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Abstract
A coordinationmechanism for a system of sparsely
communicating agents is described. The mecha-
nism is based on a stochastic version of cellular au-
tomata. A parameter similar to a temperature can
be tuned to change the behaviour of the system.
It is found that the best coordination occurs near
a phase transition between order and chaos. Coor-
dination does not rely on any particular structure of
the connections between agents, thus it may be ap-
plicable to a large array of sparsely communicating
mobile robots.

1 Introduction
The term multiagent system encompasses large bodies of
work from engineering, computer science, and mathemat-
ics. Examples include networks of mobile robots [Matarić,
1992], software agents [Bonabeau et al., 1994], and cellular
automata [Wolfram, 1984]. A common thread in all multi-
agent systems is the issue of coordination. How are a large
number of sparsely coupled agents able to produce a coherent
global behaviour using simple rules? Answering this question
will not only permit the construction of interesting and useful
artificial systems but may allow us to understand more about
the natural world. Ants and the other social insects are per-
fect examples of local interaction producing a coherent global
behaviour. It is possible for millions of ants to act as a super-
organism through local pheromone communication. We seek
to reproduce this ability on a fundamental level in order to
coordinate artificial systems.
It can be argued that cellular automata (CA) are the sim-

plest example of a multiagent system. Originally studied by
[von Neumann, 1966], the term CA is used to describe sys-
tems of sparsely coupled difference equations. Despite their
simple mechanics, some extremely interesting behaviours
have been catalogued (e.g., Conway’s Game of Life). The
word self-organization is used in many contexts when dis-
cussing multiagent systems which can lead to confusion.
Here we use it to mean multiagent coordination in the face of
more than one alternative. We will be describing a stochastic
version of cellular automata. The goal will be to have all cells
choose the same symbol from a number of possibilities using
only sparse communication. We maintain that rules able to

succeed at this task are self-organizing because the cells are
not told which symbol to choose, yet they must all coordinate
their choices to produce a globally coherent decision. If we
told the cells which symbol to choose, the task would be very
easy and no communication between cells would be neces-
sary. This can be dubbed centralized organization and is in
stark contrast to self- or decentralized organization. We be-
lieve that coordination in the face of more than one alternative
is at the very heart of all multiagent systems.
This paper is organized as follows. Related work is de-

scribed, followed by a description of the model under consid-
eration. Results of its performance on the multiagent coordi-
nation task are presented. Statistical analysis of the rule are
provided followed by discussions and conclusions.

2 Related Work
In the following note that typically cellular automata do not
operate in a stochastic but rather a deterministic manner.
Unless explicitly stated (e.g., stochastic cellular automata
(SCA)), the term cellular automata will imply determinism.
[von Neumann, 1966] originally studied cellular automata

in the context of self-reproducing mechanisms. The goal was
to devise local rules which would reproduce and thus spread
an initial pattern over a large area of cells, in a tiled fashion.
The current work can be thought of as a simple case of this
where the tile size is only a single cell but there are multiple
possibilities for that tile. Futhermore, we wish our rules to
work starting from any random initial condition of the system.
Cellular automata were categorized by the work of [Wol-

fram, 1984] in which four universality classes were identi-
fied. All rules were shown to belong to one of class I (fixed
point), class II (oscillatory), class III (chaotic), or class IV
(long transient). These universality classes can also be iden-
tified in SCA and we will show that in our particular model,
choosing a parameter such that the system displays long tran-
sient behaviour (e.g., class IV) results in the best performance
on our multiagent coordination task.
[Langton, 1990] has argued that natural computation may

be linked to the universality classes. It was shown that by tun-
ing a parameter to produce different CA rules, a phase transi-
tion was exhibited. The relation between the phase transition
and the universality classes was explored. It was found that
class IV behaviour appeared in the vicinity of the phase tran-
sition. The current work is very comparable to this study in
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that we also have a parameter which can be tuned to produce
different CA rules. However, our parameter tunes the amount
of randomness that is incorporated into the system. At one
end of the spectrum, completely random behaviour ensues
while at the other completely deterministic behaviour ensues.
We also relate the universality classes to particular ranges of
our parameter and find a correlation between performance on
our multiagent coordination task and class IV behaviour. We
attempt to use similar statistical measures to [Langton, 1990]
to quantify our findings.
[Mitchell et al., 1993], [Das et al., 1995] study the same

coordination task as will be examined here in the case of de-
terministic CA. However, their approach is to use a genetic
algorithm to evolve rules successful at the task whereas here
hand-coded rules are described. They found that the best so-
lutions were able to send long range particles (similar to those
in the Game of Life) [Andre et al., 1997] in order to achieve
coordination. These particles rely on the underlying structure
of the connections between cells, specifically that each cell
is connected to its neighbours in an identical manner. The
current work assumes that no such underlying structure may
be exploited and that the same mechanism should work for
different connective architectures. The cost for this increased
versatility is that the resulting rules are less efficient (in terms
of time to coordinate) than their particle-based counterparts.
[Tanaka-Yamawaki et al., 1996] studies the same prob-

lem to that considered here. They use totalistic [Wolfram,
1984] rules which do not permit exploitation of the underly-
ing structure of the connections between cells but rather rely
on the intensity of each incoming symbol. They also vary a
parameter to produce different rules and find that above a cer-
tain threshold, “global consensus” occurs but below it does
not. However, they consider large clusters of symbols to be
a successful global consensus. We do not and thus turn to
a stochastic version of their totalistic rules to destroy these
clusters and complete the job of global coordination.

3 The Model
In deterministic cellular automata there is an alphabet of
symbols, one of which may be adopted by each cell. Incom-
ing connections each provide a cell with one of these sym-
bols. The combination of all incoming symbols uniquely
determines which symbol the cell will display as output.
Stochastic cellular automata (SCA) work in the very same
way except at the output level. Instead of there being a sin-
gle unique symbol which is adopted with probability , there
can be multiple symbols adopted with probability less than
. Based on this outgoing probability distribution over the
symbols, a single unique symbol is drawn to be the output of
the cell. This is done for all cells simultaneously. It should be
noted that deterministic CA are a special case of SCA.
We consider a specific sub-case of SCA in this paper which

corresponds to the totalistic rules of CA. Assume that cells
cannot tell which symbols came from which connections. In
this case, it is only the intensity of each incoming symbol
which becomes important. Furthermore, we desire that our
rules work with any number of incoming connections thus
rather than using the number of each of the incoming sym-

bols, we use this number normalized by the number of con-
nections which can be thought of as an incoming probability
distribution. In summary the model we consider is as follows.

Totalistic SCA. Consider a system of cells, each of which
is connected to a number of other cells. Let represent an
alphabet of symbols. The state of Cell at time-step is

. The input probability distribution, pin, for Cell is
given by

pin (1)
where accounts for the connections of Cell to the other
cells. The output probability distribution pout is given by the
map, ,

pout pin (2)
The probability distributions pin and pout are stochastic
columns. The new state of Cell at time-step is ran-
domly drawn according to the distribution pout and is
represented by .

It should be noted that in (1) if the connections between the
cells are not changing over time then the functions, ,
will not be functions of time. However, we could allow these
connections to change which would make them functions of
time.
Once the connections are described through the func-

tions, the only thing that remains to be defined is the -map.
We assume that each cell has the same -map but this need
not be the case. The possibilities for this map are infinite and
thus for the remainder of this paper we discuss a parameter-
ized subset of these possibilities. This subset will be called
piecewise- and is defined as follows.

Piecewise- . Let

pin in in (3)

The (unnormalized) output probabilities are given by

out

if in
if in

in otherwise
(4)

where is derived from the tunable parameter as follows:

if
if (5)

The (normalized) output probability column is

pout
out

out out (6)

where out out.

Note that in (5), the tunable parameter, acts in a similar
manner to a temperature parameter. When we have a
completely deterministic rule while when we have a
completely random rule. Figure 1 shows what the rule looks
like for different when .
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Figure 1: The piecewise- rule for different values of and .

An equilibrium point, p , in a -map is one for which the
following is true

p p (7)
The idea behind the piecewise- rule was to create an insta-
bility in the probability map at the uniform distribution equi-
librium point

puni (8)

such that a small perturbation from this point would drive the
probability towards one of the stable equilibria

p (9)
p (10)

... (11)
p (12)

It turns out that when , the equilibrium point, puni,
is the only stable equilibrium. However when ,
puni becomes unstable and the other equilibria, p p ,
become stable. This is similar to the classic pitchfork bifur-
cation as depicted in figure 2 for . However, with
symbols in the alphabet the pitchfork will have tines.
It is important to stress that we have designed the stability

of our system at a local level. The question of global stability
and success on the multiagent coordination problem does not
follow directly from the local stability of each cell. It might
be possible to study the global stability of a system of cells
with the piecewise- rule analytically. The approach in this
paper has been to study it through simulation and statistical
measures.

4 Simulation
We now present simulations of cells running the piecewise-
rule. In order to ensure that the connections between cells are
not regular, we consider each cell to exist in a Cartesian box
(of size by ). The cells are randomly positioned in this

Figure 2: Pitchfork stability of the piecewise- rule for .
is a parameter analogous to a temperature.

box and symmetrical connections are formed between two
cells if they are closer than a threshold Euclidean distance,
, from one another. Figure 4 shows example connections
between cells with . Figure 3 shows ex-
ample time series for different values of . When ,
chaotic global behaviour arises, with fairly suc-
cessful behaviour results but with clusters form. The
formation of clusters means that the global system has stable
equilibria which we did not predict from the local rule. How-
ever, as is decreased towards , these equilibria are no
longer stable and the system continues to coordinate.
It would seem that there is a good correlation between the

stability on the local level and the behaviour type of the global
system. As moves from below to above, it appears there
is a dramatic phase transition in the behaviour of the system
(totally chaotic to fixed point). In the neighbourhood of
there is long transient behaviour. It turns out that the best
value for , from the point of view of multiagent coordina-
tion, is approximately .

5 Statistics
In an attempt to quantify the qualitative observations of the
previous section a number of statistical measures were em-
ployed in the analysis of the SCA time series. These were
used also by [Langton, 1990]. The first measure is taken from
[Shannon, 1948] and will be referred to as entropy ( ). It is
defined as follows.
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Figure 3: Example time series for different values of and , , . (left) chaotic behaviour, (middle) successful
coordination, (right) clusters. The colours represent the symbols of the alphabet.

Figure 4: Example connections between cells with
. colours represent the symbols of the alphabet. Here an

initial random condition is displayed for .

Entropy Given a sequence of symbols

(13)
from an alphabet of size , the entropy of the sequence may
be computed as follows. First compute the frequency, ,
of each of the symbols which is simply the
number of occurrences of symbol in the sequence, . From
the frequencies, compute the probability, , of each of the
symbols as

(14)

where . Finally, the entropy of sequence,
, is defined as

(15)

where the denominator is a normalization constant to
make .

This entropy function produces a value of when all the sym-
bols in are identical and a value of when all symbols
are equally common. The second measure is based on the
first and will be referred to as mutual information ( ). It is
defined as

Mutual Information Given two sequences of symbols

(16)
(17)

from an alphabet of size , the mutual information of the
sequence, , may be defined as

(18)

where is the entropy of the two sequences consid-
ered as a joint process (i.e., with an alphabet of size ).

These two measures may be computed on any sequence of
symbols. We tested them on spatial sequences (e.g., time
series columns from figure 3) and temporal sequences (e.g.,
time series rows from figure 3). The most interesting mea-
sures were average spatial entropy (average of entropies
computed from all columns in a time series) and average tem-
poral mutual information (average of all s computed from
all rows in a time series. was computed between a row and
itself shifted by one time-step).
Figure 5 show various measures for values of . At

each value of , simulations were done on different ran-
dom connections between cells and initial conditions. Thus,
all displayed measures are actually averaged over sim-
ulations. Each simulation was run for time-steps with

, , and .
Figure 5 (left) shows the average number of clusters1 at the

final time-step for different values of . Clearly there is an
optimal value of near . Figure 5 (middle) shows average
spatial entropy for different values of . This measure has
a good correlation with average number of clusters. Again,
there is a minimum occurring at approximately
which corresponds to the best performance at multiagent co-
ordination.
Figure 5 (right) displays average temporal mutual informa-

tion for different values of . This is a very interesting plot.
1Number of clusters was computed by considering the SCA as

a Markov chain with connections deleted between cells displaying
different symbols. The number of clusters is then the number of
eigenvalues equal to from the Markov transition matrix.

1040 MULTI-AGENT SYSTEMS



Figure 5: (left) Average number of clusters at final time-step for values of . (middle) Average spatial entropy for values of .
(right) Average temporal mutual information for values of . All plots show average of simulations at each value of .

Temporal mutual information seems to capture the length of
the global transient behaviour of the system. As discussed in
[Langton, 1990], the random pattern in the chaotic region is
not considered transient but rather the steady state behaviour.
The peak in temporal mutual information occurs at ,
the phase transition, and drops away on either side. [Langton,
1990] has a similar plot. Figure 6 shows how the number of
clusters at the final time-step ( time-steps) changes as the
problem scales up to more cells; it appears to be a linear re-
lationship. Figure 7 shows how the number of clusters at the
final time-step changes for different message sizes.

6 Discussion
The strong correlation between the local stability of the
piecewise- rule and the type of global behaviour is quite
interesting. It appears that corresponds to fixed
point behaviour (class I), corresponds to chaotic
behaviour (class III), and near corresponds to long tran-
sient behaviour (class IV). The correlation most likely has
something to do with the way in which the incoming proba-
bility distribution is computed in (1). This step delivers in-
formation averaged from all connected cells. This averag-
ing serves to smooth out differences between connected cells.
However, if this smoothing occurs too quickly (i.e., )
the system does not have time to smooth globally resulting in
the formation of clusters. The addition of noise in the partic-
ular form of the piecewise- rule aids in slowing the smooth-
ing process thus destroying the clusters. This has been called
critical slowing down [Haken, 1983] in other systems. As we
approach the critical point ( or ) from above,
the strength of the instability decreases which slows down the
decision-making process. It is a balance of these two effects
which seems to be the most effective at multiagent coordina-
tion. The optimal operating value of is not right at the phase
transition but a little bit towards the deterministic end of the
spectrum (approximately ).
Note that we did not find any oscillatory behaviour (class

II) which is likely because the connections between the cells
are symmetrical. However, if the piecewise- rule in figure 1
is reflected (left-right) then the system ‘blinks’ and global co-
ordination corresponds to all cells blinking in phase with one
another.

In this model of multiagent coordination, the boundaries
between clusters have purposely been made unstable. This
forces them to move randomly until they contact one another
and annihilate, leaving a single cluster. The results presented
here used cells and required on average time-
steps to get to a single cluster with , and

. Clearly the time required to form a single cluster
will increase with the number of cells in the system. Figure 6
confirms this by showing that at the end of time-steps, in-
creasing the number of cells, , results in more clusters. The
linear relationship suggests that scaling-up may be possible
but more in depth studies are required. Figure 7 shows how
the system scales to differentmessage sizes, . Here the rela-
tionship between number of clusters (after time-steps) to
message size is a bit surprising, first dropping then increasing
as increases. It levels off again as the number of symbols
exceeds the number of cells (since at most symbols can
be represented in the random initial condition). Again, the
nature of this scaling should be studied more closely.
The piecewise- rule is not the only map that can be used

to achieve multiagent coordination in SCA. Replacing it with
other monotonically increasing functions (i.e., in figure 1)
with the same equilibria also works. We had comparable suc-
cess to the piecewise- map using

out in (19)
with the outgoing probability column normalized as in (6).
The model considered here does not require knowledge

of the underlying structure of the connections between cells.
This was a design requirement as it was originally motivated
by a network of communicating mobile robots whose con-
nections might be changing over time and thus difficult to
exploit. It is thus natural to question whether the model still
works as the connections are varied over time. To this end,
a small amount of Gaussian noise was added to the positions
of the cells in the Cartesian box of figure 4 at each time-step.
As the cells moved, the connections between them changed
(since they are limited by the range, ). The SCA model was
still able to form single clusters. This was possible even when

which does make sense since there is still some noise
being added. However, the nature of the noise is at the con-
nection level rather than the signal level. This aspect is cur-
rently under further investigation.
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Figure 6: Number of clusters at final time-step as the number of
cells is varied from to . Parameters for each
run were time-steps, , and to
keep the density of connections constant. Plot shows average of
simulations at each value of .

Figure 7: Number of clusters at the final time-step as the message
size is varied from (1 bit) to (8 bits). Parameters
for each run were time-steps, , and .
Plot shows average of simulations at each value of .

7 Conclusion

Amechanism for multiagent coordination has been presented
based on stochastic cellular automata. We consider this to be
an example of self-organizing behaviour in that global coor-
dination occurs in the face of more than one alternative. It
was shown that by using stochastic rules, sparsely communi-
cating agents could come to a global consensus. A parameter
in the coordination mechanism was tuned and it was found
that coordination occurred best when the system was near a
phase transition between chaotic and ordered behaviour (the
optimum was a little bit towards the ordered side).
It is hoped that this model will shed light on self-

organization as a general concept while at the same time pro-
viding a simple algorithm to be used in practice.
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