captured in ckl, which is 1 if there is a connection between cells
k and l, otherwise 0. Although the order of the global states will not be
needed for our analysis, the joint density over the global states is given by

zi[t] �
Ζi[t]

�KN

j�1 Ζj[t]
(28)

Ζi[t] �
N



k�1

�������
�

K

�
j�1

pk,ji∆ �j, xk[t]��������
�

. (29)

Since we now have a Markov chain, the following properties about
the eigenvalues and eigenvectors of the stochastic matrix A will be use-
ful [23].

(a) All the eigenvalues of A are less than or equal to 1 in magnitude.

(b) There is always at least one eigenvalue equal to 1.
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(c) The number of ergodic sets (attractors) will be equal to the number of
eigenvalues which are exactly 1.

Using these properties it is not difficult to show, for a specific set of
connections, there are exactly K eigenvalues exactly equal to 1 which
correspond to the K global consensus states (all cells the same). This
implies that for any value of Β, if we happen to land in one of the con-
sensus states, we will stay there. It does not, however, predict the phase
transition phenomenon we have seen when Β becomes just bigger than
1 (Λ just bigger than 1/2).

To predict this kind of behavior, we need to look at some of the other
eigenvalues to see how fast the other modes in the system will die off. It
turns out the next biggest eigenvalue, after eliminating the K eigenvalues
equal to 1, is a good predictor for the behavior we have seen. Figure 15
shows how this eigenvalue behaves for some SCA. The SCA used were
a ring of N cells with each cell connected to itself and two neighbors
on each side. N was varied from six to 10 cells. We can see that this
eigenvalue dips down between Λ � 1/2 and Λ � 1 and the minimum is
approaching the phase transition we identified earlier as the number of
cells is increased. The closer this eigenvalue is to 1, the longer it will
take to reach consensus since this mode will be slow to die out.

We would have liked to increase N beyond 10 but, unfortunately, it
is quite computationally expensive to generate these plots. For exam-
ple, when N � 10 and K � 2, our Markov transition matrix is 1024
by 1024 in size which means there are over a million elements. The
step represented by equation (24) is very computationally expensive as
it involves over a million exponentiations for every value of Β in which
we are interested. We tried increasing N to 11 but unfortunately ran
into computer system memory issues.

We also tried varying the sparseness of the connections by using SCA
with N � 10 cells which were connected to themselves and M neighbors
on each side. The value of M was varied from 1 to 4. With M � 1 we
had minimal connections and with M � 4 we had maximal connections
(without being fully connected) as each cell was connected to all other
cells except for one. Figure 16 shows how the next largest eigenvalue
changes as Β (or Λ) is varied for the different values of M. Clearly, with
more connections, this eigenvalue is smaller which is expected as this
implies consensus will be reached more quickly since this mode dies out
faster. Also of note is that the location of the minimum moves to the
right as the number of connections is increased. This also makes sense,
for in the limit of a fully connected network, we expect the minimum
to be at infinite Β or Λ � 1 as deterministic voting will certainly be the
quickest way to reach consensus.
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Figure 15. Next biggest eigenvalue of a Markov chain for the global dynamics
of SCA, after eliminating the K eigenvalues equal to 1 which correspond to
consensus. The SCA used were a ring of N cells with each cell connected to
itself and two neighbors on each side. N was varied from six to 10 cells.
(a) Eigenvalue versus Β. (b) Eigenvalue versus Λ.

7. Discussion

The strong correlation between the local stability of the piecewise-�
and linear-� rules and the type of global behavior is quite interest-
ing. It appears that Λ > 0.5 corresponds to fixed point behavior (Wol-
fram’s Class I), Λ < 0.5 corresponds to chaotic behavior (Wolfram’s
Class III), and Λ near 0.5 corresponds to long transient behavior (Wol-
fram’s Class IV). Local correlation has to do with the way in which
the incoming probability density is computed in equation (1). This step
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Figure 16. Next biggest eigenvalue of a Markov chain for the global dynamics
of SCA, after eliminating the K eigenvalues equal to 1 which correspond to
consensus. The SCA used were a ring of 10 cells with each cell connected to
itself and M neighbors on each side. M was varied from one to four cells.
(a) Eigenvalue versus Β. (b) Eigenvalue versus Λ.

delivers information averaged from all connected cells. This averaging
serves to smooth out differences between connected cells. However, if
this smoothing occurs too quickly (i.e., Λ � 1) the system does not have
time to smooth globally, resulting in the formation of clusters. This has
been called critical slowing down [16] in other systems. As we approach
the critical point (Λ � 0.5 or Β � 1) from above, the strength of the in-
stability decreases, which slows down the decision-making process. The
third and vital ingredient in the recipe for self-organization is the fluctu-
ations that occur at the single trajectory level. These fluctuations allow
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the system to begin the process of moving away from the unstable equi-
librium puni in the �-maps. The nature of the �-maps is such that these
fluctuations are largest when the system is near puni and become smaller
and smaller as a cell becomes more coordinated with its neighbors. It
is a balance of these three effects which seems to be the most effective
at decentralized coordination. To summarize, self-organization in this
model requires the following three mechanisms.

Instability in the�-map which forces each cell to move away from puni (be-
having randomly) and towards one of a number of deterministic decisions.

Averaging in the Σ-map which serves to bias each cell to conform to the
average behavior of its immediate (connected) neighbors.

Fluctuations at the single trajectory level to cause each cell to move away
from the unstable equilibrium puni. These fluctuations become smaller as
the cell moves further away.

To properly balance these three effects the parameter Λ was tuned. The
optimal operating value of Λ is not right at the phase transition but a
little bit towards the deterministic end of the Λ spectrum (approximately
Λ � 0.6 for piecewise-� and 0.53 for linear-�).

Note that we did not find any oscillatory behavior (Wolfram’s Class II)
which is because the connections between the cells are symmetrical.
However, if the piecewise-� rule is reflected (left-right) then the system
“blinks” and global coordination corresponds to all cells blinking in
phase with one another. The same may be said for the linear-� rule.

What is happening in the SCA model is that the boundaries between
clusters are made unstable. This forces them to move randomly until
they contact one another and annihilate, leaving a single cluster. This
annihilation of boundaries is qualitatively the same method found to
work in deterministic CA by Mitchell et al. [8] and Das et al. [9]. In
those studies the boundaries were made to move in very specific ways by
exploiting the nature of the connections between cells. They found that
the boundaries could be made to travel long distances. This allowed
coordination to occur more quickly than the method presented here.
However, their mechanism was not immediately portable to different
connective architectures. By not exploiting the underlying connections
between cells, the best we can do is to make the boundaries move ran-
domly and wait for them to contact one another and annihilate. The
benefit is that this method is independent of the connective architecture.

The simulation results presented here used N � 100 cells and required
on average 150 time steps to get to a single cluster with d � 0.2, K � 2,
and Λ � 0.6. Clearly, the time required to form a single cluster will
increase with the number of cells in the system. This is reflected in
Figure 13 which shows how the number of clusters after 300 time steps
varies as the number of cells is increased. The larger systems are not able
to finish coordinating in the allowed time, thus resulting in more clusters.
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Figure 14 shows how the number of clusters at the final time step
varies with the alphabet size K. This is more difficult to explain as the
curve first goes down a little and then up as K is increased from 2 to 256
in factors of 2. This would have been difficult to predict analytically. In
some ways the K � 2 case is very difficult as there can be two equally
large clusters whose boundary fluctuates but is never annihilated to leave
a single cluster. There is effectively a stalemate, no further progress is
being made. Having more clusters that are smaller in size can make
the fluctuations relatively bigger, enabling boundaries to be annihilated
more quickly. This explains the initial decline in Figure 14. The eventual
rise in the plot (increasing from K � 16) is similar to that in Figure 13.
Although the system is still making progress, it is not able to complete
coordination in 300 time steps. As the alphabet size becomes larger than
the number of cells (here 100), the plot levels off. This may be explained
by the fact that N cells cannot represent more than N different symbols
in the random initial condition, regardless of how large we make the
alphabet size K. Note that if the system becomes too inefficient at very
large K (i.e., too time consuming), it is possible to use more than one
coordination mechanism and combine the results. For example, two
of the K � 8 mechanisms could be combined to produce messages of
size 64. Depending on the parameters this may or may not improve
coordination efficiency. The last point which should be mentioned is
that the same value of Λ � 0.6 was used at all values of K. There could,
however, be different optimal values for this parameter for each K.

The piecewise-� and linear-� rules are not the only maps that can
be used to achieve decentralized coordination in SCA. Replacing it with
other monotonically increasing functions (i.e., in Figure 3) with the same
equilibria will likely work. This was tried for K � 2 with the relation

pk,out � 3(pk,in)2 
 2(pk,in)3 �k � 1 . . . K (30)

which has equilibria at [ 1 0 ]T , [ 0 1 ]T, and [ 1/2 1/2 ]T. It is fairly
successful but the piecewise-� and linear-� rules are easier to parame-
terize. Equation (30) is similar in form to equations studied by Haken
et al. [15, 17], particularly the cubic term.

The equilibria are the most important features to consider in the de-
sign of �-maps. Creating an instability at the uniform density puni is
crucial. However, there are other features which can be incorporated.
For example, the linear-� rule is appealing as it provides a smooth route
to a deterministic decision. Essentially, less and less noise is added as the
incoming probability gets closer to one of the deterministic equilibria.
The piecewise-� is different in that it has regions of saturation for values
of Λ greater than 1/2. In the saturated regions of the curve (i.e., the hor-
izontal flat parts) normal voting results. This feature greatly increases
the strength of the stability of the deterministic equilibria. Thus any
perturbation to the system is less likely to drive the system away from
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one of these regions. For example, if a group of 100 cells were already
coordinated and a few more cells were introduced into the system at a
later time, this would increase the likelihood of the new cells to con-
form. Similarly, if one cell were to begin malfunctioning it would be
less likely to cause the other cells to become uncoordinated. The size of
the saturated region may be tuned as circumstances require.

Finding the optimal value of Λ for a particular set of parameters may
not actually be necessary. As a future direction of research, a “cooling
schedule” could be developed. We could start with Λ near the phase
transition (e.g., Λ just larger than 0.5) and then slowly “cool” the sys-
tem by bringing Λ gradually towards 1. The system would certainly
pass through the optimal value for Λ. This form of cooling schedule has
been used, for example, in simulated annealing, a global optimization
method [24]. This would require each cell having some form of internal
clock in order to time the cooling. Another possibility is to allow each
cell to program its own Λ using feedback. Λ would get larger in periods
of inactivity and smaller in periods of high activity. Removing the need
for a centralized designer to program Λ is one more step towards fully
autonomous decentralized decision making. Another future direction of
work is to consider the addition of noise to the communication between
cells. It is likely that a small amount of communication noise will not
cause the system to catastrophically stop working as it has been built
on fluctuation and noise to begin with.

The model considered here does not require knowledge of the un-
derlying structure of the connections between cells. This was a design
requirement as it was originally motivated by a network of communi-
cating mobile robots whose connections might be changing over time
and thus difficult to exploit. It is thus natural to question whether the
model still works as the connections are varied over time. To this end, a
small amount of gaussian noise was added to the positions of the cells in
the cartesian box at each time step. As the cells moved, the connections
between them changed (since they are limited by the range d). The SCA
model was still able to form single clusters. This was possible even when
Λ � 1, which makes sense since there is still some noise being added.
However, the nature of the noise is at the connection level rather than
the signal level. Over a long period of time it is as though the system
were fully connected. However, the assumption of completely random
movement is probably not a good one for a system of mobile robots.
The coordination mechanism described here has tried to make as few
assumptions as possible about the nature of connections between cells.

8. Conclusion

A mechanism for decentralized coordination has been presented based
on stochastic cellular automata (SCA). This is an example of self-
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organizing behavior in that global coordination occurs in the face of
more than one alternative. It was shown that by using stochastic rules,
sparsely communicating agents can come to a global consensus. A com-
mon piece of information may be generated to which each cell has access
using a stochastic approach. A parameter in the coordination mecha-
nism was tuned and it was found that coordination occurred best when
the system was near a phase transition between chaotic and ordered
behavior (the optimum was a little bit towards the ordered side). It is
hoped that this model will shed light on self-organization as a general
concept while at the same time providing a simple algorithm to be used
in practice.

Appendix

A. Stochastic cellular automata examples

Figures 17, 18, and 19 show examples of stochastic cellular automata
with random initial conditions, clusters, and consensus, respectively.
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