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Abstract
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2002

Fundamental aspects of decentralized systems are considered from a control perspective. The stochastic
framework afforded by Markov systems is presented as a formal setting in which to study decentralized
systems. A stochastic algebra is introduced which allows Markov systems to be considered in matrix
format but also strikes an important connection to the classic linear system originally studied by Kalman
[1960]. The process of decentralization is shown to impose constraints on observability and controllability
of a system. However, it is argued that communicating decentralized controllers can implement any
control law possible with a centralized controller. Communication is shown to serve a dual role, both
enabling sensor data to be shared and actions to be coordinated. The viabilities of these two types of
communication are tested on a real network of mobile robots where they are found to be successful at a
variety of tasks. Action coordination is reframed as a decentralized decision making process whereupon
stochastic cellular automata (SCA) are introduced as a model. Through studies of SCA it is found that
coordination in a group of arbitrarily and sparsely connected agents is possible using simple rules. The
resulting stochastic mechanism may be immediately used as a practical decentralized decision making
tool (it is tested on a group of mobile robots) but it furthermore provides insight into the general features

of self-organizing systems.

iii



Acknowledgements

First and foremost I must thank Professor Gabriele D’Eleuterio who always encouraged me to think
in the most general terms. His free-thinking style of supervision allowed me to study topics normally
not accessible to an engineering student. Although I had been thinking about stochastic matrices for
Markov control for awhile he immediately saw the possibility for an algebra whence Chapter 2 and the
nice connection to classic linear systems. His constant optimism and enthusiasm for this work kept me
motivated during the long PhD process. Thanks for everything, Gabe.

I would also like to greatly thank Ernest Earon whose partnership in the construction of the RISE
system made the addition of experimental results to this thesis possible. His work on the rovers was highly
professional and very much appreciated; Chapter 4 could not exist without him. Lawrence Lok helped
in the initial stages of the rovers and I would like to thank him for continuing to support this project.
Thanks also to T Cherpillod for design and construction of the rover electronics. The electro-mechanical
parts of the rovers were diligently duplicated by two outstanding summer students, K Niewiadomska
and S Chan. Thank you all!

Thank you very much to NSERC (Natural Sciences and Engineering Research Council) and CSA
(Canadian Space Agency) for personal financial support throughout my time as a grad student. Thanks
also to CRESTech (Center for Research in Earth and Space Technology), CSA, MDR (Macdonald-
Dettwiler Robotics), and Dynacon Ltd. for financial and in kind support of the RISE project.

Thanks to my thesis committee for reading the thesis and providing helpful comments. Finally,
thanks in advance to anybody else who ends up reading it. Do not hesitate to contact me if you wish to

discuss it or find it useful in your work.

iv



CONTENTS

1 INTRODUCTION

2 A STOCHASTIC ALGEBRA

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19

Definitions . . . . . . . . o o e e e e
A Vector Space . . . . oo e e
An Inner Product Space . . . . . . . . . L
Bases . . .o L
An Algebra . . . . Lo L
An Outer Product . . . . . . . . . . e
Subspaces . ... oL e e e
Projections . . . . . . L e e e e e e e
An Isomorphism . . . . . . . L e e e e e
Determinant, Rank, Inverse . . . . . . . . . . .o
The Eigen Problem . . . . . . . . . .
A Calculus . . . . ..
Probability Distributions . . . . . . . .. ..
Joint Probability Distributions . . . . . . .. .. ... L o oL
The Biased Inverse . . . . . . . . . . L e
A Nonlinear Operation . . . . . . . . .. o e e e
The Unbiased Inverse . . . . . . . . . . . . e
Information Theory . . . . . . . . L

Summary . ... e e

3 STOCHASTIC CONTROL SYSTEMS

3.1

3.2
3.3

34
3.5

Related Work . . . . . . . o L e
3.1.1 Decentralized Control of Linear Systems . . . . . ... ... . ... ... ......
3.1.2 Centralized Control of Markov Decision Processes . . . . .. ... ... ... ...
3.1.3 Decentralized Control of Markov Decision Processes . . . . . ... ... .. .. ..
Statistical Dynamics . . . . . . . .. L
Markov Decision Problems . . . . . . . . . ..o
3.3.1 Projection Matrices . . . . . . . . L
3.3.2 Transition Matrix . . . . . . . .. L
3.3.3 The DecPOMDP Model . . . . . . . . e
3.3.4  Separation . . . ... e e e e
State Estimation . . . . . . . .. Lo
Control Laws . . . . . . . o e e

10
13
14
16
17
20
21
22
25
27
28
30
32
33
35
36
37
38
38



3.6 Reactive Control . . . . . . . L
3.6.1 Classes . . . . . .o
3.6.2 Communication . . . . . . . . . ..o
3.6.3 Decoupling the System . . . . . . . . .. L e
3.7 Observability and Controllability . . . . . . ... .. .
3.7.1 Observability . . . . . . . ..
3.7.2 Controllability . . . . . . . .
3.8 Linearizing a Markov Chain . . . . . . . . ... ..o
3.9 Linearizing a Markov Decision Process . . . . . . .. .. ... ... ... .0 0.
3.10 A Tool of Two Agents . . . . . . . o e
3.11 Another Example . . . . . . . . oL
312 Summary ... e e e e
4 COLLECTIVE ROBOTICS
4.1 Related Work . . . . . . . o
4.2 A Decentralized Robotics System . . . . . . ... o oo
4.3 Communication . . . . . . . . . L. e
4.4 Generic Communication Model . . . . . . . ... Lo L
4.5 Experimental Examples . . . . . . . .. L e
4.6 SUMINATY .« v v v v vt e e e e e e e e e e e e e e e e e e e
5 SELF-ORGANIZATION
5.1 Related Work . . . . . . .
5.2 Stochastic Cellular Automata . . . . . . . . . . . . L
5.3 Self-Organization as a Control Problem . . . . . . . .. ... ... ... ... ...
5.4 Control Laws . . . . . . o o e e e e
5.5 Simulation . . . . . . L e e e
5.6 Statistical Analysis . . . . . . . ...
5.7 Shifting the Instability . . . . . . . . ...
5.8 Discussion . . . . . ... e e e e
5.9 Summary . ... e e e
6 SYNTHESIS
6.1 Conclusions . . . . . . . . . e
6.2 Contributions . . . . . . . . L
6.3 Open Questions . . . . . . . . . . . L
6.4 Final Thoughts . . . . . . . . . . e
BIBLIOGRAPHY

vi

85
87
89
90
93
95

101

103
104
106
107
107
111
116
120
121
124

125
131
132
133
135

135



LIST OF TABLES

21
2.2

4.1

4.2

Summary of connections between stochastic algebra and probability theory. . . . . . . .. 39
Summary of the stochastic algebra properties and identities. . . . . . ... ... ... ... 40

Approximate flow of information occurring to and from the controller in each robot of the
RISE system is 32.5 kbps. . . . . . . . . oL 92
Summary of collective robotics tasks currently implemented on RISE system. . . . .. .. 96

vii



viii



LIST OF FIGURES

1.1

21

3.1

3.2

3.3

3.4

3.5
3.6

4.1
4.2

4.3

44

4.5

[Descartes, 1644]’s schematic drawings of the brain. For him, the teardrop shaped pineal
gland or epiphysis was the locus of interaction between the mind and body. . . .. .. .. 3

Graphical depiction of the vector space, S, in relation to the usual Cartesian space, 3R.
The new vector space is the two-dimensional shaded triangular surface shown with the
zero vector, w, marked in the center. . . . . . . . . ... .. L L o o 14

Reduction of the set of possible system behaviour due to constraints imposed by decen-
tralization of observation and control. The set of possible behaviours is reduced from B
0 Bops N Bron- -« 0 v o o e e e e e 42

Graphical depiction of a decentralized control system. f € ™EF"™" is the plant we are
trying to control, (Vk =1...K) the f;, € ™*F™ are the observation projection functions,
the hg € "™ are the control laws, and the g € "I+ are the action projection functions. 43

Partitioning of the set of global reactive controllers into four mutually exclusive classes
due to constraints imposed by decentralization of observation and control. Only those
global controllers in Class I may be exactly implemented using decentralized controllers
(without communication). . . . . . . .. L L 61

Time series for the Markov (solid) and linearized (dot-dashed) models. Note, there are
four time series for each of the four components of X[t],6x[t] € *S. Also, w, has been

included in the plot which is the constant (dotted) line at 0.25. . . . ... ... ... ... 82
Difference, X[t] © dx[t] € *S, between the Markov and linearized models. . . . . ... ... 82
Information in each of X, dX, and X & dx over time. The information in X & §X may be

thought of as the error between the Markov and linearized models. . . . . . . . . ... .. 83

(left) Six mobile robots making up the RISE network. (right) Features of a single robot. . 86

(left) SENSORY SHARING MODULE: Incoming data packets consisting of some data to be
shared (e.g., (z,y) coordinates) and the sender’s ID number are buffered and then routed
to the appropriate storage slot for that ID. This data may then be used in other modules
such as those for control. The robot running the algorithm writes to its own storage slot
(marked “me”) not from the modem but a navigation module. (right) AcTioN COOR-
DINATION MODULE: Virtually identical to sensory sharing but a stochastic coordination
mechanism is used which allows robots to generate a piece of common information, u, in
a decentralized manner. The agreed upon u may then be used in other modules such as
those for control. . . . . . . . . L 95

CLUSTERING (a): Six time-lapsed frames of 5 robots forming a cluster in the marked box.
In this version of the task, no communication was necessary but in others the robots must
come to a common decision as to the cluster location. . . . ... ... ... ... ... .. 97

DISTRIBUTING (b): Six time-lapsed frames of 5 robots distributing themselves into the
two marked boxes. The robots must share their position information with one another
in order to coordinate which robots will head to which boxes (the division is based on
Proximity). . . . .o e e e e e e 98

FORMATION: Six time-lapsed frames of 5 robots forming a pentagon with vertices on the
marked circle. Here the robots must continually share position information in order to
space themselves out relatively on the circle. Neither the specific location of each robot
nor the orientation of the resulting pentagon is prespecified. The robots “decide” how to
form the shape. . . . . . . . . e 99

ix



4.6

5.1

9.2

9.3

5.4

3.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.16

FLOCKING (c¢): Six time-lapsed frames of 5 robots flocking around the marked circle (1
revolution shown). Here the robots must vote on who amongst them should be the leader
of the flock and then follow that elected leader around the circle. This task is very dynamic
and difficult. Notice the flock spreads out quite a bit (frames 3,4) but recovers gracefully. 100

Example of a SCA model with K = 4 cells. Lines indicate (sparse) connections between
cells. In this example the m = 2 symbols of the alphabet are represented by the 2 colours.

In this state we have two clusters and hence no global consensus. . . . . . .. .. ... .. 108
The piecewise-m rule for different valuesof Aand m=2.. . ... ... ... ... ..... 109
The linear-m rule for different valuesof Aandm =2.. . . .. .. ... ... ... ..... 110
Pitchfork stability of the piecewise-p rule for K = 2. X is a parameter analogous to a

temperature. . . . ... Lo e e e e e 110

Six examples of random initial conditions for alphabet size, m = 2. The two colours
represent the two symbols of the alphabet. The larger examples have K = 400 and
d = 0.1 while the smaller ones have K =100 and d =0.2. . . ... ... .. ... ..... 112
Six examples of undesirable clusters forming for alphabet size, m = 2. The two colours
represent the two symbols of the alphabet. The larger examples have K = 400 and d = 0.1
while the smaller ones have K =100 and d=0.2. . . . . . . . ... ... ... .. ..... 113
Six examples of consensus for alphabet size, m = 2. The two colours represent the two
symbols of the alphabet. The larger examples have K = 400 and d = 0.1 while the smaller
ones have K =100 and d =0.2. . . . . . . . . . e 114
Example time series for different values of A and K = 100, m = 2, d = 0.2. (top) chaotic
behaviour, (middle) successful coordination, (bottom) clusters. The two colours represent
the two symbols of the alphabet. The piecewise-m rule was used but plots are qualitatively
the same for linear-r. . . . . . .. L 115
Average number of clusters at final time-step for 1000 values of A. Plot shows average
of 100 simulations at each value of A\. Number of clusters was computed by considering
the SCA as a Markov chain with connections deleted between cells displaying different
symbols. The number of clusters is then the number of eigenvalues equal to 1 from the

Markov transition matrix. Piecewise-w rule wasused. . . . . .. .. ... 117
Average spatial entropy for 1000 values of A. Plot shows average of 100 simulations at
each value of A. Piecewise-m rule wasused. . . . . . . . . . . ... .. 117
Average temporal mutual information for 1000 values of A. Plot shows average of 100
simulations at each value of \. Piecewise-w rule wasused. . . . . . . ... ... ... ... 117

Average number of clusters at final time-step for 1000 values of A. Plot shows average
of 100 simulations at each value of A. Number of clusters was computed by considering
the SCA as a Markov chain with connections deleted between cells displaying different
symbols. The number of clusters is then the number of eigenvalues equal to 1 from the

Markov transition matrix. Linear-w rule wasused. . . . . . . ... ... 118
Average spatial entropy for 1000 values of A\. Plot shows average of 100 simulations at
each value of A. Linear-m rule wasused. . . . . ... .. .. . ... ... ... 118
Average temporal mutual information for 1000 values of A. Plot shows average of 100
simulations at each value of \. Linear-w rule wasused. . . . . ... ... ... .. ..... 118

Average number of clusters (at the final time-step) as the number of cells, K, is varied
from 100 to 1000. The parameters were: 300 time-steps, m = 2, A = 0.6, d = % The
piecewise-m rule was used. Plot shows average from 100 simulations at each value of K. . 119
Average number of clusters (at the final time-step) as the alphabet size, m, is varied from
2 (1 bit) to 256 (8 bits). The parameters were: 300 time-steps, K = 100, A = 0.6, d = 0.2.
The piecewise-w rule was used. Plot shows average from 100 simulations at each value of



LIST OF SYMBOLS

Symbol

m]Rn

AJ BJX7y

mSn

A7 B7 X’y

mDn

A7 B7 X’y

mEn

Description

The set of real matrices with m rows and n
columns.

Examples of the typeface used for real matrices,
columns.

The set of stochastic matrices with m rows and n
columns.

Examples of the typeface used for stochastic ma-
trices, columns.

The set of deterministic matrices with m rows and
n columns.

Examples of the typeface used for deterministic
matrices, columns.

The set of stochastic functions that map "S to ™S.

Examples of the typeface used for stochastic func-
tions.

Examples of the typeface used for subspaces.
The usual zero matrix (all entries are zero).

The stochastic zero matrix (a.k.a., the uniform
matrix), the stochastic zero column.

The usual identity matrix.

The stochastic identity matrix (a.k.a., the expo-
nential identity matrix).

The stochastic normalization operator.
The stochastic unbiased inverse operator.

The stochastic biased inverse operator.

xi

Section

2.1

2.1

21

2.12

2.7

21

21

24

21

2.1

2.15

Page

10

10

11

30

21

11

11

16

11
12

35



Symbol

Description
The stochastic scalar multiplication operator.

The stochastic addition operator.

The stochastic subtraction/negation operator.

The stochastic vector product operator.
The stochastic inner product operator.
The stochastic outer product operator.

The norm of a stochastic vector.

xii

Section

21

2.1

2.2

2.5

2.3

2.6

2.18

Page
12
12
13
17
14
20

38



The progress of science requires the growth of
understanding in both directions, downward
from the whole to the parts and upward from
the parts to the whole.

—Freeman Dyson

THE SCIENTIST AS REBEL, 1995

Chapter 1

INTRODUCTION

STOCHASTIC DECENTRALIZED SYSTEMS are important to anybody who wonders how many simple agents
can interact to produce a coherent group behaviour. Perhaps the most telling examples from nature
are social insects (e.g., ants, termites, wasps). These deceivingly simple creatures live in colonies whose

membership can be in the millions and larger. Darwin [1839] was impressed with the capabilities of ants:

A person, on first entering a tropical forest, is astonished at the labours of the ants: well-beaten
paths branch off in every direction, on which an army of never-failing foragers may be seen going
forth, and others returning, burdened with pieces of green leaf, often larger than their own bodies.

Ants harvest vegetation to fertilize underground fungus gardens, enslave other insect species as cattle,
and build intricate systems of roads and bridges. They are able to navigate using such landmarks as
trees and stars but their complex chemical communications are perhaps their most inspiring feature.
Through chemicals called pheromones, ants are able to communicate a great deal of information to their
nest mates, thus enabling the entire colony to function as a superorganism [Hoyt, 1996]. E. O. Wilson®,
the first myrmecologist to show the important role of pheromones in ant societies, remarks
There are ...many ways in which ants and human beings are alike. Both are resounding success
stories of evolution ...and both have achieved their success through their ability to form social
groups, to communicate, and to manipulate their environment with great dexterity.
From the point of view of designing an artificial system (e.g., a robotics system), it would be most

desirable to be able to mimic the abilities of successful sociobiological systems. To do so we must

IFrom a 1990 interview [Hoyt, 1996].
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understand what makes decentralized systems work. What are the general principles, if any? Can we
reduce the essence of how a colony of ants is able to cooperate down to a few simple concepts? Do these
same concepts apply to all such systems? Must we construct such a system to prove that it will work? It
is hoped that answering these questions will not only provide building blocks with which engineers may
construct artificial systems but will at once help scientists to better understand the undeniable force of
biological life that permeates our world.
The age-old issue of scientific reductionism is paramount to any discussion of decentralized systems.
If there is one clear thing when it comes to reductionism it is that the term means many things to many
people. Here we mean replacing the study of a more complex system by a simpler, more fundamental
one. It is hoped the simpler system will convey the essence of the more complex one. For example,
aspects of chaos theory were found in highly complicated systems as well as the simple logistic equation.
Period-doubling cascades and intermittency are two well known routes to chaos found in all types of
chaotic system, from the very simple to the very complex, from the mathematical to the real [Hao, 1990].
Perhaps the same general similarities are to be found in decentralized systems.
Physicists such as Newton and Einstein sought to describe the universe in terms of a few simple rules
with unparalleled success. But Prigogine and Stengers [1984] remind us that
Classical dynamics, the science of eternal, reversible trajectories, was alien to the problems facing the
nineteenth century, which was dominated by the concept of evolution ... Boltzmann’s interpretation
[of evolution] implies the forgetting of initial conditions, the “destruction” of initial structures, while
Darwinian evolution is associated with self-organization, ever-increasing complexity.
Schrodinger [1956] believed that biological life could not be completely accounted for by the current
physical laws.
While living matter does not elude the known laws of physics, the hereditary mechanism does seem
to obey certain laws of physics as yet unknown. The laws of physics as we know them are statistical
laws based on the tendency of things to go into disorder. There are known qualifications to this —
quantum theory being one (particularly at low temperatures). Life appears to be another. It seems
to be an orderly behaviour of matter not based exclusively on the tendency towards disorder.
In 1900, Hilbert attempted to reduce all of mathematics to formal statements using a finite number of
axioms and an alphabet of symbols. He was unsuccessful. As Dyson [1995], whose balanced attitude
towards reductionism is reflected in the opening quote of this chapter, puts it,
Godel took Hilbert’s formalized axioms of mathematics as his building blocks and built out of them
a lofty structure of ideas into which he could finally insert his undecidable arithmetical statement
as the keystone of the arch. The proof is a great work of art. It is a construction, not a reduction.
It destroyed Hilbert’s dream of reducing all mathematics to a few equations, and replaced it with
a greater dream of mathematics as an endlessly growing realm of ideas. Godel proved that in
mathematics the whole is always greater than the sum of the parts.
However, to deny categorically the merits of reductionism could be naive. This would mean that there
are no fundamental similarities between different decentralized systems. The study of each system would
be completely unique. Certainly each system has some unique details, but are there also certain aspects
of such systems that are common and which may be exploited in the design of a decentralized system?
Artificial intelligence (AI), and the more general field of artificial life, is concerned with producing

artificial systems which, on some level, are able to mimic “biological intelligence”. Just what is meant
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Figure 1.1: [Descartes, 1644]’s schematic drawings of the brain. For him, the teardrop shaped
pineal gland or epiphysis was the locus of interaction between the mind and body.

by biological intelligence is vague at best. In fact, there are two main schools of thought when it comes
to artificial intelligence. The major issue separating the two is that of centralization. One relies on
it while the other denies it. The source of this conflict may be traced to a much older philosophical
debate between dualism and materialism. The most famous dualist was Descartes who imagined a res
cognitans® as a system whose bodily organs sensed the world and informed the mind (a wholly separate
entity to the brain) which thought things over and directed the body to perform appropriate actions.
For him the locus of interaction between the mind and body was the pineal gland, often referred to as

the Cartesian theater. Descartes [1637] ® wrote

...I recognized that I was a substance whose whole essence or nature is to think and whose being
requires no place and depends on no material thing.
Materialists take the sharp opposing view that the mind s the brain, that all mental phenomena can be
explained by quantifiable, physical phenomena. Schrodinger [1956] advocates a materialist approach in

understanding life.

How can the events that take place within a living organism be accounted for by physics and
chemistry? Although present-day physics and chemistry is unable to account for such events, there
is no reason for doubting that they can be accounted for by those sciences. Essentially, the problem
for physicists is that the structures they deal with are much simpler than those dealt with by
biologists. The laws discovered for such simple systems do not apply easily to the more complex. I
propose, however, to initially approach the subject of biology from the standpoint of a naive physicist
attempting to apply what he knows to an unfamiliar field.

Modern neuroscience has as yet failed to locate the Cartesian theater and in philosophical circles, du-
alism has fallen into disrepute leaving materialism as the prevailing wisdom of the day. However, the
proponents of dualism are still lurking about, particularly in the field of traditional artificial intelli-
gence?, founded on the system symbol hypothesis [Simon, 1969] which states that intelligence operates
on a system of symbols. As Brooks [1990] explains (and asks),

The implicit idea is that perception and motor interfaces are sets of symbols on which the central
intelligence system operates. Thus, the central system, or reasoning engine, operates in a domain

2Latin, a “thinking thing”.
3Written in Discourse on Method, taken from [Dennett, 1991].
4 Also called strong Al, classical Al, old Al
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independent way on the symbols ... [It] must be fed symbols by the perception system. But what is

the correct symbolic description of the world around the intelligence system? Surely that description

must be task dependent.
This centralized symbolic approach has caused many AT researchers to focus huge amounts of attention
on specific subsystems of the perceive-think-act process (e.g., traditional vision). Dennett [1991], an
outspoken materialist, points out that

... the exclusive attention to specific subsystems of the mind/brain often causes a sort of theoreti-

cal myopia that prevents theorists from seeing that their models still presuppose that somewhere,

conveniently hidden in the the obscure “center” of the mind/brain, there is a Cartesian Theater, a

place where “it all comes together” and consciousness happens. This may seem like a good idea, an

inevitable idea, but until we see, in some detail, why it is not, the Cartesian Theater will continue

to attract crowds of theorists transfixed by an illusion.
Does Godel’s destruction of Hilbert’s dream foreshadow the eventual downfall of traditional AI? There
is another AI movement referred to as new AI°, which is more akin to the view of the materialists than
the dualists. It is founded on the physical grounding hypothesis. Brooks [1990] contrasts this hypothesis
to its traditional counterpart

...the system symbol hypothesis upon which classical AI is based is fundamentally flawed, and as

such imposes severe limitations on the fitness of its progeny. ...the physical grounding hypothesis

provides a different methodology for building intelligent systems than that pursued for the last

thirty years. The traditional methodology bases its decomposition of intelligence into functional

information processing modules whose combinations provide overall system behaviour. The new

methodology bases its decomposition of intelligence into individual behaviour generating modules,

whose existence and co-operation let more complex behaviours emerge.
Robust behaviour must be built up from interactions between independent behaviour generating modules
rather than specified by a top-down procedure from a central decision-maker. However, this is not to say
that there are not fundamental types of interactions which may be exploited in this bottom up approach.
In new Al, intelligence is truly in the eye of the observer. There is no Cartesian Theater in which life
struts and frets its hour upon the stage.

This thesis is mostly concerned with decentralized control systems but it is hoped that something may
be said about decentralized systems in general. Decentralization has at its heart many interacting units
which must be organized into a coherent whole. Physicists today are beginning to find that instability
and irreversibility play a large role in so-called self-organizing systems [Nicolis and Prigogine, 1977].
Maxwell [1882]¢ wrote

If, therefore, those cultivators of physical science... are led in the pursuit of the arcana of science
to study the singularities and instabilities, rather than the continuities and stabilities of things, the
promotion of natural knowledge may tend to remove that prejudice in favor of determinism which
seems to arise from assuming that the physical science of the future is a mere magnified image of
the past.
Laplace imagined a demon which had perfect knowledge of position and velocity of all matter in the
universe, capable of inferring its evolution both into the past and the future. Prigogine and Stengers
[1984] retort that

5Also called nouvelle Al, fundamentalist Al, behaviour-based Al.
SFrom a paper of Maxwell published posthumously in L. Campbell and W. Garnett, The Life of James Clerk Maxwell,
London, 1882.
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Nature speaks with a thousand voices, and we have only begun to listen. Nevertheless, for nearly
two centuries Laplace’s demon has plagued our imagination, bringing a nightmare in which ...the
world is nothing but an immense tautology. This is the challenge of the science we have inherited
from our predecessors, the spell we have to exorcise today.

Even Einstein”, who was quite against the introduction of probability into quantum theory, noted

[A law] is more impressive the greater the simplicity of its premises, the more different are the kinds
of things it relates, and the more extended its range of applicability. Therefore, the deep impression
which classical thermodynamics made on me. It is the only physical theory of universal content
which I am convinced, that within the framework of applicability of its basic concepts will never be
overthrown.

Motivated by this notion of irreversibility, this thesis seeks to consider decentralized systems in the
stochastic framework of Markov decision problems. While the mathematics of traditional AT was Boolean
logic, the mathematics of new Al is probability theory and statistics. As a result, a stochastic algebra
has been constructed, a novel extension of stochastic matrices®. Here probability distributions may be
considered as vectors on which the usual operations of linear algebra may be applied. The zero vector
is the uniform probability distribution. The property of linearity is related to statistical independence.
In this framework, stochastic dynamic equations may display both types of evolution described above
by Prigogine and Stengers [1984]: the destruction of initial structures as the system tends towards a
uniform probability distribution (stable equilibrium), and the creation of new ones through appropriate
control sequences (stochastic instabilities forcing the system away from equilibrium). The stochastic
algebra occupies Chapter 2 and will be used to frame the theoretical work on decentralized control and
decision making. The reader may not wish to read this chapter in sequence but rather refer back to it
as needed.

There is much overlap between control and AI. Many of the arguments against centralized AI apply
equally to centralized control. The view of scientific reductionism in this thesis follows Dyson [1995] in
that there is much to learn by studying things in both directions, “downward from the whole to the parts
and upward from the parts to the whole”. The bulk of work in control engineering implicitly assumes
a central locus of control to which all sensor inputs arrive and from which all actuator outputs depart.

Chapter 3 examines the need for this assumption by asking the question
When can decentralized controllers perform identically to a centralized controller?

This will be examined in the context of two systems, Markov systems and linear systems, both of
which are cast in stochastic algebra. The results from the former are new. Furthermore, under certain
circumstances, it will be shown that the Markov decision problem model may be transformed into a
linear system thus creating a new link to the existing linear decentralized control results.

It will be argued mathematically that the assumption of centralized control, although useful in many
situations, is not necessary. Decentralized systems which communicate perfectly can carry out exactly
the same control as a centralized controller. This broad conclusion is not new but many of the details
from Chapter 3 are novel. Thus the assumption of centralized control is equivalent to the assumption

of perfect communication between decentralized controllers. As perfect communication can only occur

“Quoted in M.J. Klein, Thermodynamics in Einsteins Universe, in Science, 157 (1967).
8Non-negative real matrices whose columns sum to 1.
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in the perfect world of mathematics (due to limited bandwidth), real world centralized control is an
illusion, an approximation of reality. It exists only in the eye of the observer. Decentralization is the
reality. As discussed above, centralization as an illusion is not a new concept. Admittedly, in a very
large number of real world situations the centralized assumption is very useful. However, as systems
scale to ever larger numbers of decentralized controllers, the demands on communication to maintain
the illusion of centralized control may be overwhelming. A general theory of decentralized control has
as a simplified case, centralized control. From a practical viewpoint, a hybrid of the two models is often
used. For example, in a group of robots we might imbue each individual robot with a centralized control
model (within itself) while treating the group as a decentralized system.

Chapter 4 will present an example of a real world robotics system” which employs communicating
decentralized controllers. Decentralized approaches to robotics are important as they provide redundancy
and modularity. These attributes are able to greatly enhance the autonomy of artificial systems and

help to reduce the need for human supervision of robots. The question this chapter seeks to answer is
Is decentralized control (with communication) practical for real world robotics systems?

It will be shown that not only is it practical but, in some cases, necessary (i.e., when the communication
bandwidth is too low to support the centralized assumption). Depending on the task, decentralized
control can provide a much more efficient use of the communication facilities than a centralized control
model. The use of well established communication protocols in a group of real mobile robots is not
unique to this thesis but it certainly is not widespread. It will be shown that communication between
mobile robots is a natural extension of behaviour-based control [Brooks, 1986] within a single robot.
Behaviours such as clustering, flocking, and shape-forming are designed using the bottom-up philosophy
and generic communication modules. Other practical advantages of decentralized control for a group of
mobile robots will be discussed.

Chapter 5 returns to a more theoretical problem, namely that of decentralized decision making. In
the preceding chapters the issue of coordinating controls before execution will be shown to be important.

This is the question of self-organization. Bushev [1994] writes

Self-organization has been generally defined as the process in which the organization of complex
systems is being created, reproduced or improved.

This is a very general definition and researchers often take a narrower view in the context of their minis-
cule research focus (the present author included). A simple example of self-organization is considered

by asking the question
How can many communicating agents come to a common decision?

The answer to this question becomes very interesting when the communication links between the con-
trollers are sparse'®. This chapter will describe a stochastic model for bottom-up, decentralized decision
making based on cellular automata. This, too, will be cast in the stochastic algebra of Chapter 2. This
mechanism allows an arbitrarily connected group of agents to spontaneously generate a piece of common

information without the use of any centralized facility. This basic decision-making tool makes many

9A portion of the robotics system described here was constructed as part of this thesis. See acknowledgements.
10Kach controller has direct communication links to only a subset of all other controllers.
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different system behaviours possible. A stochastic instability will be required to do this, thus creating a
conceptual link to the creation of order in nonlinear physical systems. The instability may be thought
of as a feedback mechanism such that decentralized decision making is itself a problem of control. Self-
organization is concerned with no less than the creation of pattern (order, unity, coherence) in a system
of agents. If we prescribe to the bottom-up/materialist philosophy then the basic mechanisms of pattern
creation must be understood before attempting to build something that is “alive” or “intelligent”. We
need to identify and understand the basic dynamic mechanisms and then enable them artificially. We
must further recognize that self-organization, life, intelligence are dynamic processes, not static config-
urations. Observers of such dynamic processes must be careful to note on what timescale the system is
considered to be self-organizing.

The last issue which must be mentioned is that although we require decentralized controllers to
function independently, this does not mean that they must be designed independently as well. We
must distinguish between the implementation of decentralized controllers and their design. The issue
of decentralized design (e.g., through learning and evolution which are also stochastic decentralized
processes) is beyond the scope of this thesis.

The original motivation for study in this area was the control of a small network of mobile robots.
However, the study of decentralized systems has the potential to shed light on much more than this
narrow application. The coordination of internet software agents'! is becoming a major area of research.
The entire biological world can be described on one level or another (e.g., cells, organisms, species)
as a decentralized system. At the molecular level, physical systems (e.g., gases, solids, fluids) may
be described as decentralized (e.g., interacting statistical mechanical systems). Automobile traffic is
becoming a popular topic to study in the framework of decentralized systems. Understanding how many
units can be organized to work together may even help explain how our brains are organized (i.e., how
10! neurons with sparse connections can function coherently).

These are indeed lofty aspirations but this field is yet in its youth. The advent of the modern
computer has only in recent years made the study of large numbers of simple units possible through
simulation and visualization of artificial systems'?. Most of the great scientific achievements of the
past have been reductionist in nature. It is now the era of putting the pieces of the puzzle back
together to study the interactions between them. This can be seen in many fields including that of
control engineering. Here decentralized control methods are still not mainstream but they are certainly
becoming more prevalent as larger and more complicated systems are being developed. It is hoped
that this study of stochastic decentralized systems from the control vantage point will shed light on the
immediate engineering problem at hand while also making a small contribution to understanding how

natural systems function.

11 Autonomous programs which roam the internet gathering/distributing information. Used frequently in data mining.
12Great progress is even being made in the areas of social science [Epstein and Axtell, 1996] through such simulations.






‘We find ourselves in a world in which
reversibility and determinism apply only to
limiting, simple cases, while irrcversibility and
randomness are the rules.

—Ilya Prigogine

ORDER OuT oF CHAOS, 1984

Chapter 2

A STOCHASTIC ALGEBRA

This chapter constructs an algebra based on stochastic matrices which can be viewed as both probability
distributions and, as we will see, vectors. A stochastic matrix is a real matrix whose columns sum to 1
and whose entries are nonnegative. The axiom of total probability is thus implicitly satisfied when using
stochastic matrices as the columns may be thought of as probability distributions. Such matrices are
commonly used in the study of Markov chains, which were named for the Russian mathematician Andrei
Andreevich Markov (1856-1922), who was one of the first to study them!. Markov, however, used these
chains to study probability theory, never applying them to the sciences. They have subsequently been

used, for example, in the study of population dynamics, human speech, and economics.

Interestingly, Markov chains may be described in terms of the thermodynamic quantity, entropy. At
the distribution level, there is a progressive uniformity of the system which may be quantified using
entropy. The initial conditions are gradually forgotten as the system tends towards a stable equilibrium.
This is a direct consequence of what is called the Markov property which simply stated says there are
well defined probabilities, describing the transitions of the system, which are independent of the previous
history. These simple mathematical models thus have embedded in them an arrow of time; they are
irreversible at the distribution (or ensemble) level. At the level of single trajectories, however, the system
fluctuates. In fact, if we wait long enough, it is possible recover the initial conditions (under certain
conditions), but this could take a very long time. Fluctuations will become extremely important in what

is to follow.

Lpoincaré was another.
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Markov chains display a gradual destruction of initial conditions, but what about the formation of
new structures? If the system always progresses towards uniformity, how may new structures be formed?
This will be discussed in much depth in the next chapter on control. If there are certain parameters
in a Markov system which may be influenced externally, it becomes possible to control how the system
behaves. Control theories for systems involving linear systems are readily available [Kalman, 1960]. For
a modern treatment, see, for example, [Antsaklis and Michel, 1997]. Linear system theory presupposes
the existence of a linear algebra, a role which is usually filled by matrix algebra, the familiar linear
algebra involving real matrices. Unfortunately, stochastic matrices by themselves may not be added,
subtracted, multiplied using the usual operations of matrix algebra. For example, the zero matrix (all
zeros) of matrix algebra violates the axiom of total probability. It is not a stochastic matrix.

By redefining the algebraic operations (e.g., addition, scalar multiplication, and vector product) to
be more suited to probability theory, the set of stochastic matrices may be shown to constitute a vector
space, an inner product space, and an algebra. The work in this chapter began with the simple idea
that the new zero matrix should be the uniform probability distribution. This was motivated by stable
behaviour of Markov chains as they progress towards a state of maximum entropy. The next step was
to relate vector addition to statistical independence. The rest of this lengthy chapter fell into place very
naturally once the notion of an algebra was considered. This new formulation has been called stochastic
algebra and may be used to frame the control theory (and other stochastic decentralized theory) of the
subsequent chapters. For example, it will become possible to consider the familiar classic linear system
in the context of Markov systems. For reference the reader may use any good text on modern linear
algebra (e.g., [Greub, 1974] or [Fraleigh and Beauregard, 1989]). A basic text on calculus may also be

useful.

2.1 Definitions

We begin with a few definitions?.
Definition. STOCHASTIC MATRICES: The closed set of stochastic matrices ™S" is

Zai]‘ = 1, a,'j 2 0}
i=1

mgn = {A = [aij] e ™R"

while the open set of stochastic matrices ™S™ is
m§n = {A = [aij] S mgn ‘ a;; > 0}
Thus the boundary of the set of stochastic matrices ™9S™ is
mast — mgn _ mgn

Each column of a stochastic matrix may be thought of as a probability distribution over m unordered
“states”. Most of this chapter will proceed to construct an algebra over the open set of stochastic
matrices, ™S™ We will see that the boundary of the set, ™dS"™ is difficult to deal with in this algebra

2Using ™R™ to mean the set of real matrices with m rows and n columns.
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as its members must be represented in the limit. The algebraic operators (to follow) can still be used
with the boundary members but only with appropriate limit functions. Within the boundary, in the

case that only one state is occupied (with probability 1), the matrix is called deterministic.

Definition. DETERMINISTIC MATRICES: The set of deterministic matrices ™D" is

mpt = {A = [aij] € mos" Vs Ji, a;; = 1}

The deterministic matrices will not per se be included in the algebraic framework (because they lie in
m9S™). However, some of the algebraic operations can apply to deterministic matrices as shall be noted.
When all states are equally probable we have a uniform probability distribution. When all columns

are uniform this may be represented by the uniform matriz.

Definition. UNIFORM MATRIX: The uniform matrizc ™" € ™S" is

1
" = wil, wi = —

It will often be referred to simply as 2. When n = 1 we will use "w or w instead.

Example. Below are examples of a stochastic matrix, A € 3S?, a deterministic matrix, B € °D?, and

the uniform matrix, Q € 3S2

1 1 1 1

7 12 10 3 3

— 1 7 — — 1 1
A=z | B=]0 0of &=|3 3
1 1 1 1
i3 0 1 33

We will also have need of the usual identity matrix.
Definition. IDENTITY MATRIX: The identity matriz ™1™ € ™™ is
"L = [0y]
where d;; is the Kroenecker delta. It will often be referred to simply as 1.

Some new operators are now introduced. These are rooted in probability theory and will be exploited

frequently in what is to follow.

Definition. NORMALIZATION: The normalization operator denoted |R, where R = [r;;] €
MR" with 755 > 0 and (Vj) Y0%, i # 0, is

-
SN
' |:Zi:1 Tij

This operation renders any real matrix (with no zero columns) a stochastic matrix ( |R € ™S" ).

Definition. : Let A = [a;;], B = [b;;] € ™S"™. Then A = B if and only if a;; = b;; Vi =

1...m,j=1...n.
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Lemma. Let R = [r;;],S = [s;;] € ™R" and 745,s;; > 0. Then |R =]Sif and only if
(V’L,j), (3)\] > 0), Tij = /\jSij.

Definition. UNBIASED INVERSE: The unbiased inverse® operator, denoted A, where A =
[ai;] € ™S™ | is

A" = [aji]
Note, in the case that )°; ag; = 0 then the k' column of A" is defined to be the uniform

column (this is a limiting case).

Definition. VECTOR ADDITION: Let A = [a;;], B = [b;;] € ™S" . The vector addition of A
and B, denoted A ® B, is
A & B =Jfai;bij]

In the case that the operands are deterministic, vector addition must be computed in the
limit. Appropriate limit functions must be chosen to extend vector addition to deterministic

matrices.

Example. As an example of vector addition in the limit, consider A = [1 0 0]T andB=[01 0]T

0 1— 2 € € — 262
® | 1 li ® | 1—-2 lim ! 2¢>
= 1m — = _— —
e—0 € € e—0 | 2¢ — 3e2 € ) €
0 € € €2
1 —4e 1
li ! 1-4 = i
- 2026 | T -
2¢ 0
where ’Hopital’s rule has been employed. O

Definition. SCALAR MULTIPLICATION: Let A = [a;;] € ™S™ and A € R. The scalar
multiplication of A with A, denoted A-A, is

AA = Jfa]

In the case that A is deterministic, scalar multiplication must be computed in the limit.
Again, appropriate limit functions must be chosen to allow this operation to extend to de-

terministic matrices.

T
Example. As an example of scalar multiplication in the limit, consider A =[100] and A = —1
1 (1—2¢)7" T
1
—1)- = i -1 = li _ 1
oo =l t | s |
0 E71 € € € %
1f26 0
=0 | S+ 141 2
€ 1 l
2
where we have multiplied through by € in order to compute the limit. O

3In the case of a deterministic matrix, A € ID, the unbiased inverse is equivalent to the Moore-Penrose pseudoinverse.

This is not the case for general stochastic matrices. These will be discussed in more depth later.



2.2 A VECTOR SPACE 13

2.2 A Vector Space

With these definitions in hand it is possible to show that the open set of stochastic matrices is a vector

space.

Proposition. The set ™S™ is a vector space over the field R under the vector addition and

scalar multiplication defined above.
Proof. There are eight axioms which must be satisfied. For all A = [a;;], B = [bi;],C = [ci;] € ™S™
Al. CLOSURE: A @ B € ™S™.
Obvious by definition.
All. AssociativiTy: (AeB)e@C=Ao (Be C).
(A @ B) @ C=l[aibi] @ [ci]
= aijbijcij]
= [aij] @ Ifbijciy]
=Aoe (BeC)
Alll. ZErO: There exists a zero or null stochastic matriz & € ™S™ such that A & Q =A.
The zero stochastic matrix is Q = [[1] = [1/m)].
AIV. INVERSE: There exists an inverse A € ™S™ such that A @ (9A) = Q.
The inverse of Ais (—1)-A = ,L[a;jl .
In addition, for all A = [a;;],B = [bi;] € ™S™ and all A, p € R:
M. CLOSURE: A-A € "S™.
Obvious by definition.
MIl. AssociaTivirTy: A-(u-A) = (Ap)-A.
A(u-A) = A-(Haz;))
=l(a)"]
= a3
= (Ap)-A
Mill. D1STRIBUTIVITY: (a) (A+ p)-A= XA @ p-Aand (b)) A-(Ae B)=XA o \B.
(@) A+ p)A=Yag™)
= llajjal;]
=lai;] @ Uals]

= MA@ p-A

(0) A(AeB)=A(aijbi])
= H(aibij)*]
= ;b33
= lay] © b3y
=XA® B
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Figure 2.1: Graphical depiction of the vector space, 3S, in relation to the usual Cartesian
space, 3R. The new vector space is the two-dimensional shaded triangular surface shown
with the zero vector, w, marked in the center.

MIV. IDENTITY: For the identity element 1 € R, 1.A = A.
LA = [a;] = [ai] = A

Therefore, a vector space. u

Having thus shown that ™S™ does constitute a vector space under the appropriately defined vector

addition and scalar multiplication, we have recourse to a wealth of results. Among these are the following;:

0A=9, VAec™S"
A2=0, VAER
(-1)-A=©A, VYAe™s"
(—A)-A = A(6A) = 6(AA), VAe™S" A€ R

These can be easily verified from the definitions but, in fact, they are general vector-space results.

Figure 2.1 depicts the vector space, S, with the zero vector, w € 3S.

2.3 An Inner Product Space

An inner product associated with ™S™ is presented.
Definition. INNER PRODUCT: Let X = [z;], Y = [y;] € ™S. Then
T
(%,y) = [Inz;] Allny]

where normal scalar multiplication, matrix addition, and matrix multiplication are used*.
The matrix A € ™R™ is
A=1-Q

4When working directly with probabilities we must use the new concepts of scalar multiplication, vector addition, and
(soon to be presented) vector multiplication. However, when working with the natural logarithm of probabilities (which
we will see may be interpreted as the coordinates of a vector), we revert to the familar operations of matrix algebra.
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For convenience we will sometimes write (A, B) where A, B € ™S™. By this we mean
<A7B> = [<a'lab]>]a Vi,j=1...n

where a;,b;,7 = 1...n are the columns of A, B. Note, (A,B) € "R" is not an inner product

itself as it maps to a real matrix not a scalar.
Note it follows that, if u = [u;], v = [v;] € ™R, then
(U, V) = [Inu;]' A [lnwv;]
That is, the normalization factor does not matter. The reason this works is that we are using logarithms

and the rows (and columns) of A sum to 0. Using the inner product defined above we are now prepared

to make the following claim®.
Proposition. The product (-,-) defined above is an inner product on ™S.

Proof. There are four axioms which must be satisfied. For all X = [z;],Y = [y:i],Z= [2:] € S and
AeR:

Pl. DISTRIBUTIVITY: (X,Y © 2) = (X,Y) + (X, 2).

x,yez = [lnwi]TA |:1n (%)]

= [Inzi] A[lnyiz)
= [In wi]TA [ny;] + [In wi]TA [In 2]
= (X: y) + (X: Z)

Pll. COMMUTATIVITY: (X,Y) = (Y, X).

Obvious by definition.

Pll. SCALAR MULTIPLICATION: (A-X,Y) = A(X,Y).

T

2
= [ln ﬁ] A [Iny;)
T
= [lnxg\] Alflny,]
]T

= [Alnz;] Allny;]

= Aln wi]TA [In ys]
= )‘(X: y)
PIV. POSITIVE-DEFINITENESS: (X,X) > 0 if X # w.

. . . . . - T
Since A is symmetric there exists a matrix A € ™ 'R™ such that A = A'A. If X # w, then

x; # w; for some ¢ # j. Accordingly, A[ln z;] # w. Thus
(x.X) = (Allnz:])’ (Allna:]) > 0

It in fact follows that (X,x) = 0 if and only if X = w. We thus have that ™S (and, more generally,
[ ]

™S™) is an inner-product space.

5We will consider only stochastic columns but the proof can be easily extended to general stochastic matrices.
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2.4 Bases

As ™S is a vector space® we may express every vector X in ™S uniquely in the form

—1
1

3

k2

where {by,...,b,,_1} is a basis for ™S with b, € ™S, \; € R,i =1...(m —1). The \; may be thought
of as the coordinates of X with respect to the basis. Note, we only need m — 1 vectors to form a basis
due to the constraint that columns of stochastic matrices must sum to 1. We now introduce a special
matrix which we call the ezponential identity. The reason behind the name will become clear in the next

section.

Definition. EXPONENTIAL IDENTITY: The ezponential identity mE™ € ™S™ is

mE" = ]

& = €%, Vijj=1...m

where d;; is the Kroenecker delta. For brevity 2 will often be used. Note that 2= 2" = &',

Proposition. Any m — 1 columns (or rows) of E™ may be used as a basis for ™S.

Proof. We will show the desired result for the first m —1 columns of E. Let &, Vi = 1...m represent

the i*" column of ™E™. We see that X = [x;] € ™S can be written as

X

[4]

[elu a:,-:l

il:eln z;—In :cm]

[ehner—tnam] [ 1 1 [ 1 1 (1_
1 elnraminem 1 1
= D @ - [S] [S3]
1 1 e rm—1inem 1
| 1 | i 1 ] i 1 i Ll_
€] 1] (1-
1 e 1
= (Inzi—Inzy) || @ (nzs —Inzy) || & - ® Inzm_1 —Inzmy)-
1 1 e
1 1 Ll
L L] L] i

= (Inz; —Inxzpm)-E;
1

i
where we may at last interpret the [lnz; — Inz,,] as the coordinates of the vector X in the basis

defined by the m — 1 first columns of E. |

SBases are discussed for stochastic columns only but could easily be generalized to stochastic matrices.
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Although we have shown E provides a basis for ™S, this result is easily generalized to ™S". Subsequent
usage of the term coordinates (without reference to a basis) will imply coordinates in this basis. The
coordinates of x will be denoted |x| = [Inz; — Inz,,] € ™ 'R. Note, although we technically only need

m — 1 vectors to form the basis for ™S, we could include m for the sake of symmetry.

m—1 m
X = @ (Inz; —Inz,,)-€; = @ Inz;-§;
=1 =1

Vector addition always renormalizes so we may use m with no ill effect. We will refer to augmented
coordinates, denoted [X] = [Inz;] € ™R but must remember that there is a constraint and the vector

space is really only of dimension m — 1. It is easy to verify that the &, do not form an orthonormal basis.

Definition. ORTHONORMAL BASIS: Let {by,...,b,, 1} be a basis for ™S. This basis is

orthonormal if and only if
<bi,bj) - 6ij VZ,_] =1...m-1
where d;; is the Kroenecker delta.

Example. The set of stochastic matrices

= = aQ Q
= o = o

is an orthonormal basis for *S. O

2.5 An Algebra

With a valid basis in hand it is now possible to further make the claim that we have an algebra for
stochastic matrices, or a stochastic algebra”. To justify this claim, we further require a vector product

(in addition to the already established vector space) which satisfies a few axioms.

Definition. VECTOR PRODUCT: Let A € ™S", B € "SP. Let & ; represent the i'" row of A
and b ; represent the j* column of B. The vector product of A and B, denoted A®B, is

A®B = \Ll:e<arr‘i7bc‘j>j|
Note that A®B € ™SP

Technically speaking, for an algebra the vector product should take two operands from the same vector
space and produce a third vector from that space. This may be achieved if we set m = n = p. However,

the results presented still hold when this is not the case.

Proposition. The vector space together with the vector product defined above constitutes an

associative algebra.

7This name is great as it is in complete contrast to “fuzzy logic”.
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Proof. There are four axioms which must be satisfied.

Tl. LEFT DISTRIBUTIVITY: A®(B © C) = A®B @ A®C.

Let A€ ™S™ and B, C € ™S”. Let & ; represent the i'" row of A and b, Cc; represent the

4" columns of B, C.

As(B @ C) = |[eo> “’CCJ‘)}

JCOLIVIESCOCS n}

|
|
[e< iobe.) <a,,,”>]
[

m] ® i[e<a;i,cc,j>]
A®B @ AsC

!
!
!
!

Tll. RIGHT DISTRIBUTIVITY: (A © B)®C = AsC @ BeC.

Let A,B € ™S™ and C € "SP. Let a;, b ; represent the it" rows of A, B and Cc; represent the

4t column of C.

(A @ B)sC = |[e® r“”’:w%f]

( 10 CJ>+(brz C])]

[e< ir%e.s) o (B inCe, n}

(arz’CJ>] @® J/I: (br‘iﬁcc‘ﬂ]

TlIl. ScALAR MULTIPLICATION: (A-A)®(u-B) = (Ap)-(A®B).

Let A€ ™S™ and B € "SP. Let a; represent the i™ row of A and b ; represent the jth column
of B.

(AA)8(u-B) = {[eOnes)]
:i[ema;i,bc,n]
-]
SN )
— (A)-(AeB)
TIV. Associativity: (A®B)®C = A®(BxC).

Let A = [a;;] € ™S™, B = [bi;] € "S?, and C = [c;;] € PSY. Let a; and by ; represent the i
rows of A and B. Let b ; and Cc ; represent the j* columns of B and C.

(A®B)&C = (l[e@?vt’w‘)]) ®C
_ i[e“A@ B)I,,-,cc,ﬂ]
where (A®B),. ; represents the ith row of A®B. We have that

((A®B) ;i) = [{@hi,bea) - (@i, bep)] [L— Q] [lney - lney]”

p P
- omen (e L)
k=1 p =1



2.5 AN ALGEBRA

To complete the proof we must show that @%_, In c;- (bc,k S] %- DL bc,l) = (B®C), ; where

(B&C),. ; represents the j** column of B&C. We have
4 1 2 [ » P g 1“ij-|
@lnckj~(bc,ke;@bc,z) =4 IT (b IT0u" J
k=1 1=1 | k=1 1=1
zl-ezi=llnckj (nbi—2 Zf=11nb“):|
:\l/_e[lnbil---lnb,-p][lfﬂ][lnclj---lucpj]T:|
:J/I:e<b;,i)cc,j):|
= (B®C), ;
whereupon
(mmmczie@w@ﬁﬂmw(%k9%®£ﬂ“b]
=¢[6<a:,,-,<8®0)c‘j>]
= A®(B&C)
Therefore, an associative algebra. |

Note that the property of commutativity does not hold in this stochastic algebra.
Lemma. There is a zero for the vector product. If A € ™S" then
QA = Q
AeQ =

That is, the zero is the uniform matriz. The dimensions of 2 must be chosen to be consistent

with the vector product.

Lemma. There is an identity for the vector product. If A € ™S" then
E9A = A
AeZE = A

That is, the identity is the exponential identity. The dimensions of E must be chosen to be

consistent with the vector product.

Definition. VECTOR PRODUCT INVERSE: There is an inverse associated with the vector
product. If A € ™S™ then

Ao A =

[

Als A =

[

where A 'is the vector product inverse of A. The dimensions of E must be chosen to be
consistent with the vector product. Note, the inverse symbol is the same as that for matrix
algebra. It will be clear from context which inverse to use. Specifically, the inverse of any
stochastic matrix will always use a stochastic inverse. A formula for the inverse will be given

in a later section.

19
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2.6 An Outer Product

It will be extremely useful to define an outer product.

Definition. OUTER PRODUCT: Let x = [z;] € ™S,y = [y;] € ™S. The outer product of X
and y, denoted X ){ Y, is
X >< y:\l{[elnyilnwj]

where we note that X )('y € ™S™. The outer product can be generalized to stochastic matrices
(not just columns). Let A = [a;;] €SP, B = [b;;] € ™SP.

p p
A ( B — @ [elnbik lnajk:I — [H elnbik In ajk]
k=1 k=1

where we note that A ){ B € ™S™ The outer product can be further generalized to include

a real middle matrix. Let C = [¢;;] € PRP.

k=1 k=1

p p
— @ [eckllnb“lnajk] — H eckllnb“lnajk

The outer product will become extremely useful when defining projections onto a subspace. A series of

identities ensues. Let v = [v;], X = [z;] € ™S and U = [u;], Y= [yi], Z=[z1] € ™S. Let A\, p € R.

Q. x Ny ®z={y,2x.
Proof. z= [e“”v“' ‘”1‘] ®z
1

lnyl Ij A[lnzk]
(&

Inz;[lny;] A[ln/,k]:l

e

Y
J,[m Iny;] A[ln,,k ]
4

mEs
=¥, 2)- ;]
= <y7 Z)'X u
Qll. x){(y)y®ez=Xx){2®Y.
Proof. XNy ez=(,2x=(zy)x=(x )28y .
QUi (Ax ) ) = () - (x ){ Y)-
Proof. AX ) py)® 2= (Y, 2)- (AX)
= (¥, (\n) D
=)y el -2
= () (x ) ) @z .
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Qv. (vex) )( (uey)=(v)(u) e (v){(y) & (x){u) & (x)(y).
Proof. (vex) W (uey)®z=(uey,2 (Vo x)
={(u,2)-ve (u,2)-X & (y,2)-ve (y,2)X

=((v)(u) @ (v)(y) @ (x)(u) & (x)(y)ez u

2.7 Subspaces

We have established that the set of stochastic matrices®, ™S, is a vector space of dimension m — 1. We
saw earlier that we may express every vector in ™S as a unique linear combination of m — 1 basis vectors.
We did not address the issue of what happens when only & basis vectors are available, where 0 < k < m.
The result is a subspace of ™S, of dimension k.

Let {by,...,bx} where b, € ™S Vi =1...k be a set of linearly independent vectors. Define the set B

as i
B= {xemS x=EPNibi, A € RVizl...k}
i=1
Proposition. The set B as defined above is a subspace of ™S .
Proof. There are three axioms which must be satisfied. Let x = @, X\i-b;, y = @F_, pi-bi € B
where A\;, p; E RVi=1...k. Let v € R.
Sl. INCLUSION OF ZERO VECTOR: w € B.
k
w = @(0)-1)7; €B
i=1
Sll. CLOSURE UNDER VECTOR ADDITION: X @ y € B.
k k k
X@ey= (@ )\2bz> S2] (@ szl) = @(/\z + Hz)bz eB
i=1 i=1 i=1
Slll. CLOSURE UNDER SCALAR MULTIPLICATION: ¥-X € B.
k k
R (GB M'bi) ~DOr)b €5
i=1 i=1
Therefore, a subspace. u
We can also speak of a subspace as the span of basis vectors such that B =sp{by,...,b}.

8Subspaces are discussed for stochastic columns only but could easily be generalized to stochastic matrices.
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2.8 Projections

There are several important implications of working with an inner product space. The first is that we

may immediately discuss the concept of a projection.

Definition. PROJECTION: The projection of vector X € ™S onto non-zero vector p € ™S is

roj X =
o (P, p)

We may also define the orthogonal complement of a projection as follows.
Definition. ORTHOGONAL COMPLEMENT: Let X, p € ™S. Let y = proj X € ™S" be the
—p

projection of X onto p. The orthogonal complement of vector y, denoted y* is

y-=xoy
Notice that

yoy-=ye (xey)=x
{y:y") =0

Rather than project a vector onto another vector, we can also project it onto a subspace. This will

require a projection matriz.

Definition. PROJECTION MATRIX: Let B = sp{by,...,bx} where b; € ™S Vi =1...k be
a subspace of ™S. Let B = [by ---by] € ™S* have as columns the basis vectors of B. The

projection matriz, P € ™S™, associated with B is
P=B)(B,B) (B
where (B,B) = [(b;, b;)] € *RE.

Proposition. The projection of vector X € ™S on subspace B (as defined above), denoted
proj X, is
—B

proj X = Pax

—B

where P is the projection matriz associated with B.

Proof. Using matrices defined above. Let y be the projection of X onto B. Then

k
y = proj X = i-bi
—»BJ @7

where the v; Vi = 1...k are the coordinates of y. We select another arbitrary vector, v € B, such

that

k
V= @ llzbz
i=1
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where the v; Vi = 1...k are the coordinates of v. The orthogonal complement of y must be perpen-

dicular to v such that

(v,xoy) = 0

k
(@ui-bi,xey) = 0
i=1

k
Zvi(bi,x ey) = 0
i=1

Since v was selected arbitrarily must have Vi = 1...k that

<bivx © y) = 0
(bi,x) = (bi,y)
k
(bi,x) = (bia@%"bj)
k ”
(bi,x) = Z%‘(bia b;)
In matrix form this becomes
(bi,bj)][vi] = [{bi,%)]
il = [biby)] [(bi,x)]
[vil] = A[bi,x)]

where A = [(b;,b;)] = (B,B) = [a;;] € FR¥. Then we have

;

M=

~i-b; aij<ijx)) bi

1

({aij-bj, x)-0i)

~
Il
=

I

((aij-bj) ) biex)

[
P~

1

k
D (aijby) X bi) 8X
k

~.
Il

I
RS

Jj=1

(@ [ea,-]- lnby; 1ubqj]) ®X

j=1

Summing over all the basis vectors we arrive at the desired projection

k
y = Db
i=1
k
— (@ [ea,'jlnbpilllbqj])®x7 Vp7 q=1m

ij=1

= (B)A (B)&x
= (B)(B,B) (B)ax
= P&x

concluding the proof. |
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Example. Let B = sp{b} where b € ™S. The projection matrix, P, associated with B is

b)(b
NG
The projection of X on B, denoted y = proj X, is
—b
ey RXb__(BX)
Y= POX= by = (h,by ®

which is the familiar formula for projection onto a vector.
In the special case that the basis vectors are orthonormal, we have that
-1
(B,B)=(B,B) =1

so that

(bi )( bi)

1

k
i=

Example. Below are two subspaces and the projection matrices associated with them.

(e_ ) "8 e 1 1
e 1 |le e 1 1
spq 4 - 5
1 2111 e e
Ll_ ) Ll 1 e e
e "6- ) "62 1 e e
! 1 ! 1 N 1|1 e e e
S -
P el’ 1 2 e e € 1
1 Le_ ) Le e 1 €

The vector addition of these two projection matrices results in E, the vector product identity. The

reason is that the basis vectors used are orthonormal and thus the projections are orthogonal.

O
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2.9 An Isomorphism

It should not come as a great surprise that there is an isomorphism® between stochastic algebra and

matrix algebra, after all they are both associate algebras.

Proposition. There is an isomorphism, o : "T1R*™! s MS", between stochastic algebra and

matriz algebra given by

MR o Mg A:(p(A):{))A(\II

o 1: mgn _y m—1pn—1 A= (,0_](A) — [<¢Z7A®Il/)]>]

where A € ™S™ and A € "TIR"L. Also, @ = [Py - @y | € ™S™T! where the ¢; €
MmSVi=1...(m —1) form an orthonormal basis for ™S. Similarly, ¥ = [1/)1 SRR /N ] €
n§"=1 where the P; €"SVj=1...(n—1) form an orthonormal basis for "'S.

Proof. There are 4 axioms which must be satisfied. Let ®, ¥, A, A = [a;;] be defined as above.
Let A € R.

Rl. SCALAR MULTIPLICATION. ¢(AA) = A-¢(A).

i,j=1
m—1,n—1
=A aij* ¢ ) ¥,
i,j=1
=X )A(T
= Ap(A)
RIl. AppITION. @(A+ B) = ¢(A) @ ¢(B).
Let B = [b;;] € " 'R*~ 1.
¢(A+B)=®) (A+B) (¥

i,j=1
m—1,n—1 m—1,n—1
= @ aij-¢; Y P; © GB bij- @ ¥,
i,j=1 1,j=1
=3)A(Ted)B(T

9Reminder: An isomorphism is a bijective homomorphism. A homomorphism is a linear map that preserves products.
A map that is both surjective and injective is called bijective.
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RIl. BuECTIVITY. cp_l(A) = [(¢;, A®;)]

To show that ¢ is bijective we show that <p71is the function above.

A=d)A (T = @ ar- ¢ X ¥,
k=1
m—1,n—1 m—1,n—1 m—1
Ao, = B awd, oY, = P aw (,%,) b, = P ar;-¢,
k,l=1 k,l=1 k=1

(9., A®Y;) = (¢, @ arj @) = GB arj{is dr) = aij

k=1
A=lai] = |:<¢i7A®¢j>:|
where we have used that (¢, @;) = 0ij, (9;,%;) = d;; since the bases we choose are orthonor-
mal.

RIV. Vecror Propuct. ¢(AB) = ¢(A)®p(B)
Let B=¢(B) =¥ ) B (T where Be "S?, B=[b;] € " 'R\ ' and T = [~, - v, , | €
PSP~ where the v, € ’SVk =1...(p — 1) form an orthonormal basis for *S. Then

A®B = <<I>)A(\Il)®(\II)B(I‘)
(B wesorw)o( @ vv i)

k=1

D (ariber) - (¢4 ) B2 (e, ) 7,)

k.lq,r

A®B®’)‘j = @ (aklbqr) (¢k )( /‘)bl)@(,lpq )( ’7T)®,7j

k.lq,r

B (ariber) - b W ¥2((7,57,)%,)

k.lq,r

= @ (aribgs) (1), ) by

k,l,q

(¢, A®Bery ) = %@ambl] (%1, ,)-b1)

= [(d’iaA@B@'Yj)]
©(AB) = A%B

= ¢(A)®p(B)

where we have used that (¢;, ¢;) = dij, (1;,%;) = dij, (7;,7;) = di; since the bases we choose

are orthonormal.

Therefore an isomorphism. |
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2.10 Determinant, Rank, Inverse

We have shown that the vector product defined above is a linear transformation of the m — 1 dimensional
space, ™S. To define the determinant of a stochastic matrix we follow Greub [1974] and select a non-

trivial determinant function, A : ™S x --- x ™S — R, which has the properties
N~———— ——

m—1
A(by,... Abi . bu1) = AA(Dy,.... b by)
A(bl, . b D X, . ,bm 1) = A(bl,...,bi,...,bm,l)+A(b1,...,x,...,bm,1)
A(bl,...,bi,...,b i) = —A(by,... by i D)

where X, b; € "SVi=1...(m—1)and A € R.

Definition. DETERMINANT: Let b; € ™S Vi = 1...(m — 1) be a basis for ™S. The
determinant of a stochastic matrix is defined as
A(Asby,...,Asb;, ..., Asb,, 1)

A(by,.. b, byy)

detA =

where A € ™S™,

Using the properties of the determinant function defined above it is possible to come up with a more

practical formula for the determinant.

Proposition. The determinant may be expressed as
et = [t © 6]

where &; Vi = 1...m represents the i'" row of A, & Vji=1...(m—1) is the jth column of
E, and | - | is the familiar formula for the determinant of a matriz in (m=1R(mM=1) " Note,
AemSm™,

Proof. Using the definition of the determinant above we select b; = ¢, Vi = 1...(m — 1) which was
shown to be a basis for ™S previously'®. If we then expand each of the products, A, as

m— 1

A®£j :l[e@:,i’fj)] = @(a:“ a; Z,& r,m:&j))'gk
k=1

k:l
we may substitute these into the definition of the determinant
A(ASE,, ... ARE,, ... ARE, )

det A
o A(éla"'véia.__7€m—l)

A(&l:"':{i:"w{m—l)
A(gl,...,gi,...,gm_l)

)~ )]

[ e dne)]

where we have used the properties of determinant functions mentioned at the beginning of the sec-
tion. |

10We could select any (m — 1) columns of Z and it would work out exactly the same.
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There are three more useful connections to be made as a result of the isomorphism, ¢, between matrix

algebra and stochastic algebra.

Proposition. The determinant of the vector product (with a square stochastic matriz, A €

mS™) may be expressed as
detA = [A|

where A = go_](A) e mTigm—1,

Proof. The proof is identical to the previous one except we expand using an orthonormal basis

instead of m — 1 columns of E. |

Definition. RANK: Let A € ™S™ The rank of A, denoted rank A is
rank A = rank A
where A = <p7](A) e mTIReL,
Definition. INVERSE: Let A € ™S™. The inverse of A, denoted A is
A= p(A)

where A = <p_](A) € m=1Rn—1_ Note, the inverse only exists when det A # 0 since A only
exists when |A| =det A #0.

2.11 The Eigen Problem

We are now prepared to tackle the eigen problem.

Definition. EIGENVALUE: Let A € ™S™. A scalar, A, is an eigenvalue of A if there is a

nonzero (# w) stochastic column, X € ™S, such that
A®X = \-X
The stochastic column, X, is then an eigenvector of A, corresponding to A.

If we rewrite the above equation as

(A-E 2] A) X =N

then X must be a solution of this homogeneous linear system. This system has a nontrivial (X # w)

solution when the determinant of the coefficient matrix is zero
p(A) = det ()\-E o A> =0

where the polynomial, p(A) (degree (m —1)) is called the characteristic polynomial of A. The eigenvalues
of A are the solutions of the characteristic equation, p(\) = 0. Notice there are only (m — 1) eigenvalues

because ™S is only an (m — 1) dimensional vector space.
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Example. Consider the stochastic matrix

The characteristic polynomial is

p(A) = det (/\-E e A)

ere 1
=det| | ) At

1
=s|la—a)+ -0
a—+b
= A —
2
which has the root A = “T"'b O
Example. Consider the stochastic matrix
e* 1 1
B=J|1 e 1
1 1 €
The characteristic polynomial is
p(A) = det (/\-E S] B)
et 1 1
=det| }| 1 % 1
1 1 et

20 —a)+(A—¢) —(A—a)+(A—¢)
A=)+ A—-¢c) 20=-b)+(A—¢)

:)\2—gx\(a—i-b—i-c)—f—%(ab—f—ac—i—bc)

which has roots

[N

A= %((a+b+c):|: ((a+b+c)2—3(ab+ac+bc))

Notice there are only (m — 1) = 2 eigenvalues which sum to 2(a + b + c¢). O

3

We also have access to the Cayley-Hamilton theorem at this point, namely that every square matrix,

A € ™S™, satisfies its own characteristic equation.

Example. In the above examples we have that

—+
(=l

a

Ao E=Q

2
B? e %(a—l—b—i—c)-B @ 1(ab—l—ac—f—bc)-Ezﬂ

w

where B? = B®B. O
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2.12 A Calculus

It is not surprising that we can associate with our stochastic algebra a corresponding stochastic calculus.
As ™8™ is a vector space, all the typical results from vector calculus may be obtained. It will be useful
to go through some of the concepts. The discussion will be limited to stochastic columns but may be

easily generalized to stochastic matrices.

Partial differentiation, in particular, is very useful in the computation of the Jacobian of a stochastic

function. A stochastic function may be defined as

Definition. STOCHASTIC FUNCTION: The set of stochastic functions ™F" (with one input

variable) is

mEn 0§ ey MS = {f(x):[fi(x)]e"S»—)mR Xm:fi(x)zl, fi(x)>0VXe"S}

i=1

This may be generalized to multiple input variables. Let X; Vk = 1...K be the input

variables so that the set of stochastic functions with multiple input variables is

ML LG L xS oy TS = {f(xl,...,xK) = [fi(X1, ..., XKg)] € ™S x -+ x"5S s "R

m

Zfi(xl,...,XK) =1, fi(Xl,...,XK) > 0Vx, € nkS}

=1

Based on the definition of a derivative we define the partial derivative of a stochastic function as follows.

Definition. PARTIAL DERIVATIVE: The partial derivative of a stochastic function, f(x) €

mE" | with respect to the j'* element of X = [z;] € "S is

gy 0 = iy 5 (Fx2 50 100)

where 60X = A-§; and §; is the jt* column of "E".

Proposition. The partial derivative of a stochastic function with respect to the jt* element
of X is

z

9 ¢y = ] erio
o G

where 85;(_)() indicates the scalar partial differentiation of matriz algebra.
J




2.12 A CALCULUS

Proof. Let y= [y;] = x @ 6x. We then have

a%jf(x) = }13})%( f(y) e f(x))
-t [£5]
- 1| (59)']
:i[elinu_)o M}

limy 0 o (In fi (Y)=In f; (x))}

]
— ll:elim,\—;o ﬁ ﬁfi(Y)]
]

efil(x) limy 0 45 fi (Y)]

where ’Hopital’s rule has been employed. Recall that y =x @ dXx =X & A-§; = il:wie/\éij] where d;;

is the Kroenecker delta. Then we have

tim L ,(y) = Jim ~ 0fi(y) Oy

A=0 dA A—>0k:1 8yk 6)\

T - afi()’)ﬁ Aok
_ili%k:l Jyr O (re™)

~ lim "~ Afi(y) (mkékje/\akj)

A—0 0
k=1 Yk

whereupon

A —f(X) = i[eﬁ limy 0 5 /i (y>]

i 950
=1 e fit) 9z

Lemma. The partial derivative is a linear operation. Let p, v € R and f(x), g(x) € ™", x €

"S. Then
5100 0 7:900) = fim £ ((w10x® 50 © g0 e 50) © (w1 () © 790x))
- p-iig)%(f(x%éx)ef( ))@7)1\11)rz]§-(g(x€56x) g(x))
)

0
= N'%f(x) © V'BTjg(X)

J

31
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Let A € ™S™. Then
0

a—xj(A@)f x) = ;13}] %(A@f (x ® 6x) © Axf (x))

— A% lim ;( f(x @ dx) © f(x))

A—0

0
= A®_—f
®6xj (x)

With these results in hand we may now compute the Jacobian of a stochastic function as follows.

Definition. JACOBIAN: The Jacobian of a stochastic function, f(x) = [f;(X)] € ™F" with

X € ™S, denoted, 2 € ™S, is

o _ [0, 9.
x| 0m Ox,,

i 9fi(®
= ] |eTi™ 0%

where %jﬁ indicates the scalar partial differentiation of matrix algebra.

Some examples may be useful.

Examples. Let X, y, z€ ™S. Let A € R. Let A € ™S™. Let f(x), g(x), h(x) € "F™.

f(x) =y g_fx _q

f(x) = x g_; _=

f(x) = Ax g_i —\E

f(x) = A®x %:A

f(x) = Ag(x) g_fx RPN
f(x) = g(x) ® h(x) g_i:gﬂag_z
f(x) = Asg(x) Ay
(9=0)(yez O =28

2.13 Probability Distributions

It should be obvious at this point that stochastic matrices are meant to represent probability distribu-
tions. There are a few points which must be mentioned for completeness. Let X be a random variable
which may take on discrete values Xi,...,X,,. The X; ¢ = 1...m are mutually exclusive events or
states . The frequency with which X visits each of the states, X;, is a probability distribution which
is represented by a stochastic matrix X = [z;] € ™S. We have that the probability of state i, denoted
p(X = X;) is 2;. Note that z; >0Vi=1...m and ) ;" z; = 1 which is an axiom of probability theory

known as the axiom of total probability.
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2.14 Joint Probability Distributions

The notion of the joint probability distribution is of paramount importance in what is to follow. One of
the central ideas behind stochastic algebra is that statistical independence is embodied as linearity. To
discuss this further we must introduce the joint probability distribution.

Let X and Y be random variables with m and n states respectively. A fundamental axiom of
probability theory (Bayes’ law) is that the joint probability distribution of the two random variables

may be expressed as

p(X = X, Y =Y)) = p(Xy,Y))
(Xo)p(Y;|X4)

p
p(¥;)p(Xi|Yj)

1

(Xz'IYj)P(EIXz’)> :
p(Xi)p(Y;)

This is called the product rule of probabilities. Note that when p(X;|Y;) = p(X;) and p(Y;|X;) = p(Yj)

we have that

— p(X0p(1)) (p

p(Xi,Y;) = p(Xi)p(Y))
which is called statistical independence. When we do not have statistical independence, the individual

probability distributions may be computed as

p(X:) = ) p(Xi,Y))
=1
p(Yj) = ZP(Xian)

In the stochastic algebra we may represent joint distributions as follows.

Definition. JOINT DISTRIBUTION!!: Let X and Y be random variables with m and n states
respectively. The joint distribution between X and Y is denoted (X,y) € ™"S.

T
06Y) = [P(X0 Y1) o p(XL,Y0) (X2, Y1) o p(Xm, Vo)
This may be generalized to more than two random variables.

It is not difficult to see that when X and Y are independent, the joint probability distribution may be
expressed in the form

(X,y) = A®x & Boy

where A € ™"§"™ and B € ™"S". That is, the joint probability distribution of two statistically indepen-
dent random variables is a linear combination of their individual distributions. The matrices A and B
are used to combine the independent distributions; they are similar to projection matrices (an example

follows). In the case that X and Y are not independent, we have

(X,y) = Asx ® Boy @ z

1'When X and Y are independent, the joint distribution as defined here is equivalent to the Kroenecker product.
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where z= (X,y) © A®x © Bey € ™"S. For X and Y independent Z = w which restores linearity. When

Z# w it at the very least represents an offset which destroys the linear property.

Example. Consider the case where both X and Y have only 2 states each and are statistically

independent.
T1Y1 e 1 e 1
. 1 1
x,y) = R f(x,y) = g@x ® g@y: ¢ o|"| @ ‘Lo’ =nexe Bey
T2y ox oy 1 e T2 e 1 Yo
212 1 e 1 e

of

where we have employed the Jacobian to compute A = 3, B = g—; € *S?. In this case the function,
f(X,y), is linear in X and Y precisely because X and Y are statistically independent. Furthermore,

notice that

such that
e 1 e 1
1 |e 1 e e 1 1 1 |1 e e 1 1
Xy) = = ® & (X,y) ® =- ® & (X,y
) 2 (1 e |:1 1 e e:| ) 2 e 1 |:1 e e:| *y)
11 e 1 e
(e e 1 1 e 1 e 1
1 |le e 1 1 1|1 e 1
= o ®(Xy) @5 ®(x,y)
211 e e ’ 2 e 1 e ’
11 1 e e 1 e 1 e
= proj (x,y) @ proj (x,y)
—by —bo
= proj (XY)
—{b1,b2}

T T T
where by = [e e 1 1] , by = [e 1 e 1] , by = [e 1 1 e] form a basis for *S. Since
(X,y) is unaffected by the projection it must lie in the subspace formed by sp{bi, bz} which is of
dimension 2 not 3 (the dimension of *S). In fact, X and Y are statistically independent if and only

if (x,y) € sp{b1, b}, the linear subspace of *S. O

The example has brought to light a new concept, the linear subspace. In general, if the set of all possible
joint probability distributions, (X,y), is ™”S, there will be a subspace of dimension m +n — 2 < mn
which will be called the linear subspace, where X € ™S and y € *S. Joint probability distributions are in

the linear subspace if and only if X and Y are independent.



2.15 THE BIASED INVERSE 35

2.15 The Biased Inverse

If we consider A € ™S™ to be a conditional probability distribution then we may speak of y = Ax where
y = [p(Ys)] and x = [p(X;)] and A = [p(Y3]X;)].

Definition. BIASED INVERSE: Let A = [p(Y;|X;)] € ™S™ The biased inverse, denoted A,
is
A = [p(Xi]Y))]

where A € "§™,

The biased inverse of a stochastic matrix is very important when working backwards from a measured
effect to an unmeasured cause. Unfortunately, A* cannot be computed directly from A as we do not
know the correct bias.

As the names allude, there is a connection between the biased and unbiased inverse operators.

Proposition. The unbiased inverse is related to the biased inverse in the following way for
any matriz A = [a;;] € ™S
A=A X, (2.1)

where Xy € "S™ can be thought of as a bias which has been vectorially added to the unbiased

inverse.

Proof. From the definition of the biased inverse and Bayes’ axiom we have

A = [p(Xi]Y;)]
:[ (Y5 Xs)p(Xi) ]
22k (Y| Xk )p(Xk)

T pix) |
= [zmmxk)] © (X))

=A @ X,

where X, = [p(X;)] € "S™. Notice in X, there is only one subscript, ¢, shown. This implies that
each column of X, is identical. It is possible to have a different bias for each column but typically

the same one is used. Note that when X, = © we have A = A", |

Lemma. When postmultiplying by a deterministic column, y € ™S we have
Ay=Ayex, (2.2)

where X, € S is again the bias. Note, in this case the bias may be added at the end rather

than before computing an inverse.

If we wish to work backwards from a measured effect to an unmeasured cause, we would like to know
A'. However, what we are saying is that there is a part of A which we do not know, X;. This may be
thought of as a bias. Without knowing the bias we cannot calculate A*. Instead, we must assume a bias.

The most logical choice is to assume X, = ™w which we will refer to as a uniform bias.
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2.16 A Nonlinear Operation

Matrix multiplication'? plays a large role in this framework. A stochastic matrix may be thought of
as a conditional probability distribution. With this in mind, matrix multiplication (e.g., y = AX where
y=[p(Yi)] € "S and x = [p(X;)] € ™S and A = [p(Y;|X;)] € "S™) embodies the axiom of conditional
probability'3.

m

p(Y:) = p(YilX;)p(X;), Vi=1...n
j=1

Often normal matrix multiplication will appear in mathematical expressions involving the new stochastic
algebra. In general it must be thought of as a nonlinear operation within the new framework'%. In general

we have the following situation. Let A, B, C € S.

(AeB)C # ACoBC
C(AeB) # CAoCB

That is, vector addition does not distribute over matrix multiplication, which certainly is not desirable.
However, there are a few exceptions to this statement. There are two distributive results involving
normal matrix multiplication between deterministic and stochastic matrices which are as follows. Let
A, BeSand C e D.

(Ao B)C=ACoBC (2.3)

C(AeB)=CAoCB (2.4)

where the dimensions of each matrix should be compatible for the given matrix multiplications. The
first of these is now proved (the second follows from similar reasoning).

Proof. (A @ B)c=Ace Bc

We need only prove the result for a single deterministic column. Let A = [a;;], B = [b;;] € ™S™ and
¢ =[¢;] € "D. We have that

1 =i

¢ = 1= , Vi=1...n
0 j#Jo

Starting with the left hand side we have

(A e B)c

el
2 e Qb

_ @ijo bij,

- [22"21 Akjobrjo ]
= lai,] @ [bij,]

Ac @ Bc

concluding the proof. |

12This is the regular matrix multiplication of matrix algebra not the vector product of stochastic algebra.
13This is sometimes called the axiom of total probability or the Chapman-Kolmogoroff equation [Papoulis, 1965].
1We could just as well think of vector addition as a nonlinear operation within normal linear algebra.
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It should be mentioned that these are not the only situations in which matrix multiplication distributes

over vector addition. To show this we continue the example from the section on joint distributions.

Example. Continuing from the previous example. Instead of using the projections of stochastic
algebra to compute the individual distributions we may use matrix multiplication to do the same

job as follows

1 0 1 0
01 0 1

11 0 0
0 0 1 1

X =

:| (Xa Y) = PZ/ (X7 y)

:|(X7Y):P1(X7y) y2|:

where P, P, € 2D*. We also have that
(xy)=P. xe P,y

and we note that
P,/ P,oP,/P,=1 P/P,=Q PP, =0

such that

(PP, @ P,P,) (x,y) = 1(xy)

P, xe P,y

PETPI (X7 y) © PyTP'y (X7 y)

which shows that (X,y) € *S distributes over the stochastic matrices P,"P,, P,”P, € *S% This of

course only occurs when (X,Y) is in the linear subspace of 1s. O

We may see from the example that in special situations, a projection matrix (with a vector product) may
be replaced by a normal matrix multiplication. In general if Xj,..., X} are statistically independent
random variables with a joint distribution, X = (Xy, ..., X), then it is possible to express the individual

distributions as X; = P; X with P; € D Vi = 1...k. The following are then true

k k
Prir=1 s ==
i=1 i=1

k k k \ k
(@ PzTPZ> X = @ PZ'TP,'X <® Bz) ®X = @ B;®x
=1 =1 =1 =1

where the B; are equivalent orthogonal projection matrices (computed using the Jacobian, for example).

2.17 The Unbiased Inverse

There are three more properties involving the unbiased inverse which are stated here for completeness.

Let A, B € D with no zero rows.

(AToB")=(AeB) (2.5)
(AB)" = B'A” (2.6)
AAT =1 (2.7)

The dimensions of A and B must compatible with the given operations.
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2.18 Information Theory

There are several existing information [Shannon, 1948] measures defined for probability distributions.

Some of the possibilities are as follows. Let X = [z;], Yy = [y;] € ™S.

SUM-OF-SQUARES INFORMATION S(x) =y, af
SHANNON INFORMATION H(x)=-Y" a;Inz;
KULLBECK-LEIBLER DISTANCE ~ G(X,y) = —> 1", z;In (Z—)

Given the connection with vector spaces, a new information measure is now defined which we will refer

to simply as information

Definition. INFORMATION: Let X = [z;] € ™S. The information contained in X, denoted
lIxIl; is
Xl = v {x, %)

which is the vector norm or magnitude of X.

This measure can be thought of as the “distance” from the uniform probability distribution. Based on the
general properties of an inner product space, we may now immediately state the following information

properties (using the same vectors as above).

TRIANGLE INEQUALITY Ixey| < x|+ vl
SCHWARZ INEQUALITY [,y < X[V
PYTHAGOREAN THEOREM (X Ly) [xovy|* = [x|I*+|yl*
INFORMATION DISTANCE [[x ey

It is very natural to discuss information theory in the context of projections. If projections are thought
of as filters, then there is an information loss when a vector is projected. Let A € ™S™ and let P € ™S™

be a projection matrix. The loss in information as a result of the projection is

[AIl = lIPeA]

2.19 Summary

An algebra based on stochastic matrices has been constructed. The set of stochastic matrices was shown
to constitute a vector space, an inner product space, and an algebra under appropriate operations. The
zero vector is the uniform probability distribution and addition is akin to statistical independence. A
stochastic calculus and an isomorphism to matrix algebra were also presented. The original purpose of
this algebra was to allow Markov systems to be cast in a matrix form but it has the potential for a great
deal more. We may now discuss stochastic dynamic equations and control systems in the well known
mathematical framework of linear algebra.

The following tables summarize the connections between probability theory and the stochastic algebra

defined in this chapter as well as the main properties and identities derived.
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Table 2.1: Summary of connections between stochastic algebra and probability theory.

STOCHASTIC ALGEBRA

PROBABILITY THEORY

vector (stochastic matrix)

probability distribution

zero vector (uniform matrix)

uniform probability distribution

linearity

statistical independence

nonlinearity

statistical dependence

columns of a stochastic matrix sum to 1

axiom of total probability

matrix multiplication

conditional probability axiom

biased /unbiased inverse

Bayes’ axiom

vector addition

product rule of probabilities

scalar multiplication

exponent of probability distribution

inner product of two vectors

logarithm of probability distribution

vector product

norm of a vector

information

triangle inequality

information never more than the sum of the parts

Schwarz inequality

information statement

Pythagorean theorem

information statement

projection to a subspace

information filtering
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Table 2.2: Summary of the stochastic algebra properties and identities.

Properties of Addition

Identity
Left Distributivity
Right Distributivity

Scalar Multiplication

Ao Q=Qa A=A
MA®B)=\A®\B
A+ p)A=XAe pA
() A=A (pA) = p-(A-A)

Commutativity AeB=BoA

Associativity (AeB) eC=Ae (BoC)
Properties of Inner Product

Distributivity X,y ®2) = (X,y) + (X, 2

Scalar Multiplication (AX,Y) = (X, Ay) = XX, Y)

x.y) = (¥ )

Commutativity

Properties of Outer Product

Left Distributivity xW(yezy=x)Xy & (x)2
Right Distributivity xey) z=x)2 o (y)2
Scalar Multiplication AX) W Yy=xY (Ay) =X )Y
Commutativity (X )(y)®z= (x ){ 2®y

Relation to Inner Product (X ) y)®z=(y,2)-X

Identity ARE = E’A=A

®(B ® C) = A®B @ AsC

Right Distributivity (A ® B)oC = AC @ BeC

Scalar Multiplication (A-A)eB = A®(A-B) = A-(A®B)
(A®B)®C = A®(B®C)

>

Left Distributivity

Associativity

Properties Involving Matrix Algebra

Self-Inverse (A=A
Distributivity (AeB) =A" @ B
Product (AB)" = B'A”

Left Distributivity
Right Distributivity

A"(Be C)=A"Bo A’C
(Ae B)C=AC o BC




It is only the obscruer of the Creature who imputes a
central representation or central control. The Creature itself
bas none; it is a collection of competing bebaviours. Out of

the local chaos of their interactions there emerges, in the
cyc of the observet, a coberent pattern of bebaviour. There
is no central purposeful locus of control.

—Rodney A Brooks

INTELLIGENCE WITHOUT REPRESENTATION, 1999

Chapter 3

STOCHASTIC CONTROL SYSTEMS

There are a number of mathematical frameworks available to the control engineer. Examples include lin-
ear control systems [Kalman, 1960], discrete event systems [Ramadge and Wonham, 1987], and Markov
systems [Bellman, 1957]. Each of these frameworks has its own mathematical structure which may be
used to derive general results concerning control and observation. In this thesis we are primarily inter-
ested in decentralized systems, a general concept which has been visited in all of the above frameworks.
We will begin discussing decentralized control in the context of Markov systems but the stochastic al-
gebra (and calculus) of the previous chapter will allow a new link to be made between Markov systems
and the classic linear system studied by Kalman [1960]. Markov systems were originally chosen for this
study for their strong connection to probability theory and artificial intelligence (through machine learn-
ing). Many machine learning approaches are stochastic in nature (e.g., Boltzmann machines, Hidden
Markov models, reinforcement learning, Hopfield networks). Markov systems are furthermore described
by stochastic dynamic equations which provide a connection to statistical physics and entropy. They
seem a promising place to begin a study of decentralized systems and self-organization.

The problem of decentralized control is concerned with producing useful system behaviour through
the independent observations and actions of K > 1 controllers. The fact that the controllers are acting
independently is such a fundamental point that it will occupy a great deal of this chapter. Decentral-
ization has a major benefit in that it offers redundancy. For example, should one part of the system
fail, it may be possible for the other K — 1 to produce the appropriate behaviour through compensation.

Furthermore, it allows modularity as each controller may be designed somewhat independently. How-

41



42 Chapter 3. STOCHASTIC CONTROL SYSTEMS

Figure 3.1: Reduction of the set of possible system behaviour due to constraints imposed by
decentralization of observation and control. The set of possible behaviours is reduced from
B to Bops N Beor -

ever, there is often a cost associated with decentralization, namely that by themselves, decentralized
controllers may not be able to perform all of the tasks inherently possible with a centralized controller.
Thus the focus of this chapter will be to discuss when decentralized controllers can perform as well as

their centralized counterparts. This will be investigated in the context of a few different systems.

We will see that when strictly decentralized controllers are asked to behave in a statistically dependent
manner, they may only approximate their centralized counterpart. Decentralization essentially adds two
new constraints to the centralized system. The first constraint is on the observations (input). Each
decentralized controller will in general receive only a part of the system state as input. The second
constraint is on the control (output). Each decentralized controller must select its own actions, thus
making it impossible to coordinate actions with other controllers. Abstractly, these two constraints
each divide the set of possible system behaviours into two subsets. Figure 3.1 graphically depicts these

constraints.

We conjecture that the very process of decentralization in general contrains system behaviour in
two fundamental ways. Let B be the set of system behaviours (trajectories) which are possible using
centralized control. Let By,s C B be the set of behaviours which are possible using decentralized
observations. Let B.on € B be the set of behaviours which are possible using decentralized controls.

Then the set of possible behaviours as a result of decentralized observations and controls is

(Bobs chon) g EOIJS g B (31)
con

This is completely analogous to the controllability and observability of centrally controlled linear systems
[Kalman, 1960]. There the constraint on observations is a limited number of sensors. The constraint on
controls is a limited number of actuators. This parallel may be seen throughout control theory. We will

study this idea in a few specific situations.

If the decentralized controllers are allowed to communicate perfectly with one another, they may ex-
actly produce the centralized behaviour. Perfect communication serves a dual role, effectively removing

the constraints described above. First, it allows sharing of observations which relieves the constraint on
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Figure 3.2: Graphical depiction of a decentralized control system. f € ™F"" is the plant we
are trying to control, (Vk = 1...K) the f; € ™™ are the observation projection functions,
the hy € ™™+ are the control laws, and the g; € "F* are the action projection functions.

input. Second, it allows actions to be coordinated before execution. Limited bandwidth! of communi-
cation is certainly of concern but this issue aside, it is not a stretch to see that in general, decentralized
controllers that communicate both observations and actions may produce exactly the same behaviour as
a centralized controller. This idea will be investigated in the context of reactive controllers for Markov
systems.

It is hoped that the stochastic algebra detailed in the previous chapter will help to formalize our
study of decentralized Markov systems. The fact that statistical independence has been embodied as
linearity will allow us to examine the nature of decentralization in a formal mathematical setting while
providing insights into its very nature.

From a control theoretic viewpoint, we are primarily concerned with systems which may be described

by the discrete-time dynamic stochastic equation
X[t + 1] = (], ui e, ... uxc[8)

where X € ™S is a probability distribution over the states of the system, uy € ™S Vk = 1... K are
decentralized controls, and f (X, u[t], ..., uk[t]) € ™F™" "% describes how the system moves forward
in time, ¢. In general, f may be a nonlinear stochastic function.

Our definition of decentralized controls is as follows.

Definition. DECENTRALIZED CONTROLS: Let u;, € ™S Vk = 1... K be the controls of K

controllers. If a centralized control, U € ™S, may be expressed in the additive form

K
u= @ Ok (Uk) (32)
k=1

where g € "It Vk = 1... K, then the Uy are decentralized controls for u.

This embodies the notion that the decentralized controllers must act independently. Figure 3.2 depicts
the mathematical model with which we will be concerned. This chapter will investigate two different
possibilities for the plant function, f: linear and nonlinear. Before continuing, we pause to review the

history of studies on decentralized control.

IThis will be discussed in the chapter on communication.
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3.1 Related Work

This review of decentralized control will begin chronologically but after a certain point in the timeline
there will be a number of bifurcations as decentralized research has branched into many separate fields.
Some of these will be described in more detail than others.

The review will tend to use the the term decentralized control system to mean a group of agents or
decision makers which interact with some common environment or plant, whose group behaviour is to
be controlled in some way. Research in game theory could arguably be put in this category but it will
be avoided to leave room for work which fits more in the area of control theory. The focus is on control
of Markov systems but we also mention the fundamental results from control of linear systems as we will
later be suggesting a link between the two.

Decentralized research can be traced back over 45 years to the work of Marschak [1955] who looked at
human organizations (e.g., military, corporations) as technologies. He sought to improve their efficiency
by looking at decentralized decision making from a formal perspective. He noticed the fundamental role
communication must play in all such systems.

Shortly after this Radner [1962] published a paper on teams (decentralized systems with a common
goal). He pointed out that “differences of opinion (as embodied in different a priori distributions, for
example)” between controllers could not be handled in his formulation “since these result in formally
the same game-theoretic difficulties as do conflicts of interest”. We will revisit this notion later but it is
of paramount importance in decentralized systems with different state estimates of the world. Radner

was the first to connect decentralized systems to Markov systems (to be described later).

3.1.1 Decentralized Control of Linear Systems

We must here mention the landmark work of Kalman [1960, 1962] who introduced the notions of con-
trollability and observability as well as the canonical structure of centralized linear dynamical systems.
Ten years later Ho and Chu [1972] published two papers on decentralized systems as optimal control
problems. They chose a particular type of discrete-time linear control problem for their investigations
and looked at when optimal linear solutions existed. They also studied the role of communication links
between decision makers.
Shortly after this Aoki [1972] looked at the decentralized version of the familiar linear time-invariant

multivariable system (continuous time)

K
%= Ax+ ) Biu (3.3)
k=1

where A € MR, x € ™R By, € mR™, up € "R Vk=1...K. They had a dynamic feedback law for

each controller depending on different partial system outputs.
yk:CkX Vk=1...K (34)

where y, € PR, C; € PrR™ Vk = 1... K. In was shown that the agents must in general communicate

state information with one another for the system to be feedback stabilizable.
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Wang and Davison [1973] generalized the notions of uncontrollable and unobservable modes to the
decentralized case. They show that the process of decentralization introduces fized modes which cannot
be changed through feedback. These fixed modes must be stable in order to stabilize the system using
decentralized controllers. They further provide a procedure for constructing a set of stabilizing feedback
control laws using decentralized pole placement. This work was furthered by Davison [1976] which shows
that under mild conditions, a general robust decentralized servomechanism problem always has solution
regardless of how the controllers are interconnected.

A great deal of work came after these first fundamental results continuing to the present. Decentral-
ized control for linear systems is generally applied in the area of Large Scale Systems (e.g., large flexible

space structures) where centralized control is impractical or impossible.

3.1.2 Centralized Control of Markov Decision Processes

The history of this particular area is elaborate and is perhaps best described from the beginning which
was in the area of single agent or centralized control. The work on completely observable and partially
observable systems will be described first and then we will jump back to the point along this timeline
that decentralized work began and carry this forward to the present.

Bellman [1957] laid the foundations for work in Markov decision processes (MDPs). As in Markov
chains, Markov decision processes usually use a discrete state space to describe the system to be con-

trolled. This state changes probabilistically over discrete-time.
X[t + 1] = A(x[t], uft])

where x € ™S, u € "S,A € ™S™. Note, (X,u) € ™S is the joiut probability distribution defined in
the previous chapter. The difference between Markov chains and MDPs is that the latter allows control
inputs, U[t], a probability distribution over discrete actions which may influence the future behaviour of
the system. Furthermore, there is a set of rewards (which are a function of the current state, previous
action, previous state) which are to be maximized (according to different measures) by the choice of
actions. Thus, an MDP is actually an optimal control problem. It should be noted that MDPs can
also work with continuous state spaces, continuous time and continuous actions but this is less common.
Bellman showed that a stationary optimal policy always exists when the control law can be based directly
on the state of the system

u=Fx

where F € "S™. In fact, for each state of the system, there is one best (or a finite number of equally
good) action(s) to take.

This result was extended to the case of continuous state and action spaces by Howard [1960] not long
after. Still, however, the control was based directly on the complete system state; this is generally called
a completely observable system.

Drake [1962] pointed out the fact that it was unrealistic in real systems to have direct access to the

system state and looked at observing the state of an MDP through a noisy channel.

X[t + 1]
y[t]

A(X[t], uft])
Cx(t]
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where y € S, C € PS™. The control law was based on the noisy observation, y, rather than the system
state, X. This type of system is now commonly referred to as a Partially Observable Markov Decision
Process (POMDP). Astrom [1965] showed that a discrete-state POMDP could be converted to an MDP
with continuous state space. This meant that in principle it could be solved as Howard [1960] had shown
the converted problem to be solvable. Astrom [1965] was able to solve a small POMDP using dynamic
programming (value iteration).

Smallwood and Sondik [1973] were the first to notice that if there were a finite number of time-steps
remaining in the control problem, the optimal payoff function is a piecewise-linear, convex function of
the current state estimate of the system. They derive a method to calculate the optimal control policy
for any finite horizon problem. Their method falls into the category of policy iteration which means that
each iteration of the algorithm produces a better policy than the previous one. This is in contrast to
value iteration which works to successively better approximate the optimal payoff functions for following
a particular action from a particular state estimate. Sondik [1973] extended the previous work to consider
the case of an infinite horizon but was unable to prove conclusively whether this problem can be solved
in general (this has been looked at again more recently and is discussed below).

Papadimitriou and Tsitsiklis [1987] put forth an important paper describing some of the complexity
results for MDPs and POMDPs. They find that MDPs with stochastic transitions are P-complete which
means that they could not be solved by highly parallel algorithms. However, when the transitions are
deterministic, MDPs could be solved very quickly in parallel. This implies that the stochastic nature of
these problems introduces a much deeper complexity than expected. They further show that POMDPs
are PSPACE-complete which means they are even harder to solve than NP-complete problems (e.g., the
travelling salesman problem). These results were fundamental in guiding future research in this field as
they illuminated for the first time the boundaries of computational tractability.

Ramadge and Wonham [1987] introduced discrete-event systems (DES) and proved a number of
control theoretic results. These are not Markov processes exactly but they are related and there have
even been some decentralized control results proved in this framework. They have states and transitions
between them but do not assign probabilities to these transitions. Instead they are labelled either
controllable or not and the idea to make sure the system can always get to a marked goal state.

All of the work detailed to this point has assumed that the transition matrix, A, containing the condi-
tional probabilities of the world moving from one state to another, is known. Some techniques, however,
do not require this matrix to be known ahead of time. Watkins [1989], Watkins and Dayan [1992] pro-
posed a now famous method known as Q-learning which falls into the category of reinforcement learning.
The agent or planner is given the current state of the world as well as the reward signal. It learns online
and has been shown under certain conditions to converge to the correct solutions. In fact, in practice it
often works fairly well even when these conditions are violated (within reason). Schmidhuber [1991] also
looked at reinforcement learning for Markovian as well as non-Markovian domains. The advantage of
reinforcement learning methods is that complicated models of the physical system being controlled need
not be constructed nor approximated. They may be learned online instead. Chrisman [1992] and McCal-
lum [1992] both looked at learning a solution to a POMDP within the reinforcement learning framework.
[Barto et al., 1995] is one of the best references on generalized reinforcement learning methods.

A group of researchers at Brown University took up the investigation of POMDPs starting in the mid
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1990s. Most of this work focussed on creating algorithms which could solve larger POMDPs (more states
and actions) in more computationally efficient ways. Littman [1994] looked at the limitations of using
memoryless policies (e.g., reactive control) in non-Markovian environments. He showed how memory was
able to circumvent the problem of partial observability. Cassandra et al. [1994] and Kaelbling et al. [1998]
put forth the Witness algorithm which was an approximate value iteration method. Still, it was limited
to problems with about 16 states. A good deal of work in this area turned to approximations in order to
combat the results of Papadimitriou and Tsitsiklis [1987]. Littman et al. [1995b] provided a more detailed
look at some of the complexity results for MDPs in order to help further guide the search for efficient,
practical algorithms for these problems. Littman et al. [1995a] reviewed the current POMDP research and
suggested ways of combining some techniques in order to scale up to larger, realistic problems. Parr and
Russell [1995] introduced Smooth Partially Observable Value Approzimation (SPOVA) to approximately
solve POMDPs. Their technique can be combined with reinforcement learning methods. Cassandra
et al. [1996] used POMDP techniques to deal with navigation of a mobile robot under uncertainty.
Cassandra et al. [1997] proposed Incremental Pruning, a fast exact method for solving POMDPs and
showed it outperformed all previous exact methods on a set of benchmark problems. Cassandra [1998]
provided exact and approximate algorithms for POMDPs and is an excellent introduction to the field.
[Hansen, 1998a] is also a valuable reference for policy-iteration techniques.

Zhang and Liu [1997] proposed to transform a POMDP into another POMDP which would be easier to
solve because an “oracle” provided additional information about the world. The optimal policy computed
for the easier problem could then be modified for the original one. Hansen et al. [1997, 1998b] put forth an
improved policy iteration algorithm for POMDPs which used a finite-state controller representation. At
each iteration of his algorithm, a successively better finite-state controller was produced. His algorithms
are able to handle problems with 100 to 1000 states. Thrun et al. [1999] proposed using Monte Carlo
methods to solve POMDPs with continuous state and action spaces. Baxter et al. [1999] used gradient
methods to solve parametrized versions of large POMDPs. Peshkin et al. [1999] looked at solving
POMDPs by using an external memory which agents can write to or read from in order to deal with
non-Markovian states.

Madami et al. [1999] revisited the issue of whether infinite horizon POMDPs are decidable or not.
Their result states that given an infinite horizon POMDP, it is not possible to state whether or not a
policy exists that will succeed with probability better than some threshold. Goldsmith and Mundhenk
[1998] and other researchers at the University of Kentucky have produced a large number of results on
complexity of MDPs and POMDPs.

Currently there are several techniques for solving both centralized MDPs and centralized POMDPs
exactly and approximately. The approximate techniques have gained popularity due to various com-
plexity results showing how hard it will be to scale up the exact methods to realistic size problems.
The largest POMDPs which can be dealt with are on the order of 1000 states but this requires knowing
the model a priori and requires a great deal of computation. It seems that in general value iteration
works better on small problems but policy iteration takes over and begins to become more efficient at
finding approximate solutions as the problems become more complex (more states, actions). A similar
phenomenon is prevalent in nature. Genetics (policy iteration) seems to solve the large problems while

individual learning (value iteration) is able to deal with smaller, fine tuning problems.
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This long list of centralized control results has been included mainly to make the point that when the
system is partially observable, even when the model is known perfectly, it is extremely burdensome to
use POMDP algorithms for the centralized control case. It is certainly even worse in the decentralized
case. Our focus will be to suggest avenues that may make the decentralized case only as bad as the
centralized case, not worse. Still, we find that for a system that will be implemented in the real world

(e.g., a robotics system), POMDP algorithms are currently not practical (but may be so in the future).

3.1.3 Decentralized Control of Markov Decision Processes

We now jump back in time to describe the start of research in decentralized control of MDPs and
POMDPs as well as other related models. Some of the earliest work on decentralized decision making
comes from the control literature. Wheeler and Narenda [1985, 1986] proposed various models for
decentralized decision making under uncertainty (an MDP being a specific case). They stress that “any
study of interacting decision makers inevitably entails game-theoretic issues”. Tsitsiklis and Athans
[1985] analyzed the complexity of decentralized decision making and detection problems. They found
that for a “team decision problem” (similar to an MDP) with 3 or more decision makers is NP-complete.
In fact, a polynomial-time algorithm only exists for 2 decision makers with 2 action choices each. More
decision makers or action choices makes the problem NP-complete (no polynomial time algorithm exists).

Aicardi et al. [1987] looked at decentralized control in the POMDP framework where the decision
makers share their past observations and actions with a delay of k time-steps. It was shown that a
dynamic programming procedure can be applied to this situation to come up with a solution. Aicardi
[1995] looked at a control theoretic approach to coordination of a team of mobile robots.

Zhang [1994] introduced decision networks which are a generalization of MDPs and influence dia-
grams. He looks at decentralized coordination in this framework by using a separability property in the
reward function.

Schmidhuber [1996a, 1996b, 1997] proposed various high level learning methods for “realistic multi-
agent reinforcement learning”. These methods are approximate schemes that work like an overseer to
other learning methods, to make sure they were progressing adequately. They are somewhat ad hoc
and do not provide any great insight as to what is really going on in a decentralized POMDP. Ono and
Fukumoto [1997] attempted to build a reinforcement learning algorithm that will scale to more agents
and bigger worlds by imposing a radius of influence on each agent (outside of which they did not make
observations). In a small predator-prey simulation they showed that reactive agents can still learn good
policies despite their partial observability. Versino and Gambardella [1997] analyzed various decentral-
ized reinforcement learning paradigms (e.g., private vs. public policies, homogeneous vs. heterogeneous
agents, the credit assignment problem) in the context of a simple simulation.

Boutilier [1996] proposed Multiagent MDPs (MMDPs) in which each agent has access to the full state

and the idea is to get the agents to make good group decisions.
X[t + 1] = A(X[t], u[t])) Vk=1...K

where X € ™S, U, € "SVk=1...K, A€ ™S"™" where n = Hle ng. This work builds on Bellman’s

result that for every state there is a finite set (minimum size of one) of equally good centralized actions
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to take. The main problem addressed is how to coordinate the decentralized actions, Uy, when there are
more than one equally good centralized actions. Various coordination mechanisms are discussed. This
work is very relevant to the later chapter on self-organization in this document.

Claus and Boutilier [1997] discussed the dynamics of decentralized reinforcement learning on coordi-
nation games. They discuss game-theoretic issues and stability of solutions. Wessels [1997] attempted to
formally introduce multiagent reinforcement learning techniques which use average rewards and stochas-
tic policies to deal with partial observability. Ooi et al. [1997] looked at decentralized control of POMDPs
where the decision makers share their information with one-step delay every k time-steps. They show
a useful separation property in this situation such that control laws may be designed independently for
each decision maker.

Sun and Peterson [1999] described multiagent reinforcement learning heuristics which partition a
global task and use agents selectively based on that partitioning. They find some of their techniques
outperform single agent monolithic approaches to learning for groups of agents (centralized approaches).
desJardins et al. [1999] and Boutilier [1999] provided excellent overviews of multiagent research and
outline future challenges and opportunities in this area.

Berstein et al. [2000] introduced Decentralized POMDPs (DecPOMDPs) which are similar to models
used by previous researchers. They combine the decentralized control of MMDPs with the partial
observability of POMDPs.

X[t + 1]
yk[t] = CkX[t]

A(X[t],uklt]) VE=1...K

where X € ™S> U, € ™S, Yy, € PxS, C, € PS™VEk =1...K and A € ™S™" where n = Hle ny. The
decentralized controls, U, must be based on the observations, Y, not the full system state X. They
extend the complexity results of Tsitsiklis and Athans [1985] to their model and show that it would
extremely difficult (doubly exponential time) to solve these types of problems. They hope these results
will guide researchers to appropriate areas of approximate solution (advice which is certainly heeded in
this thesis).

Peshkin et al. [2000] looked at a decentralized version of POMDPs in which decision makers may have
different views of the world but have a common reward signal (or goal). They use gradient descent in
a parametrized policy space to come up with solutions and demonstrate their technique on a two-agent
soccer environment.

There is not a great deal of theoretical work in the area of decentralized planning or control (of Markov
systems) although Weiss [1999] is a good summary of work in the general field of multiagent systems.
There are, however, countless examples of researchers applying variants of reinforcement learning, genetic
techniques and other heuristics to simulations and physical systems.

The relationships between the various Markov decision models described above may be drawn as

follows. _
MDP Decentralize MMDP

Control

PartiallyJ/Observe Pﬂtl'“a“yJ/Observe

POMDP Z=2lizes 1o .POMDP

Control
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It would be more consistent if MMDP were renamed to DecMDP but that name has been used to
mean something else [Berstein et al., 2000]. Alternatively, perhaps DecPOMDP should be renamed to
MPOMDP. To avoid confusion we will keep with the names in the diagram.

Certainly decentralized systems are being looked at from a number of very different perspectives. It
is hoped this review has been able to provide a broad view of current efforts and past accomplishments.
There is a great deal more out there but these are examples are representative in their complexity and
depth.

3.2 Statistical Dynamics

It will be useful to touch on an important point concerning stochastic difference equations as they pertain
to all the statistical dynamics models considered here. A difference equation (with discrete time, t) of
the form

X[t + 1] = f(X[t])

where x € ™S and f(x) € "F" may be considered on two quite different levels. We must recall that x
is really a probability distribution for the random variable, X. This distribution describes with what
probability each of n discrete states, X; Vi = 1...n, is occupied. The stochastic function, f(x) € "F"*,
describes the probability of each state at the new time-step, given the probabilities at the old time-step.
It is a transition function.

On one level, we may think of the system occupying a specific state, x € "D, at each time-step
with probability 1. The transition function comes into play only at the instant of transition. A single
trajectory of specific states is the result. The second level on which we must consider difference equations
is the ensemble. Here all possible trajectories are considered simultaneously and the state vector, X € S,
now indicates with what probability each state is occupied. It is essentially an average over all possible
trajectories. This concept is used very frequently in such fields as statistical mechanics. We will refer to
these two different modes of analysis as trajectory and ensemble and will distinguish between them as
necessary. There is a nice property of ensemble analysis. Namely that if we wish to evaluate the state

vector (probability distribution) at some time s steps into the future we may do so as follows

X[t + 3] =f<f(---f(x[t])---)> = (x[t])

'

§ compositions

where we simply take compositions of the function, f(x). Throughout much of this chapter we will be
using ensemble analysis as it allows us to make sure the system behaves properly on average, not just
by good fortune in a single specific instance. However, it will sometimes be necessary to discuss both

paradigms.

3.3 Markov Decision Problems

Given the results of Berstein et al. [2000] and Tsitsiklis and Athans [1985] it would not be productive to
plunge directly into creating solutions for the DecPOMDP model. Even if it is theoretically possible to
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come up with optimal controllers, it does not mean they will be either practical, scalable to a realistic
number of states, or even interesting. We will instead investigate the effect decentralization has on this
type of system in general. What types of limitations does it impose? When can decentralized controls
perform as well as a centralized one? What can be done to combat the effects of decentralization? These
fundamental questions are those with which we will be concerned. We will argue that decentralized
controllers that communicate may perform as well as a centralized controller. We first must set up the
DecPOMDP model in stochastic algebra?.

3.3.1 Projection Matrices

Projection matrices® are used to move between global (centralized) and local (decentralized) versions of
variables. It should be pointed out that we will be assuming that there are K sensor/actuator clusters.
It would be more general to allow the number of clusters of sensors to be different than the number of

clusters of actuators but this will not be considered here.

Control

Control projection matrices are used to move between the global and local versions of the control vari-
ables. They are deterministic matrices but may also be considered to be nonlinear stochastic functions

which act on the global control. They are of the form
B, = [b“] = [p(wi|uj)] € MEET TS e RS (35)

where kK =1...K and m = Hle my. Given some global control, u € ™S | the local controls, wy, € ™S

are given by

Wy B;
Wo B

= ) u (3.6)
Wg Bx

where K is the number of decentralized controllers, and the By, are the control projection matrices.
In general, the control projection matrices could be stochastic but here we will consider them to be
deterministic. Furthermore, to ensure the local controls are able to construct all the possible global

controls we require that
BB, ®B)B;® -.- o BiBg =1 (3.7)
To ensure the local controls are independent this identity should never be satisfied if any of the terms

are removed. This requires that

BB, =Q i#j (3.8)

2 Although uncontrolled Markov chains have been studied using stochastic matrices, it seems that Markov control models
typically are not. The stochastic algebra described in the previous chapter makes this possible.

3These are not the projection matrices described in the chapter on Stochastic Algebra but their function is similar
enough to warrant the term, which will be used throughout this section.
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If the global control is a statistically independent joint probability distribution of the local controls?,

then we have

u = 1u
= (B]B; @ --- @ BxBk)u
= BBjue® --- ® ByBgu

= Blw ® .-+ @ Bowg (3.9)

This allows us to go from the local controls to the global control. It is essentially (3.6) subject to the
constraint that the local controls are independent. Versions of this equation can be used to combine any
two statistically independent local variables (individual probability distributions) into a global variable

(joint probability distribution).

State-Observation

State-observation projection matrices are used to move between the global state of the system and
local observations of that state. For now we consider the state-observation projection matrices to be

deterministic but will later relax this condition.
Ck = [C,’j] = [p(y,|£13])] € P S s PES (310)

where k = 1... K and n > pi. Given some global state, X € ™S , the local observations, y; € PSS, are

given by
Y1 C
\ C-
= T |x (3.11)
YK Ck

where K is the number of decentralized controllers, and the Cg, are the state-observation projection
matrices. In general, the state-observation projection matrices could be stochastic but here we will
consider them to be deterministic. Note, we might choose that by combining all information available

to all controllers would result in perfect observations of the state or
CilCieoCCyo® -.- ®CCxr=1 (3.12)

This case is equivalent to the DecMDP framework described in [Berstein et al., 2000]. If (3.12) does not

hold then in general we have that

X = (CiC; ® --- & CCg)X (3.13)
= CiCix® --- & ClCkX
= Cyi® - oChyk (3.14)
X

4Recall example from the chapter on stochastic algebra.
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Notice that there is no unique inverse to (3.11) as a result of (3.12) not being true. Instead, we get an
estimate, X, of the state which is no longer deterministic.

Note, in the literature, the state-observation projection matrices (or their equivalents) sometimes are
a function of both the global state and the global control. We find the model to be rich enough without

this added complication.

Control-Observation

Control-observation projection matrices are used to move between the global control of the system and

the local observations of that control.
D, = [d”] = [p(vl|u])] € *F™ ;™S i *S (315)

where K =1... K and m > qi. Given some global control, u € ™§ | the local observations, vj € %S, are

given by
Vi D,
Vo D,
VK Dk

where K is the number of decentralized controllers, and the Dy, are the control-observation projection
matrices. Often in centralized control literature, it is assumed that the controller has access to past
controls. However, in decentralized control, this is a dangerous assumption as one controller may not
be able to observe which controls the other controllers have effected. The control-observation projection

matrices have functionally similar equations to those of the state-observation projection matrices.

3.3.2 Transition Matrix

The transition matrix works in a slightly different way than the other system matrices. It must depend

on both the global system state, X, as well as the global system control, u.
A = [ai;] = [p(wi|@, ur)] € "F™" TS = TS (3.17)

It describes how the system unfolds over time. Given some global state, X[t], and global control u[t], we

have

X[t + 1] = A(x[t], u[t]) (3.18)

where (X[t], u[t]) is the (statistically independent) joint probability distribution constructed from X and

u. We may also express this difference equation in the form
X[t + 1] = [A1 Ay - Am] (X[#], ult]) (3.19)

where the A; € "S™ Vi = 1...n are individual transition matrices for each of the m global controls. In

general, the transition matrix is stochastic.
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3.3.3 The DecPOMDP Model

It is useful at this juncture to summarize the equations which constitute the DecPOMDP model

[Berstein et al., 2000]. These are essentially (3.19), (3.9), (3.11), and (3.16) written more succinctly.

Definition. DECPOMDP: A Decentralized Partially Observable Markov Decision Process

is described by the system of stochastic equations

Xt+1 = [A1A2---Am](x[t],u[t]) (3.20)
K

ut] = P BLwlt] (3.21)
k=1

vilt] = CiX[t] Vk=1...K (3.22)

Vklt] = Dpult] Vk=1...K (3.23)

where X € S and A; € "S™ Vi = 1...n with n, the number of global states of the system.
u € ™S with m, the number of possible global controls. wy € ™*S, yi, € P*S, vi, € %*§, By €
mem o Cp € PrD?, D € %™ Vk = 1...K. K is the number of agents or decentralized

controllers for the system. Thus, the tuple®
{Ai,Bk,Ck,Dk} Vi=1l..mVk=1...K (3.24)
uniquely characterizes a DecPOMDP.

In our stochastic algebra, this is a nonlinear system due to the structure of the transition matrix. Given
a DecPOMDP, the goal is to come up with controllers which produce appropriate behaviour. What

constitutes appropriate behaviour will be discussed later. This brings us to another definition.

Definition. DECPOMDP SOLUTION: A solution to a DecPOMDP consists of a set of K

controllers
{hl, ho, ..., hK}

where hy € ™*F Vk = 1... K which produce local controls, Wy, given the past local observa-

tions of both the global system state, yi, and the global system control, vy.

hy,... hi,
Wk[t] = hy Yk [t]a e Yk [0]7 (325)
Vk[t — 1],. . .,Vk[O]

Notice that each controller is a function of the other controllers. This is meant to indicate one type of

coupling that occurs between controllers which will be explained shortly.

3.3.4 Separation

There is fundamental result which is often exploited in centralized control, namely separation of state

estimator design and control law design. It allows one to design a rule which estimates the global system

5The word “tuple” will be used to describe a group (of arbitrary size) of associated matrices. It is derived from quintuple,
sextuple, septuple, octuple, ...
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state, X[t], independently of the control law, which produces controls based on this state estimate such

that

T yltl, .- -, ¥[0],
= hse(u[t—l],...,u[O]) (3.26)

ut] = heon (X[t]) (3.27)
where hy, € "F is the state estimator and hgon € ™F is the control law.

Theorem 1. In centralized control, the design of a state estimator (observer) may be carried

out independently of the design of a control law.

Proof. This was shown by Astrom [1965] for POMDPs. |

This relies on the fact that the past global controls, u[t—1],. .., u[0], are known perfectly which is usually
a good assumption for centralized control.

However, for decentralized control this is not necessarily so. While a controller may have perfect
recall of its own past local controls, W[t — 1], ..., W[0], it may not have access to the past local controls
of the other K — 1 controllers. This is why the control-observation matrices are in the DecPOMDP
model. A control estimator may also be necessary to estimate what global controls were used in the
past. Furthermore, the control estimator can be a function of the control laws of the other agents
(one can guess the controls of the other agents better if one has access to their control laws). In
decentralized control, both a state estimator and a control estimator are required in the most general
case. Furthermore, the design of the control estimator is a function of the local control laws of all K

controllers so that

hcon,l; e hcon7K
Urlt] = heer | Kift], (3.28)
Vk[t], Ce ,Vk[O]
o _ yk[t]7"'7yk[0]7
Xk[t] = hseJc ( ﬂk[t B 1] ) (329)
Will] = heon (%14) (3.30)

where heep € ™F is the control estimator, hee ;, € ™S is the state estimator and, heonr € ™F is the
control law Vk = 1... K.Thus in decentralized control, the design of the state estimators is coupled to
the design of controllers through the control estimators. This is because each controller does not have
access to the past controls of the other K — 1 controllers and that a better estimate of this unknown
information may be achieved with knowledge of the other control laws. This coupling makes the general
decentralized case much more difficult than simply solving K problems of the centralized difficulty. There
are, however, a number of simplifications which can be made to recover the separation property.

The first simplification which regains separation is to assume that the control estimators do not have

access to the control laws.In decentralized control, when control estimators do not have access to control
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laws, we have

Ut = hce7k<2’“[t]’ ) (3.31)

Vk[t], e ,Vk[O]
o _ yk[t]ﬂ"'ayk[o]a
Xk [t] = hse,k < ﬂk[t B 1] ) (332)
Wi[t] = Neonk (Xk [t]) (3.33)

where we see that separation of the design of control laws, state estimators, and control estimators
results.

Another simplification which regains separation is to assume that the controllers are able to per-
fectly observe each others past controls, possibly through communication.In decentralized control, when

controllers have perfect access to the past controls of the other controllers we have
Di=Dy=.--=Dg=1 (3.34)

rendering the control estimator unnecessary. We then have

Sl = s ( yelt, - .],yk[O], ) (3.35)

gt — 1
wWi[t] = hcon,k(ﬁk[t]) (3.36)

where we see that separation of the design of control laws and state estimators results.
Another simplification which can be made is that only reactive control is to be used. Reactive control
refers to a controller only using its most recent observation in the state estimate.In decentralized reactive

control, the control estimator is unnecessary and we have
Xe[t] = Do (Yk[t]) (3.37)
Wilt] = heoni (xk [t]) (3.38)

where we see that separation of the design of control laws and state estimators results.

3.4 State Estimation

We first consider the case of centralized state estimation. The goal of state estimation is to come up

with an estimate of the global state of the system, X[t] based on past observations and controls

— ylel, -, 0],
X = Pee ( uft —1],..., u[0] ) (3.39)

In the stochastic algebra, a single-step (or static) state estimator can be constructed as
K[t] = C'y[t] = C"CX]t] (3.40)

where C'C may be thought of as a filter through which the true state is observed. As we can see,

this estimator is based on (2.2), the wniformly biased inverse from Section 2.15, Page 35. This single
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step state estimate may be combined with an old state estimate to arrive at a recursive state estimator
[Astrom, 1965]
K[t + 1] = Alt]X[t] @ CTy[t + 1] (3.41)

where A[t] = A(u[t]). Notice the role of the past global control u[t] in determining At]. Here the
estimate at the old time has been brought forward in time using the transition matrix and becomes the
bias for the estimate at the new time. We assume X[0] = w. This is where the main difference between
centralized state estimation and decentralized state estimation occurs. In the decentralized version we
have At] = A(Q[t]) where the past global control is now estimated as each controller does not necessarily

know which controls were effected by the other K — 1 controllers.

3.5 Control Laws

Some discussion must be given to what constitutes appropriate behaviour of the system. Essentially
there are two possibilities. First, we wish to use controls to get the system into a particular goal
state. This is the problem of controllability. Second, there is some cumulative reward function over the
states/controls which must be maximized. This is the question of optimal control. For now we assume
the latter situation but some discussion will be given to controllability later. Thus assume there is a

stationary reward function, p(X, U), over the states/controls
p:"Sx™S— R (3.42)

Furthermore, assume we are trying to minimize the infinite horizon cumulative discounted sum, ps,¢, of

this function

prot = p(X[0],u[0]) +yp(X[1],u[1]) + - -~

> 2 et uft]) (3.43)
t=0

where v € [0,1) is the future discount constant.

Bellman [1957] showed, using dynamic programming, that for the centralized case with C = 1 (an
MDP) that the optimal control law is stationary (time invariant) and that there is always one best
(or a few equally good) actions to be taken from each state. The general centralized case (C # 1; a
POMDP) is much more complicated and involves transforming the problem into a continuous state MDP
which is fully observable [Astrom, 1965]. The continuous state MDP problem was solved by Howard
[1960]. Recent results [Madani et al., 1999], however, have shown that the infinite-horizon POMDP case
to be generally undecidable (impossible to prove a control law exists in the general POMDP case).
Note there are other cumulative reward functions available including average cumulative reward and
finite-horizon cumulative reward. This results in different types of solutions to the centralized problem.
We will examine only the infinite-horizon case as it is easier to manage a stationary control law. The
decentralized results to follow should extend to these other cases.

In the DecPOMDP framework, there are not currently any results proving the existence of decen-

tralized control laws for an arbitrary problem. As mentioned in the introduction to this chapter, the
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approach here will be to present situations where decentralized controllers can carry out identical global
controls to a centralized controller. Thus, we may be able to capitalize on existence proofs for the cen-
tralized case. As we will see, this will involve communication between the decentralized controllers. The
next section will treat the specific case of reactive control, where only the most recent observations are

used in the control process.

3.6 Reactive Control

We consider the case of reactive control in some depth. Bellman’s [1957] optimal stationary control law

for the case of C = 1 can be represented as
uft] = Fx[t] (3.44)

where F € ™S" is the control law matriz. We have chosen to represent this matrix as generally stochastic
as there can be more than one equally good action to follow from a particular state. This will have
ramifications for decentralized control [Boutilier, 1996]. However, in every case of more than one equally
good action we could choose one of these to follow only and the resulting control law, F € ™D" would
still be optimal

uft] = Fx[t] (3.45)

This will provide a useful simplification later but it should be noted that it may involve more work in
the design of F. Before moving on to decentralized control we make the observation that although it
was assumed that C = 1 to come up with this solution, there could exist C € PS™ # 1 that still allow
F to be implemented perfectly. In this case, the control law must be based on a state estimate rather
than the perfect state so that

uft] = FX[t] (3.46)

Combining (3.46) with (3.40) we arrive at
u[t] = FC'Cx[t] (3.47)
Comparing (3.46) with (3.44) we arrive at the following statement.

Theorem 2. The tuple
{F.C}

is exactly implementable (in the POMDP case) if
F=FCC (3.48)

where F € ™S™ is the control law matriz (designed for the C = 1 case) and C € PS™ is the

actual observation projection matrix.

Proof. Substituting F = FC' C into (3.47) results in (3.44). [ ]
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This condition is sufficient but not necessary as more complicated state estimators may help. Further-
more, F need not be an optimal control law when considering Theorem 2; it is a general result. It is
simply saying that if two different actions are to be taken in two different states, the controller must be
able to distinguish between those two states. States from which the same action is to be taken need not
be distinguishable.

Consider now that there are K clusters of sensors/actuators and that all sensor information is com-
municated to a centralized control law which in turn communicates controls to all actuators. In the

framework presented here this may be represented by the following centralized control law
uit] = (BiBy @ .-+ @ BxBg)F(CiC; @ --- ® CyCk)X[t] (3.49)

K K
(@ B;Bk> FlECic | il
k=1 j=1

The extension to Theorem 2 is thus

Theorem 3. The tuple
{Bi,F,Ci} VE=1...K

is exactly implementable (in the POMDP case) if

K K
F= (@ B7,;Bk> FlEpcic (3.50)
k=1 j=1

where F € ™S™ is the control law matriz (designed for the Cy = 1 case), B, € ™+S™ are
the action projection matrices, and Cy € PxS™ are the observation projection matrices, where

k=1...K and K is the number of controllers.

Proof. Same as that for Theorem 2. |

In the case that (FT)T = F, there is also a dual to Theorem 3.
Corollary 3.1. Given (F')” = F, the tuple
{By,F,Cx} Vk=1...K
is implementable if and only if the tuple
{C,F",By} VE=1...K
is implementable.

Proof. Based on (2.3), (2.4), (2.5), and (2.6). [ ]
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3.6.1 Classes

Based on Theorem 3, we now define four distinct classes of global reactive controllers based on how

much communication is necessary to implement them using decentralized controllers.

Definition. CLASS I: To implement these controllers neither sensory sharing nor actuator

coordination is required. The tuple
{By,F,Cx} Vk=1...K

can be expressed in the form
K

F = D EBFCC (3.51)
k=1

where F € ™S" is the control law matrix, By € ™*S™ are the action projection matrices, and

Cr € PES™ are the observation projection matrices, where k =1... K.
Definition. CLASS II: To implement these controllers sensory sharing is required. The tuple
{B,F,Ct} Vk=1...K

can be expressed in the form

K K
F= | PEB; | FC.C: (3.52)
k= j=1

1

but cannot be expressed in the form of Class I. F € ™S™ is the control law matrix, By € ™*S™
are the action projection matrices, and C;, € P*S™ are the observation projection matrices,
where k =1... K.

Definition. CrAss III: To implement these controllers actuator coordination is required.
The tuple

{By,F,Cy} Vk=1...K
can be expressed in the form
K K
F=PB.B:F | PCC (3.53)
k=1 Jj=1

but cannot be expressed in the form of Class I. F € ™S™ is the control law matrix, By € ™*S™

are the action projection matrices, and C;, € P*S™ are the observation projection matrices,
where k=1... K.

Definition. CLASS IV: To implement these controllers both sensory sharing and actuator

coordination is required. The tuple

{B,F,C,} Vk=1...K
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()

Figure 3.3: Partitioning of the set of global reactive controllers into four mutually exclusive
classes due to constraints imposed by decentralization of observation and control. Only
those global controllers in Class I may be exactly implemented using decentralized controllers
(without communication).

can be expressed in the form

K K
F= (@ B;Bk> FlEPCic (3.54)
k=1 Jj=1
but cannot be expressed in the form of Class LII, or III. F € ™S™ is the control law matrix,
By € ™kS™ are the action projection matrices, and Cy € P*S™ are the observation projection

matrices, where k =1... K.

These four classes are useful in that each type of global reactive controller requires a qualitatively different
types of communication for implementation using decentralized controllers. Only Class I controllers can
be implemented using no communication between decentralized controllers. However, as will be shown,
with the use of communication between controllers, the other classes may also be implemented (by

essentially transforming them into Class I controllers).

3.6.2 Communication

We will now discuss the following relationships between the classes of reactive controllers.

Class I &ommuieete  (ags 11

Controls
Commu | nicate Commu | nicate (3 55)
Observa | tions Observa | tions .

Class I <22 (lass [V

Controls

By communicating controls and observations, it is possible to transform all centralized reactive controllers

into Class I type controllers which can be implemented exactly using decentralized controllers.

Theorem 4. Reactive decentralized controllers which communicate can implement any reactive

centralized controller exactly. Communication must be perfect and instantaneous.

Proof. Let the implemented centralized reactive controller, Feen € ™S™, be given by

K K
Feen = (@ BZBk) F (@ c;c]-) (3.56)
k=1 Jj=1

where F € ™S" is a Class IV control law matrix, By, € ™*D™ are the action projection matrices,

and Cj € P*ID" are the observation projection matrices, where K = 1... K. The projection matrices
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are assumed to be deterministic as they must be to implement F perfectly even in the centralized
case. This equation represents bringing together all of the sensor data, computing the control, and
sending out the controls to all of the actuators in a centralized manner. Because F € ™S" is a Class
IV control law matrix, we cannot immediately implement it on noncommunicating decentralized

controllers. The implemented decentralized controller, Fjecen € "'S", is given by

K
Fdecen = @ B;BkFcenC::,neka,new (3.57)
k=1

where Ci new € P*S™ represent new projection matrices which result from the process of communi-
cating sensor information. The sharing of observation information may be described as follows. The
state-observation projection matrix for each controller is replaced with another which combines the
communicated state-observation information from all controllers®.

K
Ch.newCronew = P CICy (3.58)

=1
which must be done Vk = 1... K. This makes the assumption that communication is perfect and

instantaneous. We also notice that we now have
Cg,newcl,new == C‘;(,newCK,IleW (3~59)

Using (3.58) and (3.56) in (3.54) we have

K
Fdecen = @BZBkFcenC;,neka,new (3.60)

k=1

P~

K K
B%B: (@ B§Bj) F (@ C§Cl> Cl newCh new (3.61)
j=1

=1

BB (@ Bgsj) F (EB c?cl) (EB c:ci) (3.62)
1 j=1 =1 p=1
BBx (@ B§Bj) F (EB c?cl) (3.63)

=1

k=1

P~

k

1

P> 1P~

B}.BiFcen (3.64)

=~
Il
-

where we have used (2.7) to deduce

(é chi) = (EB c;cj) (@ c};ck) (3.65)
i=1 j=1 k=1

The communication of controls is taken care of in a slightly different fashion. Consider first the
centralized case. When the control matrix, Fcen € S, is not deterministic the centralized controller
must select a deterministic action from the distribution defined by Fcen. It is only at the ensemble
level that a stochastic control has been implemented. At the single-trajectory level, deterministic

actions are chosen.

The K decentralized controllers must also have a method to agree on a deterministic action se-
lected from the possibilities defined by Fcen. Agreeing on controls will in general involve repeated

communications which will be explained in Chapters 4 and 5. Here we will assume they can do so

SIn general we will not need to share all observation information, just enough to satisfy the condition of Theorem 3.
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instantaneously and in a completely decentralized manner and leave Chapters 4 and 5 to explain this
assumption. If we assume that the decentralized controllers are (at each call to the control law) able
to select a deterministic control from the distribution defined by Fcen, then Fcen is able to effectively

distribute (since deterministic matrices distribute) so that

K
Fdecen = @BZBkFcen (3.66)
k=1

K
(GB Bl Bk) Feen (3.67)
k=1

= (é BQBk) (@ B§BJ) F (é c?cl) (3.68)
k=1 j=1 =1

= (EB Bgsj) F EBC?C,) (3.69)
j=1 =1

= Feen (3.70)

thus concluding the proof. We have used that

K K K
(@ BQBi) = (@ BZB]) (@ BZBk) (3.71)
i=1 j=1 k=1
By assuming decentralized controllers may agree on an action from a list of possibilities, we have
avoided half of this proof. This is the problem of self-organization and it is large enough to warrant
treatment in a chapter of its own (Chapter 5).
In the case that the control matrix, Fcen € D, really is deterministic, this has the simplification of
limiting the centralized controller to being in Class IIT or I. The decentralized controllers only need
to communicate sensor information and do not need to communicate to agree on an action to carry
out (since there is only one possibility). This can be viewed as control coordination being imposed

at design time rather than at implementation. |

Thus through the communication of controls and observations, it is possible to implement all classes
of centralized reactive controllers as Class I which can be handled by reactive decentralized controllers
just as well as a reactive centralized controller. This is an important result for two reasons. First, better
performance can be achieved than without the communication, and second, the solution of the more
difficult control problems which arise if communication is not used (e.g., solving a DecPOMDP directly)
is computationally much more involved.

If we assume the condition of Theorem 3 is satisfied (for the centralized case), then there is a mapping
between the diagrams, (3.1.3) and (3.55), and we may see the complete role of communication in decen-
tralized reactive control. The process of decentralizing control can be countered by the communication
(and thus coordination) of local controls between controllers. The process of partially observing actions
may be countered by the communication (coordination) of observations between controllers. There is a

nice dual between control and observation, both being simplified through communication.

3.6.3 Decoupling the System

It should be stressed that the reason Class I global controllers are much easier to work with is that the

contribution of the decentralized controllers can be considered independently of one another. This is
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reflected in the mathematical form of (3.51) which is a simple vector addition of the contributions of
the K controllers. We here see the benefit of using stochastic algebra as we may interpret this addition
as statistical independence. Once communication has occurred, the controllers have been effectively
decoupled, allowing each to behave independently of the others. This however does not mean that the
effects of the controls are decoupled. There can still be interaction between the controllers but this is

reflected through the transition matrix not the controllers themselves.

3.7 Observability and Controllability

To investigate the possibilities for non-reactive control, in which a multistep (dynamic) state estimator
is used, we consider the notions of controllability and observability” in the context of the DecPOMDP
model. These concepts will be presented for the centralized control case and may be generalized to
decentralized systems using similar methods as for the reactive control case. The main purpose of this
section is to show the benefits of improving the state estimator (observability) which applies equally to
centralized and decentralized control. Any differences for the decentralized control case are pointed out.

To complete the section, controllability is discussed briefly.

3.7.1 Observability

When using a multistep state estimator, it is important to know whether or not this estimator, X,
can exactly reproduce the true state, X, in a finite period of time. To answer this, we must make
the distinction between two types of “partial observability”. First, we could have a state-observation
projection matrix of size O x N with O = N but which is nondeterministic. Second, we could have a
deterministic state-observation projection matrix of size O x N where O < N.

Partially observability of the first kind truly is partially observable because the true state can only be
constructed exactly in the limit of an infinite number of measurements. However, with C deterministic,
it is sometimes possible to reconstruct the state perfectly. In general if a multistep estimator is required,
observability requires that the transition matrix, A, is also deterministic. Thus the term “partially
observable” is somewhat misleading in the case of deterministic C and A as the system could actually be
fully observable (in the traditional control theory sense). This is of course a very limited case to which

we devote a small amount of attention for mathematical curiosity.
No Transient States
Consider first a Markov chain only (no control variable) with deterministic transition matrix.
X[t + 1] = AX(t] (3.72)
where X € "D and A € "ID". Furthermore, add the condition that A has no zero rows such that

ATA =1 (3.73)

"When speaking of observability, we mean the observation of the global state, X, as opposed to observation of the global
control, U.
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This ensures there are no transient states, the Markov chain is regular. This condition will be relaxed
later. Let us observe this chain through a deterministic observation matrix.

y[t] = CX][t] (3.74)

where y € PZD and C € PD". Then based on (3.41), the state estimate at time ¢ is the following

ty
Ktg] = EPACCxty -1 (3.75)
t=0
ty
= (PAICTCAYIxX[0] (3.76)
t=0

If we want X[tf] = X[t;] = A*x[0] then we require that

ty
Alr = HA'CTCAL ! (3.77)
t=0

Then using (3.73) we find
ty
(ATYr Al = (AT)ts <@ AtCTCAtft> (3.78)

t=0

and then (2.3)

1 = éfa(AT)thtCTCAtf*t (3.79)
t;o

1 = PA)ic’calt (3.80)
t;o

1 = Ay ccAy (3.81)
t=0

This last step requires that (AT)tf = (Atf—t)T which is true for A € ID with no transient states. We
in fact need only to consider n terms in the addition of (3.81) owing to the Cayley-Hamilton theorem.
The system is essentially cycling through all n states, some of which we may distinguish as observed
through C. Once we have gone all the way through the cycle once, no more observations will improve

the estimate (this will not be so when C or A is nondeterministic).

Detectability

We now consider transient states. After a finite time, the system will never return to these states. It is
a well known property of Markov chains that the transition, A € "ID", and state-observation, C € PI"|

projection matrices may always be expressed (by reordering the states) in the form

Ann A
0 A

c=lci G (3.82)

where Ay € ™ D™ is the transition matrix of nontransient states, Ass € "2D"2 is the transition matrix

of transient states and Ajs € ™™ involves transition from the transient states to the nontransient
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states. Note n; +nz = n. The presence of transient states means that (3.73) no longer holds and thus to
check observability we must use (3.77) rather than (3.81). However, it may not be important to be able
to observe the transient states as the system will leave these eventually and never return. Instead, we
consider only the nontransient states which are still being occupied. If we require only that we be able

to observe the nontransient states this is analogous to detectability of a linear system. We have that
ATLA;; =1 (3.83)

which means we may again use (3.81) to test that the nontransient states are observable. We must
replace A with A;; and C with C;.

Implementability

Certainly if the system is truly observable as defined above then we should be able to implement any
control matrix, F, as though we had access to the system state directly. Furthermore, if it is only
detectable it might be reasonable to say the same. However, as in the reactive case we may further take
advantage of the fact that we only need to tell states apart if they require taking different controls. We

might consider the following

n—1
%(n—1) = PAICCX(n—1-1) (3.84)
t=0
n—1
= (@ AtCTC(AT)t> X(n —1) (3.85)
t=0
so we may check that
ni—1
F=F (@ AtCTC(AT)t> (3.86)
t=0

for implementable observability, where F € ™S™ is the control matrix. This is a generalization of Theorem

2. If we only want to worry about the nontransient states then we can test

n—1
Fi=F <@ Al,C/Cy (Alf)t> (3.87)
t=0
for implementable detectability where
E
F=|' (3.88)
Fo

with F; € ™S™ and Fy € ™S™2.

Reintroducing the Controls

The discussion of observability so far has been limited to Markov chains. We now return to the controlled
system where there are different transition matrices for different control inputs. Observability now means
we must be able to reconstruct the system state regardless of what the controls are. We must require
(3.81) for all possible control sequences. This is clearly not a very practical condition to compute for

large n and m.



3.7 OBSERVABILITY AND CONTROLLABILITY 67

Nondeterminism

The test of (3.81) usual fails when either the transition matrix or state-observation projection matrix is

nondeterministic. For example, consider

A =

! 0] czl P 1_p] (3.89)
0 1 1—p p

which fails the test of (3.81) for finite t;. However, in the limit of an infinite number of measurements

we have
iy
lim AN CCA? 3.90
tf—)oog( ) ( )
ty
_ 3 T
- tfh—I)noogcc
1_
= lim 2t | 7 P
tf—00 ]_ —p P
Q ifp= %

= (3.91)
1 otherwise

which means we will get a perfect state estimate but only in the infinite limit with p # % It is unlikely
that a controller will have the luxury of waiting that long before being required to output a control.
Similar arguments could be made for the case of A nondeterministic. This has led researchers to develop
controllers that do not require a perfect state estimate of the world in order to act (POMDP algorithms),
as described in the literature review section of this chapter. We have been investigating where these
methods are not necessary in the hope of more clearly defining the boundaries. Still, if the above test
of observability does fail even with an infinite number of measurements (e.g., when p = % above) the
POMDP algorithm will not have any information to work with at all.

POMDP algorithms are extremely interesting but unfortunately are at the moment very compu-
tationally intensive. A POMDP can only be exactly solved for a few hundred states. Approximate
algorithms extend the possibilites to a few thousand states but this is still very limited. We suggest that
if the partial observability is actually introduced by the process of decentralization, then communication
is a very reasonable alternative to overcome this problem. Particularly in a practical situation where a

communication infrastructure is also necessary to implement a “centralized” controller.

Decentralized Differences

The main difference between centralized and decentralized state-estimation turns out to be a result of
partial observability of the past global control. In using the recursive state-estimator of (3.41) we see
that the old control is needed in order to know which transition matrix to use in the estimator. If we
have that D = 1 then this problem is avoided as the past global control is then known. This is almost
a universal assumption of centralized control. However, if it is not (as in decentralized control) then we

have the added complication that an estimate of this control must be built and then an estimate of the
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transition matrix

X[t] = At — 1)Kt — 1] © Cy[t] (3.92)
a[t] = FX[t] @ D'v[t] (3.93)
where we now notice that knowledge of the control matrix, F € S, can improve the state estimate.
This coupling between control law and state-estimator makes this case much more difficult than when
D = 1. There currently are not any algorithms which have been designed to explicitly take into account
this coupling but if one were found it would surely be more computationally intensive than solving a

POMDP. In the decentralized case, it would be more complicated than solving K POMDPs. However,

if we assume that each controller can recall its own past controls perfectly then
DD, @eD\,Dy® --- @ D} D=1 (3.94)

which means that communication may once again come to the rescue of decentralized control. If we

define a new control-observation matrix, Dj, new, for each controller, K =1... K, as

K
Dz,nekaynew = @ D7l-Dl =1 (395)
=1

such that knowledge of F no longer improves the estimate of the past global control and

7l-c,neka [t]

D7l-c,new Dkynewu[t]

uft] (3.96)

U [t]

which means we may now solve K POMDPs as a worst case. As discussed earlier, further communi-
cation may be able to ensure an even simpler problem to solve than this. With full communication of
both observations and controls, decentralized controllers should be able to implement the same global

controller as the centralized case.

3.7.2 Controllability

In linear systems, controllability refers to the ability to achieve any system state through appropriate
control sequences, regardless of the initial conditions. Controllability of an MDP really only makes
sense when the transition matrix is deterministic. It is possible to derive a rank condition involving the
transition matrix but it is not particularly practical. The main reason for this is that the transition
matrix depends jointly on the old system state and the control; it is nonlinear. The contributions of
these must be combined before multiplying by the transition matrix, not after.

The more general concept, reqularity or ergodicity, handles the case of nondeterministic transition

matrices. A simple test, in the case of deterministic transitions, to determine regularity is

Theorem 5. Compute the following

Axlt] = [A1A2---Am](x[t],u[t]) (3.97)

U=w

N

W1+A)" (3.98)
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The system is regular if and only if N has no zeros.

Proof. Based on a result in [Nazin and Poznyak, 1986] which says that the underlying Markov
structure (e.g., the number and size of the ergodic subclasses) under an arbitrary control strategy
is the same as under a randomized control strategy (i.e., it is invariant to the control strategy). See

also [Poznyak and Najim, 1999]. Expanding we have

¢(1+A)"71 =L I+A+AT LAY (3.99)

n terms

where we need only n terms in the sum to fully characterize A (Cayley-Hamiliton Theorem). If
there is an entry of N which is zero then it is zero in all n terms above. This implies that there
is a transition path between two particular states which may never occur (no matter how long we

wait) and the system is not regular under random controls and thus not regular under any controls. Bl

This relies on the fact that under a random control matrix, the system will visit all possible states if the
system has only one ergodic set [Nazin and Poznyak, 1986]. This means that there is a control sequence
which will (with probability > 0 ) eventually take the system to any state from any state. The fact
that n is finite means that it can be done in finite time (on average). We are essentially testing that
the transition matrix, under random controls (and thus any controls), is regular. The above theorem
handles the case of transient states automatically. The theorem says nothing about being able to stay

at a particular state or how often the system will visit it, only that it is possible to visit it.



70 Chapter 3. STOCHASTIC CONTROL SYSTEMS

3.8 Linearizing a Markov Chain

Recognizing that a Markov chain is a nonlinear equation in our stochastic algebra, we turn to some
of the common techniques of nonlinear analysis (see, for example, [Khalil, 1996]). These will later be
extended to the DecPOMDP model of (3.20) through (3.23). It is well known that a Markov transition

matrix, A € "S™, may always be expressed (by reordering the states) in the form

(All 0 0 e Alm ]

0 Az 0 - Ay
A=1|0 0 Az - Asm (3.100)

L 0 0 0 - Ap,

where A;; € MS™ Vi =1...m and A;,,, € "S"™ Vi = 1...m — 1 [Kemeny and Snell, 1976]. Here m is
the number of ergodic sets® associated with the transition matrix A and n = 2211 n;. The bottom n,,
states are the transient states.

When there is only a single ergodic set the Markov transition matrix is sometimes called regular
(a.k.a., ergodic, stationary, normal). Each of the A;; Vi = 1...m is a regular transition matrix. A very
nice property of a regular transition matrix, A € "S", is that

lim A" = [bb--- b] (3.101)

t—o0

where b € ®S. That is, all the columns of the combined transition matrix, Af, approach a single

distribution, b, as t — oo [Papoulis, 1965]. Thus b is an equilibrium of the transition function
b=Ab (3.102)

We may interpret this equilibrium distribution in one of two ways. First, we may think of it as the prob-
ability of a single trajectory passing through a particular point in state-space. Second, it has been shown
that the equilibrium distribution actual defines the fraction of time (over an infinitely long interval) that
a single trajectory will spend in each state (see, for example, [Papoulis, 1965] or [Cox and Miller, 1965]).
It is in fact possible to use an information theoretic measure, such as Shannon information, as a Lyapunov
function to show that b is in fact globally asympototically stable [Prigogine and Stengers, 1984].
Although the stochastic equation
X[t + 1] = AX[t] (3.103)

with X € *S and A € ™S™ is linear in matrix algebra, the addition and zero of matrix algebra are not
relevant to stochastic matrices, hence we turn to stochastic algebra. In stochastic algebra, this is a
nonlinear equation even when A is regular. Let b € S be the equilibrium of A. We may then shift the

equilibrium, b, to the origin, w, through the change of variables X =y ® b where y € ™S so that

yit+1]=A(yft eb) ob (3.104)

8The number of ergodic sets (a.k.a., ergodic subclasses) may be computed as the number of eigenvalues of A equal to 1
where the characteristic polynomial is det(A1 — A) not det(X\-Z © A). Kemeny and Snell [1976].
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so that now when Y[t] = w we have y[t + 1] = w. We now have a stochastic equation with a stable
equilibrium at w. Still, however, this is not a linear equation. Another common technique from nonlinear
analysis is linearization. We select an operating point, typically an equilibrium, around which the
nonlinear equation is replaced by a linear one. The linear equation is an approximation of the nonlinear

one. To do this we let
Xx=b e ix (3.105)

where dx € "S and b € ™S is the operating point. Then, the linearized equation (about b) is given by

X[t +1] = 6]:3(;) ® 0X[t] (3.106)
x=b
where
f(x) = Ax (3.107)
and 3 (%)
X
X | (3.108)

is the Jacobian of f(x) evaluated at the desired operating point X = b. We at last have a linear equation

to which the full force of linear algebra may be applied.

Example. Consider the system

Xt +1] = [1;;) 11}] X[t]

which has a regular transition matrix (for p € (0,1), ¢ € (0,1)) and an equilibrium at

-

The linearized equation is then

_ 9t
X[t +1] = X x:b® OX[t]
el=pa 1
= ,L 1 el—p—q ® 5X[t]
= (1-p—q) E®Xt]
q
Where6X=X6|::|. O
D

One of the main advantages of this technique is that we may now consider the eigen problem, thus
characterizing the equilibrium point by its eigenvalues. For a linearized regular Markov chain these
eigenvalues should always have magnitude < 1 as we know the equilibrium of the nonlinear system is
globally asymptotically stable [Papoulis, 1965]. Note, solving the eigen problem for a regular, A, with
characteristic polynomial det(A1— A) always has as one eigenvalue, A = 1 (since there is a single ergodic
subclass). However, in the new eigenvalue problem (in stochastic algebra) with characteristic polynomial,
det(A-E © A), we lose this eigenvalue. This is because the new characteristic polynomial is of a smaller
degree (by one). It makes a great deal more sense to consider the new stochastic algebra eigen problem

as the system really has only n — 1 degrees of freedom and thus will have n — 1, not n, eigenvalues.
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Example. Continuing from the previous example. The characteristic polynomial is

p(A) = det <)\-E o A)

which has the root A =1 — p — g. Notice for p € (0,1), ¢ € (0,1) we have |A| < 1 which means the

equilibrium is stable as expected. For comparison, consider the matrix algebra eigen problem.

p(A) = det </\1 - A)

n(ft )
—-p A—(1-9q)
=(A-1)(A-(1-p—2q)

which has the roots, A =1 and A =1 — p — q. Note, in this case the eigenvalue, A =1 —p — g, is
the same in both eigen problems but in general this will not always be the case (since linearization

is an approximation). O

The method described above falls into the category of approzimate linearization where a nonlinear
stochastic equation has been replaced by a linear stochastic equation which is easier to analyze. The
drawback is that the linearized system may only be a good approximation in a small neighbourhood
near the equilibrium point.

In the special case of a doubly stochastic” transition matrix, A = [a;;] € "S™, we may transform the

Markov chain equation into an exactly equivalent linear one by
y:¢[e”“] B =¢[e“”‘] (3.109)

where X = [z;] € ™S such that we have
ylt + 1] = Bey[t] (3.110)

which is a linear equation in stochastic algebra.

9Both the rows and columns sum to 1.
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3.9 Linearizing a Markov Decision Process

We now turn to the DecPOMDP model of (3.20) through (3.23) in which we will again attempt a
linearization to recover the classic linear decentralized system studied by Wang and Davison [1973].
We first require an assumption. We assume that under a random set of controls, U = w, the resulting

Markov transition matrix is regular such that (3.20) becomes

x[t+1] = [A1 Ay - Am] (X[t], u[t)) (3.111)

U=w

Ax]t] (3.112)

with A € "S™ and x € ™S. This is equivalent to the ergodicity test suggested previously. If A is not
regular then there are at least two ergodic sets. This implies that regardless of the controls applied,
we may never get from one ergodic set to another. Let x* € ™S be the equilibrium distribution of the

regular transition matrix, A. If we let
f(x) = [A1 Ay e Am] (x[#], u[t]) (3.113)
then we may create the linearized system

X[t +1] = %‘ @ ox[i] e % B

“® dult] (3.114)

where X = X © X* € ™S and 0U = U © w = U € ™S. Note, the Jacobians must be evaluated at the
equilibrium (X*,w).
Example. Consider the Markov system

X[t + 1] = (x[d], uft])

f(x,u) = [Al A2](x,u) (x,u) = [l‘lul Taul  T1u2 $2u2]

1— 1—
P q ] Ay — q p ]
P 1—g¢g q 1-p

A =

which has an equilibrium (X, U) = (w, w) such that we have

of

| =t-r-0= o

i=s ou

_=(-pE
The linearized system, with X =X © w =X and U =U© w = U, is
oX[t +1] = (1 —p — q)-0x[t] @ (¢ — p)-dult]

where we note that |1 — ¢ —p| < 1 for p € (0,1), ¢ € (0,1) which means when the controls are
random, dU[t] = w, the system state, X, will tend towards w. Also note that when p = g we no longer

have any control over the system. O

In a general decentralized system, the global control, u, will actually be a function of a number of

decentralized controls, uy Yk = 1... K. For the linearized decentralized system we have

K
e (1] D % @ oug[t] (3.115)

u= k=1 U=cw

X[t + 1] = g—;
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where 6X = X © X* € ™S and dup = U, © w = U, € ™§. Note, the Jacobians must be evaluated at
the equilibrium (X*, w). We might also wish to linearize the observation equation (3.22) which we may

think of again as a nonlinear stochastic equation

Yi[t] = 9w (X[t]) (3.116)

with y € PxS, g(x) € P*F" Vk = 1... K. We further assume that when X = w we have y, = w Vk =
1...K. Then let dyy =y © w =Yy and linearize so that

Syilt] = % ® OX[{] (3.117)

Combining (3.115) and (3.117) we have a system of equations of the form

K
xt+1] = Asx[t] € Broult] (3.118)
k=1
Ceox[t] Vk=1...K (3.119)

Yi[t]

where X € ™S, A € "S", U, € ™S, By, € MS™*, y, € xS, C, € PES" VEk = 1... K. This system is
exactly of the (discrete-time) form examined in [Wang and Davison, 1973] but cast in stochastic algebra
rather than matrix algebra. To complete the connection to the well known linear system we may simply
employ the isomorphism, ¢, described in Section 2.9, Page 25. We select orthonormal bases for 'S, ™S |

and P*S and use the isomorphic transformation to arrive at

K

xt+1] = AXt]+ ) Bruglt] (3.120)
k=1

yelt] = Cxt]  Vk=1...K (3.121)

where

x=p(X) €"R  up=gp(u) €™TIR oy =gp(y) €PIR
A=p(A) €™ R B =g(By) €"IR™ T Cr=¢(C) €MIR (3.122)

From a notational point of view, this system appears fairly similar to the one we started with in equa-
tions (3.20) through (3.22) but there is a major difference. The state, control and observations vectors
are now in ""'R, ™ IR, P*~!R rather than "S, ™*S, P*S. We must stress that a linearized system
will likely only be useful in a neighbourhood around the equilibrium point (x*,w). However, in that
neighbourhood we may employ all of the immense resources at hand for linear systems to better our
understanding of the system. Furthermore, in the previous discussion we have been assuming that we
are linearizing the system in equations (3.20) through (3.22) but these techniques are quite general in

nature and may be applied to any system of the form

X[t+1] = fx[t],uclt]) (3.123)
Yelt] = ge(X[t], uxt]) (3.124)

with X € ™S, up € ™S, y € PrS, f(X,ug) € "F"™, gp(X, Ug[t]) € FE"™ VE=1.. K.
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3.10 A Tool of Two Agents

In this section we investigate the usefulness of the above linearization approach in the context of a simple
example. The example is of two agents that must share a common resource. Possiblities for this common
resource include a computer file (e.g., a report), a block of shared memory, even “the television remote
control”. For our purposes, we will assume that the resource is some physical tool. The tool can be in

one of three states: not held by either agent, held by agent 1, or held by agent 2.

“Tool in use by agent 1.” “Tool in use by agent 2.”

“Tool not in use.”
Thus the state vector will be X € 3S and will correspond to the aforementioned possible states for the
tool. We will further assume that each agent has at its disposal two possible actions: stay, switch. ‘Stay’
will correspond to an agent trying to keep the tool if it holds it or do nothing if it does not hold it.
‘Switch’ will correspond to an agent trying to pick up the tool if it does not hold it and put down the
tool if it does hold it. The action vectors for the agents will be uU; € 2S and Uy € 2S. We thus have

X= [z3| < tool held by agent 1

< switch

x1| < tool not held
u, =
< switch

U11] < stay u |fL2£| < stay
2 =

U2 U22

z3| < tool held by agent 2

We will furthermore build into our model a stochastic element such that actions are not always successful.
For example, if an agent holds the tool and wants to put it down, there will be a small probability, 2¢,
that this does not happen. Likewise, if an agent has the tool and wants to keep it there will be a small
probability, 2p, that it is unable to do so. With this in mind we can construct our transition equation

to be the following

1-2p p P q P 1-2q q 1-2¢ p 1-2p ¢ q
X[t +1] = p 1-2 p ¢ 1-2p ¢ 1-2¢ ¢ P P ¢ 1-2 X[t], up [t], Uz [t]
P P 1-2p||1-2¢9 p q q q 1-2p P 1-2g q

agent 1: stay agent 1: stay agent 1: switch agent 1: switch
where the underbracing indicates which transition matrix corresponds to which combination of actions

agent 2: stay agent 2: switch agent 2: stay agent 2: switch

by the agents. Notice that the allowable values for p and ¢q are p < 1/2 and ¢ < 1/2. We may linearize
this equation using the method from the previous section. If we let f € 3F represent the above transition

equation (i.e., the right hand side) then the Jacobians with respect to X, U;, and U, are

11
of 1 of 3 of 3
Tl =2(143¢—6p)E | xu=c(p— — | cw==(p— -1
ox|si== 1(1+3¢ - 6p) oy |z 5P —a) 11 1 s iz gP—a) et e
e 1

where we have chosen (X,U;,Us) = (w,w,w) as the point at which the linearization takes place. The

linearized transition equation is thus

1 3 3
X[t +1] = Z(1 + 3q — 6p)-E®X[t] @ E(p —q) | 1 1|®0uft] e §(p —q) |le ! e| ®uylt]



76 Chapter 3. STOCHASTIC CONTROL SYSTEMS

We can notice right away that when p = ¢ we have no way to control this model. A reasonable goal
in this problem might be to try and equally partition the use of the tool between the two agents and
minimize the time when neither agent has the tool. This corresponds to trying to achieve a state of the

form

where A > 0. Naturally A cannot be arbitrarily large as the linearized system will likely only be valid
near the linearization point. We may first check that this system is controllable by the two agents. If

the decentralized controls are combined (independently) to a single vector

8]
—_
—

€

1 1
ouft] = © ®0U; [t] @ ¢ ®0Us|t]
1 e 1

—
Q Q
—
Q

then our transition equation would be
OX[t + 1] = A®JX[t] ® B®Jult]
where

1
A21(1+3q—ﬁp)'5 B=-(p—q)rlet e el e

It is not hard to verify that the rank of B is 2 (as long as p # ¢) so that the system is indeed controllable
[Kalman, 1960] using the decentralized controls. This should be expected since each agent has one degree
of freedom in its action choice and the state exists in a space of dimension 2. Also notice that if one of

the agents behaves randomly (e.g., Uy = w) the system becomes

OX[t + 1] = A®X[t] © Bo®du,|t]

where
1 1
1 _ 3 1
A= (1+3¢-6p)E By=g(p—q)|e e
1 1

so that now for controllability we must construct the full controllability matrix
1 9 1
[A®A®52 A®B, Bs ] = E(l +3q — Gp) -B, Z(l +3q — 6p)52 B,

which will have the same rank as B> alone which is 1. Thus, if one agent behaves randomly the other
cannot control the system through state feedback. This should be obvious since when agent 2 has the
tool, agent 1 cannot be forced to put it down. If we would like to achieve the state dx* above then we

need to design a set of decentralized control laws that use state feedback. Two control laws that work
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are the following “selfish” policies

g? @? _5\
AT PNFe IR
R ) FRE g L
s ¥ R &> e
SRR~ Q< ~
>IN g >o SN
O o % L PN
O NA S RS S
FEee 38 NG
~ N\ NN
1 e 1 1 1 e
Fi=k Fy= k-
e 1 e e e 1

where k > 0 is a tunable gain. Let us also assume that ¢ > p for the remainder of the example. With

these control laws in place the closed loop system that results is

oX[t+1] = (A ® B;®F; @ B2®F2> ®0X[t]
. 5 1 1 1
= 1(1 +3q¢—6p)E® 5’?((1 -p)le e et | =[]
e el e

-
We can see that if the system starts at the point 6x[t] = ox* = A- [1 e e} with A > 0 at time ¢ then

at the next time-step it will be at

sxit+ 1= (50 + 30— 60+ ko= > || = (503060 + ko)) 56

€

In other words, the system state vector will point in the same direction and will be larger in magnitude

when .
1—3(1+3g—6p)

q—p
Interestingly, we may also have “considerate” policies with the control laws

k>

N
o) b\ T
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&R NI I ¥ o P
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e 1 e e 1
Fi=k s = k-
1 e 1 1 e

where again k£ > 0 is a tunable gain. These “considerate” policies are just the (stochastic) negative of
the “selfish” policies which is quite a nice interpretation to make. With the “considerate” policies we

need to have |
1—-3(1+3g—6p)

q—p

k<

to increase the magnitude of x[t]. This is impossible for k > 0 since (14 3¢ — 6p) < 1 for the allowable
values of p and ¢. In summary, when g > p the “selfish” policies are able to achieve the desired sharing
of the tool between the two agents (with the gain, k, large enough) while the “considerate” policies are

not. When ¢ < p the situation is reversed and when ¢ = p the system is uncontrollable entirely.
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3.11 Another Example

This section provides another example of linearizing a DecPOMDP. We will be able to apply the control-
lability and observability tests of Kalman [1960] to see that the process of decentralization can change

a system from controllable to uncontrollable and from observable to unobservable.

We counsider the system given by

X[t +1) = [ A As Ag Ay | (X[1), ult)
uft] = Blui[t] ® Bjualt]

ylit] = Wxfe] - wnftl=Cuyli]  yalt] = Coyfi]

where X, U, Y € 1S, Ug, Vi € 2SVk=1...2, A; €4S'Vi=1...4, and B;,C € 2S*Vk = 1...2. We let

(1 -3 q q q [1-3¢  »p q q
1-3 1-3
A = p q q q A, = q P q q
P g 1-3¢ ¢ q p  1=-3¢ ¢
L p q q 1-3q] L« p q  1-3q]
(1 -3¢ g p q | [1-3¢ ¢ q p ]
1-3 1-3
A; = q q p q A, = q q q p
q q 1-3p q q q 1-3¢q P
L q q P 1-3q] L« q q 1-3p]
1100 10 1 0] (11 0 0 1010
Bl = 82 = C]_ = C2 =
0 011 0 1 0 1 00 11 01 01
with p,q € (0, %) Notice that each of the A; are regular transition matrices. In fact, they have equilibria,
X: €4S Vi=1...4, given by
q p p p
* p * q * p * p
Xi =4 X5 =1 X3 =1 Xy =1
p p q p
q

We first linearize the centralized system arriving at the following linear system.

X[t+1] = A®6X[t] © Bedult]
dy[t] = CoX[t]
where
A=(1-p—3q)-E B=(¢—p)E C==E
~————
mag < 1

Note we have linearized about the point (X,U) = (w,w) so that dX = X, Ju = u. Also dy =y. We may

see immediately that when du = w the system will head to X = w since the magnitude of (1 —p — 3q) is
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less than 1 for the allowable values of p and ¢'°. If we now select an orthonormal basis for 4S

e e e
e 1 1
¢1=~L1 ¢2=~Le ¢3=~L1
1 1 e

we may use our isomorphism to convert this to the following system in matrix algebra.
x[t + 1] = Ax[t] + Bult] y[t] = Cx[t]
A=(1-p—3¢)1 B=(¢—p)1 C=1

wherex, u, y € R and A, B, C € °R® are determined through the relations in (3.122). For controllability

[Kalman, 1960] '* we require
rank[ A’B AB B] =rank[(g—p)(1 —p—3¢)°L (¢—p)(L—p—3g)1 (g—p)1] =3

which is satisfied for the allowable values of p and ¢ as long as p # ¢. For observability'? we require

rank[(AT)ZCT A'ct CT] =rank[(1—p—3¢)*1 (1-p—3¢)1 1] =3

which is always satisfied. We now turn to the decentralized case. When we now linearize we end up with

OX[t + 1] ARJX[t] ® B1®u4[t] © Ba®dus|t]
ov: [t] C, ®0X(t]
Oya[t] = Co®dx[t]

where
e 1 e 1
e 1 1 e
A:(l—p—3q)-E Blz(q_p)' Bgz(q—p)
e e 1
1 e e

11 1 1
LA IS
which, using the orthonormal basis from before, may be expressed in matrix algebra as
x[t + 1] = Ax([t] + Byu1[t] + Baus[t] Y1 [t]T: Cyx[t] y2[t] = sz[t]T
A=(1-p-301 Bi=[(g-p 0 0 B:=[0 (g—p) 0]
G=[100 = 1 0

10We must comment that typically in linear control the system wants to head away from the origin and the goal is to
stabilize the origin through feedback. Here the origin is naturally stable and we are trying to move away from it. Thus,
the notion of stabilizing the origin does not make a lot of sense but the concepts of controllability and observability do not
change. If we wanted to try to get to an arbitrary point other than the origin we still need the system to be controllable
and observable.

1 Controllability tests involving rank are simply to check we are able to affect all of the degrees of freedom, not necessarily
perfectly.

12Qbservability tests involving rank are to check that we may obtain at least some information about each degree of
freedom in the system, not necessarily contructing a perfect estimate.
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where x € R ug, yr € RVk =1...2 and A € 3R®, By € 3R, C;, € R? Vk = 1...2 are determined
through the relations in (3.122). We let B = [B; By ] € *R? and ch = [CT Cg] € °R? and test for
controllability

(¢ -p)(1-p-3q¢)° 0 (¢-p)A-p-3q) 0 (g-p) O
rank[A?B AB B] = rank 0 (@-p)(1-p- 397 0 (@-p(1-p-3¢9) 0 (¢-p) |[=2<3
0 0 0 0 0 0
and observability
(1-p—39)?° 0 (1-p—39) 0 10
rank[ (A)*C" A'C" '] = rank 0 (1 - p—3¢)? 0 (1-p-3¢) 0 1 |=2<3
0 0 0 0 00

neither of which is satisfied. Thus the system is neither controllable nor observable using the decentralized
controls and observations defined above. We may see that in both cases it is the third dimension, spanned
by ¢; in the stochastic version, which causes the trouble. This may be interpreted as the “dependent”
dimension, which the independent controllers may not control nor observe. This leads to a fized mode
which Wang and Davison [1973] showed is the natural extension of Kalman’s [1960] uncontrollable and
unobservable modes to decentralized systems. Thus we may again see that decentralization can enforce
constraints on the input and output of the system which are equivalent to actually removing sensors
and actuators. As stressed many times so far, it may be possible to overcome these deficits using
communication between the controllers. Sometimes, communication may not be necessary, however.

Consider the exact same system above with

p q g 1-3q] q p g 1-3q]
1-3 1-3
A = D q q q A, = q D q q
D 1-3¢q q q q 1-3p q q
D q 1-3¢q q | L g D 1-3¢q q
q q p 1-3q] [ ¢ q g 1-3p
1-3 1-3
A, = q q D q A, = q q q P
q 1-3¢q p q q 1-3q q D
L q q 1-3p q | L ¢ q 1-3¢ p

so that when we linearize we have

1 1 1 e 1 e 1 e
1 1 1 e 1 e 1
A=(l-p=3q-| | Bi=(-p)| | B=(a-p)
1 1 e 1 1 e e

where C; and C, are unchanged. Converting to matrix algebra using the same orthonormal basis as

before we have
0 1 0
A=(1-p-3¢g)|0 -1 0] Bi=(p-q) 0] By=(p—0)
-1 0 1

S = O

with C; and C, unchanged. We let B = [By By] € ®R2 and C' = [C] C}] € 3R® and test for
controllability



3.12 SUMMARY 81

0 0 (p—a)(1-p—39) 0 0 0
rank[A’B AB B] = rank 0 (p—a)(1-p— 3¢ 0 (@-p)l-p=-3¢) 0 (p-q)|=3
(¢—p)1-p—39° 0 0 0 (p-q) O
and observability
—(1—p—3¢)? 0 0 0 10
rank[ ()" A'C" C'] = rank 0 (1-p—3¢)? 0 —~(1-p-3g) 0 1 |=3
0 0 (1-p—3q) 0 00

which are both satisfied for p # ¢. Thus it is at least feasible to use decentralized controls in the
neighbourhood of the equilibrium. We see that due to the nature of the transition matrix, the first
controller is able to affect two degrees of freedom while the second affects only one. Here communication
may not be necessary as there are no fixed modes. Note, however, that although the system may
be controllable using decentralized controls, it does not mean that the decentralized controllers may
implement the exact same control as a centralized controller, only that they may be able to get the job
done by interacting through the transition matrix instead of by communicating directly.

To conclude this example a simulation of the first system is presented in order to see how well the
linearized model approximates the nonlinear Markov system. Values of p = 0.02 and ¢ = 0.03 were

used and simulated for 400 time-steps. The following controls were applied in sequence, each for 100

time-steps.
1-—3s s s s
S 1-—3s S S
S S 1-—3s S
s s s 1-—3s

with s = 0.02. An initial condition of X[0] = w was used. Figure 3.4 depicts the time series for the
nonlinear Markov system and the linearized system. Note, there are four time series for each of the four
components of X[t],dx[t] € *S. Figure 3.5 depicts the difference, x[t] © 6x[t] € *S, which as expected
becomes larger as the system moves away from X[t] = w, the operating point. Figure 3.6 plots the
information'® in each of X, X, and X © dX over time. The information in X © §x may be thought of as

the error between the Markov and linearized models.

3.12 Summary

Stochastic matrices have been used in the study of uncontrolled Markov chains for a very long time.
Here we see that the extension of this to a stochastic algebra allows some interesting results to be
derived for Markov systems. Specifically, the system model for the Decentralized Partially Observable
Markov Decision Problem (DecPOMDP) was treated, which is a nonlinear system in this new matrix
formulation. The focus of study was on the actual process of decentralization and its effect on the type
of control possible using decentralized controllers.

First, reactive (or static) control laws were studied for the nonlinear DecPOMDP. It was shown that
the act of decentralization introduces constraints both on the input (observation) and output (control) of

the system as a whole. These two constraints naturally define four classes of centralized reactive control

138ee Section 2.18 (Page 38) for the definition of information.
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Figure 3.4: Time series for the Markov (solid) and linearized (dot-dashed) models. Note,
there are four time series for each of the four components of X[t], dx[t] € 4S. Also, w, has
been included in the plot which is the constant (dotted) line at 0.25.
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Figure 3.5: Difference, X[t] © 6x[t] € *S, between the Markov and linearized models.
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Figure 3.6: Information in each of X, dX, and x © §xX over time. The information in X © §x
may be thought of as the error between the Markov and linearized models.

laws. Ounly those of Class I may be exactly implemented using decentralized controllers which do not
communicate. However, communication can aid in several aspects of decentralized control, assuming
that it can take place at a rate much faster than the speed at which controls need to be applied. First,
communication of observations, and thus state information, can help build better state-estimators for
the decentralized controllers. Second, communication of controls can help coordinate the effects of
the different controllers. In reactive control, communication of controls is often necessary when the
global control matrix is nondeterministic. This corresponds to the situation where the system must
be self-organizing (internally choosing between more than one equally good global control). Reactive

decentralized controllers that communicate may exactly implement any reactive centralized controller.

Communication of controls can play another role, namely in improving the state-estimator of each
controller when a dynamic state estimate is used. Centralized control typically makes the assumption
that past controls are known and may be exploited in the state-estimator. With decentralized control
this is not necessarily true. The communication of past actions avoids this problem. Furthermore, it
separates the design of controllers from the design of the state-estimators. With communication of both
observations and controls, a decentralized system with K clusters of sensors and actuators is no worse
than solving a POMDP problem. If the combination of observations from all controllers results in a
perfect state estimate, it is no worse than solving an MDP problem. This is a large improvement over
solving the DecPOMDP problem directly as it involves much less in the way of computation, particularly
for the infinite horizon case mentioned here. Furthermore, the quality of solution obtained will be much

better (as more information is being exploited). We believe that communication is a vital aspect of
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decentralized control systems and that it is necessary for such systems to achieve interesting results.

Secondly, it was shown that it is actually possible to linearize a DecPOMDP model about an op-
erating point using the new stochastic calculus, thereby converting it to a linear decentralized sys-
tem in stochastic algebra. Through an isomorphism, this system may be rewritten in matrix algebra
thereby creating a new link between DecPOMDPs and the discrete-time version of the system treated
in [Wang and Davison, 1973]. This means that within some neighbourhood of the operating point, it is
possible to apply the powerful (and plentiful) techniques that have been developed for linear systems.
Through examples it was again shown that decentralization imposes constraints on the input and output
which can switch the system from controllable to uncontrollable and observable to unobservable in the
sense of Kalman [1960] (but in the new stochastic framework). Communication may again overcome
these difficulties thereby restoring the centralized behaviour.

The notion of the uniform probability distribution as the zero vector is very appealing. Typically in
control theory the idea is to try to get to the zero vector from an initial random point using appropriate
feedback, to forget the initial conditions. Furthermore, the system would like to move away from that
zero. For example, an inverted pendulum wants to fall one way or the other and we would like to
prevent this from occurring; the system is naturally unstable and we are trying to stabilize it. In the
Markovian control framework discussed here, the natural tendency of the system is to head towards zero
(it is stable). The initial conditions are naturally forgotten. We are actually trying to destabilize the
zero point in a very particular way through our control sequences in order to achieve distributions other
than the uniform one. It is hoped the stochastic algebra will allow many more applications to be made

of classic control results to stochastic systems.



A golitarg ant, aficld, cannot be considered to bave much
of anything on bis mind. Tour ants togetber, or ten,
encircling a dead moth on a path, begin to look more like
an idea. But it is only when you watch the dense mass of
thousands of ants, blackening the ground that you begin to
sce the whole beast, and now you obseroe it thinking,
planning, calculating. It is an intelligence, a kind of live
computer, with crawling bits for its wits.

—Lewis Thomas

THE L1ves oF A CELL, 1974

Chapter 4

COLLECTIVE ROBOTICS

This chapter examines the possibilities for communication in a practical network of cooperating mobile
robots. This is only one example of a real world decentralized system (with communication) but hopefully
one that is instructive. It will be shown that communication can be used both to spatially extend sensing
capabilities and to help coordinate actions. This dual role is demonstrated through various tasks on a
group of mobile robots which communicates via radio. The focus here is to provide a methodology for
building a collective robotics control architecture rather than to describe the detailed construction of
the individual robots. Refer to [Earon et al., 2001] or [Barfoot et al., 2001] for further information in
this regard.

The potential applications for a group of mobile robots are many, ranging from planetary space
exploration to environmental cleanup to recreation. Cooperation is key to collective robotics. It is
possible to design such systems so that they work together in parallel, carrying out tasks no one robot
may accomplish alone. Here a methodology is described for doing this in a completely decentralized
bottom-up manner. Some of the most appealing attributes of a group of robots (as opposed to a single
monolithic vehicle) are redundancy, modularity, risk-taking, and cooperation. Redundancy is helpful in
that if constructed in a completely decentralized manner, a network of robots can afford to lose a small
number of individuals and yet still accomplish the desired task. This is a result of modularity which
means any number of robots may be added or removed from the collective seamlessly. The flip side to
this is risk-taking. By making the system modular and thus redundant, it is possible to take more risks
in the design of each robot as no one robot has the potential to be a single point failure.

Collective robotics refers to groups of robots which interact to some degree [Cao et al., 1997]. Often
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Radio Modem Navigation Turret

DIRRS

Figure 4.1: (left) Six mobile robots making up the RISE network. (right) Features of a single robot.

in collective robotics, the goal is to design the interactions between robots such that tasks requiring
cooperation may be successfully completed. It might be more accurate to refer to this situation as
cooperative robotics as there are many conceivable situations in which groups of robots are not trying
to cooperate (e.g., competition). This chapter assumes that the robots are trying to cooperate, not
compete.

The types of possible interaction between robots are many. There is in fact an entire spectrum of
interaction possibilities. For example, at one end of the spectrum robots randomly bumping into each
other may be considered interaction while a well established communication protocol which is employed
frequently and leaves little room for misinterpretation (e.g., a direct radio link between robots) lies at
the other end. Interactions should be categorized not by the transmission medium (as is sometimes
done) but rather by the informational content transmitted.

Social insects are striking examples of biological organisms which have very well established commu-
nication protocols that are transmitted through the environment. A single species of ant may have as
many as 20 different chemical signals called pheromones which enable complex inter-species communi-
cation. Pheromones are secreted from glands on one ant and are in turn detected by the highly sensitive
tongues and, more commonly, antennae of other nearby ants. The term superorganism has been used to
describe colonies of ants (i.e., up to millions of individuals) due to the incredible colony wide coordination
afforded by pheromone communication. The “waggle dance” of some bees is another example of a well
established protocol. The intricate motion of this dance can communicate both the distance and angle
to a food source from the hive.

It is well known in nature, that groups of mobile agents (organisms) often use well established
communication protocols in order to interact'. We suggest that the nature of the transmission medium
for communication is irrelevant when designing cooperative robots and that the most convenient medium
should be used. To this end, radio modems have been used in the design of a small group of cooperating
mobile robots (see Figure 4.1). In this system short message packets are continually broadcast from all
robots with a frequency of approximately 1 Hz. These messages allow the robots to both share sensory

information and coordinate their action choices in order to be successful on cooperative tasks.

INote, it is not within the scope of this thesis to debate whether biological organisms are cooperating or competing and
thus we simply state that they are interacting.
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This chapter will advocate a methodology for building up communications between robots which
is a natural extension of the behaviour-based design philosophy [Brooks, 1986]. Each robot broadcasts
messages at regular intervals over its radio modem. The messages are available to any robot within
communication range (approximately 30 metres). However, robots do not stop to wait for a particular
message from a specific robot. If information from one robot is available, it may be used in various parts
of another robot’s internal control system but if not, that robot continues on with what information it
does have. This allows the system to operate in a robust and parallel manner. Should the battery die or
the computer crash on one robot (both of which happen from time to time), this will not bring the entire
system to a halt. Furthermore, the algorithms running on each robot (which are themselves decentralized
behaviour-based controllers), have been designed to seamlessly accommodate different numbers of robots.
Thus if a robot is incapacitated for any reason, the others compensate within seconds. This bottom-up

approach to collective robotics is fast, modular, and reliable.

4.1 Related Work

There is a vast amount of literature for multiagent mobile robotics working in two dimensional envi-
ronments as well as simulations (of varying complexity) of such robots. The simulations span from the
very elaborate (with dynamics models) to the very simple (grid worlds). This review cannot possibly
cover the entire range in depth so it will attempt to give a good cross section of results. Furthermore, it
will be arranged more by the investigator and the tasks the groups of robots are to accomplish than by
chronology. It describes only work that uses decentralized, bottom-up approaches to collective robotics.

Brooks [1986,1990, 1997, 1994] put down the foundations for multiagent mobile robotics in his re-
popularization of behaviour-based robotics. His subsumption architecture works in stark contrast to the
logic-based artificial intelligence approaches. It is a robust decentralized control architecture for any
type of robot. Lower priority behaviours yield control of the robot to higher priority ones when they
become active. Some very interesting examples of robot behaviour such as wall following and obstacle
avoidance were demonstrated in real-time, a goal that had eluded logic-based approaches for decades.
Behaviour-based control provides a perfect substrate for mobile robotics and naturally accommodates
decentralized control which is distributed over multiple robots. Communication may be easily incor-
porated and is used by iRobot [2000] which has been looking at behaviour-based control of groups of
small mobile robots for military and other applications. They demonstrate similar types of tasks to the
present work.

Matari¢ [1992, 1994a] was amongst the first to focus on multiagent control of real robots. Her
early work consisted mostly of developing elaborate control structures for groups of mobile robots
by hand. Flocking, herding, following and other behaviours were demonstrated. Matari¢ [1995] and
Matari¢ and CIliff [1996] outline systematic approaches to programming single and groups of robots
to work together. Later work focuses on learning group behaviours [Matari¢, 1994b, Matari¢, 1997b,
Matarié, 1997a, Matari¢, 1997c, Schneider-Fontéan and Matarié, 1998] for about 4-10 robots. Simsarian
and Matari¢ [1995, 1998] looked learning tightly coupled tasks such pushing a box towards a light using
two robots. Here communication is used in a sensory sharing capacity to make the task easier to solve.
Recent work [Goldberg and Matarié, 1999b, Goldberg and Matarié, 1999a] builds up a transition model



88 Chapter 4. COLLECTIVE ROBOTICS

between different behaviour layers. This allows the robot to compare its present behaviour with this

model to decide if it is functioning properly.

Werner and Dyer [1992] use genetic techniques to evolve the weights of artificial neural networks
(ANNs). These ANNs act as control systems for simulated agents. Flocking, herding and schooling
behaviours are evolved. Hodgins and Brogan [1994] provide an example of a herding behaviour in a sim-
ulated three-dimensional world incorporating simple dynamics (physics). Watson et al. [1999] describes
an embodied evolutionary algorithm to search in policy space for simple neural network controllers for

a light seeking task.
Kube and Zhang [1992, 1993, 1996] also work primarily in hardware. Their collective box pushing

experiments are important as the robots are able to accomplish a difficult task in a matter of seconds

rather than hours (as some experiments require).

Robotic soccer [Kitano et al., 1997] is an up and coming focal point in collective robotics research.
RoboCup is the principal organization in this area. Stone [2000] has dominated the simulator league
in this competition. There are also several leagues involving real robots. It is interesting to note that
in the simulator league, messages may be passed between players through a simulation of noisy vocal
communication (just as with humans playing soccer). This anthropomorphic addition is in contrast
to the view taken here which is to use the most convenient transmission medium possible. However,
it does have merits if the eventual goal of RoboCup is to have humans playing against robots, or
perhaps mixed teams of both humans and robots in which the rules must be the same for all players.
The situation we address is different in that we are simply trying to achieve a task the easiest way
possible (while maintaining decentralized control). Balch [1997a, 1997b] also describes another soccer
simulator, Javabots. His agents are all provided a common set of skills; during a learning phase they
specialize their skills and take on different roles on the field (offence, defence, goal keeper). The Swarm
Simulation System? [Minar et al., 1996] also now has a soccer toolkit available [Hochstein et al., 2000].
Robotic soccer provides a common framework for collective robotics researchers from all over the world

to directly compare their results.

Deneubourg et al. [1990] describes a system of simulated grid world agents that are able to form
heaps of objects as well as separate two different types of object into two heaps. Beckers et al. [1994],
Maris and te Boekhorst [1996], and Pfeifer and Maris [1994] also consider the problem of heap formation.
This entails a group of robots pushing pucks into a pile in an arena. They rely on a fortuitous mechanical
design to do most of the difficult work thus making their control system conveniently simple. Melhuish et
al. [1998] describe a more sophisticated version of this experiment in which different spatial distributions
of objects can be achieved. Barfoot and D’Eleuterio [1999] also look at heap formation in a grid world
simulation. They use genetic algorithms to evolve successful rules and demonstrate that their solution
works on groups of hundreds of agents. Dagaeff et al. [1997] explore the interplay of cooperation and
antagonism in another multiagent heap formation grid world. Bonabeau et al. [1994, 1998] describe
a three-dimensional grid world in which groups of agents have been designed to construct elaborate
structures similar to wasp nests. Most of these heap formation experiments involve subtle interactions

through manipulation of the objects in the environment which is referred to as stigmergy. This is certainly

2 Swarm is a general tool for the simulation of many simple agents that was started at the Sante Fe Institute.
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an equally valid communication protocol but can be somewhat limited in its applicability to other tasks.
However, it does show that successful communication protocols need not be in a representation that
humans may easily interpret [Brooks, 1991].

Balch et al. [2001] has developed technology to automatically track the movements of thousands of
live social insects in order to study their interactions and movement as a whole. They hope to apply
this knowledge to the design of decentralized robotics systems.

Barfoot, Earon, and D’Eleuterio [1999, 2001a, 2001b] describe a decentralized robotics system for
planetary space exploration. The focus of this work is to provide a general technology that will facilitate
planetary network science. A network of robots could be used to deploy a very-low frequency array
(VLFA) on the Moon to allow for collection of astrophysical observations using radio astronomy. Such
an observatory will require a number of dipole units deployed over a region of a few hundred square
kilometres. This concept was in fact studied by the International Space University [1993]. It could also
enable seismology studies of an alien body which require sending a signal from one point on the surface
to be read at several other points in order to analyze the material characteristics of the body. These
and other examples of network science could be facilitated by a network of small mobile robots, similar
to a colony of ants.

Certainly collective robotics is being looked at from a number of very different perspectives. We have
detailed only a small portion of the current work in this field but hope these examples are representative
in their complexity and depth. This is very much an active research field whose popularity seems to be

growing very quickly.

4.2 A Decentralized Robotics System

A testbed facility (see Figure 4.1), the RISE (Robotics In Space Exploration) Network has been con-
structed®. This facility consists of six mobile robots which communicate with each other and a desktop
computer through radio communications. The focus of RISE is on the autonomous control of such a net-
work. Each robot has its own local computing facilities yet the group must work together to accomplish
tasks.

Four DIRRSs (Digital InfraRed Range Sensors) point forward and return a distance to objects up to
1 metre ahead of each robot. Six whisker-style sensors (on/off) are located on the front, back and sides
of each robot to sense collisions with obstacles.

Landmark navigation is used based on triangulation of position by observation of three lights. Each
robot computes its own position using a navigation turret rather than simply having its position provided
from an external source. A second navigation system based on odometry (there is an encoder on the
rear axle) is used to update the position in between uses of the navigation turret. This local system
provides fairly good data for a few metres whereupon the global system is employed once more.

Electromechanical components have been constructed using LEGO Technic”™ pieces to enable rapid
prototyping. Each robot has two DC motors, one to drive the back axle through an open differential

and one to drive the front axle to enable four-wheel drive. There is a passive suspension system that

3See acknowledgements at the beginning of this document for construction credits.
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enables all four wheels to remain in contact with the ground on slightly curved surfaces. The steering
and navigation turret are driven by Airtronics model airplane servomotors.

The computational facilities of each robot consist of a 20 MHz Infineon C'164 with 1 Mb of RAM
and 1 Mb of flash-ROM (for program storage). The total power draw of the electronics is under 400 mA
on average. The battery package consists of 8 NIMH (Nickel Metal Hydride) cells, size AA (1600 mAh).
The robots can run for about 2 hours on a single charge.

Each robot is equipped with a radio modem (Radio Packet Controller (RPC) from Radiometrix).
This allows the robots to communicate with each other and a base station desktop computer with
bandwidth of 10 kbps*. The range of these modems is approximately 30 metres. All broadcasts are
heard by all modems (each robot must “decide” autonomously whether or not to make use of the
incoming information). The robots communicate with the base station for two reasons: issuing high-
level commands (such as start, stop, pause) which affect the entire group and gathering any data that
is measured by the robots both from their sensors and any potential payload instruments. The robots
communicate with each other to share information about their environment and thus make it possible (or
much easier) to solve cooperative tasks. Furthermore, they communicate in order to come to common

decisions about what course of action to take.

4.3 Communication

In the RISE system, communication has been used in a variety of ways. There are protocols to allow the
base station to issue high level commands to the network of robots. This allows the operator to select
which task the group should attempt, to start/stop/pause the system, and to collect telemetry data for
later analysis. There are also protocols to allow messages to be bounced from one robot to the next
when out of range of the base station thus greatly extending the operating range beyond the range of
a single radio modem®. Although these are crucial concerns for a practical design, the RISE robots do
not require the base station to operate. The most important communications are interrobot (occurring
between robots).

It is interesting to consider whether a centralized controller (running on the base station) could be
used instead of the decentralized controllers (running on the robots). As discussed at great length in
the previous chapter, this is theoretically possible, in fact equivalent in the world of mathematics, but
here the finite communication bandwidth of the existing radio modems does not permit this to happen.
Table 4.3 summarizes the total raw information flow to and from the decentralized controller of each
robot. It is approximately 32.5 kbps. With 6 robots we require about 195 kbps of bandwidth even to
consider using a centralized control model which is far beyond the measured capabilities of the existing
communication system. Clearly the bottleneck is the data from the navigation sensor but to process this
data locally presupposes some form of decentralization. Even if we did not require sending the navigation
sensor data, we would require 3.0 kbps for 6 robots. This is close enough to the maximum of 10 kbps

that serious packet collisions, bottlenecks, and delays would occur. In many control situations, tight

4 Although the manufacturer claims 40 kbps (thousands of bits per second) as the theoretical maximum bandwidth,
experimental testing found that in this application the number is closer to 10 kbps.
5Typically these protocols are not needed as the size of the workspace is smaller than the range of a single modem.
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coordination between sensors and actuators is required (this is the essence of behaviour-based control).
Delays of a few seconds here and there (since all robots much share the communication network) would
seriously reduce performance of this system.

By contrast, the decentralized model (which is the one actually used) requires® only about 0.04
kbps of bandwidth per robot, or with 6 robots a total of 0.24 kbps which certainly is well below the
experimental maximum for the radio modems. The most that robots must share (for the tasks considered
here) are their locally computed (z,y) position coordinates (32 bps) and another generic coordination
variable, u (8 bps). Everything else in Table 4.3 need not be communicated. Thus the decentralized
model uses the communication facilities much more efficiently than the centralized model would for
these tasks. Furthermore, communication is task dependent; only the data needed to solve the task
is communicated. In the extreme, no communication is necessary. The centralized model is not able
to take advantage of situations when data need not be shared between robots; it is task independent,
always requiring communication of everything. These simple calculations precluded implementing the
centralized model for performance comparisons.

As in Chapter 3, it will be useful to put interrobot communication into two categories for explanation
purposes but we must recognize that at the implementation level these categories do not necessarily
require different approaches. Both require the transmission of information by one robot and reception
by one or more other robots. A communication channel may be treated both as a sensor [Matari¢, 1998]
and an actuator from a control point of view. When these mechanisms are represented as part of a
behaviour-based controller, it is not always possible to distinguish them, nor need we [Brooks, 1991].

The two categories are

SENSORY SHARING: Robots communicate their sensor inputs to one another in order to spatially

extend the sensing capabilities of each robot.

4

AcCTUATOR COORDINATION: Robots communicate in order to “vote” on possible actions to take

thus enabling coordination of actuator outputs.

It may again be more useful to think of these categories as the two ends of a spectrum of possibilities.
It is unlikely that robots will share raw sensor data but rather information that has been preprocessed
to some degree. For example, (z,y) positions are shared rather than the raw navigation sensor data.
Similarly, robots will likely not vote on what motor voltages to apply but something at a higher level (e.g.,
clustering location). When represented in a behaviour-based controller, where communication channels
can exist throughout, it can become difficult to interpret these categories. Still, we maintain they are a
useful construction when explaining the role of communication in decentralized mobile robotics.
Sensory sharing is the more basic of the two categories. In its simplest form, it involves relaying
information directly from a sensor to a communication channel. Once the information is sent, the role of
the sender is complete. The receiver(s) then treat(s) the communication channel as just another sensor.
Actuator coordination can be more involved. It is necessary when the operator does not provide
enough information in the task description, resulting in more than one equally good solution to the

problem (e.g., “Cluster in a corner, I don’t care which corner.” or “Move that object out of the way, 1

61t requires this amount of bandwidth to perform optimally. No additional bandwidth would improve performance.
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Table 4.1: Approximate flow of information occurring to and from the controller in each
robot of the RISE system is 32.5 kbps.

ITEM WIDTH |bits] | RATE [Hz] | BANDWIDTH [bps]
DIRRS 32 5 160
‘Whiskers 8 5 40
Navigation Sensor 160000 0.2 32000
Battery Level 8 5 40
Odometer 32 5 160
Navigation Servo 8 0.4 3.2
Steering Servo 8 5 40
Front DC Motor 2 5 10
Rear DC Motor 2 5 10
ToTAL ~ 32500

don’t care where you put it.”). Resolving this dilemma can involve repeated communication until some
form of consensus is achieved as there is no central location to “count the ballots and announce the result”.
This presupposes that communications can occur fast enough to make the decisions before the robots
must act. This is a classic example of a two-timescale system, a common concept in control engineering.
The fast part of the system is that of the communication network and the slow part is comprised of the
control of the electromechanical parts of the robots. If the communications can be made fast enough,
the slow part of the system may be designed by assuming the fast part occurs instantaneously. This
will be referred to as the two-timescale assumption”. The efficiency of communications afforded by
decentralization often makes this assumption valid where it would not be for the comparable centralized
control model. As more responsibility is shifted to the decentralized controllers, the efficiency of the
communications increases along with the validity of the assumption of instantaneous communications
(for a fixed bandwidth). For the robotics system and tasks (to be described) here, the two-timescale
assumption is a very good one, thus greatly simplifying the slow timescale control design. However, it
must be stressed that this assumption is highly dependent on the task at hand and the number of robots
involved. The available bandwidth of communication enforces a constraint on the types of tasks that

may be solved by a decentralized control system.

It is a valid argument that action coordination can be made unnecessary by providing more infor-
mation in the task description. This was discussed in Section 3.6.2 on deterministic reactive controllers
(Page 61). This point is not debated and in fact, providing more information should be encouraged as
a general practice as it removes the need for some communication, thus allowing robots to behave more
independently. However, we also recognize that a situation can conceivably arise where a more detailed
task description is mot possible. For example, different robots may be required to take on different roles
to successfully complete the task but the operator may not wish to assign these roles explicitly; the
roles should be assigned by the robots themselves. Having the capability to leave some decisions up to

the robots is very desirable if the system is to be at all flexible. This in fact goes to the very heart of

"The assumption of a centralized control model is essentially this very assumption, as discussed in the introduction.
Here, however, it is generalized to the decentralized case as well.
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“intelligence”. If every detailed action must be given a priori, how can we expect the system to ever be
intelligent? The process of decentralized decision making is very much a part of the intelligence we are
expecting from these types of systems. We find the term self-organizing to be appropriate in describing
a decentralized system which is able to coordinate its actions in the face of more than one equally good
solution. Decentralized decision making will be discussed in depth in the next chapter.

Based on the two types of interrobot communication described above, we have four classes of collective
robotics tasks which were introduced in Section 3.6.1 (Page 60). These classes allow us to categorize all

collective robotics tasks based on the type of communication necessary for success.
Definition. COLLECTIVE ROBOTICS TASK CLASSES:

| Tasks requiring neither sensory sharing nor actuator coordination.
Il Tasks requiring only sensory sharing.
Il Tasks requiring only actuator coordination.

IV Tasks requiring both sensory sharing and actuator coordination.

4.4 Generic Communication Model

This section presents two generic tools which may be incorporated into most types of control but in par-
ticular behaviour-based control. The first module enables sensory sharing and may be seen in Figure 4.2
(left). The second, depicted in Figure 4.2 (right), builds on the first to enable action coordination.

The sensory sharing module is very simple and may be used to share any type of datum. It should
be run on each of the robots in a network. In the diagram, (z,y) position information is shared as an
example. Robots broadcast a data packet consisting of their current position and their identification
number at a rate of approximately 1 Hz. The modem receives packets of data which are immediately
placed in a receiving buffer. A routing algorithm takes the packets from this buffer and writes them
to the appropriate data slot based on the robot identification number. Old data is overwritten by new
data. This data is then used by various control modules (not to be described here). In the case of
navigation data, each robot’s position information is written to its own data slot not by the modem but
by the various navigation modules. This data is read every second and placed as a packet (with the
identification number) in the transmission buffer. The modem then sends out this packet. It should
be stressed that there is no particular sequence of operations required. All submodules operate in a
decentralized, concurrent manner. If new data is available, it is used. Otherwise, the old data is used.
The robot does not stop and wait for data in any circumstance.

The action coordination module adds one simple module to the sensory sharing tool, a stochastic
coordination mechanism. The purpose of this box is to try and make a coordination variable, u, the
same for all robots. It inputs the u’s from the other robots (and itself) and outputs a new value for
its own u. Let the size of u be m bits. This module allows a group of robots to generate a common
piece of information of m bits in length in a completely decentralized fashion. Chapter 5 will describe a

stochastic coordination mechanism for a sparsely® connected decentralized system. For the purposes of

8Each robot only communicates with those robots within a certain radius. This situation arises due to finite commu-
nication range.
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this chapter, in which we have a fully? connected decentralized system, the following simple algorithm

works well (it is a simple case of the algorithm to be presented in Chapter 5).
Definition. (FuLLY CONNECTED) STOCHASTIC COORDINATION MECHANISM:

STEP 1: Define set of possible values for u.

STEP 2: Randomly pick a new v from set and transmit selection.

STEP 3: Receive votes (u’s) from others, and determine winner(s) based on most common value.
Note, there can be a tie thus multiple winners.

STEP 4: Redefine set of possible values to be those of the winner(s).

STEP 5: Return to step 2.

This algorithm may be run ad infinitum and can exist as a small part of each robot’s behaviour-based
controller (or any other type of controller). It should continually provide as output the action the robot
is to follow (selected from the instantaneous set of possible actions which shrinks over time). Thus
voting and action-following occur concurrently not sequentially, making the mechanism compatible with
decentralized /behaviour-based control. Robots may join or leave the task and the algorithm will adjust
automatically.

As indicated in the name, this coordination mechanism is stochastic in nature. Essentially when
there is a tie between two possible results, another vote must occur'®. It is not possible to guarantee
(with probability 1) that a consensus has been reached after a certain time. However, we may compute
what the probability of consensus is after ¢ updates. For example, consider the case where two voters
are trying to agree on a single bit. Let Uy, Us € 2S represent the decisions of two voters. Then let u € 4S

be their combined (global) decision such that

1 100 1 010
u= BlTul €] BQTUQ B, = B; = (41)
0 0 11 01 01

T T
with By, B, € 2D*. For consensus we would like to have either u = [1 0 0 0] oru= [0 0 0 Tl]

such that u; = u where the individual decisions are now deterministic. Note that u = [0 1 0 0] or

u= [O 01 0} corresponds to U; # Us, or no consensus. At the ensemble level, the global decision

updates according to the following Markov chain.

uft+1] = u[t] (4.2)

o O O =
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P N LN [N

= o O O

If we assume that u;[0] = U2[0] = w and thus u[0] = w we have

3 7 15 204 —1 3
1 1 1 1 0
ull] = ul2] = ul3] = - uft] = <.+ lim uft] = 4.3
W=, =[] uBl=1tf =4 Jmug =] @3
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9Fach robot communicates with all other robots.
10T his is analogous to the “rock, paper, scissors” method from everyday experience.
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Figure 4.2: (left) SENSORY SHARING MODULE: Incoming data packets consisting of some
data to be shared (e.g., (x,y) coordinates) and the sender’s ID number are buffered and
then routed to the appropriate storage slot for that ID. This data may then be used in
other modules such as those for control. The robot running the algorithm writes to its own
storage slot (marked “me”) not from the modem but a navigation module. (right) ACTION
COORDINATION MODULE: Virtually identical to sensory sharing but a stochastic coordination
mechanism is used which allows robots to generate a piece of common information, u, in a
decentralized manner. The agreed upon u may then be used in other modules such as those
for control.

so that the probability of consensus after ¢ time-steps is

(2 -1+ (2" -1)=1- <%) (4.4)

If this algorithm runs at 1 Hz then after 10 seconds there is a consensus probability of 0.999. After 20
seconds it is 0.999999. With more voters the consensus will (on average) actually be reached sooner as
the probability of an exact tie gets smaller. With 4 voters trying to agree on a single bit the probability
of a consensus after ¢t updates is 1 — (%)t. With 6 voters it is 1 — (15—6)t. Similar analyses may be employed

for decisions larger in size than a single bit.

4.5 Experimental Examples

Table 4.5 gives a summary of tasks currently implemented on the RISE system with the type and content
of communication required to solve the task. In each case the sensory sharing and action coordination
modules described above were used as part of a behaviour-based controller. Robots shared (z,y) position
data with one another and coordinated such actions as: in which of 4 corners to cluster (2 bits) or which
of the 5 robots to become flock leader (3 bits).

There are four main task categories (some having subtasks). All tasks involve spatial configurations of
the robots. Clustering, distributing, and formation involve achieving a static configuration then stopping
while flocking requires a dynamic configuration (changes with time). Each main category is described

briefly.

CLUSTERING: Requires robots to pack themselves tightly into one of the four corners of the

workspace from an initially random configuration. In the various subtasks the active corner can be
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Table 4.2: Summary of collective robotics tasks currently implemented on RISE system.

TASK CLAsS | DESCRIPTION SENSORY SHARING | ACTION COORDINATION | Fig
Clustering  (a) I Cluster in prespecified corner — — 4.3
(b) I Cluster in mean closest corner coordinates — —

(c) II1 Cluster in random corner — vote on corner —

Cluster in either of two mean .
(d) v coordinates vote on corner —
closest corners

Distribute over two prespecified
Distributing (a) I presp — — —
corners, division prespecified

Distribute over two prespecified
(b) 11 corners, division based on prox- coordinates — 4.4
imity

Distribute over random two cor-
c — vote on corners —
(c) I it

ners, division prespecified
Distribute over random two cor-

(d) v . o coordinates vote on corners —
ners, division based on proximity

Form an K-sided regular poly-
gon with robots at vertices, cen-

Formation v coordinates vote on orientation 4.5
ter and radius prespecified, any
orientation
Follow a prespecified leader,
Flocking (a) I leader drives in large clockwise — — -
circle
Follow robot who has biggest
(b) I gap ahead, leader drives in large coordinates — _

clockwise circle

Follow an clected leader, leader
(c) 11 — vote on leader 4.6
drives in large clockwise circle
Same as (b) but vote between
(d) v clockwise/counterclockwise coordinates vote on direction —

direction

(a) prespecified, (b) based on mean distance (of all robots) to corners, (c¢) voted upon, (d) voted

upon from two mean closest corners.

DISTRIBUTING: Similar to clustering except roughly half the robots pack tightly into one corner
and the other half into another. In subtasks (a) and (b) the two active corners are prespecified
while in (c¢) and (d) they are voted upon. In subtasks (a) and (c) the division into two groups
is prespecified while in (b) and (d) it is based on proximity to the two active corners (tries to

minimize travel distance of robots).

FORMATION: Requires robots to form an K-sided regular polygon (where K is the number of
robots) with robots at vertices, from an initially random configuration. The center and radius of

the polygon are prespecified but the orientation must be decided upon amongst robots.

FLOCKING: Requires robots to travel in a tight pack around a large circle in the workspace. In the
various subtasks the leader is (a) prespecified, (c) voted upon, (b) or (d) based on which robot is
ahead of the pack. The leader drives around the large circle. Robots who are not the leader drive
towards the leader. In subtasks (a), (b) and (c) the direction of travel is clockwise while in (d)

robots vote between clockwise and counterclockwise.
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Figure 4.3: CLUSTERING (a): Six time-lapsed frames of 5 robots forming a cluster in the
marked box. In this version of the task, no communication was necessary but in others the
robots must come to a common decision as to the cluster location.
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Figure 4.4: DISTRIBUTING (b): Six time-lapsed frames of 5 robots distributing themselves
into the two marked boxes. The robots must share their position information with one
another in order to coordinate which robots will head to which boxes (the division is based
on proximity).
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Figure 4.5: FORMATION: Six time-lapsed frames of 5 robots forming a pentagon with vertices
on the marked circle. Here the robots must continually share position information in order
to space themselves out relatively on the circle. Neither the specific location of each robot
nor the orientation of the resulting pentagon is prespecified. The robots “decide” how to
form the shape.




100 Chapter 4. COLLECTIVE ROBOTICS

i

Figure 4.6: FLOCKING (c): Six time-lapsed frames of 5 robots flocking around the marked
circle (1 revolution shown). Here the robots must vote on who amongst them should be the
leader of the flock and then follow that elected leader around the circle. This task is very
dynamic and difficult. Notice the flock spreads out quite a bit (frames 3,4) but recovers
gracefully.
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Figures 4.3 through 4.6 depict one subtask from each of the main task categories. All tasks take on
the order of a few minutes to complete from an initially random configuration of robots. In the case of
flocking, completion means achieving steady-state behaviour.

In Figure 4.3, robots cluster in a corner prespecified by the operator. Here no interrobot communi-
cation is required. Other versions of the tasks have the robots voting on the corner in which to cluster.
Figure 4.4 shows the robots distributing themselves between two different corners. The corners are again
prespecified by the operator but the robots decide amongst themselves which should go to each corner.
This was done based on distance to the corners and thus communication of (z,y) positions was required.
The two robots starting on the left side move to left-hand corner while the three starting on the right side
move to the right-hand corner. In Figure 4.5 the robots deploy themselves in a pentagonal formation.
They decide amongst themselves the order of robots on the circle and what orientation the resulting
pentagon should have. This is again done based on various distances which require the communication
of (x,y) positions. The algorithm is designed to accommodate any number of robots and will form an
K-sided polygon with K robots.

Figure 4.6 shows the robots flocking around a circle. Here they have chosen a leader using the
decentralized voting scheme described above. The elected robot drives around the circle and the others
drive towards it. This is an example of spontaneous task division, one robot assuming the role of leader
and the others following. Having the robots assign themselves different roles is very important capability
in collective robotics. In this way as robots join or leave the group, perhaps through malfunction, the
different roles may be reassigned dynamically such that the task always gets completed. In the flocking
task here if the current leader is removed or malfunctions, another robot will be elected leader and the
group will continue to perform the task.

Clustering and distributing are the most reliably successful tasks, followed by formation and finally
flocking. Formation is a highly coupled task; a slight movement in the position of one robot causes
the others to compensate in order to maintain the regular polygon shape. In some cases it can take a
long time for the robots to settle into a stable configuration but usually it happens quite quickly (a few
minutes).

The inherent difficulty in flocking arises from the fact that it is dynamic. It was found that the
battery levels played a large role in the success of this task. When batteries drained unevenly (which
typically does happen), the robots travelled at different maximum speeds, making it difficult to remain
in a tight pack. Spreading of the pack may be seen in Figure 4.6 but the system is able to gracefully

recover.

4.6 Summary

Radio communication (or any other well established protocol) allows very tightly coupled collective
robotics tasks to be accomplished with a reduced burden on traditional sensors and computational
facilities. This was demonstrated through various tasks involving five mobile robots communicating
with radio modems.

The tasks in Table 4.5 from classes IT, ITT, and IV would not be possible (or would be a great deal more

difficult) without well established interrobot communication protocols. As discussed above, to resort to
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some form of centralized control would require a communication network to input sensor information to
and output actions from the centralized controller. Here we find that once a communication network
is in place, there is no reason to use centralized control. This verifies (in this context) the claim that
decentralized controllers with the two types of interrobot communication described above can perform
exactly the same tasks as a centralized controller. In fact, in many cases (e.g., class I tasks), it is a great
deal more efficient to use decentralized control as less data needs to be broadcast over the communication
network. For the RISE system, a purely centralized controller would not be viable due its inefficient use
of the limited bandwidth communications.

Interrobot communication can be roughly placed into two categories: sensory sharing and action
coordination. The first allows the sensing capabilities of each robot to be spatially extended while
the second allows robots to globally coordinate actions through some form of voting. Both types of
interrobot communication are compatible with a decentralized philosophy and can easily be implemented
in behaviour-based controllers using generic communication modules. The difficulty of collective robotics
tasks can be judged by the type and amount of interrobot communication required for success.

It is convenient to speak of the classes of collective robotics tasks defined above but we must stress
that it will not always be possible to clearly place a task into one of these categories. The tasks
described here were deliberately designed to make them easy to categorize. The classes are based on
the type of communication required which, as discussed earlier, can become difficult to judge at the
implementation level. For example, at a high level the communicated information between robots was
in a representation easily recognized by a human (e.g., (z,y) coordinates) but at the digital radio packet
level it is unrecognizable. Despite this, we find that the general notion of gauging the difficulty of
collective robotics tasks by the nature of the interactions required between robots to have great merit.

One of the most reliable parts of the RISE system is the communication framework. The digital
message packets are rarely missed and have not been observed to convey noisy information to date.
Radio modem appears to be a very robust method of implementing interrobot communication. At a
transmission rate of approximately 1 Hz, even if a packet were to be missed by one rover, it will most
likely receive the next one. The robots are not able to move far enough in such a short time period for
this to have much effect. The two-timescale assumption appears to be valid for this system allowing for
highly reliable sensory sharing and action coordination on all tasks.

One concern in collective robotics is the stopping issue. If control is decentralized, how do the robots
know when the task is finished? There are a few ways to look at this. First, it may not be necessary for
them to actually stop executing the algorithm; the task would carry on indefinitely. Secondly, stopping
can be built into the algorithm as in the formation task described above; once the desired shape is made
the robots stop moving even though they continue to execute the algorithm. The important point to
make is that communication allows any centralized task to be carried out in a decentralized fashion. If
stopping is itself considered to be a task then this can also be achieved by a collection of robots which
communicate.

The design of collective behaviours in a group of robots is easily facilitated by the robust, bottom-up,
decentralized approach advocated here. It is hoped this study of interrobot communication will push
the boundaries of collective robotics research while at the same time helping to provide insights into the

biological communication protocols by which we are inspired.
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Chapter 5

SELF-ORGANIZATION

This chapter describes a coordination mechanism for a system of communicating agents with sparse
connections [Barfoot and D’Eleuterio, 2001]. This is a very general tool which may be used to make
decentralized decisions. The mechanism is based on a stochastic version of cellular automata (SCA). A
parameter analogous to a “temperature” can be tuned to vary the behaviour of the system. It is found
that the best temperature for coordination occurs near a phase transition between order and chaos. By
design, coordination does not rely on any particular structure of the connections between agents, thus
it may be applicable to a large array of sparsely communicating mobile robots or software agents.

As we have seen in previous chapters, the term decentralized system encompasses large bodies of
work from engineering, computer science, and mathematics. Examples include networks of mobile robots
[Matari¢, 1992], software agents [Bonabeau et al., 1994], and cellular automata [Wolfram, 1984]. A com-
mon thread in all decentralized systems is the issue of coordination. How is a large number of sparsely
communicating agents able to produce a coherent global behaviour using simple rules? Answering this
question will not only permit the construction of interesting and useful artificial systems but may allow
us to understand more about the natural world. Ants and the other social insects are perfect examples
of local interaction producing a coherent global behaviour. It is possible for millions of ants to act
as a superorganism through local pheromone communication. We seek to reproduce this ability on a
fundamental level in order to coordinate artificial systems.

It can be argued that cellular automata (CA) are the simplest example of a mathematical decen-
tralized system. Originally studied by von Neumann [1966], the term CA is used to describe systems

of sparsely coupled difference equations. Despite their simple mechanics, some extremely interesting
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behaviours have been catalogued (e.g., Conway’s Game of Life). The word self-organization is used in
many contexts when discussing decentralized systems, which can lead to confusion. Here we use it to
mean global coordination in the face of more than one alternative. We will be describing a stochastic
version of cellular automata. The goal will be to have all cells choose the same symbol from a number
of possibilities using only sparse communication. We maintain that rules able to succeed at this task
are self-organizing because the cells are not told which symbol to choose, yet they must all coordinate
their choices to produce a globally coherent decision. If we told the cells which symbol to choose, the
task would be very easy and no communication between cells would be necessary. This can be dubbed
centralized organization and is in stark contrast to self- or decentralized organization. This notion is
paralleled in nonlinear physics. At the risk of an over-simplified explanation, in Rayleigh-Bénard con-
vection regular hexagonal convection cells are able to form in a thin fluid heated from below. However,
the orientation of these cells is not coordinated by any central agency. We believe that coordination in
the face of more than one alternative is at the heart of all decentralized systems. This chapter seeks to
reproduce this phenomenon in as simple a model as possible.

The difference between centralized and decentralized decision making is already familiar to most
people but likely not thought of in this way. It is essentially the difference between flipping a coin and

using “rock, paper, scissors”*

when two people are trying to resolve a dilemma. In flipping a coin, both
parties rely on the coin (a centralized agency) to make the decision and then abide by its ruling. In
“rock, paper, scissors” a decision is also quickly achieved if both people follow the same rules, but it
occurs in a decentralized manner. Note, however, in “rock, paper, scissors” it can take repeated trials to
finally come to a consensus as there can be a tie. In fact, there is no guarantee that a consensus will ever
be achieved. But, we may compute the (high) probability with which a decision is made after a certain
time (as was done with the fully connected voting scheme of Chapter 4). Decentralized decision-making

is unavoidably stochastic in nature.

5.1 Related Work

To avoid repetition, this review will not address the control and robotics literatures described in Chap-
ters 3 and 4 but bear in mind their relevance on the current discussion. To contrast these views, relevant
studies from artificial life (AL) are described. These studies typically operate on large numbers (hun-
dreds to thousands) of agents which must coordinate themselves in some manner. Some mention is also
made of other work in decentralized coordination.

In the following, note that typically cellular automata do not operate in a stochastic but rather a
deterministic manner. Unless explicitly stated (e.g., stochastic cellular automata), the term cellular
automata (CA) will imply determinism.

von Neumann [1966] originally studied cellular automata in the context of self-reproducing mecha-
nisms. The goal was to devise local rules which would reproduce and thus spread an initial pattern over
a large area of cells, in a tiled fashion. The current work can be thought of as a simple case of this where

the tile size is only a single cell but there are multiple possibilities for that tile. Furthermore, we wish

1On the off chance that the reader has never heard of this, please turn to the person next to you and ask what this
means.
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our rules to work starting from any random initial condition of the system.

Cellular automata were categorized by the work of Wolfram [1984] in which four universality classes®
were identified. All rules were shown to belong to one of class I (fixed point), class II (oscillatory), class
III (chaotic), or class IV (long transient). These universality classes can also be identified in SCA and
we will show that in our particular model, choosing a parameter such that the system displays long
transient behaviour (e.g., class IV) results in the best performance on our decentralized coordination

task.

Langton [1990, 1991] has argued that natural computation may be linked to the universality classes.
It was shown that by tuning a parameter to produce different CA rules, a phase transition was exhibited.
The relation between the phase transition and the universality classes was explored. It was found that
class IV behaviour appears in the vicinity of the phase transition. The current work is very comparable
to this study in that we also have a parameter which can be tuned to produce different CA rules.
However, our parameter varies the amount of randomness that is incorporated into the system. At one
end of the spectrum, completely random behaviour ensues while at the other completely deterministic
behaviour ensues (which is simple voting). We also relate the universality classes to particular ranges of
our parameter and find a correlation between performance on our decentralized coordination task and
class IV behaviour. We attempt to use similar statistical measures to Langton [1990] to quantify our
findings.

Mitchell et al. [1993] and Das et al. [1995] study the same coordination task as will be examined
here in the case of deterministic CA. However, their approach is to use a genetic algorithm to evolve
deterministic rules successful at the task whereas here hand-coded stochastic rules are described. They
found that the best solutions were able to send long range particles (similar to those in the Game
of Life) [Andre et al., 1997] in order to achieve coordination. These particles rely on the underlying
structure of the connections between cells, specifically that each cell is connected to its neighbours in
an identical manner. The current work assumes that no such underlying structure may be exploited
and that the same mechanism should work for different connective architectures. The cost for this
increased versatility is that the resulting rules are less efficient (in terms of time to coordinate) than

their particle-based counterparts.

Tanaka-Yamawaki et al. [1996] study the same problem to that considered here. They use totalistic
[Wolfram, 1984] rules which do not permit exploitation of the underlying structure of the connections
between cells but rather rely on the intensity of each incoming symbol. They also vary a parameter
to produce different rules and find that above a certain threshold, “global consensus” occurs but below
it does not. The connectivity between cells is regular and success was found to depend in part on
the connective architecture used. However, they consider large clusters of symbols to be a successful
global consensus. We do not and thus turn to a stochastic version of their totalistic rules in an attempt
to destroy these clusters and complete the job of global coordination. Barfoot and D’Eleuterio [2001]

describe a subset of the results presented here.

The essential idea used in the model to be described here has been borrowed from nonlinear physics.

To force the system away from a uniform distribution, w, of symbols (which may be viewed as a stable

2These are entirely different from the classes described in Chapter 3.
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equilibrium), an instability is introduced in the local update rule of each decision maker. This local
instability drives the system away from a uniform distribution and as we will see towards global consensus.
The notion of an instability forcing a system far-from-equilibrium thus creating “order” has been seen
in nonlinear physics [Nicolis and Prigogine, 1977] and chemistry [Nicolis and Baras, 1984]. At the single
trajectory level, an instability may be seen as breaking symmetry between more than one alternative
while at the ensemble level, symmetry is once again restored as depicted in Figure 5.2.

The use of instabilities in the coordination of artificial systems is not new. Haken et al. [1973, 1983,
1984, 1987, 1994] lead a movement to describe all structure in nature in these terms and exploit these
ideas in the design of artificial systems®. Instabilities have even been used to describe coordination in

the wavelength population dynamics of lasers [Graham and Wunderlin, 1987].

5.2 Stochastic Cellular Automata

In deterministic cellular automata there is an alphabet of m symbols, one of which may be adopted
by each cell. Each incoming connection provides a cell with one of these symbols. The combination
of all incoming symbols uniquely determines which symbol the cell will display as output. Stochastic
cellular automata (SCA) work in the very same way except at the output level. Instead of there being a
single unique symbol which is adopted with probability 1, there can be multiple symbols adopted with
probability less than 1. Based on this outgoing probability distribution over the m symbols, a single
unique symbol is drawn to be the output of the cell. This is done for all cells simultaneously. It should
be noted that deterministic CA are a special case of SCA.

We consider a specific subcase of SCA in this paper which corresponds to the totalistic rules of CA.
Assume that cells cannot tell which symbols came from which connections. In this case, it is only the
intensity of each incoming symbol which becomes important. Furthermore, we desire that our rules work
with any number of incoming connections thus rather than using the number of each of the incoming m
symbols, we use this number normalized by the number of connections which can be thought of as an

incoming probability distribution over the m symbols. In summary the model we consider is as follows.

Definition. ToTALISTIC SCA: Consider a system of K cells, each of which is connected to
a subset of the other cells. Let ™D represent the alphabet of m symbols. The state of Cell
k at time-step ¢ is Ug[t] € ™D. The input probability distribution, pinx € ™S, for Cell k is
given by

Pink[t] = ok (UL[t], ..., ukl[t]) (5.1)
where o, € ™F™K accounts for the connections of Cell k to the other cells. The output

probability distribution Pout,x € ™S is given by the map, m, € "F™,

Pout,k[t] = ﬂ'k(pin,k[t]) (5.2)

The probability distributions pi,,x € ™S and Pout,x € ™S are stochastic columns. The new
state of Cell k at time-step ¢ + 1 is randomly drawn according to the distribution Poyg,k [t]
and is represented by ug[t + 1] € ™D.

3For some reason these references are rarely cited but in the opinion of this author, undeservedly so.
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It should be noted that in (5.1) if the connections between the cells are not changing over time then the
functions, o (-), will not be functions of time. However, we could allow these connections to change which
would make them functions of time. Once the connections are described through the o (-) functions,
the only thing that remains to be defined is the w-map. We assume that each cell has the same w-map

but this need not be the case.

5.3 Self-Organization as a Control Problem

It should be no surprise that the above self-organization problem (a.k.a., the coordination problem,

decentralized decision making problem) may be cast as a (nonlinear) control problem in the following

way
Xt +1] = (Wl Wl ..., uxl) (53)
vilf] = ox(x[f)) Vk=1...K (5.4)
ugt] = ﬂk(yk[t]) VE=1...K (5.5)

where x € ™" S is the complete (global) system state, u, € ™S are the local controls, y, € ™S are the
local observations, oy € mpm® are the (nonlinear) observation projection functions (as described in
the previous section), and 7y € ™F™ are the (possibly nonlinear) feedback control laws. Note in the
system state equation (5.3), X[t + 1], is a joint distribution (see Section 2.14) of the local controls, ug[t].
Everything in this system is given except the control laws, 7, which we must design. The goal of this

control problem is to make the m points

1 1 0 0 0
0 0 0 : : :

X] = Aol | R 0 , 0 e 0 (5.6)
0 0 0 1 1

stable while making all others unstable. Thus beginning from a random initial condition the system will
tend towards one of these m points and stay there. The next section discusses the design of control laws

for the decentralized decision making problem.

5.4 Control Laws

We have already seen the successful application of a control law to the decision making problem in
Chapter 4. It is tempting to apply the (fully connected) stochastic coordination mechanism of Section 4.4
to the more general problem of sparsely connected cells. In the following example, we will see why this

does not always work.

Example. Consider a network of K = 4 cells sparsely connected to one another as in Figure 5.1. The
alphabet size will be taken to be m = 2. There are 2% = 2% = 16 possible global states, x € 1°S,

only two of which we find to be satisfactory (i.e., when all cells take on the same symbol). That is,
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Cell 1 Cell 4

Cell 2 Cell 3
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Figure 5.1: Example of a SCA model with K = 4 cells. Lines indicate (sparse) connections
between cells. In this example the m = 2 symbols of the alphabet are represented by the 2
colours. In this state we have two clusters and hence no global consensus.

we want to make the two points

()b )

*

X2:
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stable but no others.
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This will ensure only a single cluster will form and a global consensus is

|

U1
ug =
U42

w11 + U21 + U31
JUK) =
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w11 + U31 + 41
,UK) =

w12 + U32 + W42

We then consider the state (with two clusters) depicted in Figure 5.1,

1

X[t] = (

] Ya[t]

which gives the observations

yi[t] = [

Wi Wi
W= wiN

10
| |

)

] Yalt]

H

Wi -
Wi -

Using the (fully connected) stochastic coordination mechanism of Section 4.4 as feedback for each

cell (i.e., as the m-maps), we get the following controls

wift] = m Uaft] = m slt] =

and thus the system state at the next time-step is

X[t + 1] = (Us[t], Us[f], Us[t], uale]) = (H

ﬂ wile = m
) -

which means the state has not changed and never will. There is a system state involving two clusters

that is stable. The (fully connected) coordination mechanism has failed in this extremely simple

case of sparse connections and thus it seems unlikely that it will work for K = 100 or K = 1000

cells. A different control law is required.

O
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Figure 5.2: The piecewise-m rule for different values of A and m = 2.

In the above example we will see that the “gain” on our feedback control law is essentially too high,
which results in undesirable clusters and boundaries. The possibilities for the 7r-map are infinite and
thus we discuss parameterized subsets of these possibilities. One possibility, denoted piecewise-m, is

defined as follows.

Definition. PIECEWISE-7:  Let piy = [pj,in] € ™S be the input probability column. The

(unnormalized) output probabilities are given by

1’ if % + lg(pj,in - %)
Prow =4 0. 2+ Blayan — 1)
% + B(Pjin — %), otherwise

>1
<0 Vi=1l...m (5.7)

where (8 is derived from the tunable parameter A as follows:

2, ifo<a<?
h= 1 -1 sl ; (5.8)
The (normalized) output probability column is
Pout = *L[pj,out :| (59)

where Pout € ™S.

Note that in (5.8), the tunable parameter A acts in a similar manner to a temperature parameter. As
A — 1 the map approaches the (fully connected) rule of Section 4.4 which is deterministic (except in the
event of a tie). When A = 0 we have a completely random rule. Figure 5.2 shows what the new rule
looks like for different A when m = 2.

An equilibrium point, p* € ™S, in a w-map is one for which the following is true

p* =7 (p*) (5.10)

The idea behind the 7w-map is to create an instability in the probability map at the uniform distribution

equilibrium point, P ; = w, such that a small perturbation from this point would drive the probability
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Figure 5.3: The linear-m rule for different values of A and m = 2.

towards one of the stable equilibria

0
0 1
pi = p5=|. P = |. (5.11)
0 0 1

where p; € "D Vj =1...m. For the piecewise-w map, when 0 < A < %, the equilibrium point, p; ;, is
the only stable equilibrium. However when % < X <1, p:,; becomes unstable and the other equilibria?,
Py, ...,P;,, become stable. This is similar to the classic pitchfork bifurcation as depicted in Figure 5.4
for m = 2. However, with m symbols in the alphabet the pitchfork will have m tines. The point, A = 0.5

or # = 1, will be called the critical point. Note that in stochastic algebra, piecewise-7 is a nonlinear

* tabl tabl
o Unsiadle . Stable
* Stable Unstable
p e 1R
p, U . | sStooe

L 1 |

1 1 1
A0 0.5 1

Figure 5.4: Pitchfork stability of the piecewise-p rule for K = 2. A is a parameter analogous
to a temperature.

function. We may construct another r-map by linearizing about the equilibrium point, w. Using the

Jacobian approach described in Chapter 2 results in the following map.

Definition. LINEAR-7r: Let pi, € ™S be the input probability column. The output proba-
bility column, poyt € ™S, is

Pout = S-Pin (5.12)

where [ is derived from the tunable parameter A as follows:

2\ ifo<a<i
6:{ ’ s 2 (5.13)

$(1-N" i <A<

4Note: There are other equilibria (e.g., [% % O]T when m = 3). We would like these, too, to be unstable.
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From the linear equation (5.12) it is easy to verify that the desired equilibria are present. Furthermore,
we know from the eigenvalues of (5.12) that when § < 1 the probability distribution will move closer
to w and when 8 > 1 it will mover further away. Thus Figure 5.4 applies also to linear-w. Figure 5.3
depicts the linear-m rule for different A and m = 2. Again, as A — 1 we have 8 — oo and the simple
voting mechanism of Section 4.4 results.

There certainly are other stochastic functions which may work as 7r-maps but two will be enough
for our purposes here. It is important to stress that we have designed the stability of our system at a
local level. The question of global stability and success on the decentralized coordination problem does
not follow directly from the local stability of each cell (as we saw for A = 1 in the above example).
It might be possible to study the global stability of a large system of cells (e.g., K = 100) with a
piecewise-m or linear-7 rule analytically. The problem is that there is an explosion in the number of
global states as K is increased. For example, with K = 100 and m = 2 there are 2'°° & 1.3 x 10%°
possible global states, X € 2'°S. The approach for the rest of this chapter is to study them through
simulation and statistical analysis. This is an important issue for stochastic decentralized systems. If
it is computationally intractable to study large systems analytically and prove they will work, then will
they still be useful? The hope is that by designing large decentralized systems from the bottom up, the
interactions that we design on a small scale will still work on a very large scale. This is typically called

scaling up and will be investigated here through simulation.

5.5 Simulation

We now present simulations of cells running the piecewise- and linear-m rules. In order to ensure
that the connections between cells are not regular, we consider each cell to exist in a Cartesian box
(of size 1 by 1). The K cells are randomly positioned in this box and symmetrical connections are
formed between two cells if they are closer than a threshold Euclidean distance, d, from one another.
Figures 5.5 through 5.7 show example connections for K = 100 cells (with d = 0.2) and K = 400 cells
(with d = 0.1). Figure 5.8 shows example time series for different values of A for the piecewise-m rule.
When A < 0.5, chaotic global behaviour arises, with 0.5 < A < 1 fairly successful behaviour results but
with A = 1 clusters form. The formation of clusters means that the global system has stable equilibria
which we did not predict from the local rule. However, as A is decreased towards 0.5, these equilibria
are no longer stable and the system continues to coordinate.

It would seem that there is a good correlation between the stability on the local level and the
behaviour type of the global system. As A moves from below 0.5 to above, it appears there is a dramatic
phase transition in the behaviour of the system. In the neighbourhood of 0.5 there is long transient
behaviour. It turns out that the best value for A (for the simulation parameters considered here) from

the point of view of decentralized coordination, is approximately A = 0.6.
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Figure 5.5: Six examples of random initial conditions for alphabet size, m = 2. The two
colours represent the two symbols of the alphabet. The larger examples have K = 400 and
d = 0.1 while the smaller ones have K = 100 and d = 0.2.
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Figure 5.6: Six examples of undesirable clusters forming for alphabet size, m = 2. The two
colours represent the two symbols of the alphabet. The larger examples have K = 400 and
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5.6 Statistical Analysis

In an attempt to quantify the qualitative observations of the previous section, a number of statistical
measures were employed in the analysis of the SCA time series. These were used also by Langton [1990].
The first measure is taken from Shannon [1948] and will be referred to as entropy (H). It is defined as

follows.
Definition. ENTROPY®: Given a sequence of n symbols
S=[s1 52 -+ sn] (5.14)

from an alphabet of size m, the entropy of the sequence may be computed as follows. First
compute the frequency, n;, of each of the m symbols Vj = 1...m which is simply the number
of occurrences of symbol j in the sequence, S. From the frequencies, compute the probability,

pj, of each of the m symbols Vj =1...m as

nj

P 5.15
by s ( )
where ny, = >, | ;. Finally, the entropy of sequence, H(S), is defined as
m
—S™ o n(ps
H(s) = 2_j—1Pi n(p)) (5.16)

In(m)

where the In(m) denominator is a normalization constant to make H(s) € [0, 1].

This entropy function produces a value of 0 when all the symbols in S are identical and a value of 1 when
all m symbols are equally common. The second measure is based on the first and will be referred to as

mutual information (I). Tt is defined as

Definition. MUTUAL INFORMATION: Given two sequences of n symbols each

s = [s11 s12 - 517n]T (5.17)
S, = [s21 S22 - 527n]T (5.18)

from an alphabet of size m, the mutual information of the sequence, I(s;,S;), may be defined

I(s1,s) = H(s1) + H(s2) — H(s1,%) (5.19)

where H(s;,$;) is the entropy of the two sequences considered as a joint process (i.e., with

an alphabet of size m x m).

These two measures may be computed on any sequence of symbols. They were tested on spatial sequences
(e.g., time series columns from Figure 5.8) and temporal sequences (e.g., time series rows from Figure 5.8).
The most interesting measures were average spatial entropy (average of entropies computed from all
columus in a time series) and average temporal mutual information (average of all I's computed from all

rows in a time series. I was computed between a row and itself shifted by one time-step).

5See also the section on information theory in Chapter 2.
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Figure 5.9: Average number of clusters at final time-step for 1000 values of A. Plot shows
average of 100 simulations at each value of A. Number of clusters was computed by consid-
ering the SCA as a Markov chain with connections deleted between cells displaying different
symbols. The number of clusters is then the number of eigenvalues equal to 1 from the
Markov transition matrix. Piecewise-m rule was used.
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Figure 5.10: Average spatial entropy for 1000 values of A. Plot shows average of 100 simula-
tions at each value of A. Piecewise-m rule was used.
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Figure 5.11: Average temporal mutual information for 1000 values of A. Plot shows average
of 100 simulations at each value of A. Piecewise-m rule was used.
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Number of Clusters (final time-step)
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Figure 5.12: Average number of clusters at final time-step for 1000 values of A. Plot shows
average of 100 simulations at each value of A. Number of clusters was computed by consid-
ering the SCA as a Markov chain with connections deleted between cells displaying different
symbols. The number of clusters is then the number of eigenvalues equal to 1 from the
Markov transition matrix. Linear-7 rule was used.
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Figure 5.13: Average spatial entropy for 1000 values of A. Plot shows average of 100 simula-
tions at each value of A. Linear-m rule was used.
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Figure 5.14: Average temporal mutual information for 1000 values of A. Plot shows average
of 100 simulations at each value of A. Linear-m rule was used.
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Figures 5.9, 5.10, 5.11 show various measures for piecewise-m and 1000 values of A\. At each value
of A, 100 simulations were done on different random connections between cells and initial conditions.
Thus, all displayed measures are actually averaged over 100 simulations. Each simulation was run for
300 time-steps with K = 100, m = 2, and d = 0.2. Figures 5.12, 5.13, 5.14 show the same measures for
linear-m.

Figures 5.9 and 5.12 show the average number of clusters at the final time-step for different values
of A. The phase transition is quite obvious at A = 0.5. The optimal value (in terms of the fewest
clusters formed on average) for A is near 0.6 for piecewise-m and 0.53 for linear-m. Figures 5.10 and 5.13
show average spatial entropy for different values of A\. This measure has a good correlation with average
number of clusters. Again, there is a minimum occurring which corresponds to the best performance at
multiagent coordination.

Figures 5.11 and 5.14 display average temporal mutual information for different values of A. This is
a very interesting plot. Temporal mutual information seems to capture the length of the global transient
behaviour of the system. As discussed by Langton [1990], the random pattern in the chaotic region is not
considered transient but rather the steady-state behaviour. The peak in temporal mutual information
occurs at A = 0.5 , the phase transition, and drops away on either side (for both rules). Langton [1990]

has a similar plot.

Number of Clusters (final time-step)

100 200 300 400 500 600 700 800 900 1000

Number of Cells, K

Figure 5.15: Average number of clusters (at the final time-step) as the number of cells, K,
is varied from 100 to 1000. The parameters were: 300 time-steps, m =2, A = 0.6, d =
The piecewise-m rule was used. Plot shows average from 100 simulations at each value of K.

g

Figure 5.15 shows how the average number of clusters at the final time-step varies as the problem
is scaled up from K = 100 cells to K = 1000 cells. The plot shows an average of 100 simulations, each
run for 300 time-steps with m =2, A = 0.6, and d = # The parameter d was made to depend on the
number of cells in order to keep the average density of connections the same. This was required as the
Cartesian box in which the cells live was always of size 1 by 1. As more cells are added they are closer
together and thus to keep the density of connections between cells constant (on average), the factor of
% was needed. The resulting relationship between number of clusters and number of cells is quite
linear, about 0.47 clusters for every 100 cells added. Barfoot and D’Eleuterio [1999] show a qualitatively
similar scaling plot for a heap formation problem.

Figure 5.16 shows how the average number of clusters, again at the final time-step, varies as the

problem is scaled up from an alphabet size, m, of 2 (a single bit) to 256 (8 bits or 1 byte). The plot
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Number of Clusters (final time-step)

Message Size, log,m

Figure 5.16: Average number of clusters (at the final time-step) as the alphabet size, m, is
varied from 2 (1 bit) to 256 (8 bits). The parameters were: 300 time-steps, K = 100, A = 0.6,
d = 0.2. The piecewise-w rule was used. Plot shows average from 100 simulations at each
value of m.

shows an average of 100 simulations, each run for 300 time-steps with m =2, A = 0.6, and d = 0.2.

5.7 Shifting the Instability

In the theory and simulations presented above, it was assumed that K cells are trying to agree on a piece
of information, u € ™D which is one of m symbols from the allowable alphabet. The w-maps presented
created an instability at the uniform distribution, w. At the single trajectory level, a specific symbol
will (if we wait long enough) be chosen with probability 1. However, if we run enough simulations and
average the results, each symbol will be chosen with probability % Thus, at the ensemble level we are
still at the equilibrium, w.

We may think of the unstable equilibrium as the distribution from which we would like the K cells
to select a single unique symbol. So far we have been assuming this is the uniform distribution, w.
However, we might like the group to select a symbol from a different distribution. This is necessary, for
example, in the linear stochastic system of Chapter 3. To do this we must shift the unstable equilibrium

in the 7r-map to the new desired distribution, u* € ™S. This is done by replacing (5.2) with
Pout[t] = w(Pin[t] © U*) @ U* (5.20)
such that we may continue to use the same 7r-maps, regardless of the desired distribution, u*. In the

case of the linear-m map we have the following

*

Pout[t] = w(pw[t]ou*) ou
= B(pwlt]ou*) o U
= [-puwlt] © U @ U*
= Bpult]© (1-p)u (5.21)
which is interestingly in the form of the linear system in (3.115). Here u* is the control input to

the equation. In this form we may immediately use our coordination mechanism to effect any control

distribution, u* € ™S, over an arbitrarily connected network of K controllers.
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To do this each controller takes as input the desired control distribution, u*, and runs the stochastic
coordination mechanism of this chapter. After a sufficiently long amount of time the system will agree
on a deterministic, u, which has been selected from u*. As detailed in Section 3.6.2, a deterministic
control sequence can always be carried out exactly by independent controllers.

This is a rather fundamental point so it is repeated for clarity. Independently acting controllers cannot
exactly implement control from a desired (arbitrary) stochastic control distribution as it may require
them to act in a statistically dependent manner. However, by communicating (using the coordination
mechanism of this chapter) through sparse connections they can agree on a deterministic control from
the desired distribution (without use of a centralized facility) which can then be exactly implemented
by them in a decentralized manner. This occurs at the single trajectory level. At the ensemble level,

the original stochastic control distribution is exactly implemented.

5.8 Discussion

The strong correlation between the local stability of the piecewise-w and linear-m rules and the type
of global behaviour is quite interesting. It appears that A > 0.5 corresponds to fixed point behaviour
(Wolfram’s class I), A < 0.5 corresponds to chaotic behaviour (Wolfram’s class III), and A near 0.5
corresponds to long transient behaviour (Wolfram’s class IV). Local correlation has to do with the way
in which the incoming probability distribution is computed in (5.1). This step delivers information
averaged from all connected cells. This averaging serves to smooth out differences between connected
cells. However, if this smoothing occurs too quickly (i.e., A = 1) the system does not have time to smooth
globally resulting in the formation of clusters. This has been called critical slowing down [Haken, 1983b]
in other systems. As we approach the critical point (A = 0.5 or # = 1) from above, the strength of
the instability decreases which slows down the decision-making process. The third and vital ingredient
in the recipe for self-organization is the fluctuations that occur at the single trajectory level. These
fluctuations allow the system to begin the process of moving away from the unstable equilibrium, w, in
the -maps. The nature of the w-maps is such that these fluctuations are largest when the system is
near w and becoming smaller and smaller as a cell becomes more coordinated with its neighours. It is
a balance of these three effects which seems to be the most effective at decentralized coordination. To

summarize, self-organization in this model requires the following three mechanisms:

INSTABILITY in the sr-map which forces each cell to move away from w (behaving randomly) and

towards one of a number of deterministic decisions.

AVERAGING in the o-map which serves to bias each cell to conform to the average behaviour of

its immediate (connected) neighbours.

FLUCTUATIONS at the single trajectory level to cause each cell to move away from the unstable

equilibrium, w. These fluctuations become smaller as the cell moves further away.

To properly balance these three effects the parameter, A\, was tuned. The optimal operating value of
A is not right at the phase transition but a little bit towards the deterministic end of the A spectrum

(approximately A = 0.6 for piecewise-m and 0.53 for linear-m).
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Note that we did not find any oscillatory behaviour (Wolfram’s class II) which is because the con-
nections between the cells are symmetrical. However, if the piecewise-m rule in Figure 5.2 is reflected
(left-right) then the system “blinks” and global coordination corresponds to all cells blinking in phase
with one another. The same may be said for the linear-m rule.

What is happening in the SCA model is that the boundaries between clusters are made unstable.
This forces them to move randomly until they contact one another and annihilate, leaving a single
cluster. This annihilation of boundaries is qualitatively the same method found to work in deterministic
CAs by Mitchell et al. [1993] and Das et al. [1995]. In those studies the boundaries were made to move
in very specific ways by exploiting the nature of the connections between cells. They found that the
boundaries could be made to travel long distances. This allowed coordination to occur more quickly
than the method presented here. However, their mechanism was not immediately portable to different
connective architectures. By not exploiting the underlying connections between cells, the best we can
do is to make the boundaries move randomly and wait for them to contact one another and annihilate.
The benefit is that this method is independent of the connective architecture.

The results presented here used K = 100 cells and required on average 150 time-steps to get to a
single cluster with d = 0.2, m = 2 and A = 0.6. Clearly, the time required to form a single cluster will
increase with the number of cells in the system. This is reflected in Figure 5.15 which shows how the
number of clusters after 300 time-steps varies as the number of cells is increased. The larger systems are
not able to finish coordinating in the allowed time, thus resulting in more clusters.

Figure 5.16 shows how the number of clusters at the final time-step varies with the alphabet size,
m. This is more difficult to explain as the curve first goes down a little and then up as m is increased
from 2 to 256 in factors of 2. This would have been difficult to predict analytically. In some ways the
m = 2 case is very difficult as there can be two equally large clusters whose boundary fluctuates but is
never annihilated leaving a single cluster. There is effectively a stalemate, no further progress is being
made. Having more clusters that are smaller in size can make the fluctuations relatively bigger, enabling
boundaries to be annihilated more quickly. This explains the initial decline in Figure 5.16. The eventual
rise in the plot (increasing from m = 16) is similar to that in Figure 5.15. Although the system is still
making progress, it is not able to complete coordination in 300 time-steps. As the alphabet size becomes
larger than the number of cells (here 100), the plot levels off. This may be explained by the fact that
K cells cannot represent more than K different symbols in the random initial condition, regardless of
how large we make the alphabet size, m. Note that if the system becomes too inefficient at very large
m (i.e., too time consuming), it is possible to use more than one coordination mechanism and combine
the results. For example, two of the m = 8 mechanisms could be combined to produce messages of size
64. Depending on the parameters this may or may not improve coordination efficiency. The last point
which should be mentioned is that the same value of A = 0.6 was used at all values of m. There could,
however, be different optimal values for this parameter for each m.

The piecewise-w and linear-m rules are not the only maps that can be used to achieve decentralized
coordination in SCA. Replacing it with other monotonically increasing functions (i.e., in Figure 5.2)

with the same equilibria will likely work. This was tried for m = 2 with the relation

Pious = 3(pjin)® —2(pjin)® Vi=1...m (5.22)
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which has equilibria at [1 0]7,[0 1]7,[1 1]7?. It is fairly successful but the piecewise-w and linear-m
rules are easier to parameterize. The above rule is similar in form to equations studied by Haken et
al. [1973, 1984], particularly the cubic term.

The equilibria are the most important features to consider in the design of w-maps. Creating an
instability at the uniform distribution, w, is crucial. However, there are other features which can be
incorporated. For example, the linear-m rule is appealing as it provides a smooth route to a deterministic
decision. Essentially, less and less noise is added as the incoming probability gets closer to one of the
deterministic equilibria. This is a form of proportional feedback (which is linear in stochastic algebra).
The piecewise-m is nonlinear but this may have an additional useful feature in some situations. In the
saturated regions of the curve (i.e., the horizontal flat parts) normal voting results. This feature greatly
increases the strength of the stability of the deterministic equilibra. Thus any perturbation to the system
is less likely to drive the system away from one of these regions. For example, if a group of 100 cells were
already coordinated and a few more cells were introduced into the system at a later time, this would
increase the likelihood of the new cells to conform. Similarly, if one cell were to begin malfunctioning it
would be less likely to cause the other cells to uncoordinate. The size of the saturated region may be
tuned as circumstances require.

Finding the optimal value for A for a particular set of parameters may not actually be necessary. As
a future direction of research, a “cooling schedule” could be developed. We could start with A near the
phase transition (e.g., A just larger than 0.5) and then slowly “cool” the system by bringing A gradually
towards 1. The system would certainly pass through the optimal value for A\. This form of cooling
schedule has been used, for example, in simulated annealing, a global optimization method. This would
require each cell having some form of internal clock in order to time the cooling. Another possibility is
to allow each cell to program its own X using feedback. A would get larger in periods of inactivity and
smaller in periods of high activity. Removing the need for a centralized designer to program A is one
more step towards fully autonomous decentralized decision-making. Another future direction of work is
to consider the addition of noise to the communication between cells. This could be done, for example,
using the state-projection matrices from Chapter 3. It is likely that a small amount of communication
noise will not cause the system to catastrophically stop working as it has been built on fluctuation and
noise to begin with.

The model considered here does not require knowledge of the underlying structure of the connections
between cells. This was a design requirement as it was originally motivated by a network of communi-
cating mobile robots whose connections might be changing over time and thus difficult to exploit. It is
thus natural to question whether the model still works as the connections are varied over time. To this
end, a small amount of Gaussian noise was added to the positions of the cells in the Cartesian box at
each time-step. As the cells moved, the connections between them changed (since they are limited by
the range, d). The SCA model was still able to form single clusters. This was possible even when A\ = 1
which makes sense since there is still some noise being added. However, the nature of the noise is at the
connection level rather than the signal level. This is fairly obvious. Over a long period of time it is as
though the system were fully connected. However, the assumption of completely random movement is
probably not a good one for a system of mobile robots. Consider, for example, the tasks described in

the previous chapter. The coordination mechanism described here has tried to make as few assumptions
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as possible about the nature of connections between cells.

Finally, it should be noted that the fully connected voting scheme from Chapter 4 is identical to
either the piecewise-m or linear-m rules from this chapter with A = 1. Because the robots are fully (not
sparsely) connected, a long transient is not required to achieve global coordination and thus A = 1 gets

the job done as quickly as possible.

5.9 Summary

A mechanism for decentralized coordination has been presented based on stochastic cellular automata.
This is an example of self-organizing behaviour in that global coordination occurs in the face of more
than one alternative. It was shown that by using stochastic rules, sparsely communicating agents could
come to a global consensus. A common piece of information may be generated to which each cell has
access using a stochastic approach. A parameter in the coordination mechanism was tuned and it was
found that coordination occurred best when the system was near a phase transition between chaotic
and ordered behaviour (the optimum was a little bit towards the ordered side). It is hoped that this
model will shed light on self-organization as a general concept while at the same time providing a simple

algorithm to be used in practice.



Under what conditions {could, would, must, might]
communication arise as a feature of interaction between
individuals in groups? Can we build a gradualist bridge

from simple amocba-like automata to highly purposive
intentional systems, with identifiable goals, belicfs, cte.?

Under what conditions does the fate of groups as
opposcd to individuals play a decisive role in cvolution?

‘What is an individual?
—Daniel C Dennett
ARTIFICIAL LIFE AS PHILOSOPHY, 1994

Chapter 6

SYNTHESIS

This study of stochastic decentralized systems has wound its way downward from the whole to the parts
and back. This chapter begins with a summary which serves to deepen the underlying connections
between the ideas presented in the previous technical chapters. It furthermore tries to synthesize this

work with the massive body of existing research on self-organization in general.

It was shown in the chapter on control that the assumption of a central locus of control is made
unnecessary through the introduction of communication between decentralized controllers. Some might
argue that this complicates matters more than it simplifies them. Although this may be true, the view
here is that centralized control is a drastically simplified case of the more general problem of decentralized
control. With this view in mind, the study’s focus turned to building upward from the parts to the whole.
By crafting specific types of communication between groups of decentralized controllers/robots/cells it
was shown how to produce global behaviours that in the eye of the observer could just as easily appear
to be centrally controlled. Sometimes if an observer looks hard enough, these systems can appear to

be purposive, to have the semblance of an “idea”!

. But if intelligence is in the eye of the observer, as
claimed by new AI, then it is impossible to make any objective claim about its existence. This will be
discussed further in the closing section. Tempting as these subjective notions may be, they have been
avoided here. This study of decentralized systems has sought to objectively understand the fundamental
interactions between autonomous agents which enable global coordination in a completely decentralized

manner.

1Based on comments many observers of the robotics system have made.
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Chapter 5 on self-organization sought to look for such fundamental features in a simple model of
sparsely communicating cells which were trying to generate a common piece of information. The problem
of coordination is an example of self-organization in that a common choice must be made in the face
of more than one alternative. The study of a large number of sparsely communicating agents almost
necessitates using some form of statistical analysis if any general properties are to be found. Even when
the underlying dynamics are deterministic, statistical tools are needed to quantify the behaviour in an
average sense. This may be seen throughout the study of artificial life and complex phenomena. For
example, the deterministic cellular automata described by Mitchell et al. [1993] and Das et al. [1995] do
not always form a global consensus; they do so with a high probability. The NK models of Kauffman
and Johnsen [1991] examine the local coupling between genes in a DNA sequence using simple automata.
The resulting ruggedness of the fitness landscapes they produce are quantified statistically. The sandpile
model (and many others) of Bak [1996] shows the existence of a self-organized critical state in a locally
coupled system of simple automata. Here the number and size of sand avalanches obey a beautiful
statistical law. Analyses of real earthquake data have shown these phenomena to obey similar laws but
it is still impossible to predict when and where avalanches and earthquakes will occur. Bak [1996] notes

Self-organized critical systems evolve to the complex critical state without interference from any

outside agent. The process of self-organization takes place over a very long transient period. Complex

behaviour, whether in geophysics or biology, is always created by a long process.
In the stochastic cellular automata models described here this notion of a long transient was found
to be very important. This quantity was captured well by the statistical measure, temporal mutual
information. Das et al. [1995], Mitchell et al. [1993, 1996] found their solutions to display long transients.
Langton [1990, 1991] found long transient behaviour to occur in the vicinity of a phase transition
(between order and chaos) in the global behaviour of the system. This was also found here. He further
suggested that long transient behaviour might be linked to natural computation in decentralized systems
which was reexamined by Mitchell et al. [1993]. Hanson and Crutchfield [1995] attempted to formalize
the connection between long transient behaviour and natural emergence of computation. Some cellular
automata have even been shown to display all the necessary features of a universal Turing machine. Thus
computation is at least theoretically possible in a system of sparsely communicating simple automata.

The ‘computation’ here was simply to form a consensus in a decentralized manner. It was found that
a long transient is necessary in order to avoid the formation of small clusters in sparsely connected SCA.
To achieve long transient behaviour, the A parameter needs to be lowered from A = 1 (deterministic)
towards the critical stability point, A = 0.5, where a phase transition in the global behaviour of the
system occurs. The best value for A, in terms of global coordination, was found to be approximately
0.6. Lowering A is analogous to raising the temperature of the system. The transient is made longer
by decreasing the strength of the instability (making the eigenvalues smaller in magnitude) in the 7r-
map. By adding noise, which is analogous to heat (random energy), in this particular way, the decision
making process is slowed down. This critical slowing down [Haken, 1983b] is necessary to allow the
system enough time to globally coordinate. The local decisions made by the cells are thus drawn out
long enough to allow information to be transmitted globally. This can also be thought of as adding noise
(in just the right way) to avoid getting caught in local minima (clusters). Thus it is not the length of

the transient itself that is important but rather the time it buys for communication of data. Spatial
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entropy captures the degree of coordination very well.

It was found that balancing three important effects enabled global coordination in this model: an in-
stability in the probability map to force each cell to make a decision, averaging of the incoming information
from neighbouring cells, and fluctuations to start the ball rolling on the instability. These notions have
been borrowed from nonlinear physics (not for the first time) where instabilities and fluctuations play im-
portant roles in many self-organizing systems [Nicolis and Baras, 1984], [Prigogine and Stengers, 1984],
[Haken and Mikhailov, 1994, Haken, 1984] . The resulting SCA mechanism requires no adaptation to be
used as a coordination mechanism for an arbitrarily connected network of decision-makers or controllers.
The more connections between agents, the faster it coordinates. Put another way, longer transient be-
haviour is required for more sparsely connected cells. This mechanism (with A = 1) was employed by the
robots in Chapter 4 in order to make decentralized decisions and thus coordinate their behaviour. Note,
this mechanism does not guarantee that a global decision will be reached, only that it will be reached
with a high probability. The longer you wait, the higher that probability.

Being able to generate a common piece of information can actually be cast as a control problem (as
was seen in Section 5.7). But how can we get a system of sparsely communicating agents to behave in
an arbitrary way? To this end, Chapter 3 examined in some depth the effect decentralization has on
systems in general. It was noted that there are actually two types of decentralization, that of control
and that of observation. The very process of decentralization thus imposes two constraints on the
system, one for each of control and observation. If we think of a centralized controller as a number
of communicating decentralized controllers, then the actual process of ‘decentralization’ constrains the
system by severing the communication links. This can have the same effect as removing both sensors and
actuators from the system. Naturally this limits the possible behaviours of the decentralized system as a
whole. It in fact naturally defines four classes of controllers: (requiring)/(not requiring) communication
for (sensory sharing)/(action coordination). From a control point of view, the more communication
bandwidth available, the better. There are two ways of summarizing these ideas. First, communication
may be used to counter the effects of decentralization. Second, the illusion of centralized control may be
created by using communication between decentralized controllers. When the communication bandwidth
is considered to be infinite, these are the same.

These ideas were discussed in the framework of controlled Markov chains (DecPOMDPs). Markov
systems were chosen for this study of control as they are inherently stochastic and have properties analo-
gous to physical systems (e.g., they may be described in terms of entropy). It was hoped that connections
could be made between existing control theory and Markov systems. Motivated by this possibility, the
stochastic algebra of Chapter 2 was developed. This algebra allows stochastic dynamic equations (dif-
ference equations) which govern the temporal flow of probability distributions, to be rewritten in the
familiar matrix algebra. In stochastic algebra, the zero vector is the uniform probability distribution.
All interactions between controllers may be described in terms of statistical dependence. Linearity is
akin to statistical independence. Causing decentralized controllers to behave in a coordinated manner
then requires somehow making them behave in a statistically dependent (nonlinear) manner. It was
shown that the reactive feedback controllers of Bellman [1957] for the centralized Markov system (MDP)
fall into four classes as a result of decentralization. With the addition of communication, decentralized

reactive controllers can achieve any behaviour a centralized reactive controller can. Similar arguments
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were made for dynamic controllers. The more interesting cases, naturally, are those requiring commu-
nication for both sensory sharing and action coordination. It should be stressed that from the point of
view of control, implementing an arbitrary ‘centralized’ controller on a group of decentralized controllers
requires two task independent mechanisms: communication for sensory sharing and communication for
action coordination. The first involves propagating existing information throughout the system while
the second goes one step further to involve creating a new piece of information, common to all controllers
in the system which may then be used for coordination. The generic modules presented in Chapter 4,
for example, fill these roles. From this point of view, once the communication facilities are established,
any global behaviour may be achieved (given enough bandwidth).

The control of a Markov chain is in fact a nonlinear problem in the new stochastic algebra. However,
assuming that the transition matrices are regular under a uniformly random control, the system will
gradually head to a stable equilibrium distribution. It is then possible, using the stochastic calculus
from Section 2.12 to linearize the Markov system about this equilibrium. This is the connection between
Markov systems and linear control theory originally sought. The resulting system is precisely the linear
system [Kalman, 1960, Kalman, 1962] on which countless volumes of attention have been showered.
Although it is cast in stochastic algebra rather than matrix algebra, there is an isomorphism between
the two as shown in Section 2.9. In the neighbourhood of a Markov equilibrium our (control theoretic) feet
are thus on familiar ground. The decentralized results of Wang and Davison [1973] may be immediately
exploited, for example. Furthermore, we now have two types of evolution at play in a single mathematical
model. First, the natural tendency of the system to head to disorder by decaying towards the uniform
distribution, w, which is the (stable) zero vector. Second, the ability to create order by making the zero

vector unstable through appropriate control sequences. Bushev [1994] describes these two mechanisms.

Conventionally, we called the evolution from order to disorder thermodynamic evolution and opposed
it to the evolution from chaos to order which, against convention, was called biological evolution.

In our linear stochastic model the evolution towards and away from the zero vector follows directly
from the eigenvalues of the system. It may seem strange that order arises from purposely creating an
instability; typically in control we are fighting an instability not creating one. This notion, too, has a

parallel in nonlinear physics, Prigogine’s theorem. Bushev [1994] writes

Prigogine’s theorem, known also as the principle of minimum entropy production, states: given the

external conditions hindering the system to fall into equilibrium, the stationary state corresponds to

minimum entropy production ... In a stationary state the entropy production is exactly compensated

by an outflow of entropy into the surrounding medium, so that the total entropy of the body remains

constant . ..It should be pointed out that the proof of Prigogine’s theorem rests completely on the

principle of Onsager [which is] why the theorem holds only in the linear (Onsager) region.
Similar behaviours may be seen here. Applying a fixed control vector, the system state gradually creeps
away from the (naturally stable) zero vector until there is a balance between the external condition (our
control) and the natural tendency to decay whereupon it comes to rest (see Figure 3.4) some distance
away from zero. If the system is controllable and observable, it is possible to use appropriate feedback to
achieve any desired nonzero state, but beyond the linear approximation region the nonlinear stochastic
equations of the original problem must be used.

The stochastic Markov systems examined here incorporate a number of ideas from control theory,

nonlinear physics, and probability theory in a single mathematical model. Not all of the work presented
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here is immediately applicable to a real world system. There are still several questions to be answered
before that is possible. A major issue is generation of the mathematical models (i.e., transition and
observation matrices). How do we create such models? How accurate do they need to be? Will simple
decentralized controllers have the computational resources necessary to deal with such models? Perhaps
the most useful aspect is the deeper understanding of decentralized systems they afford. This thesis finds
communication to be a much more viable approach to decentralized control of real world systems than
simply trying to behave optimally without communication (e.g., solving a DecPOMDP directly). The
role of communication for both sensory sharing and action coordination is immediately applicable to real
world problems, particularly when simple reactive decentralized controllers are to be used. At the very
least, Markov systems seem a promising candidate for future studies of both stochastic decentralized
systems and self-organization.

To demonstrate the usefulness of this knowledge, Chapter 4 described a small network of mobile
robots that were able to communicate by radio modem. A number of tasks requiring the robots to
communicate were implemented on this system (i.e., clustering, distributing, formation, flocking). The
methodology of building up complex behaviours through interactions between robots was found to be fast,
modular, and robust. It was furthermore argued that in the case of finite bandwidth communications,
decentralized control may be the only alternative as its use of the communication facilities is often much
more efficient (depending on the task) than centralized control. For this reason, strictly centralized
control is not possible for the robotics system described here. Generic modules for sensory sharing and
action coordination were presented. It was argued that if communication occurred quickly enough, the
decentralized controllers could be designed by assuming instantaneous communication. This was called
the two-timescale assumption?®. It is a generalization of the assumption of centralized control to different
amounts of assumed instantaneous communication. From this perspective it does not really make sense
to distinguish between centralization and decentralization. It makes a great deal more sense to speak
of the amount of information that can be quickly communicated throughout the system (centralized
control being the limiting case of all possible information). Due to the potentially more efficient use of
communication afforded by decentralized control (depending on the task), the two-timescale assumption
may be valid for decentralized control but not centralized control. This assumption was found to be
valid for the tasks carried out by the robotics system in Chapter 4.

The notion of two-timescale behaviour appears to be an absolutely fundamental ingredient in global
coordination of decentralized systems. This theme may be seen throughout this thesis. In the chapter
on control we needed to assume communication occurred much more quickly than the control in order
for decentralized controllers to implement all types of centralized controllers. In the chapter on robotics
we saw that in real world systems, when the two-timescale assumption is valid, design of decentralized
controllers is greatly simplified as we can assume communication occurs instantaneously. This is in fact
the very assumption of centralized control®. However, by using decentralized control the assumption is
more likely to be valid as the communications are used more efficiently (depending on the task). Finally,
in the chapter on stochastic cellular automata we saw that it was necessary to slow down the local

decision-making process (decreasing A from 1 to about 0.6 in the w-map) so that the local averaging

2 Analogous to the adiabatic assumption described in [Haken, 1983a] which is also based on two-timescales.
3Note, there has been much work on the issue of time delay in centralized systems.
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(through the o-maps) could occur quickly enough to achieve global coordination . Again, two timescales.
This concept is not new. It is used, for example, in nonlinear physics to show the emergence of structure
in Rayleigh-Bénard convection. It is used in chemistry to show spatio-temporal structures emerging in
the Belousov-Zhabotinski reaction.

In physics such phenomena as strange attractors (e.g., Lorenz attractor) and large scale oscillations
(e.g., Brusselator) are described by stiff! systems of equations. Having different timescales can intro-
duce a phenomenon sometimes called slaving [Haken and Wagner, 1973, Haken, 1983b] in which the fast
modes (usually stable) of the system are slaved to a small number of (usually unstable) slower modes.
Thus the presence of an instability can also be important. From the point of view of an observer operat-
ing at the slow timescale, there is effectively a reduction in the degrees of freedom of the system, whence
the illusion of an ‘invisible hand’ guiding all parts of the system at once. But it is only an illusion®.
In the stochastic cellular automata, the slow, unstable modes are embodied by the w-maps (e.g., when
A = 0.6) at each cell. The fast, stable modes are embodied in the o-maps which tries to reduce the
differences between connected cells.

The mere presence of multiple timescales certainly does not imply interesting things will happen,
that the system will self-organize, but it does appear to be a crucial ingredient. But how could it
be otherwise? How else could sparsely communicating autonomous agents coordinate their behaviour
in interesting ways? It seems obvious that they must communicate quickly enough to arrange their
behaviour before being required to act. The speed at which information may be globally shared between
autonomous agents imposes an insurmountable upper bound on the types of behaviour the group may
exhibit. But simply sharing information is not enough. Instability and fluctuation are also helpful in a
truly self-organizing system in order to break symmetries, to force the group, with no external guidance,
to select one path over another. Although this field of research has only begun to mature, it would
appear that there are general mathematical features of self-organizing systems that may be identified,
understood, and harnessed. This is perhaps not surprising, as mathematics has, on countless occasions
previously, revealed well guarded secrets of nature. Although we have only begun to understand, it
seems likely (to this author), nay inevitable, that these basic mechanisms one day provide the palette

from which engineers craft a whole new type of technology.

4¢Stiff> systems of equations are those in which there are both ‘fast’ (large) and ‘slow’ (small) eigenvalues. Typically
complex systems are nonlinear; thus when we speak of eigenvalues we mean in the neighbourhood of some equilibrium.

5The careful observer of a large flock of birds, for example, may notice a change in direction of the flock does not occur
with all birds at the same instant but rather in wave-like motions.
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6.1 Conclusions

It is

be ¢

difficult to reduce the essence of this subject down to a few concise statements but in an effort to

lear, this will be attempted. The conclusions of this thesis may be stated as follows.

I Irreversibility (and hence stochasticity) plays an important role in self-organization and thus must
be accounted for in a general theory of decentralized systems. The decentralized Markov control
framework, cast in stochastic algebra, is a promising candidate for future studies of decentralized

control and self-organization.

Markov systems may be linearized about an equilibrium (using stochastic calculus) and thus con-

nected to the classic linear system studied by Kalman [1960].

The use of communication in developing solutions to DecPOMDPs is a much more promising avenue
of research than trying to behave optimally without communication (e.g., solving a DecPOMDP
directly). The resulting performance is higher with less computational effort expended. The cost

is the implementation of communication.

IV Decentralized controllers can implement any ‘centralized’ behaviour using communication (as-

suming adequate bandwidth). The dual purpose of communication is to share sensory data and

coordinate actions.

V Decentralized control can make much more efficient use of communication facilities than strictly

Vi

V'

Vil

centralized control as the amount of communicated information is task dependent.

Both sensory sharing and action coordination are viable mechanisms in a network of real mobile

robots that eliminate any need to use centralized control.

Decentralized action coordination in a network of arbitrarily connected agents may be facilitated

by a stochastic decision making process. Stochastic cellular automata serve well in this regard.

I The stochastic cellular automata (SCA) model is a simple model of self-organization in a network
of arbitrarily connected decision makers. Decentralized decision making should be thought of in

terms of an instability and is an inherently stochastic process (it requires fluctuations to work).

IX Successful decentralized decision making (in the SCA model) occurs in the vicinity of a critical

phase transition where long transient behaviour ensues. Critical slowing down is vital as it allows
information to be communicated globally before the local decision making processes are final. This

is an example of two-timescale behaviour, a fundamental mechanism of self-organization.

X In self-organizing systems, an observer of slow timescale behaviour may conclude the system is

X

controlled by a central agency but this is an illusion afforded by coordination occurring at the

(unobserved) fast timescale.

There are fundamental aspects of self-organization that may be understood and exploited in the

design of artificial decentralized systems.
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6.2 Contributions

Having summarized the thesis and stated the conclusions, the main contributions of this work are now
identified.

STOCHASTIC ALGEBRA: This mathematical framework which treats probability distributions as vec-
tors is original work. It is built on stochastic matrices, an old concept. Its most important

contributions are the following.

I Allows stochastic dynamic equations to be written in a well-known algebraic framework.
Il Allows Markov systems to be cast in a rigourous matrix format.

Il Makes connections between linearity and statistical independence, zero vector and uniform

probability distribution.
STOCHASTIC CONTROL SYSTEMS:

I Markov systems were cast in a new stochastic algebra which is a matrix formulation®.

Il It was shown that decentralization of a Markov control problem places two constraints on the
system, equivalent to removing sensors and actuators. Centralized control is equivalent to

decentralized control with communication.

lll Four classes of centralized Markov reactive controllers were defined based on type and amount
of communication needed to be exactly implementable by decentralized controllers (Theo-

rem 4).

IV A new stochastic calculus was used to linearize both Markov chains and Markov decision

processes in the neighbourhood of an equilibrium probability distribution.

V A connection was made between Markov systems and the well known linear system (both
centralized [Kalman, 1960] and decentralized [Wang and Davison, 1973]) through lineariza-

tion and an isomorphism.

VI A connection was made between stability (using the stochastic eigen problem) of an equilib-
rium distribution and the creation/destruction of information (order, entropy) in a stochastic

Markov system.
COLLECTIVE ROBOTICS:

I A network of 6 mobile robots was constructed to test various aspects of decentralized control
with communication. Design and work done in partnership with E J P Earon with the help
of several others (see Acknowledgements). The use of interrobot radio communications in a
group of mobile robots is not entirely original but this is one in a handful of facilities with
this capability.

Il Various decentralized controllers were demonstrated using communication on the above fa-
cility. Tasks requiring both sensory sharing and action coordination were demonstrated thus

validating the important role communications can play in a real world decentralized system.

6 Although Markov chains have been written using stochastic matrices, the DecPOMDP model was not until this thesis.
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SELF-ORGANIZATION:

I Stochastic cellular automata (SCA) were introduced as a very simple model of self-organization

for a group of arbitrarily connected cells.

Il Fundamental properties of self-organization were identified in SCA (i.e., averaging, instability,

critical slowing down, fluctuation).

lll A simple coordination mechanism was introduced which may be used in a practical system

to make decentralized decisions in a group of arbitrarily connected decision-makers.

6.3 Open Questions

This section discusses possibilities for future work while the next deals with more philosophical issues.

We need to continue to identify and understand the basic mechanisms of self-organization. Stochastic
algebra (and calculus) works with discrete states and discrete time. Extensions to both continuous states
and time may be possible. Considering self-organization from the control perspective is quite natural as
we may discuss both internal feedback and external pressures. This framework allows both reversible
and irreversible trajectories, the forgetting of initial conditions and creation of new structures. Markov
systems, cast in stochastic algebra, provide a solid framework for further discussion of these concepts.

How can we improve on the stochastic decentralized decision making process? We can first study
different 7w-maps to see the possible variation in group behaviour. This will likely lead to incremental
improvements. The method presented here assumes no particular connective architecture (i.e., the o-
maps) between decision makers; it is quite general. This was a design requirement. We know we
can do better than this by exploiting the nature of the connections between agents [Das et al., 1995],
[Andre et al., 1997]. We should further explore methods (e.g., genetic techniques) that automatically
allow the connective architecture to be exploited in an online, adaptive fashion. This will likely again
require consideration at different timescales (e.g., connections change more slowly than decisions need
to be made). A better understanding of decentralized decision making is key to coordination of many
agents, both software and robotic. Exploitation of the connective architecture will allow more complex
spatio-temporal behaviours to be designed in a sparsely connected network of agents.

Two-timescale behaviour was seen to play an important role but this notion easily generalizes to an
arbitrary number of timescales. Can we make use of an entire hierarchy of timescales? Along similar
lines, this thesis almost exclusively studied what might be termed a “flat architecture” in which all agents
exist on a single level. There are many organizations in nature (e.g., social insects, human society) which
work with some form of hierarchical structure (e.g., workers, managers, vice-presidents, president). Does
this type of structure arise in nature because it is more efficient or effective than a flat architecture? If
so, can a hierarchical structure be specified from the bottom up rather than from the top down?

One exception to the flat architecture in this thesis was the robot flocking experiment of Chapter 4.
In this task one robot was spontaneously elected as leader. This simple example shows that it may
be possible to build up from a flat architecture to a hierarchy using some method of spontaneous task
division. In this way, the system may be both self-organizing (it literally builds its own organization

of leaders) while at once taking advantage of some form of hierarchical command (in which action
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coordination might be simplified). In the event of a malfunction, new robots will automatically move up
the ladder to replace their failing leaders. This seems a natural route to take for artificial societies and
a major possibility for future work in collective robotics. Studies in this area may also provide insight
into the prevalence of this type of organization in nature.

Scaling up, as discussed in Section 5.4, is a major issue in large decentralized systems. Can we design
systems at one scale and then apply them at another? Are there general scaling relationships which
may be understood and used to predict the scaled up behaviour? The robotics system from Chapter 4
was designed to allow a certain amount of scaling (e.g., it was designed for 1-15 robots) but will not
scale past a certain level as the communication bandwidth is finite and it relies somewhat on each robot
being able to transmit to every other robot. The use of sparse connections between agents is able to
alleviate the communication bandwidth problem, but as was seen with stochastic cellular automata, this
makes coordination more difficult. Larger systems will require either more bandwidth or a longer period
of time to facilitate coordination. This is a common problem to all decentralized systems and a better
understanding of scaling is needed.

This thesis almost exclusively dealt with systems that were designed to cooperate in order to achieve
some task. However, it is possible that a number of agents might not be cooperative (e.g., due to
a malfunction). We would certainly like decentralized systems to be robust to a small percentage of
uncooperative members. This is definitely a game-theoretic issue which will become more important as
these types of system scale up. It is inevitable that uncooperative agents will arise and robust methods
need to be developed to deal with this problem.

Another issue which was beyond the scope of this thesis is design of decentralized systems. We have
seen in a few contexts that decentralized systems can perform just as well as a centralized system if com-
munication is allowed. But what about at the design level? Do we need to use some form of central design
facility when constructing decentralized systems or will we again find that this is unnecessary? Can one
decentralized system be designed by another decentralized system (with communication)? This may be
investigated in the context of machine learning methods like reinforcement learning [Barfoot et al., 2000]
and evolutionary algorithms [Earon et al., 2000].

We have seen that communication (in one form or another) is the backbone of decentralized systems.
The establishment of standard communication protocols is thus key to enabling all kinds of interesting
behaviours in large groups of agents. We should devote much effort to the design of common language
representations for distributed autonomous agents. This will allow us to construct, from the bottom up,

highly robust, modular, artificial decentralized systems.
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6.4 Final Thoughts

I have tried to refrain from subjectivity until this point but feel I must offer the following opinions for
debate. The opening quote of this chapter certainly poses a number of intriguing questions. “Can we
build a gradualist bridge from simple amoeba-like automata to highly purposive intentional systems,
with identifiable goals, beliefs, etc.?” [Dennett, 1994]. If we prescribe to the materialist philosophy or
hold dear the tenets of new Al then we must answer this question with a yes. Are we close to being able
to do this? No. We are probably a very long way from creating something the average person would say
has “intelligence” comparable to a human. Does this mean we should give up? Certainly not. To assume
that human level intelligence is the only worthwhile goal is anthropocentric arrogance. To believe in a
gradualist bridge is to believe in an entire spectrum of intelligence from amoeba-like automata to ants
to humans (although ants are probably closer to our end of the spectrum than we might like to admit).
From this point of view, the field of artificial intelligence is encompassed by the larger subject of
artificial life which is in turn encompassed by the even larger field of self-organization. Historically,
scientific research in these areas has grown in an outward direction (“whole to the parts”) from the
study of intelligence (humans) to life (biology) to general self-organization (physics, mathematics). The
new view of building inward (“parts to the whole”) has existed for a far shorter time. If we really
want to create systems that harness abilities found in nature this new approach would seem to be much
more compatible with the engineering objective. Furthermore, if we believe Darwin then we have an
existence proof that gradually building up works. In the most general terms, natural selection itself is a
stochastic decentralized process. But this means we must start at the most basic level of fundamental
building blocks and begin constructing from there. The key mechanisms of self-organization should be
carefully identified and then enabled artificially. Here we must stop to consider that if irreversibility
and stochasticity are an inherent part of life, then will we even recognize our artificial creations as being
alive? Schrédinger [1956] speculated that the essence of biological life is the evasion of thermodynamic
equilibrium:
What is the characteristic feature of life? When is a piece of matter said to be alive? When it goes
on ‘doing something’, moving, exchanging material with its environment, and so forth, and that
for a much longer period than we would expect an inanimate piece of matter to ‘keep going’ under
similar circumstances. .. After that the whole system fades away into a dead, inert lump of matter.

A permanent state is reached, in which no observable events occur. The physicist calls this the state
of thermodynamic equilibrium, or of ‘maximum entropy’.

If life or even intelligence can be recreated in an artificial medium will it be recognizable to us? Will it
have meaning to us? Will it be useful to us? Will we be useful to it? Will we have meaning to it? Will
it recognize us? There are certainly ethical questions which may be raised. Should we proceed? Perhaps

not, but we will.






... ibere is a tendency to forget that all science is bound up
with human culture in general, and that scientific findings
... arc meaningless outside their cultural context. A
theoretical science . .. where the initiated continue musing to
cach other in terms that are, at best, understood by a small
group of close fellow travellers, will necessarily be cut off
from the rest of cultural mankind; in the long run it is bound
to atropby and ossify howecver virulently esoteric chat may
continue within its joyfully isolated groups of experts.
—Erwin Schrédinger

ARE THERE QUANTUM JuMPs?, 1952
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