Presented at the International Symposium on Robotics
Montreal, Canada, 14-17 May 2000

A STEP IN THE RIGHT DIRECTION

LEARNING HEXAPOD GAITS THROUGH REINFORCEMENT

T D Barfoot
Institute for Aerospace Studies
University of Toronto
4925 Dufferin Street
Toronto, ON, Canada, M3H 5T6
tdb@sdr.utias.utoronto.ca

Abstract

A simple reinforcement learning approach to develop-
ing walking gaits for a legged robot is presented. Each
leg of the robot is given its own controller in the form of
a cellular automaton which serves to arbitrate between
a number of fized basis behaviours. Communication
exists between the legs. A multiagent cooperative Q-
learning approach is presented and employed to search
for a set of cellular automata whose arbitration results
in successful walking gaits on a real hexapod robot.

1 Introduction

Insects and spiders are examples of relatively simple
creatures from nature which are able to successfully
operate many legs at once in order to navigate a diver-
sity of terrains. Inspired by these biological marvels,
robotics researchers have attempted to mimic insect-
like behaviour in legged robots [4, 2]. Typically, how-
ever, the control algorithms for these types of robots
are quite complicated (e.g., dynamic neural networks),
requiring fairly heavy on-line computations to be per-
formed in real time. Here a simpler approach is pre-
sented which reduces the needs for such computations
by using a coarsely coded control scheme.

As with dynamic neural network approaches, each
leg of a robot is given its own controller rather than
using a central pattern generator. Coupling between
controllers can be sparse (legs communicate with only
some other legs) or full (legs communicate with all
other legs). In either circumstance the control is still
carried out in a local fashion which results in some
global behaviour (walking gait) for the robot. There
is some neurobiological evidence that this notion of lo-
cal control holds for some insects [5]. The controllers

E J P Earon
Institute for Aerospace Studies
University of Toronto
4925 Dufferin Street
Toronto, ON, Canada, M3H 5T6
e.earon@utoronto.ca

G M T D’Eleuterio
Institute for Aerospace Studies
University of Toronto
4925 Dufferin Street
Toronto, ON, Canada, M3H 5T6
gde@utias.utoronto.ca

used here are cellular automata [13, 11, 16, 8] or sim-
ple lookup tables. Each leg is given its own cellular
automaton (CA) which can be in one of a finite num-
ber of states. Based on its state and those to which it
is coupled, a basis behaviour, or action, is chosen ac-
cording to the lookup table. The basis behaviour leads
the leg to a new state from the old state. Typically all
legs are updated synchronously such that the robot’s
behaviour is represented by a set of locally coupled dif-
ference equations (rather than differential equations),
which are simple to compute in real time.

Under this framework, design of a control algorithm
is reduced to coming up with the cellular automata
which produce successful walking gaits. Our approach
has been to use a modified version of Q-learning [14]
(a form of reinforcement learning) to this end [12]. It
should be noted that although the model described
here does not explicitly take into account the dynamics
(physics) of walking robots, they may be accounted for
implicitly if the control algorithms are learned directly
on hardware.

2 Cellular Automata

According to neurobiological evidence described by
Cruse [5], the behaviour of legs in stick insects is locally
coupled as in figure 1 (left). This pattern of ipsalateral
and contralateral connections will be adopted for the
purposes of discussion although any pattern could be
used in general (only some of them would work).

We assume that the output of each leg controller
may be discrete. This may be done by way of a set of
basis behaviours [9, 1]. Rather than specify the actu-
ator positions (or velocities) for all times, we assume
that we may select a simple behaviour from a finite
predefined palette. This may be considered a postpro-

cessing step which takes a discretized output and con-
verts it to the actuator control. This postprocessing
step will not be allowed to change once set. The ac-
tual construction of the postprocessing requires careful
consideration but is also somewhat arbitrary. Here the
basis behaviours will be modules which move the leg
from its current zone or state (in output space) to one
of a finite number of other zones. Figure 2 shows two
possible discretizations of a 2-degree-of-freedom out-
put space (corresponding to a simple leg) into 4 or 3
zones. It is important to distinguish between a basis
behaviour and a leg’s current zone. For our experi-
ments we will use only two basis behaviours (M = 2):
(stay in current zone) or (move to next zone in counter-
clockwise fashion). This defines the ideal transition
function for the robot which will naturally be modi-
fied by noise (unsuccessful control actions). By using
basis behaviours, the leg controllers may be entirely
discrete.

Once all the postprocessing has been set up, the
challenge remains to find an appropriate arbitration
scheme which takes in a discrete input state, s, (cur-
rent leg positions or basis behaviours of self and neigh-
bours) and outputs the appropriate discrete output, a,
(one of M basis behaviours) for each leg. There are
several candidates for this role but the one affording
the most general decision surfaces between input and
output is a straightforward lookup-table similar to cel-
lular automata (CA)

a = ¢(s)

This type of lookup-table control in autonomous
robots is often called reactive. For every possible in-
put sequence the CA scheme stores a discrete out-
put value. In other words, for every possible input
sequence there is an output corresponding to one of
the basis behaviours. At each time-step, the leg con-
troller looks up the action which corresponds to its
current input sequence and carries it out. The size of
the lookup-table for a leg which communicates with
K — 1 other legs will then be M¥ such that the ap-
proach is therefore usually rendered feasible for only
modest numbers for K and M. The number of all pos-
sible lookup tables is M (M . Again, modest numbers
of basis behaviours keep the size of the search space
reasonable. For example, with a hexapod robot with
coupling as in figure 1 (left) and output discretiza-
tion as in figure 2 (left) the forward and rear legs will
require lookup tables of size 4% and the central legs
4*. If we assume left-right pairs of legs have identical
controllers the combined size of the lookup-tables for
forward, center, and rear legs will be 4% 443 +4* = 384
and the number of possible table combinations for the

entire robot will be 4384, From this point on, the term
CA lookup-table will refer to the combined set of tables
for all legs in the robot (concatenation of individual leg
lookup-tables).

3 Example Controller

One well established gait for hexapod walkers
is called tripod. The legs are divided into
two sets, {Forward Left, Center Right, Rear Left} and
{Forward Right, Center Left, Rear Right}. While one
set is on the ground, the other is lifted, swung for-
ward, and then lowered. This is repeated, alternat-
ing the set to be lifted. If we use the output dis-
cretization of figure 2 (left), then a tripod gait could
be represented by one set of legs cycling through
zones ABDDCCABDDCC ... while the other cycled
through DCCABDDCCABD ... (out of phase with
first set).

For this example, a genetic algorithm was employed
to look for controllers which eventually got to a tri-
pod gait from as many initial conditions as possible.
For more information on this experiment see [6]. The
best solution we found in this way was labelled ¢¢ripoq
which got to a tripod gait from 98.4% of all possible
initial conditions.

Figure 3 depicts two aspects of ¢¢ripoq. The left side
shows a typical time history or gait diagram of ¢rripoq
on a particular initial condition. Each column shows
the states of the 6 legs at a given time-step. The left-
most column is the initial condition. The right side
of figure 3 is an attractor basin portrait of ¢iripog as
described by [17]. Each node in this plot represents an
entire 6 state leg configuration of the robot (i.e. one
column of the left plot). Lines between nodes represent
transitions from one leg configuration to another (as
specified by ¢iripoq). Transitions only occur towards
the center of the attractor basin. The inner hexagon
represents the ABDDCC ... tripod gait which is uni-
directional (indicated by a clockwise arrow). The pur-
pose of the right plot is to draw a picture of @¢ripoq as
a whole and to make a connection with the concept of
stability. Beginning from any node on the attractor
basin portrait, and following the transitions inward
(one per time-step), one will always wind up on the
inner hexagon (tripod gait).

The conclusion we may draw from this simple ex-
ercise is that this type of controller certainly is able
to produce patterns resembling known walking gaits.
We could use a genetic algorithm to attempt to evolve
walking gaits directly on the hardware [6] but instead
we now turn to another approach which we hope will
be more expedient, reinforcement learning [12].

Figure 1: Behavioural coupling between legs. (left)
Sparse coupling as in stick insects [5] (right) Full cou-

pling.

A A B A A
g |
sl -
8| ic D R|B L C
3 @~ o 35| @ o
) D -

Back/Front Servo Back/Front Servo

Figure 2: Example discretizations of output space for
2 degree of freedom legs into (left) 4 zones and (right)
3 zones.

/\ Attractor Basin
] ...ABDDCC ... i
Left Front ” l ||| (1T |||
Left Middle | I

i
Left Rear
Right Front [l
Right Middld

Right Rear

Figure 3: (left) Time history of ¢¢ripoq On a particular
initial condition. Each 6 state column represents an
entire leg configuration of the robot; the left-most col-
umn is the initial condition. (right) Attractor basin
portrait of ¢sripoq. Each node represents an entire
6 state leg configuration of the robot. Lines repre-
sent transitions from one leg configuration to another.
The inner hexagon represents the ABDDCC ... tri-
pod gait.

4 Reinforcement Learning on a
Hexapod

Reinforcement learning was originally derived from dy-
namic programming and is treated well in the litera-
ture [12]. We assume that the problem we are trying
to solve may be modeled as a Markov decision process

(957 QAa 57 7')

Here Qg is the state space, 14 is the action space,
4(s,a) is the state transition function (probabilistic)
where s € Qg and a € Q4, and r(s,a) is the reward
function. We will be attempting to maximize the dis-
counted cumulative reward function given as follows

R(t) = r(s0,a0) +r(s1,a1) +¥’°r(s2,a2) + ...

where s; = s(t + i) and a; = a(t + 7). The Markov
decision process and the discounted cumulative re-
ward function together form a Markov decision prob-
lem (MDP) which Bellman [3] showed to have an op-
timal solution. We will be using a variant of reinforce-
ment learning, Q-learning [14], which allows one to
learn an optimal decision making policy

m*(s) = arg max Q(s,a)

to the MDP. It has been shown to converge under cer-
tain conditions [14] but also to work reasonably well
when these conditions are only weakly met [9] as is
often the case in real robotics applications.

Here s is the state and a is a basis behaviour. The
state action matrix, Q(s,a), is a grid of size |s| = M¥
by |a| = M. The relation between the cellular au-
tomata maps discussed above, ¢(s), and the reinforce-
ment learning policy is as follows

¢(s) = 7" (s) = argmax Q(s, a)

As in the cellular automata discussion above, we will
be using a policy for each leg such that control is
still distributed. However, only three of these will be
unique as identical policies will be used for pairs of legs
joined by contralateral connections. The three policies
will be termed Qy, ()., and @, for ‘forward’, ‘center’,
and ‘rear’, respectively. Coupling between legs will be
as in figure 1 (right). This type of setup is generally
known as a multiagent reinforcement learning problem
as we are trying to learn more than one policy simul-
taneously and the abilities of the policies are interde-
pendent [15]. There are many issues associated with
the problem described here including non-Markovian
states, partial observability [7], and non-determinism

but we will forge ahead in spite of these to see what
comes of our attempt.

For rewards we will be using the net distance trav-
elled (positive is forward, negative is backwards) by
the hexapod robot. All three policies will be receiving
the same reward. The task will be to optimize how fast
the robot can walk forwards on the treadmill. Mathe-
matically we will be looking for an optimal solution to
the MDP. Note, all three policies will have to work to-
gether to produce an overall behaviour which propels
the robot forward. Rewards will be assessed at the end
of each action taken (each “step” of the robot). Typ-
ically in Q-learning, each policy is updated according
to

Q (5,0) ¢ (5,0) +ymaxQ (s',a')

where s = s(t) is the old state, s’ = s(¢+1) is the new
state, r (s, a) is the reward for starting at s and select-
ing action a, and « € [0,1) is the discount constant.

Unfortunately, this algorithm does not suffice for our
purposes as we are working with multiagent system
where the reward is based on the performance of the
entire system (not just one leg). Specifically, the re-
ward depends on the actions of all six legs, not just
one of them and as a result, a leg could receive very
different values for the reward associated with follow-
ing an action from a given state, r(s,a) (depending on
what the other legs decide). It does not make sense
to average the rewards (as in stochastic Q-learning) as
this can lead to suboptimal policies. Instead, a mem-
ory is introduced which keeps track of the best reward
earned by following action a from state s,

rmaw (87 a)

which has the same dimensions as Q(s,a). We call the
modified learning algorithm, cooperative Q-learning, as
it promotes cooperation between concurrent learners
(who are receiving identical rewards). The cooperative
Q-learning algorithm is as follows

Tmaz(8,0) ¢ DMaX [Py (s,a),7(s,a)]
Q (s,a) 4+ Tmaz (5,6) +ymax, Q (s',a")

where s = s(t), a = a(t), s’ = s(t + 1).

5 Experimental Results

This section briefly describes implementation of the
above algorithm on Kafka [10], a 12 degree of free-
dom, hexapod robot. Figure 4 shows Kafka in action
on a treadmill. The robot was mounted on an unmo-
torized treadmill in order to measure controller perfor-
mance (for walking in a straight line only). As Kafka

walks, the belt on the treadmill causes the rollers to ro-
tate. An odometer reading from the rear roller is fed
to Kafka’s computer such that distance versus time-
step plots may be used to determine the performance
of the controller.

Figure 4: A hexapod robot/treadmill setup designed
to evolve walking gaits.

Cooperative Q-learning was tested on Kafka using
the leg coupling of figure 1 (right) and the leg dis-
cretization of figure 2 (right). To keep the size of
the search space small, only two actions were per-
mitted for each leg: (stay in the current state) or
(move one state forward in the counter-clockwise cy-
cle, ABCABCABC'...). Furthermore, the learning
occurred in an episodal manner. An episode consisted
of starting the robot in the configuration BCBCBC
and allowing it 10 time-steps to choose actions. A typ-
ical run consisted of 300 episodes. This episodal-style
training sped up the experiment by allowing the robot
to only learn part of the -matrix rather than learning
it in its entirety.

The last issue to discuss is the trade-off between
exploration of new actions and exploitation of the best
known actions. Typically in Q-learning, new actions
are explored with some probability, pezpiore, Otherwise
the best action is chosen according to the (-matrix.
Here we used a linear time-varying pegprore a8 depicted
in figure 5 (bottom). This allowed many new actions
to be explored initially and fewer later on. This is of
course is a heuristic and often needs to be “tuned” in
Q-learning experiments.

Figure 5 (top) shows the odometer position over
a typical run of 3000 time-steps. Figure 5 (middle)
shows the slope of the top figure (as computed by fit-
ting a cubic to the top figure and taking the analytical
derivative). The middle figure approximately repre-
sents the instantaneous speed of the robot which we

Distance [click]
N
o
o
o

0 500 1000 1500 2000 2500 3000
Time [time-step]

Speed
[click/time-step]

0 500 1000 1500 2000 2500 3000
Time [time-step]

o ©
Now

©
i

Exploration Probability

o

0 500 1000 1500 2000 2500 3000
Time [time-step]

Figure 5: Cooperative Q-learning Performance. (top)
Odometer position versus time, (middle) slope of top
curve as computed by fitting a cubic to the data, (bot-
tom) exploration probability versus time.

Time [time-step]

Figure 6: Gait diagrams at various times throughout
a 3000 time-step run.

can see improves significantly over time to a level com-
parable but slightly below that of a tripod gait (around
6 click/time-step). The reason the performance does
not quite meet that of a hand-designed tripod gait is
most likely because we did not allow the experiment to
continue past 3000 time-steps (the exploration proba-
bility went to zero here).

Figure 6 shows the time history or gait diagrams
of the legs for four time intervals of 100 time-steps
each. We can see the pattern becoming more regular
at later times. By the end of the experiment, Kafka
had learned a gait which was similar in performance
and nature to the tripod.

6 Conclusion

Many researchers believe that highly parallel and de-
centralized methods are the key to endowing artificial
systems with intelligence. Decentralized controllers for
insect robots offer a great deal of redundancy in that
if one controller fails, the robot may still limp along
under the power of the remaining functional legs [4].
The cellular automata controller approach outlined
here was able to successfully control Kafka, a hexa-
pod robot, and should easily extend to robots with
more degrees of freedom. One advantage of using such
a coarse controller is that it requires very few real-time
computations to be made (compared to dynamic neu-
ral network approaches) as each leg is simply looking
up its action in a table.

The cooperative Q-learning algorithm was shown
to be successful at concurrently learning cellular au-
tomata controllers from a single reward source (tread-
mill odometer). These preliminary results are encour-
aging but certainly more exhaustive testing is required
of this algorithm. As with many such machine learn-
ing approaches, this algorithm may have difficulties
scaling up to large problems due to the curse of di-
mensionality.

This work was motivated by evidence that biologi-
cal insects generate walking patterns by means of de-
centralized control [5]. We hope that studying such
types of control for artificial walkers may in turn tell
us something about the natural systems by which they
were ingpired.

A cknowledgments

Kafka, the hexapod robot featured in this work, was
constructed by David McMillen as part of a Mas-
ter’s thesis at the University of Toronto Institute for
Aerospace Studies.

We would like to thank the Natural Sciences and En-
gineering Research Council of Canada and the Cana-
dian Space Agency for supporting this work.

References

[1]

T D Barfoot and G M T D’Eleuterio. An evolu-
tionary approach to multiagent heap formation.
Congress on Evolutionary Computation, July 6-9
1999.

Randall D. Beer, Hillel J. Chiel, and Leon S.
Sterling. A biological perspective on autonomous

agent design. Robotics and Autonomous Systems,
6:169-186, 1990.

R Bellman. Dynamic Programming. Princeton
University Press, 1957.

Hillel J. Chiel, Randall D. Beer, Roger D. Quinn,
and Kenneth S. Espenschied. Robustness of a
distributed neural network controller for locomo-
tion in a hexapod robot. IEEE Transactions on
Robotics and Autonomation, 8(3):292-303, june
1992.

Holk Cruse. Coordination of leg movement in
walking animals. In J. A. Meyer and S. Wilson,
editors, Simulation of Adaptive Behaviour: from
Animals to Animats. MIT Press, 1990.

E J P Earon, T D Barfoot, and G M T
D’Eleuterio. From the sea to the sidewalk: The
evolution of hexapod walking gaits by a genetic
algorithm. Submitted to: Edinburgh, Scotland,
2000. Third International Conference on Evolv-
able Systems.

Leslie Pack Kaebling, Michael L. Littman, and
Anthony R. Cassandra. Planning and acting in
partially observable stochastic domains. Artificial
Intelligence, 101, 1998.

Chris G. Langton. Computations at the edge of
chaos: Phage transitions and emergent computa-
tion. Physica D, 42:12-37, 1990.

Maja J. Matari¢. Behaviour-based control: Ex-
amples from navigation, learning, and group be-
haviour. Journal of Experimental and Theoretical
Artificial Intelligence, 9(2):232-336, 1997. Spe-
cial Issue on Software Architectures for Physical
Agents, Editors: H. Hexmoor, I. Horswill, D. Ko-
rtenkamp.

[10]

[11]

David Ross McMillen. Kafka: A hexapod robot.
Master’s thesis, University of Toronto Institute
for Aerospace Studies, 1995.

Melanie Mitchell and Stephanie Forrest. Genetic
algorithms and artificial life. In Chris G. Langton,
editor, Artificial Life: An Overview. MIT Press,
1995. SFI Working Paper 93-11-072.

Richard S. Sutton and Andrew G. Barto. Rein-
forcement Learning: An Introduction. A Bradford
Book, MIT Press, 1998.

Jon von Neumann. Theory of Self-Reproducing
Automata. University of Illinois Press, Urbana
and London, 1966.

C J C H Watkins. Learning From Delayed Re-
wards. PhD thesis, Cambridge University, Cam-
bridge, England, 1989.

Gerhard Weiss, editor. Multiagent Systems: A
Modern Approach to Distributed Artificial Intel-
ligence. MIT Press, Cambridge, Massachusetts,
1999. QA 76.76.15 M85 1999.

Stephen Wolfram. Cellular Automata and Com-
plezity: Collected Papers. Addison-Wesley Pub-
lishing Company, Reading, Massachusetts, 1994.

Andrew Wuensche. The ghost in the machine:
Basins of attraction of random boolean networks.
In Chris G. Langton, editor, Artificial Life III:
SFI Studies in the Sciences of Complexity, vol.
XVII. Addison-Wesley, 1994.

