
STATE ESTIMATION FOR

ROBOTICS

Timothy D. Barfoot

Copyright c© 2022

Cambridge University Press is the Official Publisher

This Unofficial Version Compiled on December 10, 2022

Send errata to <tim.barfoot@utoronto.ca>

Revision History

13 May 2017 Version best matching published first edition
12 Aug 2017 Equation (4.47a): Σx changed to Σxx

12 Aug 2017 Page 111, bullet 4: Σy changed to Σyy

12 Aug 2017 Page 117, bullet (ii): changed 4(a) to 3

12 Aug 2017 Equation (4.87): P̂− changed to P̌k

12 Aug 2017 Equation (4.89): P̂k changed to P̌k

12 Aug 2017 Equation (4.102d): xop,k,0 changed to xop,k,i

12 Aug 2017 Equation (7.102): removed negative sign
22 Nov 2017 Fixed typo in Jacobi identity (page 218)
10 Dec 2017 Equation (2.52): Σ−1

yy Σyx changed to ΣxyΣ
−1
yy

10 Dec 2017 Inline above (8.2): rvii changed to rvkii

10 Dec 2017 Equation (6.26): 0 changed to 0T

10 Dec 2017 Inline below (4.132): e(xop) = Lu(xop) changed to
e(xop) = L−1u(xop)

10 Dec 2017 Angular acceleration: ω◦−→21 changed to ω◦−→21

10 Dec 2017 Equation (4.31): corrected a double comma
10 Dec 2017 Equation (4.92a): nk,j changed to y̌k,j

5 Jan 2018 Page 227, definition of Ad(SE(3)): removed extra
comma before final bracket

5 Jan 2018 Equation (9.55): changed ζ?j to ζ?j
5 Jan 2018 Equation (8.47): added missing VT in an intermediate

step
5 Jan 2018 Equation (4.207): changed ? to ∗
5 Jan 2018 Equation (4.165a): changed subscript ` to j
5 Jan 2018 Equation (4.166): changed Gk` to Gjk

16 Feb 2018 Pages 267-8: corrected J−1
` and J−1

r to J` and Jr
25 Mar 2018 Page 108: corrected ‘mean of output is’ to be ‘mean

of input is’
25 Mar 2018 Equation (6.129): corrected rbab to be rabb
13 Apr 2018 Equation (8.105): corrected j − 1 to j = 1
22 Apr 2018 Equation (2.20): added missing −1 in definition of η
12 May 2018 Equations (7.234) and (7.239): fixed two negative

signs each to repair proof
12 May 2018 Identity page: fixed summation on series definitions of

T, T , and their inverses to start at n = 0 not n = 1
27 May 2018 Started an appendix with new material since first edi-

tion
13 Jul 2018 Equation (7.150): changed T21 = T1T

−1
2 to T21 =

T2T
−1
1 just below this equation in the text

iii

iv Revision History

13 Jul 2018 Equation (3.99b): made second term negative
13 Aug 2018 Equation (10.18): corrected Ju to Jv
13 Aug 2018 Exercise 6.6.6: adjusted wording to due to poor use

of the term ‘affine’
22 Nov 2018 Equation (4.85): corrected n′i to be n′k,i
26 Nov 2018 Exercise 2.5.6: corrected N to K in upper limit of

mean summation
28 Nov 2018 Added Appendix A.3 on the posterior covariance re-

cursion for the Cholesky and RTS smoothers.
31 Jan 2019 Page 29, cleaned up an inconsistency involving M
24 Feb 2019 Equation (3.225): corrected upper integration limit

from ∆tk to ∆tk:k−1

29 Apr 2019 Equations (3.97), (3.98), (3.101), (3.102): adjust-
ments made to fix an inconsistent dimension problem

23 Jul 2019 Equation (4.77): v1:k−1 corrected to v1:k

1 Oct 2019 Equation (4.151) and (4.152): v corrected to ν
21 Oct 2019 Equations (4.171), (4.177b), (4.178), Exercise 4.6.5:

Gk(x) corrected to Gk(x)T

25 Jan 2020 Below (7.197) in text: φ ∈ R corrected to R3

17 Apr 2020 Problem 3.6.2: corrected the size of the matrix for
HTW−1H

26 Apr 2020 Equation (4.30): removed an extra comma in the first
term

8 May 2020 Figures 5.1, 5.2, 5.3 (and Exercises 5.5.1 and 5.5.2):
adjusted time subscripts to match system matrices in
main body

8 May 2020 Equation (5.3): added missing transpose symbols to
each term

8 May 2020 Equation (5.11): added missing term in the under-
brace of first term in second line

8 May 2020 Section 7.1.7: renamed variables to be more clear
6 Jun 2020 Identity page: fixed error in (v∧u∧v)∧ identity
6 Jun 2020 Equations (7.108) and (7.119): fixed errors in coeffi-

cients of expansions
3 Jul 2020 Example 8.1: added a missing 1/6 in multiple places

for weight
3 Jul 2020 Page 316: corrected negative signs in definition of M

21 Oct 2020 Equation (6.99): removed negative sign in front of ν
to be easier to compare to next chapter

5 Jan 2021 Example 8.1: corrected minimal cost to be J = 4
5 Jan 2021 Equation (6.57c): corrected sign of second term

6 May 2021 Equations (7.227b, 7.258b, 7.260b, 7.261): corrected
missing negative sign and transpose

24 June 2021 Figure 9.4: corrected Jy,30 label
10 Dec 2022 Section 3.2: corrected complexity claim from

O(N(K + 1)) to O(N3(K + 1))
10 Dec 2022 End of Corrections for First Edition, any further is-

sues will be corrected in the Second Edition

Contents

Acronyms and Abbreviations xi

Notation xiii

Foreword xv

1 Introduction 1
1.1 A Little History 1
1.2 Sensors, Measurements, and Problem Definition 3
1.3 How This Book Is Organized 4
1.4 Relationship to Other Books 5

Part I Estimation Machinery 7

2 Primer on Probability Theory 9
2.1 Probability Density Functions 9

2.1.1 Definitions 9
2.1.2 Bayes’ Rule and Inference 10
2.1.3 Moments 11
2.1.4 Sample Mean and Covariance 12
2.1.5 Statistically Independent, Uncorrelated 12
2.1.6 Normalized Product 13
2.1.7 Shannon and Mutual Information 14
2.1.8 Cramér-Rao Lower Bound and Fisher Information 14

2.2 Gaussian Probability Density Functions 15
2.2.1 Definitions 15
2.2.2 Isserlis’ Theorem 16
2.2.3 Joint Gaussian PDFs, Their Factors, and Inference 18
2.2.4 Statistically Independent, Uncorrelated 20
2.2.5 Linear Change of Variables 20
2.2.6 Normalized Product of Gaussians 22
2.2.7 Sherman-Morrison-Woodbury Identity 23
2.2.8 Passing a Gaussian through a Nonlinearity 24
2.2.9 Shannon Information of a Gaussian 28
2.2.10 Mutual Information of a Joint Gaussian PDF 30
2.2.11 Cramér-Rao Lower Bound Applied to Gaussian PDFs 30

2.3 Gaussian Processes 32
2.4 Summary 33
2.5 Exercises 33

v

vi Contents

3 Linear-Gaussian Estimation 37
3.1 Batch Discrete-Time Estimation 37

3.1.1 Problem Setup 37
3.1.2 Maximum A Posteriori 39
3.1.3 Bayesian Inference 44
3.1.4 Existence, Uniqueness, and Observability 46
3.1.5 MAP Covariance 50

3.2 Recursive Discrete-Time Smoothing 51
3.2.1 Exploiting Sparsity in the Batch Solution 52
3.2.2 Cholesky Smoother 53
3.2.3 Rauch-Tung-Striebel Smoother 55

3.3 Recursive Discrete-Time Filtering 58
3.3.1 Factoring the Batch Solution 59
3.3.2 Kalman Filter via MAP 63
3.3.3 Kalman Filter via Bayesian Inference 68
3.3.4 Kalman Filter via Gain Optimization 69
3.3.5 Kalman Filter Discussion 70
3.3.6 Error Dynamics 71
3.3.7 Existence, Uniqueness, and Observability 72

3.4 Batch Continuous-Time Estimation 74
3.4.1 Gaussian Process Regression 74
3.4.2 A Class of Exactly Sparse Gaussian Process Priors 77
3.4.3 Linear Time-Invariant Case 83
3.4.4 Relationship to Batch Discrete-Time Estimation 87

3.5 Summary 88
3.6 Exercises 88

4 Nonlinear Non-Gaussian Estimation 91
4.1 Introduction 91

4.1.1 Full Bayesian Estimation 92
4.1.2 Maximum a Posteriori Estimation 94

4.2 Recursive Discrete-Time Estimation 96
4.2.1 Problem Setup 96
4.2.2 Bayes Filter 97
4.2.3 Extended Kalman Filter 100
4.2.4 Generalized Gaussian Filter 103
4.2.5 Iterated Extended Kalman Filter 105
4.2.6 IEKF Is a MAP Estimator 106
4.2.7 Alternatives for Passing PDFs through Nonlinearities 107
4.2.8 Particle Filter 116
4.2.9 Sigmapoint Kalman Filter 118
4.2.10 Iterated Sigmapoint Kalman Filter 123
4.2.11 ISPKF Seeks the Posterior Mean 126
4.2.12 Taxonomy of Filters 127

4.3 Batch Discrete-Time Estimation 127
4.3.1 Maximum A Posteriori 128
4.3.2 Bayesian Inference 135
4.3.3 Maximum Likelihood 137
4.3.4 Discussion 142

Contents vii

4.4 Batch Continuous-Time Estimation 143
4.4.1 Motion Model 143
4.4.2 Observation Model 146
4.4.3 Bayesian Inference 146
4.4.4 Algorithm Summary 147

4.5 Summary 148
4.6 Exercises 149

5 Biases, Correspondences, and Outliers 151
5.1 Handling Input/Measurement Biases 152

5.1.1 Bias Effects on the Kalman Filter 152
5.1.2 Unknown Input Bias 155
5.1.3 Unknown Measurement Bias 157

5.2 Data Association 159
5.2.1 External Data Association 160
5.2.2 Internal Data Association 160

5.3 Handling Outliers 161
5.3.1 RANSAC 162
5.3.2 M-Estimation 163
5.3.3 Covariance Estimation 166

5.4 Summary 168
5.5 Exercises 168

Part II Three-Dimensional Machinery 171

6 Primer on Three-Dimensional Geometry 173
6.1 Vectors and Reference Frames 173

6.1.1 Reference Frames 174
6.1.2 Dot Product 174
6.1.3 Cross Product 175

6.2 Rotations 176
6.2.1 Rotation Matrices 176
6.2.2 Principal Rotations 177
6.2.3 Alternate Rotation Representations 178
6.2.4 Rotational Kinematics 184
6.2.5 Perturbing Rotations 188

6.3 Poses 192
6.3.1 Transformation Matrices 193
6.3.2 Robotics Conventions 194
6.3.3 Frenet-Serret Frame 196

6.4 Sensor Models 199
6.4.1 Perspective Camera 199
6.4.2 Stereo Camera 206
6.4.3 Range-Azimuth-Elevation 208
6.4.4 Inertial Measurement Unit 209

6.5 Summary 211
6.6 Exercises 212

viii Contents

7 Matrix Lie Groups 215

7.1 Geometry 215
7.1.1 Special Orthogonal and Special Euclidean Groups 215
7.1.2 Lie Algebras 217
7.1.3 Exponential Map 219
7.1.4 Adjoints 226
7.1.5 Baker-Campbell-Hausdorff 230
7.1.6 Distance, Volume, Integration 237
7.1.7 Interpolation 240
7.1.8 Homogeneous Points 246
7.1.9 Calculus and Optimization 246
7.1.10 Identities 254

7.2 Kinematics 255
7.2.1 Rotations 255
7.2.2 Poses 258
7.2.3 Linearized Rotations 261
7.2.4 Linearized Poses 265

7.3 Probability and Statistics 266
7.3.1 Gaussian Random Variables and PDFs 267
7.3.2 Uncertainty on a Rotated Vector 271
7.3.3 Compounding Poses 273
7.3.4 Fusing Poses 280
7.3.5 Propagating Uncertainty through a Nonlinear Camera Model 285

7.4 Summary 292

7.5 Exercises 293

Part III Applications 295

8 Pose Estimation Problems 297

8.1 Point-Cloud Alignment 297
8.1.1 Problem Setup 298
8.1.2 Unit-Length Quaternion Solution 298
8.1.3 Rotation Matrix Solution 302
8.1.4 Transformation Matrix Solution 316

8.2 Point-Cloud Tracking 319
8.2.1 Problem Setup 319
8.2.2 Motion Priors 320
8.2.3 Measurement Model 321
8.2.4 EKF Solution 322
8.2.5 Batch Maximum a Posteriori Solution 325

8.3 Pose-Graph Relaxation 329
8.3.1 Problem Setup 329
8.3.2 Batch Maximum Likelihood Solution 330
8.3.3 Initialization 333
8.3.4 Exploiting Sparsity 333
8.3.5 Chain Example 334

Contents ix

9 Pose-and-Point Estimation Problems 337
9.1 Bundle Adjustment 337

9.1.1 Problem Setup 338
9.1.2 Measurement Model 338
9.1.3 Maximum Likelihood Solution 342
9.1.4 Exploiting Sparsity 345
9.1.5 Interpolation Example 348

9.2 Simultaneous Localization and Mapping 352
9.2.1 Problem Setup 352
9.2.2 Batch Maximum a Posteriori Solution 353
9.2.3 Exploiting Sparsity 354
9.2.4 Example 355

10 Continuous-Time Estimation 357
10.1 Motion Prior 357

10.1.1 General 357
10.1.2 Simplification 361

10.2 Simultaneous Trajectory Estimation and Mapping 362
10.2.1 Problem Setup 363
10.2.2 Measurement Model 363
10.2.3 Batch Maximum a Posteriori Solution 364
10.2.4 Exploiting Sparsity 365
10.2.5 Interpolation 366
10.2.6 Postscript 367

References 369

Index 375

Appendix A Supplementary Material 379
A.1 Lie Group Tools 379

A.1.1 SE(3) Derivative 379
A.2 Kinematics 380

A.2.1 SO(3) Jacobian Identity 380
A.2.2 SE(3) Jacobian Identity 380

A.3 Smoothers 381
A.3.1 Posterior Covariance in the Cholesky Smoother 381
A.3.2 Posterior Covariance in the RTS Smoother 383

Acronyms and Abbreviations

BA bundle adjustment 337
BCH Baker-Campbell-Hausdorff 231
BLUE best linear unbiased estimate 70
CRLB Cramér-Rao lower bound 14
DARCES data-aligned rigidity-constrained exhaustive search 161
EKF extended Kalman filter 70
GP Gaussian process 32
GPS Global Positioning System 4
ICP iterative closest point 297
IEKF iterated extended Kalman filter 105
IMU inertial measurement unit 209
IRLS iteratively reweighted least squares 165
ISPKF iterated sigmapoint Kalman filter 123
KF Kalman filter 37
LDU lower-diagonal-upper 23
LG linear-Gaussian 38
LTI linear time-invariant 83
LTV linear time-varying 77
MAP maximum a posteriori 4
ML maximum likelihood 138
NASA National Aeronautics and Space Administration 3
NLNG nonlinear, non-Gaussian 91
PDF probability density function 9
RAE range-azimuth-elevation 208
RANSAC random sample consensus 162
RTS Rauch-Tung-Striebel 55
SDE stochastic differential equation 77
SLAM simultaneous localization and mapping 158
SMW Sherman-Morrison-Woodbury 23
SP sigmapoint 110
SPKF sigmapoint Kalman filter 118
STEAM simultaneous trajectory estimation and mapping 362
SWF sliding-window filter 142
UDL upper-diagonal-lower 23
UKF unscented Kalman filter (also called SPKF) 119

xi

Notation

– General Notation –

a This font is used for quantities that are real
scalars

a This font is used for quantities that are real col-
umn vectors

A This font is used for quantities that are real ma-
trices

A This font is used for time-invariant system quan-
tities

p(a) The probability density of a
p(a|b) The probability density of a given b
N (a,B) Gaussian probability density with mean a and

covariance B
GP(µ(t),K(t, t′)) Gaussian process with mean function, µ(t), and

covariance function, K(t, t′)
O Observability matrix

(·)k The value of a quantity at timestep k
(·)k1:k2 The set of values of a quantity from timestep k1

to timestep k2, inclusive
F−→a A vectrix representing a reference frame in three

dimensions
a−→ A vector quantity in three dimensions

(·)× The cross-product operator, which produces a
skew-symmetric matrix from a 3× 1 column

1 The identity matrix
0 The zero matrix

RM×N The vectorspace of real M ×N matrices

(̂·) A posterior (estimated) quantity

(̌·) A prior quantity

xiii

xiv Notation

– Matrix-Lie-Group Notation –

SO(3) The special orthogonal group, a matrix Lie group
used to represent rotations

so(3) The Lie algebra associated with SO(3)
SE(3) The special Euclidean group, a matrix Lie group

used to represent poses
se(3) The Lie algebra associated with SE(3)
(·)∧ An operator associated with the Lie algebra for

rotations and poses
(·)f An operator associated with the adjoint of an

element from the Lie algebra for poses
Ad(·) An operator producing the adjoint of an element

from the Lie group for rotations and poses
ad(·) An operator producing the adjoint of an element

from the Lie algebra for rotations and poses
Cba A 3× 3 rotation matrix (member of SO(3)) that

takes points expressed in F−→a and re-expresses
them in F−→b, which is rotated with respect to
F−→a

Tba A 4 × 4 transformation matrix (member of
SE(3)) that takes points expressed in F−→a

and re-expresses them in F−→b, which is ro-

tated/translated with respect to F−→a

T ba A 6×6 adjoint of a transformation matrix (mem-
ber of Ad(SE(3)))

Foreword

My interest in state estimation stems from the field of mobile robotics,
particularly for space exploration. Within mobile robotics, there has
been an explosion of research referred to as probabilistic robotics. With
computing resources becoming very inexpensive, and the advent of rich
new sensing technologies, such as digital cameras and laser rangefinders,
robotics has been at the forefront of developing exciting new ideas in
the area of state estimation.

Introductio

Geographica by

Petrus Apianus

(1495-1552), a

German

mathematician,

astronomer, and

cartographer.

Much of

three-dimensional

state estimation

has to do with

triangulation

and/or

trilateration; we

measure some

angles and lengths

and infer the

others through

trigonometry.

In particular, this field was probably the first to find practical appli-
cations of the so-called Bayes filter, a much more general technique than
the famous Kalman filter. In just the last few years, mobile robotics
has even started going beyond the Bayes filter to batch, nonlinear
optimization-based techniques, with very promising results. Because
my primary area of interest is navigation of robots in outdoor environ-

xv

xvi Foreword

ments, I have often been faced with vehicles operating in three dimen-
sions. Accordingly, I have attempted to provide a detailed look at how
to approach state estimation in three dimensions. In particular, I show
how to treat rotations and poses in a simple and practical way using
matrix Lie groups. The reader should have a background in under-
graduate linear algebra and calculus, but otherwise, this book is fairly
standalone. I hope readers of these pages will find something useful; I
know I learned a great deal while creating them.

I have provided some historical notes in the margins throughout the
book, mostly in the form of biographical sketches of some of the re-
searchers after whom various concepts and techniques are named; I
primarily used Wikipedia as the source for this information. Also, the
first part of Chapter 6 (up to the alternate rotation parameterizations),
which introduces three-dimensional geometry, is based heavily on notes
originally produced by Chris Damaren at the University of Toronto In-
stitute for Aerospace Studies.

This book would not have been possible without the collaborations of
many fantastic graduate students along the way. Paul Furgale’s PhD
thesis extended my understanding of matrix Lie groups significantly
by introducing me to their use for describing poses; this led us on
an interesting journey into the details of transformation matrices and
how to use them effectively in estimation problems. Paul’s later work
led me to become interested in continuous-time estimation. Chi Hay
Tong’s PhD thesis introduced me to the use of Gaussian processes in
estimation theory, and he helped immensely in working out the de-
tails of the continuous-time methods presented herein; my knowledge
in this area was further improved through collaborations with Simo
Särkkä from Aalto University while on sabbatical at the University
of Oxford. Additionally, I learned a great deal by working with Sean
Anderson, Patrick Carle, Hang Dong, Andrew Lambert, Keith Leung,
Colin McManus, and Braden Stenning; each of their projects added to
my understanding of state estimation. Colin, in particular, encouraged
me several times to turn my notes from my graduate course on state
estimation into this book.

I am indebted to Gabriele D’Eleuterio, who set me on the path of
studying rotations and reference frames in the context of dynamics;
many of the tools he showed me transferred effortlessly to state es-
timation. He also taught me the importance of clean, unambiguous
notation.

Finally, thanks to all those who read and pointed out errors in the
drafts of this book, particularly Marc Gallant and Shu-Hua Tsao, who
found many typos, and James Forbes, who volunteered to read and
provide comments.

1

Introduction

Robotics inherently deals with things that move in the world. We live
in an era of rovers on Mars, drones surveying the Earth, and, soon,
self-driving cars. And, although specific robots have their subtleties,
there are also some common issues we must face in all applications,
particularly state estimation and control.

The state of a robot is a set of quantities, such as position, orien-
tation, and velocity, that, if known, fully describe that robot’s motion
over time. Here we focus entirely on the problem of estimating the state
of a robot, putting aside the notion of control. Yes, control is essential,
as we would like to make our robots behave in a certain way. But,
the first step in doing so is often the process of determining the state.
Moreover, the difficulty of state estimation is often underestimated for
real-world problems, and thus it is important to put it on an equal
footing with control.

In this book, we introduce the classic estimation results for linear
systems corrupted by Gaussian measurement noise. We then exam-
ine some of the extensions to nonlinear systems with non-Gaussian
noise. In a departure from typical estimation texts, we take a detailed
look at how to tailor general estimation results to robots operating in
three-dimensional space, advocating a particular approach to handling
rotations.

The rest of this introduction provides a little history of estimation,
discusses types of sensors and measurements, and introduces the prob-
lem of state estimation. It concludes with a breakdown of the contents
of the book and provides some other suggested reading.

1.1 A Little History

About 4,000 years ago, the early seafarers were faced with a vehicular
state estimation problem: how to determine a ship’s position while at
sea. Early attempts to develop primitive charts and make observations
of the sun allowed local navigation along coastlines. However, it was
not until the fifteenth century that global navigation on the open sea
became possible with the advent of key technologies and tools. The
mariner’s compass, an early form of the magnetic compass, allowed

1

2 Introduction

crude measurements of direction to be made. Together with coarse
nautical charts, the compass made it possible to sail along rhumb lines
between key destinations (i.e., following a compass bearing). A seriesFigure 1.1

Quadrant. A tool

used to measure

angles.

of instruments was then gradually invented that made it possible to
measure the angle between distant points (i.e., cross-staff, astrolabe,
quadrant, sextant, theodolite) with increasing accuracy.

These instruments allowed latitude to be determined at sea fairly
readily using celestial navigation. For example, in the Northern Hemi-
sphere, the angle between the North Star, Polaris, and the horizon
provides the latitude. Longitude, however, was a much more difficult
problem. It was known early on that an accurate timepiece was the
missing piece of the puzzle for the determination of longitude. The be-
haviours of key celestial bodies appear differently at different locations
on the Earth. Knowing the time of day therefore allows longitude to
be inferred. In 1764, British clockmaker John Harrison built the firstFigure 1.2

Harrison’s H4. The

first clock able to

keep accurate time

at sea, enabling

determination of

longitude.

accurate portable timepiece that effectively solved the longitude prob-
lem; a ship’s longitude could be determined to within about 10 nautical
miles.

Estimation theory also finds its roots in astronomy. The method of
least squares was pioneered1 by Gauss, who developed the technique to

Carl Friedrich

Gauss (1777-1855)

was a German

mathematician

who contributed

significantly to

many fields

including statistics

and estimation.

minimize the impact of measurement error in the prediction of orbits.
Gauss reportedly used least squares to predict the position of the dwarf
planet Ceres after passing behind the Sun, accurate to within half a
degree (about nine months after it was last seen). The year was 1801,
and Gauss was 23. Later, in 1809, he proved that the least-squares
method is optimal under the assumption of normally distributed errors.
Most of the classic estimation techniques in use today can be directly
related to Gauss’ least-squares method.

The idea of fitting models to minimize the impact of measurement
error carried forward, but it was not until the middle of the twenti-
eth century that estimation really took off. This was likely correlated
with the dawn of the computer age. In 1960, Kalman published two

Rudolf Emil

Kálmán

(1930-2016) was a

Hungarian-born

American electrical

engineer,

mathematician,

and inventor.

landmark papers that have defined much of what has followed in the
field of state estimation. First, he introduced the notion of observability
(Kalman, 1960a), which tells us when a state can be inferred from a
set of measurements in a dynamic system. Second, he introduced an
optimal framework for estimating a system’s state in the presence of
measurement noise (Kalman, 1960b); this classic technique for linear
systems (whose measurements are corrupted by Gaussian noise) is fa-
mously known as the Kalman filter, and has been the workhorse of
estimation for the more than 50 years since its inception. Although
used in many fields, it has been widely adopted in aerospace appli-

1 There is some debate as to whether Adrien Marie Legendre might have come up with

least squares before Gauss.

1.2 Sensors, Measurements, and Problem Definition 3

cations. Researchers at the National Aeronautics and Space Adminis-
tration (NASA) were the first to employ the Kalman filter to aid in
the estimation of spacecraft trajectories on the Ranger, Mariner, and
Apollo programs. In particular, the on-board computer on the Apollo
11 lunar module, the first manned spacecraft to land on the surface of
the Moon, employed a Kalman filter to estimate the module’s position
above the lunar surface based on noisy radar measurements.

Early Estimation

Milestones

1654 Pascal and

Fermat lay

foundations

of probability

theory

1764 Bayes’ rule

1801 Gauss uses

least-squares

to estimate

the orbit of

the planetoid

Ceres

1805 Legendre pub-

lishes “least-

squares”

1913 Markov chains

1933 (Chapman)-

Kolmogorov

equations

1949 Wiener filter

1960 Kalman

(Bucy) filter

1965 Rauch-Tung-

Striebel

smoother

1970 Jazwinski

coins “Bayes

filter”

Many incremental improvements have been made to the field of state
estimation since these early milestones. Faster and cheaper computers
have allowed much more computationally complex techniques to be
implemented in practical systems. However, until about 15 years ago,
it seemed that estimation was possibly waning as an active research
area. But, something has happened to change that; exciting new sensing
technologies are coming along (e.g., digital cameras, laser imaging, the
Global Positioning System) that pose new challenges to this old field.

1.2 Sensors, Measurements, and Problem Definition

To understand the need for state estimation is to understand the na-
ture of sensors. All sensors have a limited precision. Therefore, all mea-
surements derived from real sensors have associated uncertainty. Some
sensors are better at measuring specific quantities than others, but even
the best sensors still have a degree of imprecision. When we combine
various sensor measurements into a state estimate, it is important to
keep track of all the uncertainties involved and therefore it is hoped
know how confident we can be in our estimate.

In a way, state estimation is about doing the best we can with the
sensors we have. This, however, does not prevent us from, in parallel,
improving the quality of our sensors. A good example is the theodo- Figure 1.3

Theodolite. A

better tool to

measure angles.

lite sensor that was developed in 1787 to allow triangulation across
the English Channel. It was much more precise than its predecessors
and helped show that much of England was poorly mapped by tying
measurements to well-mapped France.

It is useful to put sensors into two categories: interoceptive2 and ex-
teroceptive. These are actually terms borrowed from human physiology,
but they have become somewhat common in engineering. Some defini-
tions follow3:

in·tero·cep·tive [int-@-rō-’sep-tiv], adjective: of, relating to, or being
stimuli arising within the body.

ex·tero·cep·tive [ek-st@-rō-’sep-tiv], adjective: relating to, being, or
activated by stimuli received by an organism from outside.

2 Sometimes proprioceptive is used synonomously.
3 Merriam-Webster’s Dictionary.

4 Introduction

Typical interoceptive sensors are the accelerometer (measures trans-
lational acceleration), gyroscope (measures angular rate), and wheel
odometer (measures angular rate). Typical exteroceptive sensors are
the camera (measures range/bearing to a landmark or landmarks)
and time-of-flight transmitter/receiver (e.g., laser rangefinder, pseudo-
lites, Global Positioning System (GPS) transmitter/receiver). Roughly
speaking, we can think of exteroceptive measurements as being of the
position and orientation of a vehicle, whereas interoceptive ones are
of a vehicle’s velocity or acceleration. In most cases, the best state
estimation concepts make use of both interoceptive and exteroceptive
measurements. For example, the combination of a GPS receiver (extero-
ceptive) and an inertial measurement unit (three linear accelerometers
and three rate gyros; interoceptive) is a popular means of estimat-
ing a vehicle’s position/velocity on Earth. And, the combination of a
Sun/star sensor (exteroceptive) and three rate gyros (interoceptive) is
commonly used to carry out pose determination on satellites.

Now that we understand a little bit about sensors, we are prepared
to define the problem that will be investigated in this book:

Estimation is the problem of reconstructing the underlying state of a system given a
sequence of measurements as well as a prior model of the system.

There are many specific versions of this problem and just as many
solutions. The goal is to understand which methods work well in which
situations, in order to pick the best tool for the job.

1.3 How This Book Is Organized

The book is broken into three main parts:

I: Estimation Machinery
II: Three-Dimensional Machinery

III: Applications

The first part, Estimation Machinery, presents classic and state-of-the-
art estimation tools, without the complication of dealing with things
that live in three-dimensional space (and therefore translate and ro-
tate); the state to be estimated is assumed to be a generic vector.
For those not interested in the details of working in three-dimensional
space, this first part can be read in a standalone manner. It covers
both recursive state estimation techniques and batch methods (less
common in classic estimation books). As is commonplace in robotics
and machine learning today, we adopt a Bayesian approach to estima-
tion in this book. We contrast (full) Bayesian methods with maximum
a posteriori (MAP) methods, and attempt to make clear the differ-
ence between these when faced with nonlinear problems. The book also
connects continuous-time estimation with Gaussian process regression

1.4 Relationship to Other Books 5

from the machine-learning world. Finally, it touches on some practical
issues, such as robust estimation and biases.

The second part, Three-Dimensional Machinery, provides a basic
primer on three-dimensional geometry and gives a detailed but accessi-
ble introduction to matrix Lie groups. To represent an object in three-
dimensional space, we need to talk about that object’s translation and
rotation. The rotational part turns out to be a problem for our estima-
tion tools because rotations are not vectors in the usual sense and so
we cannot naively apply the methods from Part I to three-dimensional
robotics problems involving rotations. Part II, therefore, examines the
geometry, kinematics, and probability/statistics of rotations and poses
(translation plus rotation).

Finally, in the third part, Applications, the first two parts of the book
are brought together. We look at a number of classic three-dimensional
estimation problems involving objects translating and rotating in three-
dimensional space. We show how to adapt the methods from Part I
based on the knowledge gained in Part II. The result is a suite of
easy-to-implement methods for three-dimensional state estimation. The
spirit of these examples can also, we hope, be adapted to create other
novel techniques moving forward.

1.4 Relationship to Other Books

There are many other good books on state estimation and robotics,
but very few cover both topics simultaneously. We briefly describe a
few recent works that do cover these topics and their relationships to
this book.

Probabilistic Robotics by Thrun et al. (2006) is a great introduction
to mobile robotics, with a large focus on state estimation in relation to
mapping and localization. It covers the probabilistic paradigm that is
dominant in much of robotics today. It mainly describes robots operat-
ing in the two-dimensional, horizontal plane. The probabilistic methods
described are not necessarily limited to the two-dimensional case, but
the details of extending to three dimensions are not provided.

Computational Principles of Mobile Robotics by Dudek and Jenkin
(2010) is a great overview book on mobile robotics that touches on state
estimation, again in relation to localization and mapping methods. It
does not work out the details of performing state estimation in three
dimensions.

Mobile Robotics: Mathematics, Models, and Methods by Kelly (2013)
is another excellent book on mobile robotics and covers state estimation
extensively. Three-dimensional situations are covered, particularly in
relation to satellite-based and inertial navigation. As the book covers
all aspects of robotics, it does not delve deeply into how to handle
rotational variables within three-dimensional state estimation.

6 Introduction

Robotics, Vision, and Control by Corke (2011) is another great and
comprehensive book that covers state estimation for robotics, including
in three dimensions. Similarly to the previously mentioned book, the
breadth of Corke’s book necessitates that it not delve too deeply into
the specific aspects of state estimation treated herein.

Bayesian Filtering and Smoothing by Särkkä (2013) is a super book
focused on recursive Bayesian methods. It covers the recursive methods
in far more depth than this book, but does not cover batch methods
nor focus on the details of carrying out estimation in three dimensions.

Stochastic Models, Information Theory, and Lie Groups: Classical
Results and Geometric Methods by Chirikjian (2009), an excellent two-
volume work, is perhaps the closest in content to the current book. It
explicitly investigates the consequences of carrying out state estima-
tion on matrix Lie groups (and hence rotational variables). It is quite
theoretical in nature and goes beyond the current book in this sense,
covering applications beyond robotics.

Engineering Applications of Noncommutative Harmonic Analysis:
With Emphasis on Rotation and Motion Groups by Chirikjian and Ky-
atkin (2001) and the recent update, Harmonic Analysis for Engineers
and Applied Scientists: Updated and Expanded Edition (Chirikjian and
Kyatkin, 2016), also provide key insights to representing probability
globally on Lie groups. In the current book, we limit ourselves to ap-
proximate methods that are appropriate to the situation where rota-
tional uncertainty is not too high.

Although it is not an estimation book per se, it is worth mentioning
Optimization on Matrix Manifolds by Absil et al. (2009), which pro-
vides a detailed look at how to handle optimization problems when the
quantity being optimized is not necessarily a vector, a concept that is
quite relevant to robotics because rotations do not behave like vectors
(they form a Lie group).

The current book is somewhat unique in focusing only on state es-
timation and working out the details of common three-dimensional
robotics problems in enough detail to be easily implemented for many
practical situations.

Part I

Estimation Machinery

7

2

Primer on Probability Theory

In what is to follow, we will be using a number of basic concepts from
probability and statistics. This chapter serves to provide a review of
these concepts. For a classic book on probability and random processes,
see Papoulis (1965). For a light read on the history of probability theory,
Devlin (2008) provides a wonderful introduction; this book also helps to
understand the difference between the frequentist and Bayesian views
of probability. We will primarily adopt the latter in our approach to
estimation, although this chapter mentions some basic frequentist sta-
tistical concepts in passing. We begin by discussing general probability
density functions (PDFs) and then focus on the specific case of Gaus-
sian PDFs. The chapter concludes by introducing Gaussian processes,
the continuous-time version of Gaussian random variables.

2.1 Probability Density Functions

2.1.1 Definitions

We say that a random variable, x, is distributed according to a par-
ticular PDF. Let p(x) be a PDF for the random variable, x, over the
interval

[
a, b
]
. This is a non-negative function that satisfies

∫ b

a

p(x) dx = 1. (2.1)

That is, it satisfies the axiom of total probability. Note that this is
probability density, not probability.

Figure 2.1

Probability density

over a finite

interval (left).

Probability of

being within a

sub-interval

(right).

p(x)

b d

Z b

a

p(x) dx = 1 Pr(c  x  d)

b

p(x)

caa
xx

9

10 Primer on Probability Theory

Probability is given by the area under the density function1. For
example, the probability that x lies between c and d, Pr(c ≤ x ≤ d), is
given by

Pr(c ≤ x ≤ d) =

∫ d

c

p(x) dx. (2.2)

Figure 2.1 depicts a general PDF over a finite interval as well as the
probability of being within a sub-interval. We will use PDFs to repre-
sent the likelihood of x being in all possible states in the interval, [a, b],
given some evidence in the form of data.

We can also introduce a conditioning variable. Let p(x|y) be a PDF
over x ∈

[
a, b
]

conditioned on y ∈
[
r, s
]

such that

(∀y)

∫ b

a

p(x|y) dx = 1. (2.3)

We may also denote joint probability densities for N -dimensional con-
tinuous variables in our framework as p(x), where x = (x1, . . . , xN)
with xi ∈

[
ai, bi

]
. Note that we can also use the notation

p(x1, x2, . . . , xN) (2.4)

in place of p(x). Sometimes we even mix and match the two and write

p(x,y) (2.5)

for the joint density of x and y. In the N -dimensional case, the axiom
of total probability requires
∫ b

a

p(x) dx =

∫ bN

aN

· · ·
∫ b2

a2

∫ b1

a1

p (x1, x2, . . . , xN) dx1 dx2 · · · dxN = 1,

(2.6)
where a = (a1, a2, . . . , aN) and b = (b1, b2, . . . , bN). In what follows, we
will sometimes simplify notation by leaving out the integration limits,
a and b.

2.1.2 Bayes’ Rule and Inference

We can always factor a joint probability density into a conditional and
a non-conditional factor2:

p(x,y) = p(x|y)p(y) = p(y|x)p(x). (2.7)

1 The classical treatment of probability theory starts with probability distributions,

Kolmogorov’s three axioms, and works out the details of probability densities as a

consequence of being the derivative of probability distributions. As is common in

robotics, we will work directly with densities in a Bayesian framework, and therefore

we will skip these formalities and present only the results we need using densities. We

shall be careful to use the term density not distribution as we are working with

continuous variables throughout this book.
2 In the specific case that x and y are statistically independent, we can factor the joint

density as p(x,y) = p(x)p(y).

2.1 Probability Density Functions 11

Rearranging gives Bayes’ rule: Thomas Bayes

(1701-1761) was an

English

statistician,

philosopher, and

Presbyterian

minister, known

for having

formulated a

specific case of the

theorem that bears

his name. Bayes

never published

what would

eventually become

his most famous

accomplishment;

his notes were

edited and

published after his

death by Richard

Price (Bayes,

1764).

p(x|y) =
p(y|x)p(x)

p(y)
. (2.8)

We can use this to infer the posterior or likelihood of the state given the
measurements, p(x|y), if we have a prior PDF over the state, p(x), and
the sensor model, p(y|x). We do this by expanding the denominator so
that

p(x|y) =
p(y|x)p(x)∫
p(y|x)p(x) dx

. (2.9)

We compute the denominator, p(y), by marginalization as follows3:

p(y) = p(y)

∫
p(x|y) dx

︸ ︷︷ ︸
1

=

∫
p(x|y)p(y) dx

=

∫
p(x,y) dx =

∫
p(y|x)p(x) dx, (2.10)

which can be quite expensive to do in the general nonlinear case.
Note that in Bayesian inference, p(x) is known as the prior density,

while p(x|y) is known as the posterior density. Thus, all a priori infor-
mation is encapsulated in p(x), while p(x|y) contains the a posteriori
information.

2.1.3 Moments

When working with mass distributions (a.k.a., density functions) in
dynamics, we often keep track of only a few properties called the mo-
ments of mass (e.g., mass, center of mass, inertia matrix). The same is
true with PDFs. The zeroth probability moment is always 1 since this
is exactly the axiom of total probability. The first probability moment
is known as the mean, µ:

µ = E [x] =

∫
x p(x) dx, (2.11)

where E[·] denotes the expectation operator. For a general matrix func-
tion, F(x), the expectation is written as

E [F(x)] =

∫
F (x) p(x) dx, (2.12)

but note that we must interpret this as

E [F(x)] =
[
E [fij(x)]

]
=
[∫
fij (x) p(x) dx

]
. (2.13)

3 When integration limits are not stated, they are assumed to be over the entire

allowable domain of the variable; e.g., x from a to b.

12 Primer on Probability Theory

The second probability moment is known as the covariance matrix, Σ:

Σ = E
[
(x− µ)(x− µ)T

]
. (2.14)

The next two moments are called the skewness and kurtosis, but for
the multivariate case these get quite complicated and require tensor
representations. We will not need them here, but it should be mentioned
that there are an infinite number of these probability moments.

2.1.4 Sample Mean and Covariance

Suppose we have a random variable, x, and an associated PDF, p(x).
We can draw samples from this density, which we denote as:

xmeas ← p(x). (2.15)

A sample is sometimes referred to as a realization of the random vari-
able, and we can think of it intuitively as a measurement. If we drew N
such samples and wanted to estimate the mean and covariance of ran-
dom variable, x, we could use the sample mean and sample covariance
to do so:

µmeas =
1

N

N∑

i=1

xi,meas, (2.16a)

Σmeas =
1

N − 1

N∑

i=1

(xi,meas − µmeas) (xi,meas − µmeas)
T
. (2.16b)

Notably, the normalization in the sample covariance uses N − 1 rather
than N in the denominator, which is referred to as Bessel’s correction.

Friedrich Wilhelm

Bessel (1784-1846)

was a German

astronomer,

mathematician

(systematizer of

the Bessel

functions, which

were discovered by

Bernoulli). He was

the first

astronomer to

determine the

distance from the

sun to another star

by the method of

parallax. The

Bessel correction is

technically a factor

of N/(N − 1) that

is multiplied in

front of the

‘biased’ formula for

covariance that

divides by N

instead of N − 1.

Intuitively, this is necessary because the sample covariance uses the
difference of the measurements with the sample mean, which itself is
computed from the same measurements, resulting in a slight correla-
tion. The sample covariance can be shown to be an unbiased estimate
of the true covariance, and it is also ‘larger’ than when N is used in
the denominator. It is also worth mentioning that as N becomes large,
N −1 ≈ N , so the bias effect for which sample covariance compensates
becomes less pronounced.

2.1.5 Statistically Independent, Uncorrelated

If we have two random variables, x and y, we say that the variables
are statistically independent if their joint density factors as follows:

p(x,y) = p(x) p(y). (2.17)

We say that the variables are uncorrelated if

E
[
xyT

]
= E [x]E [y]

T
. (2.18)

2.1 Probability Density Functions 13

If the variables are statistically independent, this implies they are also
uncorrelated. However, the reverse is not true in general for all types
of densities4. We will often exploit (or assume) that variables are sta-
tistically independent to simplify computations.

2.1.6 Normalized Product

An operation that it sometimes useful is to take the normalized product
of two PDFs over the same variable5. If p1(x) and p2(x) are two PDFs
for x, the normalized product, p(x), is formed as

p(x) = η p1(x) p2(x), (2.19)

where

η =

(∫
p1(x) p2(x) dx

)−1

, (2.20)

is a normalization constant to ensure p(x) satisfies the axiom of total
probability.

In a Bayesian context, the normalized product can be used to fuse
independent estimates of a variable (represented as PDFs) under the
assumption of a uniform prior:

p(x|y1,y2) = η p(x|y1) p(x|y2), (2.21)

where η is again a normalization constant to enforce the axiom of total
probability. To see this, we begin by writing the left-hand side using
Bayes’ rule:

p(x|y1,y2) =
p(y1,y2|x)p(x)

p(y1,y2)
. (2.22)

Assuming statistical independence of y1 and y2 given x (e.g., measure-
ments corrupted by statistically independent noise), we have

p(y1,y2|x) = p(y1|x) p(y2|x) =
p(x|y1)p(y1)

p(x)

p(x|y2)p(y2)

p(x)
, (2.23)

where we have used Bayes’ rule once again on the individual factors.
Substituting this into (2.22), we have

p(x|y1,y2) = η p(x|y1) p(x|y2), (2.24)

where

η =
p(y1)p(y2)

p(y1,y2)p(x)
. (2.25)

If we let the prior, p(x), be uniform over all values of x (i.e., constant),
then η is also a constant and (2.24) is an instance of the normalized
product described above.
4 It is true for Gaussian PDFs, as discussed below.
5 This is quite different than when we are working with a joint density over two variables.

14 Primer on Probability Theory

2.1.7 Shannon and Mutual Information

Often we have estimated a PDF for some random variable and then
want to quantify how certain we are in, for example, the mean of that
PDF. One method of doing this is to look at the negative entropy or
Shannon information, H, which is given by

Claude Elwood

Shannon

(1916-2001) was an

American

mathematician,

electronic engineer,

and cryptographer

known as ‘the

father of

information theory’

(Shannon, 1948).

H (x) = −E [ln p(x)] = −
∫
p(x) ln p(x) dx. (2.26)

We will make this expression specific to Gaussian PDFs below.
Another useful quantity is the mutual information, I(x,y), between

two random variables, x and y, given by

I(x,y) = E

[
ln

(
p(x,y)

p(x)p(y)

)]
=

∫∫
p(x,y) ln

(
p(x,y)

p(x)p(y)

)
dx dy.

(2.27)
Mutual information measures how much knowing one of the variables
reduces uncertainty about the other. When x and y are statistically
independent, we have

I(x,y) =

∫∫
p(x) p(y) ln

(
p(x)p(y)

p(x)p(y)

)
dx dy

=

∫∫
p(x) p(y) ln (1)︸ ︷︷ ︸

0

dx dy = 0. (2.28)

When x and y are dependent, we have I(x,y) ≥ 0. We also have the
useful relationship

I(x,y) = H(x) +H(y)−H(x,y), (2.29)

relating mutual information and Shannon information.

2.1.8 Cramér-Rao Lower Bound and Fisher Information

Suppose we have a deterministic parameter, θ, that influences the out-
come of a random variable, x. This can be captured by writing the
PDF for x as depending on θ:

p(x|θ). (2.30)

Furthermore, suppose we now draw a sample, xmeas, from p(x|θ):

xmeas ← p(x|θ). (2.31)

The xmeas is sometimes called a realization of the random variable x;
we can think of it as a ‘measurement’6.

Then, the Cramér-Rao lower bound (CRLB) says that the covariance

Harald Cramér

(1893-1985) was a

Swedish

mathematician,

actuary, and

statistician,

specializing in

mathematical

statistics and

probabilistic

number theory.

Calyampudi

Radhakrishna Rao,

(1920-present) is

an Indian

American

mathematician and

statistician.

Cramér and Rao

were amongst the

first to derive what

is now known as

the CRLB.
of any unbiased estimate7, θ̂ (based on the measurement, xmeas), of

6 We use the subscript, ‘meas’, to indicate it is a measurement.
7 We will use (̂·) to indicate an estimated quantity.

2.2 Gaussian Probability Density Functions 15

the deterministic parameter, θ, is bounded by the Fisher information
matrix, I(x|θ):

Sir Ronald Aylmer

Fisher (1890-1962)

was an English

statistician,

evolutionary

biologist,

geneticist, and

eugenicist. His

contributions to

statistics include

the analysis of

variance, method

of maximum

likelihood, fiducial

inference, and the

derivation of

various sampling

distributions.

cov(θ̂|xmeas) = E
[
(θ̂ − θ)(θ̂ − θ)T

]
≥ I−1(x|θ), (2.32)

where ‘unbiased’ implies E
[
θ̂ − θ

]
= 0 and ‘bounded’ means

cov(θ̂|xmeas)− I−1(x|θ) ≥ 0, (2.33)

i.e., positive-semi-definite. The Fisher information matrix is given by

I(x|θ) = E

[(
∂ ln p(x|θ)

∂θ

)T (
∂ ln p(x|θ)

∂θ

)]
. (2.34)

The CRLB therefore sets a fundamental limit on how certain we can
be about an estimate of a parameter, given our measurements.

2.2 Gaussian Probability Density Functions

2.2.1 Definitions

In much of what is to follow, we will be working with Gaussian PDFs.
In one dimension, a Gaussian PDF is given by

p(x|µ, σ2) =
1√

2πσ2
exp

(
−1

2

(x− µ)2

σ2

)
, (2.35)

where µ is the mean and σ2 is the variance (σ is called the standard
deviation). Figure 2.2 shows a one-dimensional Gaussian PDF.

A multivariate Gaussian PDF, p(x|µ,Σ), over the random variable,
x ∈ RN , may be expressed as

p(x|µ,Σ) =
1√

(2π)N det Σ
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (2.36)

where µ ∈ RN is the mean and Σ ∈ RN×N is the (symmetric positive-
definite) covariance matrix. Thus, for a Gaussian we have that

µ = E [x] =

∫ ∞

−∞
x

1√
(2π)N det Σ

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
dx,

(2.37)
and

Σ = E
[
(x− µ)(x− µ)T

]

=

∫ ∞

−∞
(x− µ)(x− µ)T

1√
(2π)N det Σ

(2.38)

× exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
dx.

16 Primer on Probability Theory

Figure 2.2

One-dimensional

Gaussian PDF. A

notable property of

a Gaussian is that

the mean and

mode (most likely

x) are both at µ.

p(x)

x

��

µ

p(x|µ, �2) =
1p

2⇡�2
exp

✓
�1

2

(x� µ)2

�2

◆

We may also write that x is normally (a.k.a., Gaussian) distributed
using the following notation:

x ∼ N (µ,Σ) .

We say a random variable is standard normally distributed if

x ∼ N (0,1) ,

where 1 is an N ×N identity matrix.

2.2.2 Isserlis’ Theorem

Moments of multivariate Gaussian PDFs get a little messy to compute
beyond the usual mean and covariance, but there are some specific
cases that we will make use of later that are worth discussing. We can
use Isserlis’ theorem to compute higher-order moments of a GaussianLeon Isserlis

(1881-1966) was a

Russian-born

British statistician

known for his work

on the exact

distribution of

sample moments.

random variable, x = (x1, x2, . . . , x2M) ∈ R2M . In general, this theorem
says

E[x1x2x3 · · ·x2M] =
∑∏

E[xixj], (2.39)

where this implies summing over all distinct ways of partitioning into
a product of M pairs. This implies that there are (2M)!

(2MM !)
terms in the

sum. With four variables we have

E[xixjxkx`] = E[xixj]E[xkx`] + E[xixk]E[xjx`] + E[xix`]E[xjxk].
(2.40)

We can apply this theorem to work out some useful results for matrix
expressions.

Assume we have x ∼ N (0,Σ) ∈ RN . We will have occasion to com-
pute expressions of the form

E
[
x
(
xTx

)p
xT
]
, (2.41)

where p is a non-negative integer. Trivially, when p = 0, we simply have

2.2 Gaussian Probability Density Functions 17

E[xxT] = Σ. When p = 1, we have8

E
[
xxTxxT

]
= E



[
xixj

(
N∑

k=1

x2
k

)]

ij


 =

[
N∑

k=1

E
[
xixjx

2
k

]
]

ij

=

[
N∑

k=1

(
E[xixj]E[x2

k] + 2E[xixk]E[xkxj]
)
]

ij

= [E[xixj]]ij

N∑

k=1

E[x2
k] + 2

[
N∑

k=1

E[xixk]E[xkxj]

]

ij

= Σ tr(Σ) + 2Σ2

= Σ (tr(Σ)1 + 2Σ) . (2.42)

Note that in the scalar case we have x ∼ N (0, σ2) and hence E[x4] =
σ2(σ2 + 2σ2) = 3σ4, a well-known result. Results for p > 1 are possible
using a similar approach, but we do not compute them for now.

We also consider the case where

x =

[
x1

x2

]
∼ N

(
0,

[
Σ11 Σ12

ΣT
12 Σ22

])
, (2.43)

with dim(x1) = N1 and dim(x2) = N2. We will need to compute ex-
pressions of the form

E
[
x(xT1 x1)pxT

]
, (2.44)

where p is a non-negative integer. Again, when p = 0, we trivially have
E[xxT] = Σ. When p = 1, we have

E
[
xxT1 x1x

T
]

= E



[
xixj

(
N1∑

k=1

x2
k

)]

ij


 =

[
N1∑

k=1

E
[
xixjx

2
k

]
]

ij

=

[
N1∑

k=1

(
E[xixj]E[x2

k] + 2E[xixk]E[xkxj]
)
]

ij

= [E[xixj]]ij

N1∑

k=1

E[x2
k] + 2

[
N1∑

k=1

E[xixk]E[xkxj]

]

ij

= Σ tr(Σ11) + 2

[
Σ2

11 Σ11Σ12

ΣT
12Σ11 ΣT

12Σ12

]

= Σ

(
tr(Σ11)1 + 2

[
Σ11 Σ12

0 0

])
. (2.45)

8 The notation [·]ij implies populating the matrix A = [aij] with the appropriate ijth

entry in each element.

18 Primer on Probability Theory

Similarly, we have

E
[
xxT2 x2x

T
]

= Σ tr(Σ22) + 2

[
Σ12Σ

T
12 Σ12Σ22

Σ22Σ
T
12 Σ2

22

]

= Σ

(
tr(Σ22)1 + 2

[
0 0

ΣT
12 Σ22

])
, (2.46)

and as a final check,

E
[
xxTxxT

]
= E

[
x(xT1 x1 + xT2 x2)xT

]
= E

[
xxT1 x1x

T
]

+ E
[
xxT2 x2x

T
]
.

(2.47)

We furthermore have that

E
[
xxTAxxT

]
= E



[
xixj

(
N∑

k=1

N∑

`=1

xkak`x`

)]

ij




=

[
N∑

k=1

N∑

`=1

ak`E [xixjxkx`]

]

ij

=

[
N∑

k=1

N∑

`=1

ak` (E[xixj]E[xkx`] + E[xixk]E[xjx`]

+ E[xix`]E[xjxk])

]

ij

= [E[xixj]]ij

(
N∑

k=1

N∑

`=1

ak`E[xkx`]

)

+

[
N∑

k=1

N∑

`=1

E[xixk]ak`E[x`xj]

]

ij

+

[
N∑

k=1

N∑

`=1

E[xix`]ak`E[xkxj]

]

ij

= Σ tr(AΣ) + ΣAΣ + ΣATΣ

= Σ
(
tr (AΣ) 1 + AΣ + ATΣ

)
, (2.48)

where A is a compatible square matrix.

2.2.3 Joint Gaussian PDFs, Their Factors, and Inference

We can also have a joint Gaussian over a pair of variables, (x,y), which
we write as

p (x,y) = N
([
µx
µy

]
,

[
Σxx Σxy

Σyx Σyy

])
, (2.49)

which has the same exponential form as (2.36). Note that Σyx = ΣT
xy.

It is always possible to break a joint density into the product of two

2.2 Gaussian Probability Density Functions 19

factors, p(x,y) = p(x|y) p(y), and we can work out the details for
the joint Gaussian case by using the Schur complement9. We begin by Issai Schur

(1875-1941) was a

German

mathematician

who worked on

group

representations

(the subject with

which he is most

closely associated),

but also in

combinatorics and

number theory and

even in theoretical

physics.

noting that
[
Σxx Σxy

Σyx Σyy

]
=

[
1 ΣxyΣ

−1
yy

0 1

] [
Σxx −ΣxyΣ

−1
yy Σyx 0

0 Σyy

] [
1 0

Σ−1
yy Σyx 1

]
,

(2.50)
where 1 is the identity matrix. We then invert both sides to find that

[
Σxx Σxy

Σyx Σyy

]−1

=

[
1 0

−Σ−1
yy Σyx 1

]

×
[(

Σxx −ΣxyΣ
−1
yy Σyx

)−1
0

0 Σ−1
yy

] [
1 −ΣxyΣ

−1
yy

0 1

]
. (2.51)

Looking just to the quadratic part (inside the exponential) of the joint
PDF, p(x,y), we have

([
x
y

]
−
[
µx
µy

])T [
Σxx Σxy

Σyx Σyy

]−1 ([
x
y

]
−
[
µx
µy

])

=

([
x
y

]
−
[
µx
µy

])T [
1 0

−Σ−1
yy Σyx 1

] [(
Σxx −ΣxyΣ

−1
yy Σyx

)−1
0

0 Σ−1
yy

]

×
[
1 −ΣxyΣ

−1
yy

0 1

]([
x
y

]
−
[
µx
µy

])

=
(
x− µx −ΣxyΣ

−1
yy (y − µy)

)T (
Σxx −ΣxyΣ

−1
yy Σyx

)−1

×
(
x− µx −ΣxyΣ

−1
yy (y − µy)

)
+
(
y − µy

)T
Σ−1
yy

(
y − µy

)
, (2.52)

which is the sum of two quadratic terms. Since the exponential of a
sum is the product of two exponentials, we have that

p(x,y) = p(x|y) p(y), (2.53a)

p(x|y) = N
(
µx + ΣxyΣ

−1
yy (y − µy),Σxx −ΣxyΣ

−1
yy Σyx

)
, (2.53b)

p(y) = N
(
µy,Σyy

)
. (2.53c)

It is important to note that both factors, p(x|y) and p(y), are Gaussian
PDFs. Also, if we happen to know the value of y (i.e., it is measured),
we can work out the likelihood of x given this value of y by computing
p(x|y) using (2.53b).

This is in fact the cornerstone of Gaussian inference: we start with
a prior about our state, x ∼ N (µx,Σxx), then narrow this down based
on some measurements, ymeas. In (2.53b), we see that an adjustment is
made to the mean, µx, and the covariance, Σxx (it is made smaller).

9 In this case, we have that the Schur complement of Σyy is the expression,

Σxx −ΣxyΣ
−1
yy Σyx.

20 Primer on Probability Theory

2.2.4 Statistically Independent, Uncorrelated

In the case of Gaussian PDFs, statistically independent variables are
also uncorrelated (true in general) and uncorrelated variables are also
statistically independent (not true for all types of PDFs). We can see
this fairly easily by looking at (2.53). If we assume statistical inde-
pendence, p(x,y) = p(x)p(y) and so p(x|y) = p(x) = N (µx,Σxx).
Looking at (2.53b), this implies

ΣxyΣ
−1
yy (y − µy) = 0, (2.54a)

ΣxyΣ
−1
yy Σyx = 0, (2.54b)

which further implies that Σxy = 0. Since

Σxy = E
[
(x− µx)(y − µy)T

]
= E

[
xyT

]
− E [x]E [y]

T
, (2.55)

we have the uncorrelated condition:

E
[
xyT

]
= E [x]E [y]

T
. (2.56)

We can also work through the logic in the other direction by first assum-
ing the variables are uncorrelated, which leads to Σxy = 0, and finally
to statistical independence. Since these conditions are equivalent, we
will often use statistically independent and uncorrelated interchangeably
in the context of Gaussian PDFs.

2.2.5 Linear Change of Variables

Suppose that we have a Gaussian random variable,

x ∈ RN ∼ N (µx,Σxx),

and that we have a second random variable, y ∈ RM , related to x
through the linear map,

y = Gx, (2.57)

where we assume that G ∈ RM×N is a constant matrix. We would like
to know what the statistical properties of y are. One way to do this is
to simply apply the expectation operator directly:

µy = E[y] = E[Gx] = GE[x] = Gµx, (2.58a)

Σyy = E[(y − µy)(y − µy)T]

= GE[(x− µx)(x− µx)T] GT = GΣxxG
T , (2.58b)

so that we have y ∼ N (µy,Σyy) = N (Gµx,GΣxxG
T).

Another way to look at this is a change of variables. We assume that
the linear map is injective, meaning two x values cannot map to a single
y value; in fact, let us simplify the injective condition by assuming a

2.2 Gaussian Probability Density Functions 21

stricter condition, that G is invertible (and hence M = N). The axiom
of total probability lets us write,

∫ ∞

−∞
p(x) dx = 1. (2.59)

A small volume of x is related to a small volume of y by

dy = |det G| dx. (2.60)

We can then make a substitution of variables to have

1 =

∫ ∞

−∞
p(x) dx

=

∫ ∞

−∞

1√
(2π)N det Σxx

exp

(
−1

2
(x− µx)TΣ−1

xx (x− µx)
)
dx

=

∫ ∞

−∞

1√
(2π)N det Σxx

× exp

(
−1

2
(G−1y − µx)TΣ−1

xx (G−1y − µx)
)
|det G|−1 dy

=

∫ ∞

−∞

1√
(2π)N det G det Σxx det GT

× exp

(
−1

2
(y −Gµx)

TG−TΣ−1
xxG−1(y −Gµx)

)
dy

=

∫ ∞

−∞

1√
(2π)N det(GΣxxGT)

× exp

(
−1

2
(y −Gµx)

T (GΣxxG
T)−1(y −Gµx)

)
dy,

(2.61)

whereupon we have µy = Gµx and Σyy = GΣxxG
T , as before. If

M < N , our linear mapping is no longer injective and the change of
variable approach cannot be used to map statistics from x to y.

We can also think about going in the other direction from y to x,
assuming M < N and rank G = M . This is a bit tricky, as the resulting
covariance for x will blow up since we are dilating10 to a larger space.
To get around this, we switch to information form. Letting

u = Σ−1
yy y, (2.62)

we have that

u ∼ N (Σ−1
yy µy,Σ

−1
yy). (2.63)

Likewise, letting

v = Σ−1
xxx, (2.64)

10 Dilation is the opposite of projection.

22 Primer on Probability Theory

we have that

v ∼ N (Σ−1
xxµx,Σ

−1
xx). (2.65)

Since the mapping from y to x is not unique, we need to specify what
we want to do. One choice is to let

v = GTu ⇔ Σ−1
xxx = GTΣ−1

yy y. (2.66)

We then take expectations:

Σ−1
xxµx = E[v] = E[GTu] = GTE[u] = GTΣ−1

yy µy, (2.67a)

Σ−1
xx = E[(v −Σ−1

xxµx)(v −Σ−1
xxµx)

T] (2.67b)

= GTE[(u−Σ−1
yy µy)(u−Σ−1

yy µy)
T]G = GTΣ−1

yy G.

Note that if Σ−1
xx is not full rank, we cannot actually recover Σxx and

µx and must keep them in information form. However, multiple such
estimates can be fused together, which is the subject of the next section.

2.2.6 Normalized Product of Gaussians

We now discuss a useful property of Gaussian PDFs; the normalized
product (see Section 2.1.6) of K Gaussian PDFs is also a Gaussian
PDF:

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

≡ η
K∏

k=1

exp

(
−1

2
(x− µk)TΣ−1

k (x− µk)
)
, (2.68)

where

Σ−1 =
K∑

k=1

Σ−1
k , (2.69a)

Σ−1µ =
N∑

k=1

Σ−1
k µk, (2.69b)

and η is a normalization constant to enforce the axiom of total prob-
ability. The normalized product of Gaussians comes up when fusing
multiple estimates together. A one-dimensional example is provided in
Figure 2.3.

We also have that

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

≡ η
K∏

k=1

exp

(
−1

2
(Gkx− µk)TΣ−1

k (Gkx− µk)
)
, (2.70)

2.2 Gaussian Probability Density Functions 23

Figure 2.3 The

normalized

product of two

one-dimensional

Gaussian PDFs is

another

one-dimensional

Gaussian PDF.

p(x)

x
µ

��

µ1 µ2

�2�2
�1�1

µ

�2
=

µ1

�2
1

+
µ2

�2
2

1

�2
=

1

�2
1

+
1

�2
2

where

Σ−1 =
K∑

k=1

GT
kΣ−1

k Gk, (2.71a)

Σ−1µ =
K∑

k=1

GT
kΣ−1

k µk, (2.71b)

in the case that the matrices, Gk ∈ RMk×N , are present, with Mk ≤ N .
Again, η is a normalization constant. We also note that this generalizes
a result from the previous section.

2.2.7 Sherman-Morrison-Woodbury Identity

We will require the Sherman-Morrison-Woodbury (SMW) (Sherman
and Morrison, 1949, 1950; Woodbury, 1950) matrix identity (sometimes
called the matrix inversion lemma) in what follows. There are actually The SMW formula

is named for

American

statisticians Jack

Sherman, Winifred

J. Morrison, and

Max A. Woodbury,

but was

independently

presented by

English

mathematician W.

J. Duncan,

American

statisticians L.

Guttman and M.

S. Bartlett, and

possibly others.

four different identities that come from a single derivation.
We start by noting that we can factor a matrix into either a lower-

diagonal-upper (LDU) or upper-diagonal-lower (UDL) form, as follows:

[
A−1 −B
C D

]

=

[
1 0

CA 1

] [
A−1 0
0 D + CAB

] [
1 −AB
0 1

]
(LDU)

=

[
1 −BD−1

0 1

] [
A−1 + BD−1C 0

0 D

] [
1 0

D−1C 1

]
. (UDL)

(2.72)

We then invert each of these forms. For the LDU we have
[
A−1 −B
C D

]−1

=

[
1 AB
0 1

] [
A 0
0 (D + CAB)−1

] [
1 0
−CA 1

]

=

[
A−AB(D + CAB)−1CA AB(D + CAB)−1

−(D + CAB)−1CA (D + CAB)−1

]
. (2.73)

24 Primer on Probability Theory

For the UDL we have

[
A−1 −B
C D

]−1

=

[
1 0

−D−1C 1

] [
(A−1 + BD−1C)−1 0

0 D−1

] [
1 BD−1

0 1

]

=
[

(A−1 + BD−1C)−1 (A−1 + BD−1C)−1BD−1

−D−1C(A−1 + BD−1C)−1 D−1 −D−1C(A−1 + BD−1C)−1BD−1

]
.

(2.74)

Comparing the blocks of (2.73) and (2.74), we have the following iden-
tities:

(A−1 + BD−1C)−1 ≡ A−AB(D + CAB)−1CA, (2.75a)

(D + CAB)−1 ≡ D−1 −D−1C(A−1 + BD−1C)−1BD−1, (2.75b)

AB(D + CAB)−1 ≡ (A−1 + BD−1C)−1BD−1, (2.75c)

(D + CAB)−1CA ≡ D−1C(A−1 + BD−1C)−1. (2.75d)

These are all used frequently when manipulating expressions involving
the covariance matrices associated with Gaussian PDFs.

2.2.8 Passing a Gaussian through a Nonlinearity

We now examine the process of passing a Gaussian PDF through a
stochastic nonlinearity, namely, computing

p(y) =

∫ ∞

−∞
p(y|x)p(x)dx, (2.76)

where we have that

p(y|x) = N (g(x),R) , (2.77a)

p(x) = N (µx,Σxx) , (2.77b)

and g(·) is a nonlinear map, g : x 7→ y, that is then corrupted by zero-
mean Gaussian noise with covariance, R. We will require this type
of stochastic nonlinearity when modelling sensors later on. Passing a
Gaussian through this type of function is required, for example, in the
denominator when carrying out full Bayesian inference.

Scalar Deterministic Case via Change of Variables

Let us first look at a simplified version where x is scalar and the non-
linear function, g(·), is deterministic (i.e., R = 0). We begin with a
Gaussian random variable, x ∈ R1:

x ∼ N (0, σ2). (2.78)

2.2 Gaussian Probability Density Functions 25

For the PDF on x we have

p(x) =
1√

2πσ2
exp

(
−1

2

x2

σ2

)
. (2.79)

Now consider the nonlinear mapping,

y = exp(x), (2.80)

which is invertible:

x = ln(y). (2.81)

The infinitesimal integration volumes for x and y are then related by

dy = exp(x) dx, (2.82)

or

dx =
1

y
dy. (2.83)

According to the axiom of total probability, we have

1 =

∫ ∞

−∞
p(x) dx

=

∫ ∞

−∞

1√
2πσ2

exp

(
−1

2

x2

σ2

)
dx

=

∫ ∞

0

1√
2πσ2

exp

(
−1

2

(ln(y))
2

σ2

)
1

y
︸ ︷︷ ︸

p(y)

dy

=

∫ ∞

0

p(y) dy, (2.84)

giving us the exact expression for p(y), which is plotted in Figure 2.4
for σ2 = 1 as the black curve; the area under this curve, from y = 0 to
∞ is 1. The gray histogram is a numerical approximation of the PDF

Figure 2.4 The

PDF, p(y),

resulting from

passing p(x) =
1√
2π

exp
(
− 1

2
x2
)

through the

nonlinearity,

y = exp(x).

y

0 1 2 3 4 5

p
(y
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

26 Primer on Probability Theory

Figure 2.5

Passing a

one-dimensional

Gaussian through

a deterministic

nonlinear function,

g(·). Here we

linearize the

nonlinearity in

order to propagate

the variance

approximately.

p(x)

x
µx

�x�x

�y�y

y

p(y)

µy

y = g(x)

µy = g(µx)

y � µy| {z }
�y

⇡ @g(x)

@x

����
x=µx| {z }

a

x� µx| {z }
�x

�2
y = E[�y2]

= a2E[�x2]
= a2�2

x

generated by sampling x a large number of times and passing these
through the nonlinearity individually, then binning. These approaches
agree very well, validating our method of changing variables.

Note that p(y) is no longer Gaussian owing to the nonlinear change of
variables. We can verify numerically that the area under this function
is indeed 1 (i.e., it is a valid PDF). It is worth noting that had we not
been careful about handling the change of variables and including the
1
y

factor, we would not have a valid PDF.

General Case via Linearization

Unfortunately, (2.76) cannot be computed in closed form for every g(·)
and becomes more difficult in the multivariate case than the scalar
one. Moreover, when the nonlinearity is stochastic (i.e., R > 0), our
mapping will never be invertible due to the extra input coming from
the noise, so we need a different way to transform our Gaussian. There
are several different ways to do this, and in this section, we look at the
most common one, linearization.

We linearize the nonlinear map such that

g(x) ≈ µy + G(x− µx),

G =
∂g(x)

∂x

∣∣∣∣
x=µx

, (2.85)

µy = g(µx),

where G is the Jacobian of g(·), with respect to x. This allows us to
then pass the Gaussian through the linearized function in closed form;
it is an approximation that works well for mildly nonlinear maps.

Figure 2.5 depicts the process of passing a one-dimensional Gaussian
PDF through a deterministic nonlinear function, g(·), that has been lin-
earized. In general, we will be making an inference though a stochastic
function, one that introduces additional noise.

2.2 Gaussian Probability Density Functions 27

Returning to (2.76), we have that

p(y) =

∫ ∞

−∞
p(y|x)p(x)dx

= η

∫ ∞

−∞
exp

(
−1

2

(
y − (µy + G(x− µx))

)T

× R−1
(
y − (µy + G(x− µx))

))

× exp

(
−1

2
(x− µx)TΣ−1

xx (x− µx)
)
dx

= η exp

(
−1

2
(y − µy)TR−1(y − µy)

)

×
∫ ∞

−∞
exp

(
−1

2
(x− µx)T

(
Σ−1
xx + GTR−1G

)
(x− µx)

)

× exp
(
(y − µy)TR−1G(x− µx)

)
dx,

(2.86)

where η is a normalization constant. Defining F such that

FT
(
GTR−1G + Σ−1

xx

)
= R−1G, (2.87)

we may complete the square for the part inside the integral such that

exp

(
−1

2
(x− µx)T

(
Σ−1
xx + GTR−1G

)
(x− µx)

)

× exp
(
(y − µy)TR−1G(x− µx)

)

= exp

(
−1

2

((
x− µx)− F(y − µy

))T

×
(
GTR−1G + Σ−1

xx

) ((
x− µx)− F(y − µy

)))

× exp

(
1

2
(y − µy)TFT

(
GTR−1G + Σ−1

xx

)
F(y − µy)

)
.

(2.88)

The second factor is independent of x and may be brought outside of the
integral. The remaining integral (the first factor) is exactly Gaussian
in x and thus will integrate (over x) to a constant and thus can be

28 Primer on Probability Theory

absorbed in the constant η. Thus, for p(y), we have

p(y) = ρ exp

(
−1

2
(y − µy)T

×
(
R−1 − FT

(
GTR−1G + Σ−1

xx

)
F
)

(y − µy)
)

= ρ exp

(
−1

2
(y − µy)T

×
(
R−1 −R−1G

(
GTR−1G + Σ−1

xx

)−1
GTR−1

︸ ︷︷ ︸
(R+GΣxxGT)−1 by (2.75)

)
(y − µy)

)

= ρ exp

(
−1

2
(y − µy)T

(
R + GΣxxG

T
)−1

(y − µy)
)
, (2.89)

where ρ is the new normalization constant. This is a Gaussian for y:

y ∼ N
(
µy,Σyy

)
= N

(
g(µx),R + GΣxxG

T
)
. (2.90)

As we will see later, the two equations (2.70) and (2.89) constitute the
observation and predictive steps of the classic discrete-time (extended)
Kalman filter (Kalman, 1960b). These two steps may be thought of as
the creation and destruction of information in the filter, respectively.

2.2.9 Shannon Information of a Gaussian

In the case of a Gaussian PDF, we have for the Shannon information:

H (x) = −
∫ ∞

−∞
p(x) ln p(x) dx

= −
∫ ∞

−∞
p(x)

(
−1

2
(x− µ)TΣ−1(x− µ)− ln

√
(2π)N det Σ

)
dx

=
1

2
ln
(
(2π)N det Σ

)
+

∫ ∞

−∞

1

2
(x− µ)TΣ−1(x− µ) p(x) dx

=
1

2
ln
(
(2π)N det Σ

)
+

1

2
E
[
(x− µ)TΣ−1(x− µ)

]
, (2.91)

where we have written the second term using an expectation. In fact,
this term is exactly a squared Mahalanobis distance, which is like a

Prasanta Chandra

Mahalanobis

(1893-1972) was an

Indian scientist

and applied

statistician known

for this measure of

statistical distance

(Mahalanobis,

1936).

squared Euclidean distance but weighted in the middle by the inverse
covariance matrix. A nice property of this quadratic function inside
the expectation allows us to rewrite it using the (linear) trace operator
from linear algebra:

(x− µ)TΣ−1(x− µ) = tr
(
Σ−1(x− µ)(x− µ)T

)
. (2.92)

2.2 Gaussian Probability Density Functions 29

Figure 2.6

Uncertainty ellipse

for a

two-dimensional

Gaussian PDF.

The geometric area

inside the ellipse is

A = M2π
√

det Σ.

The Shannon

information

expression is

provided for

comparison.

x2

x1

µ

A = M2⇡
p

det⌃

x ⇠ N (µ,⌃)

p(x) =
1p

(2⇡)2eM2 det⌃

H(x) =
1

2
ln
�
(2⇡e)2 det⌃

�

Since the expectation is also a linear operator, we may interchange the
order of the expectation and trace arriving at

E
[
(x− µ)TΣ−1(x− µ)

]
= tr

(
E
[
Σ−1(x− µ)(x− µ)T

])

= tr

(
Σ−1E

[
(x− µ)(x− µ)T

]
︸ ︷︷ ︸

Σ

)

= tr
(
Σ−1Σ

)

= tr 1

= N, (2.93)

which is just the dimension of the variable. Substituting this back into
our expression for Shannon information, we have

H (x) =
1

2
ln
(
(2π)N det Σ

)
+

1

2
E
[
(x− µ)TΣ−1(x− µ)

]

=
1

2
ln
(
(2π)N det Σ

)
+

1

2
N

=
1

2

(
ln
(
(2π)N det Σ

)
+N ln e

)

=
1

2
ln
(
(2πe)N det Σ

)
, (2.94)

which is purely a function of Σ, the covariance matrix of the Gaussian
PDF. In fact, geometrically, we may interpret

√
det Σ as proportional

to the volume of the uncertainty ellipsoid formed by the Gaussian.
Figure 2.6 shows the uncertainty ellipse for a two-dimensional Gaussian.

Note that along the boundary of the uncertainty ellipse, p(x) is con-
stant. To see this, consider that the points along this ellipse must satisfy

(x− µ)TΣ−1(x− µ) = M2, (2.95)

where M is a factor applied to scale the nominal covariance so we have
the M = 1, 2, 3, . . . equiprobable contours. In this case we have that

p(x) =
1√

(2π)NeM2 det Σ
, (2.96)

on the Mth ellipsoid surface.

30 Primer on Probability Theory

2.2.10 Mutual Information of a Joint Gaussian PDF

Assume we have a joint Gaussian for variables x ∈ RN and y ∈ RM
given by

p (x,y) = N (µ,Σ) = N
([
µx
µy

]
,

[
Σxx Σxy

Σyx Σyy

])
. (2.97)

By inserting (2.94) into (2.29) we can easily see that the mutual infor-
mation for the joint Gaussian is given by

I(x,y) =
1

2
ln
(
(2πe)N det Σxx

)
+

1

2
ln
(
(2πe)M det Σyy

)

− 1

2
ln
(
(2πe)M+N det Σ

)

= −1

2
ln

(
det Σ

det Σxx det Σyy

)
. (2.98)

Looking back to (2.50), we can also note that

det Σ = det Σxx det
(
Σyy −ΣyxΣ

−1
xxΣxy

)

= det Σyy det
(
Σxx −ΣxyΣ

−1
yy Σyx

)
. (2.99)

Inserting this into the above, we have

I(x,y) = −1

2
ln det(1−Σ−1

xxΣxyΣ
−1
yy Σyx)

= −1

2
ln det(1−Σ−1

yy ΣyxΣ
−1
xxΣxy), (2.100)

where the two versions can be seen to be equivalent through Sylvester’s
determinant theorem.

James Joseph

Sylvester

(1814-1897) was an

English

mathematician

who made

fundamental

contributions to

matrix theory,

invariant theory,

number theory,

partition theory,

and combinatorics.

This theorem says

that

det(1−AB)

= det(1−BA),

even when A and

B are not square.

2.2.11 Cramér-Rao Lower Bound Applied to Gaussian
PDFs

Suppose that we have K samples (i.e., measurements), xmeas,k ∈ RN ,
drawn from a Gaussian PDF. The K statistically independent random
variables associated with these measurements are thus

(∀k) xk ∼ N (µ,Σ) . (2.101)

The term statistically independent implies that E [(xk − µ)(x` − µ)T] =
0 for k 6= `. Now suppose our goal is to estimate the mean of this PDF,
µ, from the measurements, xmeas,1, . . . ,xmeas,K . For the joint density of
all the random variables, x = (x1, . . . ,xK), we in fact have

ln p(x|µ,Σ) = −1

2
(x−Aµ)TB−1(x−Aµ)−ln

√
(2π)NK det B, (2.102)

2.2 Gaussian Probability Density Functions 31

where

A =
[
1 1 · · · 1

]T
︸ ︷︷ ︸

K blocks

, B = diag (Σ,Σ, . . . ,Σ)︸ ︷︷ ︸
K blocks

. (2.103)

In this case, we have

∂ ln p(x|µ,Σ)

∂µ

T

= ATB−1(x−Aµ), (2.104)

and thus the Fisher information matrix is

I(x|µ) = E

[(
∂ ln p(x|µ,Σ)

∂µ

)T (
∂ ln p(x|µ,Σ)

∂µ

)]

= E
[
ATB−1(x−Aµ)(x−Aµ)TB−1A

]

= ATB−1 E
[
(x−Aµ)(x−Aµ)T

]
︸ ︷︷ ︸

B

B−1A

= ATB−1A

= KΣ−1, (2.105)

which we can see is just K times the inverse covariance of the Gaussian
density. The CRLB thus says

cov(x̂|xmeas,1, . . . ,xmeas,K) ≥ 1

K
Σ. (2.106)

In other words, the lower limit of the uncertainty in the estimate of the
mean, x̂, becomes smaller and smaller the more measurements we have
(as we would expect).

Note that in computing the CRLB, we did not need actually to spec-
ify the form of the unbiased estimator at all; the CRLB is the lower
bound for any unbiased estimator. In this case, it is not hard to find
an estimator that performs right at the CRLB:

x̂ =
1

K

K∑

k=1

xmeas,k. (2.107)

For the mean of this estimator we have

E [x̂] = E

[
1

K

K∑

k=1

xk

]
=

1

K

K∑

k=1

E[xk] =
1

K

K∑

k=1

µ = µ, (2.108)

which shows that the estimator is indeed unbiased. For the covariance

32 Primer on Probability Theory

Figure 2.7

Continuous-time

trajectories can be

represented using

Gaussian

processes, which

have a mean

function (dark

line) and a

covariance function

(shaded area).

x(t) ⇠ GP (µ(t),⌃(t, t0))

we have

cov(x̂|xmeas,1, . . . ,xmeas,K) = E
[
(x̂− µ)(x̂− µ)T

]

= E



(

1

K

K∑

k=1

xk − µ
)(

1

K

K∑

k=1

xk − µ
)T


=
1

K2

K∑

k=1

K∑

`=1

E
[
(xk − µ) (x` − µ)

T
]

︸ ︷︷ ︸
Σ when k = `, 0 otherwise

=
1

K
Σ, (2.109)

which is right at the CRLB.

2.3 Gaussian Processes

We have already discussed Gaussian random variables and their asso-
ciated PDFs. We write

x ∼ N (µ,Σ), (2.110)

to say x ∈ RN is Gaussian. We will use this type of random variable
extensively to represent discrete-time quantities. We will also want to
talk about state quantities that are continuous functions of time, t.
To do so, we need to introduce Gaussian processes (GPs) (Rasmussen
and Williams, 2006). Figure 2.7 depicts a trajectory represented by a
Gaussian process. There is a mean function, µ(t), and a covariance
function, Σ(t, t′).

The idea is that the entire trajectory is a single random variable
belonging to a class of functions. The closer a function is to the mean
function, the more likely it is. The covariance function controls how
smooth the function is by describing the correlation between two times,
t and t′. We write

x(t) ∼ GP(µ(t),Σ(t, t′)) (2.111)

to indicate that a continuous-time trajectory is a Gaussian process
(GP). The GP concept generalizes beyond one-dimensional functions
of time, but we will only have need of this special case.

2.4 Summary 33

If we want to consider a variable at a single particular time of interest,
τ , then we can write

x(τ) ∼ N (µ(τ),Σ(τ, τ)), (2.112)

where Σ(τ, τ) is now simply a covariance matrix. We have essentially
marginalized out all of the other instants of time, leaving x(τ) as a
usual Gaussian random variable.

In general, a GP can take on many different forms. One particular
GP that we will use frequently is the zero-mean, white noise process.
For w(t) to be zero-mean, white noise, we write

w(t) ∼ GP(0,Qδ(t− t′)), (2.113)

where Q is a power spectral density matrix and δ(·) is Dirac’s delta
function. This is a stationary noise process since it depends only on the

Paul Adrien

Maurice Dirac

(1902-1984) was an

English theoretical

physicist who

made fundamental

contributions to

the early

development of

both quantum

mechanics and

quantum

electrodynamics.

difference, t− t′.
We will return to GPs when we want to talk about state estimation

in continuous time. We will show that estimation in this context can
be viewed as an application of Gaussian process regression (Rasmussen
and Williams, 2006).

2.4 Summary

The main take-away points from this chapter are as follows:

1. We will be using probability density functions (PDFs) over some
continuous state space to represent how certain we are that a robot
is in each possible state.

2. We often restrict ourselves to Gaussian PDFs to make the calcula-
tions easier.

3. We will frequently employ Bayes’ rule to carry out so-called Bayesian
inference as an approach to state estimation; we begin with a set
of possible states (the prior) and narrow the possibilities based on
actual measurements (the posterior).

The next chapter will introduce some of the classic linear-Gaussian,
state estimation methods.

2.5 Exercises

2.5.1 Show for any two columns of the same length, u and v, that

uTv = tr(vuT).

2.5.2 Show that if two random variables, x and y, are statistically
independent, then the Shannon information of the joint density,

34 Primer on Probability Theory

p(x,y), is the sum of the Shannon informations of the individual
densities, p(x) and p(y):

H(x,y) = H(x) +H(y).

2.5.3 For a Gaussian random variable, x ∼ N (µ,Σ), show that

E[xxT] = Σ + µµT .

2.5.4 For a Gaussian random variable, x ∼ N (µ,Σ), show directly
that

µ = E[x] =

∫ ∞

−∞
x p(x) dx.

2.5.5 For a Gaussian random variable, x ∼ N (µ,Σ), show directly
that

Σ = E[(x− µ)(x− µ)T] =

∫ ∞

−∞
(x− µ)(x− µ)T p(x) dx.

2.5.6 Show that the direct product of K statistically independent
Gaussian PDFs, xk ∼ N (µk,Σk), is also a Gaussian PDF:

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

≡ η
K∏

k=1

exp

(
−1

2
(x− µk)TΣ−1

k (x− µk)
)
,

where

Σ−1 =
K∑

k=1

Σ−1
k , Σ−1µ =

K∑

k=1

Σ−1
k µk,

and η is a normalization constant to enforce the axiom of total
probability.

2.5.7 Show that the weighted sum of K statistically independent ran-
dom variables, xk, given by

x =
K∑

k=1

wkxk,

with
∑K

k=1wk = 1 and wk ≥ 0, has a PDF that satisfies the axiom
of total probability and whose mean is given by

µ =
K∑

k=1

wkµk,

where µk is the mean of xk. Determine an expression for the co-
variance. Note that the random variables are not assumed to be
Gaussian.

2.5 Exercises 35

2.5.8 The random variable

y = xTx

is chi-squared (of order K) when x ∼ N (0,1) is length K. Show
that the mean and variance are given by K and 2K, respectively.
Hint: use Isserlis’ theorem.

3

Linear-Gaussian Estimation

This chapter will introduce some of the classic results from estima-
tion theory for linear models and Gaussian random variables, includ-
ing the Kalman filter (KF) (Kalman, 1960b). We will begin with a
batch, discrete-time estimation problem that will provide important
insights into the nonlinear extension of the work in subsequent chap-
ters. From the batch approach, we will show how the recursive methods
can be developed. Finally, we will circle back to the more general case
of handling continuous-time motion models and connect these to the
discrete-time results as well as to Gaussian process regression from the
machine-learning world. Classic books that cover linear estimation in-
clude Bryson (1975), Maybeck (1994), and Stengel (1994).

3.1 Batch Discrete-Time Estimation

We will begin by setting up the problem that we want to solve and
then discuss methods of solution.

3.1.1 Problem Setup

In much of this chapter, we will consider discrete-time, linear, time-
varying equations. We define the following motion and observation
models:

motion model: xk = Ak−1xk−1 + vk + wk, k = 1 . . .K (3.1a)

observation model: yk = Ckxk + nk, k = 0 . . .K (3.1b)

where k is the discrete-time index and K its maximum. The variables
in (3.1) have the following meanings:

system state : xk ∈ RN

initial state : x0 ∈ RN ∼ N
(
x̌0, P̌0

)

input : vk ∈ RN

process noise : wk ∈ RN ∼ N (0,Qk)

measurement : yk ∈ RM

measurement noise : nk ∈ RM ∼ N (0,Rk)

37

38 Linear-Gaussian Estimation

These are all random variables, except vk, which is deterministic1. The
noise variables and initial state knowledge are all assumed to be uncor-
related with one another (and with themselves at different timesteps).
The matrix Ak ∈ RN×N is called the transition matrix. The matrix
Ck ∈ RM×N is called the observation matrix.

Although we want to know the state of the system (at all times),
we only have access to the following quantities, and must base our
estimate, x̂k, on just this information:

(i) The initial state knowledge, x̌0, and the associated covariance
matrix, P̌0; sometimes we do not have this piece of information
and must do without2.

(ii) The inputs, vk, which typically come from the output of our
controller and so are known3; we also have the associated pro-
cess noise covariance, Qk.

(iii) The measurements, yk,meas, which are realizations of the as-
sociated random variables, yk, and the associated covariance
matrix, Rk.

Based on the models in the previous section, we define the state esti-
mation problem as follows:

The problem of state estimation is to come up with an estimate, x̂k, of the true
state of a system, at one or more timesteps, k, given knowledge of the initial state,
x̌0, a sequence of measurements, y0:K,meas, a sequence of inputs, v1:K , as well as
knowledge of the system’s motion and observation models.

The rest of this chapter will present a suite of techniques for addressing
this state estimation problem. Our approach will always be not only
to attempt to come up with a state estimate but also to quantify the
uncertainty in that estimate.

To set ourselves up for what is to follow in the later chapters on
nonlinear estimation, we will begin by formulating a batch linear-
Gaussian (LG) estimation problem. The batch solution is very useful
for computing state estimates after the fact because it uses all the mea-
surements in the estimation of all the states at once (hence the usage of
‘batch’). However, a batch method cannot be used in real time since we
cannot employ future measurements to estimate past states. For this
we will need recursive state estimators, which will be covered later in
this chapter.

1 Sometimes the input is specialized to be of the form vk = Bkuk, where uk ∈ RU is

now the input and Bk ∈ RN×U is called the control matrix. We will use this form as

needed in our development.
2 We will use (̂·) to indicate posterior estimates (including measurements) and (̌·) to

indicate prior estimates (not including measurements).
3 In robotics, this input is sometimes replaced by an interoceptive measurement. This is

a bit of a dangerous thing to do since it then conflates two sources of uncertainty:

process noise and measurement noise. If this is done, we must be careful to inflate Q

appropriately to reflect the two uncertainties.

3.1 Batch Discrete-Time Estimation 39

To show the relationship between various concepts, we will set up
the batch LG estimation problem using two different paradigms:

(i) Bayesian inference; here we update a prior density over states
(based on the initial state knowledge, inputs, and motion model)
with our measurements, to produce a posterior (Gaussian) den-
sity over states.

(ii) Maximum A Posteriori (MAP); here we employ optimization
to find the most likely posterior state given the information we
have (initial state knowledge, measurements, inputs).

While these approaches are somewhat different in nature, it turns out
that we arrive at the exact same answer for the LG problem. This
is because the full Bayesian posterior is exactly Gaussian. Therefore,
the optimization approach will find the maximum (i.e., mode) of a
Gaussian, and this is the same as the mean. It is important to pursue
these two avenues because when we move to nonlinear, non-Gaussian
systems in subsequent chapters, the mean and mode of the posterior
will no longer be the same and the two methods will arrive at different
answers. We will start with the MAP optimization method as it is a
bit easier to explain.

3.1.2 Maximum A Posteriori

In batch estimation, our goal is to solve the following MAP problem:

x̂ = arg max
x

p(x|v,y), (3.2)

which is to say that we want to find the best single estimate for the
state of the system (at all timesteps), x̂, given the prior information,
v, and measurements, y4. Note that we have

x = x0:K = (x0, . . . ,xK), v = (x̌0,v1:K) = (x̌0,v1, . . . ,vK),

y = y0:K = (y0, . . . ,yK),

where the timestep range may be dropped for convenience of notation
(when the range is the largest possible for that variable)5. Note that we
have included the initial state information with the inputs to the sys-
tem; together these define our prior over the state. The measurements
serve to improve this prior information.

4 We will be a bit loose on notation here by dropping ‘meas’ from ymeas.
5 We will sometimes refer to lifted form when discussing variables and equations over the

entire trajectory rather than a single timestep. It should be clear when quantities are in

lifted form as they will not have a subscript for the timestep.

40 Linear-Gaussian Estimation

We begin by rewriting the MAP estimate using Bayes’ rule:

x̂ = arg max
x

p(x|v,y) = arg max
x

p(y|x,v)p(x|v)

p(y|v)

= arg max
x

p(y|x)p(x|v), (3.3)

where we drop the denominator because it does not depend on x. We
also drop v in p(y|x,v) since it does not affect y in our system if x is
known (see observation model).

A vital assumption that we are making is that all of the noise vari-
ables, wk and nk for k = 0 . . .K, are uncorrelated. This allows us to
use Bayes’ rule to factor p(y|x) in the following way:

p(y|x) =
K∏

k=0

p(yk |xk). (3.4)

Furthermore, Bayes’ rule allows us to factor p(x|v) as

p(x|v) = p(x0 | x̌0)
K∏

k=1

p(xk |xk−1,vk). (3.5)

In this linear system, the component (Gaussian) densities are given by

p(x0 | x̌0) =
1√

(2π)N det P̌0

× exp

(
−1

2
(x0 − x̌0)

T
P̌−1

0 (x0 − x̌0)

)
, (3.6a)

p(xk |xk−1,vk) =
1√

(2π)N det Qk

exp

(
−1

2
(xk −Ak−1xk−1 − vk)

T

× Q−1
k (xk −Ak−1xk−1 − vk)

)
, (3.6b)

p(yk |xk) =
1√

(2π)M det Rk

exp

(
−1

2
(yk −Ckxk)

T

× R−1
k (yk −Ckxk)

)
. (3.6c)

Note that we must have P̌0, Qk, and Rk invertible; they are in fact
positive-definite by assumption and therefore invertible. To make the

3.1 Batch Discrete-Time Estimation 41

optimization easier, we take the logarithm of both sides6:

ln(p(y|x)p(x |v)) = ln p(x0 | x̌0)+
K∑

k=1

ln p(xk |xk−1,vk)+
K∑

k=0

ln p(yk |xk),

(3.7)
where

ln p(x0 | x̌0) = −1

2
(x0 − x̌0)

T
P̌−1

0 (x0 − x̌0)

− 1

2
ln
(
(2π)N det P̌0

)

︸ ︷︷ ︸
independent of x

, (3.8a)

ln p(xk |xk−1,vk) = −1

2
(xk −Ak−1xk−1 − vk)

T

× Q−1
k (xk −Ak−1xk−1 − vk)

− 1

2
ln
(
(2π)N det Qk

)

︸ ︷︷ ︸
independent of x

, (3.8b)

ln p(yk |xk) = −1

2
(yk −Ckxk)

T
R−1
k (yk −Ckxk)

− 1

2
ln
(
(2π)M det Rk

)

︸ ︷︷ ︸
independent of x

. (3.8c)

Noticing that there are terms in (3.8) that do not depend on x, we
define the following quantities:

Jv,k(x) =





1
2

(x0 − x̌0)
T

P̌−1
0 (x0 − x̌0) , k = 0

1
2

(xk −Ak−1xk−1 − vk)
T

× Q−1
k (xk −Ak−1xk−1 − vk) , k = 1 . . .K

, (3.9a)

Jy,k(x) =
1

2
(yk −Ckxk)

T
R−1
k (yk −Ckxk) , k = 0 . . .K, (3.9b)

which are all squared Mahalanobis distances. We then define an overall
objective function, J(x), that we will seek to minimize with respect to
the design parameter, x:

J(x) =
K∑

k=0

(Jv,k(x) + Jy,k(x)) . (3.10)

We will work with J(x) as is, but note that it is possible to add all
kinds of additional terms to this expression that will influence the so-
lution for the best estimate (e.g., constraints, penalty terms). From an

6 A logarithm is a monotonically increasing function and therefore will not affect our

optimization problem.

42 Linear-Gaussian Estimation

optimization perspective, we seek to solve the following problem:

x̂ = arg min
x
J(x), (3.11)

which will result in the same solution for the best estimate, x̂, as (3.2).
In other words, we are still finding the best estimate in order to maxi-
mize the likelihood of the state given all the data we have. This is an
unconstrained optimization problem in that we do not have to satisfy
any constraints on the design variable, x.

To further simplify our problem, we make use of the fact that equa-
tions (3.9) are quadratic in x. To make this more clear, we stack all
the known data into a lifted column, z, and recall that x is also a tall
column consisting of all the states:

z =




x̌0

v1

...
vK
y0

y1

...
yK




, x =




x0

...
xK


 . (3.12)

We then define the following block-matrix quantities:

H =




1
−A0 1

. . .
. . .

−AK−1 1
C0

C1

. . .

CK




, (3.13a)

W =




P̌0

Q1

. . .

QK

R0

R1

. . .

RK




, (3.13b)

where only non-zero blocks are shown. The solid partition lines are
used to show the boundaries between the parts of the matrices relevant

3.1 Batch Discrete-Time Estimation 43

to the prior, v, and the measurements, y, in the lifted data vector, z.
Under these definitions, we find that

J(x) =
1

2
(z−Hx)

T
W−1 (z−Hx) , (3.14)

which is exactly quadratic in x. We note that we also have

p(z|x) = η exp

(
−1

2
(z−Hx)

T
W−1 (z−Hx)

)
, (3.15)

where η is a normalization constant.
Since J(x) is exactly a paraboloid, we can find its minimum in closed

form. Simply set the partial derivative with respect to the design vari-
able, x, to zero:

∂J(x)

∂xT

∣∣∣∣
x̂

= −HTW−1 (z−Hx̂) = 0, (3.16a)

⇒
(
HTW−1H

)
x̂ = HTW−1z. (3.16b)

The solution of (3.16b), x̂, is the classic batch least-squares solution
and is equivalent to the fixed-interval smoother7 from classic estimation
theory. The batch least-squares solution employs the pseudoinverse8.
Computationally, to solve this linear system of equations, we would
never actually invert HTW−1H (even if it were densely populated).
As we will see later, we have a special block-tridiagonal structure to
HTW−1H, and hence a sparse-equation solver can be used to solve this
system efficiently9.

One intuitive explanation of the batch linear-Gaussian problem is
that it is like a mass-spring system, as shown in Figure 3.1. Each term
in the objective function represents energy stored in one of the springs,
which varies as the masses’ positions are shifted. The optimal posterior
solution corresponds to the minimum-energy state.

Figure 3.1 The

batch

linear-Gaussian

problem is like a

mass-spring

system. Each term

in the objective

function represents

energy stored in

one of the springs,

which varies as the

carts’ (i.e, masses)

positions are

shifted. The

optimal posterior

solution

corresponds to the

minimum energy

state.

x̌0 x̌1 x̌2 x̌3

x̂3x̂2x̂1x̂0

Jy,1

Jv,1 Jv,2 Jv,3Jv,0

Jy,2 Jy,3Jy,0

Jv,1 Jv,2 Jv,3Jv,0prior
(initial state,

inputs)

posterior
(initial state,

inputs,
measurements)

7 The fixed-interval smoother is usually presented in a recursive formulation. We will

discuss this in more detail later.
8 Also called the Moore-Penrose pseudoinverse.
9 True for the problem posed; not true for all LG problems.

44 Linear-Gaussian Estimation

3.1.3 Bayesian Inference

Now that we have seen the optimization approach to batch LG estima-
tion, we take a look at computing the full Bayesian posterior, p(x|v,y),
not just the maximum. This approach requires us to begin with a prior
density over states, which we will then update based on the measure-
ments.

In our case, a prior can be built up using the knowledge of the initial
state, as well as the inputs to the system: p(x|v). We will use just the
motion model to build this prior:

xk = Ak−1xk−1 + vk + wk. (3.17)

In lifted matrix form10, we can write this as

x = A(v + w), (3.18)

where w is the lifted form of the initial state and process noise and

A =




1
A0 1

A1A0 A1 1
...

...
...

. . .

AK−2 · · ·A0 AK−2 · · ·A1 AK−2 · · ·A2 · · · 1
AK−1 · · ·A0 AK−1 · · ·A1 AK−1 · · ·A2 · · · AK−1 1




(3.19)
is the lifted transition matrix, which we see is lower-triangular. The
lifted mean is then

x̌ = E[x] = E[A(v + w)] = Av, (3.20)

and lifted covariance is

P̌ = E
[
(x− E[x])(x− E[x])T

]
= AQAT , (3.21)

where Q = E[wwT] = diag(P̌0,Q1, . . . ,QK). Our prior can then be
neatly expressed as

p(x|v) = N
(
x̌, P̌

)
= N

(
Av,AQAT

)
. (3.22)

We next turn to the measurements.
The measurement model is

yk = Ckxk + nk. (3.23)

This can also be written in lifted form as

y = Cx + n, (3.24)

10 ‘Lifted’ here refers to the fact that we are considering what happens at the entire

trajectory level.

3.1 Batch Discrete-Time Estimation 45

where n is the lifted form of the measurement noise and

C = diag (C0,C1, . . . ,CK) (3.25)

is the lifted observation matrix.
The joint density of the prior lifted state and the measurements can

now be written as

p(x,y|v) = N
([

x̌
Cx̌

]
,

[
P̌ P̌CT

CP̌ CP̌CT + R

])
, (3.26)

where R = E[nnT] = diag(R0,R1, . . . ,RK). We can factor this ac-
cording to

p(x,y|v) = p(x|v,y)p(y|v). (3.27)

We only care about the first factor, which is the full Bayesian posterior.
This can be written, using the approach outlined in Section 2.2.3, as

p(x|v,y) = N
(
x̌ + P̌CT (CP̌CT + R)−1(y −Cx̌),

P̌− P̌CT (CP̌CT + R)−1CP̌
)
. (3.28)

Using the SMW identity from equations (2.75), this can be manipulated
into the following form:

p(x|v,y) = N
((

P̌−1 + CTR−1C
)−1 (

P̌−1x̌ + CTR−1y
)

︸ ︷︷ ︸
x̂, mean

,

(
P̌−1 + CTR−1C

)−1

︸ ︷︷ ︸
P̂, covariance

)
. (3.29)

We can actually implement a batch estimator based on this equation,
since it represents the full Bayesian posterior, but this may not be
efficient.

To see the connection to the optimization approach discussed earlier,
we rearrange the mean expression to arrive at a linear system for x̂,

(
P̌−1 + CTR−1C

)
︸ ︷︷ ︸

P̂−1

x̂ = P̌−1x̌ + CTR−1y, (3.30)

and we see the inverse covariance appearing on the left-hand side. Sub-
stituting in x̌ = Av and P̌−1 = (AQAT)

−1
= A−TQ−1A−1 we can

rewrite this as

(
A−TQ−1A−1 + CTR−1C

)
︸ ︷︷ ︸

P̂−1

x̂ = A−TQ−1v + CTR−1y. (3.31)

46 Linear-Gaussian Estimation

We see that this requires computing A−1. It turns out this has a beau-
tifully simple form11,

A−1 =




1
−A0 1

−A1 1

−A2
. . .
. . . 1

−AK−1 1




, (3.32)

which is still lower-triangular but also very sparse (only the main di-
agonal and the one below are non-zero). If we define

z =

[
v
y

]
, H =

[
A−1

C

]
, W =

[
Q

R

]
, (3.33)

we can rewrite our system of equations as
(
HTW−1H

)
x̂ = HTW−1z, (3.34)

which is identical to the optimization solution discussed earlier.
Again, it must be stressed that the reason the Bayesian approach

produces the same answer as the optimization solution for our LG esti-
mation problem is that the full Bayesian posterior is exactly Gaussian
and the mean and mode (i.e., maximum) of a Gaussian are one and
the same.

3.1.4 Existence, Uniqueness, and Observability

Most of the classic LG estimation results can be viewed as a special
case of (3.34). It is therefore important to ask when (3.34) has a unique
solution, which is the subject of this section.

Examining (3.34), we have from basic linear algebra that x̂ will exist
and be a unique solution if and only if HTW−1H is invertible, where-
upon

x̂ =
(
HTW−1H

)−1
HTW−1z. (3.35)

The question is then, when is HTW−1H invertible? From linear algebra
again, we know that a necessary and sufficient condition for invertibility
is

rank
(
HTW−1H

)
= N(K + 1), (3.36)

because we have dim x = N(K + 1). Since W−1 is real symmetric

11 The special sparsity of A−1 is in fact critical to all classic LG results, as we will discuss

later. This makes the left-hand side of (3.31) exactly block-tridiagonal. This means we

can solve for x̂ in O(K) time instead of the usual O(K3) time for solving linear systems.

This leads to the popular recursive solution known as the Kalman filter/smoother. The

sparsity comes from the fact that the system model obeys the Markov property.

3.1 Batch Discrete-Time Estimation 47

positive-definite12, we know that it can be dropped from the test so
that we only need

rank
(
HTH

)
= rank

(
HT
)

= N(K + 1). (3.37)

In other words, we needN(K+1) linearly independent rows (or columns)
in the matrix HT .

We now have two cases that should be considered:

(i) We have good prior knowledge of the initial state, x̌0.

(ii) We do not have good prior knowledge of the initial state.

The first case is much easier than the second.

Case (i): Knowledge of initial state
Writing out HT , our rank test takes the form

rank HT

= rank




1 −AT
0 CT

0

1 −AT
1 CT

1

1
. . . CT

2

. . . −AT
K−1

. . .

1 CT
K



,

(3.38)

which we see is exactly in row-echelon form. This means the matrix is
full rank, N(K + 1), since all the block-rows are linearly independent.
This means there will always be a unique solution for x̂ provided that

P̌0 > 0, Qk > 0, (3.39)

where > 0 means a matrix is positive-definite (and hence invertible).
The intuition behind this is that the prior already provides a complete
solution to the problem. The measurements only serve to adjust the
answer. Note that these are sufficient but not necessary conditions.

Case (ii): No knowledge of initial state
Each block-column of HT represents some piece of information that

we have about the system. The first block-column represents our knowl-
edge about the initial state. Thus, removing knowledge of the initial

12 Follows from Q and R being real symmetric positive-definite.

48 Linear-Gaussian Estimation

state results in the rank test considering

rank HT

= rank




−AT
0 CT

0

1 −AT
1 CT

1

1
. . . CT

2

. . . −AT
K−1

. . .

1 CT
K



,

(3.40)

which we note has K + 1 block-rows (each of size N). Moving the top
block-row to the bottom does not alter the rank:

rank HT

= rank




1 −AT
1 CT

1

1
. . . CT

2

. . . −AT
K−1

. . .

1 CT
K

−AT
0 CT

0



.

(3.41)

Except for the bottom block-row, this is in row-echelon form. Again
without altering the rank, we can add to the bottom block-row, AT

0

times the first block-row, AT
0 AT

1 times the second block-row, . . . , and
AT

0 · · ·AT
K−1 times the Kth block-row, to see that

rank HT

= rank




1 −AT
1 CT

1

1
. . . CT

2

. . . −AT
K−1

. . .

1 CT
K

CT
0 AT

0 CT
1 AT

0 AT
1 CT

2 · · · AT
0 · · ·AT

K−1C
T
K



.

(3.42)

Examining this last expression, we notice immediately that the lower-
left partition is zero. Moreover, the upper-left partition is in row-echelon
form and in fact is of full rank, NK, since every row has a ‘leading one’.
Our overall rank condition for HT therefore collapses to showing that
the lower-right partition has rank N :

rank
[
CT

0 AT
0 CT

1 AT
0 AT

1 CT
2 · · · AT

0 · · ·AT
K−1C

T
K

]
= N. (3.43)

If we further assume the system is time-invariant such that for all k we
have Ak = A and Ck = C (we use italicized symbols to avoid confusion
with lifted form) and we make the not-too-restrictive assumption that
K � N , we may further simplify this condition.

3.1 Batch Discrete-Time Estimation 49

To do so, we employ the Cayley-Hamilton theorem from linear alge-
bra. Because A is N × N , its characteristic equation has at most N

Cayley-Hamilton

theorem: Every

square matrix, A,

over the real field,

satisfies its own

characteristic

equation,

det (λ1−A) = 0.

terms, and therefore any power of A greater than or equal to N can
be rewritten as a linear combination of 1,A, . . . ,A(N−1). By extension,
for any k ≥ N , we can write

(
AT
)(k−1)

CT

= a01
TCT + a1A

TCT + a2A
TATCT + · · ·+ aN−1

(
AT
)(N−1)

CT

(3.44)

for some set of scalars, a0, a1, . . . , aN−1, not all zero. Since row-rank
and column-rank are the same for any matrix, we can conclude that

rank

[
CT ATCT ATATCT · · ·

(
AT
)K
CT

]

= rank

[
CT ATCT · · ·

(
AT
)(N−1)

CT

]
. (3.45)

Defining the observability matrix, O, as

O =




C
CA

...

CA(N−1)


 , (3.46)

our rank condition is

rank O = N. (3.47)

Readers familiar with linear control theory will recognize this as pre-
cisely the test for observability (Kalman, 1960a). Thus, we can see the A system is

observable if the

initial state can be

uniquely inferred

based on

measurements

gathered in a finite

amount of time.

direct connection between observability and invertibility of HTW−1H.
The overall conditions for existence and uniqueness of a solution to (3.34)
are

Qk > 0, Rk > 0, rank O = N, (3.48)

where > 0 means a matrix is positive-definite (and hence invertible).
Again, these are sufficient but not necessary conditions.

Interpretation

We can return to the mass-spring analogy to better understand the
observability issue. Figure 3.2 shows a few examples. With the initial
state and all the inputs (top example), the system is always observable
since it is impossible to move any group of carts left or right without
altering the length of at least one spring. This means there is a unique
minimum-energy state. The same is true for the middle example, even
though there is no knowledge of the initial state. The bottom example

50 Linear-Gaussian Estimation
Figure 3.2 In a

single dimension,

the mass-spring

system is

observable if there

is no group of carts

that can be shifted

left or right

without altering

the energy state of

at least one spring.

The top example

uses the initial

state and inputs,

so this is always

observable. The

middle example is

also observable

since any

movement changes

at least one spring.

The bottom

example is not

observable since

the whole chain of

carts can be moved

left-right together

without changing

any spring lengths;

in one dimension,

this only happens

with no initial

state and no

measurements.

x̂3x̂2x̂1x̂0

x̂3x̂2x̂1x̂0

Jy,1

Jv,1 Jv,2 Jv,3

Jy,3

Jv,1 Jv,2 Jv,3

no initial state
knowledge can
be observable

no initial state
knowledge
can also be

unobservable
(in 1D this only
happens with no
measurements)

x̂3x̂2x̂1x̂0

Jy,1

Jv,1 Jv,2 Jv,3Jv,0

Jy,3

initial state
knowledge plus
inputs ensures
observability

is unobservable since the entire chain of carts can be moved left or
right without changing the amount of energy stored in the springs.
This means the minimum-energy state is not unique.

3.1.5 MAP Covariance

Looking back to (3.35), x̂ represents the most likely estimate of x, the
true state. One important question to ask, is how confident are we in x̂?
It turns out we can re-interpret the least-squares solution as a Gaussian
estimate for x in the following way:

(
HTW−1H

)
︸ ︷︷ ︸

inverse
covariance

x̂︸︷︷︸
mean

= HTW−1z︸ ︷︷ ︸
information

vector

. (3.49)

The right-hand side is referred to as the information vector. To see this,
we employ Bayes’ rule to rewrite (3.15) as

p(x|z) = β exp

(
−1

2
(Hx− z)

T
W−1 (Hx− z)

)
, (3.50)

where β is a new normalization constant. We then substitute (3.35) in
and, after a little manipulation, find that

p(x|x̂) = κ exp

(
−1

2
(x− x̂)

T (
HTW−1H

)
(x− x̂)

)
, (3.51)

where κ is yet another normalization constant. We see from this that

N
(
x̂, P̂

)
is a Gaussian estimator for x whose mean is the optimization

solution and whose covariance is P̂ = (HTW−1H)
−1

.

3.2 Recursive Discrete-Time Smoothing 51

Another way to explain this is to directly take the expectation of the
estimate. We notice that

x−
(
HTW−1H

)−1
HTW−1z︸ ︷︷ ︸

E[x]

=
(
HTW−1H

)−1
HTW−1 (Hx− z)︸ ︷︷ ︸

s

,

(3.52)
where

s =

[
w
n

]
. (3.53)

In this case we have

P̂ = E
[
(x− E[x]) (x− E[x])

T
]

=
(
HTW−1H

)−1
HTW−1 E

[
s sT

]
︸ ︷︷ ︸

W

W−1H
(
HTW−1H

)−1
,

=
(
HTW−1H

)−1
, (3.54)

which is the same result as above.

3.2 Recursive Discrete-Time Smoothing

The batch solution is appealing in that it is fairly easy to set up and un-
derstand from a least-squares perspective. However, brute-force solving
the resulting system of linear equations will likely not be very efficient
for most situations. Fortunately, since the inverse covariance matrix on
the left-hand side is sparse (i.e., block-tridiagonal), we can use this to
solve the system of equations very efficiently. This typically involves a
forward recursion followed by a backward recursion. When the equa-
tions are solved in this way, the method is typically referred to as a
fixed-interval smoother. It is useful to think of smoothers as efficiently
implementing the full batch solution, with no approximation. We use
the rest of this section to show that this can be done, first by a sparse
Cholesky approach and then by the algebraically equivalent classical
Rauch-Tung-Striebel smoother (Rauch et al., 1965). Särkkä (2013) pro-
vides an excellent reference on smoothing and filtering.

52 Linear-Gaussian Estimation

3.2.1 Exploiting Sparsity in the Batch Solution

As discussed earlier, the left-hand side of (3.34), HTW−1H, is block-
tridiagonal (under our chronological variable ordering for x):

HTW−1H =




∗ ∗
∗ ∗ ∗
∗ ∗ ∗

. . .
. . .

. . .

∗ ∗ ∗
∗ ∗



, (3.55)

where ∗ indicates a non-zero block. There are solvers that can exploit
this structure and therefore solve for x̂ efficiently.

One way to solve the batch equations efficiently is to do a sparse
Cholesky decomposition followed by forward and backward passes. It

André-Louis

Cholesky

(1875-1918) was a

French military

officer and

mathematician. He

is primarily

remembered for a

particular

decomposition of

matrices, which he

used in his military

map-making work.

The Cholesky

decomposition of a

Hermitian

positive-definite

matrix, A, is a

decomposition of

the form A = LL∗

where L is a

lower-triangular

matrix with real

and positive

diagonal entries

and L∗ denotes the

conjugate

transpose of L.

Every Hermitian

positive-definite

matrix (and thus

also every

real-valued

symmetric

positive-definite

matrix) has a

unique Cholesky

decomposition.

turns out we can efficiently factor HTW−1H into

HTW−1H = LLT , (3.56)

where L is a block-lower-triangular matrix called the Cholesky factor13.
Owing to the block-tridiagonal structure of HTW−1H, L will have the
form,

L =




∗
∗ ∗
∗ ∗

. . .
. . .

∗ ∗
∗ ∗



, (3.57)

and the decomposition can be computed in O(N3(K + 1)) time. Next,
we solve

Ld = HTW−1z, (3.58)

for d. This can again be done in O(N3(K + 1)) time through forward
substitution owing to the sparse lower-triangular form of L; this is
called the forward pass. Finally, we solve

LT x̂ = d, (3.59)

for x̂, which again can be done in O(N3(K+1)) time through backward
substitution owing to the sparse upper-triangular form of LT ; this is
called the backward pass. Thus, the batch equations can be solved in
computation time that scales linearly with the size of the state. The
next section will make the details of this sparse Cholesky approach
specific.

13 We could just as easily factor into HTW−1H = UUT with U upper-triangular and

then carry out backward and forward passes.

3.2 Recursive Discrete-Time Smoothing 53

3.2.2 Cholesky Smoother

In this section, we work out the details of the sparse Cholesky solution
to the batch estimation problem. The result will be a set of forward-
backward recursions that we will refer to as the Cholesky smoother.
There are several similar square-root information smoothers described
in the literature, and Bierman (1974) is a classic reference on the topic.

Let us begin by defining the non-zero sub-blocks of L as

L =




L0

L10 L1

L21 L2

. . .
. . .

LK−1,K−2 LK−1

LK,K−1 LK



. (3.60)

Using the definitions of H and W from (3.13), when we multiply out
HTW−1H = LLT and compare at the block level, we have

L0L
T
0 = P̌−1

0 + CT
0 R−1

0 C0︸ ︷︷ ︸
I0

+AT
0 Q−1

1 A0, (3.61a)

L10L
T
0 = −Q−1

1 A0, (3.61b)

L1L
T
1 = −L10L

T
10 + Q−1

1 + CT
1 R−1

1 C1︸ ︷︷ ︸
I1

+AT
1 Q−1

2 A1, (3.61c)

L21L
T
1 = −Q−1

2 A1, (3.61d)

...

LK−1L
T
K−1 = −LK−1,K−2L

T
K−1,K−2 + Q−1

K−1 + CT
K−1R

−1
K−1CK−1︸ ︷︷ ︸

IK−1

+ AT
K−1Q

−1
K AK−1, (3.61e)

LK,K−1L
T
K−1 = −Q−1

K AK−1, (3.61f)

LKLT
K = −LK,K−1L

T
K,K−1 + Q−1

K + CT
KR−1

K CK︸ ︷︷ ︸
IK

, (3.61g)

where the underbraces allow us to define the Ik quantities14, whose
purpose will be revealed shortly. From these equations, we can first
solve for L0 by doing a small (dense) Cholesky decomposition in the
first equation, then substitute this into the second to solve for L10,
then substitute this into the third to solve for L1, and so on all the way
down to LK . This confirms that we can work out all the blocks of L in
a single forwards pass in O(N3(K + 1)) time.

14 In this book, 1 is the identity matrix, which should not be confused with the use of I,

which in this instance stands for information matrix (i.e., inverse covariance matrix).

54 Linear-Gaussian Estimation

Next we solve Ld = HTW−1z for d, where

d =




d0

d1

...
dK


 . (3.62)

Multiplying out and comparing at the block level, we have

L0d0 = P̌−1
0 x̌0 + CT

0 R−1
0 y0︸ ︷︷ ︸

q0

−AT
0 Q−1

1 v1, (3.63a)

L1d1 = −L10d0 + Q−1
1 v1 + CT

1 R−1
1 y1︸ ︷︷ ︸

q1

−AT
1 Q−1

2 v2, (3.63b)

...

LK−1dK−1 = −LK−1,K−2dK−2 + Q−1
K−1vK−1 + CT

K−1R
−1
K−1yK−1︸ ︷︷ ︸

qK−1

− AT
K−1Q

−1
K vK , (3.63c)

LKdK = −LK,K−1dK−1 + Q−1
K vK + CT

KR−1
K yK︸ ︷︷ ︸

qK

, (3.63d)

where again the underbraces allow us to define the qk quantities, which
will be used shortly. From these equations, we can solve for d0 in the
first equation, then substitute this into the second to solve for d1, and
so on all the way down to dK . This confirms that we can work out all
of the blocks of d in a single forward pass in O(N3(K + 1)) time.

The last step in the Cholesky approach is to solve LT x̂ = d for x̂,
where

x̂ =




x̂0

x̂1

...
x̂K


 . (3.64)

Multiplying out and comparing at the block level, we have

LT
Kx̂K = dK , (3.65a)

LT
K−1x̂K−1 = −LT

K,K−1x̂K + dK−1, (3.65b)

...

LT
1 x̂1 = −LT

21x̂2 + d1, (3.65c)

LT
0 x̂0 = −LT

10x̂1 + d0. (3.65d)

From these equations, we can solve for x̂K in the first equation, then
substitute this into the second to solve for x̂K−1, and so on all the way
down to x̂0. This confirms that we can work out all of the blocks of x̂
in a single backward pass in O(N3(K + 1)) time.

3.2 Recursive Discrete-Time Smoothing 55

In terms of the Ik and qk quantities, we can combine the two forwards
passes (to solve for L and d) and also write the backwards pass as

forward:

(k = 1 . . .K)

Lk−1L
T
k−1 = Ik−1 + AT

k−1Q
−1
k Ak−1, (3.66a)

Lk−1dk−1 = qk−1 −AT
k−1Q

−1
k vk, (3.66b)

Lk,k−1L
T
k−1 = −Q−1

k Ak−1, (3.66c)

Ik = −Lk,k−1L
T
k,k−1 + Q−1

k + CT
kR−1

k Ck, (3.66d)

qk = −Lk,k−1dk−1 + Q−1
k vk + CT

kR−1
k yk, (3.66e)

backward:

(k = K . . . 1)

LT
k−1x̂k−1 = −LT

k,k−1x̂k + dk−1, (3.66f)

which are initialized with

I0 = P̌−1
0 + CT

0 R−1
0 C0, (3.67a)

q0 = P̌−1
0 x̌0 + CT

0 R−1
0 y0, (3.67b)

x̂K = L−TK dK . (3.67c)

The forward pass maps {qk−1, Ik−1} to the same pair at the next time,
{qk, Ik}. The backward pass maps x̂k to the same quantity at the pre-
vious timestep, x̂k−1. In the process, we solve for all the blocks of L
and d. The only linear algebra operations required to implement this
smoother are Cholesky decomposition, multiplication, addition, and
solving a linear system via forward/backward substitution.

As we will see in the next section, these six recursive equations are
algebraically equivalent to the canonical Rauch-Tung-Striebel smoother;
the five equations forming the forward pass are algebraically equivalent
to the famous Kalman filter.

3.2.3 Rauch-Tung-Striebel Smoother

While the Cholesky smoother is a convenient implementation and is
easy to understand when starting from the batch solution, it does not
represent the canonical form of the smoothing equations. It is, however,
algebraically equivalent to the canonical Rauch-Tung-Striebel (RTS)
smoother, which we now show. This requires several uses of the different

Herbert E. Rauch

(1935-2011) was a

pioneer in the area

of control and

estimation. Frank

F. Tung

(1933-2006) was a

research scientist

working in the area

of computing and

control. Charlotte

T. Striebel

(1929-2014) was a

statistician and

professor of

mathematics. All

three co-developed

the Rauch-Tung-

Striebel smoother

while working at

Lockheed Missiles

and Space

Company in order

to estimate

spacecraft

trajectories.
forms of the SMW identity in (2.75).

We begin by working on the forward pass. Solving for Lk,k−1 in (3.66c)

56 Linear-Gaussian Estimation

and substituting this and (3.66a) into (3.66d), we have

Ik = Q−1
k −Q−1

k Ak−1

(
Ik−1 + AT

k−1Q
−1
k Ak−1

)−1
AT
k−1Q

−1
k︸ ︷︷ ︸

(Ak−1I−1
k−1AT

k−1+Qk)
−1
, by (2.75)

+CT
kR−1

k Ck

(3.68)
where we have used a version of the SMW identity to get to the ex-
pression in the underbrace. By letting P̂k,f = I−1

k , this can be written
in two steps as

P̌k,f = Ak−1P̂k−1,fA
T
k−1 + Qk, (3.69a)

P̂−1
k,f = P̌−1

k,f + CT
kR−1

k Ck, (3.69b)

where P̌k,f represents a ‘predicted’ covariance and P̂k,f a ‘corrected’
one. We have added the subscript, (·)f , to indicate these quantities
come from the forward pass (i.e., a filter). The second of these equations
is written in information (i.e., inverse covariance) form. To reach the
canonical version, we define the Kalman gain matrix, Kk, as

Kk = P̂k,fC
T
kR−1

k . (3.70)

Substituting in (3.69b), this can also be written as

Kk =
(
P̌−1
k,f + CT

kR−1
k Ck

)−1
CT
kR−1

k

= P̌k,fC
T
k

(
CkP̌k,fC

T
k + Rk

)−1
, (3.71)

where the last expression requires a use of the SMW identity from (2.75).
Then (3.69b) can be rewritten as

P̌−1
k,f = P̂−1

k,f −CT
kR−1

k Ck = P̂−1
k,f

(
1− P̂k,fC

T
kR−1

k︸ ︷︷ ︸
Kk

Ck

)

= P̂−1
k,f (1−KkCk) , (3.72)

and finally, rearranging for P̂k,f , we have

P̂k,f = (1−KkCk) P̌k,f , (3.73)

which is the canonical form for the covariance correction step.
Next, solving for Lk,k−1 in (3.66c) and dk−1 in (3.66b), we have

Lk,k−1dk−1 = −Q−1
k Ak−1

(
Lk−1L

T
k−1

)−1 (
qk−1 −AT

k−1Q
−1
k vk

)
. (3.74)

3.2 Recursive Discrete-Time Smoothing 57

Substituting (3.66a) into Lk,k−1dk−1 and then this into (3.66e), we have

qk = Q−1
k Ak−1

(
Ik−1 + AT

k−1Q
−1
k Ak−1

)−1

︸ ︷︷ ︸
(Ak−1I−1

k−1AT
k−1+Qk)

−1
Ak−1I−1

k−1, by (2.75)

qk−1

+
(
Q−1
k −Q−1

k Ak−1

(
Ik−1 + AT

k−1Q
−1
k Ak−1

)−1
AT
k−1Q

−1
k

)

︸ ︷︷ ︸
(Ak−1I−1

k−1AT
k−1+Qk)

−1
, by (2.75)

vk

+ CT
kR−1

k yk, (3.75)

where we have used two versions of the SMW identity to get to the
expressions in the underbraces. By letting P̂−1

k,f x̂k,f = qk, this can be
written in two steps as

x̌k,f = Ak−1x̂k−1,f + vk, (3.76a)

P̂−1
k,f x̂k,f = P̌−1

k,f x̌k,f + CT
kR−1

k yk, (3.76b)

where x̌k,f represents a ‘predicted’ mean and x̂k,f a ‘corrected’ one.
Again, the second of these is in information (i.e., inverse covariance)
form. To get to the canonical form, we rewrite it as

x̂k,f = P̂k,fP̌
−1
k,f︸ ︷︷ ︸

1−KkCk

x̌k,f + P̂k,fC
T
kR−1

k︸ ︷︷ ︸
Kk

yk, (3.77)

or

x̂k,f = x̌k,f + Kk (yk −Ckx̌k,f) , (3.78)

which is the canonical form for the mean correction step.
The last step is to resolve the backward pass into its canonical form.

We begin by premultiplying (3.66f) by Lk−1 and solving for x̂k−1:

x̂k−1 =
(
Lk−1L

T
k−1

)−1
Lk−1

(
−LT

k,k−1x̂k + dk−1

)
. (3.79)

Substituting in (3.66a), (3.66b), and (3.66c), we have

x̂k−1 =
(
Ik−1 + AT

k−1Q
−1
k Ak−1

)−1
AT
k−1Q

−1
k︸ ︷︷ ︸

I−1
k−1AT

k−1(Ak−1I−1
k−1AT

k−1+Qk)
−1
, by (2.75)

(x̂k − vk)

+
(
Ik−1 + AT

k−1Q
−1
k Ak−1

)−1

︸ ︷︷ ︸
I−1
k−1−I−1

k−1AT
k−1(Ak−1I−1

k−1AT
k−1+Qk)

−1
Ak−1I−1

k−1, by (2.75)

qk−1. (3.80)

Using our symbols from above, this can be written as

x̂k−1 = x̂k−1,f + P̂k−1,fA
T
k−1P̌

−1
k,f (x̂k − x̌k,f) , (3.81)

which is the canonical form for the backward smoothing equation.

58 Linear-Gaussian Estimation

Together, equations (3.69a), (3.71), (3.73), (3.76a), (3.78), and (3.81)
constitute the Rauch-Tung-Striebel smoother:

forward:

(k = 1 . . .K)

P̌k,f = Ak−1P̂k−1,fA
T
k−1 + Qk, (3.82a)

x̌k,f = Ak−1x̂k−1,f + vk, (3.82b)

Kk = P̌k,fC
T
k

(
CkP̌k,fC

T
k + Rk

)−1
, (3.82c)

P̂k,f = (1−KkCk) P̌k,f , (3.82d)

x̂k,f = x̌k,f + Kk (yk −Ckx̌k,f) , (3.82e)

backward:

(k = K . . . 1)

x̂k−1 = x̂k−1,f +
(
P̂k−1,fA

T
k−1P̌

−1
k,f

)
(x̂k − x̌k,f) , (3.82f)

which are initialized with

P̌0,f = P̌0, (3.83a)

x̌0,f = x̌0, (3.83b)

x̂K = x̂K,f . (3.83c)

As will be discussed in more detail in the next section, the five equa-
tions in the forward pass are known as the Kalman filter. However,
the important message to take away from this section on smoothing is
that these six equations representing the RTS smoother can be used
to solve the original batch problem that we set up in a very efficient
manner, with no approximation. This is possible precisely because of
the block-tridiagonal sparsity pattern in the left-hand side of the batch
problem.

3.3 Recursive Discrete-Time Filtering

The batch solution (and the corresponding smoother implementations)
outlined above is really the best we can do. It makes use of all the data
in the estimate of every state. However, it has one major drawback:
it cannot be used online15 because it employs future data to estimate
past states (i.e., it is not causal). To be used online, the estimate of
the current state can only employ data up to the current timestep. The
Kalman filter is the classical solution to this problem. We have already
seen a preview of the KF; it is the forward pass of the Rauch-Tung-
Striebel smoother. However, there are several other ways of deriving it,
some of which we provide in this section.

15 It is preferable to say ‘online’ rather than ‘real-time’ in this context.

3.3 Recursive Discrete-Time Filtering 59
Figure 3.3 The

batch LG solution

is a smoother. To

develop an

estimator

appropriate to

online estimation,

we require a filter.

x̌0,y0,v1,y1,v2,y2, . . . ,vk�1,yk�1,vk,yk,vk+1,yk+1, . . . ,vK ,yK

x̂k,f

smoothers use all available information to estimate states

filters only use past/current information to estimate states

x̂k

3.3.1 Factoring the Batch Solution

We do not need to start from scratch in our search for a recursive LG
estimator. It turns out we can re-use the batch solution and exactly
factor it into two recursive estimators, one that runs forward in time
and the other backward. The backward pass is a little different than the
one presented in the smoother section, as it is not correcting the forward
pass, but rather producing an estimate using only future measurements.

To set things up for our development of the recursive solutions, we
will reorder some of our variables from the batch solution. We redefine
z, H, and W as

z =




x̌0

y0

v1

y1

v2

y2

...
vK
yK




, H =




1
C0

−A0 1
C1

−A1 1
C2

. . .
. . .

−AK−1 1
CK




,

W =




P̌0

R0

Q1

R1

Q2

R2

. . .

QK

RK




, (3.84)

where the partition lines now show divisions between timesteps. This
re-ordering does not change the ordering of x, so HTW−1H is still
block-tridiagonal.

We now consider the factorization at the probability density level.
As discussed in Section 3.1.5, we have an expression for p(x|v,y). If we

60 Linear-Gaussian Estimation

want to consider only the state at time k, we can marginalize out the
other states by integrating over all possible values:

p(xk|v,y) =

∫

xi,∀i6=k

p(x0, . . . ,xK |v,y) dxi,∀i6=k. (3.85)

It turns out that we can factor this probability density into two parts:

p(xk|v,y) = η p(xk|x̌0,v1:k,y0:k) p(xk|vk+1:K ,yk+1:K), (3.86)

where η is a normalization constant to enforce the axiom of total prob-
ability. In other words, we can take our batch solution and factor it
into the normalized product of two Gaussian PDFs, as was discussed
in Section 2.2.6.

To carry out this factorization, we exploit the sparse structure of H
in (3.3.1). We begin by partitioning H into 12 blocks (only 6 of which
are non-zero):

information from

H =

2
664

H11

H21 H22

H32 H33

H43

3
775 k + 1

0 . . . k � 1

information from
information from
information from

k

k + 2 . . . K

k + 1 . . . Kstates from
states from

states from
k

0 . . . k � 1
(3.87)

The sizes of each block-row and block-column are indicated above. For
example, with k = 2 and K = 4, the partitions are

H =




1
C0

−A0 1
C1

−A1 1
C2

−A2 1
C3

−A3 1
C4




. (3.88)

We use compatible partitions for z and W:

z =




z1

z2

z3

z4


 , W =




W1

W2

W3

W4


 . (3.89)

3.3 Recursive Discrete-Time Filtering 61

For HTW−1H we then have

HTW−1H

=




HT
11W

−1
1 H11 + HT

21W
−1
2 H21 HT

21W
−1
2 H22

HT
22W

−1
2 H21 HT

22W
−1
2 H22 + HT

32W
−1
3 H32

HT
33W

−1
3 H32

· · · HT
32W

−1
3 H33

HT
33W

−1
3 H33 + HT

43W
−1
4 H43




=




L11 L12

LT
12 L22 LT

32

L32 L33


 , (3.90)

where we have assigned the blocks to some useful intermediate vari-
ables, Lij. For HTW−1z we have

HTW−1z =




HT
11W

−1
1 z1 + HT

21W
−1
2 z2

HT
22W

−1
2 z2 + HT

32W
−1
3 z3

HT
33W

−1
3 z3 + HT

43W
−1
4 z4


 =




r1

r2

r3


 , (3.91)

where we have the assigned the blocks to some useful intermediate
variables, ri. Next, we partition the states, x, in the following way:

states from
states from
states from k + 1 . . . K

k

0 . . . k � 1
x =

2
4

x0:k�1

xk

xk+1:K

3
5

(3.92)

Our overall batch system of equations now looks like the following:




L11 L12

LT
12 L22 LT

32

L32 L33






x̂0:k−1

x̂k
x̂k+1:K


 =




r1

r2

r3


 , (3.93)

where we have added the (̂·) to indicate this is the solution to the op-
timization estimation problem considered earlier. Our short-term goal,
in making progress toward a recursive LG estimator, is to solve for x̂k.
To isolate x̂k, we left-multiply both sides of (3.93) by




1
−LT

12L
−1
11 1 −LT

32L
−1
33

1


 , (3.94)

which can be viewed as performing an elementary row operation (and
therefore will not change the solution to (3.93)). The resulting system

62 Linear-Gaussian Estimation

of equations is




L11 L12

L22 − LT
12L

−1
11 L12 − LT

32L
−1
33 L32

L32 L33






x̂0:k−1

x̂k
x̂k+1:K




=




r1

r2 − LT
12L

−1
11 r1 − LT

32L
−1
33 r3

r3


 , (3.95)

and the solution for x̂k is therefore given by

(
L22 − LT

12L
−1
11 L12 − LT

32L
−1
33 L32

)
︸ ︷︷ ︸

P̂−1
k

x̂k =
(
r2 − LT

12L
−1
11 r1 − LT

32L
−1
33 r3

)
︸ ︷︷ ︸

qk

,

(3.96)

where we have defined P̂k (by its inverse) as well as qk. We have es-
sentially marginalized out x̂0:k−1 and x̂k+1:K just as in (3.85). We can

now substitute the values of the Lij blocks back into P̂−1
k to see that

P̂−1
k = L22 − LT

12L
−1
11 L12 − LT

32L
−1
33 L32

= HT
22

(
W−1

2 −W−1
2 H21

(
HT

11W
−1
1 H11 + HT

21W
−1
2 H21

)−1

HT
21W

−1
2

)
H22︸ ︷︷ ︸

P̂−1
k,f=HT

22

(
W2+H21(HT

11W−1
1 H11)

−1
HT

21

)−1
H22, by (2.75)

+ HT
32

(
W−1

3 −W−1
3 H33

(
HT

33W
−1
3 H33 + HT

43W
−1
4 H43

)−1

HT
33W

−1
3

)
H32︸ ︷︷ ︸

P̂−1
k,b=HT

32

(
W3+H33(HT

43W−1
4 H43)

−1
HT

33

)−1
H32, by (2.75)

= P̂−1
k,f︸︷︷︸

forward

+ P̂−1
k,b︸︷︷︸

backward

, (3.97)

where the term labelled ‘forward’ depends only on the blocks of H and
W up to time k and the term labelled ‘backward’ depends only on the
blocks of H and W from k+ 1 to K. Turning now to qk, we substitute
in the values of the Lij and ri blocks:

qk = r2 − LT
12L

−1
11 r1 − LT

32L
−1
33 r3

= qk,f︸︷︷︸
forward

+ qk,b︸︷︷︸
backward

, (3.98)

where again the term labelled ‘forward’ depends only on quantities up
to time k and the term labelled ‘backward’ depends only on quantities

3.3 Recursive Discrete-Time Filtering 63

from time k + 1 to K. We made use of the following definitions:

qk,f = −HT
22W

−1
2 H21

(
HT

11W
−1
1 H11 + HT

21W
−1
2 H21

)−1
HT

11W
−1
1 z1 (3.99a)

+ HT
22

(
W−1

2 −W−1
2 H21

(
HT

11W
−1
1 H11 + HT

21W
−1
2 H21

)−1
HT

21W
−1
2

)
z2,

qk,b = HT
32

(
W−1

3 −W−1
3 H33

(
HT

33W
−1
3 H33 + HT

43W
−1
4 H43

)−1
HT

33W
−1
3

)
z3

− HT
32W

−1
3 H33

(
HT

43W
−1
4 H43 + HT

33W
−1
3 H33

)−1
HT

43W
−1
4 z4. (3.99b)

Now let us define the following two ‘forward’ and ‘backward’ estimators,
x̂k,f and x̂k,b, respectively:

P̂−1
k,f x̂k,f = qk,f , (3.100a)

P̂−1
k,b x̂k,b = qk,b, (3.100b)

where x̂k,f depends only on quantities up to time k and x̂k,b depends
only on quantities from time k + 1 to K. Under these definitions we
have that

P̂−1
k = P̂−1

k,f + P̂−1
k,b, (3.101)

P̂−1
k x̂k = P̂−1

k,f x̂k,f + P̂−1
k,bx̂k,b, (3.102)

which is precisely the normalized product of two Gaussian PDFs, as
was discussed in Section 2.2.6. Referring back to (3.86), we have that

p(xk|v,y)→ N
(
x̂k, P̂k

)
, (3.103a)

p(xk|x̌0,v1:k,y0:k)→ N
(
x̂k,f , P̂k,f

)
, (3.103b)

p(xk|vk+1:K ,yk+1:K)→ N
(
x̂k,b, P̂k,b

)
. (3.103c)

where P̂k, P̂k,f , and P̂k,b are the covariances associated with x̂k, x̂k,f ,
and x̂k,b. In other words we have Gaussian estimators with the MAP
estimators as the means.

In the next section, we will examine how we can turn the forward
Gaussian estimator, x̂k,f , into a recursive filter16.

3.3.2 Kalman Filter via MAP

In this section, we will show how to turn the forward estimator from
the last section into a recursive filter called the Kalman filter (Kalman,
1960b) using our MAP approach. To simplify the notation slightly, we

will use x̂k instead of x̂k,f and P̂k instead of P̂k,f , but these new symbols
should not be confused with the batch/smoothed estimates discussed

16 A similar thing can be done for the backwards estimator, but the recursion is

backwards in time rather than forwards.

64 Linear-Gaussian Estimation

previously. Let us assume we already have a forwards estimate and the
associated covariance at some time k − 1:

{
x̂k−1, P̂k−1

}
. (3.104)

Recall that these estimates are based on all the data up to and including
those at time k − 1. Our goal will be to compute

{
x̂k, P̂k

}
, (3.105)

using all the data up to and including those at time k. It turns out we
do not need to start all over again, but rather can simply incorporate
the new data at time k, vk and yk, into the estimate at time k − 1:

{
x̂k−1, P̂k−1,vk,yk

}
7→
{

x̂k, P̂k

}
. (3.106)

To see this, we define

z =




x̂k−1

vk
yk


 , H =




1
−Ak−1 1

Ck


 , W =




P̂k−1

Qk

Rk


 ,

(3.107)

where
{

x̂k−1, P̂k−1

}
serve as substitutes for all the data up to time

k − 117. Figure 3.4 depicts this graphically.

Figure 3.4

Recursive filter

replaces past data

with an estimate. x̌0,y0,v1,y1,v2,y2, . . . ,vk�1,yk�1,vk,yk,vk+1,yk+1, . . . ,vK ,yK

x̂k

x̂0
k�1

x̂k�1

Our usual MAP solution to the problem is x̂ given by
(
HTW−1H

)
x̂ = HTW−1z. (3.108)

We then define

x̂ =

[
x̂′k−1

x̂k

]
, (3.109)

where we carefully distinguish x̂′k−1 from x̂k−1. The addition of the ′

indicates that x̂′k−1 is the estimate at time k − 1 incorporating data
up to and including time k, whereas x̂k−1 is the estimate at time k− 1

17 To do this, we have actually employed something called the Markov property. Further

discussion of this will be left to the chapter on nonlinear-non-Gaussian estimation

techniques. For now it suffices to say that for LG estimation, this assumption is valid.

3.3 Recursive Discrete-Time Filtering 65

using data up to and including time k−1. Substituting in our quantities
from (3.107) to the least-squares solution, we have

[
P̂−1
k−1 + AT

k−1Q
−1
k Ak−1 −AT

k−1Q
−1
k

−Q−1
k Ak−1 Q−1

k + CT
kR−1

k Ck

] [
x̂′k−1

x̂k

]

=

[
P̂−1
k−1x̂k−1 −AT

k−1Q
−1
k vk

Q−1
k vk + CT

kR−1
k yk

]
. (3.110)

We do not really care what x̂′k−1 is in this context, because we seek a re-
cursive estimator appropriate to online estimation, and this quantity in-
corporates future data; we can marginalize this out by left-multiplying
both sides by

[
1 0

Q−1
k Ak−1

(
P̂−1
k−1 + AT

k−1Q
−1
k Ak−1

)−1

1

]
, (3.111)

which is just an elementary row operation and will not alter the solution
to the linear system of equations18. Equation (3.110) then becomes




P̂−1
k−1 + AT

k−1Q
−1
k Ak−1 −AT

k−1Q
−1
k

0
Q−1
k −Q−1

k Ak−1

(
P̂−1
k−1 + AT

k−1Q
−1
k Ak−1

)−1

× AT
k−1Q

−1
k + CT

kR−1
k Ck



[
x̂′k−1

x̂k

]

=




P̂−1
k−1x̂k−1 −AT

k−1Q
−1
k vk

Q−1
k Ak−1

(
P̂−1
k−1 + AT

k−1Q
−1
k Ak−1

)−1 (
P̂−1
k−1x̂k−1 −AT

k−1Q
−1
k vk

)

+ Q−1
k vk + CT

kR−1
k yk


.

(3.112)

The solution for x̂k is given by

(
Q−1
k −Q−1

k Ak−1

(
P̂−1
k−1 + AT

k−1Q
−1
k Ak−1

)−1

AT
k−1Q

−1
k

︸ ︷︷ ︸
(Qk+Ak−1P̂k−1AT

k−1)
−1 by (2.75)

+ CT
kR−1

k Ck

)
x̂k

=

(
Q−1
k Ak−1

(
P̂−1
k−1 + AT

k−1Q
−1
k Ak−1

)−1

×
(
P̂−1
k−1x̂k−1 −AT

k−1Q
−1
k vk

)

+ Q−1
k vk + CT

kR−1
k yk

)
. (3.113)

18 This is also sometimes called the Schur complement.

66 Linear-Gaussian Estimation

We then define the following helpful quantities:

P̌k = Qk + Ak−1P̂k−1A
T
k−1, (3.114a)

P̂k =
(
P̌−1
k + CT

kR−1
k Ck

)−1
. (3.114b)

Equation (3.113) then becomes

P̂−1
k x̂k = Q−1

k Ak−1

(
P̂−1
k−1 + AT

k−1Q
−1
k Ak−1

)−1

×
(
P̂−1
k−1x̂k−1 −AT

k−1Q
−1
k vk

)
+ Q−1

k vk + CT
kR−1

k yk

= Q−1
k Ak−1

(
P̂−1
k−1 + AT

k−1Q
−1
k Ak−1

)−1

P̂−1
k−1

︸ ︷︷ ︸
P̌−1
k Ak−1 by logic below

x̂k−1

+

(
Q−1
k −Q−1

k Ak−1

(
P̂−1
k−1 + AT

k−1Q
−1
k Ak−1

)−1

AT
k−1Q

−1
k

)

︸ ︷︷ ︸
P̌−1
k

vk

+ CT
kR−1

k yk

= P̌−1
k (Ak−1x̂k−1 + vk)︸ ︷︷ ︸

x̌k

+CT
kR−1

k yk, (3.115)

where we have defined x̌k as the ‘predicted’ value of the state. We also
made use of the following logic in simplifying the above:

Q−1
k Ak−1

(
P̂−1
k−1 + AT

k−1Q
−1
k Ak−1

)−1

︸ ︷︷ ︸
apply (2.75) again

P̂−1
k−1

= Q−1
k Ak−1

(
P̂k−1 − P̂k−1A

T
k−1

(
Qk + Ak−1P̂k−1A

T
k−1

)−1

︸ ︷︷ ︸
P̌−1
k

× Ak−1P̂k−1

)
P̂−1
k−1

=
(
Q−1
k −Q−1

k Ak−1P̂k−1A
T
k−1︸ ︷︷ ︸

P̌k−Qk

P̌−1
k

)
Ak−1

=
(
Q−1
k −Q−1

k + P̌−1
k

)
Ak−1

= P̌−1
k Ak−1. (3.116)

Bringing together all of the above, we have for the recursive filter up-
date the following:

predictor:
P̌k = Ak−1P̂k−1A

T
k−1 + Qk, (3.117a)

x̌k = Ak−1x̂k−1 + vk, (3.117b)

corrector:
P̂−1
k = P̌−1

k + CT
kR−1

k Ck, (3.117c)

P̂−1
k x̂k = P̌−1

k x̌k + CT
kR−1

k yk, (3.117d)

3.3 Recursive Discrete-Time Filtering 67
Figure 3.5 The

Kalman filter

works in two steps:

prediction then

correction. The

prediction step

propagates the old

estimate, x̂k−1,

forward in time

using the

measurement

model and latest

input, vk, to arrive

at the prediction,

x̌k. The correction

step fuses the

prediction with the

latest

measurement, yk,

to arrive at the

new estimate, x̂k;

this step is carried

out using a

normalized

product of

Gaussians (clear

from inverse

covariance version

of KF).

p(x)

x

prediction
becomes more

uncertain

correction
becomes more

certain

N
�
x̌k, P̌k

�
N
�
x̂k, P̂k

�
N
�
x̂k�1, P̂k�1

�
N
�
yk, Rk

�

N
�
vk, Qk

�
measure-

ment
new

estimate
predic-

tion
old

estimate

which we will refer to as inverse covariance or information form for the
Kalman filter. Figure 3.5 depicts the predictor-corrector form of the
Kalman filter graphically.

To get to canonical form, we manipulate these equations slightly.
Begin by defining the Kalman gain, Kk, as

Kk = P̂kC
T
kR−1

k . (3.118)

We then manipulate:

1 = P̂k

(
P̌−1
k + CT

kR−1
k Ck

)

= P̂kP̌
−1
k + KkCk, (3.119a)

P̂k = (1−KkCk) P̌k, (3.119b)

P̂kC
T
kR−1

k︸ ︷︷ ︸
Kk

= (1−KkCk) P̌kC
T
kR−1

k , (3.119c)

Kk

(
1 + CkP̌kC

T
kR−1

k

)
= P̌kC

T
kR−1

k . (3.119d)

Solving for Kk in this last expression, we can rewrite the recursive filter
equations as

predictor:
P̌k = Ak−1P̂k−1A

T
k−1 + Qk, (3.120a)

x̌k = Ak−1x̂k−1 + vk, (3.120b)

Kalman gain: Kk = P̌kC
T
k

(
CkP̌kC

T
k + Rk

)−1
, (3.120c)

corrector:
P̂k = (1−KkCk) P̌k, (3.120d)

x̂k = x̌k + Kk (yk −Ckx̌k)︸ ︷︷ ︸
innovation

, (3.120e)

where the innovation has been highlighted; it is the difference between
the actual and expected measurements. The role of the Kalman gain
is to properly weight the innovation’s contribution to the estimate (in
comparison to the prediction). In this form, these five equations (and
their extension to nonlinear systems) have been the workhorse of esti-
mation since Kalman’s initial paper (Kalman, 1960b). These are identi-

68 Linear-Gaussian Estimation

cal to the forward pass of the Rauch-Tung-Striebel smoother discussed
previously (with the (·)f subscripts dropped).

3.3.3 Kalman Filter via Bayesian Inference

A cleaner, simpler derivation of the Kalman filter can be had using our
Bayesian inference approach19. Our Gaussian prior estimate at k− 1 is

p(xk−1|x̌0,v1:k−1,y0:k−1) = N
(
x̂k−1, P̂k−1

)
. (3.121)

First, for the prediction step, we incorporate the latest input, vk, to
write a ‘prior’ at time k:

p(xk|x̌0,v1:k,y0:k−1) = N
(
x̌k, P̌k

)
, (3.122)

where

P̌k = Ak−1P̂k−1A
T
k−1 + Qk, (3.123a)

x̌k = Ak−1x̂k−1 + vk. (3.123b)

These are identical to the prediction equations from the previous sec-
tion. These last two expressions can be found by exactly passing the
prior at k − 1 through the linear motion model. For the mean we have

x̌k = E [xk] = E [Ak−1xk−1 + vk + wk]

= Ak−1E [xk−1]︸ ︷︷ ︸
x̂k−1

+vk + E [wk]︸ ︷︷ ︸
0

= Ak−1x̂k−1 + vk, (3.124)

and for the covariance we have

P̌k = E
[
(xk − E[xk])(xk − E[xk])

T
]

= E [(Ak−1xk−1 + vk + wk −Ak−1x̂k−1 − vk)

× (Ak−1xk−1 + vk + wk −Ak−1x̂k−1 − vk)
T
]

= Ak−1 E
[
(xk−1 − x̂k−1)(xk−1 − x̂k−1)T

]
︸ ︷︷ ︸

P̂k−1

AT
k−1 + E

[
wkw

T
k

]
︸ ︷︷ ︸

Qk

= Ak−1P̂k−1A
T
k−1 + Qk. (3.125)

Next, for the correction step, we express the joint density of our state

19 In the next chapter, we will generalize this section to present the Bayes filter, which

can handle non-Gaussian PDFs as well as nonlinear motion and observation models.

We can think of this section as a special case of the Bayes filter, one that requires no

approximations to be made.

3.3 Recursive Discrete-Time Filtering 69

and latest measurement, at time k, as a Gaussian:

p(xk,yk|x̌0,v1:k,y0:k−1) = N
([
µx
µy

]
,

[
Σxx Σxy

Σyx Σyy

])
(3.126)

= N
([

x̌k
Ckx̌k

]
,

[
P̌k P̌kC

T
k

CkP̌k CkP̌kC
T
k + Rk

])
.

Looking back to Section 2.2.3, where we introduced Bayesian infer-
ence, we can then directly write the conditional density for xk (i.e., the
posterior) as

p(xk|x̌0,v1:k,y0:k)

= N
(
µx + ΣxyΣ

−1
yy (yk − µy)︸ ︷︷ ︸

x̂k

,Σxx −ΣxyΣ
−1
yy Σyx︸ ︷︷ ︸

P̂k

)
, (3.127)

where we have defined x̂k as the mean and P̂k as the covariance. Sub-
stituting in the moments from above, we have

Kk = P̌kC
T
k

(
CkP̌kC

T
k + Rk

)−1
, (3.128a)

P̂k = (1−KkCk) P̌k, (3.128b)

x̂k = x̌k + Kk (yk −Ckx̌k) , (3.128c)

which are identical to the correction equations from the previous section
on MAP. Again, this is because the motion and measurement models
are linear and the noises and prior are Gaussian. Under these condi-
tions, the posterior density is exactly Gaussian. Thus, the mean and
mode of the posterior are one and the same. This property does not
hold if we switch to a nonlinear measurement model, which we discuss
in the next chapter.

3.3.4 Kalman Filter via Gain Optimization

The Kalman filter is often referred to as being optimal. We did indeed
perform an optimization to come up with the recursive relations above
in the MAP derivation. There are also several other ways to look at
the optimality of the KF. We present one of these.

Assume we have an estimator with the correction step taking the
form

x̂k = x̌k + Kk (yk −Ckx̌k) , (3.129)

but we do not yet know the gain matrix, Kk, to blend the corrective
measurements with the prediction. If we define the error in the state
estimate to be

êk = x̂k − xk, (3.130)

70 Linear-Gaussian Estimation

then we have20

E[êkê
T
k] = (1−KkCk) P̌k (1−KkCk)

T
+ KkRkK

T
k . (3.131)

We then define a cost function of the form

J(Kk) =
1

2
trE[êkê

T
k] = E

[
1

2
êTk êk

]
, (3.132)

which quantifies (in some sense) the magnitude of the covariance of êk.
We can minimize this cost directly with respect to Kk, to generate the
‘minimum variance’ estimate. We will make use of the identities

∂tr XY

∂X
≡ YT ,

∂tr XZXT

∂X
≡ 2XZ, (3.133)

where Z is symmetric. Then we have

∂J(Kk)

∂Kk

= − (1−KkCk) P̌kC
T
k + KkRk. (3.134a)

Setting this to zero and solving for Kk, we have

Kk = P̌kC
T
k

(
CkP̌kC

T
k + Rk

)−1
, (3.135)

which is our usual expression for the Kalman gain.

3.3.5 Kalman Filter Discussion

There are a few points worth mentioning:

(i) For a linear system with Gaussian noise, the Kalman filter equa-
tions are the best linear unbiased estimate (BLUE); this means
they are performing right at the Cramér-Rao lower bound.

(ii) Initial conditions must be provided,
{
x̌0, P̌0

}
.

(iii) The covariance equations can be propagated independently of
the mean equations. Sometimes a steady-state value of Kk is
computed and used for all time-steps to propagate the mean;
this is known as the ‘steady-state Kalman filter’.

(iv) At implementation, we must use yk,meas, the actual readings we
receive from our sensors, in the filter.

(v) A similar set of equations can be developed for the backwards
estimator that runs backwards in time.

It is worth reminding ourselves that we have arrived at the Kalman
filter equations through both an optimization paradigm and a full
Bayesian paradigm. The difference between these two will be signifi-
cant when we consider what happens in the nonlinear case (and why
the extension of the Kalman filter, the extended Kalman filter (EKF),
does not perform well in many situations).

20 This is sometimes referred to as the Joseph form of the covariance update.

3.3 Recursive Discrete-Time Filtering 71

3.3.6 Error Dynamics

It is useful to look at the difference between the estimated state and
the actual state. We define the following errors:

ěk = x̌k − xk, (3.136a)

êk = x̂k − xk. (3.136b)

Using (3.1) and (3.120), we can then write out the ‘error dynamics’:

ěk = Ak−1êk−1 −wk, (3.137a)

êk = (1−KkCk) ěk + Kknk, (3.137b)

where we note that ê0 = x̂0 − x0. From this system it is not hard to
see that E [êk] = 0 for k > 0 so long as E [ê0] = 0. This means our
estimator is unbiased. We can use proof by induction. It is true for
k = 0 by assertion. Assume it is also true for k − 1. Then

E [ěk] = Ak−1 E [êk−1]︸ ︷︷ ︸
0

−E [wk]︸ ︷︷ ︸
0

= 0, (3.138a)

E [êk] = (1−KkCk)E [ěk]︸ ︷︷ ︸
0

+Kk E [nk]︸ ︷︷ ︸
0

= 0. (3.138b)

It is therefore true for all k. It is less obvious that

E
[
ěkě

T
k

]
= P̌k, (3.139a)

E
[
êkê

T
k

]
= P̂k, (3.139b)

for k > 0 so long as E [ê0ê
T
0] = P̂0. This means our estimator is consis-

tent. We again use proof by induction. It is true for k = 0 by assertion.
Assume E

[
êk−1ê

T
k−1

]
= P̂k−1. Then

E
[
ěkě

T
k

]
= E

[
(Ak−1êk−1 −wk) (Ak−1êk−1 −wk)

T
]

= Ak−1 E
[
êk−1ê

T
k−1

]
︸ ︷︷ ︸

P̂k−1

AT
k−1 −Ak−1 E

[
êk−1w

T
k

]
︸ ︷︷ ︸

0 by independence

− E
[
wkê

T
k−1

]
︸ ︷︷ ︸

0 by independence

AT
k−1 + E

[
wkw

T
k

]
︸ ︷︷ ︸

Qk

= P̌k, (3.140)

72 Linear-Gaussian Estimation

and

E
[
êkê

T
k

]
= E

[
((1−KkCk) ěk + Kknk) ((1−KkCk) ěk + Kknk)

T
]

= (1−KkCk)E
[
ěkě

T
k

]
︸ ︷︷ ︸

P̌k

(1−KkCk)
T

+ (1−KkCk) E
[
ěkn

T
k

]
︸ ︷︷ ︸

0 by independence

KT
k

+ Kk E
[
nkě

T
k

]
︸ ︷︷ ︸

0 by independence

(1−KkCk)
T

+ Kk E
[
nkn

T
k

]
︸ ︷︷ ︸

Rk

KT
k

= (1−KkCk) P̌k−P̂kC
T
kKT

k + KkRkK
T
k︸ ︷︷ ︸

0 because Kk=P̂kCT
kR−1

k

= P̂k. (3.141)

It is therefore true for all k. This means that the true uncertainty in the
system (i.e., the covariance of the error, E [êkê

T
k]) is perfectly modelled

by our estimate of the covariance, P̂k. In this sense, the Kalman filter
is an optimal filter. This is why it is sometimes referred to as best
linear unbiased estimate (BLUE). Yet another way of saying this is
that the covariance of the Kalman filter is right at the Cramér-Rao
Lower Bound; we cannot be any more certain in our estimate given the
uncertainty in the measurements we have used in that estimate.

A final important point to make is that the expectations we have
employed in this section are over the possible outcomes of the random
variables. They are not time averages. If were to run an infinite num-
ber of trials and average over the trials (i.e., an ensemble average),
then we should see an average performance of zero error (i.e., an unbi-
ased estimator). This does not imply that within a single trial (i.e., a
realization) the error will be zero or decay to zero over time.

3.3.7 Existence, Uniqueness, and Observability

A sketch of the stability proof of the KF is provided (Simon, 2006).We
consider only the time-invariant case and use italicized symbols to avoid
confusion with the lifted form: Ak = A,Ck = C,Qk = Q,Rk = R.
The sketch proceeds as follows:

(i) The covariance equation of the KF can be iterated to conver-
gence prior to computing the equations for the mean. A big
question is whether the covariance will converge to a steady-
state value and, if so, whether it will be unique. Writing P to
mean the steady-state value for P̌k, we have (by combining the
predictive and corrective covariance equations) that the follow-

3.3 Recursive Discrete-Time Filtering 73

ing must be true at steady state:

P = A (1−KC)P (1−KC)
T
AT +AKRKTAT +Q,

(3.142)
which is one form of the Discrete Algebraic Riccati Equation
(DARE). Note that K depends on P in the above equation.
The DARE has a unique positive-semidefinite solution, P , if
and only if the following conditions hold:

– R > 0; note that we already assume this in the batch LG
case,

– Q ≥ 0; in the batch LG case, we actually assumed that Q >
0, whereupon the next condition is redundant,

– (A,V) is stabilizable with V TV = Q; this condition is re-
dundant when Q > 0,

– (A,C) is detectable; same as ‘observable’ except any unob-
servable eigenvalues are stable; we saw a similar observability
condition in the batch LG case.

The proof of the above statement is beyond the scope of this
book.

(ii) Once the covariance evolves to its steady-state value, P , so does
the Kalman gain. Let K be the steady-state value of Kk. We
have

K = PCT
(
CPCT +R

)−1

(3.143)

for the steady-state Kalman gain.
(iii) The error dynamics of the filter are then stable:

E[ěk] = A (1−KC)︸ ︷︷ ︸
eigs. < 1 in mag.

E[ěk−1]. (3.144)

We can see this by noting that for any eigenvector, v, corre-
sponding to an eigenvalue, λ, of (1−KC)

T
AT , we have

vTP v = vTA (1−KC)︸ ︷︷ ︸
λvT

P (1−KC)
T
ATv︸ ︷︷ ︸

λv

+ vT
(
AKRKTAT +Q

)
v,

(3.145a)

(1− λ2) vTP v︸ ︷︷ ︸
>0

= vT
(
AKRKTAT +Q

)
v

︸ ︷︷ ︸
>0

, (3.145b)

which means that we must have |λ| < 1, and thus the steady-
state error dynamics are stable. Technically the right-hand side
could be zero, but after N repetitions of this process, we build
up a copy of the observability Grammian on the right-hand,
side making it invertible (if the system is observable).

74 Linear-Gaussian Estimation

Figure 3.6 State

estimation with a

continuous-time

prior can be

viewed as a

one-dimensional

Gaussian process

regression with

time as the

independent

variable. We have

data about the

trajectory at a

number of

asynchronous

measurement times

and would like to

query the state at

some other time of

interest.

t0
t1

t2
tk�1 tk

tK�1
tK

tk+1
⌧. . .

. .
.

x(t) ⇠ GP
�
x̌(t), P̌(t, t0)

�

x(⌧) = ?asynchronous
measurement times query time

3.4 Batch Continuous-Time Estimation

In this section, we circle back to consider a more general problem than
the discrete-time setup in the earlier part of this chapter. In particular,
we consider what happens when we choose to use a continuous-time
motion model as the prior. We approach the problem from a Gaussian
process regression perspective (Rasmussen and Williams, 2006). We
show that for linear-Gaussian systems, the discrete-time formulation
is implementing the continuous-time one exactly, under certain special
conditions (Tong et al., 2013; Barfoot et al., 2014).

3.4.1 Gaussian Process Regression

We take a Gaussian process regression approach to state estimation21.
This allows us (i) to represent trajectories in continuous time (and
therefore query the solution at any time of interest) and, (ii) for the
nonlinear case that we will treat in the next chapter, to optimize our
solution by iterating over the entire trajectory (it is difficult to do this in
the recursive formulation, which typically iterates at just one timestep
at a time). We will show that under a certain special class of prior
motion models, GP regression enjoys a sparse structure that allows for
very efficient solutions.

We will consider systems with a continuous-time GP process model
prior and a discrete-time, linear measurement model:

x(t) ∼ GP(x̌(t), P̌(t, t′)), t0 < t, t′ (3.146)

yk = Ckx(tk) + nk, t0 < t1 < · · · < tK , (3.147)

where x(t) is the state, x̌(t) is the mean function, P̌(t, t′) is the co-
variance function, yk are measurements, nk ∼ N (0,Rk) is Gaussian
measurement noise, and Ck is the measurement model coefficient ma-
trix.

We consider that we want to query the state at a number of times

21 There are other ways to represent continuous-time trajectories such as temporal basis

functions; see Furgale et al. (2015) for a detailed review.

3.4 Batch Continuous-Time Estimation 75

(τ0 < τ1 < . . . < τJ) that may or may not be different from the mea-
surement times (t0 < t1 < . . . < tK). Figure 3.6 depicts our problem
setup. The joint density between the state (at the query times) and the
measurements (at the measurement times) is written as

p

([
xτ
y

])
= N

([
x̌τ
Cx̌

]
,

[
P̌ττ P̌τC

T

CP̌T
τ R + CP̌CT

])
, (3.148)

where

x =




x(t0)
...

x(tK)


 , x̌ =




x̌(t0)
...

x̌(tK)


 , xτ =




x(τ0)
...

x(τJ)


 , x̌τ =




x̌(τ0)
...

x̌(τJ)


 ,

y =




y0

...
yK


 , C = diag (C0, . . . ,CK) , R = diag (R0, . . . ,RK) ,

P̌ =
[
P̌(ti, tj)

]
ij
, P̌τ =

[
P̌(τi, tj)

]
ij
, P̌ττ =

[
P̌(τi, τj)

]
ij
.

In GP regression, the matrix, P̌, is known as the kernel matrix. Based
on the factoring discussed in Section 2.2.3, we then have that

p(xτ |y) = N
(

x̌τ + P̌τC
T (CP̌CT + R)−1(y −Cx̌)︸ ︷︷ ︸

x̂τ , mean

,

P̌ττ − P̌τC
T (CP̌CT + R)−1CP̌T

τ︸ ︷︷ ︸
P̂ττ , covariance

)
, (3.149)

for the density of the predicted state at the query times, given the
measurements.

The expression simplifies further if we take the query times to be
exactly the same as the measurement times (i.e., τk = tk,K = J). This
implies that

P̌ = P̌τ = P̌ττ , (3.150)

and then we can write

p(x|y) = N
(

x̌ + P̌CT (CP̌CT + R)−1(y −Cx̌)︸ ︷︷ ︸
x̂, mean

,

P̌− P̌CT (CP̌CT + R)−1CP̌T

︸ ︷︷ ︸
P̂, covariance

)
. (3.151)

Or, after an application of the SMW identity in (2.75), we can write

76 Linear-Gaussian Estimation

this as

p(x|y) = N
((

P̌−1 + CTR−1C
)−1 (

P̌−1x̌ + CTR−1y
)

︸ ︷︷ ︸
x̂, mean

,

(
P̌−1 + CTR−1C

)−1

︸ ︷︷ ︸
P̂, covariance

)
. (3.152)

Rearranging the mean expression, we have a linear system for x̂:
(
P̌−1 + CTR−1C

)
x̂ = P̌−1x̌ + CTR−1y. (3.153)

This can be viewed as the solution to the following optimization prob-
lem:

x̂ = arg min
x

1

2
(x̌− x)

T
P̌−1 (x̌− x) +

1

2
(y −C x)

T
R−1 (y −C x) .

(3.154)
Note that at implementation we must be careful to use ymeas, the actual
measurements received from our sensors.

If, after solving for the estimate at the measurement times, we later
want to query the state at some other times of interest (τ0 < τ1 < . . . <
τJ), we can use the GP interpolation equations to do so:

x̂τ = x̌τ +
(
P̌τ P̌

−1
)

(x̂− x̌), (3.155a)

P̂ττ = P̌ττ +
(
P̌τ P̌

−1
) (

P̂− P̌
) (

P̌τ P̌
−1
)T
. (3.155b)

This is linear interpolation in the state variable (but not necessarily in
time). To arrive at these interpolation equations, we return to (3.151)
and rearrange both the mean and covariance expressions:

P̌−1 (x̂− x̌) = CT (CP̌CT + R)−1(y −Cx̌), (3.156a)

P̌−1
(
P̂− P̌

)
P̌−T = −CT (CP̌CT + R)−1C. (3.156b)

These can then be substituted back into (3.149),

x̂τ = x̌τ + P̌τ CT (CP̌CT + R)−1(y −Cx̌)︸ ︷︷ ︸
P̌−1(x̂−x̌)

, (3.157a)

P̂ττ = P̌ττ − P̌τ CT (CP̌CT + R)−1C︸ ︷︷ ︸
−P̌−1(P̂−P̌)P̌−T

P̌T
τ , (3.157b)

to produce (3.155).
In general, this GP approach has complexity O(K3 +K2J) since the

initial solve is O(K3) and the query is O(K2J); this is quite expensive,
and next we will seek to improve the cost by exploiting the structure
of the matrices involved.

3.4 Batch Continuous-Time Estimation 77

3.4.2 A Class of Exactly Sparse Gaussian Process Priors

Next, we will develop a special class of GP priors that lead to very
efficient implementation. These priors are based on linear time-varying
(LTV) stochastic differential equations (SDEs):

ẋ(t) = A(t)x(t) + v(t) + L(t)w(t), (3.158)

with

w(t) ∼ GP(0,Q δ(t− t′)), (3.159)

a (stationary) zero-mean GP with (symmetric, positive-definite) power
spectral density matrix, Q. In what follows, we will use an engineering
approach that avoids introducing Itō calculus; we hope that what our Kiyoshi Itō

(1915-2008) was a

Japanese

mathematician

who pioneered the

theory of

stochastic

integration and

stochastic

differential

equations, now

known as the Itō

calculus.

treatment lacks in formality it makes up for in accessibility. For a more
formal treatment of stochastic differential equations in estimation, see
Särkkä (2006).

The general solution to this LTV ordinary differential equation is

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, s) (v(s) + L(s)w(s)) ds, (3.160)

where Φ(t, s) is known as the transition function and has the following
properties:

Φ(t, t) = 1, (3.161)

Φ̇(t, s) = A(t)Φ(t, s), (3.162)

Φ(t, s) = Φ(t, r)Φ(r, s). (3.163)

It is usually straightforward to work out the transition function for
systems in practice, but there is no general formula.

Mean Function

For the mean function we have

E[x(t)]︸ ︷︷ ︸
x̌(t)

= Φ(t, t0)E[x(t0)]︸ ︷︷ ︸
x̌0

+

∫ t

t0

Φ(t, s)
(
v(s) + L(s)E[w(s)]︸ ︷︷ ︸

0

)
ds,

(3.164)
where x̌0 is the initial value of the mean at t0. Thus, the mean function
is

x̌(t) = Φ(t, t0)x̌0 +

∫ t

t0

Φ(t, s)v(s) ds. (3.165)

If we now have a sequence of times, t0 < t1 < t2 < · · · < tK , then we
can write the mean at these times as

x̌(tk) = Φ(tk, t0)x̌0 +
k∑

n=1

Φ(tk, tn)vn, (3.166)

78 Linear-Gaussian Estimation

where

vk =

∫ tk

tk−1

Φ(tk, s)v(s) ds, k = 1 . . .K. (3.167)

Or we can write our system in lifted form,

x̌ = Av, (3.168)

where

x̌ =




x̌(t0)
x̌(t1)

...
x̌(tK)


 , v =




x̌0

v1

...
vK


 ,

A =




1
Φ(t1, t0) 1
Φ(t2, t0) Φ(t2, t1) 1

...
...

...
. . .

Φ(tK−1, t0) Φ(tK−1, t1) Φ(tK−1, t2) · · · 1
Φ(tK , t0) Φ(tK , t1) Φ(tK , t2) · · · Φ(tK , tK−1) 1



.

(3.169)

Notably, A, the lifted transition matrix, is lower-triangular.
If we assume that v(t) = B(t)u(t) with u(t) constant between mea-

surement times, we can further simplify the expression. Let uk be the
constant input when t ∈ (tk−1, tk]. Then we can define

B = diag (1,B1, . . .BK) , u =




x̌0

u1

...
uK


 , (3.170)

and

Bk =

∫ tk

tk−1

Φ(tk, s)B(s) ds, k = 1 . . .K. (3.171)

This allows us to write

x̌(tk) = Φ(tk, tk−1)x̌(tk−1) + Bkuk, (3.172)

and

x̌ = ABu, (3.173)

for the vector of means.

3.4 Batch Continuous-Time Estimation 79

Covariance Function

For the covariance function we have

E
[
(x(t)− E[x(t)])(x(t′)− E[x(t′)])T

]
︸ ︷︷ ︸

P̌(t,t′)

= Φ(t, t0)E
[
(x(t0)− E[x(t0)])(x(t0)− E[x(t0)])T

]
︸ ︷︷ ︸

P̌0

Φ(t′, t0)T

+

∫ t

t0

∫ t′

t0

Φ(t, s)L(s)E[w(s)w(s′)T]︸ ︷︷ ︸
Q δ(s−s′)

L(s′)TΦ(t′, s′)T ds′ ds, (3.174)

where P̌0 is the initial covariance at t0 and we have made the as-
sumption that E[x(t0)w(t)T] = 0. Putting this together, we have the
following expression for the covariance:

P̌(t, t′) = Φ(t, t0)P̌0Φ(t′, t0)T

+

∫ t

t0

∫ t′

t0

Φ(t, s)L(s)QL(s′)TΦ(t′, s′)T δ(s− s′) ds′ ds. (3.175)

Focusing on the second term, we integrate once to see that it is

∫ t

t0

Φ(t, s)L(s)QL(s)TΦ(t′, s)T H(t′ − s) ds, (3.176)

where H(·) is the Heaviside step function. There are now three cases to
worry about: t < t′, t = t′, and t > t′. In the first case, the upper inte-
gration limit terminates the integration, while in the last, the Heaviside
step function does the same job. The result is that the second term in
the covariance function can be written as

∫ min(t,t′)

t0

Φ(t, s)L(s)QL(s)TΦ(t′, s)T ds

=





Φ(t, t′)
(∫ t′

t0
Φ(t′, s)L(s)QL(s)TΦ(t′, s)T ds

)
t′ < t

∫ t
t0

Φ(t, s)L(s)QL(s)TΦ(t, s)T ds t = t′(∫ t
t0

Φ(t, s)L(s)QL(s)TΦ(t, s)T ds
)

Φ(t′, t)T t < t′
. (3.177)

If we now have a sequence of times, t0 < t1 < t2 < · · · < tK , then we
can write the covariance between two of these times as

P̌(ti, tj) =





Φ(ti, tj)
(∑j

n=0 Φ(tj, tn)QnΦ(tj, tn)T
)

tj < ti∑i
n=0 Φ(ti, tn)QnΦ(ti, tn)T ti = tj(∑i

n=0 Φ(ti, tn)QnΦ(ti, tn)T
)

Φ(tj, ti)
T ti < tj

,

(3.178)

80 Linear-Gaussian Estimation

where

Qk =

∫ tk

tk−1

Φ(tk, s)L(s)QL(s)TΦ(tk, s)
T ds, k = 1 . . .K, (3.179)

and we let Q0 = P̌0 to keep the notation in (3.177) clean.
Given this preparation, we are now ready to state the main result of

this section. Let t0 < t1 < t2 < · · · < tK be a monotonically increasing
sequence of time values. Define the kernel matrix to be

P̌ =

[
Φ(ti, t0)P̌0Φ(tj, t0)T

+

∫ min(ti,tj)

t0

Φ(ti, s)L(s)QL(s)TΦ(tj, s)
T ds

]

ij

, (3.180)

where Q > 0 is symmetric. Note that P̌ has (K + 1)× (K + 1) blocks.
Then, we can factor P̌ according to a block-lower-diagonal-upper de-
composition:

P̌ = AQAT , (3.181)

where A is the lower-triangular matrix given in (3.169) and

Qk =

∫ tk

tk−1

Φ(tk, s)L(s)QL(s)TΦ(tk, s)
T ds, k = 1 . . .K, (3.182)

Q = diag
(
P̌0,Q1,Q2, . . . ,QK

)
. (3.183)

It follows that P̌−1 is block-tridiagonal and is given by

P̌−1 = (AQAT)−1 = A−TQ−1A−1, (3.184)

where

A−1 =




1
−Φ(t1, t0) 1

−Φ(t2, t1) 1

−Φ(t3, t2)
. . .
. . . 1

−Φ(tK , tK−1) 1




.

(3.185)
Since A−1 has only the main diagonal and the one below non-zero,
and Q−1 is block-diagonal, the block-tridiagonal structure of P̌−1 can
be verified by carrying out the multiplication. This is precisely the
structure we had at the start of the chapter for the batch discrete-time
case.

3.4 Batch Continuous-Time Estimation 81

Summary of Prior

We can write our final GP for x(t) as

x(t) ∼ GP
(

Φ(t, t0)x̌0 +

∫ t

t0

Φ(t, s)v(s) ds

︸ ︷︷ ︸
x̌(t)

,

Φ(t, t0)P̌0Φ(t′, t0)T +

∫ min(t,t′)

t0

Φ(t, s)L(s)QL(s)TΦ(t′, s)T ds

︸ ︷︷ ︸
P̌(t,t′)

)
.

(3.186)

At the measurement times, t0 < t1 < · · · < tK , we can also then write

x ∼ N (x̌, P̌) = N
(
Av,AQAT

)
, (3.187)

and we can further substitute v = Bu in the case that the inputs are
constant between measurement times.

Querying the GP

As discussed above, if we solve for the trajectory at the measurement
times, we may want to query it at other times of interest as well. This
can be done through the GP linear interpolation equations in (3.155).
Without loss of generality, we consider a single query time, tk ≤ τ <
tk+1, and so in this case we write

x̂(τ) = x̌(τ) + P̌(τ)P̌−1(x̂− x̌), (3.188a)

P̂(τ, τ) = P̌(τ, τ) + P̌(τ)P̌−1
(
P̂− P̌

)
P̌−T P̌(τ)T . (3.188b)

For the mean function at the query time, we simply have

x̌(τ) = Φ(τ, tk)x̌(tk) +

∫ τ

tk

Φ(τ, s)v(s) ds, (3.189)

which has complexity O(1) to evaluate. For the covariance function at
the query time we have

P̌(τ, τ) = Φ(τ, tk)P̌(tk, tk)Φ(τ, tk)
T+

∫ τ

tk

Φ(τ, s)L(s)QL(s)TΦ(τ, s)T ds,

(3.190)
which is also O(1) to evaluate.

We now examine the sparsity of the product P̌(τ)P̌−1 in the case of
a general LTV process model. The matrix, P̌(τ), can be written as

P̌(τ) =
[
P̌(τ, t0) P̌(τ, t1) · · · P̌(τ, tK)

]
. (3.191)

82 Linear-Gaussian Estimation

The individual blocks are given by

P̌(τ, tj) =





Φ(τ, tk)Φ(tk, tj)
(∑j

n=0 Φ(tj, tn)QnΦ(tj, tn)T
)

tj < tk

Φ(τ, tk)
(∑k

n=0 Φ(tk, tn)QnΦ(tk, tn)T
)

tk = tj

Φ(τ, tk)
(∑k

n=0 Φ(tk, tn)QnΦ(tk, tn)T
)

Φ(tk+1, tk)
T

+ QτΦ(tk+1, τ)T
tk+1 = tj

Φ(τ, tk)
(∑k

n=0 Φ(tk, tn)QnΦ(tk, tn)T
)

Φ(tj, tk)
T

+ QτΦ(tk+1, τ)TΦ(tj, tk+1)T
tk+1 < tj

,

(3.192)
where

Qτ =

∫ τ

tk

Φ(τ, s)L(s)QL(s)TΦ(τ, s)T ds. (3.193)

Although this looks difficult to work with, we may write

P̌(τ) = V(τ)AT , (3.194)

where A was defined before and

V(τ) =
[
Φ(τ, tk)Φ(tk, t0)P̌0 Φ(τ, tk)Φ(tk, t1)Q1 · · ·

· · · Φ(τ, tk)Φ(tk, tk−1)Qk−1 Φ(τ, tk)Qk QτΦ(tk+1, τ)T · · ·
· · · 0 · · · 0

]
. (3.195)

Returning to the desired product, we have

P̌(τ)P̌−1 = V(τ) ATA−T︸ ︷︷ ︸
1

Q−1A−1 = V(τ)Q−1A−1. (3.196)

Since Q−1 is block-diagonal and A−1 has only the main diagonal and
the one below it non-zero, we can evaluate the product very efficiently.
Working it out, we have

P̌(τ)P̌−1 =
[
0 · · · 0 Φ(τ, tk)−QτΦ(tk+1, τ)TQ−1

k+1Φ(tk+1, tk)︸ ︷︷ ︸
Λ(τ), block column k

· · · QτΦ(tk+1, τ)TQ−1
k+1︸ ︷︷ ︸

Ψ(τ), block column k + 1

0 · · · 0
]
, (3.197)

which has exactly two non-zero block columns. Inserting this into (3.188),
we have

x̂(τ) = x̌(τ) +
[
Λ(τ) Ψ(τ)

] ([x̂k
x̂k+1

]
−
[

x̌(tk)
x̌(tk+1)

])
, (3.198a)

P̂(τ, τ) = P̌(τ, τ) +
[
Λ(τ) Ψ(τ)

]
([

P̂k,k P̂k,k+1

P̂k+1,k P̂k+1,k+1

]
(3.198b)

−
[

P̌(tk, tk) P̌(tk, tk+1)
P̌(tk+1, tk) P̌(tk+1, tk+1)

]) [
Λ(τ)T

Ψ(τ)T

]
,

3.4 Batch Continuous-Time Estimation 83

which is a simple combination of just the two terms from tk and tk+1.
Thus, to query the trajectory at a single time of interest is O(1) com-
plexity.

Example 3.1 As a simple example, consider the system

ẋ(t) = w(t), (3.199)

which can be written as

ẋ(t) = A(t)x(t) + v(t) + L(t)w(t), (3.200)

with A(t) = 0, v(t) = 0, L(t) = 1. In this case, the query equation
becomes

x̂τ = (1− α) x̂k + α x̂k+1, (3.201)

assuming the mean function is zero everywhere and where

α =
τ − tk
tk+1 − tk

∈ [0, 1], (3.202)

which is a familiar interpolation scheme that is linear in τ . More compli-
cated process models lead to more complicated interpolation equations.

3.4.3 Linear Time-Invariant Case

Naturally, the equations simplify considerably in the linear time-invariant
(LTI) case:

ẋ(t) = Ax(t) +Bu(t) +Lw(t), (3.203)

with A, B, and L constant22. The transition function is simply

Φ(t, s) = exp (A(t− s)) , (3.204)

which we note depends only on the difference of the two times (i.e., it
is stationary). We can therefore write,

∆tk:k−1 = tk − tk−1, k = 1 . . .K, (3.205)

Φ(tk, tk−1) = exp (A∆tk:k−1) , k = 1 . . .K, (3.206)

Φ(tk, tj) = Φ(tk, tk−1)Φ(tk−1, tk−2) · · ·Φ(tj+1, tj), (3.207)

to simplify matters.

22 We use italicized symbols for the time-invariant system matrices to avoid confusion

with the lifted-form quantities.

84 Linear-Gaussian Estimation

Mean Function

For the mean function we have the following simplification:

vk =

∫ ∆tk:k−1

0

exp (A(∆tk:k−1 − s))Bu(s) ds, k = 1 . . .K.

(3.208)
If we assume that u(t) is constant between each pair of consecutive
measurement times, we can further simplify the expression. Let uk be
the constant input when t ∈ (tk−1, tk]. Then we can define

B = diag (1,B1, . . .BM) , u =




x̌0

u1

...
uM


 , (3.209)

and

Bk =

∫ ∆tk:k−1

0

exp (A(∆tk:k−1 − s)) dsB

= Φ(tk, tk−1)
(
1−Φ(tk, tk−1)−1

)
A−1B, k = 1 . . .K. (3.210)

This allows us to write

x̌ = ABu (3.211)

for the vector of means.

Covariance Function

For the covariance function, we have the simplification

Qk =

∫ ∆tk:k−1

0

exp (A(∆tk:k−1 − s))LQLT exp (A(∆tk:k−1 − s))T ds
(3.212)

for k = 1 . . .K. This is relatively straightforward to evaluate, particu-
larly if A is nilpotent. Letting

Q = diag(P̌0,Q1,Q2, . . . ,QK), (3.213)

we then have

P̌ = AQAT , (3.214)

for the covariance matrix.

3.4 Batch Continuous-Time Estimation 85

Querying the GP

To query the GP, we need the following quantities:

Φ(tk+1, τ) = exp (A∆tk+1:τ) , ∆tk+1:τ = tk+1 − τ, (3.215)

Φ(τ, tk) = exp (A∆tτ :k) , ∆tτ :k = τ − tk, (3.216)

Qτ =

∫ ∆tτ:k

0

exp (A(∆tτ :k − s))LQLT exp
(
A(∆tτ :k − s)T

)
ds.

(3.217)

Our interpolation equation is still

x̂(τ) = x̌(τ) +
(
Φ(τ, tk)−QτΦ(tk+1, τ)TQ−1

k+1Φ(tk+1, tk)
)

(x̂k − x̌k)

+ QτΦ(tk+1, τ)TQ−1
k+1(x̂k+1 − x̌k+1), (3.218)

which is a linear combination of just the two terms from tk and tk+1.

Example 3.2 Consider the case

p̈(t) = w(t), (3.219)

where p(t) corresponds to position and

w(t) ∼ GP(0,Q δ(t− t′)), (3.220)

is white noise as before. This corresponds to white noise on acceleration
(i.e., the ‘constant velocity’ model). We can cast this in the form

ẋ(t) = Ax(t) +Bu(t) +Lw(t) (3.221)

by taking

x(t) =

[
p(t)
ṗ(t)

]
, A =

[
0 1
0 0

]
, B = 0, L =

[
0
1

]
. (3.222)

In this case we have

exp (A∆t) = 1+A∆t+
1

2
A2

︸︷︷︸
0

∆t2 + · · · = 1+

[
0 1
0 0

]
∆t =

[
1 ∆t1
0 1

]
,

(3.223)
since A is nilpotent. Therefore, we have

Φ(tk, tk−1) =

[
1 ∆tk:k−11
0 1

]
. (3.224)

For the Qk we have

Qk =

∫ ∆tk:k−1

0

[
1 (∆tk:k−1 − s)1
0 1

] [
0
1

]
Q
[
0 1

] [1 0
(∆tk:k−1 − s)1 1

]
ds

=

∫ ∆tk:k−1

0

[
(∆tk:k−1 − s)2Q (∆tk:k−1 − s)Q
(∆tk:k−1 − s)Q Q

]
ds

=

[
1
3
∆t3k:k−1Q

1
2
∆t2k:k−1Q

1
2
∆t2k:k−1Q ∆tk:k−1Q

]
, (3.225)

86 Linear-Gaussian Estimation

which we note is positive-definite even thoughLQLT is not. The inverse
is

Q−1
k =

[
12 ∆t−3

k:k−1Q
−1 −6 ∆t−2

k:k−1Q
−1

−6 ∆t−2
k:k−1Q

−1 4 ∆t−1
k:k−1Q

−1

]
, (3.226)

which is needed to construct P̌−1. For the mean function we have

x̌k = Φ(tk, t0)x̌0, k = 1 . . .K, (3.227)

which can be stacked and written as

x̌ = A




x̌0

0
...
0


 (3.228)

for convenience.
For trajectory queries, we also need

Φ(τ, tk) =

[
1 ∆tτ :k1
0 1

]
, Φ(tk+1, τ) =

[
1 ∆tk+1:τ1
0 1

]
,

x̌τ = Φ(τ, tk)x̌k, Qτ =

[
1
3
∆t3τ :kQ

1
2
∆t2τ :kQ

1
2
∆t2τ :kQ ∆tτ :kQ

]
, (3.229)

which we see will result in a scheme that is not linear in τ . Substituting
these into the interpolation equation, we have

x̂τ = x̌τ +
(
Φ(τ, tk)−QτΦ(tk+1, τ)TQ−1

k+1Φ(tk+1, tk)
)

(x̂k − x̌k)

+ QτΦ(tk+1, τ)TQ−1
k+1(x̂k+1 − x̌k+1) (3.230)

= x̌τ +

[
(1− 3α2 + 2α3)1 T (α− 2α2 + α3)1

1
T

6(−α+ α2)1 (1− 4α+ 3α2)1

]
(x̂k − x̌k)

+

[
(3α2 − 2α3)1 T (−α2 + α3)1
1
T

6(α− α2)1 (−2α+ 3α2)1

]
(x̂k+1 − x̌k+1),

where

α =
τ − tk
tk+1 − tk

∈ [0, 1], T = ∆tk+1:k = tk+1 − tk. (3.231)

Remarkably, the top row (corresponding to position) is precisely a cubic
Hermite polynomial interpolation:Charles Hermite

(1822-1901) was a

French

mathematician

who did research

on a variety of

topics, including

orthogonal

polynomials.

p̂τ − p̌τ = h00(α)(p̂k − p̌k) + h10(α)T (ˆ̇pk − ˇ̇pk)

+ h01(α)(p̂k+1 − p̌k+1) + h11(α)T (ˆ̇pk+1 − ˇ̇pk+1), (3.232)

where

h00(α) = 1− 3α2 + 2α3, h10(α) = α− 2α2 + α3, (3.233a)

h01(α) = 3α2 − 2α3, h11(α) = −α2 + α3, (3.233b)

3.4 Batch Continuous-Time Estimation 87

are the Hermite basis functions. The bottom row (corresponding to ve-
locity) is only quadratic in α, and the basis functions are the derivatives
of the ones used to interpolate position. It is very important to note
that this Hermite interpolation scheme arises automatically from using
the GP regression approach and our choice of prior motion model. At
implementation, we may work directly with the general matrix equa-
tions and avoid working out the details of the resulting interpolation
scheme.

It is also easy to verify that when α = 0, we have

x̂τ = x̌τ + (x̂k − x̌k), (3.234)

and when α = 1, we have

x̂τ = x̌τ + (x̂k+1 − x̌k+1), (3.235)

which seem to be sensible boundary conditions.

3.4.4 Relationship to Batch Discrete-Time Estimation

Now that we have seen how to efficiently represent the prior, we can
revisit the GP optimization problem described by (3.154). Substituting
in our prior terms, the problem becomes

x̂ = arg min
x

1

2
(Av︸︷︷︸

x̌

−x)T A−TQ−1A−1

︸ ︷︷ ︸
P̌−1

(Av︸︷︷︸
x̌

−x)

+
1

2
(y −Cx)

T
R−1 (y −Cx) . (3.236)

Rearranging, we have

x̂ = arg min
x

1

2
(v −A−1 x)TQ−1(v −A−1 x)

+
1

2
(y −Cx)

T
R−1 (y −Cx) . (3.237)

The solution to this optimization problem is given by
(
A−TQ−1A−1 + CTR−1C

)
︸ ︷︷ ︸

block-tridiagonal

x̂ = A−TQ−1v + CTR−1y. (3.238)

Because the left-hand side is block-tridiagonal, we can solve this system
of equations in O(K) time with a sparse solver (e.g., sparse Cholesky
decomposition followed by sparse forward-backward passes). To query
the trajectory at J extra times will be O(J) since each query is O(1).
This means that we can solve for the state at the measurement and
query times in O(K + J) time. This is a big improvement over the
O(K3 +K2J) cost when we did not exploit the sparse structure of our
particular class of GP priors.

88 Linear-Gaussian Estimation

This is identical to the system of equations we had to solve in the
discrete-time approach earlier. Thus, the discrete-time approach can
exactly capture the continuous-time approach (at the measurement
times), and both can be viewed as carrying out Gaussian process re-
gression.

3.5 Summary

The main take-away points from this chapter are as follows:

1. When the motion and observation models are linear, and the mea-
surement and process noises are zero-mean Gaussian, the batch and
recursive solutions to state estimation are straightforward, requiring
no approximation.

2. The Bayesian posterior of a linear-Gaussian estimation problem is
exactly Gaussian. This implies that the MAP solution is the same
as the mean of the full Bayesian solution, since the mode and the
mean of a Gaussian are one and the same.

3. The batch, discrete-time, linear-Gaussian solution can exactly imple-
ment (at the measurement times) the case where a continuous-time
motion model is employed; appropriate prior terms must be used for
this to be true.

The next chapter will investigate what happens when the motion and
observation models are nonlinear.

3.6 Exercises

3.6.1 Consider the discrete-time system,

xk = xk−1 + vk + wk, wk ∼ N (0, Q),

yk = xk + nk, nk ∼ N (0, R),

which could represent a cart moving back and forth along the
x-axis. The initial state, x̌0, is unknown. Set up the system of
equations for the batch least-squares estimation approach:

(
HTW−1H

)
x̂ = HTW−1z.

In other words, work out the details of H, W, z, and x̂, for this
system. Take the maximum timestep to be K = 5. Assume all the
noises are uncorrelated with one another. Will a unique solution
exist to the problem?

3.6.2 Using the same system as the first question, set Q = R = 1 and

3.6 Exercises 89

show that

HTW−1H =




2 −1
−1 3 −1

−1 3 −1
−1 3 −1

−1 3 −1
−1 2



.

What will be the sparsity pattern of the Cholesky factor, L, such
that LLT = HTW−1H?

3.6.3 Using the same system as the first question, modify the least-
squares solution for the case in which the measurements noises are
correlated with one another in the following way:

E[yky`] =





R |k − `| = 0
R/2 |k − `| = 1
R/4 |k − `| = 2
0 otherwise

.

Will a unique least-squares solution still exist?

3.6.4 Using the same system as the first question, work out the details
of the Kalman filter solution. In this case, assume that the initial
conditions for the mean and covariance are x̌0 and P̌0, respectively.
Show that the steady-state values for the prior and posterior co-
variances, P̌ and P̂ , as K →∞ are the solutions to the following
quadratics:

P̌ 2 −QP̌ −QR = 0,

P̂ 2 +QP̂ −QR = 0,

which are two versions of the discrete algebraic Riccati equations.
Explain why only one of the two roots to each quadratic is physi-
cally possible.

3.6.5 Using the MAP approach of Section 3.3.2, derive a version of the
Kalman filter that recurses backward in time rather than forward.

90 Linear-Gaussian Estimation

3.6.6 Show that




1
A 1
A2 A 1
...

...
...

. . .

AK−1 AK−2 AK−3 · · · 1

AK AK−1 AK−2 · · · A 1




−1

=




1
−A 1

−A 1

−A . . .
. . . 1

−A 1




.

3.6.7 We have seen that for the batch least-squares solution, the pos-
terior covariance is given by

P̂ =
(
HTW−1H

)−1
.

We have also seen that the computational cost of performing a
Cholesky decomposition,

LLT = HTW−1H,

is O(N3(K + 1)), owing to the sparsity of the system. Inverting,
we have

P̂ = L−TL−1.

Comment on the computational cost of computing P̂ by this ap-
proach.

4

Nonlinear Non-Gaussian Estimation

This chapter is one of the most important ones contained in this book.
Here we examine how to deal with the fact that in the real world,
there are no linear-Gaussian systems. It should be stated up front that
nonlinear, non-Gaussian (NLNG) estimation is very much still an ac-
tive research topic. The ideas in this chapter provide only some of
the more common approaches to dealing with nonlinear and/or non-
Gaussian systems1. We begin by contrasting full Bayesian to maximum
a posteriori (MAP) estimation for nonlinear systems. We then intro-
duce a general theoretical framework for recursive filtering problems
called the Bayes filter. Several of the more common filtering tech-
niques are shown to be approximations of the Bayes filter: extended
Kalman filter, sigmapoint Kalman filter, particle filter. We then return
to batch estimation for nonlinear systems, both in discrete and con-
tinuous time. Some books that address nonlinear estimation include
Jazwinski (1970), Maybeck (1994), and Simon (2006).

4.1 Introduction

In the linear-Gaussian chapter, we discussed two perspectives to es-
timation: full Bayesian and maximum a posteriori. We saw that for
linear motion and observation models driven by Gaussian noise, these
two paradigms come to the same answer (i.e., the MAP point was the
mean of the full Bayesian approach); this is because the full posterior
is exactly Gaussian and therefore the mean and mode (i.e., maximum)
are the same point.

This is not true once we move to nonlinear models, since the full
Bayesian posterior is no longer Gaussian. To provide some intuition on
this topic, this section considers a simplified, one-dimensional, nonlin-
ear estimation problem: estimating the position of a landmark from a
stereo camera.

1 Even most of the methods in this chapter actually assume the noise is Gaussian.

91

92 Nonlinear Non-Gaussian Estimation
Figure 4.1

Idealized stereo

camera model

relating the

landmark depth, x,

to the (noise-free)

disparity

measurement, y.

u

y = u� v =
fb

x v

x

f

b

disparity

depth

image plane

focal
length landmark

left pinhole

right pinhole

baseline

4.1.1 Full Bayesian Estimation

To gain some intuition, consider a simple estimation problem using a
nonlinear, camera model:

y =
fb

x
+ n. (4.1)

This is the type of nonlinearity present in a stereo camera (cf., Fig-
ure 4.1), where the state, x, is the position of a landmark (in metres),
the measurement, y, is the disparity between the horizontal coordinates
of the landmark in the left and right images (in pixels), f is the focal
length (in pixels), b is the baseline (horizontal distance between left and
right cameras; in metres), and n is the measurement noise (in pixels).

To perform Bayesian inference,

p(x|y) =
p(y|x)p(x)∫∞

−∞ p(y|x)p(x) dx
, (4.2)

we require expressions for p(y|x) and p(x). We meet this requirement
by making two assumptions. First, we assume that the measurement
noise is zero-mean Gaussian, n ∼ N (0, R), such that

p(y|x) = N
(
fb

x
,R

)
=

1√
2πR

exp

(
− 1

2R

(
y − fb

x

)2
)
, (4.3)

and second, we assume that the prior is Gaussian, where

p(x) = N
(
x̌, P̌

)
=

1√
2πP̌

exp

(
− 1

2P̌
(x− x̌)

2

)
. (4.4)

Before we continue, we note that the Bayesian framework provides
an implied order of operations that we would like to make explicit:

assign prior→ draw xtrue → draw ymeas → compute posterior.

In words, we start with a prior. The ‘true’ state is then drawn from
the prior, and the measurement is generated by observing the true
state through the camera model and adding noise. The estimator then
reconstructs the posterior from the measurement and prior, without

4.1 Introduction 93

Figure 4.2

Example of

Bayesian inference

on one-dimensional

stereo camera

example. We see

that the full

posterior is not

Gaussian, owing to

the nonlinear

measurement

model.

5 10 15 20 25 30 35

x

0

0.05

0.1

0.15

0.2

0.25

p

prior

posterior

p(x|y)
p(x)
xtrue

g
−1(ymeas)

knowing xtrue. This process is necessary to ensure ‘fair’ comparison
between state estimation algorithms.

To put these mathematical models into practical terms, let us assign
the following numerical values to the problem:

x̌ = 20 [m], P̌ = 9 [m2], (4.5)

f = 400 [pixel], b = 0.1 [m], R = 0.09 [pixel2].

As discussed above, the true state, xtrue, and (noise-corrupted) mea-
surement, ymeas, are drawn randomly from p(x) and p(y|x), respectively.
Each time we repeat the experiment, these values will change. In order
to plot the posterior for a single experiment, we used the particular
values

xtrue = 22 [m], ymeas =
fb

xtrue

+ 1 [pixel],

which are fairly typical given the noise characteristics.
Figure 4.2 plots the prior and posterior for this example. Since we

are considering a one-dimensional scenario, the denominator integral
in (4.2) was computed numerically, and thus we effectively have a view
of the full Bayesian posterior with no approximation. We can observe
that even though the prior and measurement densities are Gaussian,
the posterior is asymmetrical; it is skewed to one side by the nonlin-
ear observation model. However, since the posterior is still unimodal
(a single peak), we might still be justified in approximating it as Gaus-
sian. This idea is discussed later in the chapter. We also see that the
incorporation of the measurement results in a posterior that is more
concentrated (i.e., more ‘certain’) about the state than the prior; this
is the main idea behind Bayesian state estimation: we want to incor-
porate measurements into the prior to become more certain about the
posterior state.

Unfortunately, while we were able to effectively compute the exact
Bayesian posterior in our simple stereo camera example, this is typically

94 Nonlinear Non-Gaussian Estimation

Figure 4.3

Posterior from

stereo camera

example, p(x|y), as

well as the negative

log likelihood of

the posterior,

− ln(p(x|y)

(dashed). We see

that the MAP

solution is simply

the value of x that

maximizes (or

minimizes) either

of these functions.

In other words, the

MAP solution is

the mode of the

posterior, which is

not generally the

same as the mean.

x

5 10 15 20 25 30 35

p
(x
|y
)

0

0.05

0.1

0.15

0.2

0.25

0.3
MAP solution (mode)

−
ln

(p
(x
|y
))

0

25

50

75

100

125

150

not tractable for real problems. As a result, a variety of tactics have
been built up over the years to compute an approximate posterior. For
example, the MAP approach is concerned with finding only the most
likely state, or in other words the mode or ‘peak’ of the posterior. We
discuss this next.

4.1.2 Maximum a Posteriori Estimation

As mentioned above, computing the full Bayesian posterior can be in-
tractable in general. A very common approach is to seek out only the
value of the state that maximizes the true posterior. This is called
maximum a posteriori (MAP) estimation and is depicted graphically
in Figure 4.3.

In other words, we want to compute

x̂map = arg max
x

p(x|y). (4.6)

Equivalently, we can try minimizing the negative log likelihood:

x̂map = arg min
x

(− ln(p(x|y))) , (4.7)

which can be easier when the PDFs involved are from the exponential
family. As we are seeking only the most likely state, we can use Bayes’
rule to write

x̂map = arg min
x

(− ln(p(y|x))− ln(p(x))) , (4.8)

which drops p(y) since it does not depend on x.
Relating this back to the stereo camera example presented earlier,

we can write

x̂map = arg min
x
J(x), (4.9)

with

J(x) =
1

2R

(
y − fb

x

)2

+
1

2P̌
(x̌− x)

2
, (4.10)

4.1 Introduction 95

Figure 4.4

Histogram of

estimator values

for 1, 000, 000 trials

of the stereo

camera experiment

where each time a

new xtrue is

randomly drawn

from the prior and

a new ymeas is

randomly drawn

from the

measurement

model. The dashed

line marks the

mean of the prior,

x̌, and the solid

line marks the

expected value of

the MAP

estimator, x̂map,

over all the trials.

The gap between

dashed and solid is

emean ≈ −33.0 cm,

which indicates a

bias. The average

squared error is

esq ≈ 4.41 m2.

10 12 14 16 18 20 22 24 26

x̂map

0

0.05

0.1

0.15

0.2

0.25

p
(x̂

m
ap
)

EXN [x̂map] x̌

where we have dropped any further normalization constants that do not
depend on x. We can then find x̂map using any number of numerical
optimization techniques.

Since the MAP estimator, x̂map, finds the most likely state given
the data and prior, a question we might ask is, how well does this
estimator actually capture xtrue? In robotics, we often report the average
performance of our estimators, x̂ with respect to some ‘ground truth’.
In other words, we compute

emean(x̂) = EXN [x̂− xtrue], (4.11)

where EXN [·] is the expectation operator; we explicitly include the sub-
scripts XN to indicate that we are averaging over both the random
draw of xtrue from the prior and the random draw of n from the mea-
surement noise. Since xtrue is assumed to be independent of n, we have
EXN [xtrue] = EX [xtrue] = x̌, and so

emean(x̂) = EXN [x̂]− x̌. (4.12)

It may be surprising to learn that under this performance measure,
MAP estimation is biased (i.e., emean(x̂map) 6= 0). This can be attributed
to the presence of a nonlinear measurement model, g(·), and the fact
that the mode and mean of the posterior PDF are not the same. As
discussed in the last chapter, when g(·) is linear, then emean(x̂map) = 0.

However, since we can trivially set the estimate to the prior, x̂ = x̌,
and obtain emean(x̌) = 0, we need to define a secondary performance
metric. This metric is typically the average squared error, esq, where

esq(x̂) = EXN [(x̂− xtrue)
2]. (4.13)

In other words, the first metric, emean, captures the mean of the es-
timator error, while the second, esq, captures the combined effects of
bias and variance. Performing well on these two metrics results in the
bias-variance tradeoff in the machine learning literature (Bishop, 2006).

96 Nonlinear Non-Gaussian Estimation

Good performance on both metrics is necessary for a practical state es-
timator.

Figure 4.4 shows the MAP bias for the stereo camera example. We
see that over a large number of trials (using the parameters in (4.5)),
the average difference between the estimator, x̂map, and the ground-
truth, xtrue = 20 m, is emean ≈ −33.0 cm, demonstrating a small bias.
The average squared error is esq ≈ 4.41 m2.

Note that in this experiment we have drawn the true state from the
prior used in the estimator, and we still see a bias. The bias can be
worse in practice, as we often do not really know from which prior the
true state is drawn and must invent one.

In the rest of this chapter, we will be discussing various estimation
approaches for nonlinear, non-Gaussian systems. We must be careful
to try to understand what aspect of the full Bayesian posterior each
method captures: mean, mode, something else? We prefer to make dis-
tinctions in these terms rather than saying one method is more accurate
than another. Accuracy can only really be compared fairly if two meth-
ods are trying to get to the same answer.

4.2 Recursive Discrete-Time Estimation

4.2.1 Problem Setup

Just as in the chapter on linear-Gaussian estimation, we require a set of
motion and observation models upon which to base our estimator. We
will consider discrete-time, time-invariant equations, but this time we
will allow nonlinear equations (we will return to continuous time at the
end of this chapter). We define the following motion and observation

Figure 4.5

Graphical model

representation of

the Markov process

constituting the

NLNG system

described

by (4.14).

xk�1 f xk ff

yk�1 yky1y0

n0 n1 nk�1 nk

wkwk�1w1w0

v1 vk�1 vk

gggg

x̌0

x0 x1+

4.2 Recursive Discrete-Time Estimation 97

models:

motion model: xk = f (xk−1,vk,wk) , k = 1 . . .K (4.14a)

observation model: yk = g (xk,nk) , k = 0 . . .K (4.14b)

where k is again the discrete-time index and K its maximum. The
function f(·) is the nonlinear motion model and the function g(·) is the
nonlinear observation model. The variables take on the same mean-
ings as in the linear-Gaussian chapter. For now we do not make any
assumption about any of the random variables being Gaussian.

Figure 4.5 provides a graphical representation of the temporal evolu-
tion of the system described by (4.14). From this picture we can observe
a very important characteristic of the system, the Markov property:

In the simplest sense, a stochastic process has the Markov property if the conditional
probability density functions (PDFs) of future states of the process, given the present
state, depend only upon the present state, but not on any other past states, i.e.,
they are conditionally independent of these older states. Such a process is called
Markovian or a Markov process.

Our system is such a Markov process. For example, once we know the
value of xk−1, we do not need to know the value of any previous states
to evolve the system forward in time to compute xk. This property
was exploited fully in the section on linear-Gaussian estimation. There
it was assumed that we could employ this property in our estimator
design, and this led to an elegant recursive estimator, the Kalman filter.
But what about NLNG systems? Can we still have a recursive solution?
The answer is yes, but only approximately. The next few sections will
examine this claim.

4.2.2 Bayes Filter

In the chapter on linear-Gaussian estimation, we started with a batch
estimation technique and worked down to the recursive Kalman filter.
In this section, we will start by deriving a recursive filter, the Bayes
filter (Jazwinski, 1970), and return to batch methods near the end
of the chapter. This order reflects the historical sequence of events in
the estimation world and will allow us to highlight exactly where the
limiting assumptions and approximations have been made.

The Bayes filter seeks to come up with an entire PDF to represent
the likelihood of the state, xk, using only measurements up to and
including the current time. Using our notation from before, we want to
compute

p(xk|x̌0,v1:k,y0:k), (4.15)

which is also sometimes called the belief for xk. Recall from the section

98 Nonlinear Non-Gaussian Estimation

on factoring the batch linear-Gaussian solution that

p(xk|v,y) = η p(xk|x̌0,v1:k,y0:k)︸ ︷︷ ︸
forwards

p(xk|vk+1:K ,yk+1:K)︸ ︷︷ ︸
backwards

. (4.16)

Thus, in this section, we will focus on turning the ‘forwards’ PDF into a
recursive filter (for nonlinear non-Gaussian systems). By employing the
independence of all the measurements2, we may factor out the latest
measurement to have

p(xk|x̌0,v1:k,y0:k) = η p(yk|xk) p(xk|x̌0,v1:k,y0:k−1), (4.17)

where we have employed Bayes’ rule to reverse the dependence and η
serves to preserve the axiom of total probability. Turning our attention
to the second factor, we introduce the hidden state, xk−1, and integrate
over all possible values:

p(xk|x̌0,v1:k,y0:k−1) =

∫
p(xk,xk−1|x̌0,v1:k,y0:k−1) dxk−1

=

∫
p(xk|xk−1, x̌0,v1:k,y0:k−1) p(xk−1|x̌0,v1:k,y0:k−1) dxk−1. (4.18)

The introduction of the hidden state can be viewed as the opposite
of marginalization. So far we have not introduced any approximations.
The next step is subtle and is the cause of many limitations in recursive
estimation. Since our system enjoys the Markov property, we use said
property (on the estimator) to say that

p(xk|xk−1, x̌0,v1:k,y0:k−1) = p(xk|xk−1,vk), (4.19a)

p(xk−1|x̌0,v1:k,y0:k−1) = p(xk−1|x̌0,v1:k−1,y0:k−1), (4.19b)

which seems entirely reasonable given the depiction in Figure 4.5. How-
ever, we will come back to examine (4.19) later in this chapter. Substi-
tuting (4.19) and (4.18) into (4.17), we have the Bayes filter3:

p(xk|x̌0,v1:k,y0:k)︸ ︷︷ ︸
posterior belief

= η p(yk|xk)︸ ︷︷ ︸
observation
correction
using g(·)

∫
p(xk|xk−1,vk)︸ ︷︷ ︸

motion
prediction
using f(·)

p(xk−1|x̌0,v1:k−1,y0:k−1)︸ ︷︷ ︸
prior belief

dxk−1.

(4.20)

2 We will continue to assume all the measurements are statistically independent as in the

LG case.
3 There is a special case at the first timestep, k = 0, that only involves the observation

correction with y0, but we omit it to avoid complexity. We assume the filter is

initialized with p(x0|x̌0,y0).

4.2 Recursive Discrete-Time Estimation 99

Figure 4.6

Graphical

depictions of the

Bayes filter. Here

the dashed line

indicates that in

practice a hint

could be passed to

the ‘correction

step’ about the

states in which the

probability mass of

the belief function

is concentrated.

This can be used

to reduce the need

to work out the

full density for the

observation, yk,

given the state, xk.

f(x,v,w)

g(x,n)

⇥

p(yk|xk)

p(nk)

p(wk)

p(xk�1|x̌0,v1:k�1,y0:k�1)

p(xk|x̌0,v1:k,y0:k�1)

p(xk|x̌0,v1:k,y0:k)

vk

yk

prior belief

input

measurement

process noise

measurement noise

predicted belief

posterior beliefdirect
product

We can see that (4.20) takes on a predictor-corrector form. In the pre-
diction step, the prior4 belief, p(xk−1|x̌0,v1:k−1,y0:k−1), is propagated
forward in time using the input, vk, and the motion model, f(·). In
the correction step, the predicted estimate is then updated using the
measurement, yk, and the measurement model, g(·). The result is the
posterior belief, p(xk|x̌0,v1:k,y0:k). Figure 4.6 provides a graphical de-
piction of the information flow in the Bayes filter. The important mes-
sage to take away from these diagrams is that we require methods of
passing PDFs through the nonlinear functions, f(·) and g(·)

Although exact, the Bayes filter is really nothing more than a math-
ematical artifact; it can never be implemented in practice, except for
the linear-Gaussian case. There are two primary reasons for this, and
as such we need to make appropriate approximations:

(i) Probability density functions live in an infinite-dimensional space
(as do all continuous functions) and as such an infinite amount
of memory (i.e., infinite number of parameters) would be needed
to completely represent the belief, p(xk|x̌0,v1:k,y0:k). To over-
come this memory issue, the belief is approximately represented.
One approach is to approximate this function as a Gaussian
PDF (i.e., keep track of the first two moments, mean and co-
variance). Another approach is to approximate the PDF using
a finite number of random samples. We will look into both of
these later on.

(ii) The integral in the Bayes filter is computationally very expen-
sive; it would require infinite computing resources to evaluate
exactly. To overcome this computational resource issue, the in-
tegral must be evaluated approximately. One approach is to
linearize the motion and observation models and then evalu-

4 To be clear, the Bayes filter is using Bayesian inference, but just at a single timestep.

The batch methods discussed in the previous chapter performed inference over the

whole trajectory at once. We will return to the batch situation later in this chapter.

100 Nonlinear Non-Gaussian Estimation

ate the integrals in closed form. Another approach is to employ
Monte Carlo integration. We will look into both of these later
on as well.

Much of the research in recursive state estimation has focused on better
and better approximations to handle these two issues. Considerable
gains have been made that are worth examining in more detail. As
such, we will look at some of the classic and modern approaches to
approximate the Bayes filter in the next few sections. However, we
must keep in our minds the assumption on which the Bayes filter is
predicated: the Markov property. A question we must ask ourselves
is, what happens to the Markov property when we start making these
approximations to the Bayes filter? We will return to this later. For
now, let us assume it holds.

4.2.3 Extended Kalman Filter

We now show that if the belief is constrained to be Gaussian, the noise
is Gaussian, and we linearize the motion and observation models in
order to carry out the integral (and also the normalized product) in the
Bayes filter, we arrive at the famous extended Kalman filter (EKF)5.
The EKF is still the mainstay of estimation and data fusion in many
circles, and can often be effective for mildly nonlinear, non-Gaussian
systems. For a good reference on the EKF, see Maybeck (1994).

The EKF was a key tool used to estimate spacecraft trajectories
on the NASA Apollo program. Shortly after Kalman’s original paper
(Kalman, 1960b) was published, he met with Stanley F. Schmidt ofStanley F. Schmidt

(1926-) is an

American

aerospace engineer

who adapted

Kalman’s filter

early on to

estimate spacecraft

trajectories on the

Apollo program. It

was his work that

led to what is now

called the extended

Kalman filter.

NASA Ames Research Center. Schmidt was impressed with Kalman’s
filter and his team went on to modify it to work for their task of space-
craft navigation. In particular, they (i) extended it to work for nonlinear
motion and observation models, (ii) came up with the idea of lineariz-
ing about the best current estimate to reduce nonlinear effects, and (iii)
reformulated the original filter to the now-standard separate prediction
and correction steps (McGee and Schmidt, 1985). For these significant
contributions, the EKF was sometimes called the Schmidt-Kalman fil-
ter, but this name has fallen out of favour due to confusion with an-
other similarly named contribution later made by Schmidt (to account
for unobservable biases while keeping state dimension low). Schmidt
also went on to work on the square-root formulation of the EKF to
improve numerical stability (Bierman, 1974). Later, at Lockheed Mis-
siles and Space Company, Schmidt’s popularization of Kalman’s work
also inspired Charlotte Striebel to begin work on connecting the KF

5 The EKF is called ‘extended’ because it is the extension of the Kalman filter to

nonlinear systems.

4.2 Recursive Discrete-Time Estimation 101

to other types of trajectory estimation, which ultimately led to the
Rauch-Tung-Striebel smoother discussed in the previous chapter.

To derive the EKF, we first limit (i.e., constrain) our belief function
for xk to be Gaussian:

p(xk|x̌0,v1:k,y0:k) = N
(
x̂k, P̂k

)
, (4.21)

where x̂k is the mean and P̂k the covariance. Next, we assume that the
noise variables, wk and nk (∀k), are in fact Gaussian as well:

wk ∼ N (0,Qk), (4.22a)

nk ∼ N (0,Rk). (4.22b)

Note that a Gaussian PDF can be transformed through a nonlinearity
to be non-Gaussian. In fact, we will look at this in more detail a bit
later in this chapter. We assume this is the case for the noise variables;
in other words, the nonlinear motion and observation models may affect
wk and nk. They are not necessarily added after the nonlinearities, as
in

xk = f (xk−1,vk) + wk, (4.23a)

yk = g (xk) + nk, (4.23b)

but rather appear inside the nonlinearities as in (4.14). Equations (4.23)
are in fact a special case of (4.14). However, we can recover additive
noise (approximately) through linearization, which we show next.

With g(·) and f(·) nonlinear, we still cannot compute the integral in
the Bayes filter in closed form, so we turn to linearization. We linearize
the motion and observation models about the current state estimate
mean:

f (xk−1,vk,wk) ≈ x̌k + Fk−1 (xk−1 − x̂k−1) + w′k, (4.24a)

g (xk,nk) ≈ y̌k + Gk (xk − x̌k) + n′k, (4.24b)

where

x̌k = f (x̂k−1,vk,0) , Fk−1 =
∂f(xk−1,vk,wk)

∂xk−1

∣∣∣∣
x̂k−1,vk,0

, (4.25a)

w′k =
∂f(xk−1,vk,wk)

∂wk

∣∣∣∣
x̂k−1,vk,0

wk, (4.25b)

and

y̌k = g (x̌k,0) , Gk =
∂g(xk,nk)

∂xk

∣∣∣∣
x̌k,0

, (4.26a)

n′k =
∂g(xk,nk)

∂nk

∣∣∣∣
x̌k,0

nk. (4.26b)

102 Nonlinear Non-Gaussian Estimation

From here the statistical properties of the current state, xk, given the
old state and latest input, are

xk ≈ x̌k + Fk−1 (xk−1 − x̂k−1) + w′k, (4.27a)

E [xk] ≈ x̌k + Fk−1 (xk−1 − x̂k−1) + E [w′k]︸ ︷︷ ︸
0

, (4.27b)

E
[
(xk − E [xk]) (xk − E [xk])

T
]
≈ E

[
w′kw

′T
k

]

︸ ︷︷ ︸
Q′k

, (4.27c)

p(xk|xk−1,vk) ≈ N (x̌k + Fk−1 (xk−1 − x̂k−1) ,Q′k) . (4.27d)

For the statistical properties of the current measurement, yk, given the
current state, we have

yk ≈ y̌k + Gk (xk − x̌k) + n′k, (4.28a)

E [yk] ≈ y̌k + Gk (xk − x̌k) + E [n′k]︸ ︷︷ ︸
0

, (4.28b)

E
[
(yk − E [yk]) (yk − E [yk])

T
]
≈ E

[
n′kn

′T
k

]

︸ ︷︷ ︸
R′k

, (4.28c)

p(yk|xk) ≈ N (y̌k + Gk(xk − x̌k),R
′
k) . (4.28d)

Substituting in these results, the Bayes filter becomes

p(xk|x̌0,v1:k,y0:k)︸ ︷︷ ︸
N(x̂k,P̂k)

= η p(yk|xk)︸ ︷︷ ︸
N(y̌k+Gk(xk−x̌k),R′k)

×
∫

p(xk|xk−1,vk)︸ ︷︷ ︸
N(x̌k+Fk−1(xk−1−x̂k−1),Q′k)

p(xk−1|x̌0,v1:k−1,y0:k−1)︸ ︷︷ ︸
N(x̂k−1,P̂k−1)

dxk−1. (4.29)

Using our formula (2.90) for passing a Gaussian through a (stochastic)
nonlinearity, we can see that the integral is also Gaussian:

p(xk|x̌0,v1:k,y0:k)︸ ︷︷ ︸
N(x̂k,P̂k)

= η p(yk|xk)︸ ︷︷ ︸
N(y̌k+Gk(xk−x̌k),R′k)

×
∫
p(xk|xk−1,vk) p(xk−1|x̌0,v1:k−1,y0:k−1) dxk−1

︸ ︷︷ ︸
N(x̌k,Fk−1P̂k−1FTk−1+Q′k)

. (4.30)

We are now left with the normalized product of two Gaussian PDFs,
which we also discussed previously in Section 2.2.6. Applying (2.70),

4.2 Recursive Discrete-Time Estimation 103

we find that

p(xk|x̌0,v1:k,y0:k)︸ ︷︷ ︸
N(x̂k,P̂k)

= η p(yk|xk)
∫
p(xk|xk−1,vk) p(xk−1|x̌0,v1:k−1,y0:k−1) dxk−1

︸ ︷︷ ︸
N(x̌k+Kk(yk−y̌k),(1−KkGk)(Fk−1P̂k−1FTk−1+Q′k))

, (4.31)

where Kk is known as the Kalman gain matrix (given below). Getting
to this last line takes quite a bit of tedious algebra and is left to the
reader. Comparing left and right sides of our posterior expression above,
we have

predictor:
P̌k = Fk−1P̂k−1F

T
k−1 + Q′k, (4.32a)

x̌k = f(x̂k−1,vk,0), (4.32b)

Kalman gain: Kk = P̌kG
T
k

(
GkP̌kG

T
k + R′k

)−1
, (4.32c)

corrector:
P̂k = (1−KkGk) P̌k, (4.32d)

x̂k = x̌k + Kk (yk − g(x̌k,0))︸ ︷︷ ︸
innovation

. (4.32e)

Equations (4.32) are known as the classic recursive update equations

for the EKF. The update equations allow us to compute
{

x̂k, P̂k

}
from

{
x̂k−1, P̂k−1

}
. We notice immediately the similar structure to (3.120)

for linear-Gaussian estimation. There are two main differences here:

(i) The nonlinear motion and observation models are used to prop-
agate the mean of our estimate.

(ii) There are Jacobians embedded in the Q′k and R′k covariances
for the noise. This comes from the fact that we allowed the
noise to be applied within the nonlinearities in (4.14).

It should be noted that there is no guarantee that the EKF will perform
adequately for a general nonlinear system. To gauge the performance
of the EKF on a particular nonlinear system, it often comes down to
simply trying it out. The main problem with the EKF is the operating
point of the linearization is the mean of our estimate of the state, not
the true state. This seemingly small difference can cause the EKF to
diverge wildly in some cases. Sometimes the result is less dramatic,
with the estimate being biased or inconsistent or, most often, both.

4.2.4 Generalized Gaussian Filter

The Bayes filter is appealing because it can be written out exactly.
We can then reach a number of implementable filters through different

104 Nonlinear Non-Gaussian Estimation

approximations on the form of the estimated PDF and handling meth-
ods. There is, however, a cleaner approach to deriving those filters that
assume up front that the estimated PDF is Gaussian. We have actu-
ally already seen this in practice in Section 3.3.3, where we derived the
Kalman filter using Bayesian inference.

In general, we begin with a Gaussian prior at time k − 1:

p(xk−1|x̌0,v1:k−1,y0:k−1) = N
(
x̂k−1, P̂k−1

)
. (4.33)

We pass this forwards in time through the nonlinear motion model,
f(·), to propose a Gaussian prior at time k:

p(xk|x̌0,v1:k,y0:k−1) = N
(
x̌k, P̌k

)
. (4.34)

This is the prediction step and incorporates the latest input, vk.
For the correction step, we employ the method from Section 2.2.3

and write a joint Gaussian for the state and latest measurement, at
time k:

p(xk,yk|x̌0,v1:k,y0:k−1) = N
([
µx,k
µy,k

]
,

[
Σxx,k Σxy,k

Σyx,k Σyy,k

])
. (4.35)

We then write the conditional Gaussian density for xk (i.e., the poste-
rior) directly as

p(xk|x̌0,v1:k,y0:k)

= N
(
µx,k + Σxy,kΣ

−1
yy,k(yk − µy,k)︸ ︷︷ ︸

x̂k

,Σxx,k −Σxy,kΣ
−1
yy,kΣyx,k︸ ︷︷ ︸

P̂k

)
, (4.36)

where we have defined x̂k as the mean and P̂k as the covariance. The
nonlinear observation model, g(·), is used in the computation of µy,k.
From here, we can write the generalized Gaussian correction-step equa-
tions as

Kk = Σxy,kΣ
−1
yy,k, (4.37a)

P̂k = P̌k −KkΣ
T
xy,k, (4.37b)

x̂k = x̌k + Kk

(
yk − µy,k

)
, (4.37c)

where we have let µx,k = x̌k, Σxx,k = P̌k, and Kk is still known as the
Kalman gain. Unfortunately, unless the motion and observation models
are linear, we cannot compute all the remaining quantities required
exactly: µy,k, Σyy,k, and Σxy,k. This is because putting a Gaussian PDF
into a nonlinearity generally results in something non-Gaussian coming
out the other end. We therefore need to consider approximations at this
stage.

The next section will revisit linearizing the motion and observation
models to complete this cleaner derivation of the EKF. After that,

4.2 Recursive Discrete-Time Estimation 105

we will discuss other methods of passing PDFs through nonlinearities,
which lead to other flavours of the Bayes and Kalman filters.

4.2.5 Iterated Extended Kalman Filter

Continuing on from the last section, we complete our alternate deriva-
tion of the iterated extended Kalman filter (IEKF). The prediction step
is fairly straightforward and essentially the same as Section 4.2.3. We
therefore omit it but note that the prior, at time k, is

p(xk|x̌0,v1:k,y0:k−1) = N
(
x̌k, P̌k

)
, (4.38)

which incorporates vk.
The correction step is where things become a little more interesting.

Our nonlinear measurement model is given by

yk = g(xk,nk). (4.39)

We linearize about an arbitrary operating point, xop,k:

g (xk,nk) ≈ yop,k + Gk (xk − xop,k) + n′k, (4.40)

where

yop,k = g (xop,k,0) , Gk =
∂g(xk,nk)

∂xk

∣∣∣∣
xop,k,0

, (4.41a)

n′k =
∂g(xk,nk)

∂nk

∣∣∣∣
xop,k,0

nk. (4.41b)

Note that the observation model and Jacobians are evaluated at xop,k.
Using this linearized model, we can then express the joint density for

the state and the measurement at time k as approximately Gaussian:

p(xk,yk|x̌0,v1:k,y0:k−1) ≈ N
([
µx,k
µy,k

]
,

[
Σxx,k Σxy,k

Σyx,k Σyy,k

])

= N
([

x̌k
yop,k + Gk(x̌k − xop,k)

]
,

[
P̌k P̌kG

T
k

GkP̌k GkP̌kG
T
k + R′k

])
. (4.42)

Once again, if the measurement, yk, is known, we can use (2.53b) to
write the Gaussian conditional density for xk (i.e., the posterior) as

p(xk|x̌0,v1:k,y0:k)

= N
(
µx,k + Σxy,kΣ

−1
yy,k(yk − µy,k)︸ ︷︷ ︸

x̂k

,Σxx,k −Σxy,kΣ
−1
yy,kΣyx,k︸ ︷︷ ︸

P̂k

)
, (4.43)

where again we have defined x̂k as the mean and P̂k as the covariance.

106 Nonlinear Non-Gaussian Estimation

As shown in the last section, the generalized Gaussian correction-step
equations are

Kk = Σxy,kΣ
−1
yy,k, (4.44a)

P̂k = P̌k −KkΣ
T
xy,k, (4.44b)

x̂k = x̌k + Kk

(
yk − µy,k

)
. (4.44c)

Substituting in the moments µy,k, Σyy,k, and Σxy,k from above, we have

Kk = P̌kG
T
k

(
GkP̌kG

T
k + R′k

)−1
, (4.45a)

P̂k = (1−KkGk) P̌k, (4.45b)

x̂k = x̌k + Kk (yk − yop,k −Gk(x̌k − xop,k)) . (4.45c)

These equations are very similar to the Kalman gain and corrector
equations in (4.32); the only difference is the operating point of the
linearization. If we set the operating point of the linearization to be
the mean of the predicted prior, xop,k = x̌k, then (4.45) and (4.32) are
identical.

However, it turns out that we can do much better if we iteratively
recompute (4.45), each time setting the operating point to be the mean
of the posterior at the last iteration:

xop,k ← x̂k. (4.46)

At the first iteration we take xop,k = x̌k. This allows us to be linearizing
about better and better estimates, thereby improving our approxima-
tion each iteration. We terminate the process when the change to xop,k

from one iteration to the next is sufficiently small. Note that the co-
variance equation need only be computed once, after the other two
equations converge.

4.2.6 IEKF Is a MAP Estimator

A great question to ask at this point is, what is the relationship between
the EKF/ IEKF estimate and the full Bayesian posterior? It turns out
that the IEKF estimate corresponds to a (local) maximum of the full
posterior6; in other words, it is a MAP estimate. On the other hand,
since the EKF is not iterated, it can be very far from a local maximum;
there is actually very little we can say about its relationship to the full
posterior.

These relations are illustrated in Figure 4.7, where we compare the
correction steps of the IEKF and EKF to the full Bayesian posterior on
our stereo camera example introduced in Section 4.1.2. In this version

6 To be clear, this is only true for the correction step at a single timestep.

4.2 Recursive Discrete-Time Estimation 107

Figure 4.7 Stereo

camera example,

comparing the

inference (i.e.,

‘corrective’) step of

the EKF and IEKF

to the full Bayesian

posterior, p(x|y).

We see that the

mean of the IEKF

matches up against

the MAP solution,

x̂map, while the

EKF does not. The

actual mean of the

posterior is

denoted x̄.

x

10 15 20 25 30 35

p

0

0.05

0.1

0.15

0.2

0.25

x̂map x̄

prior

posterior

x̂iekf

x̂ekf

p(x|y)
p(x)
x̂ekf

x̂iekf

x̂map

x̄

of the example, we used

xtrue = 26 [m], ymeas =
fb

xtrue

− 0.6 [pixel],

to exaggerate the difference between the methods. As discussed above,
the mean of the IEKF corresponds to the MAP (i.e., mode) solution,
while the EKF is not easily relatable to the full posterior.

To understand why the IEKF is the same as the MAP estimate,
we require some optimization tools that we will introduce later in the
chapter. For now, the important take-away message from this section is
that our choice to iteratively relinearize about our best guess leads to a
MAP solution. Thus, the ‘mean’ of our IEKF Gaussian estimator does
not actually match the mean of the full Bayesian posterior; it matches
the mode.

4.2.7 Alternatives for Passing PDFs through Nonlinearities

In our derivation of the EKF/ IEKF, we used one particular technique
to pass a PDF through a nonlinearity. Specifically, we linearized the
nonlinear model about an operating point and then passed our Gaus-
sian PDFs through the linearized model analytically. This is certainly
one approach, but there are others. This section will discuss three com-
mon approaches: the Monte Carlo method (brute force), linearization
(as in the EKF), and the sigmapoint or unscented7 transformation. Our
motivation is to introduce some tools that can be used within our Bayes
filter framework to derive alternatives to the EKF/ IEKF.

7 This name lives on in the literature; apparently, Simon Julier named it after an

unscented deodorant to make the point that often we take names for granted without

knowing their origins.

108 Nonlinear Non-Gaussian Estimation

Figure 4.8 Monte

Carlo method to

transform a PDF

through a

nonlinearity. A

large number of

random samples

are drawn from the

input density,

passed through the

nonlinearity, and

then used to form

the output density.

p(x)

x y

p(y)

y = g(x)

yi = g(xi)

draw random
samples from
input density

combine
samples to form
output density

pass each sample
through nonlinearity

Monte Carlo Method

The Monte Carlo method of transforming a PDF through a nonlinear-
ity is essentially the ‘brute force’ approach. The process is depicted in
Figure 4.8. We draw a large number of samples from the input density,
transform each one of these samples through the nonlinearity exactly,
and then build the output density from the transformed samples (e.g.,
by computing the statistical moments). Loosely, the law of large num-
bers ensures this procedure will converge to the correct answer as the
number of samples used approaches infinity.

The obvious problem with this method is that it can be terribly
inefficient, particularly in higher dimensions. Aside from this obvious
disadvantage, there are actually some advantages to this method:

(i) It works with any PDF, not just Gaussian.
(ii) It handles any type of nonlinearity (no requirement for differ-

entiable or even continuous).
(iii) We do not need to know the mathematical form of the nonlinear

function – in practice the nonlinearity could be any software
function.

(iv) It is an ‘anytime’ algorithm – we can easily trade off accuracy
against speed by choosing the number of samples appropriately.

Because we can make this method highly accurate, we can also use it
to gauge the performance of other methods.

The other point worth mentioning at this stage is that the mean of
the output density is not the same as the mean of the input density
after being passed through the nonlinearity. This can be seen by way
of a simple example. Consider the input density for x to be uniform
over the interval [0, 1]; in other words, p(x) = 1, x ∈ [0, 1]. Let the
nonlinearity be y = x2. The mean of the input is µx = 1/2, and passing
this through the nonlinearity gives µy = 1/4. However, the actual mean

of the output is µy =
∫ 1

0
p(x)x2 dx = 1/3. Similar things happen to

the higher statistical moments. The Monte Carlo method is able to

4.2 Recursive Discrete-Time Estimation 109

Figure 4.9

One-dimensional

Gaussian PDF

transformed

through a

deterministic

nonlinear function,

g(·). Here we

linearize the

nonlinearity to

propagate the

variance

approximately.

p(x)

x
µx

�x�x

�y�y

y

p(y)

µy

y = g(x)

µy = g(µx)

y � µy| {z }
�y

⇡ @g(x)

@x

����
x=µx| {z }

a

x� µx| {z }
�x

�2
y = E[�y2]

= a2E[�x2]
= a2�2

x

approach the correct answer with a large number of samples, but as we
will see, some of the other methods cannot.

Linearization

The most popular method of transforming a Gaussian PDF through a
nonlinearity is linearization, which we have already used to derive the
EKF/ IEKF. Technically, the mean is actually passed through the non-
linearity exactly, while the covariance is approximately passed through
a linearized version of the function. Typically, the operating point of
the linearization process is the mean of the PDF. This procedure is
depicted in Figure 4.9 (repeat of Figure 2.5 for convenience). This pro-
cedure is highly inaccurate for the following reasons:

(i) The outcome of passing a Gaussian PDF through a nonlin-
ear function will not be another Gaussian PDF. By keeping
only the mean and covariance of the posterior PDF, we are ap-
proximating the posterior (by throwing away higher statistical
moments).

(ii) We are approximating the covariance of the true output PDF
by linearizing the nonlinear function.

(iii) The operating point about which we linearize the nonlinear
function is often not the true mean of the prior PDF, but rather
our estimate of the mean of the input PDF. This is an approx-
imation that introduces error.

(iv) We are approximating the mean of the true output PDF by
simply passing the mean of the prior PDF through the nonlinear
function. This does not represent the true mean of the output.

Another disadvantage of linearization is that we need to be able to ei-
ther calculate the Jacobian of the nonlinearity in closed form, or com-
pute it numerically (which introduces yet another approximation).

Despite all these approximations and disadvantages, if the function
is only slightly nonlinear, and the input PDF is Gaussian, the lineariza-
tion method is very simple to understand and quick to implement. One
advantage8 is that the procedure is actually reversible (if the nonlinear-
ity is locally invertible). That is, we can recover the input PDF exactly

8 It might be more accurate to say this is a by-product than an advantage, since it is a

direct result of the specific approximations made in linearization.

110 Nonlinear Non-Gaussian Estimation

Figure 4.10

One-dimensional

Gaussian PDF

transformed

through a

deterministic

nonlinear function,

g(·). Here the basic

sigmapoint

transformation is

used in which only

two deterministic

samples (one on

either side of the

mean) approximate

the input density.

p(x)

x y

p(y)

y = g(x)

yi = g(xi)

draw deterministic
samples from
input density

combine
samples to form
output density

pass each sample
through nonlinearity

µx
µx + �xµx � �x

µy
µy + �yµy � �y

�y

�x

µy =
g(µx � �x) + g(µx + �x)

2

�2
y =

(g(µx � �x)� g(µx + �x))
2

4

�y

�x

by passing the output PDF through the inverse of the nonlinearity
(using the same linearization procedure). This is not true for all meth-
ods of passing PDFs through nonlinearities since they do not all make
the same approximations as linearization. For example, the sigmapoint
transformation is not reversible in this way.

Sigmapoint Transformation

In a sense, the sigmapoint (SP) or unscented transformation (Julier
and Uhlmann, 1996) is the compromise between the Monte Carlo and
linearization methods when the input density is roughly a Gaussian
PDF. It is more accurate than linearization, but for a comparable com-
putational cost to linearization. Monte Carlo is still the most accurate
method, but the computational cost is prohibitive in most situations.

It is actually a bit misleading to refer to ‘the’ sigmapoint transforma-
tion, as there is actually a whole family of such transformations. Fig-
ure 4.10 depicts the very simplest version in one dimension. In general,
a version of the SP transformation is used that includes one additional
sample beyond the basic version at the mean of the input density. The
steps are as follows:

1. A set of 2L + 1 sigmapoints is computed from the input density,
N (µx,Σxx), according to

LLT = Σxx, (Cholesky decomposition, L lower-triangular)(4.47a)

x0 = µx, (4.47b)

xi = µx +
√
L+ κ coliL,

i = 1 . . . L
(4.47c)

xi+L = µx −
√
L+ κ coliL, (4.47d)

4.2 Recursive Discrete-Time Estimation 111

where L = dim(µx). We note that

µx =
2L∑

i=0

αi xi, (4.48a)

Σxx =
2L∑

i=0

αi (xi − µx) (xi − µx)T , (4.48b)

where

αi =

{ κ
L+κ

i = 0
1
2

1
L+κ

otherwise
, (4.49)

which we note sums to 1. The user-definable parameter, κ, will be
explained in the next section.

2. Each of the sigmapoints is individually passed through the nonlin-
earity, g(·):

yi = g (xi) , i = 0 . . . 2L. (4.50)

3. The mean of the output density, µy, is computed as

µy =
2L∑

i=0

αi yi. (4.51)

4. The covariance of the output density, Σyy, is computed as

Σyy =
2L∑

i=0

αi
(
yi − µy

) (
yi − µy

)T
. (4.52)

5. The output density, N
(
µy,Σyy

)
, is returned.

This method of transforming a PDF through a nonlinearity has a num-
ber of advantages over linearization:

(i) By approximating the input density instead of linearizing, we
avoid the need to compute the Jacobian of the nonlinearity
(either in closed form or numerically). Figure 4.11 provides an
example of the sigmapoints for a two-dimensional Gaussian.

(ii) We employ only standard linear algebra operations (Cholesky
decomposition, outer products, matrix summations).

(iii) The computation cost is similar to linearization (when a nu-
merical Jacobian is used).

(iv) There is no requirement that the nonlinearity be smooth and
differentiable.

The next section will furthermore show that the unscented transfor-
mation can also more accurately capture the posterior density than
linearization (by way of an example).

112 Nonlinear Non-Gaussian Estimation

Figure 4.11

Two-dimensional

(L = 2) Gaussian

PDF, whose

covariance is

displayed using

elliptical

equiprobable

contours of 1, 2,

and 3 standard

deviations, and the

corresponding

2L+ 1 = 5

sigmapoints for

κ = 2.

x0 = µ

x1 = µ +
p

L +  `1

x2 = µ +
p

L +  `2

x3 = µ�
p

L +  `1

x4 = µ�
p

L +  `2

⌃ = LLT

N (µ,⌃)

1
2

3  = 2

L =
⇥
`1 `2

⇤

L = 2

Example 4.1 We will use a simple one-dimensional nonlinearity,
f(x) = x2, as an example and compare the various transformation
methods. Let the prior density be N (µx, σ

2
x).

Monte Carlo Method

In fact, for this particularly nonlinearity, we can essentially use the
Monte Carlo method in closed form (i.e., we do not actually draw any
samples) to get the exact answer for transforming the input density
through the nonlinearity. An arbitrary sample (a.k.a., realization) of
the input density is given by

xi = µx + δxi, δxi ← N (0, σ2
x). (4.53)

Transforming this sample through the nonlinearity, we get

yi = f(xi) = f(µx + δxi) = (µx + δxi)
2 = µ2

x + 2µxδxi + δx2
i . (4.54)

Taking the expectation of both sides, we arrive at the mean of the
output:

µy = E [yi] = µ2
x + 2µxE [δxi]︸ ︷︷ ︸

0

+E
[
δx2

i

]
︸ ︷︷ ︸

σ2
x

= µ2
x + σ2

x. (4.55)

4.2 Recursive Discrete-Time Estimation 113

We do a similar thing for the variance of the output:

σ2
y = E

[
(yi − µy)2

]
(4.56a)

= E
[
(2µxδxi + δx2

i − σ2
x)

2
]

(4.56b)

= E
[
δx4

i

]
︸ ︷︷ ︸

3σ4
x

+4µxE
[
δx3

i

]
︸ ︷︷ ︸

0

+(4µ2
x − 2σ2

x)E
[
δx2

i

]
︸ ︷︷ ︸

σ2
x

− 4µxσ
2
xE [δxi]︸ ︷︷ ︸

0

+σ4
x (4.56c)

= 4µ2
xσ

2
x + 2σ4

x, (4.56d)

where E [δx3
i] = 0 and E [δx4

i] = 3σ4
x are the well-known third and

fourth moments for a Gaussian PDF.
In truth, the resulting output density is not Gaussian. We could go

on to compute higher moments of the output (and they would not all
match a Gaussian). However, if we want to approximate the output
as Gaussian by not considering the moments beyond the variance, we
can. In this case, the resulting output density is N

(
µy, σ

2
y

)
. We have

effectively used the Monte Carlo method with an infinite number of
samples to carry out the computation of the first two moments of the
posterior exactly in closed form. Let us now see how linearization and
the sigmapoint transformation perform.

Linearization

Linearizing the nonlinearity about the mean of the input density, we
have

yi = f(µx + δxi) ≈ f(µx)︸ ︷︷ ︸
µ2
x

+
∂f

∂x

∣∣∣∣
µx︸ ︷︷ ︸

2µx

δxi = µ2
x + 2µxδxi. (4.57)

Taking the expectation, we arrive at the mean of the output:

µy = E[yi] = µ2
x + 2µxE[δxi]︸ ︷︷ ︸

0

= µ2
x, (4.58)

which is just the mean of the input passed through the nonlinearity:
µy = f(µx). For the variance of the output we have

σ2
y = E

[
(yi − µy)2

]
= E

[
(2µxδxi)

2
]

= 4µ2
xσ

2
x. (4.59)

Comparing (4.55) with (4.58), and (4.56) with (4.59), we see there
are some discrepancies. In fact, the linearized mean has a bias and the
variance is too small (i.e., overconfident). Let us see what happens with
the sigmapoint transformation.

114 Nonlinear Non-Gaussian Estimation

Sigmapoint Transformation

There are 2L+ 1 = 3 sigmapoints in dimension L = 1:

x0 = µx, x1 = µx +
√

1 + κσx, x2 = µx −
√

1 + κσx, (4.60)

where κ is a user-definable parameter that we discuss below. We pass
each sigmapoint through the nonlinearity:

y0 = f (x0) = µ2
x, (4.61a)

y1 = f (x1) =
(
µx +

√
1 + κσx

)2

= µ2
x + 2µx

√
1 + κσx + (1 + κ)σ2

x, (4.61b)

y2 = f (x2) =
(
µx −

√
1 + κσx

)2

= µ2
x − 2µx

√
1 + κσx + (1 + κ)σ2

x. (4.61c)

The mean of the output is given by

µy =
1

1 + κ

(
κy0 +

1

2

2∑

i=1

yi

)
(4.62a)

=
1

1 + κ

(
κµ2

x +
1

2

(
µ2
x + 2µx

√
1 + κσx + (1 + κ)σ2

x + µ2
x

−2µx
√

1 + κσx + (1 + κ)σ2
x

))
(4.62b)

=
1

1 + κ

(
κµ2

x + µ2
x + (1 + κ)σ2

x

)
(4.62c)

= µ2
x + σ2

x, (4.62d)

which is independent of κ and exactly the same as (4.55). For the
variance we have

σ2
y =

1

1 + κ

(
κ (y0 − µy)2

+
1

2

2∑

i=1

(yi − µy)2

)
(4.63a)

=
1

1 + κ

(
κσ4

x +
1

2

((
2µx
√

1 + κσx + κσ2
x

)2

+
(
−2µx

√
1 + κσx + κσ2

x

)2))
(4.63b)

=
1

1 + κ

(
κσ4

x + 4(1 + κ)µ2
xσ

2
x + κ2σ4

x

)
(4.63c)

= 4µ2
xσ

2
x + κσ4

x, (4.63d)

which can be made to be identical to (4.56) by selecting the user-
definable parameter, κ, to be 2. Thus, for this nonlinearity, the un-
scented transformation can exactly capture the correct mean and vari-
ance of the output.

4.2 Recursive Discrete-Time Estimation 115

Figure 4.12

Graphical

depiction of

passing a Gaussian

PDF, p(x) =

N
(
5, (3/2)2

)
,

through the

nonlinearity,

y = x2, using

various methods.

We see that the

Monte Carlo and

sigmapoint

methods match the

true mean, while

linearization does

not. We also show

the exact

transformed PDF,

which is not

Gaussian and

therefore does not

have its mean at

its mode.

y

0 10 20 30 40 50 60 70 80

p
(y
)

0

0.005

0.01

0.015

0.02

0.025

0.03

true mean
exact
Monte Carlo
sigmapoint
linearization

To understand why we should pick κ = 2, we need look no fur-
ther than the input density. The parameter κ scales how far away the
sigmapoints are from the mean. This does not affect the first three mo-
ments of the sigmapoints (i.e., µx, σ

2
x, and the zero skewness). However,

changing κ does influence the fourth moment, kurtosis. We already used
the fact that for a Gaussian PDF, the fourth moment is 3σ4

x. We can
chose κ to make the fourth moment of the sigmapoints match the true
kurtosis of the Gaussian input density:

3σ4
x =

1

1 + κ


κ (x0 − µx)4

︸ ︷︷ ︸
0

+
1

2

2∑

i=1

(xi − µx)4


 (4.64a)

=
1

2(1 + κ)

((√
1 + κσx

)4

+
(
−
√

1 + κσx
)4
)

(4.64b)

= (1 + κ)σ4
x. (4.64c)

Comparing the desired and actual kurtosis, we should pick κ = 2 to
make them match exactly. Not surprisingly, this has a positive effect
on accuracy of the transformation.

In summary, this example shows that linearization is an inferior
method of transforming a PDF through a nonlinearity if the goal is
to capture the true mean of the output. Figure 4.12 provides a graph-
ical depiction of this example.

In the next few sections, we return to the Bayes filter and use our
new knowledge about the different methods of passing PDFs through
nonlinearities to make some useful improvements to the EKF. We will
begin with the particle filter, which makes use of the Monte Carlo
method. We will then try to implement a Gaussian filter using the SP
transformation.

116 Nonlinear Non-Gaussian Estimation

4.2.8 Particle Filter

We have seen above that drawing a large number of samples is one
way to approximate a PDF. We further saw that we could pass each
sample through a nonlinearity and recombine them on the other side to
get an approximation of the transformation of a PDF. In this section,
we extend this idea to an approximation of the Bayes filter, called the
particle filter (Thrun et al., 2001).

The particle filter is one of the only practical techniques able to han-
dle non-Gaussian noise and nonlinear observation and motion models.
It is practical in that it is very easy to implement; we do not even need
to have analytical expressions for f(·) and g(·), nor for their derivatives.

There are actually many different flavours of the particle filter; we
will outline a basic version and indicate where the variations typically
occur. The approach taken here is based on sample importance resam-
pling where the so-called proposal PDF is the prior PDF in the Bayes
filter, propagated forward using the motion model and the latest motion
measurement, vk. This version of the particle filter is sometimes called
the bootstrap algorithm, the condensation algorithm, or the survival-of-
the-fittest algorithm.

PF Algorithm

Using the notation from the section on the Bayes filter, the main steps
in the particle filter are as follows:

1. Draw M samples from the joint density comprising the prior and
the motion noise:[

x̂k−1,m

wk,m

]
← p (xk−1|x̌0,v1:k−1,y1:k−1) p(wk), (4.65)

where m is the unique particle index. In practice we can just draw
from each factor of this joint density separately.

2. Generate a prediction of the posterior PDF by using vk. This is done
by passing each prior particle/noise sample through the nonlinear
motion model:

x̌k,m = f (x̂k−1,m,vk,wk,m) . (4.66)

These new ‘predicted particles’ together approximate the density,
p (xk|x̌0,v1:k,y1:k−1).

3. Correct the posterior PDF by incorporating yk. This is done indi-
rectly in two steps:

– First, assign a scalar weight, wk,m, to each predicted particle based
on the divergence between the desired posterior and the predicted
posterior for each particle:

wk,m =
p (x̌k,m|x̌0,v1:k,y1:k)

p (x̌k,m|x̌0,v1:k,y1:k−1)
= η p (yk|x̌k,m) , (4.67)

4.2 Recursive Discrete-Time Estimation 117

Figure 4.13

Block-diagram

representation of

particle filter.

f(x,v,w)vk

yk

sampled prior belief

input

measurement

sampled process noise

predicted belief

sampled
posterior beliefresample

(using weights)x̂k�1,m

x̌k,m

x̂k,m

wk,m = ⌘ p(yk|x̌k,m)g(x,0)

sample weight

wk,m

where η is a normalization constant. This is typically accomplished
in practice by simulating an expected sensor reading, y̌k,m, using
the nonlinear observation model:

y̌k,m = g (x̌k,m,0) . (4.68)

We then assume p (yk|x̌k,m) = p (yk|y̌k,m), where the right-hand
side is a known density (e.g., Gaussian).

– Resample the posterior based on the weight assigned to each pre-
dicted posterior particle:

x̂k,m
resample←− {x̌k,m, wk,m} . (4.69)

This can be done in several different ways. Madow provides a
simple systematic technique to do resampling, which we describe
below.

Figure 4.13 captures these steps in a block diagram.
Some additional comments should be made at this point to help get

this basic version of the particle filter working in practical situations:

(i) How do we know how many particles to use? It depends very
much on the specific estimation problem. Typically hundreds
of particles are used for low-dimensional problems (e.g., x =
(x, y, θ)).

(ii) We can dynamically pick the number of particles online using a
heuristic such as

∑
wk,m ≥ wthresh, a threshold. In other words,

we keep adding particles/samples and repeating steps 1 through
3 until the sum of the weights exceeds an experimentally deter-
mined threshold.

(iii) We do not necessarily need to resample every time we go through
the algorithm. We can delay resampling, but then need to carry
the weights forward to the next iteration of the algorithm.

(iv) To be on the safe side, it is wise to add a small percentage of
samples in during Step 1 that are uniformly drawn from the
entire state sample space. This protects against outlier sensor
measurements/vehicle movements.

118 Nonlinear Non-Gaussian Estimation

(v) For high-dimensional state estimation problems, the particle
filter can become computationally intractable. If too few par-
ticles are used, the densities involved are undersampled and
give highly skewed results. The number of samples needed goes
up exponentially with the dimension of the state space. Thrun
et al. (2001) offer some alternative flavours of the particle filter
to combat sample impoverishment.

(vi) The particle filter is an ‘anytime’ algorithm. That is, we can just
keep adding particles until we run out of time, then resample
and give an answer. Using more particles always helps, but
comes with a computational cost.

(vii) The Cramér-Rao lower bound (CRLB) is set by the uncertainty
in the measurements that we have available. Using more sam-
ples does not allow us to do better than the CRLB. See Sec-
tion 2.2.11 for some discussion of the CRLB.

Resampling

A key aspect of particle filters is the need to resample the posterior
density according to weights assigned to each current sample. One way
to do this is to use the systematic resampling method described by
Madow (1949). We assume we have M samples and that each of these
is assigned an unnormalized weight, wm ∈ R > 0. From the weights, we
create bins with boundaries, βm, according to

βm =

∑m
n=1wn∑M
`=1w`

. (4.70)

The βm define the boundaries of M bins on the interval [0, 1]:

0 ≤ β1 ≤ β2 ≤ . . . ≤ βM−1 ≤ 1,

where we note that we will have βM ≡ 1. We then select a random
number, ρ, sampled from a uniform density on [0, 1). For M iterations
we add to the new list of samples, the sample whose bin contains ρ.
At each iteration we step ρ forward by 1/M . The algorithm guarantees
that all bins whose size is greater than 1/M will have a sample in the
new list.

4.2.9 Sigmapoint Kalman Filter

Another way we can attempt to improve on the basic EKF is to get
rid of the idea of linearizing altogether and instead use the sigmapoint
transformation to pass PDFs through the nonlinear motion and obser-
vation models. The result is the sigmapoint Kalman filter (SPKF), also

4.2 Recursive Discrete-Time Estimation 119

sometimes called the unscented Kalman filter (UKF). We will discuss
the prediction and correction steps separately9:

Prediction Step

The prediction step is a fairly straightforward application of the sigma-
point transformation since we are simply trying to bring our prior
forward in time through the motion model. We employ the following

steps to go from the prior belief,
{

x̂k−1, P̂k−1

}
, to the predicted belief,

{
x̌k, P̌k

}
:

1. Both the prior belief and the motion noise have uncertainty, so these
are stacked together in the following way:

µz =

[
x̂k−1

0

]
, Σzz =

[
P̂k−1 0

0 Qk

]
, (4.71)

where we see that {µz,Σzz} is still a Gaussian representation. We
let L = dimµz.

2. Convert {µz,Σzz} to a sigmapoint representation:

LLT = Σzz, (Cholesky decomposition, L lower-triangular) (4.72a)

z0 = µz, (4.72b)

zi = µz +
√
L+ κ coliL,

i = 1 . . . L
(4.72c)

zi+L = µz −
√
L+ κ coliL. (4.72d)

3. Unstack each sigmapoint into state and motion noise,

zi =

[
x̂k−1,i

wk,i

]
, (4.73)

and then pass each sigmapoint through the nonlinear motion model
exactly:

x̌k,i = f (x̂k−1,i,vk,wk,i) , i = 0 . . . 2L. (4.74)

Note that the latest input, vk, is required.

4. Recombine the transformed sigmapoints into the predicted belief,{
x̌k, P̌k

}
, according to

x̌k =
2L∑

i=0

αi x̌k,i, (4.75a)

P̌k =
2L∑

i=0

αi (x̌k,i − x̌k) (x̌k,i − x̌k)
T
, (4.75b)

9 These are sometimes handled together in a single step, but we prefer to think of each of

these as a separate application of the sigmapoint transformation.

120 Nonlinear Non-Gaussian Estimation

where

αi =

{ κ
L+κ

i = 0
1
2

1
L+κ

otherwise
. (4.76)

Next we will look at a second application of the sigmapoint transfor-
mation to implement the correction step.

Correction Step

This step is a little more complicated. We look back to Section 4.2.4 and
recall that the conditional Gaussian density for xk (i.e., the posterior)
is

p(xk|x̌0,v1:k,y0:k)

= N
(
µx,k + Σxy,kΣ

−1
yy,k(yk − µy,k)︸ ︷︷ ︸

x̂k

,Σxx,k −Σxy,kΣ
−1
yy,kΣyx,k︸ ︷︷ ︸

P̂k

)
, (4.77)

where we have defined x̂k as the mean and P̂k as the covariance. In this
form, we can write the generalized Gaussian correction-step equations
as

Kk = Σxy,kΣ
−1
yy,k, (4.78a)

P̂k = P̌k −KkΣ
T
xy,k, (4.78b)

x̂k = x̌k + Kk

(
yk − µy,k

)
. (4.78c)

We will use the SP transformation to come up with better versions of
µy,k, Σyy,k, and Σxy,k. We employ the following steps:

1. Both the predicted belief and the observation noise have uncertainty,
so these are stacked together in the following way:

µz =

[
x̌k
0

]
, Σzz =

[
P̌k 0
0 Rk

]
, (4.79)

where we see that {µz,Σzz} is still a Gaussian representation. We
let L = dimµz.

2. Convert {µz,Σzz} to a sigmapoint representation:

LLT = Σzz, (Cholesky decomposition, L lower-triangular) (4.80a)

z0 = µz, (4.80b)

zi = µz +
√
L+ κ coliL,

i = 1 . . . L
(4.80c)

zi+L = µz −
√
L+ κ coliL. (4.80d)

3. Unstack each sigmapoint into state and observation noise,

zi =

[
x̌k,i
nk,i

]
, (4.81)

4.2 Recursive Discrete-Time Estimation 121

and then pass each sigmapoint through the nonlinear observation
model exactly:

y̌k,i = g (x̌k,i,nk,i) . (4.82)

4. Recombine the transformed sigmapoints into the desired moments:

µy,k =
2L∑

i=0

αi y̌k,i, (4.83a)

Σyy,k =
2L∑

i=0

αi
(
y̌k,i − µy,k

) (
y̌k,i − µy,k

)T
, (4.83b)

Σxy,k =
2L∑

i=0

αi (x̌k,i − x̌k)
(
y̌k,i − µy,k

)T
, (4.83c)

where

αi =

{ κ
L+κ

i = 0
1
2

1
L+κ

otherwise
. (4.84)

These are plugged into the generalized Gaussian correction-step
equations above to complete the correction step.

Two advantages of the SPKF are that it (i) does not require any analyt-
ical derivatives and (ii) uses only basic linear algebra operations in the
implementation. Moreover, we do not even need the nonlinear motion
and observation models in closed form; they could just be black-box
software functions.

Comparing Terms to EKF

We see in the correction step that the matrix Σyy,k takes on the role of
GkP̌kG

T
k +R′k in the EKF. We can see this more directly by linearizing

the observation model (about the predicted state) as in the EKF:

y̌k,i = g (x̌k,i,nk,i) ≈ g(x̌k,0) + Gk (x̌k,i − x̌k) + n′k,i. (4.85)

Substituting this approximation into (4.83a), we can see that

y̌k,i − µy,k ≈ Gk (x̌k,i − x̌k) + n′k,i. (4.86)

Substituting this into (4.83b), we have that

Σyy,k ≈ Gk

2L∑

i=0

αi (x̌k,i − x̌k) (x̌k,i − x̌k)
T

︸ ︷︷ ︸
P̌k

GT
k +

2L∑

i=0

αin
′
k,in

′T
k,i

︸ ︷︷ ︸
R′k

+ Gk

2L∑

i=0

αi (x̌k,i − x̌k) n′
T

k,i

︸ ︷︷ ︸
0

+
2L∑

i=0

αin
′
k,i (x̌k,i − x̌k)

T

︸ ︷︷ ︸
0

GT
k , (4.87)

122 Nonlinear Non-Gaussian Estimation

where some of the terms are zero owing to the block-diagonal structure
of Σzz above. For Σxy,k, by substituting our approximation into (4.83c),
we have

Σxy,k ≈
2L∑

i=0

αi (x̌k,i − x̌k) (x̌k,i − x̌k)
T

︸ ︷︷ ︸
P̌k

GT
k +

2L∑

i=0

αi (x̌k,i − x̌k) n′
T

k,i

︸ ︷︷ ︸
0

,

(4.88)
so that

Kk = Σxy,kΣ
−1
yy,k ≈ P̌kG

T
k

(
GkP̌kG

T
k + R′k

)−1
, (4.89)

which is what we had in the EKF.

Special Case of Linear Dependence on Measurement Noise

In the case that our nonlinear observation model has the special form

yk = g(xk) + nk, (4.90)

the SPKF correction step can be greatly sped up. Without loss of gen-
erality, we can break the sigmapoints into two categories based on the
block-diagonal partitioning in the matrix, Σzz, above; we say there
are 2N + 1 sigmapoints coming from the dimension of the state and
2(L − N) additional sigmapoints coming from the dimension of the
measurements. To make this convenient, we will re-order the indexing
on the sigmapoints accordingly:

y̌k,j =

{
g (x̌k,j) j = 0 . . . 2N
g (x̌k) + nk,j j = 2N + 1 . . . 2L+ 1

. (4.91)

We can then write our expression for µy,k as

µy,k =
2N∑

j=0

αjy̌k,j +
2L+1∑

j=2N+1

αjy̌k,j (4.92a)

=
2N∑

j=0

αjy̌k,j +
2L+1∑

j=2N+1

αj (g (x̌k) + nk,j) (4.92b)

=
2N∑

j=0

αjy̌k,j + g (x̌k)
2L+1∑

j=2N+1

αj (4.92c)

=
2N∑

j=0

βjy̌k,j, (4.92d)

4.2 Recursive Discrete-Time Estimation 123

where

βi =

{
αi +

∑2L+1
j=2N+1 αj i = 0

αi otherwise
(4.93a)

=

{
(κ+L−N)

N+(κ+L−N)
i = 0

1
2

1
N+(κ+L−N)

otherwise
. (4.93b)

The is the same form as the original weights (and they still sum to 1).
We can then easily verify that

Σyy,k =
2N∑

j=0

βj
(
y̌k,j − µy,k

) (
y̌k,j − µy,k

)T
+ Rk, (4.94)

with no approximation. This is already helpful in that we do not really
need all 2L + 1 sigmapoints but only 2N + 1 of them. This means we
do not need to call g(·) as many times, which can be expensive in some
situations.

We still have a problem, however. It is still necessary to invert Σyy,k,
which is size (L−N)× (L−N), to compute the Kalman gain matrix.
If the number of measurements, L − N , is large, this could be very
expensive. We can make further gains if we assume that the inverse of
Rk can be computed cheaply. For example, if Rk = σ21 then R−1

k =
σ−21. We proceed by noting that Σyy,k can be conveniently written as

Σyy,k = ZkZ
T
k + Rk, (4.95)

where

coljZk =
√
βj
(
y̌k,j − µy,k

)
. (4.96)

By the SMW identity from Section 2.2.7, we can then show that

Σ−1
yy,k =

(
ZkZ

T
k + Rk

)−1
(4.97a)

= R−1
k −R−1

k Zk

(
ZT
kR−1

k Zk + 1
)−1

︸ ︷︷ ︸
(2N+1)×(2N+1)

ZT
kR−1

k , (4.97b)

where we now only need to invert a (2N+1)×(2N+1) matrix (assuming
R−1
k is known).

4.2.10 Iterated Sigmapoint Kalman Filter

An iterated sigmapoint Kalman filter (ISPKF) has been proposed by
Sibley et al. (2006) that does better than the one-shot version. In this
case, we compute input sigmapoints around an operating point, xop,k,
at each iteration. At the first iteration, we let xop,k = x̌k, but this is
then improved with each subsequent iteration. We show all the steps
to avoid confusion:

124 Nonlinear Non-Gaussian Estimation

1. Both the predicted belief and the observation noise have uncertainty,
so these are stacked together in the following way:

µz =

[
xop,k

0

]
, Σzz =

[
P̌k 0
0 Rk

]
, (4.98)

where we see that {µz,Σzz} is still a Gaussian representation. We
let L = dimµz.

2. Convert {µz,Σzz} to a sigmapoint representation:

LLT = Σzz, (Cholesky decomposition, L lower-triangular) (4.99a)

z0 = µz, (4.99b)

zi = µz +
√
L+ κ coliL,

i = 1 . . . L
(4.99c)

zi+L = µz −
√
L+ κ coliL. (4.99d)

3. Unstack each sigmapoint into state and observation noise,

zi =

[
xop,k,i

nk,i

]
, (4.100)

and then pass each sigmapoint through the nonlinear observation
model exactly:

yop,k,i = g (xop,k,i,nk,i) . (4.101)

4. Recombine the transformed sigmapoints into the desired moments:

µy,k =
2L∑

i=0

αi yop,k,i, (4.102a)

Σyy,k =
2L∑

i=0

αi
(
yop,k,i − µy,k

) (
yop,k,i − µy,k

)T
, (4.102b)

Σxy,k =
2L∑

i=0

αi (xop,k,i − xop,k)
(
yop,k,i − µy,k

)T
. (4.102c)

Σxx,k =
2L∑

i=0

αi (xop,k,i − xop,k) (xop,k,i − xop,k)
T
, (4.102d)

where

αi =

{ κ
L+κ

i = 0
1
2

1
L+κ

otherwise
. (4.103)

At this point, Sibley et al. use the relationships between the SPKF and
EKF quantities to update the IEKF correction equations, (4.45), using

4.2 Recursive Discrete-Time Estimation 125

Figure 4.14

Stereo camera

example,

comparing the

inference (i.e.,

‘corrective’) step of

the IEKF, SPKF,

and ISPKF to the

full Bayesian

posterior, p(x|y).

We see that neither

of the sigmapoint

methods matches

up against the

MAP solution,

x̂map. Superficially,

the ISPKF seems

to come closer to

the mean of the

full posterior, x̄.

x

10 15 20 25 30 35

p

0

0.05

0.1

0.15

0.2

0.25

x̂map x̄

prior

posterior

x̂iekf

x̂spkf

x̂ispkf

p(x|y)
p(x)
x̂iekf

x̂spkf

x̂ispkf

x̂map

x̄

the statistical rather than analytical Jacobian quantities:

Kk = P̌kG
T
k︸ ︷︷ ︸

Σxy,k

(
GkP̌kG

T
k + R′k︸ ︷︷ ︸

Σyy,k

)−1

, (4.104a)

P̂k =
(
1−Kk Gk︸︷︷︸

Σyx,kΣ−1
xx,k

)
P̌k︸︷︷︸

Σxx,k

, (4.104b)

x̂k = x̌k + Kk

(
yk − g(xop,k,0)︸ ︷︷ ︸

µy,k

− Gk︸︷︷︸
Σyx,kΣ−1

xx,k

(x̌k − xop,k)
)
, (4.104c)

which results in

Kk = Σxy,kΣ
−1
yy,k, (4.105a)

P̂k = Σxx,k −KkΣyx,k, (4.105b)

x̂k = x̌k + Kk

(
yk − µy,k −Σyx,kΣ

−1
xx,k(x̌k − xop,k)

)
. (4.105c)

Initially, we set the operating point to be the mean of the prior: xop,k =
x̌k. At subsequent iterations we set it to be the best estimate so far:

xop,k ← x̂k. (4.106)

The process terminates when the change from one iteration to the next
becomes sufficiently small.

We have seen that the first iteration of the IEKF results in the EKF
method, and this is also true for the SPKF/ ISPKF. Setting xop,k = x̌k
in (4.105c) results in

x̂k = x̌k + Kk

(
yk − µy,k

)
, (4.107)

which is the same as the one-shot method in (4.78c).

126 Nonlinear Non-Gaussian Estimation

Figure 4.15

Histogram of

estimator values

for 1, 000, 000 trials

of the stereo

camera experiment

where each time a

new xtrue is

randomly drawn

from the prior and

a new ymeas is

randomly drawn

from the

measurement

model. The dashed

line marks the

mean of the prior,

x̌, and the solid

line marks the

expected value of

the iterated

sigmapoint

estimator, x̂ispkf ,

over all the trials.

The gap between

dashed and solid is

emean ≈ −3.84 cm,

which indicates a

small bias, and the

average squared

error is esq ≈ 4.32

m2.

10 12 14 16 18 20 22 24 26

x̂ispkf

0

0.05

0.1

0.15

0.2

0.25

p
(x̂

is
p
k
f)

EXN [x̂ispkf] x̌

4.2.11 ISPKF Seeks the Posterior Mean

Now, the question we must ask ourselves is, how do the sigmapoint esti-
mates relate to the full posterior? Figure 4.14 compares the sigmapoint
methods to the full posterior and iterated linearization (i.e., MAP) on
our stereo camera example where we used

xtrue = 26 [m], ymeas =
fb

xtrue

− 0.6 [pixel],

again to exaggerate the differences between the various methods. Our
implementations of the sigmapoint methods used κ = 2, which is ap-
propriate for a Gaussian prior. Much like the EKF, we see that the
one-shot SPKF method bears no obvious relationship to the full poste-
rior. However, the ISPKF method appears to come closer to the mean,
x̄, rather than the mode (i.e., MAP) value, x̂map. Numerically, the num-
bers of interest are:

x̂map = 24.5694, x̄ = 24.7770,

x̂iekf = 24.5694, x̂ispkf = 24.7414.

We see that the IEKF solution matches the MAP one and that the
ISPKF solution is close to (but not exactly) the mean.

Now, we consider the question, how well does the iterated sigmapoint
method capture xtrue? Once again, we compute the performance over
a large number of trials (using the parameters in (4.5)). The results
are shown in Figure 4.15. We see that the average difference of the
estimator, x̂ispkf , and the ground-truth, xtrue, is emean ≈ −3.84 cm,
demonstrating a small bias. This is significantly better than the MAP
estimator, which had a bias of −33.0 cm on this same metric. The
average squared error is approximately the same, with esq ≈ 4.32 m2.

Although it is difficult to show analytically, it is plausible to think
that the iterated sigmapoint method is trying to converge to the mean
of the full posterior rather than the mode. If what we care about is

4.3 Batch Discrete-Time Estimation 127

Figure 4.16

Taxonomy of the

different filtering

methods, showing

their relationships

to the Bayes filter.

pass PDFs through
linearized motion
and observation

models

approximate PDFs
as Gaussian

approximate PDFs
using a large number of

random samples

deterministically sample
PDFs and pass through
nonlinear motion and
observation models

Bayes filter

Gaussian filter particle filter

(iterated)
sigmapoint

Kalman filter

(iterated)
extended

Kalman filter

matching up against groundtruth, matching the mean of the full pos-
terior could be an interesting avenue.

4.2.12 Taxonomy of Filters

Figure 4.16 provides a summary of the methods we have discussed in
this section on nonlinear recursive state estimation. We can think of
each of the methods having a place in a larger taxonomy, with the Bayes
filter at the top position. Depending on the approximations made, we
wind up with the different filters discussed.

It is also worth recalling the role of iteration in our filter methods.
Without iteration, both the EKF and SPKF were difficult to relate
back to the full Bayesian posterior. However, we saw that the ‘mean’ of
the IEKF converges to the MAP solution, while the mean of the ISPKF
comes quite close to the mean of the full posterior. We will use these
lessons in the next section on batch estimation, where we will attempt
to estimate entire trajectories at once.

4.3 Batch Discrete-Time Estimation

In this section, we take a step back and question how valid the Bayes
filter really is given the fact that we always have to implement it approx-
imately and therefore are violating the Markov assumption on which it
is predicated. We propose that a much better starting point in deriv-
ing nonlinear filters (i.e., better than the Bayes filter) is the nonlinear
version of the batch estimator we first introduced in the chapter on
linear-Gaussian estimation. Setting the estimation problem up as an
optimization problem affords a different perspective that helps explain
the shortcomings of all variants of the EKF.

128 Nonlinear Non-Gaussian Estimation

4.3.1 Maximum A Posteriori

In this section, we revisit to our approach to linear-Gaussian estimation
problems and batch optimization, and we introduce the Gauss-Newton
method to solve our nonlinear version of this estimation problem. This
optimization approach can be viewed as the MAP approach once again.
We first set up our objective function that we seek to minimize, then
consider methods to solve it.

Objective Function

We seek to construct an objective function that we will minimize with
respect to

x =




x0

x1

...
xK


 , (4.108)

which represents the entire trajectory that we want to estimate.
Recall the linear-Gaussian objective function given by Equations (3.10)

and (3.9). It took the form of a squared Mahalanobis distance and was
proportional to the negative log likelihood of the state given all the
data. For the nonlinear case, we define the errors with respect to the
prior and measurements to be

ev,k(x) =

{
x̌0 − x0, k = 0
f (xk−1,vk,0)− xk, k = 1 . . .K

, (4.109a)

ey,k(x) = yk − g (xk,0) , k = 0 . . .K, (4.109b)

so that the contributions to the objective function are

Jv,k(x) =
1

2
ev,k(x)T W−1

v,k ev,k(x), (4.110a)

Jy,k(x) =
1

2
ey,k(x)T W−1

y,k ey,k(x). (4.110b)

The overall objective function is then

J(x) =
K∑

k=0

(Jv,k(x) + Jy,k(x)) . (4.111)

Note that we can generally think of Wv,k and Wy,k simply as symmetric
positive-definite matrix weights. By choosing these to be related to
the covariances of the measurement noises, minimizing the objective
function is equivalent to maximizing the joint likelihood of the state
given all the data.

4.3 Batch Discrete-Time Estimation 129

We further define

e(x) =

[
ev(x)
ey(x)

]
, ev(x) =




ev,0(x)
...

ev,K(x)


 , ey(x) =




ey,0(x)
...

ey,K(x)


 ,

(4.112a)

W = diag (Wv,Wy) , Wv = diag (Wv,0, . . . ,Wv,K) , (4.112b)

Wy = diag (Wy,0, . . . ,Wy,K) , (4.112c)

so that the objective function can be written as

J(x) =
1

2
e(x)T W−1 e(x). (4.113)

We can further define the modified error term,

u(x) = L e(x), (4.114)

where LTL = W−1 (i.e., from a Cholesky decomposition since W is
symmetric positive-definite). Using these definitions, we can write the
objective function simply as

J(x) =
1

2
u(x)Tu(x). (4.115)

This is precisely in a quadratic form, but not with respect to the design
variables, x. Our goal is to determine the optimum design parameter,
x̂, that minimizes the objective function:

x̂ = arg min
x
J(x). (4.116)

We can apply many nonlinear optimization techniques to minimize this
expression due to its quadratic nature. A typical technique to use is
Gauss-Newton optimization, but there are many other possibilities. The
more important issue is that we are considering this as a nonlinear
optimization problem. We will derive the Gauss-Newton algorithm by
way of Newton’s method.

Newton’s Method

Newton’s method works by iteratively approximating the (differen-
tiable) objective function by a quadratic function and then jumping to
(or moving towards) the minimum. Suppose we have an initial guess,
or operating point, for the design parameter, xop. We use a three-term
Taylor-series expansion to approximate J as a quadratic function,

J(xop + δx) ≈ J(xop) +

(
∂J(x)

∂x

∣∣∣∣
xop︸ ︷︷ ︸

Jacobian

)
δx +

1

2
δxT

(
∂2J(x)

∂x∂xT

∣∣∣∣
xop︸ ︷︷ ︸

Hessian

)
δx,

(4.117)

130 Nonlinear Non-Gaussian Estimation

of δx, a ‘small’ change to the initial guess, xop. We note that the sym-
metric Hessian matrix needs to be positive-definite for this method
to work (otherwise there is no well-defined minimum to the quadratic
approximation).

The next step is to find the value of δx that minimizes this quadratic
approximation. We can do this by taking the derivative with respect
to δx and setting to zero to find a critical point:

∂J(xop + δx)

∂ δx
=

(
∂J(x)

∂x

∣∣∣∣
xop

)
+ δx∗

T

(
∂2J(x)

∂x∂xT

∣∣∣∣
xop

)
= 0

⇒
(
∂2J(x)

∂x∂xT

∣∣∣∣
xop

)
δx∗ = −

(
∂J(x)

∂x

∣∣∣∣
xop

)T
. (4.118)

The last line is just a linear system of equations and can be solved
when the Hessian is invertible (which it must be, since it was assumed
to be positive-definite above). We may then update our operating point
according to:

xop ← xop + δx∗. (4.119)

This procedure iterates until δx∗ becomes sufficiently small. A few com-
ments about Newton’s method:

(i) It is ‘locally convergent’, which means the successive approx-
imations are guaranteed to converge to a solution when the
initial guess is already close enough to the solution. For a com-
plex nonlinear objective function, this is really the best we can
expect (i.e., global convergence is difficult to achieve).

(ii) The rate of convergence is quadratic (i.e., it converges much
faster than simple gradient descent).

(iii) It can be difficult to implement because the Hessian must be
computed.

The Gauss-Newton method approximates Newton’s method further, in
the case of a special form of objective function.

Gauss-Newton Method

Let us now return to the nonlinear quadratic objective function we have
in Equation (4.115). In this case, the Jacobian and Hessian matrices

4.3 Batch Discrete-Time Estimation 131

are

Jacobian:
∂J(x)

∂x

∣∣∣∣
xop

= u(xop)T
(
∂u(x)

∂x

∣∣∣∣
xop

)
, (4.120a)

Hessian:
∂2J(x)

∂x∂xT

∣∣∣∣
xop

=

(
∂u(x)

∂x

∣∣∣∣
xop

)T(
∂u(x)

∂x

∣∣∣∣
xop

)

+
M∑

i=1

ui(xop)

(
∂2ui(x)

∂x∂xT

∣∣∣∣
xop

)
,

(4.120b)

where u(x) =
(
u1(x), . . . , ui(x), . . . , uM(x)

)
. We have so far not made

any approximations.
Looking to the expression for the Hessian, we assert that near the

minimum of J , the second term is small relative to the first. One intu-
ition behind this is that near the optimum, we should have ui(x) small
(and ideally zero). We thus approximate the Hessian according to

∂2J(x)

∂x∂xT

∣∣∣∣
xop

≈
(
∂u(x)

∂x

∣∣∣∣
xop

)T(
∂u(x)

∂x

∣∣∣∣
xop

)
, (4.121)

which does not involve any second derivatives. Substituting (4.120a)
and (4.121) into the Newton update represented by (4.118), we have

(
∂u(x)

∂x

∣∣∣∣
xop

)T(
∂u(x)

∂x

∣∣∣∣
xop

)
δx∗ = −

(
∂u(x)

∂x

∣∣∣∣
xop

)T
u(xop), (4.122)

which is the classic Gauss-Newton update method. Again, this is iter-
ated to convergence.

Gauss-Newton Method: Alternative Derivation

The other way to think about the Gauss-Newton method is to start
with a Taylor expansion of u(x), instead of J(x). The approximation
in this case is

u(xop + δx) ≈ u(xop) +

(
∂u(x)

∂x

∣∣∣∣
xop

)
δx. (4.123)

Substituting into J , we have

J(xop + δx)

≈ 1

2

(
u(xop) +

(
∂u(x)

∂x

∣∣∣∣
xop

)
δx

)T (
u(xop) +

(
∂u(x)

∂x

∣∣∣∣
xop

)
δx

)
.

(4.124)

132 Nonlinear Non-Gaussian Estimation

Minimizing with respect to δx gives

∂J(xop + δx)

∂ δx
=

(
u(xop) +

(
∂u(x)

∂x

∣∣∣∣
xop

)
δx∗
)T (

∂u(x)

∂x

∣∣∣∣
xop

)
= 0

⇒
(
∂u(x)

∂x

∣∣∣∣
xop

)T(
∂u(x)

∂x

∣∣∣∣
xop

)
δx∗ = −

(
∂u(x)

∂x

∣∣∣∣
xop

)T
u(xop),

(4.125)

which is the same update as in (4.122). We will employ this shortcut
to the Gauss-Newton method in a later chapter when confronted with
dealing with nonlinearities in the form of rotations.

Practical Patches to Gauss-Newton

Since the Gauss-Newton method is not guaranteed to converge (owing
to the approximate Hessian matrix), we can make two practical patches
to help with convergence:

(i) Once the optimal update is computed, δx∗, we perform the
actual update according to

xop ← xop + α δx∗, (4.126)

where α ∈ [0, 1] is a user-definable parameter. Performing a
line search for the best value of α works well in practice. This
works because δx∗ is a descent direction; we are just adjusting
how far we step in this direction to be a bit more conservative
towards robustness (rather than speed).

(ii) We can use the Levenberg-Marquardt modification to the Gauss-
Newton method:
((

∂u(x)

∂x

∣∣∣∣
xop

)T(
∂u(x)

∂x

∣∣∣∣
xop

)
+ λD

)
δx∗

= −
(
∂u(x)

∂x

∣∣∣∣
xop

)T
u(xop), (4.127)

where D is a positive diagonal matrix. When D = 1, we can
see that as λ ≥ 0 becomes very big, the Hessian is relatively
small, and we have

δx∗ ≈ − 1

λ

(
∂u(x)

∂x

∣∣∣∣
xop

)T
u(xop), (4.128)

which corresponds to a very small step in the direction of steep-
est descent (i.e., the negative gradient). When λ = 0, we recover
the usual Gauss-Newton update. The Levenberg-Marquardt method
can work well in situations when the Hessian approximation is

4.3 Batch Discrete-Time Estimation 133

poor or is poorly conditioned by slowly increasing λ to improve
conditioning.

We can also combine both of these patches to give us the most options
in controlling convergence.

Gauss-Newton Update in Terms of Errors

Recalling that

u(x) = L e(x), (4.129)

with L a constant, we substitute this into the Gauss-Newton update
to see that, in terms of the error, e(x), we have

(
HTW−1H

)
δx∗ = HTW−1 e(xop), (4.130)

with

H = − ∂e(x)

∂x

∣∣∣∣
xop

, (4.131)

and where we have used LTL = W−1.
Another way to view this is to notice that

J(xop + δx) ≈ 1

2
(e(xop)−H δx)

T
W−1 (e(xop)−H δx) , (4.132)

where e(xop) = L−1u(xop), is the quadratic approximation of the ob-
jective function in terms of the error. Minimizing this with respect to
δx yields the Gauss-Newton update.

Batch Estimation

We now return to our specific estimation problem and apply the Gauss-
Newton optimization method. We will use the ‘shortcut’ approach and
thus begin by approximating our error expressions:

ev,k(xop + δx) ≈
{

ev,0(xop)− δx0, k = 0
ev,k(xop) + Fk−1δxk−1 − δxk, k = 1 . . .K

,

(4.133)

ey,k(xop + δx) ≈ ey,k(xop)−Gkδxk, k = 0 . . .K, (4.134)

where

ev,k(xop) ≈
{

x̌0 − xop,0, k = 0
f (xop,k−1,vk,0)− xop,k, k = 1 . . .K

, (4.135)

ey,k(xop) ≈ yk − g (xop,k,0) , k = 0 . . .K, (4.136)

and we require definitions of the Jacobians of the nonlinear motion and
observations models given by

Fk−1 =
∂f(xk−1,vk,wk)

∂xk−1

∣∣∣∣
xop,k−1,vk,0

, Gk =
∂g(xk,nk)

∂xk

∣∣∣∣
xop,k,0

.

(4.137)

134 Nonlinear Non-Gaussian Estimation

Then, if we let the matrix weights be given by

Wv,k = Q′k, Wy,k = R′k, (4.138)

we can define

δx =




δx0

δx1

δx2

...
δxK



, H =




1
−F0 1

−F1
. . .
. . . 1

−FK−1 1
G0

G1

G2

. . .

GK




, (4.139a)

e(xop) =




ev,0(xop)
ev,1(xop)

...
ev,K(xop)
ey,0(xop)
ey,1(xop)

...
ey,K(xop)




, (4.139b)

and

W = diag
(
P̌0,Q

′
1, . . . ,Q

′
K ,R

′
0,R

′
1, . . . ,R

′
K

)
, (4.140)

which are identical in structure to the matrices in the linear batch
case, summarized in (3.3.1), with a few extra subscripts to show time
dependence as well as the Jacobians of the motion/observation models
with respect to the noise variables. Under these definitions, our Gauss-
Newton update is given by

(
HTW−1H

)
︸ ︷︷ ︸

block-tridiagonal

δx∗ = HTW−1e(xop). (4.141)

This is very comparable to the linear-Gaussian batch case. The key
difference to remember here is that we are in fact iterating our solution
for the entire trajectory, x. We could at this point recover the recursive
EKF from our batch solution using similar logic to the linear-Gaussian
case.

4.3 Batch Discrete-Time Estimation 135

4.3.2 Bayesian Inference

We can also get to the same batch update equations from a Bayesian-
inference perspective. Assume we begin with an initial guess for the
entire trajectory, xop. We can linearize the motion model about this
guess and construct a prior over the whole trajectory using all the
inputs. The linearized motion model is

xk ≈ f(xop,k−1,vk,0) + Fk−1 (xk−1 − xop,k−1) + w′k, (4.142)

where the Jacobian, Fk−1, is the same as the previous section. After a
bit of manipulation, we can write this in lifted form as

x = F (ν + w′) , (4.143)

where

ν =




x̌0

f(xop,0,v1,0)− F0xop,0

f(xop,1,v2,0)− F1xop,1

...
f(xop,K−1,vK ,0)− FK−1xop,K−1



, (4.144a)

F =




1
F0 1

F1F0 F1 1
...

...
...

. . .

FK−2 · · ·F0 FK−2 · · ·F1 FK−2 · · ·F2 · · · 1
FK−1 · · ·F0 FK−1 · · ·F1 FK−1 · · ·F2 · · · FK−1 1



,

(4.144b)

Q′ = diag
(
P̌0,Q

′
1,Q

′
2, . . . ,Q

′
K

)
, (4.144c)

and w′ ∼ N (0,Q′). For the mean of the prior, x̌, we then simply have

x̌ = E [x] = E [F (ν + w′)] = Fν. (4.145)

For the covariance of the prior, P̌, we have

P̌ = E
[
(x− E[x])(x− E[x])T

]
= FE

[
w′w′

T
]
FT = FQ′FT . (4.146)

Thus, the prior can be summarized as x ∼ N (Fν,FQ′FT). The (·)′
notation is used to indicate that the Jacobian with respect to the noise
is incorporated into the quantity.

The linearized observation model is

yk ≈ g (xop,k,0) + Gk (xk−1 − xop,k−1) + n′k, (4.147)

which can be written in lifted form as

y = yop + G (x− xop) + n′, (4.148)

136 Nonlinear Non-Gaussian Estimation

where

yop =




g(xop,0,0)
g(xop,1,0)

...
g(xop,K ,0)


 , (4.149a)

G = diag (G0,G1,G2, . . . ,GK) , (4.149b)

R = diag (R′0,R
′
1,R

′
2, . . . ,R

′
K) , (4.149c)

and n′ ∼ N (0,R′). It is fairly easy to see that

E [y] = yop + G (x̌− xop) , (4.150a)

E
[
(y − E[y])(y − E[y])T

]
= GP̌GT + R′, (4.150b)

E
[
(y − E[y])(x− E[x])T

]
= GP̌. (4.150c)

Again, the (·)′ notation is used to indicate that the Jacobian with
respect to the noise is incorporated into the quantity.

With these quantities in hand, we can write a joint density for the
lifted trajectory and measurements as

p(x,y|ν) = N
([

x̌
yop + G (x̌− xop)

]
,

[
P̌ P̌GT

GP̌ GP̌GT + R′

])
,

(4.151)
which is quite similar to the expression for the IEKF situation in (4.42),
but now for the whole trajectory rather than just one timestep. Us-
ing the usual relationship from (2.53b), we can immediately write the
Gaussian posterior as

p(x|ν,y) = N
(
x̂, P̂

)
, (4.152)

where

K = P̌GT
(
GP̌GT + R′

)−1
, (4.153a)

P̂ = (1−KG) P̌, (4.153b)

x̂ = x̌ + K (y − yop −G(x̌− xop)) . (4.153c)

Using the SMW identity from (2.75), we can rearrange the equation
for the posterior mean to be
(
P̌−1 + GTR′

−1

G
)
δx∗ = P̌−1 (x̌− xop)+GTR′

−1

(y − yop) , (4.154)

where δx∗ = x̂− xop. Inserting the details of the prior, this becomes

(
F−TQ′

−1

F−1 + GTR′
−1

G
)

︸ ︷︷ ︸
block-tridiagonal

δx∗

= F−TQ′
−1 (
ν − F−1xop

)
+ GTR′

−1

(y − yop) . (4.155)

4.3 Batch Discrete-Time Estimation 137

Then, under the definitions

H =

[
F−1

G

]
, W = diag (Q′,R′) , e(xop) =

[
ν − F−1xop

y − yop

]
,

(4.156)
we can rewrite this as

(
HTW−1H

)
︸ ︷︷ ︸

block-tridiagonal

δx∗ = HTW−1e(xop), (4.157)

which is identical to the update equation from the previous section. As
usual, we iterate to convergence. The difference between the Bayesian
and MAP approaches basically comes down to on which side of the
SMW identity one begins; plus, the Bayesian approach produces a co-
variance explicitly, although we have shown that the same thing can
be extracted from the MAP approach. Note that it was our choice
to iteratively relinearize about the mean of the best estimate so far,
which caused the Bayesian approach to have the same ‘mean’ as the
MAP solution. We saw this phenomenon previously in the IEKF sec-
tion. We could also imagine making different choices than linearization
in the batch case (e.g., particles, sigmapoints) to compute the required
moments for the update equations, but we will not explore these pos-
sibilities here.

4.3.3 Maximum Likelihood

In this section, we consider a simplified version of our batch estimation
problem, where we throw away the prior and use only the measurements
for our solution.

Maximum Likelihood via Gauss-Newton

We will assume the observation model takes on a simplified form in
which the measurement noise is purely additive (i.e., outside the non-
linearity):

yk = gk(x) + nk, (4.158)

where nk ∼ N (0,Rk). Note that in this case, we allow for the possibility
that the measurement function is changing with k and that it could
depend on an arbitrary portion of the state, x. We need no longer
think of k as a time index, simply as a measurement index.

Without the prior, our objective function takes the form

J(x) =
1

2

∑

k

(yk − gk(x))
T

R−1
k (yk − gk(x)) = − log p(y|x) + C,

(4.159)
where C is a constant. Without the prior term in the objective function,

138 Nonlinear Non-Gaussian Estimation

we refer to this as a maximum likelihood (ML) problem because finding
the solution that minimizes the objective function also maximizes the
likelihood of the measurements10:

x̂ = arg min
x
J(x) = arg max

x
p(y|x). (4.160)

We can still use the Gauss-Newton algorithm to solve the ML prob-
lem, just as in the MAP case. We begin with an initial guess for the
solution, xop. We then compute an optimal update, δx∗, by solving
(∑

k

Gk(xop)TR−1
k Gk(xop)

)
δx∗ =

∑

k

Gk(xop)TR−1
k (yk − gk(xop)) ,

(4.161)
where

Gk(x) =
∂gk(x)

∂x
(4.162)

is the Jacobian of the observation model with respect to the state.
Finally, we apply the optimal update to our guess,

xop ← xop + δx∗, (4.163)

and iterate to convergence. Once converged, we take x̂ = xop as our
estimate. At convergence, we should have that

∂J(x)

∂xT

∣∣∣∣
x̂

= −
∑

k

Gk(x̂)TR−1
k (yk − gk(x̂)) = 0 (4.164)

for a minimum.
We will come back to this ML setup when discussing a problem called

bundle adjustment in the later chapters.

Maximum Likelihood Bias Estimation

We have already seen in the simple example at the start of this chapter
that the MAP method is biased with respect to average mean error. It
turns out that the ML method is biased as well (unless the measurement
model is linear). A classic paper by Box (1971) derives an approximate
expression for the bias in ML, and we use this section to present it.

We will see below that we need a second-order Taylor expansion of
g(x) while only a first-order expansion of G(x). Thus, we have the
following approximate expressions:

gk(x̂) = gk(x + δx) ≈ gk(x) + Gk(x) δx +
1

2

∑

j

1j δx
TGjk(x) δx,

(4.165a)

Gk(x̂) = Gk(x + δx) ≈ Gk(x) +
∑

j

1j δx
TGjk(x), (4.165b)

10 This is because the logarithm is a monotonically increasing function. Another way of

looking at ML is that it is MAP with a uniform prior over all possible solutions.

4.3 Batch Discrete-Time Estimation 139

where

gk(x) =
[
gjk(x)

]
j
, Gk(x) =

∂gk(x)

∂x
, Gjk =

∂gjk(x)

∂x∂xT
, (4.166)

and 1j is the jth column of the identity matrix. We have indicated
whether each Jacobian/Hessian is evaluated at x (the true state) or x̂
(our estimate). In this section, the quantity δx = x̂ − x will be the
difference between our estimate and the true state on a given trial.
Each time we change the measurement noise, we will get a different
value for the estimate and hence δx. We will seek an expression for the
expected value of this difference, E[δx], over all possible realizations of
the measurement noise; this represents the systematic error or bias.

As discussed above, after convergence of Gauss-Newton, the esti-
mate, x̂, will satisfy the following optimality criterion:

∑

k

Gk(x̂)TR−1
k (yk − gk(x̂)) = 0, (4.167)

or

∑

k

(
Gk(x) +

∑

j

1j δx
TGjk(x)

)T
R−1
k

×
(

yk − gk(x)︸ ︷︷ ︸
nk

−Gk(x) δx− 1

2

∑

j

1j δx
TGjk(x) δx

)
≈ 0, (4.168)

after substituting (4.165a) and (4.165b). We will assume that δx has up
to quadratic dependence11 on the stacked noise variable, n ∼ N (0,R):

δx = A(x) n + b(n), (4.169)

where A(x) is an unknown coefficient matrix and b(n) is an unknown
quadratic function of n. We will use Pk, a projection matrix, to extract
the kth noise variable from the stacked version: nk = Pkn. Substitut-
ing (4.169), we have that

∑

k

(
Gk(x) +

∑

j

1j (A(x) n + b(n))
T Gjk(x)

)T

× R−1
k

(
Pk n−Gk(x) (A(x) n + b(n))

− 1

2

∑

j

1j (A(x) n + b(n))
T Gjk(x) (A(x) n + b(n))

)
≈ 0. (4.170)

11 In reality, there are an infinite number of terms, so this expression is a big

approximation but may work for mildly nonlinear observation models.

140 Nonlinear Non-Gaussian Estimation

Multiplying out and keeping terms up to quadratic in n, we have

∑

k

Gk(x)TR−1
k (Pk −Gk(x)A(x)) n

︸ ︷︷ ︸
L n (linear in n)

+
∑

k

Gk(x)TR−1
k

(
−Gk(x) b(n)− 1

2

∑

j

1j nTA(x)TGjk(x)A(x) n︸ ︷︷ ︸
scalar

)

︸ ︷︷ ︸
q1(n) (quadratic in n)

+
∑

j,k

Gjk(x)TA(x) n 1Tj R−1
k (Pk −Gk(x)A(x)) n

︸ ︷︷ ︸
scalar︸ ︷︷ ︸

q2(n) (quadratic in n)

≈ 0. (4.171)

To make the expression identically zero (up to second order in n),

L n + q1(n) + q2(n) = 0, (4.172)

we must have L = 0. This follows by considering the case of the op-
posing sign of n,

−L n + q1(−n) + q2(−n) = 0, (4.173)

and then noting that q1(−n) = q1(n) and q2(−n) = q2(n) owing to
the quadratic nature of these terms. Subtracting the second case from
the first, we have 2 L n = 0, and since n can take on any value, it
follows that L = 0 and thus

A(x) = W(x)−1
∑

k

Gk(x)TR−1
k Pk, (4.174)

where

W(x) =
∑

k

Gk(x)TR−1
k Gk(x). (4.175)

Choosing this value for A(x) and taking the expectation (over all values
of n), we are left with

E [q1(n)] + E [q2(n)] = 0. (4.176)

Fortunately, it turns out that E [q2(n)] = 0. To see this, we need two
identities:

A(x)RA(x)T ≡W(x)−1, (4.177a)

A(x)RPT
k ≡W(x)−1Gk(x)T . (4.177b)

4.3 Batch Discrete-Time Estimation 141

The proofs of these are left to the reader. We then have

E [q2(n)] = E

[∑

j,k

Gjk(x)TA(x) n 1Tj R−1
k (Pk −Gk(x)A(x)) n

]

=
∑

j,k

Gjk(x)TA(x) E
[
n nT

]
︸ ︷︷ ︸

R

(
PT
k −A(x)TGk(x)T

)
R−1
k 1j

=
∑

j,k

Gjk(x)T
(

A(x)RPT
k︸ ︷︷ ︸

W(x)−1Gk(x)T

−A(x)RA(x)T︸ ︷︷ ︸
W(x)−1

Gk(x)T
)

R−1
k 1j

= 0, (4.178)

where we have employed the above identities. We are thus left with

E [q1(n)] = 0, (4.179)

or

E[b(n)]

= −1

2
W(x)−1

∑

k

Gk(x)TR−1
k

∑

j

1j E
[
nT A(x)TGjk(x) A(x) n

]

= −1

2
W(x)−1

∑

k

Gk(x)TR−1
k

∑

j

1j E
[
tr
(Gjk(x) A(x) n nT A(x)T

)]

= −1

2
W(x)−1

∑

k

Gk(x)TR−1
k

∑

j

1j tr
(Gjk(x) A(x) E

[
n nT

]
︸ ︷︷ ︸

R

A(x)T

︸ ︷︷ ︸
W(x)−1

)

= −1

2
W(x)−1

∑

k

Gk(x)TR−1
k

∑

j

1j tr
(Gjk(x) W(x)−1

)
, (4.180)

where tr(·) indicates the trace of a matrix. Looking back to (4.169), we
see that

E[δx] = A(x) E[n]︸ ︷︷ ︸
0

+E[b(n)], (4.181)

and so our final expression for the systematic part of the bias is

E[δx] = −1

2
W(x)−1

∑

k

Gk(x)TR−1
k

∑

j

1j tr
(Gjk(x) W(x)−1

)
.

(4.182)
To use this expression in operation, we will need to substitute our
estimate, x̂, in place of x when computing (4.182). Then we can update
our estimate according to

x̂← x̂− E[δx], (4.183)

to subtract off the bias. Note that this expression is only approximate
and may only work well in mildly nonlinear situations.

142 Nonlinear Non-Gaussian Estimation

4.3.4 Discussion

If we think of the EKF as an approximation of the full nonlinear Gauss-
Newton (or even Newton) method applied to our estimation problem,
we can see that it is really quite inferior, mainly because it does not
iterate to convergence. The Jacobians are evaluated only once (at the
best estimate so far). In truth, the EKF can do better than just one
iteration of Gauss-Newton because the EKF does not evaluate all the
Jacobians at once, but the lack of iteration is its main downfall. This
is obvious from an optimization perspective; we need to iterate to con-
verge. However, the EKF was originally derived from the Bayes filter
earlier in this chapter, which used something called the Markov as-
sumption to achieve its recursive form. The problem with the Markov
assumption is that once this is built into the estimator, we cannot get
rid of it. It is a fundamental constraint that cannot be overcome.

There have been many attempts to patch the EKF, including the
Iterated EKF described earlier in this chapter. However, for very non-
linear systems, these may not help much. The problem with the IEKF
is that it still clings to the Markov assumption. It is iterating at a single
time-step, not over the whole trajectory at once. The difference between
Gauss-Newton and the IEKF can be seen plainly in Figure 4.17.

Batch estimation via the Gauss-Newton method has its own prob-
lems. In particular, it must be run offline and is not a constant-time
algorithm, whereas the EKF is both online and a constant-time method.
So-called sliding-window filters (SWFs) (Sibley, 2006) seek the best of
both worlds by iterating over a window of time-steps and sliding this
window along to allow for online/constant-time implementation. SWFs
are really still an active area of research, but when viewed from an op-

Figure 4.17

Comparison of the

iterative schemes

used in various

estimation

paradigms.

x0 x1 x2 x3 · · · xk�2 xk�1 xk xk+1 xk+2 · · · xK

x0 x1 x2 x3 · · · xk�2 xk�1 xk xk+1 xk+2 · · · xK

x0 x1 x2 x3 · · · xk�2 xk�1 xk xk+1 xk+2 · · · xK

Gauss-Newton iterates over the entire trajectory, but runs offline and not in constant time

Sliding-window filters iterate over several timesteps at once, run online and in constant time

IEKF iterates at only one timestep at a time, but runs online and in constant time

4.4 Batch Continuous-Time Estimation 143

timization perspective, it is hard to imagine that they do not offer a
drastic improvement over the EKF and its variants.

4.4 Batch Continuous-Time Estimation

We saw in the previous chapter how to handle continuous-time pri-
ors through Gaussian process regression. Our priors were generated by
linear stochastic differential equations of the form

ẋ(t) = A(t)x(t) + v(t) + L(t)w(t), (4.184)

with

w(t) ∼ GP(0,Q δ(t− t′)), (4.185)

and Q the usual power spectral density matrix.

In this section, we show how we can extend our results to nonlinear,
continuous-time motion models of the form

ẋ(t) = f(x(t),v(t),w(t), t), (4.186)

where f(·) is a nonlinear function. We will still receive observations at
discrete times,

yk = g(x(tk),nk, t), (4.187)

where g(·) is a nonlinear function and

nk ∼ N (0,Rk). (4.188)

We will begin by linearizing both models and constructing their lifted
forms, then carry out GP regression (Bayesian inference). See Anderson
et al. (2015) for applications of this section.

4.4.1 Motion Model

We will linearize the motion model about an operating point, xop(t),
which we note is an entire continuous-time trajectory. We will then
construct our motion prior (mean and covariance) in lifted form at the
measurement times.

144 Nonlinear Non-Gaussian Estimation

Linearization

Linearizing our motion model about this trajectory, we have

ẋ(t) = f(x(t),v(t),w(t), t)

≈ f(xop(t),v(t),0, t) +
∂f

∂x

∣∣∣∣
xop(t),v(t),0,t

(x(t)− xop(t))

+
∂f

∂w

∣∣∣∣
xop(t),v(t),0,t

w(t)

= f(xop(t),v(t),0, t)− ∂f

∂x

∣∣∣∣
xop(t),v(t),0,t

xop(t)

︸ ︷︷ ︸
ν(t)

+
∂f

∂x

∣∣∣∣
xop(t),v(t),0,t︸ ︷︷ ︸

F(t)

x(t) +
∂f

∂w

∣∣∣∣
xop(t),v(t),0,t︸ ︷︷ ︸

L(t)

w(t), (4.189)

where ν(t), F(t), and L(t) are now known functions of time (since xop(t)
is known). Thus, approximately, our process model is of the form

ẋ(t) ≈ F(t)x(t) + ν(t) + L(t)w(t). (4.190)

Thus, after linearization, this is in the LTV form we studied in the
linear-Gaussian chapter.

Mean and Covariance Functions

Since the SDE for the motion model is approximately in the LTV form
studied earlier, we can go ahead and write

x(t) ∼ GP
(

Φ(t, t0)x̌0 +

∫ t

t0

Φ(t, s)ν(s) ds

︸ ︷︷ ︸
x̌(t)

,

Φ(t, t0)P̌0Φ(t′, t0)T +

∫ min(t,t′)

t0

Φ(t, s)L(s)QL(s)TΦ(t′, s)T ds

︸ ︷︷ ︸
P̌(t,t′)

)
,

(4.191)

where Φ(t, s) is the transition function associated with F(t). At the
measurement times, t0 < t1 < · · · < tK , we can also then write

x ∼ N (x̌, P̌) = N
(
Fν,FQ′FT

)
, (4.192)

4.4 Batch Continuous-Time Estimation 145

for the usual lifted form of the prior where

F =




1
Φ(t1, t0) 1
Φ(t2, t0) Φ(t2, t1) 1

...
...

...
. . .

Φ(tK−1, t0) Φ(tK−1, t1) Φ(tK−1, t2) · · · 1
Φ(tK , t0) Φ(tK , t1) Φ(tK , t2) · · · Φ(tK , tK−1) 1



,

(4.193a)

ν =




x̌0

ν1

...
νK


 , (4.193b)

νk =

∫ tk

tk−1

Φ(tk, s)ν(s) ds, k = 1 . . .K, (4.193c)

Q′ = diag
(
P̌0,Q

′
1,Q

′
2, . . . ,Q

′
K

)
, (4.193d)

Q′k =

∫ tk

tk−1

Φ(tk, s)L(s)QL(s)TΦ(tk, s)
T ds, k = 1 . . .K. (4.193e)

Unfortunately, we have a bit of a problem. To compute x̌ and P̌, we
require an expression for xop(s) for all s ∈ [t0, tM]. This is because ν(s),
F(s) (through Φ(t, s)), and L(s) appear inside the integrals for x̌(t)
and P̌(t, t′), and these depend in turn on xop(s). If we are performing
iterated GP regression, as discussed earlier, we will only have xop from
the previous iteration, which is evaluated only at the measurement
times.

Fortunately, the whole point of GP regression is that we can query
the state at any time of interest. Moreover, we showed previously that
this can be done very efficiently (i.e., O(1) time) for our particular
choice of process model:

xop(s) = x̌(s) + P̌(s)P̌−1(xop − x̌). (4.194)

Because we are making use of this inside an iterative process, we use
the x̌(s), P̌(s), x̌, and P̌ from the previous iteration to evaluate this
expression.

The biggest challenge will be to identify Φ(t, s), which is problem
specific. As we will already be carrying out numerical integration in
our scheme, we can compute the transition function numerically as
well, via a normalized fundamental matrix (of control theory)12, Υ(t).
In other words, we will integrate

Υ̇(t) = F(t)Υ(t), Υ(0) = 1, (4.195)

12 Not to be confused with the fundamental matrix of computer vision.

146 Nonlinear Non-Gaussian Estimation

ensuring to save Υ(t) at all the times of interest in our GP regression.
The transition function is then given by

Φ(t, s) = Υ(t) Υ(s)−1. (4.196)

For specific systems, analytical expressions for the transition function
will be possible.

4.4.2 Observation Model

The linearized observation model is

yk ≈ g (xop,k,0) + Gk (xk−1 − xop,k−1) + n′k, (4.197)

which can be written in lifted form as

y = yop + G (x− xop) + n′, (4.198)

where

yop =




g(xop,0,0)
g(xop,1,0)

...
g(xop,K ,0)


 , (4.199a)

G = diag (G0,G1,G2, . . . ,GK) , (4.199b)

R = diag (R′0,R
′
1,R

′
2, . . . ,R

′
K) , (4.199c)

and n′ ∼ N (0,R′). It is fairly easy to see that

E [y] = yop + G (x̌− xop) , (4.200a)

E
[
(y − E[y])(y − E[y])T

]
= GP̌GT + R′, (4.200b)

E
[
(y − E[y])(x− E[x])T

]
= GP̌. (4.200c)

4.4.3 Bayesian Inference

With these quantities in hand, we can write a joint density for the lifted
trajectory and measurements as

p(x,y|v) = N
([

x̌
yop + G (x̌− xop)

]
,

[
P̌ P̌GT

GP̌ GP̌GT + R′

])
,

(4.201)
which is quite similar to the expression for the IEKF situation in (4.42),
but now for the whole trajectory rather than just one timestep. Us-
ing the usual relationship from (2.53b), we can immediately write the
Gaussian posterior as

p(x|v,y) = N
(
x̂, P̂

)
, (4.202)

4.4 Batch Continuous-Time Estimation 147

where

K = P̌GT
(
GP̌GT + R′

)−1
, (4.203a)

P̂ = (1−KG) P̌, (4.203b)

x̂ = x̌ + K (y − yop −G(x̌− xop)) . (4.203c)

Using the SMW identity from (2.75), we can rearrange the equation
for the posterior mean to be
(
P̌−1 + GTR′

−1

G
)
δx∗ = P̌−1 (x̌− xop)+GTR′

−1

(y − yop) , (4.204)

where δx∗ = x̂− xop. Inserting the details of the prior, this becomes
(
F−TQ′

−1

F−1 + GTR′
−1

G
)

︸ ︷︷ ︸
block-tridiagonal

δx∗

= F−TQ′
−1 (
ν − F−1xop

)
+ GTR′

−1

(y − yop) . (4.205)

This result is identical in form to the nonlinear, discrete-time batch
solution discussed earlier in this chapter. The only difference is that we
started with a continuous-time motion model and integrated it directly
to evaluate the prior at the measurement times.

4.4.4 Algorithm Summary

We summarize the steps needed to carry out GP regression with a
nonlinear motion model and/or measurement model:

1. Start with an initial guess for the posterior mean over the whole
trajectory, xop(t). We will only need this over the whole trajectory
to initialize the process. We will only be updating our estimate at
the measurement times, xop, then using the GP interpolation to fill
in the other times.

2. Calculate the ν, F−1, and Q′
−1

for the new iteration. This will
likely be done numerically and will involve determining ν(s), F(s)
(through Φ(t, s)), and L(s), which in turn will require xop(s) and
hence x̌(s), P̌(s), x̌, P̌ from the previous iteration to do the inter-
polation inside the required integrals.

3. Calculate the yop, G, R′
−1

for the new iteration.
4. Solve for δx∗ in the following equation:

(
F−TQ′

−1

F−1 + GTR′
−1

G
)

︸ ︷︷ ︸
block-tridiagonal

δx∗

= F−TQ′
−1 (
ν − F−1xop

)
+ GTR′

−1

(y − yop) . (4.206)

In practice, we will prefer to build only the non-zero blocks in the
products of matrices that appear in this equation.

148 Nonlinear Non-Gaussian Estimation

5. Update the guess at the measurement times using

xop ← xop + δx∗, (4.207)

and check for convergence. If not converged, return to Step 2. If
converged, output x̂ = xop.

6. If desired, compute the covariance at the measurement times, P̂.

7. Use the GP interpolation equation13 also to compute the estimate
at other times of interest, x̂τ , P̂ττ .

The most expensive step in this whole process is building ν, F−1, and
Q′
−1

. However, the cost (at each iteration) will still be linear in the
length of the trajectory and therefore should be manageable.

4.5 Summary

The main take-away points from this chapter are as follows:

1. Unlike the linear-Gaussian case, the Bayesian posterior is not, in
general, a Gaussian PDF when the motion and observation models
are nonlinear and/or the measurement and process noises are non-
Gaussian.

2. To carry out nonlinear estimation, some form of approximation is
required. The different techniques vary in their choices of (i) how
to approximate the posterior (Gaussian, mixture of Gaussians, set
of samples), and (ii) how to approximately carry out inference (lin-
earization, Monte Carlo, sigmapoint transformation) or MAP esti-
mation.

3. There are a variety of methods, both batch and recursive, that ap-
proximate the posterior as a Gaussian. Some of these methods, par-
ticularly the ones that iterate the solution (i.e., batch MAP, IEKF)
converge to a ‘mean’ that is actually at the maximum of the Bayesian
posterior (which is not the same as the true mean of the Bayesian
posterior). This can be a point of confusion when comparing differ-
ent methods since, depending on the approximations made, we may
be asking the methods to find different answers.

4. Batch methods are able to iterate over the whole trajectory, whereas
recursive methods can only iterate at one time-step at a time, mean-
ing they will converge to different answers on most problems.

The next chapter will look briefly at how to handle estimator bias,
measurement outliers, and data correspondences.

13 We did not work this out for the nonlinear case, but it should follow from the GP

section in the linear-Gaussian chapter.

4.6 Exercises 149

4.6 Exercises

4.6.1 Consider the discrete-time system,


xk
yk
θk


 =



xk−1

yk−1

θk−1


+ T




cos θk−1 0
sin θk−1 0

0 1



([
vk
ωk

]
+ wk

)
,

wk ∼ N (0,Q),[
rk
φk

]
=

[√
x2
k + y2

k

atan2(−yk,−xk)− θk

]
+ nk, nk ∼ N (0,R),

which could represent a mobile robot moving around on the xy-
plane and measuring the range and bearing to the origin. Set up
the EKF equation to estimate the pose of the mobile robot. In
particular, work out expressions for the Jacobians, Fk−1 and Gk,
and modified covariances, Q′k and R′k.

4.6.2 Consider transforming the prior Gaussian density, N (µx, σ
2
x),

through the nonlinearity, f(x) = x3. Use the Monte Carlo, lin-
earization, and sigmapoint methods to determine the transformed
mean and covariance and comment on the results. Hint: use Is-
serlis’ theorem to compute the higher-order Gaussian moments.

4.6.3 Consider transforming the prior Gaussian density, N (µx, σ
2
x),

through the nonlinearity, f(x) = x4. Use the Monte Carlo, lin-
earization, and sigmapoint methods to determine the transformed
mean (and optionally covariance) and comment on the results.
Hint: use Isserlis’ theorem to compute the higher-order Gaussian
moments.

4.6.4 From the section on the sigmapoint Kalman filter, we learned
that the measurement covariance could be written as

Σyy,k =
2N∑

j=0

βj
(
y̌k,j − µy,k

) (
y̌k,j − µy,k

)T
+ Rk,

when the measurement model has linear dependence on the mea-
surement noise. Verify that this can also be written as

Σyy,k = ZkZ
T
k + Rk,

where

coljZk =
√
βj
(
y̌k,j − µy,k

)
.

4.6.5 Show that the below two identities used in the section on ML
bias estimation are true:

A(x)RA(x)T ≡W(x)−1,

A(x)RPT
k ≡W(x)−1Gk(x)T .

5

Biases, Correspondences, and Outliers

In the last chapter, we learned that our estimation machinery can be
biased, particularly when our motion/observation models are nonlinear.
In our simple stereo camera example, we saw that MAP estimation is
biased with respect to the mean of the full posterior. We also saw that
the batch ML method is biased with respect to the groundtruth and
derived an expression to try to quantity that bias. Unfortunately, these
are not the only sources of bias.

In many of our estimation techniques, we make the assumption that
the noise corrupting the inputs or the measurements is zero-mean Gaus-
sian. In reality, our inputs and/or measurements may also be corrupted
with unknown biases. If we do not account for these, our estimate will
also be biased. The classic example of this is the typical accelerometer,
which can have temperature-dependent biases that change over time.

Another huge issue in many estimation problems is determining cor-
respondences between measurements and a model. For example, if we
are measuring the range to a landmark, we might assume we know
which landmark is being measured. This is a very big assumption. An-
other good example is a star tracker, which detects points of lights;
how do we know which point of light corresponds to which star in our
star chart? The pairing of a measurement with a part of a model/map
is termed determining correspondences or data association.

Finally, despite our best efforts to negate the effects of biases and
find proper correspondences, something deleterious can always happen
to our measurements so that we are stuck with a datum that is highly
improbable according to our noise model; we call this an outlier mea-
surement. If we do not properly detect and remove outliers, many of
our estimation techniques will fail, often catastrophically.

This chapter will investigate how to deal with inputs/measurements
that are not well behaved. It will present some of the classic tactics
for handling these types of biases, determining correspondences, and
detecting/rejecting outliers. A handful of examples will be provided as
illustrations.

151

152 Biases, Correspondences, and Outliers

5.1 Handling Input/Measurement Biases

In this section, we will investigate the impact of a bias on both the
inputs and measurements. We will see that the case of the input bias
is less difficult to deal with than the measurement bias, but both can
be handled. We will use linear, time-invariant motion and observation
models with non-zero-mean Gaussian noise for the purpose of our dis-
cussion, but many of the concepts to be discussed can also be extended
to nonlinear systems.

5.1.1 Bias Effects on the Kalman Filter

As an example of the effect of a input/measurement bias, we return
to the error dynamics discussed in Section 3.3.6 and see what happens
to the Kalman filter (if we do not explicitly account for bias) when we
introduce non-zero-mean noise. In particular, we will now assume that

xk = Axk−1 +B(uk + ū) + wk, (5.1a)

yk = Cxk + ȳ + nk, (5.1b)

where ū is an input bias and ȳ a measurement bias. We will continue to
assume that all measurements are corrupted with zero-mean Gaussian
noise,

wk ∼ N (0,Q), nk ∼ N (0,R), (5.2)

that is statistically independent, i.e.,

E[wkw
T
`] = 0, E[nkn

T
`] = 0, E[wkn

T
k] = 0, E[wkn

T
`] = 0,

(5.3)
for all k 6= `, but this could be another source of filter inconsistency.
We earlier defined the estimation errors,

ěk = x̌k − xk, (5.4a)

êk = x̂k − xk, (5.4b)

and constructed the ‘error dynamics’, which in this case are

ěk = Aêk−1 − (Bū + wk), (5.5a)

êk = (1−KkC) ěk + Kk(ȳ + nk). (5.5b)

where ê0 = x̂0−x0. Furthermore, as discussed earlier, for our estimator
to be unbiased and consistent we would like to have for all k = 1 . . .K
that

E [êk] = 0, E [ěk] = 0, E
[
êkê

T
k

]
= P̂k, E

[
ěkě

T
k

]
= P̌k, (5.6)

which we showed was true in the case that ū = ȳ = 0. Let us see what
happens when this zero-bias condition does not necessarily hold. We

5.1 Handling Input/Measurement Biases 153

will still assume that

E [ê0] = 0, E
[
ê0ê

T
0

]
= P̂0, (5.7)

although this initial condition is another place a bias could be intro-
duced. At k = 1 we have

E [ě1] = A E [ê0]︸ ︷︷ ︸
0

−
(
Bū + E [w1]︸ ︷︷ ︸

0

)
= −Bū, (5.8a)

E [ê1] = (1−K1C)E [ě1]︸ ︷︷ ︸
−Bū

+K1

(
ȳ + E [n1]︸ ︷︷ ︸

0

)

= − (1−K1C)Bū + K1ȳ, (5.8b)

which are already biased in the case that ū 6= 0 and/or ȳ 6= 0. For the
covariance of the ‘predicted error’ we have

E
[
ě1ě

T
1

]
= E

[
(Aê0 − (Bū + w1)) (Aê0 − (Bū + w1))

T
]

= E
[
(Aê0 −w1)(Aê0 −w1)T

]
︸ ︷︷ ︸

P̌1

+(−Bū) E
[
(Aê0 −w1)T

]
︸ ︷︷ ︸

0

+ E [(Aê0 −w1)]︸ ︷︷ ︸
0

(−Bū)T + (−Bū)(−Bū)T

= P̌1 + (−Bū)(−Bū)T . (5.9)

Rearranging, we see that

P̌1 = E
[
ě1ě

T
1

]
− E[ě1]E[ě1]T︸ ︷︷ ︸

bias effect

, (5.10)

and therefore the KF will ‘underestimate’ the true uncertainty in the
error and become inconsistent. For the covariance of the ‘corrected

154 Biases, Correspondences, and Outliers

error’ we have

E
[
ê1ê

T
1

]
= E

[
((1−K1C) ě1 + K1(ȳ + n1))

× ((1−K1C) ě1 + K1(ȳ + n1))
T

]

= E
[
((1−K1C) ě1 + K1n1) ((1−K1C) ě1 + K1n1)

T
]

︸ ︷︷ ︸
P̂1+(1−K1C)BūūTBT (1−K1C)T

+ (K1ȳ)E
[
((1−K1C) ě1 + K1n1)

T
]

︸ ︷︷ ︸
(−(1−K1C)Bū)T

+ E [((1−K1C) ě1 + K1n1)]︸ ︷︷ ︸
−(1−K1C)Bū

(K1ȳ)T + (K1ȳ)(K1ȳ)T

= P̂1 + (− (1−K1C)Bū + K1ȳ)

× (− (1−K1C)Bū + K1ȳ)
T
, (5.11)

and so

P̂1 = E
[
ê1ê

T
1

]
− E[ê1]E[ê1]T︸ ︷︷ ︸

bias effect

, (5.12)

where we can see again that the KF’s estimate of the covariance is
overconfident and thus inconsistent. It is interesting to note that the KF
will become overconfident, regardless of the sign of the bias. Moreover,
it is not hard to see that as k gets bigger, the effects of the biases grow
without bound. It is tempting to modify the KF to be

predictor:
P̌k = AP̂k−1A

T +Q, (5.13a)

x̌k = Ax̂k−1 +Buk + Bū︸︷︷︸
bias

, (5.13b)

Kalman gain: Kk = P̌kC
T
(
CP̌kC

T +R
)−1

, (5.13c)

corrector:
P̂k = (1−KkC) P̌k, (5.13d)

x̂k = x̌k + Kk

(
yk −Cx̌k − ȳ︸︷︷︸

bias

)
, (5.13e)

whereupon we recover an unbiased and consistent estimate. The prob-
lem is that we must know the value of the bias exactly for this to be
a viable means of counteracting its effects. In most cases we do not
know the exact value of the bias (it may even change with time). Given
that we already have an estimation problem, it is logical to attempt to
include estimation of the bias into our problem. The next few sections
will investigate this possibility for both inputs and measurements.

5.1 Handling Input/Measurement Biases 155

5.1.2 Unknown Input Bias

Continuing from the previous section, suppose we had ȳ = 0 but not
necessarily ū 6= 0. Rather than estimating just the state of the system,
xk, we augment the state to be

x′k =

[
xk
ūk

]
, (5.14)

where we have made the bias now a function of time as we want it to
be part of our state. As the bias is now a function of time, we need to
define a motion model for it. A typical one is to assume that

ūk = ūk−1 + sk, (5.15)

where sk ∼ N (0,W); this corresponds to Brownian motion (a.k.a.,
random walk) of the bias. In some sense, we are simply pushing the
problem back through an integrator as we now have zero-mean Gaus-
sian noise influencing the motion of the interoceptive bias. In practice,
this type of trick can be effective. Other motion models for the bias
could also be assumed, but often we do not have a lot of information
as to their temporal behaviour. Under this bias motion model, we have
for the motion model for our augmented state that

x′k =

[
A B
0 1

]

︸ ︷︷ ︸
A′

x′k−1 +

[
B
0

]

︸︷︷︸
B′

uk +

[
wk

sk

]

︸ ︷︷ ︸
w′k

, (5.16)

where we have defined several new symbols for convenience. We note
that

w′k ∼ N
(
0,Q′

)
, Q′ =

[
Q 0
0 W

]
, (5.17)

so we are back to an unbiased system. The observation model is simply

yk =
[
C 0

]
︸ ︷︷ ︸

C′

x′k + nk, (5.18)

in terms of the augmented state.
A critical question to ask is whether or not this augmented-state

filter will converge to the correct answer. Will the above trick really
work? The conditions we saw for existence and uniqueness of the linear-
Gaussian batch estimation earlier (with no prior on the initial condi-
tion) were

Q > 0, R > 0, rank O = N. (5.19)

Let us assume these conditions do indeed hold for the system in the

156 Biases, Correspondences, and Outliers

Figure 5.1 Input

bias on

acceleration. In

this case we can

successfully

estimate the bias

as part of our state

estimation

problem.

xk

dk = xk

0

interoceptive bias

xk = xk�1 + vk�1

vk = vk�1 + ak + ā

case that the bias is zero, i.e., ū = 0. Defining

O′ =




C ′

C ′A′

...

C ′A′
(N+U−1)


 , (5.20)

we are required to show that

Q′ > 0, R > 0︸ ︷︷ ︸
true by definitions

, rank O′ = N + U, (5.21)

for existence and uniqueness of the solution to the batch estimation
problem for the augmented-state system. The first two conditions are
true by the definitions of these covariance matrices. For the last con-
dition, the rank needs to be N + U since the augmented state now
includes the bias, where U = dim ūk. In general this condition does
not hold. The next two examples will illustrate this.

Example 5.1 Take the system matrices to be

A =

[
1 1
0 1

]
, B =

[
0
1

]
, C =

[
1 0

]
, (5.22)

such that N = 2 and U = 1. This example roughly corresponds to
a simple one-dimensional unit-mass cart, whose state is its position
and velocity. The input is the acceleration and the measurement is the
distance back to the origin. The bias is on the input. See Figure 5.1 for
an illustration. We have

O =

[
C
CA

]
=

[
1 0
1 1

]
⇒ rank O = 2 = N, (5.23)

so the unbiased system is observable1. For the augmented-state system
we have

O′ =



C ′

C ′A′

C ′A′
2


 =



C 0
CA CB
CA2 CAB +CB


 =




1 0 0
1 1 0
1 2 1




⇒ rank O′ = 3 = N + U, (5.24)

1 It is also controllable.

5.1 Handling Input/Measurement Biases 157

Figure 5.2 Input

biases on both

speed and

acceleration. In

this case we cannot

estimate the bias

as the system is

unobservable.

xk

dk = xk

0

interoceptive biases

vk = vk�1 + ak + ā

xk = xk�1 + vk�1 + v̄

so it, too, is observable. Note that taking B =

[
1
0

]
is observable, too2.

Example 5.2 Take the system matrices to be

A =

[
1 1
0 1

]
, B =

[
1 0
0 1

]
, C =

[
1 0

]
, (5.25)

such that N = 2 and U = 2. This is a strange system wherein the
command to the system is a function of both speed and acceleration,
and we have biases on both of these quantities. See Figure 5.2 for an
illustration. We still have that the unbiased system is observable since
A and C are unchanged. For the augmented-state system we have

O′ =




C ′

C ′A′

C ′A′
2

C ′A′
3


 =




C 0
CA CB
CA2 C(A+ 1)B
CA3 C(A2 +A+ 1)B


 =




1 0 0 0
1 1 1 0
1 2 2 1
1 3 3 3




⇒ rank O′ = 3 < 4 = N + U, (5.26)

so it is not observable (since columns 2 and 3 are the same).

5.1.3 Unknown Measurement Bias

Suppose now we have ū = 0 but not necessarily ȳ 6= 0. The augmented
state is

x′k =

[
xk
ȳk

]
, (5.27)

where we have again made the bias a function of time. We again assume
a random-walk motion model

ȳk = ȳk−1 + sk, (5.28)

where sk ∼ N (0,W). Under this bias motion model, we have for the
motion model for our augmented state that

x′k =

[
A 0
0 1

]

︸ ︷︷ ︸
A′

x′k−1 +

[
B
0

]

︸︷︷︸
B′

uk +

[
wk

sk

]

︸ ︷︷ ︸
w′k

, (5.29)

2 But now the unbiased system is not controllable.

158 Biases, Correspondences, and Outliers

Figure 5.3

Measurement bias

on position. In this

case we cannot

estimate the bias

as the system is

unobservable.

xk
0

exteroceptive bias

�d̄k vk = vk�1 + ak

xk = xk�1 + vk�1

dk = xk + d̄

where we have defined several new symbols for convenience. We note
that

w′k ∼ N
(
0,Q′

)
, Q′ =

[
Q 0
0 W

]
. (5.30)

The observation model is

yk =
[
C 1

]
︸ ︷︷ ︸

C′

x′k + nk, (5.31)

in terms of the augmented state. We again examine the observability
of the system in the context of an example.

Example 5.3 Take the system matrices to be

A =

[
1 1
0 1

]
, B =

[
0
1

]
, C =

[
1 0

]
, (5.32)

such that N = 2 and U = 1. This corresponds to our cart measuring
its distance from a landmark (whose position it does not know – see
Figure 5.3). In the context of mobile robotics this is a very simple
example of simultaneous localization and mapping (SLAM), a popular
estimation research area. The ‘localization’ is the cart state and the
‘map’ is the landmark position (here the negative of the bias).

We have

O =

[
C
CA

]
=

[
1 0
1 1

]
⇒ rank O = 2 = N, (5.33)

so the unbiased system is observable. For the augmented-state system
we have

O′ =



C ′

C ′A′

C ′A′
2


 =



C 1
CA 1
CA2 1


 =




1 0 1
1 1 1
1 2 1




⇒ rank O′ = 2 < 3 = N + U, (5.34)

so it is not observable (since columns 1 and 3 are the same). Since
we are rank-deficient by 1, this means that dim(null O′) = 1; the
nullspace of the observability matrix corresponds to those vectors that

5.2 Data Association 159

produce outputs of zero. Here we see that

null O′ = span








1
0
−1





 , (5.35)

which means that we can shift the cart and landmark together (left or
right) and the measurement will not change. Does this mean our esti-
mator will fail? Not if we are careful to interpret the solutions properly;
we do so for both batch LG estimation and the KF:

(i) In the batch LG estimator, the left-hand side cannot be in-
verted, but recalling basic linear algebra, every system of the
form Ax = b can have zero, one, or infinitely many solutions.
In this case we have infinitely many solutions rather than a
single unique solution.

(ii) In the KF, we need to start with an initial guess for the state.
The final answer we get will depend on the initial conditions
selected. In other words, the value of the bias will remain at its
initial guess.

In both cases, we have a way forward.

5.2 Data Association

As discussed above, the data association problem has to do with fig-
uring out which measurements correspond to which parts of a model.
Virtually all real estimation techniques, particularly for robotics, em-
ploy some form of model or map to determine a vehicle’s state, and
in particular its position/orientation. Some common examples of these
models/maps are as follows:

(i) Positioning using GPS satellites. Here the positions of the GPS
satellites are assumed to be known (as a function of time) in a
reference frame attached to the Earth (e.g., using their orbital
elements). A GPS receiver on the ground measures range to the
satellites (e.g., using time of flight based on a timing message
sent by the satellite) and then trilaterates for position. In this
case, it is easy to know which range measurement is associated
with which satellite because the whole system is engineered and
therefore unique codes are embedded in the timing messages to
indicate which satellite has sent which message.

(ii) Attitude determination using celestial observation. A map (or
chart) of all the brightest stars in the sky is used by a star sensor
to determine which direction the sensor is pointing. Here the
natural world is being used as a map (surveyed in advance) and
thus data association, or knowing which star you are looking

160 Biases, Correspondences, and Outliers

Figure 5.4 A

measurement and

point-cloud model

with two possible

data associations

shown.

modelmeasurement

at, is much more difficult than in the GPS case. Because the
star chart can be generated in advance, this system becomes
practical.

There are essentially two main approaches to data association: external
and internal.

5.2.1 External Data Association

In external data association, specialized knowledge of the model/mea-
surements is used for association. This knowledge is ‘external’ to the
estimation problem. This is sometimes called ‘known data association’
because from the perspective of the estimation problem, the job has
been done.

For example, a bunch of targets could be painted with unique colours;
a stereo camera could be used to observe the targets and the colour in-
formation used to do data association. The colour information would
not be used in the estimation problem. Other examples of external data
association include visual bar codes and unique transmission frequen-
cies/codes (e.g., GPS satellites).

External data association can work well if the model can be modified
in advance to be cooperative; this makes the estimation problem a lot
easier. However, cutting-edge computer vision techniques can be used
as external data association on unprepared models, too, although the
results are more prone to misassociations.

5.2.2 Internal Data Association

In internal data association, only the measurements/model are used
to do data association. This is sometimes called ‘unknown data as-
sociation’. Typically, association is based on the likelihood of a given
measurement, given the model. In the simplest version, the most likely
association is accepted and the other possibilities are ignored. More

5.3 Handling Outliers 161

Figure 5.5 A

pathological

configuration of

buildings can trick

a GPS system into

using an incorrect

range

measurement.

transmitter

receiver

line-of-sight path blocked

erroneous longer path

reflection

sophisticated techniques allow multiple data association hypotheses to
be carried forward into the estimation problem.

In the case of certain types of models, such as three-dimensional
landmarks or star charts, ‘constellations’ of landmarks are sometimes
used to help perform data association (see Figure 5.4). The data-aligned
rigidity-constrained exhaustive search (DARCES) algorithm (Chen et al.,
1999) is an example of a constellation-based data association method.
The idea is that the distances between pairs of points in a constellation
can be used as a type of unique identifier for data association.

Regardless of the type of data association employed, it is highly likely
that if an estimation technique fails, the blame can be squarely placed
on bad data association. For this reason, it is very important to ac-
knowledge that misassociations will occur in practice, and therefore
to design techniques to make the estimation problem robust to these
occurrences. The next section, on outlier detection and rejection, will
discuss some methods to help deal with this type of problem.

5.3 Handling Outliers

Data misassociation can certainly lead to an estimator completely di-
verging. However, data association is not the only cause of divergence.
There are other factors that can cause any particular measurement to
be very poor/incorrect. A classic example is multipath reflections of
GPS timing signals near tall buildings. Figure 5.5 illustrates this point.
A reflected signal can give a range measurement that is too long. In
the absence of additional information, when the line-of-sight path is
blocked the receiver has no way of knowing the longer path is incor-
rect.

We call measurements that are extremely improbable (according to
our measurement model), outliers. Just how improbable is a matter of
choice, but a common approach (in one dimensional data) is to consider
measurements that are more than three standard deviations away from
the mean to be outliers.

If we accept that a portion (possibly large) of our measurements

162 Biases, Correspondences, and Outliers

Figure 5.6

Line-fitting

example. If a line

is fit to all the

data, the outliers

will have a large

impact on the

result. The random

sample consensus

(RANSAC)

approach is to

classify the data as

either an inlier or

an outlier and then

only use the inliers

in the line fit.

RANSAC finds line with most inliersexample dataset with inliers and outliers

could be outliers, we need to devise a means to detect and reduce/remove
the influence of outliers on our estimators. We will discuss the two most
common techniques to handle outliers:

(i) Random sample consensus (Fischler and Bolles, 1981)
(ii) M-Estimation (Zhang, 1997)

These can be used separately or in tandem. We will also touch on
adaptive estimation (i.e., covariance estimation) and its connection to
M-estimation.

5.3.1 RANSAC

Random sample consensus (RANSAC) is an iterative method to fit
a parameterized model to a set of observed data containing outliers.
Outliers are measurements that do not ‘fit’ a model, while inliers do
‘fit’. RANSAC is a probabilistic algorithm in the sense that its ability
to find a reasonable answer can only be guaranteed to occur with a
certain probability that improves with more time spent in the search.
Figure 5.6 provides a classic line-fitting example in the presence of
outliers.

RANSAC proceeds in an iterative manner. In the basic version, each
iteration consists of the following five steps:

1. Select a (small) random subset of the original data to be hypothe-
sized inliers (e.g., pick two points if fitting a line to xy-data).

2. Fit a model to the hypothesized inliers (e.g., a line is fit to two
points).

3. Test the rest of the original data against the fitted model and classify
as either inliers or outliers. If too few inliers are found, the iteration
is labelled invalid and aborted.

4. Refit the model using both the hypothesized and classified inliers.
5. Evaluate the refit model in terms of the residual error of all the inlier

data.

5.3 Handling Outliers 163

This is repeated for a large number of iterations, and the hypothesis
with the lowest residual error is selected as the best.

A critical question to ask is how many iterations, k, are needed to
ensure a subset is selected comprised solely of inliers, with probability
p? In general, this is difficult to answer. However, if we assume that
each measurement is selected independently, and each has probability
w of being an inlier, then the following relation holds:

1− p = (1− wn)k, (5.36)

where n is the number of data points in the random subset and k is
the number of iterations. Solving for k gives

k =
ln(1− p)

ln (1− wn)
. (5.37)

In reality, this can be thought of as an upper bound, as the data points
are typically selected sequentially, not independently. There can also
be constraints between the data points that complicate the selection of
random subsets.

5.3.2 M-Estimation

Many of our earlier estimation techniques were shown to be minimizing
a sum-of-squared-error cost function. The trouble with sum-of-squared-
error cost functions, is that they are highly sensitive to outliers. A single
large outlier can exercise a huge influence on the estimate because it
dominates the quadratic cost. M-estimation3 modifies the shape of the
cost function so that outliers do not dominate the solution.

We have seen previously that our overall nonlinear MAP objective
function (for batch estimation) can be written in the form

J(x) =
1

2

N∑

i=1

ei(x)TW−1
i ei(x), (5.38)

which is quadratic. The gradient of this objective function is

∂J(x)

∂x
=

N∑

i=1

ei(x)TW−1
i

∂ei(x)

∂x
, (5.39)

which will be zero at a minimum. Let us now generalize this objective
function and write it as

J ′(x) =
N∑

i=1

αi ρ (ui(x)) , (5.40)

3 ‘M’ stands for ‘maximum likelihood-type’, i.e., a generalization of maximum likelihood

(which we saw earlier was equivalent to the least-squares solution).

164 Biases, Correspondences, and Outliers

Figure 5.7

Comparison of

quadratic, Cauchy,

and

Geman-McClure

cost functions for

scalar inputs.

⇢(u) =
1

2
u2

⇢(u) =
1

2

u2

1 + u2

⇢(u) =
1

2
ln
�
1 + u2

�

where αi > 0 is a scalar weight,

ui(x) =
√

ei(x)TW−1
i ei(x), (5.41)

and ρ(u) is some nonlinear cost function; assume it is bounded, has a
unique zero at u = 0, and increases monotonically with u > 0.

There are many possible cost functions, including

ρ(u) =
1

2
u2

︸ ︷︷ ︸
quadratic

, ρ(u) =
1

2
ln
(
1 + u2

)

︸ ︷︷ ︸
Cauchy

, ρ(u) =
1

2

u2

1 + u2
︸ ︷︷ ︸
Geman-McClure

. (5.42)

We refer to those that increase more slowly than quadratic as robust
cost functions. This means that large errors will not carry as much
weight and have little power on the solution due to a reduced gradient.
Figure 5.7 depicts these options. Refer to Zhang (1997) for a more
complete list of cost functions and MacTavish and Barfoot (2015) for
a comparison study.

The gradient of our new objective function is simply

∂J ′(x)

∂x
=

N∑

i=1

αi
∂ρ

∂ui

∂ui
∂ei

∂ei
∂x

, (5.43)

using the chain rule. Again, we want the gradient to go to zero if we
are seeking a minimum. Substituting

∂ui
∂ei

=
1

ui(x)
ei(x)TW−1

i , (5.44)

the gradient can be written as

∂J ′(x)

∂x
=

N∑

i=1

ei(x)TYi(x)−1∂ei(x)

∂x
, (5.45)

where

Yi(x)−1 =
αi

ui(x)

∂ρ

∂ui

∣∣∣∣
ui(x)

W−1
i , (5.46)

5.3 Handling Outliers 165

is a new (inverse) covariance matrix that depends on x; we see that (5.45)
is identical to (5.39), except that Wi is now replaced with Yi(x).

We are already using an iterative optimizer due to the nonlinear
dependence of ei(x) on x, so it makes sense to evaluate Yi(x) at the
value of the state from the previous iteration, xop. This means we can
simply work with the cost function

J ′′(x) =
1

2

N∑

i=1

ei(x)TYi(xop)−1ei(x), (5.47)

where

Yi(xop)−1 =
αi

ui(xop)

∂ρ

∂ui

∣∣∣∣
ui(xop)

W−1
i . (5.48)

At each iteration, we solve the original least-squares problem, but with
a modified covariance matrix that updates as xop updates. This is re-
ferred to as iteratively reweighted least squares (IRLS) (Holland and
Welsch, 1977).

To see why this iterative scheme works, we can examine the gradient
of J ′′(x):

∂J ′′(x)

∂x
=

N∑

i=1

ei(x)TYi(xop)−1∂ei(x)

∂x
. (5.49)

If the iterative scheme converges, we will have x̂ = xop, so

∂J ′(x)

∂x

∣∣∣∣
x̂

=
∂J ′′(x)

∂x

∣∣∣∣
x̂

= 0, (5.50)

and thus the two systems will have the same minimum (or minima).
To be clear, however, the path taken to get to the optimum will differ
if we minimize J ′′(x) rather than J ′(x).

As an example, consider the case of the Cauchy robust cost function
described above. The objective function becomes

J ′(x) =
1

2

N∑

i=1

αi ln
(
1 + ei(x)TW−1

i ei(x)
)
, (5.51)

and we have

Yi(xop)−1 =
αi

ui(xop)

∂ρ

∂ui

∣∣∣∣
ui(xop)

W−1
i =

αi
ui(xop)

ui(xop)

1 + ui(xop)2
W−1

i ,

(5.52)
and so

Yi(xop) =
1

αi

(
1 + ei(xop)TW−1

i ei(xop)
)
Wi, (5.53)

which we see is just an inflated version of the original (non-robust)
covariance matrix, Wi; it gets bigger as the quadratic error, namely,

166 Biases, Correspondences, and Outliers

ei(xop)TW−1
i ei(xop), gets bigger. This makes sense because less trust is

being assigned to cost terms that are very large (i.e., they are outliers).

5.3.3 Covariance Estimation

In the MAP estimation we have discussed so far, we have been dealing
with cost functions of the form

J(x) =
1

2

N∑

i=1

ei(x)TW−1
i ei(x), (5.54)

where we have assumed that the covariance associated with the inputs
and measurements, Wi, is known. We could try to determine this from
some training data, where we have groundtruth for the state, but often
this is not possible and so we resort to tuning by trial and error. This
is partly why robust cost functions, as discussed in the last section, are
necessary: our noise models are just not that good.

Another possibility is to try to estimate the covariances along with
the state, which is sometimes called adaptive estimation. We can modify
our MAP estimation problem to be

{
x̂, M̂

}
= arg min

{x,M}
J ′ (x,M) , (5.55)

where M = {M1, . . . ,MN} is a convenient way to denote all of the
unknown covariance matrices. This is similar to the idea of estimating
a bias, as discussed earlier in this chapter; we simply include Mi in the
set of variables to be estimated. To make this work, we need to provide
the estimator some guidance in the form of a prior over the possible
values that Mi is likely to have. Without a prior, the estimator can
overfit to the data.

One possible prior is to assume that the covariance is distributed
according to the inverse-Wishart distribution, which is defined over the
real-valued, positive-definite matrices:

Mi ∼ W−1 (Ψi, νi) , (5.56)

where Ψi > 0 is called the scale matrix, νi > Mi − 1 is the degrees-of-
freedom parameter, and Mi = dim Mi. The inverse-Wishart PDF has
the form

p(Mi) =
det(Ψi)

νi
2

2
νiMi

2 ΓMi

(
νi
2

) det(Mi)
− νi+Mi+1

2 exp

(
−1

2
tr
(
ΨiM

−1
i

))
,

(5.57)
where ΓMi

(·) is the multivariate Gamma function.
Under the MAP paradigm, the objective function is

J ′(x,M) = − ln p (x,M | z) , (5.58)

5.3 Handling Outliers 167

where z = (z1, . . . , zN) represents all of our input and measurement
data, respectively. Factoring the posterior,

p (x,M | z) = p (x | z,M) p(M) =
N∏

i=1

p (x | zi,Mi) p(Mi), (5.59)

and plugging in the inverse-Wishart PDF, the objective function be-
comes

J ′(x,M) =
1

2

N∑

i=1

(
ei(x)TM−1

i ei(x)− αi ln
(
det

(
M−1

i

))
+ tr

(
ΨiM

−1
i

))
,

(5.60)
with αi = νi +Mi + 2. We have dropped terms that do not depend on
x or M.

Our strategy4 will be to first find the optimal Mi (in terms of x) so
that we can eliminate it from the expression altogether. We do this by
setting the derivative of J ′(x,M) with respect to M−1

i to zero, since
it is M−1

i that appears in the expression. Using some fairly standard
matrix identities, we have

∂J ′(x,M)

∂M−1
i

=
1

2
ei(x)ei(x)T − 1

2
αiMi +

1

2
Ψi. (5.61)

Setting this to zero for a critical point and solving for Mi, we have

Mi(x) =
1

αi
Ψi

︸ ︷︷ ︸
constant

+
1

αi
ei(x)ei(x)T

︸ ︷︷ ︸
inflation

, (5.62)

which is quite an interesting expression. It shows that the optimal co-
variance, Mi(x), will be inflated from a constant wherever the residual
errors in the trajectory estimate, ei(x), are large. This inflated expres-
sion is similar to the IRLS covariance in (5.53) from the last section on
M-estimation, implying a connection.

We can strengthen the connection to M-estimation by plugging the
expression for the optimal Mi(x) back into J ′(x,M), thereby eliminat-
ing it from the cost function. The resulting expression (after dropping
factors that do not depend on x) is

J ′(x) =
1

2

N∑

i=1

αi ln
(
1 + ei(x)TΨ−1

i ei(x)
)
. (5.63)

This is exactly the form of a weighted Cauchy robust cost function
discussed in the last section when the scale matrix is chosen to be our
usual (non-robust) covariance: Ψi = Wi. Thus, the original problem

4 An alternate strategy is to marginalize out M from p(x,M | z) from the beginning,

which arrives at the same Cauchy-like final expression (Peretroukhin et al., 2016).

168 Biases, Correspondences, and Outliers

defined in (5.55) can be implemented as an M-estimation problem using
IRLS.

It is not the case that the inflated covariance, Mi(x), from (5.62)
is exactly the same as Yi(x) from (5.53), although they are similar.
This is because Mi(x) is the exact covariance needed to minimize our
desired objective function, J ′(x), whereas Yi(x) is an approximation
used in our iterative scheme to minimize J ′′(x). At convergence (i.e.,
when x̂ = xop), the two methods have the same gradient and therefore
the same minima, although they get there by slightly different paths.

It is quite appealing that in this specific case, the covariance estima-
tion approach results in an equivalent M-estimation problem. It shows
that the robust estimation approach can be explained from a MAP
perspective, rather than simply being an ad hoc patch. It may be the
case that this holds more generally, that all robust cost functions result
from a particular choice of prior distribution over covariance matrices,
p(M). We leave it to the reader to investigate this further.

5.4 Summary

The main take-away points from this chapter are as follows:

1. There are always non-idealities (e.g., biases, outliers) that make the
real estimation problem different from the clean mathematical se-
tups discussed in this book. Sometimes these deviations result in
performance reductions that are the main source of error in prac-
tice.

2. In some situations, we can fold the estimation of a bias into our
estimation framework, and in others we cannot. This comes down
to the question of observability.

3. In most practical estimation problems, outliers are a reality, and thus
using some form of preprocessing (e.g., RANSAC) as well as a robust
cost function that downplays the effect of outliers is a necessity.

The next part of the book will introduce techniques for handling state
estimation in a three-dimensional world where objects are free to trans-
late and rotate.

5.5 Exercises

5.5.1 Consider the discrete-time system

xk = xk−1 + vk + v̄,

dk = xk,

where v̄ is an unknown input bias. Set up the augmented-state
system and determine if this system is observable.

5.5 Exercises 169

5.5.2 Consider the discrete-time system

xk = xk−1 + vk−1,

vk = vk−1 + ak,

d1,k = xk,

d2,k = xk + d̄,

where d̄ is an unknown input bias (on just one of the two mea-
surement equations). Set up the augmented-state system and de-
termine if this system is observable.

5.5.3 How many RANSAC iterations, k, would be needed to pick a
set of n = 3 inlier points with probability p = 0.999, given that
each point has probability w = 0.1 of being an inlier?

5.5.4 What advantage might the robust cost function,

ρ(u) =

{
1
2
u2 u2 ≤ 1
2u2

1+u2 − 1
2

u2 ≥ 1
,

have over the Geman-McClure cost function?

Part II

Three-Dimensional Machinery

171

6

Primer on Three-Dimensional
Geometry

This chapter will introduce three-dimensional geometry and specifically
the concept of a rotation and some of its representations. It pays partic-
ular attention to the establishment of reference frames. Sastry (1999) is
a comprehensive reference on control for robotics that includes a back-
ground on three-dimensional geometry. Hughes (1986) also provides a
good first-principles background.

6.1 Vectors and Reference Frames

Vehicles (e.g., robots, satellites, aircraft) are typically free to translate
and rotate. Mathematically, they have six degrees of freedom: three in
translation and three in rotation. This six-degree-of-freedom geometric
configuration is known as the pose (position and orientation) of the
vehicle. Some vehicles may have multiple bodies connected together;
in this case each body has its own pose. We will consider only the
single-body case here.

Figure 6.1

Vehicle and typical

reference frames.

F�!v

I

V

r�!
vi

vehicle

F�!i

173

174 Primer on Three-Dimensional Geometry

6.1.1 Reference Frames

The position of a point on a vehicle can be described with a vector,
r−→
vi, consisting of three components. Rotational motion is described

by expressing the orientation of a reference frame on the vehicle, F−→v,
with respect to another frame, F−→i. Figure 6.1 shows the typical setup
for a single-body vehicle.

We will take a vector to be a quantity r−→ having length and direction.
This vector can be expressed in a reference frame as

r−→ = r1 1−→1 + r2 1−→2 + r3 1−→3

= [r1 r2 r3]




1−→1

1−→2

1−→3




= rT1 F−→1. (6.1)

-

6

�
�	

�
�
�
�
��1−→3

1−→2

1−→1

r−→

F−→1

The quantity

F−→1 =




1−→1

1−→2

1−→3




is a column containing the basis vectors forming the reference frame
F−→1; we will always use basis vectors that are unit length, orthogonal,

and arranged in a dextral (right-handed) fashion. We shall refer to F−→1

as a vectrix (Hughes, 1986). The quantity

r1 =



r1

r2

r3




is a column matrix containing the components or coordinates of r−→ in
reference frame F−→1.

The vector can also be written as

r−→ =
[

1−→1 1−→2 1−→3

]


r1

r2

r3




= F−→
T
1 r1.

6.1.2 Dot Product

Consider two vectors, r−→ and s−→, expressed in the same reference frame
F−→1:

r−→ = [r1 r2 r3]




1−→1

1−→2

1−→3


 , s−→ =

[
1−→1 1−→2 1−→3

]


s1

s2

s3


 .

6.1 Vectors and Reference Frames 175

The dot product (a.k.a., inner product) is given by

r−→ · s−→ = [r1 r2 r3]




1−→1

1−→2

1−→3


 ·
[

1−→1 1−→2 1−→3

]


s1

s2

s3




= [r1 r2 r3]




1−→1 · 1−→1 1−→1 · 1−→2 1−→1 · 1−→3

1−→2 · 1−→1 1−→2 · 1−→2 1−→2 · 1−→3

1−→3 · 1−→1 1−→3 · 1−→2 1−→3 · 1−→3






s1

s2

s3


 .

But

1−→1 · 1−→1 = 1−→2 · 1−→2 = 1−→3 · 1−→3 = 1,

and

1−→1 · 1−→2 = 1−→2 · 1−→3 = 1−→3 · 1−→1 = 0.

Therefore,

r−→ · s−→ = r1
T1s1 = r1

T s1 = r1s1 + r2s2 + r3s3.

The notation 1 will be used to designate the identity matrix. Its di-
mension can be inferred from context.

6.1.3 Cross Product

The cross product of two vectors expressed in the same reference frame
is given by

r−→× s−→ = [r1 r2 r3]




1−→1 × 1−→1 1−→1 × 1−→2 1−→1 × 1−→3

1−→2 × 1−→1 1−→2 × 1−→2 1−→2 × 1−→3

1−→3 × 1−→1 1−→3 × 1−→2 1−→3 × 1−→3






s1

s2

s3




= [r1 r2 r3]




0 1−→3 − 1−→2

− 1−→3 0 1−→1

1−→2 − 1−→1 0






s1

s2

s3




=
[

1−→1 1−→2 1−→3

]



0 −r3 r2

r3 0 −r1

−r2 r1 0





s1

s2

s3




= F−→
T
1 r1

×s1,

where the fact that the basis vectors are orthogonal and arranged in a
dextral fashion has been exploited. Hence, if r−→ and s−→ are expressed
in the same reference frame, the 3 × 3 matrix

r1
× =




0 −r3 r2

r3 0 −r1

−r2 r1 0


 , (6.2)

176 Primer on Three-Dimensional Geometry

can be used to construct the components of the cross product. This
matrix is skew-symmetric1; that is,

(r1
×)T = −r1

×.

It is easy to verify that

r1
×r1 = 0,

where 0 is a column matrix of zeros and

r1
×s1 = −s1

×r1.

6.2 Rotations

Critical to our ability to estimate how objects are moving in the world
is the ability to parameterize the orientation, or rotation, of those ob-
jects. We begin by introducing rotation matrices and then provide some
alternative representations.

6.2.1 Rotation Matrices

Let us consider two frames F−→1 and F−→2 with a common origin, and let
us express r−→ in each frame:

r−→ = F−→
T
1 r1 = F−→

T
2 r2.

-

6

B
B
B
BBM

�
�
��	

��
��*

A
A
AAU

��
��*

A
A
AAU

�
�
�
�
�
�
��
r−→

1−→3 2−→3

1−→2

1−→1

2−→2

2−→1

We seek to discover a relationship between the components in F−→1, r1,
and those in F−→2, r2. We proceed as follows:

F−→
T
2 r2 = F−→

T
1 r1,

F−→2 · F−→
T
2 r2 = F−→2 · F−→

T
1 r1,

r2 = C21r1.

We have defined

C21 = F−→2 · F−→
T
1

=




2−→1

2−→2

2−→3


 ·
[

1−→1 1−→2 1−→3

]

=




2−→1 · 1−→1 2−→1 · 1−→2 2−→1 · 1−→3

2−→2 · 1−→1 2−→2 · 1−→2 2−→2 · 1−→3

2−→3 · 1−→1 2−→3 · 1−→2 2−→3 · 1−→3


 .

1 There are many equivalent notations in the literature for this skew-symmetric

definition: r×1 = r̂1 = r∧1 = −[[r1]] = [r1]×. For now, we use the first one, since it

makes an obvious connection to the cross product; later we will also use (·)∧, as this is

in common use in robotics.

6.2 Rotations 177

The matrix C21 is called a rotation matrix. It is sometimes referred to
as a ‘direction cosine matrix’ since the dot product of two unit vectors
is just the cosine of the angle between them.

The unit vectors in F−→2 can be related to those in F−→1:

F−→
T
1 = F−→

T
2 C21. (6.3)

Rotation matrices possess some special properties:

r1 = C−1
21 r2 = C12r2.

But, CT
21 = C12. Hence,

C12 = C−1
21 = CT

21. (6.4)

We say that C21 is an orthonormal matrix because its inverse is equal
to its transpose.

Consider three reference frames F−→1, F−→2, and F−→3. The components
of a vector r−→ in these three frames are r1, r2, and r3. Now,

r3 = C32r2 = C32C21r1.

But, r3 = C31r1, and therefore

C31 = C32C21.

6.2.2 Principal Rotations

Before considering more general rotations, it is useful to consider rota-
tions about one basis vector. The situation where F−→2 has been rotated
from F−→1 through a rotation about the 3-axis is shown in the figure.
The rotation matrix in this case is

C3 =




cos θ3 sin θ3 0
− sin θ3 cos θ3 0

0 0 1


 . (6.5)

-

6

�
�
��	

��
��*

A
A
AAU

��
��*

A
A
AAU

-
6

1−→3, 2−→3

1−→2

1−→1

2−→2

2−→1

θ3

θ3

For a rotation about the 2-axis, the rotation matrix is

C2 =




cos θ2 0 − sin θ2

0 1 0
sin θ2 0 cos θ2


 . (6.6)

-

6

�
�
��	

A
A
AAK

�
�
�
�
��

AAU

�

1−→3

1−→2, 2−→2

1−→1

2−→3

2−→1

θ2

θ2

178 Primer on Three-Dimensional Geometry

For a rotation about the 1-axis, the rotation matrix is

C1 =




1 0 0
0 cos θ1 sin θ1

0 − sin θ1 cos θ1


 . (6.7)

-

6

�
�
�	

A
A
AAK

��
��*

�

6

1−→3

1−→2

1−→1, 2−→1

2−→2

2−→3

θ1

θ1

6.2.3 Alternate Rotation Representations

We have seen one way of discussing the orientation of one reference
frame with respect to another: the rotation matrix. The rotation matrix
describes orientation both globally and uniquely. This requires nine
parameters (they are not independent). There are a number of other
alternatives.

The key thing to realize about the different representations of rota-
tions, is that there are always only three underlying degrees of freedom.
The representations that have more than three parameters must have
associated constraints to limit the number of degrees of freedom to
three. The representations that have exactly three parameters have as-
sociated singularities. There is no perfect representation that is minimal
(i.e., having only three parameters) and that is also free of singularities
(Stuelpnagel, 1964).

Euler Angles

Leonhard Euler

(1707-1783) is

considered to be

the preeminent

mathematician of

the eighteenth

century and one of

the greatest

mathematicians to

have ever lived. He

made important

discoveries in fields

as diverse as

infinitesimal

calculus and graph

theory. He also

introduced much of

the modern

mathematical

terminology and

notation,

particularly for

mathematical

analysis, such as

the notion of a

mathematical

function. He is also

renowned for his

work in mechanics,

fluid dynamics,

optics, astronomy,

and music theory.

The orientation of one reference frame with respect to another can also
be specified by a sequence of three principal rotations. One possible
sequence is as follows:

(i) A rotation ψ about the original 3-axis

(ii) A rotation γ about the intermediate 1-axis

(iii) A rotation θ about the transformed 3-axis

-

6

�
�

��	

��
��*

A
A
AAU

��
��*

A
A
AAU

-
6

1−→3, I−→3

1−→2

1−→1

I−→2

I−→1

ψ

ψ

-

6

�
�
�	

A
A
AAK

��
��*

�

6

I−→3

I−→2

I−→1,T−→1

T−→2

T−→3

γ

γ

-

6

�
�

��	

��
��*

A
A
AAU

��
��*

A
A
AAU

-
6

T−→3, 2−→3

T−→2

T−→1

2−→2

2−→1

θ

θ

This is called a 3-1-3 sequence and is the one originally used by Euler.

6.2 Rotations 179

In the classical mechanics literature, the angles are referred to by the
following names:

θ : spin angle

γ : nutation angle

ψ : precession angle

The rotation matrix from frame 1 to frame 2 is given by

C21(θ, γ, ψ) = C2TCTICI1

= C3(θ)C1(γ)C3(ψ)

=




cθcψ − sθcγsψ sψcθ + cγsθcψ sγsθ
−cψsθ − cθcγsψ −sψsθ + cθcγcψ sγcθ

sψsγ −sγcψ cγ


 . (6.8)

We have made the abbreviations s = sin, c = cos.
Another possible sequence that can be used is as follows:

(i) A rotation θ1 about the original 1-axis (‘roll’ rotation)
(ii) A rotation θ2 about the intermediate 2-axis (‘pitch’ rotation)

(iii) A rotation θ3 about the transformed 3-axis (‘yaw’ rotation)

This sequence, which is very common in aerospace applications, is called
the 1-2-3 attitude sequence or the ‘roll-pitch-yaw’ convention. In this
case, the rotation matrix from frame 1 to frame 2 is given by

C21(θ3, θ2, θ1) = C3(θ3)C2(θ2)C1(θ1)

=




c2c3 c1s3 + s1s2c3 s1s3 − c1s2c3

−c2s3 c1c3 − s1s2s3 s1c3 + c1s2s3

s2 −s1c2 c1c2


 , (6.9)

where si = sin θi, ci = cos θi.
All Euler sequences have singularities. For instance, if γ = 0 for the

3-1-3 sequence, then the angles θ and ψ become associated with the
same degree of freedom and cannot be uniquely determined.

For the 1-2-3 sequence, a singularity exists at θ2 = π/2. In this case,

C21(θ3,
π

2
, θ1) =




0 sin(θ1 + θ3) − cos(θ1 + θ3)
0 cos(θ1 + θ3) sin(θ1 + θ3)
1 0 0


 .

Therefore, θ1 and θ3 are associated with the same rotation. However,
this is only a problem if we want to recover the rotation angles from
the rotation matrix.

Infinitesimal Rotations

Consider the 1-2-3 transformation when the angles θ1, θ2, θ3 are small.
In this case, we make the approximations ci ≈ 1, si ≈ θi and neglect

180 Primer on Three-Dimensional Geometry

products of small angles, θiθj ≈ 0. Then we have

C21 ≈




1 θ3 −θ2

−θ3 1 θ1

θ2 −θ1 1




≈ 1− θ×, (6.10)

where

θ =



θ1

θ2

θ3


 ,

which is referred to as a rotation vector.
It is easy to show that the form of the rotation matrix for infinitesimal

rotations (i.e., ‘small angle approximation’) does not depend on the
order in which the rotations are performed. For example, we can show
that the same result is obtained for a 2-1-3 Euler sequence.

Euler Parameters

Euler’s rotation theorem says that the most general motion of a rigid
body with one point fixed is a rotation about an axis through that
point.

Let us denote the axis of rotation by a = [a1 a2 a3]T and assume
that it is a unit vector:

aTa = a2
1 + a2

2 + a2
3 = 1. (6.11)

The angle of rotation is φ. We state, without proof, that the rotation
matrix in this case is given by

C21 = cosφ1 + (1− cosφ)aaT − sinφa×. (6.12)

It does not matter in which frame a is expressed because

C21a = a. (6.13)

The combination of variables,

η = cos
φ

2
, ε = a sin

φ

2
=



a1 sin(φ/2)
a2 sin(φ/2)
a3 sin(φ/2)


 =



ε1

ε2

ε3


 , (6.14)

is particularly useful. The four parameters {ε, η} are called the Eu-
ler parameters associated with a rotation2. They are not independent
because they satisfy the constraint

η2 + ε2
1 + ε2

2 + ε2
3 = 1.

2 These are sometimes referred to as unit-length quaternions when stacked as q =

[
ε

η

]
.

These are discussed in more detail below.

6.2 Rotations 181

The rotation matrix can be expressed in terms of the Euler parameters
as

C21 = (η2 − εTε)1 + 2εεT − 2ηε×

=




1− 2(ε2
2 + ε2

3) 2(ε1ε2 + ε3η) 2(ε1ε3 − ε2η)
2(ε2ε1 − ε3η) 1− 2(ε2

3 + ε2
1) 2(ε2ε3 + ε1η)

2(ε3ε1 + ε2η) 2(ε3ε2 − ε1η) 1− 2(ε2
1 + ε2

2)


 . (6.15)

Euler parameters are useful in many spacecraft applications. There
are no singularities associated with them, and the calculation of the
rotation matrix does not involve trigonometric functions, which is a
significant numerical advantage. The only drawback is the use of four
parameters instead of three, as is the case with Euler angles; this makes
it challenging to perform some estimation problems because the con-
straint must be enforced.

Quaternions

We will use the notation of Barfoot et al. (2011) for this section. A
quaternion will be a 4× 1 column that may be written as

Quaternions were

first described by

Sir William Rowan

Hamilton

(1805-1865) in

1843 and applied

to mechanics in

three-dimensional

space. Hamilton

was an Irish

physicist,

astronomer, and

mathematician,

who made

important

contributions to

classical

mechanics, optics,

and algebra. His

studies of

mechanical and

optical systems led

him to discover

new mathematical

concepts and

techniques. His

best known

contribution to

mathematical

physics is the

reformulation of

Newtonian

mechanics, now

called Hamiltonian

mechanics. This

work has proven

central to the

modern study of

classical field

theories such as

electromagnetism,

and to the

development of

quantum

mechanics. In pure

mathematics, he is

best known as the

inventor of

quaternions.

q =

[
ε
η

]
, (6.16)

where ε is a 3×1 and η is a scalar. The quaternion left-hand compound
operator, +, and the right-hand compound operator, ⊕, will be defined
as

q+ =

[
η1− ε× ε
−εT η

]
, q⊕ =

[
η1 + ε× ε
−εT η

]
. (6.17)

The inverse operator, −1, will be defined by

q−1 =

[−ε
η

]
. (6.18)

Let u, v, and w be quaternions. Then some useful identities are

u+v ≡ v⊕u, (6.19)

and

(u+)
T ≡ (u+)

−1 ≡ (u−1)
+
, (u⊕)

T ≡ (u⊕)
−1 ≡ (u−1)

⊕
,

(u+v)
−1 ≡ v−1+u−1, (u⊕v)

−1 ≡ v−1⊕u−1,

(u+v)
+
w ≡ u+ (v+w) ≡ u+v+w, (u⊕v)

⊕
w ≡ u⊕ (v⊕w) ≡ u⊕v⊕w,

αu+ + βv+ ≡ (αu + βv)
+
, αu⊕ + βv⊕ ≡ (αu + βv)

⊕
,

(6.20)
where α and β are scalars. We also have

u+v⊕ ≡ v⊕u+. (6.21)

The proofs are left to the reader.

182 Primer on Three-Dimensional Geometry

Quaternions form a non-commutative group3 under both the + and
⊕ operations. Many of the identities above are prerequisites to showing

this fact. The identity element of this group, ι =
[
0 0 0 1

]T
, is such

that

ι+ = ι⊕ = 1, (6.22)

where 1 is the 4× 4 identity matrix.
Rotations may be represented in this notation by using a unit-length

quaternion, q, such that

qTq = 1. (6.23)

These form a sub-group that can be used to represent rotations.
To rotate a point (in homogeneous form)

v =




x
y
z
1


 (6.24)

to another frame using the rotation, q, we compute

u = q+v+q−1 = q+q−1⊕v = Rv, (6.25)

where

R = q+q−1⊕ = q−1⊕q+ = q⊕
T

q+ =

[
C 0
0T 1

]
, (6.26)

and C is the 3× 3 rotation matrix with which we are now familiar. We
have included various forms for R to show the different structures this
transformation can take.

Gibbs Vector

Yet another way that we can parameterize rotations is through the
Gibbs vector. In terms of axis/angle parameters discussed earlier, the

Josiah Willard

Gibbs (1839-1903)

was an American

scientist who made

important

theoretical

contributions to

physics, chemistry,

and mathematics.

As a

mathematician, he

invented modern

vector calculus

(independently of

the British

scientist Oliver

Heaviside, who

carried out similar

work during the

same period). The

Gibbs vector is

also sometimes

known as the

Cayley-Rodrigues

parameters.

Gibbs vector, g, is given by

g = a tan
φ

2
, (6.27)

which we note has a singularity at φ = π, so this parameterization
does not work well for all angles. The rotation matrix, C, can then be
written in terms of the Gibbs vector as

C =
(
1 + g×

)−1 (
1− g×

)
=

1

1 + gTg

(
(1− gTg)1 + 2ggT − 2g×

)
.

(6.28)

3 The next chapter will discuss group theory as it pertains to rotations in much more

detail.

6.2 Rotations 183

Substituting in the Gibbs vector definition, the right-hand expression
becomes

C =
1

1 + tan2 φ
2

((
1− tan2 φ

2

)
1 + 2 tan2 φ

2
aaT − 2 tan

φ

2
a×
)
,

(6.29)

where we have used that aTa = 1. Utilizing that
(
1 + tan2 φ

2

)−1
=

cos2 φ
2
, we have

C =

(
cos2 φ

2
− sin2 φ

2

)

︸ ︷︷ ︸
cosφ

1 + 2 sin2 φ

2︸ ︷︷ ︸
1−cosφ

aaT − 2 sin
φ

2
cos

φ

2︸ ︷︷ ︸
sinφ

a×

= cosφ1 + (1− cosφ)aaT − sinφa×, (6.30)

which is our usual expression for the rotation matrix in terms of the
axis/angle parameters.

To relate the two expressions for C in terms of g given in (6.28), we
first note that

(
1 + g×

)−1
= 1− g× + g×g× − g×g×g× + · · · =

∞∑

n=0

(
−g×

)n
. (6.31)

Then we observe that

gTg
(
1 + g×

)−1

= (gTg)1− (gTg)g×︸ ︷︷ ︸
−g×g×g×

+ (gTg)g×g×︸ ︷︷ ︸
−g×g×g×g×

− (gTg)g×g×g×︸ ︷︷ ︸
−g×g×g×g×g×

+ · · ·

= 1 + ggT − g× −
(
1 + g×

)−1
, (6.32)

where we have used the following manipulation several times:

(gTg)g× =
(
−g×g× + ggT

)
g× = −g×g×g× + g gTg×︸ ︷︷ ︸

0

= −g×g×g×.

(6.33)
Therefore we have that

(
1 + gTg

) (
1 + g×

)−1
= 1 + ggT − g×, (6.34)

and thus

(
1 + gTg

) (
1 + g×

)−1 (
1− g×

)
︸ ︷︷ ︸

C

=
(
1 + ggT − g×

) (
1− g×

)

= 1+ggT −2g×−g gTg×︸ ︷︷ ︸
0

+ g×g×︸ ︷︷ ︸
−gT g1+ggT

=
(
1− gTg

)
1+ 2ggT −2g×.

(6.35)

Dividing both sides by (1 + gTg) provides the desired result.

184 Primer on Three-Dimensional Geometry

6.2.4 Rotational Kinematics

In the last section, we showed that the orientation of one frame F−→2

with respect to another F−→1 could be parameterized in different ways.
In other words, the rotation matrix could be written as a function of
Euler angles or Euler parameters. However, in most applications the
orientation changes with time and thus we must introduce the vehi-
cle kinematics, which form an important part of the vehicle’s motion
model.

We will first introduce the concept of angular velocity, then accelera-
tion in a rotating frame. We will finish with expressions that relate the
rate of change of the orientation parameterization to angular velocity.

Angular Velocity

Let frame F−→2 rotate with respect to frame F−→1. The angular velocity
of frame 2 with respect to frame 1 is denoted by ω−→21. The angular
velocity of frame 1 with respect to 2 is ω−→12 = −ω−→21.

-

6

B
B
B
BM

�
�

��	

��
��*

A
A
AAU

��
��*

A
A
AAU

�
�
�
�
���
ω−→211−→3 2−→3

1−→2

1−→1

2−→2

2−→1

The magnitude of ω−→21, | ω−→21 |=
√

(ω−→21 · ω−→21), is the rate of rotation.

The direction of ω−→21 (i.e., the unit vector in the direction of ω−→21, which

is | ω−→21 |−1 ω−→21) is the instantaneous axis of rotation.
Observers in the frames F−→2 and F−→1 do not see the same motion

because of their own relative motions. Let us denote the vector time
derivative as seen in F−→1 by (·)• and that seen in F−→2 by (·)◦. Therefore,

F •
−→1 = 0−→ , F ◦

−→2 = 0−→.
It can be shown that

2•−→1 = ω−→21 × 2−→1, 2•−→2 = ω−→21 × 2−→2, 2•−→3 = ω−→21 × 2−→3,

or equivalently
[
2•−→1 2•−→2 2•−→3

]
= ω−→21 ×

[
2−→1 2−→2 2−→3

]
,

or

F •
−→

T
2 = ω−→21 × F−→

T
2 . (6.36)

6.2 Rotations 185

We want to determine the time derivative of an arbitrary vector ex-
pressed in both frames:

r−→ = F−→
T
1 r1 = F−→

T
2 r2.

Therefore, the time derivative as seen in F−→1 is

r•−→ = F •
−→

T
1 r1 + F−→

T
1 ṙ1 = F−→

T
1 ṙ1. (6.37)

In a similar way,

r◦−→ = F−→
◦T
2 r2 + F−→

T
2

◦
r2= F−→

T
2

◦
r2= F−→

T
2 ṙ2. (6.38)

(Note that for nonvectors, (˙) = (◦), i.e.,
◦
r2= ṙ2.)

Alternatively, the time derivative as seen in F−→1, but expressed in
F−→2, is

r•−→ = F−→
T
2 ṙ2 + F •

−→
T
2 r2

= F−→
T
2 ṙ2 + ω−→21 × F−→

T
2 r2

= r◦−→+ ω−→21 × r−→. (6.39)

The above is true for any vector r−→. The most important application
occurs when r−→ denotes position, F−→1 is a nonrotating inertial reference
frame, and F−→2 is a frame that rotates with a body, vehicle, etc. In this

case, (6.39) expresses the velocity in the inertial frame in terms of the
motion in the second frame.

Now, express the angular velocity in F−→2:

ω−→21 = F−→
T
2ω

21
2 . (6.40)

Therefore,

r•−→ = F−→
T
1 ṙ1 = F−→

T
2 ṙ2 + ω−→21 × r−→

= F−→
T
2 ṙ2 + F−→

T
2ω

21×

2 r2

= F−→
T
2 (ṙ2 + ω21×

2 r2). (6.41)

If we want to express the ‘inertial time derivative’ (that seen in F−→1)
in F−→1, then we can use the rotation matrix C12:

ṙ1 = C12(ṙ2 + ω21×

2 r2). (6.42)

Acceleration

Let us denote the velocity by

v−→ = r•−→ = r◦−→+ ω−→21 × r−→.

186 Primer on Three-Dimensional Geometry

The acceleration can be calculated by applying (6.39) to v−→:

r••−→ = v•−→ = v◦−→+ ω−→21 × v−→
= (r◦◦−→+ ω−→21 × r◦−→+ ω◦−→21 × r−→)

+ (ω−→21 × r◦−→+ ω−→21 × (ω−→21 × r−→))

= r◦◦−→ + 2ω−→21 × r◦−→ + ω◦−→21 × r−→ + ω−→21 × (ω−→21 × r−→).

(6.43)

The matrix equivalent in terms of components can be had by making
the following substitutions:

r••−→ = F−→
T
1 r̈1 , r◦◦−→ = F−→

T
2 r̈2 , ω◦−→21 = F−→

T
2 ω̇

21
2 .

The result for the components is

r̈1 = C12

[
r̈2 + 2ω21×

2 ṙ2 + ω̇21×

2 r2 + ω21×

2 ω21×

2 r2

]
. (6.44)

The various terms in the expression for the acceleration have been given
special names:

r◦◦−→ : acceleration with respect to F−→2

2ω−→21 × r◦−→ : Coriolis acceleration

ω◦−→21 × r−→ : angular acceleration

ω−→21 ×
(
ω−→21 × r−→

)
: centripetal acceleration

Angular Velocity Given Rotation Matrix

Begin with (6.3), which relates relates two reference frames via the
rotation matrix:

F−→
T
1 = F−→

T
2 C21.

Now take the time derivative of both sides as seen in F−→1:

0−→ = F •
−→

T
2 C21 + F−→

T
2 Ċ21.

Substitute (6.36) for F •
−→

T
2 :

0−→ = ω−→21 × F−→
T
2 C21 + F−→

T
2 Ċ21.

Now use (6.40) to get

0−→ = ω21T

2 F−→2 × F−→
T
2 C21 + F−→

T
2 Ċ21

= F−→
T
2

(
ω21×

2 C21 + Ċ21

)
.

Therefore, we conclude that

Ċ21 = −ω21×

2 C21, (6.45)

which is known as Poisson’s equation. Given the angular velocity as

Siméon Denis

Poisson

(1781-1840) was a

French

mathematician,

geometer, and

physicist.

6.2 Rotations 187

measured in the frame F−→2, the rotation matrix relating F−→1 to F−→2

can be determined by integrating the above expression4.
We can also rearrange to obtain an explicit function of ω21

2 :

ω21×

2 = −Ċ21C
−1
21

= −Ċ21C
T
21, (6.46)

which gives the angular velocity when the rotation matrix is known as
a function of time.

Euler Angles

Consider the 1-2-3 Euler angle sequence and its associated rotation
matrix. In this case, (6.46) becomes

ω21×

2 = −C3C2Ċ1C
T
1 CT

2 CT
3 −C3Ċ2C

T
2 CT

3 − Ċ3C
T
3 . (6.47)

Then, using

−ĊiC
T
i = 1×i θ̇i, (6.48)

for each principal axis rotation (where 1i is column i of 1) and the
identity

(Cir)
× ≡ Cir

×CT
i , (6.49)

we can show that

ω21×

2 =
(
C3C211θ̇1

)×
+
(
C312θ̇2

)×
+
(
13θ̇3

)×
, (6.50)

which can be simplified to

ω21
2 =

[
C3(θ3)C2(θ2)11 C3(θ3)12 13

]
︸ ︷︷ ︸

S(θ2,θ3)



θ̇1

θ̇2

θ̇3




︸ ︷︷ ︸
θ̇

= S(θ2, θ3)θ̇, (6.51)

which gives the angular velocity in terms of the Euler angles and the
Euler rates, θ̇. In scalar detail we have

S(θ2, θ3) =




cos θ2 cos θ3 sin θ3 0
− cos θ2 sin θ3 cos θ3 0

sin θ2 0 1


 . (6.52)

4 This is termed ‘strapdown navigation’ because the sensors that measure ω21
2 are

strapped down in the rotating frame, F−→2.

188 Primer on Three-Dimensional Geometry

By inverting the matrix S, we arrive at a system of differential equations
that can be integrated to yield the Euler angles, assuming ω21

2 is known:

θ̇ = S−1(θ2, θ3)ω21
2

=




sec θ2 cos θ3 − sec θ2 sin θ3 0
sin θ3 cos θ3 0

− tan θ2 cos θ3 tan θ2 sin θ3 1


ω21

2 . (6.53)

Note that S−1 does not exist at θ2 = π/2, which is precisely the singu-
larity associated with the 1-2-3 sequence.

It should be noted that the above developments hold true in general
for any Euler sequence. If we pick an α-β-γ set,

C21(θ1, θ2, θ3) = Cγ(θ3)Cβ(θ2)Cα(θ1), (6.54)

then

S(θ2, θ3) =
[
Cγ(θ3)Cβ(θ2)1α Cγ(θ3)1β 1γ

]
, (6.55)

and S−1 does not exist at the singularities of S.

6.2.5 Perturbing Rotations

Now that we have some basic notation built up for handling quantities
in three-dimensional space, we will turn our focus to an issue that is
often handled incorrectly or simply ignored altogether. We have shown
in the previous section that the state of a single-body vehicle involves
a translation, which has three degrees of freedom, as well as a rotation,
which also has three degrees of freedom. The problem is that the degrees
of freedom associated with rotations are a bit unique and must be
handled carefully. The reason is that rotations do not live in a vector
space5; rather, they form the non-commutative group called SO(3).

As we have seen above, there are many ways of representing rotations
mathematically, including rotation matrices, axis-angle formulations,
Euler angles, and Euler parameters/unit-length quaternions. The most
important fact to remember is that all these representations have the
same underlying rotation, which only has three degrees of freedom. A
3 × 3 rotation matrix has nine elements, but only three are indepen-
dent. Euler parameters have four scalar parameters, but only three are
independent. Of all the common rotation representations, Euler angles
are the only ones that have exactly three parameters; the problem is
that Euler sequences have singularities, so for some problems, one must
choose an appropriate sequence that avoids the singularities.

The fact that rotations do not live in a vector space is actually quite
fundamental when it comes to linearizing motion and observation mod-
els involving rotations. What are we to do about linearizing rotations?

5 Here we mean a vector space in the sense of linear algebra.

6.2 Rotations 189

Fortunately, there is a way forwards. The key is to consider what is
happening on a small, in fact infinitesimal, level. We will begin by de-
riving a few key identities and then turn to linearizing a rotation matrix
built from a sequence of Euler angles.

Some Key Identities

Euler’s rotation theorem allows us to write a rotation matrix, C, in
terms of a rotation about an axis, a, through an angle, φ:

C = cosφ1 + (1− cosφ)aaT − sinφa×. (6.56)

We now take the partial derivative of C with respect to the angle, φ:

∂C

∂φ
= − sinφ1 + sinφaaT − cosφa× (6.57a)

= sinφ
(
−1 + aaT

)
︸ ︷︷ ︸

a×a×

− cosφa× (6.57b)

= − cosφa× − (1− cosφ) a×a︸︷︷︸
0

aT + sinφa×a× (6.57c)

= −a×
(
cosφ1 + (1− cosφ)aaT − sinφa×

)
︸ ︷︷ ︸

C

. (6.57d)

Thus, our first important identity is

∂C

∂φ
≡ −a×C. (6.58)

An immediate application of this is that for any principal-axis rotation,
about axis α, we have

∂Cα(θ)

∂θ
≡ −1×αCα(θ), (6.59)

where 1α is column α of the identity matrix.
Let us now consider an α-β-γ Euler sequence:

C(θ) = Cγ(θ3)Cβ(θ2)Cα(θ1), (6.60)

where θ = (θ1, θ2, θ3). Furthermore, we select an arbitrary constant
vector, v. Applying (6.59), we have

∂ (C(θ)v)

∂θ3

= −1×γ Cγ(θ3)Cβ(θ2)Cα(θ1)v = (C(θ)v)
×

1γ , (6.61a)

∂ (C(θ)v)

∂θ2

= −Cγ(θ3)1×β Cβ(θ2)Cα(θ1)v = (C(θ)v)
×

Cγ(θ3)1β,

(6.61b)

∂ (C(θ)v)

∂θ1

= −Cγ(θ3)Cβ(θ2)1×αCα(θ1)v = (C(θ)v)
×

Cγ(θ3)Cβ(θ2)1α,

(6.61c)

190 Primer on Three-Dimensional Geometry

where we have made use of the two general identities

r×s ≡ −s×r, (6.62a)

(Rs)
× ≡ Rs×RT (6.62b)

for any vectors r, s and any rotation matrix R. Combining the results
in (6.61), we have

∂ (C(θ)v)

∂θ
=
[
∂(C(θ)v)

∂θ1

∂(C(θ)v)

∂θ2

∂(C(θ)v)

∂θ3

]

= (C(θ)v)
× [

Cγ(θ3)Cβ(θ2)1α Cγ(θ3)1β 1γ
]

︸ ︷︷ ︸
S(θ2,θ3)

, (6.63)

and thus another very important identity that we can state is

∂ (C(θ)v)

∂θ
≡
(
C(θ)v

)×
S(θ2, θ3), (6.64)

which we note is true regardless of the choice of Euler set. This will
prove critical in the next section, when we discuss linearization of a
rotation matrix.

Perturbing a Rotation Matrix

Let us return to first principles and consider carefully how to linearize a
rotation. If we have a function, f(x), of some variable, x, then perturb-
ing x slightly from its nominal value, x̄, by an amount δx will result in
a change in the function. We can express this in terms of a Taylor-series
expansion of f about x̄:

f(x̄ + δx) = f(x̄) +
∂f(x)

∂x

∣∣∣∣
x̄

δx + (higher order terms) (6.65)

and so if δx is small, a ‘first-order’ approximation is

f(x̄ + δx) ≈ f(x̄) +
∂f(x)

∂x

∣∣∣∣
x̄

δx. (6.66)

This presupposes that δx is not constrained in any way. The trouble
with carrying out the same process with rotations is that most of the
representations involve constraints and thus are not easily perturbed
(without enforcing the constraint). The notable exceptions are the Eu-
ler angle sets. These contain exactly three parameters, and thus each
can be varied independently. For this reason, we choose to use Euler
angles in our perturbation of functions involving rotations.

Consider perturbing C(θ)v with respect to Euler angles θ, where
v is an arbitrary constant vector. Letting θ̄ = (θ̄1, θ̄2, θ̄3) and δθ =
(δθ1, δθ2, δθ3), then applying a first-order Taylor-series approximation,

6.2 Rotations 191

we have

C(θ̄ + δθ)v ≈ C(θ̄)v +
∂ (C(θ)v)

∂θ

∣∣∣∣
θ̄

δθ

= C(θ̄)v +
(

(C(θ)v)
×

S(θ2, θ3)
)∣∣∣
θ̄
δθ

= C(θ̄)v +
(
C(θ̄)v

)×
S(θ̄2, θ̄3) δθ

= C(θ̄)v −
(
S(θ̄2, θ̄3) δθ

)× (
C(θ̄)v

)

=
(
1−

(
S(θ̄2, θ̄3) δθ

)×)
C(θ̄)v, (6.67)

where we have used (6.64) to get to the second line. Observing that v
is arbitrary, we can drop it from both sides and write

C(θ̄ + δθ) ≈
(
1−

(
S(θ̄2, θ̄3) δθ

)×)

︸ ︷︷ ︸
infinitesimal rot. mat.

C(θ̄), (6.68)

which we see is the product (not the sum) of an infinitesimal rotation
matrix and the unperturbed rotation matrix, C(θ̄). Notationally, it is
simpler to write

C(θ̄ + δθ) ≈
(
1− δφ×

)
C(θ̄), (6.69)

with δφ = S(θ̄2, θ̄3) δθ. Equation (6.68) is extremely important. It tells
us exactly how to perturb a rotation matrix (in terms of perturbations
to its Euler angles) when it appears inside any function.

Example 6.1 The following example shows how we can apply our
linearized rotation expression in an arbitrary expression. Suppose we
have a scalar function, J , given by

J(θ) = uTC(θ)v, (6.70)

where u and v are arbitrary vectors. Applying our approach to lin-
earizing rotations, we have

J(θ̄ + δθ) ≈ uT
(
1− δφ×

)
C(θ̄)v = uTC(θ̄)v︸ ︷︷ ︸

J(θ̄)

+ uT
(
C(θ̄)v

)×
δφ︸ ︷︷ ︸

δJ(δθ)

,

(6.71)
so that the linearized function is

δJ(δθ) =
(
uT
(
C(θ̄)v

)×
S(θ̄2, θ̄3)

)

︸ ︷︷ ︸
constant

δθ, (6.72)

where we see that the factor in front of δθ is indeed constant; in fact,
it is ∂J

∂θ

∣∣
θ̄
, the Jacobian of J with respect to θ.

192 Primer on Three-Dimensional Geometry

6.3 Poses

We have spent considerable effort discussing the rotational aspect of a
moving body. We now introduce the notation of translation. Together,
the translation and rotation of a body are referred to as the pose. Pose
estimation problems are often concerned with transforming the coor-
dinates of a point, P , between a moving (in translation and rotation)
vehicle frame, and a stationary frame, as depicted in Figure 6.2.

We can relate the vectors in Figure 6.2 as follows:

r−→
pi = r−→

pv + r−→
vi, (6.73)

where we have not yet selected any particular reference frame in which
to express the relationship. Writing the relationship in the stationary
frame, F−→i, we have

rpii = rpvi + rvii . (6.74)

If the point, P , is attached to the vehicle, we typically know its coordi-
nates in F−→v, which is rotated with respect to F−→i. Letting Civ represent
this rotation, we can rewrite the relationship as

rpii = Civr
pv
v + rvii , (6.75)

which tells us how to convert the coordinates of P in F−→v to its coordi-

nates in F−→i, given knowledge of the translation, rvii , and rotation, Civ,
between the two frames. We will refer to

{rvii ,Civ}, (6.76)

as the pose of the vehicle.

Figure 6.2 Pose

estimation

problems are often

concerned with

transforming the

coordinates of a

point, P , between

a moving vehicle

frame, and a

stationary frame.

F�!v

I

V

r�!
vi

vehicle
P

r�!
pi

r�!
pv

F�!i

6.3 Poses 193

6.3.1 Transformation Matrices

We can also write the relationship expressed in (6.75) in another con-
venient form: [

rpii
1

]
=

[
Civ rvii
0T 1

]

︸ ︷︷ ︸
Tiv

[
rpvv
1

]
, (6.77)

where Tiv is referred to as a 4× 4 transformation matrix.
To make use of a transformation matrix, we must augment the co-

ordinates of a point with a 1,



x
y
z
1


 , (6.78)

which is referred to as a homogeneous point representation. An interest-

Homogeneous

coordinates were

introduced by

Augustus

Ferdinand Möbius

(1790-1868) in his

work entitled Der

Barycentrische

Calcul, published

in 1827. Möbius

parameterized a

point on a plane,

(x, y), by

considering masses,

m1, m2, and m3,

that must be

placed at the

vertices of a fixed

triangle to make

the point the

triangle’s center of

mass. The

coordinates

(m1,m2,m3) are

not unique, as

scaling the three

masses equally

does not change

the point location.

When the equation

of a curve is

written in this

coordinate system,

it becomes

homogeneous in

(m1,m2,m3). For

example, a circle

centered at (a, b)

with radius r is:

(x−a)2+(y−b)2 =

r2. Written in

homogeneous

coordinates with

x = m1/m3 and

y = m2/m3, the

equation becomes

(m1 −m3a)2 +

(m2 −m3b)2 =

m2
3r

2, where every

term is now

quadratic in the

homogeneous

coordinates

(Furgale, 2011).

ing property of homogeneous point representations is that each entry
can be multiplied by a scale factor, s:




sx
sy
sz
s


 . (6.79)

To recover the original (x, y, z) coordinates, one needs only to divide
the first three entires by the fourth. In this way, as the scale factor
approaches 0, we can represent points arbitrarily far away from the
origin. Hartley and Zisserman (2000) discuss the use of homogeneous
coordinates at length for computer-vision applications.

To transform the coordinates back the other way, we require the
inverse of a transformation matrix:

[
rpvv
1

]
= T−1

iv

[
rpii
1

]
, (6.80)

where

T−1
iv =

[
Civ rvii
0T 1

]−1

=

[
CT
iv −CT

ivr
vi
i

0T 1

]
=

[
Cvi −rviv
0T 1

]

=

[
Cvi rivv
0T 1

]
= Tvi, (6.81)

where we have used that rivv = −rviv , which simply flips the direction of
the vector.

We can also compound transformation matrices:

Tiv = TiaTabTbv, (6.82)

194 Primer on Three-Dimensional Geometry

which makes it easy to chain an arbitrary number of pose changes
together:

F−→i
Tiv← F−→v = F−→i

Tia← F−→a
Tab← F−→b

Tbv← F−→v (6.83)

For example, each frame could represent the pose of a mobile vehicle
at a different instant in time, and this relation tells us how to combine
relative motions into a global one.

Transformation matrices are very appealing because they tell us to
first apply the translation and then the rotation. This is often a source
of ambiguity when working with poses because the subscripts and su-
perscripts are typically dropped in practice, and then it is difficult to
know the exact meaning of each quantity.

6.3.2 Robotics Conventions

There is an important subtlety that must be mentioned to conform with
standard practice in robotics. We can understand this in the context
of a simple example. Imagine a vehicle travelling in the xy-plane, as
depicted in Figure 6.3.

Figure 6.3

Simple planar

example with a

mobile vehicle

whose state is

given by position,

(x, y), and

orientation, θvi. It

is standard for

‘forward’ to be the

1-axis of the

vehicle frame and

‘left’ to be the

2-axis. Note that

the 3-axis is

coming out of the

page.

F�!v

I vehicle

V

(x, y)

✓vi

(0, 0)
i�!1

i�!2

v�!2 v�!1

forwardleft

F�!i

The position of the vehicle can be written in a straightforward man-
ner as

rvii =



x
y
0


 . (6.84)

The z-coordinate is zero for this planar example.
The rotation of F−→v with respect to F−→i is a principal-axis rota-

tion about the 3-axis, through an angle θvi (we add the subscript to
demonstrate a point). Following our convention from before, the angle
of rotation is positive (according to the right-hand rule). Thus, we have

Cvi = C3(θvi) =




cos θvi sin θvi 0
− sin θvi cos θvi 0

0 0 1


 . (6.85)

6.3 Poses 195

It makes sense to use θvi for orientation; it naturally describes the head-
ing of the vehicle since it is F−→v that is moving with respect to F−→i.
However, as discussed in the last section, the rotation matrix that we re-
ally care about when constructing the pose is Civ = CT

vi = C3(−θvi) =
C3(θiv). Importantly, we note that θiv = −θvi. We do not want to use
θiv as the heading as that will be quite confusing.

Sticking with θvi, the pose of the vehicle can then be written in
transformation matrix form as

Tiv =

[
Civ rvii
0T 1

]
=




cos θvi − sin θvi 0 x
sin θvi cos θvi 0 y

0 0 1 0
0 0 0 1


 , (6.86)

which is perfectly fine. In general, even when the axis of rotation, a, is
not i−→3, we are free to write

Civ = CT
vi =

(
cos θvi1 + (1− cos θvi)aaT − sin θvia

×)T

= cos θvi1 + (1− cos θvi)aaT + sin θvia
×, (6.87)

where we note the change in sign of the third term due to the skew-
symmetric property, a×

T

= −a×. In other words, we are free to use θvi
rather than θiv to construct Civ.

Confusion arises, however, when all the subscripts are dropped and
we simply write

C = cos θ1 + (1− cos θ)aaT + sin θ a×, (6.88)

which is very common in robotics. There is absolutely nothing wrong
with this expression; we must simply realize that when written in this
form, the rotation is the other way around from our earlier develop-
ment6.

There is another slight change in notation that is common in robotics
as well. Often, the (·)× symbol is replaced with the (·)∧ symbol (Murray
et al., 1994), particularly when dealing with transformation matrices.
The expression for a rotation matrix is then written as

C = cos θ1 + (1− cos θ)aaT + sin θ a∧. (6.89)

We need to be quite careful with angular velocity as well, since this
should in some way match the convention we are using for the angle of
rotation.

6 Our goal in this section is to make things clear, rather than to argue in favour of one

convention over another. However, it is worth noting that this convention, with the

third term in (6.88) positive, is conforming to a left-hand rotation rather than a

right-hand one.

196 Primer on Three-Dimensional Geometry

Finally, the pose is written as

T =

[
C r
0T 1

]
, (6.90)

with all the subscripts removed. We simply need to be careful to re-
member what all of the quantities actually mean when using them in
practice.

In an effort to be relevant to robotics, we will adopt the conventions
in (6.89) moving forward in this book. However, we believe it has been
worthwhile to begin at first principles to better understand what all
the quantities associated with pose really mean.

6.3.3 Frenet-Serret Frame

It is worth drawing the connection between our pose variables (rep-
resented as transformation matrices) and the classical Frenet-Serret
moving frame. Figure 6.4 depicts a point, V , moving smoothly through
space. The Frenet-Serret frame is attached to the point with the first
axis in the direction of motion (the curve tangent), the second axis
pointing in the direction of the tangent derivative with respect to arc
length (the curve normal), and the third axis completing the frame (the
binormal).

Figure 6.4 The

classical

Frenet-Serret

moving frame can

be used to describe

the motion of a

point. The frame

axes point in the

tangent, normal,

and binormal

directions of the

curve traced out

by the point. This

frame and its

motion equations

are named after

the two French

mathematicians

who independently

discovered them:

Jean Frédéric

Frenet, in his

thesis of 1847, and

Joseph Alfred

Serret in 1851.

tangent vectort�!

n�!

b�! = t�!⇥ n�!

s

normal vector

binormal vector

arc length

F�!i

F�!v

r�!
vi

V

I

The Frenet-Serret equations describe how the frame axes change with
arc length:

d

ds
t−→ = κ n−→, (6.91a)

d

ds
n−→ = −κ t−→+ τ b−→, (6.91b)

d

ds
b−→ = −τ n−→, (6.91c)

where κ is called the curvature of the path and τ is called the torsion

6.3 Poses 197

of the path. Stacking the axes into a frame, F−→v,

F−→v =



t−→
n−→
b−→


 , (6.92)

we can write the Frenet-Serret equations as

d

ds
F−→v =




0 κ 0
−κ 0 τ
0 −τ 0


F−→v. (6.93)

Multiplying both sides by the speed along the path, v = ds/dt, and
right-multiplying by F−→

T
i , we have

d

dt

(
F−→v · F−→

T
i

)

︸ ︷︷ ︸
Ċvi

=




0 vκ 0
−vκ 0 vτ

0 −vτ 0




︸ ︷︷ ︸
−ωvi∧v

(
F−→v · F−→

T
i

)

︸ ︷︷ ︸
Cvi

, (6.94)

where we have applied the chain rule. We see that this has recov-
ered Poisson’s equation for rotational kinematics as given previously
in (6.45); the angular velocity expressed in the moving frame,

ωviv =



vτ
0
vκ


 , (6.95)

is constrained to only two degrees of freedom since the middle entry is
zero. We also have the translational kinematics,

ṙvii = CT
viν

vi
v , νviv =



v
0
0


 . (6.96)

To express this in the body frame, we note that

ṙivv =
d

dt

(
−Cvir

vi
i

)
= −Ċvir

vi
i −Cviṙ

vi
i

= ωvi
∧

v Cvir
vi
i −CviC

T
viν

vi
v = −ωvi∧v rivv − νviv . (6.97)

We can then combine the translational and rotational kinematics into
transformation-matrix form as follows:

Ṫvi =
d

dt

[
Cvi rivv
0T 1

]
=

[
Ċvi ṙivv
0T 0

]
=

[
−ωvi∧v Cvi −ωvi

∧
v rivv − νviv

0T 0

]

=

[
−ωvi∧v −νviv

0T 0

] [
Cvi rivv
0T 1

]
=




0 vκ 0 −v
−vκ 0 vτ 0

0 −vτ 0 0
0 0 0 0


Tvi. (6.98)

198 Primer on Three-Dimensional Geometry

Integrating this forward in time provides both the translation and ro-
tation of the moving frame. We can think of (v, κ, τ) as three inputs in
this case as they determine the shape of the curve that is traced out.
We will see in the next chapter that these kinematic equations can be
generalized to the form

Ṫ =

[
ω∧ ν
0T 0

]
T, (6.99)

where

$ =

[
ν
ω

]
(6.100)

is a (slightly differently defined) generalized six-degree-of-freedom ve-
locity vector (expressed in the moving frame) that allows for all possi-
ble curves for T to be traced out. The Frenet-Serret equations can be
viewed as a special case of this general kinematic formula.

If we want to use Tiv (for reasons described in the last section)
instead of Tvi, we can either integrate the above and then output Tiv =
T−1
vi , or we can instead integrate

Ṫiv = Tiv




0 −vκ 0 v
vκ 0 −vτ 0
0 vτ 0 0
0 0 0 0


 , (6.101)

which will achieve the same result (proof left as an exercise). If we
constrain the motion to the xy-plane, which can be achieved by setting
the initial condition to

Tiv(0) =




cos θvi(0) − sin θvi(0) 0 x(0)
sin θvi(0) cos θvi(0) 0 y(0)

0 0 1 0
0 0 0 1


 , (6.102)

and then forcing τ = 0 for all time, the kinematics simplify to

ẋ = v cos θ, (6.103a)

ẏ = v sin θ, (6.103b)

θ̇ = ω, (6.103c)

where ω = vκ and it is understood that θ = θvi. This last model is
sometimes referred to as the ‘unicycle model’ for a differential-drive
mobile robot. The inputs are the longitudinal speed, v, and the rota-
tional speed, ω. The robot is unable to translate sideways due to the
nonholonomic constraint associated with its wheels; it can only roll
forwards and turn.

6.4 Sensor Models 199

6.4 Sensor Models

Now that we have some three-dimensional tools, we will introduce a
few three-dimensional sensor models that can be used inside our state
estimation algorithms. In general, we will be interested in sensors that
are on-board our robot. This situation is depicted in Figure 6.5.

Figure 6.5

Reference frames

for a moving

vehicle with a

sensor on-board

that observes a

point, P , in the

world.

F�!v

I

V

r�!
vi

vehicle

P

S F�!s

sensor

F�!i r�!
ps

r�!
pi

r�!
sv

We have an inertial frame, F−→i, a vehicle frame, F−→v, and a sensor
frame, F−→s. The pose change between the sensor frame and the vehicle
frame, Tsv, called the extrinsic sensor parameters, is typically fixed and
is either determined through some form of separate calibration method
or is folded directly into the state estimation procedure. In the sensor-
model developments to follow, we will focus solely on how a point, P ,
is observed by a sensor attached to F−→s.

6.4.1 Perspective Camera

One of the most important sensors is the perspective camera as it is
cheap yet can be used to infer motion of a vehicle and also the shape
of the world.

Normalized Image Coordinates

Figure 6.6 depicts the observation, O, of a point, P , in an ideal per-
spective camera. In reality, the image plane is behind the pinhole, but
showing it in front avoids the mental effort of working with a flipped
image. This is called the frontal projection model. The s−→3 axis of F−→s,
called the optical axis, is orthogonal to the image plane and the dis-

200 Primer on Three-Dimensional Geometry

Figure 6.6

Frontal projection

model of a camera

showing the

observation, O, of

a point, P , in the

image plane. In

reality, the image

plane is behind the

pinhole but the

frontal model

avoids flipping the

image.

Pr�!
ps

S

F�!s

xn

yn
1

image plane

pinhole

optical axis

observation

O

C

s�!1

s�!2

s�!3

tance between the pinhole, S, and the image plane center, C, called the
focal length, is 1 for this idealized camera model.

If the coordinates of P in F−→s are

ρ = rpss =



x
y
z


 , (6.104)

with the s−→3 axis orthogonal to the image plane, then the coordinates
of O in the image plane are

xn = x/z, (6.105a)

yn = y/z. (6.105b)

These are called the (two-dimensional) normalized image coordinates,
and are sometimes provided in a homogeneous form as

p =



xn
yn
1


 . (6.106)

Figure 6.7 Two

camera

observations of the

same point, P . P

pa pb

Tba

F�!a F�!b

6.4 Sensor Models 201

Essential Matrix

If a point, P , is observed by a camera, the camera moved, and then
the same point observed again, the two normalized image coordinates
corresponding to the observations, pa and pb, are related to one another
through the following constraint:

pTaEabpb = 0, (6.107)

where Eab is called the essential matrix (of computer vision),

Eab = CT
bar

ab∧

b (6.108)

and is related to the pose change of the camera,

Tba =

[
Cba rabb
0T 1

]
. (6.109)

To see that the constraint is true, we let

pj =
1

zj
ρj, ρj =



xj
yj
zj


 (6.110)

for j = a, b. We also have

ρa = CT
ba

(
ρb − rabb

)
(6.111)

for the change in coordinates of P due to the camera moving. Then,
returning to the constraint, we see

pTaEabpb =
1

zazb
ρTaEabρb =

1

zazb

(
ρb − rabb

)T
CbaC

T
ba︸ ︷︷ ︸

1

rab
∧

b ρb

=
1

zazb

(
−ρTb ρ∧b︸ ︷︷ ︸

0

rabb − rab
T

b rab
∧

b︸ ︷︷ ︸
0

ρb
)

= 0. (6.112)

The essential matrix can be useful in some pose-estimation problems,
including camera calibration.

Lens Distortion

In general, lens effects can distort camera images so that the normal-
ized image coordinate equations are only approximately true. A variety
of analytical models of this distortion are available, and these can be
used to correct the raw images such that the resulting images appear
as though they come from an idealized pinhole camera, and thus the
normalized image coordinate equations hold. We will assume this undis-
tortion procedure has been applied to the images and avoid elaborating
on the distortion models.

202 Primer on Three-Dimensional Geometry

Figure 6.8

Camera model

showing intrinsic

parameters: f is

the focal length,

(cu, cv) is the

optical axis

intersection.

P

(u, v)
(x, y, z)f

(cu, cv)

F�!s

Intrinsic Parameters

The normalized image coordinates are really associated with a hypo-
thetical camera with unit focal length and image origin at the opti-
cal axis intersection. We can map the normalized image coordinates,
(xn, yn), to the actual pixel coordinates, (u, v), through the following
relation: 


u
v
1


 =



fu 0 cu
0 fv cv
0 0 1




︸ ︷︷ ︸
K



xn
yn
1


 , (6.113)

where K is called the intrinsic parameter matrix and contains the ac-
tual camera focal length expressed in horizontal pixels, fu, and vertical
pixels, fv, as well as the actual offset of the image origin from the
optical axis intersection, (cu, cv), also expressed in horizontal, vertical
pixels7. These intrinsic parameters are typically determined during the
calibration procedure used to remove the lens effects, so that we can
assume K is known.

Fundamental Matrix

Similarly to the essential matrix constraint, there is a constraint that
can be expressed between the homogeneous pixel coordinates of two
observations of a point from different camera perspectives (and possibly
even different cameras). Let

qi = Kipi, (6.114)

with i = a, b for the pixel coordinates of two camera observations with
different intrinsic parameter matrices. Then the following constraint
holds:

qTaFabqb = 0, (6.115)

where

Fab = K−Ta EabK
−1
b (6.116)

7 On many imaging sensors, the pixels are not square, resulting in different units in the

horizontal and vertical directions.

6.4 Sensor Models 203

is called the fundamental matrix (of computer vision). It is fairly easy
to see the constraint is true by substitution:

qTaFabqb = pTb KT
aK−Ta︸ ︷︷ ︸

1

Eab K−1
b Kb︸ ︷︷ ︸

1

pb = 0, (6.117)

where we use the essential-matrix constraint for the last step.
The constraint associated with the fundamental matrix is also some-

times called the epipolar constraint and is depicted geometrically in
Figure 6.9. If a point is observed in one camera, qa, and the funda-
mental matrix between the first and a second camera is known, the
constraint describes a line, called the epipolar line, along which the ob-
servation of the point in the second camera, qb, must lie. This property
can be used to limit the search for a matching point to just the epipolar
line. This is possible because the camera model is an affine transfor-
mation, implying that a straight line in Euclidean space projects to a
straight line in image space. The fundamental matrix is also useful in
developing methods to determine the intrinsic parameter matrix, for
example.

Complete Model

Combining everything but the lens effects, the perspective camera model
can be written as [

u
v

]
= s(ρ) = P K

1

z
ρ, (6.118)

where

P =

[
1 0 0
0 1 0

]
, K =



fu 0 cu
0 fv cv
0 0 1


 , ρ =



x
y
z


 . (6.119)

P is simply a projection matrix to remove the bottom row from the
homogeneous point representation. This form of the model makes it
clear that with a single camera, there is a loss of information as we are

Figure 6.9 If a

point is observed in

one image, qa, and

the fundamental

matrix, Fab, is

known, this can be

used to define a

line in the second

image along which

the second

observation, qb,

must lie.

epipolar line
�
qT

a Fab

�
qb = 0

qa

Tba

F�!a F�!b

204 Primer on Three-Dimensional Geometry

going from three parameters in ρ to just two in (u, v); we are unable
to determine depth from just one camera.

Homography

Although we cannot determine depth from just one camera, if we as-
sume that the point a camera is observing lies on the surface of a plane
whose geometry is known, we can work out the depth and then how
that point will look to another camera. The geometry of this situation
is depicted in Figure 6.10.

The homogeneous observations for the two cameras can be written
as

qi = Ki

1

zi
ρi, ρi =



xi
yi
zi


 , (6.120)

where ρi are the coordinates of P in each camera frame with i =
a, b. Let us assume we know the equation of the plane containing P ,
expressed in both camera frames; this can be parameterized as

{ni, di} , (6.121)

where di is the distance of camera i from the plane and ni are the
coordinates of the plane normal in frame i. This implies that

nTi ρi + di = 0, (6.122)

since P is in the plane. Solving for ρi in (6.120) and substituting into
the plane equation, we have

zin
T
i K−1

i qi + di = 0, (6.123)

or

zi = − di
nTi K−1

i qi
(6.124)

Figure 6.10 If

the point observed

by a camera lies on

a plane whose

geometry is known,

it is possible to

work out what

that point will look

like after the

camera makes a

pose change using

a transform called

a homography.

F�!a

Tba

F�!b

P

da

db

r�!
pb

r�!
pa

n�!

A
B

6.4 Sensor Models 205

for the depth of point P in each camera, i = a, b. This further implies
that we can write the coordinates of P , expressed in each camera frame,
as

ρi = − di
nTi K−1

i qi
K−1
i qi. (6.125)

This shows that the knowledge of the plane parameters, {ni, di}, allows
us to recover the coordinates of P even though a single camera cannot
determine depth on its own.

Let us also assume we know the pose change, Tba, from F−→a to F−→b

so that [
ρb
1

]
=

[
Cba rabb
0T 1

]

︸ ︷︷ ︸
Tba

[
ρa
1

]
, (6.126)

or

ρb = Cbaρa + rabb . (6.127)

Inserting (6.120), we have that

zbK
−1
b qb = zaCbaK

−1
a qa + rabb . (6.128)

We can then isolate for qb in terms of qa:

qb =
za
zb

KbCbaK
−1
a qa +

1

zb
Kbr

ab
b . (6.129)

Then, substituting zb from (6.124), we have

qb =
za
zb

KbCba

(
1 +

1

da
rbaa nTa

)
K−1
a qa, (6.130)

where we used that rabb = −Cbar
ba
a . Finally, we can write

qb = KbHbaK
−1
a qa, (6.131)

where

Hba =
za
zb

Cba

(
1 +

1

da
rbaa nTa

)
(6.132)

is called the homography matrix. Since the factor za/zb just scales qb, it
can be dropped in practice owing to the fact that qb are homogeneous
coordinates and the true pixel coordinates can always be recovered by
dividing the first two entries by the third; doing so means that Hba is
only a function of the pose change and the plane parameters.

It is worth noting that in the case of a pure rotation, rbaa = 0, so that
the homography matrix simplifies to

Hba = Cba (6.133)

when the za/zb factor is dropped.

206 Primer on Three-Dimensional Geometry

The homography matrix is invertible and its inverse is given by

H−1
ba = Hab =

zb
za

Cab

(
1 +

1

db
rabb nTb

)
. (6.134)

This allows us to transform observations in the other direction.

6.4.2 Stereo Camera

Another common three-dimensional sensor is a stereo camera, which
consists of two perspective cameras rigidly connected to one another
with a known transformation between them. Figure 6.11 depicts one of
the most common stereo configurations where the two cameras are sep-
arated along the x-axis by a stereo baseline of b. Unlike a single camera,
it is possible to determine depth to a point from a stereo observation.

Midpoint Model

If we express the coordinates of the point, P , in F−→s as

ρ = rpss =



x
y
z


 , (6.135)

then the model for the left camera is

[
u`
v`

]
= P K

1

z



x+ b

2

y
z


 , (6.136)

and the model for the right camera is

[
ur
vr

]
= P K

1

z



x− b

2

y
z


 , (6.137)

Figure 6.11

Stereo camera rig.

Two cameras are

mounted pointing

in the same

direction but with

a known separation

of b along the

x-axis. We choose

the sensor frame to

be located at the

midpoint between

the two cameras.

P

b/2

b/2

left image

right image

stereo baseline

F�!s

q`
qrF�!`

F�!r

6.4 Sensor Models 207

where we assume the two cameras have the same intrinsic parameter
matrix. Stacking the two observations together, we can write the stereo
camera model as




u`
v`
ur
vr


 = s(ρ) =




fu 0 cu fu
b
2

0 fv cv 0
fu 0 cu −fu b2
0 fv cv 0




︸ ︷︷ ︸
M

1

z




x
y
z
1


 , (6.138)

where M is now a combined parameter matrix for the stereo rig. It
is worth noting that M is not invertible since two of its rows are the
same. In fact, because of the stereo setup, the vertical coordinates of
the two observations will always be the same; this corresponds to the
fact that epipolar lines in this configuration are horizontal such that if
a point is observed in one image, the observation in the other image
can be found by searching along the line with the same vertical pixel
coordinate. We can see this using the fundamental matrix constraint;
for this stereo setup, we have Cr` = 1 and r`rr =

[−b 0 0
]

so that
the constraint is

[
u` v` 1

]


fu 0 0
0 fv 0
cu cv 1




︸ ︷︷ ︸
K`

T




0 0 0
0 0 b
0 −b 0




︸ ︷︷ ︸
E`r



fu 0 cu
0 fv cv
0 0 1




︸ ︷︷ ︸
Kr



ur
vr
1


 = 0.

(6.139)
Multiplying this out, we see that it simplifies to vr = v`.

Left Model

We could also choose to locate the sensor frame at the left camera
rather than the midpoint between the two cameras. In this case, the

Figure 6.12

Alternate stereo

model with the

sensor frame

located at the left

camera.

P

left image

right image

stereo baseline

b

q`
qr

F�!r

F�!s, F�!`

208 Primer on Three-Dimensional Geometry

camera model becomes



u`
v`
ur
vr


 =




fu 0 cu 0
0 fv cv 0
fu 0 cu −fub
0 fv cv 0




1

z




x
y
z
1


 . (6.140)

Typically, in this form, the vr equation is dropped and the ur equation
is replaced with one for the disparity8, d, given by

d = u` − ur =
1

z
fub, (6.141)

so that we can write



u`
v`
d


 = s(ρ) =



fu 0 cu 0
0 fv cv 0
0 0 0 fub


 1

z




x
y
z
1


 , (6.142)

for the stereo model. This form has the appealing property that we
are going from three point parameters, (x, y, z), to three observations,
(u`, v`, d). A similar model can be developed for the right camera.

6.4.3 Range-Azimuth-Elevation

Some sensors, such as lidar (light detection and ranging), can be mod-
elled as a range-azimuth-elevation (RAE), which essentially observes a
point, P , in spherical coordinates. For lidar, which can measure dis-
tance by reflecting laser pulses off a scene, the azimuth and elevation
are the angles of the mirrors that are used to steer the laser beam and
the range is the reported distance determined by time of flight. The
geometry of this sensor type is depicted in Figure 6.13.

The coordinates of point P in the sensor frame, F−→s, are

ρ = rpss =



x
y
z


 . (6.143)

Figure 6.13 A

range-azimuth-

elevation sensor

model observes a

point P in

spherical

coordinates.

P
r�!

ps

S

F�!s

↵

✏

r

azimuth

elevation

range

s�!1

s�!2

s�!3

8 The disparity equation can be used as a one-dimensional stereo camera model, as we

have already seen in the earlier chapter on nonlinear estimation.

6.4 Sensor Models 209

These can also be written as

ρ = CT
3 (α) CT

2 (−ε)



r
0
0


 , (6.144)

where α is the azimuth, ε is the elevation, r is the range, and Ci is
the principal rotation about axis i. The elevation rotation indicated in
Figure 6.13 is negative according to the right-hand rule. Inserting the
principal-axis rotation formulas and multiplying out, we find that



x
y
z


 =



r cosα cos ε
r sinα cos ε
r sin ε


 , (6.145)

which are the common spherical-coordinate expressions. Unfortunately,
this is the inverse of the sensor model we desire. We can invert this
expression to show that the RAE sensor model is



r
α
ε


 = s(ρ) =




√
x2 + y2 + z2

tan−1(y/x)
sin−1

(
z/
√
x2 + y2 + z2

)


 . (6.146)

In the case that the point P lies in the xy-plane, we have z = 0 and
hence ε = 0, so that the RAE model simplifies to the range-bearing
model: [

r
α

]
= s(ρ) =

[√
x2 + y2

tan−1(y/x)

]
, (6.147)

which is commonly used in mobile robotics.

6.4.4 Inertial Measurement Unit

Another common sensor that functions in three-dimensional space is
the inertial measurement unit (IMU). An ideal IMU comprises three
orthogonal linear accelerometers and three orthogonal rate gyros9. All
quantities are measured in a sensor frame, F−→s, which is typically not
located at the vehicle frame, F−→v, as shown in Figure 6.14.

To model an IMU, we assume that the state of the vehicle can be
captured by the quantities

rvii , Cvi︸ ︷︷ ︸
pose

, ωviv ,︸︷︷︸
angular velocity

ω̇viv ,︸︷︷︸
angular acceleration

(6.148)

and that we know the fixed pose change between the vehicle and sensor
frames given by rsvv and Csv, which is typically determined by calibra-
tion.
9 Typically, calibration is required, as the axes are never perfectly orthogonal due to

manufacturing tolerances.

210 Primer on Three-Dimensional Geometry

Figure 6.14 An

inertial

measurement unit

has three linear

accelerometers and

three rate gyros

that measure

quantities in the

sensor frame,

which is typically

not coincident with

the vehicle frame.

F�!v

I

V

r�!
vi

vehicle

r�!
sv

S
F�!s

sensorF�!i

g�!

The gyro sensor model is simpler than the accelerometers, so we will
discuss this first. Essentially, the measured angular rates, ω, are the
body rates of the vehicle, expressed in the sensor frame:

ω = Csvω
vi
v . (6.149)

This exploits the fact that the sensor frame is fixed with respect to the
vehicle frame so that Ċsv = 0.

Because accelerometers typically use test masses as part of the mea-
surement principle, the resulting observations, a, can be written as

a = Csi

(
r̈sii − gi

)
, (6.150)

where r̈sii is the inertial acceleration of the sensor point, S, and gi is
gravity. Notably, in freefall, the accelerometers will measure a = 0,
whereas at rest, they will measure only gravity (in the sensor frame).
Unfortunately, this accelerometer model is not in terms of the vehicle
state quantities that we identified above, and must be modified to ac-
count for the offset between the sensor and vehicle frames. To do this,
we note that

rsii = rvii + CT
vir

sv
v . (6.151)

Differentiating twice (and using Poisson’s equation from (6.45) and that
ṙsvv = 0) provides

r̈sii = r̈vii + CT
viω̇

vi∧

v rsvv + CT
viω

vi∧

v ωvi
∧

v rsvv , (6.152)

where the right-hand side is now in terms of our state quantities 10 and
known calibration parameters. Inserting this into (6.150) gives our final
model for the accelerometers:

a = Csv

(
Cvi

(
r̈vii − gi

)
+ ω̇vi

∧

v rsvv + ωvi
∧

v ωvi
∧

v rsvv

)
. (6.153)

Naturally, if the offset between the sensor and vehicle frames, rsvv , is
sufficiently small, we may choose to neglect the last two terms.

10 If the angular acceleration quantity, ω̇viv , is not actually part of the state, it could be

estimated from two or more measurements from the gyro at previous times.

6.5 Summary 211

Figure 6.15 For

high-performance

inertial-

measurement-unit

applications, it is

necessary to

account for the

rotation of the

Earth, in which

case a topocentric

reference frame is

located on the

Earth’s surface and

an inertial frame is

located at the

Earth’s center.

F�!v

I

V

vehicle

r�!
sv

S F�!s

sensor
F�!i

r�!
ti

r�!
vtF�!t

Earth-centred inertial

topocentric

g�!

To summarize, we can stack the accelerometer and gyro models into
the following combined IMU sensor model:

[
a
ω

]
= s

(
rvii ,Cvi,ω

vi
v , ω̇

vi
v

)

=

[
Csv

(
Cvi (r̈vii − gi) + ω̇vi

∧

v rsvv + ωvi
∧

v ωvi
∧

v rsvv

)

Csvω
vi
v

]
, (6.154)

where Csv and rsvv are the (known) pose change between the vehicle
and sensor frames and gi is gravity in the inertial frame.

For some high-performance inertial-measurement-unit applications,
the above model is insufficient since it assumes an inertial reference
frame can be located conveniently on the Earth’s surface, for example.
High-end IMU units, however, are sensitive enough to detect the ro-
tation of the Earth, and thus a more elaborate model of the sensor is
required. The typical setup is depicted in Figure 6.15, where the iner-
tial frame is located at the Earth’s center of mass (but not rotating)
and then a convenient (non-inertial) reference frame (used to track the
vehicle’s motion) is located on the Earth’s surface. This requires gen-
eralizing the sensor model to account for this more sophisticated setup
(not shown).

6.5 Summary

The main take-away points from this chapter are as follows:

1. Objects that are able to rotate in three dimensions pose a problem
for our state estimation techniques in the first part of the book. This
is because we cannot, in general, use a vectorspace to describe the
three-dimensional orientation of an object.

212 Primer on Three-Dimensional Geometry

2. There are several ways to parameterize rotations (e.g., rotation ma-
trix, Euler angles, unit-length quaternions). They all have advan-
tages and disadvantages; some have singularities while the others
have constraints. Our choice in this book is to favour the use of the
rotation matrix since this is the quantity that is most commonly
used to rotate vectors from one reference frame to another.

3. There are many different notational conventions in use in differ-
ent fields (i.e., robotics, computer vision, aerospace). Coupled with
the variety of rotational parameterizations, this can often lead to
a source of miscommunication in practice. Our goal in this book is
only to attempt to explain three-dimensional state estimation con-
sistently and clearly in just one of the notational possibilities.

The next chapter will explore more deeply the mathematics of rotations
and poses by introducing matrix Lie groups.

6.6 Exercises

6.6.1 Show that u∧v ≡ −v∧u for any two 3× 1 columns u and v.
6.6.2 Show that C−1 = CT starting from

C = cos θ1 + (1− cos θ)aaT + sin θ a∧.

6.6.3 Show that (Cv)
∧ ≡ Cv∧CT for any 3×1 column v and rotation

matrix, C.
6.6.4 Show that

Ṫiv = Tiv




0 −vκ 0 v
vκ 0 −vτ 0
0 vτ 0 0
0 0 0 0


 .

6.6.5 Show that if we constrain the motion to the xy-plane, the Frenet-
Serret equations simplify to

ẋ = v cos θ,

ẏ = v sin θ,

θ̇ = ω,

where ω = vκ.
6.6.6 Show that for the single-camera model, straight lines in Eu-

clidean space project to straight lines in image space.
6.6.7 Show directly that the inverse of the homography matrix

Hba =
za
zb

Cba

(
1 +

1

da
rbaa nTa

)
,

is

H−1
ba =

zb
za

Cab

(
1 +

1

db
rabb nTb

)
.

6.6 Exercises 213

6.6.8 Work out the stereo camera model for the case when the sensor
frame is located at the right camera instead of the left or the
midpoint.

6.6.9 Work out the inverse of the left stereo camera model. In other
words, how can we go from (u`, v`, d) back to the point coordinates,
(x, y, z)?

6.6.10 Work out an IMU model for the situation depicted in Fig-
ure 6.15, where it is necessary to account for the rotation of the
Earth about its axis.

7

Matrix Lie Groups

We have already introduced rotations and poses in the previous chapter
on three-dimensional geometry. In this chapter, we look more deeply
into the nature of these quantities. It turns out that rotations are quite
different from the usual vector quantities with which we are familiar.
The set of rotations is not a vectorspace in the sense of linear algebra.
However, rotations do form another mathematical object called a non-
commutative group, which possesses some, but not all, of the usual
vectorspace properties.

We will focus our efforts in this chapter on two sets known as matrix
Lie groups. Stillwell (2008) provides an accessible account of Lie the- Marius Sophus Lie

(1842-1899) was a

Norwegian

mathematician. He

largely created the

theory of

continuous

symmetry and

applied it to the

study of geometry

and differential

equations.

ory, and Chirikjian (2009) is an excellent reference from the robotics
perspective.

7.1 Geometry

We will work with two specific matrix Lie groups in this chapter: the
special orthogonal group, denoted SO(3), which can represent rotations,
and the special Euclidean group, SE(3), which can represent poses.

7.1.1 Special Orthogonal and Special Euclidean Groups

The special orthogonal group, representing rotations, is simply the set
of valid rotation matrices:

SO(3) =
{
C ∈ R3×3 | CCT = 1, det C = 1

}
. (7.1)

The CCT = 1 orthogonality condition is needed to impose six con-
straints on the nine-parameter rotation matrix, thereby reducing the
number of degrees of freedom to three. Noticing that

(det C)
2

= det
(
CCT

)
= det 1 = 1, (7.2)

we have that

det C = ±1, (7.3)

215

216 Matrix Lie Groups

allowing for two possibilities. Choosing det C = 1 ensures that we have
a proper rotation1.

Although the set of all matrices can be shown to be a vectorspace,
SO(3) is not a valid subspace2. For example, SO(3) is not closed under
addition, so adding two rotation matrices does not result in a valid
rotation matrix:

C1,C2 ∈ SO(3) ; C1 + C2 ∈ SO(3). (7.4)

Also, the zero matrix is not a valid rotation matrix: 0 /∈ SO(3). Without
these properties (and some others), SO(3) cannot be a vectorspace (at
least not a subspace of R3×3).

The special Euclidean group, representing poses (i.e., translation and
rotation), is simply the set of valid transformation matrices:

SE(3) =

{
T =

[
C r
0T 1

]
∈ R4×4

∣∣∣∣∣ C ∈ SO(3), r ∈ R3

}
. (7.5)

By similar arguments to SO(3), we can show that SE(3) is not a vec-
torspace (at least not a subspace of R4×4).

While SO(3) and SE(3) are not vectorspaces, they can be shown
to be matrix Lie groups3. We next show what this means. In math-
ematics, a group is a set of elements together with an operation that
combines any two of its elements to form a third element also in the
set, while satisfying four conditions called the group axioms, namely
closure, associativity, identity, and invertibility. A Lie group is a group
that is also a differential manifold, with the property that the group
operations are smooth4. A matrix Lie group further specifies that the
elements of the group are matrices, the combination operation is matrix
multiplication, and the inversion operation is matrix inversion.

The four group properties are then as shown in Table 7.1.1 for our
two candidate matrix Lie groups. Closure for SO(3) actually follows
directly from Euler’s rotation theorem, which says a compounding of
rotations can be replaced by a single rotation. Or, we can note that

(C1C2) (C1C2)
T

= C1 C2C
T
2︸ ︷︷ ︸

1

CT
1 = C1C

T
1︸ ︷︷ ︸

1

= 1,

det (C1C2) = det (C1)︸ ︷︷ ︸
1

det (C2)︸ ︷︷ ︸
1

= 1, (7.6)

1 There is another case in which det C = −1, sometimes called an improper rotation or

rotary reflection, but we shall not be concerned with it here.
2 A subspace of a vectorspace is also a vectorspace.
3 They are actually non-Abelian (or non-commutative) groups since the order in which

we compound elements matters.
4 Smoothness implies that we can use differential calculus on the manifold; or, roughly, if

we change the input to any group operation by a little bit, the output will only change

by a little bit.

7.1 Geometry 217

Table 7.1 Matrix

Lie group

properties for

SO(3) (rotations)

and SE(3) (poses).

property SO(3) SE(3)

closure
C1,C2 ∈ SO(3)
⇒ C1C2 ∈ SO(3)

T1,T2 ∈ SE(3)
⇒ T1T2 ∈ SE(3)

associativity
C1 (C2C3) = (C1C2) C3

= C1C2C3

T1 (T2T3) = (T1T2) T3

= T1T2T3

identity
C,1 ∈ SO(3)
⇒ C1 = 1C = C

T,1 ∈ SE(3)
⇒ T1 = 1T = T

invertibility
C ∈ SO(3)

⇒ C−1 ∈ SO(3)

T ∈ SE(3)

⇒ T−1 ∈ SE(3)

such that C1C2 ∈ SO(3) if C1,C2 ∈ SO(3). Closure for SE(3) can be
seen simply by multiplying,

T1T2 =

[
C1 r1

0T 1

] [
C2 r2

0T 1

]
=

[
C1C2 C1r2 + r1

0T 1

]
∈ SE(3), (7.7)

since C1C2 ∈ SO(3) and C1r2 + r1 ∈ R3. Associativity follows for
both groups from the properties of matrix multiplication5. The identity
matrix is the identity element of both groups, which again follows from
the properties of matrix multiplication. Finally, since C−1 = CT , which
follows from CCT = 1, we know that the inverse of an element of SO(3)
is still in SO(3). This can be seen through

(
C−1

) (
C−1

)T
=
(
CT
) (

CT
)T

= CTC︸ ︷︷ ︸
1

= 1,

det
(
C−1

)
= det

(
CT
)

= det C︸ ︷︷ ︸
1

= 1. (7.8)

The inverse of an element of SE(3) is

T−1 =

[
C r
0T 1

]−1

=

[
CT −CT r
0T 1

]
∈ SE(3); (7.9)

since CT ∈ SO(3), −CT r ∈ R3, so this also holds. Other than the
smoothness criterion, this establishes SO(3) and SE(3) as matrix Lie
groups.

7.1.2 Lie Algebras

With every matrix Lie group is associated a Lie algebra, which consists
of a vectorspace6, V, over some field7, F, together with a binary opera-
tion, [·, ·], called the Lie bracket (of the algebra) and that satisfies four
properties:

5 The set of all real matrices can be shown to be an algebra and associativity of matrix

multiplication is a required property.
6 We can take this to be a subspace of the square real matrices, which is a vectorspace.
7 We can take this to be the field of real numbers, R.

218 Matrix Lie Groups

closure: [X,Y] ∈ V,
bilinearity: [aX + bY,Z] = a[X,Z] + b[Y,Z],

[Z, aX + bY] = a[Z,X] + b[Z,Y],
alternating: [X,X] = 0,

Jacobi identity: [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y]] = 0,

for all X,Y,Z ∈ V and a, b ∈ F. The vectorspace of a Lie algebra is
the tangent space of the associated Lie group at the identity element of
the group, and it completely captures the local structure of the group.

Rotations

The Lie algebra associated with SO(3) is given by

vectorspace: so(3) =
{
Φ = φ∧ ∈ R3×3 | φ ∈ R3

}
,

field: R,
Lie bracket: [Φ1,Φ2] = Φ1Φ2 −Φ2Φ1,

where

φ∧ =



φ1

φ2

φ3



∧

=




0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0


 ∈ R3×3, φ ∈ R3. (7.10)

We already saw this linear, skew-symmetric operator in the previous
chapter during our discussion of cross products and rotations. Later,
we will also make use of the inverse of this operator, denoted (·)∨, so
that

Φ = φ∧ ⇒ φ = Φ∨. (7.11)

We will omit proving that so(3) is a vectorspace, but will briefly show
that the four Lie bracket properties hold. Let Φ,Φ1 = φ∧1 ,Φ2 = φ∧2 ∈
so(3). Then, for the closure property, we have

[Φ1,Φ2] = Φ1Φ2−Φ2Φ1 = φ∧1φ
∧
2 −φ∧2φ∧1 =

(
φ∧1φ2︸ ︷︷ ︸
∈R3

)∧
∈ so(3). (7.12)

Bilinearity follows directly from the fact that (·)∧ is a linear operator.
The alternating property can be seen easily through

[Φ,Φ] = ΦΦ−ΦΦ = 0 ∈ so(3). (7.13)

Finally, the Jacobi identity can be verified by substituting and applying

Carl Gustav Jacob

Jacobi (1804-1851)

was a German

mathematician

who made

fundamental

contributions to

elliptic functions,

dynamics,

differential

equations, and

number theory.

the definition of the Lie bracket. Informally, we will refer to so(3) as the
Lie algebra, although technically this is only the associated vectorspace.

Poses

The Lie algebra associated with SE(3) is given by

7.1 Geometry 219

vectorspace: se(3) =
{
Ξ = ξ∧ ∈ R4×4 | ξ ∈ R6

}
,

field: R,
Lie bracket: [Ξ1,Ξ2] = Ξ1Ξ2 −Ξ2Ξ1,

where

ξ∧ =

[
ρ
φ

]∧
=

[
φ∧ ρ
0T 0

]
∈ R4×4, ρ,φ ∈ R3. (7.14)

This is an overloading of the (·)∧ operator (Murray et al., 1994) from
before to take elements of R6 and turn them into elements of R4×4;
it is still linear. We will also make use of the inverse of this operator,
denoted (·)∨, so that

Ξ = ξ∧ ⇒ ξ = Ξ∨. (7.15)

Again, we will omit showing that se(3) is a vectorspace, but will briefly
show that the four Lie bracket properties hold. Let Ξ,Ξ1 = ξ∧1 ,Ξ2 =
ξ∧2 ∈ se(3). Then, for the closure property, we have

[Ξ1,Ξ2] = Ξ1Ξ2 −Ξ2Ξ1 = ξ∧1 ξ
∧
2 − ξ∧2 ξ∧1 =

(
ξf1 ξ2︸ ︷︷ ︸
∈R6

)∧
∈ se(3), (7.16)

where

ξf =

[
ρ
φ

]f
=

[
φ∧ ρ∧

0 φ∧

]
∈ R6×6, ρ,φ ∈ R3. (7.17)

Bilinearity follows directly from the fact that (·)∧ is a linear operator.
The alternating property can be seen easily through

[Ξ,Ξ] = ΞΞ−ΞΞ = 0 ∈ se(3). (7.18)

Finally, the Jacobi identity can be verified by substituting and applying
the definition of the Lie bracket. Again, we will refer to se(3) as the Lie
algebra, although technically, this is only the associated vectorspace.

In the next section, we will make clear the relationships between our
matrix Lie groups and their associated Lie algebras:

SO(3) ↔ so(3),

SE(3) ↔ se(3).

For this we require the exponential map.

7.1.3 Exponential Map

It turns out that the exponential map is the key to relating a matrix
Lie group to its associated Lie algebra. The matrix exponential is given
by

exp(A) = 1 + A +
1

2!
A2 +

1

3!
A3 + · · · =

∞∑

n=0

1

n!
An, (7.19)

220 Matrix Lie Groups

where A ∈ RM×M is a square matrix. There is also a matrix logarithm:

ln (A) =
∞∑

n=1

(−1)n−1

n
(A− 1)

n
. (7.20)

Rotations

For rotations, we can relate elements of SO(3) to elements of so(3)
through the exponential map:

C = exp
(
φ∧
)

=
∞∑

n=0

1

n!

(
φ∧
)n
, (7.21)

where C ∈ SO(3) and φ ∈ R3 (and hence φ∧ ∈ so(3)). We can also go
in the other direction (but not uniquely) using

φ = ln (C)
∨
. (7.22)

Mathematically, the exponential map from so(3) to SO(3) is surjective-
only (or surjective/onto and non-injective/many-to-one). This means
that we can generate every element of SO(3) from multiple elements
of so(3)8.

It is useful to examine the surjective-only property a little deeper.
We begin by working out the forwards (exponential) mapping in closed
form to go from a φ ∈ R3 to a C ∈ SO(3). Let φ = φa, where φ = |φ|
is the angle of rotation and a = φ/φ is the unit-length axis of rotation.
For the matrix exponential, we then have

exp(φ∧) = exp(φa∧)

= 1︸︷︷︸
aaT−a∧a∧

+ φa∧ +
1

2!
φ2a∧a∧ +

1

3!
φ3 a∧a∧a∧︸ ︷︷ ︸

−a∧

+
1

4!
φ4 a∧a∧a∧a∧︸ ︷︷ ︸

−a∧a∧

− · · ·

= aaT +

(
φ− 1

3!
φ3 +

1

5!
φ5 − · · ·

)

︸ ︷︷ ︸
sinφ

a∧

−
(

1− 1

2!
φ2 +

1

4!
φ4 − · · ·

)

︸ ︷︷ ︸
cosφ

a∧a∧︸ ︷︷ ︸
−1+aaT

= cosφ1 + (1− cosφ)aaT + sinφa∧︸ ︷︷ ︸
C

, (7.23)

8 The many-to-one mapping property is related to the concept of singularities (or

nonuniqueness) in rotation parameterizations. We know that every three-parameter

representation of a rotation cannot represent orientation both globally and uniquely.

Nonuniqueness implies that given a C, we cannot uniquely find a single φ ∈ R3 that

generated it; there is an infinite number of them.

7.1 Geometry 221

which we see is the canonical axis-angle form of a rotation matrix pre-
sented earlier. We have used the useful identities (for unit-length a),

a∧a∧ ≡ −1 + aaT , (7.24a)

a∧a∧a∧ ≡ −a∧, (7.24b)

the proofs of which are left to the reader. This shows that every φ ∈ R3

will generate a valid C ∈ SO(3). It also shows that if we add a multiple
of 2π to the angle of rotation, we will generate the same C. In detail,
we have

C = exp((φ+ 2πm) a∧), (7.25)

with m any positive integer, since cos(φ + 2πm) = cosφ and sin(φ +
2πm) = sinφ. If we limit the angle of rotation, |φ| < π, of the input,
then each C can only be generated by one φ.

Additionally, we would like to show that every C ∈ SO(3) can be
generated by some φ ∈ R3, and for that we need the inverse (logarith-
mic) mapping: φ = ln(C)∨. We can also work this out in closed form.
Since a rotation matrix applied to its own axis does not alter the axis,

Ca = a, (7.26)

this implies that a is a (unit-length) eigenvector of C corresponding to
an eigenvalue of 1. Thus, by solving the eigenproblem associated with
C, we can find a9. The angle can be found by exploiting the trace (sum
of the diagonal elements) of a rotation matrix:

tr(C) = tr
(
cosφ1 + (1− cosφ)aaT + sinφa∧

)

= cosφ tr(1)︸ ︷︷ ︸
3

+(1− cosφ) tr
(
aaT

)
︸ ︷︷ ︸

aT a=1

+ sinφ tr (a∧)︸ ︷︷ ︸
0

= 2 cosφ+ 1.

(7.27)

Solving, we have

φ = cos−1

(
tr(C)− 1

2

)
+ 2πm, (7.28)

which indicates there are many solutions for φ. By convention, we will
pick the one such that |φ| < π. To complete the process, we combine a
and φ according to φ = φa. It is noteworthy that there is an ambiguity
in the sign of φ since cosφ is an even function; we can test for the correct
one by going the other way to see that φ produces the correct C and
if not reversing the sign of φ. This shows that every C ∈ SO(3) can be
built from at least one φ ∈ R3.

Figure 7.1 provides a simple example of the relationship between the

9 There are some subtleties that occur when there is more than one eigenvalue equal to

1. E.g., C = 1, whereupon a is not unique and can be any unit vector.

222 Matrix Lie Groups

Figure 7.1

Example of the

relationship

between the Lie

group and Lie

algebra for the

case of rotation

constrained to the

plane. In a small

neighbourhood

around the θvi = 0

point, the

vectorspace

associated with the

Lie algebra is a

line tangent to the

circle.

F�!i

F�!v

✓vi

(1, ✓vi, 0)

C3(✓vi)11 = exp

0
@
2
4

0
0
✓vi

3
5
^1
A
2
4

1
0
0

3
5

⇡

0
@1 +

2
4

0
0
✓vi

3
5
^1
A
2
4

1
0
0

3
5 =

2
4

1
✓vi

0

3
5

so(3)
SO(3)

Lie group and Lie algebra for the case of rotation constrained to the
plane. We see that in a neighbourhood near the zero-rotation point,
θvi = 0, the Lie algebra vectorspace is just a line that is tangent to the
circle of rotation. We see that, indeed, near zero rotation, the Lie alge-
bra captures the local structure of the Lie group. It should be pointed
out that this example is constrained to the plane (i.e., a single ro-
tational degree of freedom), but in general the dimension of the Lie
algebra vectorspace is three. Put another way, the line in the figure is
a one-dimensional subspace of the full three-dimensional Lie algebra
vectorspace.

Connecting rotation matrices with the exponential map makes it easy
to show that det(C) = 1 using Jacobi’s formula, which, for a general
square complex matrix, A, says

det (exp (A)) = exp (tr(A)) . (7.29)

In the case of rotations, we have

det(C) = det
(
exp (φ∧)

)
= exp

(
tr(φ∧)

)
= exp(0) = 1, (7.30)

since φ∧ is skew-symmetric and therefore has zeros on its diagonal,
making its trace zero.

Poses

For poses, we can relate elements of SE(3) to elements of se(3), again
through the exponential map:

T = exp
(
ξ∧
)

=
∞∑

n=0

1

n!

(
ξ∧
)n
, (7.31)

where T ∈ SE(3) and ξ ∈ R6 (and hence ξ∧ ∈ se(3)). We can also go
in the other direction10 using

ξ = ln (T)
∨
. (7.32)

10 Again, not uniquely.

7.1 Geometry 223

The exponential map from se(3) to SE(3) is also surjective-only: every
T ∈ SE(3) can be generated by many ξ ∈ R6.

To show the surjective-only property of the exponential map, we first

examine the forwards direction. Starting with ξ =

[
ρ
φ

]
∈ R6, we have

exp
(
ξ∧
)

=
∞∑

n=0

1

n!

(
ξ∧
)n

=
∞∑

n=0

1

n!

([
ρ
φ

]∧)n

=
∞∑

n=0

1

n!

[
φ∧ ρ
0T 0

]n

=

[∑∞
n=0

1
n!

(
φ∧
)n (∑∞

n=0
1

(n+1)!

(
φ∧
)n)

ρ

0T 1

]

=

[
C r
0T 1

]

︸ ︷︷ ︸
T

∈ SE(3), (7.33)

where

r = Jρ ∈ R3, J =
∞∑

n=0

1

(n+ 1)!

(
φ∧
)n
. (7.34)

This shows that every ξ ∈ R6 will generate a valid T ∈ SE(3). We will
discuss the matrix, J, in greater detail just below. Figure 7.2 provides

Figure 7.2 By

varying each of the

components of ξ,

constructing

T = exp (ξ∧), and

then using this to

transform the

points composing

the corners of a

rectangular prism,

we see that the

prism’s pose can

be translated and

rotated.

Combining these

basic movements

can result in any

arbitrary pose

change of the

prism.⇠ =

2
6666664

0
0
0
0
�
0

3
7777775

⇠ =

2
6666664

x
0
0
0
0
0

3
7777775

⇠ =

2
6666664

0
y
0
0
0
0

3
7777775

⇠ =

2
6666664

0
0
z
0
0
0

3
7777775

⇠ =

2
6666664

0
0
0
↵
0
0

3
7777775

⇠ =

2
6666664

0
0
0
0
0
�

3
7777775

translation

rotation

x y z

224 Matrix Lie Groups

a visualization of how each of the six components of ξ can be varied
to alter the pose of a rectangular prism. By combining these basic
translations and rotations, an arbitrary pose change can be achieved.

Next we would like to go in the inverse direction. Starting with T =[
C r
0T 1

]
, we want to show this can be generated by some ξ =

[
ρ
φ

]
∈ R6;

we need the inverse mapping, ξ = ln(T)∨. We have already seen how
to go from C ∈ SO(3) to φ ∈ R3 in the last section. Next, we can
compute

ρ = J−1r, (7.35)

where J is built from φ (already computed). Finally, we assemble ξ ∈ R6

from ρ,φ ∈ R3. This shows that every T ∈ SE(3) can be generated by
at least one ξ ∈ R6.

Jacobian

The matrix, J, described just above, plays an important role in allow-
ing us to convert the translation component of pose in se(3) into the
translation component of pose in SE(3) through r = Jρ. This quantity
appears in other situations as well when dealing with our matrix Lie
groups, and we will learn later on in this chapter that this is called the
(left) Jacobian of SO(3). In this section, we will derive some alternate
forms of this matrix that are sometimes useful.

We have defined J as

J =
∞∑

n=0

1

(n+ 1)!

(
φ∧
)n
. (7.36)

By expanding this series and manipulating, we can show the following
closed-form expressions for J and its inverse:

J =
sinφ

φ
1 +

(
1− sinφ

φ

)
aaT +

1− cosφ

φ
a∧, (7.37a)

J−1 =
φ

2
cot

φ

2
1 +

(
1− φ

2
cot

φ

2

)
aaT − φ

2
a∧, (7.37b)

where φ = |φ| is the angle of rotation and a = φ/φ is the unit-length
axis of rotation. Owing to the nature of the cot(φ/2) function, there
are singularities associated with J (i.e., the inverse does not exist) at
φ = 2πm with m a non-zero integer.

Occasionally, we will come across the matrix JJT and its inverse.
Starting with (7.37a), we can manipulate to show

JJT = γ1 + (1− γ)aaT ,
(
JJT

)−1
=

1

γ
1 +

(
1− 1

γ

)
aaT ,

γ = 2
1− cosφ

φ2
. (7.38)

7.1 Geometry 225

It turns out that JJT is positive-definite. There are two cases to con-
sider, φ = 0 and φ 6= 0. For φ = 0, we have JJT = 1, which is
positive-definite. For φ 6= 0, we have for x 6= 0 that

xTJJTx = xT
(
γ1 + (1− γ)aaT

)
x = xT

(
aaT − γa∧a∧

)
x

= xTaaTx + γ(a∧x)T (a∧x)

= (aTx)T (aTx)︸ ︷︷ ︸
≥0

+ 2
1− cosφ

φ2

︸ ︷︷ ︸
>0

(a∧x)T (a∧x)︸ ︷︷ ︸
≥0

> 0, (7.39)

since the first term is only zero when a and x are perpendicular and
the second term is only zero when x and a are parallel (these cannot
happen at the same time). This shows that JJT is positive-definite.

It turns out that we can also write J in terms of the rotation matrix,
C, associated with φ in the following way:

J =

∫ 1

0

Cα dα. (7.40)

This can be seen through the following sequence of manipulations:

∫ 1

0

Cα dα =

∫ 1

0

exp
(
φ∧
)α
dα =

∫ 1

0

exp
(
αφ∧

)
dα

=

∫ 1

0

(∞∑

n=0

1

n!
αn
(
φ∧
)n
)
dα =

∞∑

n=0

1

n!

(∫ 1

0

αn dα

)(
φ∧
)n

=
∞∑

n=0

1

n!

(
1

n+ 1
αn+1

∣∣∣∣
α=1

α=0

)
(
φ∧
)n

=
∞∑

n=0

1

(n+ 1)!

(
φ∧
)n
, (7.41)

which is the original series form of J defined above.
Finally, we can also relate J and C through

C = 1 + φ∧J, (7.42)

but it is not possible to solve for J in this expression since φ∧ is not
invertible.

Direct Series Expression

We can also develop a direct series expression for T from the exponen-
tial map by using the useful identity

(
ξ∧
)4

+ φ2
(
ξ∧
)2 ≡ 0, (7.43)

where ξ =

[
ρ
φ

]
and φ = |φ|. Expanding the series and using the identity

to rewrite all terms quartic and higher in terms of lower-order terms,

226 Matrix Lie Groups

we have

T = exp
(
ξ∧
)

=
∞∑

n=0

1

n!

(
ξ∧
)n

= 1 + ξ∧ +
1

2!
(ξ∧)2 +

1

3!
(ξ∧)3 +

1

4!
(ξ∧)4 +

1

5!
(ξ∧)5 + · · ·

= 1 + ξ∧ +

(
1

2!
− 1

4!
φ2 +

1

6!
φ4 − 1

8!
φ6 + · · ·

)

︸ ︷︷ ︸
1−cosφ
φ2

(ξ∧)2

+

(
1

3!
− 1

5!
φ2 +

1

7!
φ4 − 1

9!
φ6 + · · ·

)

︸ ︷︷ ︸
φ−sinφ
φ3

(ξ∧)3

= 1 + ξ∧ +

(
1− cosφ

φ2

)
(ξ∧)2 +

(
φ− sinφ

φ3

)
(ξ∧)3. (7.44)

Calculating T using this approach avoids the need to deal with its
constituent blocks.

7.1.4 Adjoints

A 6 × 6 transformation matrix, T , can be constructed directly from
the components of the 4 × 4 transformation matrix. We call this the
adjoint of an element of SE(3):

T = Ad(T) = Ad

([
C r
0T 1

])
=

[
C r∧C
0 C

]
. (7.45)

We will abuse notation a bit and say that the set of adjoints of all the
elements of SE(3) is denoted

Ad(SE(3)) = {T = Ad(T) | T ∈ SE(3)} . (7.46)

It turns out that Ad(SE(3)) is also a matrix Lie group, which we show
next.

7.1 Geometry 227

Lie Group

For closure we let T 1 = Ad(T1),T 2 = Ad(T2) ∈ Ad(SE(3)), and then

T 1T 2 = Ad(T1)Ad(T2) = Ad

([
C1 r1

0T 1

])
Ad

([
C2 r2

0T 1

])

=

[
C1 r∧1 C1

0 C1

] [
C2 r∧2 C2

0 C2

]
=

[
C1C2 C1r

∧
2 C2 + r∧1 C1C2

0 C1C2

]

=

[
C1C2 (C1r2 + r1)

∧
C1C2

0 C1C2

]

= Ad

([
C1C2 C1r2 + r1

0T 1

])
∈ Ad(SE(3)), (7.47)

where we have used the nice property that

Cv∧CT = (Cv)
∧
, (7.48)

for any C ∈ SO(3) and v ∈ R3. Associativity follows from basic prop-
erties of matrix multiplication, and the identity element of the group
is the 6 × 6 identity matrix. For invertibility, we let T = Ad(T) ∈
Ad(SE(3)), and then we have

T −1 = Ad(T)−1 = Ad

([
C r
0T 1

])−1

=

[
C r∧C
0 C

]−1

=

[
CT −CT r∧

0 CT

]
=

[
CT (−CT r)

∧
CT

0 CT

]

= Ad

([
CT −CT r
0T 1

])
= Ad

(
T−1

)
∈ Ad(SE(3)). (7.49)

Other than smoothness, these four properties show that Ad(SE(3)) is
a matrix Lie group.

Lie Algebra

We can also talk about the adjoint of an element of se(3). Let Ξ = ξ∧ ∈
se(3); then the adjoint of this element is

ad(Ξ) = ad
(
ξ∧
)

= ξf, (7.50)

where

ξf =

[
ρ
φ

]f
=

[
φ∧ ρ∧

0 φ∧

]
∈ R6×6, ρ,φ ∈ R3. (7.51)

Note that we have used uppercase, Ad(·), for the adjoint of SE(3) and
lowercase, ad(·), for the adjoint of se(3).

The Lie algebra associated with Ad(SE(3)) is given by

vectorspace: ad(se(3)) = {Ψ = ad(Ξ) ∈ R6×6 | Ξ ∈ se(3)},
field: R,

Lie bracket: [Ψ1,Ψ2] = Ψ1Ψ2 −Ψ2Ψ1.

228 Matrix Lie Groups

Again, we will omit showing that ad(se(3)) is a vectorspace, but will
briefly show that the four Lie bracket properties hold. Let Ψ,Ψ1 =
ξf1 ,Ψ2 = ξf2 ∈ ad(se(3)). Then, for the closure property, we have

[Ψ1,Ψ2] = Ψ1Ψ2 −Ψ2Ψ1 = ξf1 ξ
f
2 − ξf2 ξf1 =

(
ξf1 ξ2︸ ︷︷ ︸
∈R6

)f
∈ ad(se(3)).

(7.52)
Bilinearity follows directly from the fact that (·)f is a linear operator.
The alternating property can be seen easily through

[Ψ,Ψ] = ΨΨ−ΨΨ = 0 ∈ ad(se(3)). (7.53)

Finally, the Jacobi identity can be verified by substituting and applying
the definition of the Lie bracket. Again, we will refer to ad(se(3)) as the
Lie algebra, although technically this is only the associated vectorspace.

Exponential Map

Another issue to discuss is the relationship between Ad(SE(3)) and
ad(se(3)) through the exponential map. Not surprisingly, we have that

T = exp
(
ξf
)

=
∞∑

n=0

1

n!

(
ξf
)n
, (7.54)

where T ∈ Ad(SE(3)) and ξ ∈ R6 (and hence ξf ∈ ad(se(3))). We can
go in the other direction using

ξ = ln (T)
g
, (7.55)

where g undoes the f operation. The exponential mapping is again
surjective-only, which we discuss below.

First, however, we note that here is a nice commutative relationship
between the various Lie groups and algebras associated with poses:

Lie algebra Lie group

4× 4 ξ∧ ∈ se(3)
exp−−−−→ T ∈ SE(3)

yad
yAd

6× 6 ξf ∈ ad(se(3))
exp−−−−→ T ∈ Ad(SE(3))

. (7.56)

We could draw on this commutative relationship to claim the surjective-
only property of the exponential map from ad(se(3)) to Ad(SE(3)) by
going the long way around the loop, since we have already shown that
this path exists. However, it is also possible to show it directly, which

7.1 Geometry 229

amounts to showing that

Ad
(
exp

(
ξ∧
))

︸ ︷︷ ︸
T

= exp
(

ad
(
ξ∧
)

︸ ︷︷ ︸
ξf

)
, (7.57)

since this implies that we can go from ξ ∈ R6 to T ∈ Ad(SE(3)) and
back.

To see this, let ξ =

[
ρ
φ

]
, and then starting from the right-hand side,

we have

exp
(
ad
(
ξ∧
))

= exp
(
ξf
)

=
∞∑

n=0

1

n!

(
ξf
)n

=
∞∑

n=0

1

n!

[
φ∧ ρ∧

0 φ∧

]n
=

[
C K
0 C

]
, (7.58)

where C is the usual expression for the rotation matrix in terms of φ
and

K =
∞∑

n=0

∞∑

m=0

1

(n+m+ 1)!

(
φ∧
)n
ρ∧
(
φ∧
)m
,

which can be found through careful manipulation. Starting from the
left-hand side, we have

Ad
(
exp

(
ξ∧
))

= Ad

([
C Jρ
0T 1

])
=

[
C (Jρ)

∧
C

0 C

]
, (7.59)

where J is given in (7.36). Comparing (7.58) and (7.59), what remains
to be shown is the equivalence of the top-right block: K = (Jρ)

∧
C. To

see this, we use the following sequence of manipulations:

(Jρ)
∧

C =

(∫ 1

0

Cα dαρ

)∧
C =

∫ 1

0

(Cαρ)
∧

C dα

=

∫ 1

0

Cαρ∧C1−α dα =

∫ 1

0

exp
(
αφ∧

)
ρ∧ exp

(
(1− α)φ∧

)
dα

=

∫ 1

0

(∞∑

n=0

1

n!

(
αφ∧

)n
)
ρ∧
(∞∑

m=0

1

m!

(
(1−α)φ∧

)m
)
dα

=
∞∑

n=0

∞∑

m=0

1

n!m!

(∫ 1

0

αn(1−α)m dα

)(
φ∧
)n
ρ∧
(
φ∧
)m
, (7.60)

where we have used that ∧ is linear and that (Cv)
∧

= Cv∧CT . After
several integrations by parts we can show that

∫ 1

0

αn(1− α)m dα =
n!m!

(n+m+ 1)!
, (7.61)

and therefore, K = (Jρ)
∧

C, which is the desired result.

230 Matrix Lie Groups

Direct Series Expression

Similarly to the direct series expression for T, we can also work one
out for T = Ad(T) by using the identity

(
ξf
)5

+ 2φ2
(
ξf
)3

+ φ4ξf ≡ 0, (7.62)

where ξ =

[
ρ
φ

]
and φ = |φ|. Expanding the series and using the identity

to rewrite all terms quintic and higher in lower-order terms, we have

T = exp
(
ξf
)

=
∞∑

n=0

1

n!

(
ξf
)n

= 1 + ξf +
1

2!
(ξf)2 +

1

3!
(ξf)3 +

1

4!
(ξf)4 +

1

5!
(ξf)5 + · · ·

= 1 +

(
1− 1

5!
φ4 +

2

7!
φ6 − 3

9!
φ8 +

4

11!
φ10 − · · ·

)

︸ ︷︷ ︸
3 sinφ−φ cosφ

2φ

ξf

+

(
1

2!
− 1

6!
φ4 +

2

8!
φ6 − 3

10!
φ8 +

4

12!
φ10 − · · ·

)

︸ ︷︷ ︸
4−φ sinφ−4 cosφ

2φ2

(
ξf
)2

+

(
1

3!
− 2

5!
φ2 +

3

7!
φ4 − 4

9!
φ6 +

5

11!
φ8 − · · ·

)

︸ ︷︷ ︸
sinφ−φ cosφ

2φ3

(
ξf
)3

+

(
1

4!
− 2

6!
φ2 +

3

8!
φ4 − 4

10!
φ6 +

5

12!
φ8 − · · ·

)

︸ ︷︷ ︸
2−φ sinφ−2 cosφ

2φ4

(
ξf
)4

= 1 +

(
3 sinφ− φ cosφ

2φ

)
ξf +

(
4− φ sinφ− 4 cosφ

2φ2

)(
ξf
)2

+

(
sinφ− φ cosφ

2φ3

)(
ξf
)3

+

(
2− φ sinφ− 2 cosφ

2φ4

)(
ξf
)4
.

(7.63)

As in the 4×4 case, this last expression allows us to evaluate T without
working with its constituent blocks.

7.1.5 Baker-Campbell-Hausdorff

We can combine two scalar exponential functions as follows:

exp(a) exp(b) = exp(a+ b), (7.64)

7.1 Geometry 231

where a, b ∈ R. Unfortunately, this is not so easy for the matrix case.
To compound two matrix exponentials, we use the Baker-Campbell-
Hausdorff (BCH) formula: Henry Frederick

Baker (1866-1956)

was a British

mathematician,

working mainly in

algebraic geometry,

but also

remembered for

contributions to

partial differential

equations and Lie

groups. John

Edward Campbell

(1862-1924) was a

British

mathematician,

best known for his

contribution to the

BCH formula and

a 1903 book

popularizing the

ideas of Sophus

Lie. Felix

Hausdorff

(1868-1942) was a

German

mathematician

who is considered

to be one of the

founders of modern

topology and who

contributed

significantly to set

theory, descriptive

set theory, measure

theory, function

theory, and

functional analysis.

Henri Poincaré

(1854-1912) is also

said to have had a

hand in the BCH

formula.

ln (exp(A) exp(B))

=
∞∑

n=1

(−1)n−1

n

∑

ri + si > 0,
1 ≤ i ≤ n

(
∑n

i=1(ri + si))
−1

∏n
i=1 ri!si!

[Ar1Bs1Ar2Bs2 · · ·ArnBsn] ,

(7.65)

where

[Ar1Bs1Ar2Bs2 · · ·ArnBsn]

=
[
A, . . .

[
A,︸ ︷︷ ︸

r1

[
B, . . . ,

[
B,︸ ︷︷ ︸

s1

. . .
[
A, . . .

[
A,︸ ︷︷ ︸

rn

[
B, . . .

[
B,B

]
. . .
]

︸ ︷︷ ︸
sn

]
. . .
]
. . .
]
. . .
]]
. . .
]
,

(7.66)

which is zero if sn > 1 or if sn = 0 and rn > 1. The Lie bracket is the
usual

[A,B] = AB−BA. (7.67)

Note that the BCH formula is an infinite series. In the event that
[A,B] = 0, the BCH formula simplifies to

ln (exp(A) exp(B)) = A + B, (7.68)

but this case is not particularly useful to us, except as an approxima-
tion. The first several terms of the general BCH formula are

ln (exp(A) exp(B)) = A + B +
1

2
[A,B]

+
1

12
[A, [A,B]]− 1

12
[B, [A,B]]− 1

24
[B, [A, [A,B]]]

− 1

720
([[[[A,B] ,B] ,B] ,B] + [[[[B,A] ,A] ,A] ,A])

+
1

360
([[[[A,B] ,B] ,B] ,A] + [[[[B,A] ,A] ,A] ,B])

+
1

120
([[[[A,B] ,A] ,B] ,A] + [[[[B,A] ,B] ,A] ,B]) + · · · . (7.69)

If we keep only terms linear in A, the general BCH formula becomes
(Klarsfeld and Oteo, 1989)

ln (exp(A) exp(B)) ≈ B +
∞∑

n=0

Bn
n!

[
B,
[
B, . . .

[
B,︸ ︷︷ ︸

n

A
]
. . .
]]
. (7.70)

232 Matrix Lie Groups

If we keep only terms linear in B, the general BCH formula becomes

ln (exp(A) exp(B)) ≈ A+
∞∑

n=0

(−1)n
Bn
n!

[
A,
[
A, . . .

[
A,︸ ︷︷ ︸

n

B
]
. . .
]]
. (7.71)

The Bn are the Bernoulli numbers11,

The Bernoulli

numbers were

discovered around

the same time by

the Swiss

mathematician

Jakob Bernoulli

(1655-1705), after

whom they are

named, and

independently by

Japanese

mathematician

Seki Kōwa

(1642-1708). Seki’s

discovery was

posthumously

published in 1712

in his work

Katsuyo Sampo;

Bernoulli’s, also

posthumously, in

his Ars

Conjectandi (The

Art of Conjecture)

of 1713. Ada

Lovelace’s Note G

on the analytical

engine from 1842

describes an

algorithm for

generating

Bernoulli numbers

with Babbage’s

machine. As a

result, the

Bernoulli numbers

have the

distinction of being

the subject of the

first computer

program.

B0 = 1, B1 = −1

2
, B2 =

1

6
, B3 = 0, B4 = − 1

30
, B5 = 0, B6 =

1

42
,

B7 = 0, B8 = − 1

30
, B9 = 0, B10 =

5

66
, B11 = 0, B12 = − 691

2730
,

B13 = 0, B14 =
7

6
, B15 = 0, . . . , (7.72)

which appear frequently in number theory. It is also worth noting that
Bn = 0 for all odd n > 1, which reduces the number of terms that need
to be implemented in approximations of some of our infinite series.

The Lie product formula,

exp (A + B) = lim
α→∞

(exp (A/α) exp (B/α))
α
, (7.73)

provides another way of looking at compounding matrix exponentials;
compounding is effectively slicing each matrix exponential into an in-
finite number of infinitely thin slices and then interleaving the slices.
We next discuss application of the general BCH formula to the specific
cases of rotations and poses.

Rotations

In the particular case of SO(3), we can show that

ln (C1C2)
∨

= ln
(
exp(φ∧1) exp(φ∧2)

)∨

= φ1 + φ2 +
1

2
φ∧1φ2 +

1

12
φ∧1φ

∧
1φ2 +

1

12
φ∧2φ

∧
2φ1 + · · · , (7.74)

where C1 = exp(φ∧1),C2 = exp(φ∧2) ∈ SO(3). Alternatively, if we as-
sume that φ1 or φ2 is small, then using the approximate BCH formulas
we can show that

ln (C1C2)
∨

= ln
(
exp(φ∧1) exp(φ∧2)

)∨

≈
{

J`(φ2)−1φ1 + φ2 if φ1 small
φ1 + Jr(φ1)−1φ2 if φ2 small

, (7.75)

11 Technically, the sequence shown is the first Bernoulli sequence. There is also a second

sequence in which B1 = 1
2

, but we will not need it here.

7.1 Geometry 233

where

Jr(φ)−1 =
∞∑

n=0

Bn
n!

(
−φ∧

)n
=
φ

2
cot

φ

2
1 +

(
1− φ

2
cot

φ

2

)
aaT +

φ

2
a∧,

(7.76a)

J`(φ)−1 =
∞∑

n=0

Bn
n!

(
φ∧
)n

=
φ

2
cot

φ

2
1 +

(
1− φ

2
cot

φ

2

)
aaT − φ

2
a∧.

(7.76b)

In Lie group theory, Jr and J` are referred to as the right and left
Jacobians of SO(3), respectively. As noted earlier, due to the nature of
the cot(φ/2) function, there are singularities associated with Jr,J` at
φ = 2πm with m a non-zero integer. Inverting, we have the following
expressions for the Jacobians:

Jr(φ) =
∞∑

n=0

1

(n+ 1)!

(
−φ∧

)n
=

∫ 1

0

C−α dα

=
sinφ

φ
1 +

(
1− sinφ

φ

)
aaT − 1− cosφ

φ
a∧, (7.77a)

J`(φ) =
∞∑

n=0

1

(n+ 1)!

(
φ∧
)n

=

∫ 1

0

Cα dα

=
sinφ

φ
1 +

(
1− sinφ

φ

)
aaT +

1− cosφ

φ
a∧, (7.77b)

where C = exp
(
φ∧
)
, φ = |φ|, and a = φ/φ. We draw attention to the

fact that

J`(φ) = C Jr(φ), (7.78)

which allows us to relate one Jacobian to the other. To show this is
fairly straightforward, using the definitions:

C Jr(φ) = C

∫ 1

0

C−α dα =

∫ 1

0

C1−α dα

= −
∫ 0

1

Cβ dβ =

∫ 1

0

Cβ dβ = J`(φ). (7.79)

Another relationship between the left and right Jacobians is:

J`(−φ) = Jr(φ), (7.80)

which is again fairly easy to see:

Jr(φ) =

∫ 1

0

C(φ)−α dα =

∫ 1

0

(
C(φ)−1

)α
dα

=

∫ 1

0

(C(−φ))
α
dα = J`(−φ). (7.81)

234 Matrix Lie Groups

We next look at SE(3).

Poses

In the particular cases of SE(3) and Ad(SE(3)), we can show that

ln (T1T2)
∨

= ln
(
exp(ξ∧1) exp(ξ∧2)

)∨

= ξ1 + ξ2 +
1

2
ξf1 ξ2 +

1

12
ξf1 ξ

f
1 ξ2 +

1

12
ξf2 ξ

f
2 ξ1 + · · · , (7.82a)

ln (T 1T 2)
g

= ln
(
exp(ξf1) exp(ξf2)

)g

= ξ1 + ξ2 +
1

2
ξf1 ξ2 +

1

12
ξf1 ξ

f
1 ξ2 +

1

12
ξf2 ξ

f
2 ξ1 + · · · , (7.82b)

where T1 = exp(ξ∧1),T2 = exp(ξ∧2) ∈ SE(3), and T 1 = exp(ξf1),T 2 =
exp(ξf2) ∈ Ad(SE(3)). Alternatively, if we assume that ξ1 or ξ2 is
small, then using the approximate BCH formulas, we can show that

ln (T1T2)
∨

= ln
(
exp(ξ∧1) exp(ξ∧2)

)∨

≈
{ J`(ξ2)−1 ξ1 + ξ2 if ξ1 small
ξ1 + Jr(ξ1)−1 ξ2 if ξ2 small

, (7.83a)

ln (T 1T 2)
g

= ln
(
exp(ξf1) exp(ξf2)

)g

≈
{ J`(ξ2)−1 ξ1 + ξ2 if ξ1 small
ξ1 + Jr(ξ1)−1 ξ2 if ξ2 small

, (7.83b)

where

Jr(ξ)−1 =
∞∑

n=0

Bn
n!

(
−ξf

)n
, (7.84a)

J`(ξ)−1 =
∞∑

n=0

Bn
n!

(
ξf
)n
. (7.84b)

In Lie group theory, Jr and J` are referred to as the right and left
Jacobians of SE(3), respectively. Inverting, we have the following ex-
pressions for the Jacobians:

Jr(ξ) =
∞∑

n=0

1

(n+ 1)!

(
−ξf

)n
=

∫ 1

0

T −α dα =

[
Jr Qr

0 Jr

]
, (7.85a)

J`(ξ) =
∞∑

n=0

1

(n+ 1)!

(
ξf
)n

=

∫ 1

0

T α dα =

[
J` Q`

0 J`

]
, (7.85b)

7.1 Geometry 235

where

Q`(ξ) =
∞∑

n=0

∞∑

m=0

1

(n+m+ 2)!

(
φ∧
)n
ρ∧
(
φ∧
)m

(7.86a)

=
1

2
ρ∧ +

(
φ− sinφ

φ3

)(
φ∧ρ∧ + ρ∧φ∧ + φ∧ρ∧φ∧

)

+

(
φ2 + 2 cosφ− 2

2φ4

)(
φ∧φ∧ρ∧ + ρ∧φ∧φ∧ − 3φ∧ρ∧φ∧

)

+

(
2φ− 3 sinφ+ φ cosφ

2φ5

)(
φ∧ρ∧φ∧φ∧ + φ∧φ∧ρ∧φ∧

)
,

(7.86b)

Qr(ξ) = Q`(−ξ) = C Q`(ξ) + (J`ρ)
∧

C J`, (7.86c)

and T = exp
(
ξf
)
, T = exp

(
ξ∧
)
, C = exp

(
φ∧
)
, ξ =

[
ρ
φ

]
. The expres-

sion for Q` comes from expanding the series and grouping terms into
the series forms of the trigonometric functions12. The relations for Qr

come from the relationships between the left and right Jacobians:

J`(ξ) = T Jr(ξ), J`(−ξ) = Jr(ξ). (7.87)

The first can be seen to be true from

T Jr(ξ) = T
∫ 1

0

T −α dα =

∫ 1

0

T 1−α dα

= −
∫ 0

1

T β dβ =

∫ 1

0

T β dβ = J`(ξ), (7.88)

and the second from

Jr(ξ) =

∫ 1

0

T (ξ)−α dα =

∫ 1

0

(T (ξ)−1
)α
dα

=

∫ 1

0

(T (−ξ))
α
dα = J`(−ξ). (7.89)

We can also work out a direct series expression for J ` using the
results of Section 7.1.4. From the form of the series expressions, we
have that

T ≡ 1 + ξfJ `. (7.90)

Expanding the expression for the Jacobian, we see that

J ` =
∞∑

n=0

1

(n+ 1)!

(
ξf
)n

= 1 + α1ξ
f + α2

(
ξf
)2

+ α3

(
ξf
)3

+ α4

(
ξf
)4
,

(7.91)
where α1, α2, α3, and α4 are unknown coefficients. We know that the

12 This is a very lengthly derivation, but the result is exact.

236 Matrix Lie Groups

series can be expressed using only terms up to quartic through the use
of the identity in (7.62). Inserting this into (7.90), we have that

T = 1 + ξf + α1

(
ξf
)2

+ α2

(
ξf
)3

+ α3

(
ξf
)4

+ α4

(
ξf
)5
. (7.92)

Using (7.62) to rewrite the quintic term using the lower-order terms,
we have

T = 1 +
(
1− φ4α4

)
ξf + α1

(
ξf
)2

+
(
α2 − 2φ2α4

) (
ξf
)3

+ α3

(
ξf
)4
.

(7.93)
Comparing the coefficients to those in (7.63), we can solve for α1, α2,
α3, and α4 such that

J ` = 1+

(
4− φ sinφ− 4 cosφ

2φ2

)
ξf+

(
4φ− 5 sinφ+ φ cosφ

2φ3

)(
ξf
)2

+

(
2− φ sinφ− 2 cosφ

2φ4

)(
ξf
)3

+

(
2φ− 3 sinφ+ φ cosφ

2φ5

)(
ξf
)4
.

(7.94)

This avoids the need to work out J` and Q` individually and then
assemble them into J `.

Alternate expressions for the inverses are

J −1
r =

[
J−1
r −J−1

r QrJ
−1
r

0 J−1
r

]
, (7.95a)

J −1
` =

[
J−1
` −J−1

` Q`J
−1
`

0 J−1
`

]
. (7.95b)

We see that the singularities of Jr and J` are precisely the same as
the singularities of Jr and J`, respectively, since

det(Jr) = (det(Jr))
2
, det(J`) = (det(J`))

2
, (7.96)

and having a non-zero determinant is a necessary and sufficient condi-
tion for invertibility (and therefore no singularity).

We also have that

T =

[
C J`ρ
0T 1

]
=

[
C CJrρ
0T 1

]
, (7.97a)

T =

[
C (J`ρ)

∧
C

0 C

]
=

[
C C (Jrρ)

∧

0 C

]
, (7.97b)

which tells us how to relate the ρ variable to the translational compo-
nent of T or T .

It is also worth noting that JJ T > 0 (positive-definite) for either
the left or right Jacobian. We can see this through the following fac-
torization:

JJ T =

[
1 QJ−1

0 1

]

︸ ︷︷ ︸
>0

[
JJT 0
0 JJT

]

︸ ︷︷ ︸
>0

[
1 0

J−TQT 1

]

︸ ︷︷ ︸
>0

> 0, (7.98)

7.1 Geometry 237

where we have used that JJT > 0, which was shown previously.

Choosing the Left

In later sections and chapters, we will (arbitrarily) work with the left
Jacobian, and it will therefore be useful to write out the BCH approx-
imations in (7.75) and (7.83) using only the left Jacobian. For SO(3),
we have

ln (C1C2)
∨

= ln
(
exp(φ∧1) exp(φ∧2)

)∨

≈
{

J(φ2)−1φ1 + φ2 if φ1 small
φ1 + J(−φ1)−1φ2 if φ2 small

, (7.99)

where it is now implied that J = J`, by convention13.
Similarly, for SE(3), we have

ln (T1T2)
∨

= ln
(
exp(ξ∧1) exp(ξ∧2)

)∨

≈
{ J (ξ2)−1 ξ1 + ξ2 if ξ1 small
ξ1 + J (−ξ1)−1 ξ2 if ξ2 small

,(7.100a)

ln (T 1T 2)
g

= ln
(
exp(ξf1) exp(ξf2)

)g

≈
{ J (ξ2)−1 ξ1 + ξ2 if ξ1 small
ξ1 + J (−ξ1)−1 ξ2 if ξ2 small

,(7.100b)

where it is now implied that J = J`, by convention.

7.1.6 Distance, Volume, Integration

We need to think about the concepts of distance, volume, and inte-
gration differently for Lie groups than for vectorspaces. This section
quickly covers these topics for both rotations and poses.

Rotations

There are two common ways to define the difference of two rotations:

φ12 = ln
(
CT

1 C2

)∨
, (7.101a)

φ21 = ln
(
C2C

T
1

)∨
, (7.101b)

where C1,C2 ∈ SO(3). One can be thought of as the right difference
and the other the left. We can define the inner product for so(3) as

〈
φ∧1 ,φ

∧
2

〉
=

1

2
tr
(
φ∧1φ

∧T
2

)
= φT1φ2. (7.102)

The metric distance between two rotations can be thought of in two
ways: (i) the square root of the inner product of the difference with

13 We will use this convention throughout the book and only show the subscript on the

Jacobian when making specific points.

238 Matrix Lie Groups

itself or (ii) the Euclidean norm of the difference:

φ12 =
√
〈ln (CT

1 C2) , ln (CT
1 C2)〉 =

√〈
φ∧12,φ

∧
12

〉
=
√
φT12φ12 = |φ12|,

(7.103a)

φ21 =
√
〈ln (C2CT

1) , ln (C2CT
1)〉 =

√〈
φ∧21,φ

∧
21

〉
=
√
φT21φ21 = |φ21|.

(7.103b)

This can also be viewed as the magnitude of the angle of the rotation
difference.

To consider integrating functions of rotations, we parametrize C =
exp

(
φ∧
)
∈ SO(3). Perturbing φ by a little bit results in the new ro-

tation matrix, C′ = exp
(
(φ+ δφ)

∧) ∈ SO(3). We have that the right
and left differences (relative to C) are

ln(δCr)
∨ = ln

(
CTC′

)∨
= ln

(
CT exp

(
(φ+ δφ)

∧))∨

≈ ln
(
CTC exp

(
(Jr δφ)

∧))∨
= Jr δφ, (7.104a)

ln(δC`)
∨ = ln

(
C′CT

)∨
= ln

(
exp

(
(φ+ δφ)

∧)
CT
)∨

≈ ln
(
exp

(
(J` δφ)

∧)
CCT

)∨
= J` δφ, (7.104b)

where Jr and J` are evaluated at φ. To compute the infinitesimal vol-
ume element, we want to find the volume of the parallelepiped formed
by the columns of Jr or J`, which is simply the corresponding deter-
minant14:

dCr = |det(Jr)| dφ , (7.105a)

dC` = |det(J`)| dφ . (7.105b)

We note that

det(J`) = det (C Jr) = det (C)︸ ︷︷ ︸
1

det (Jr) = det (Jr) , (7.106)

which means that regardless of which distance metric we use, right or
left, the infinitesimal volume element is the same. This is true for all
unimodular Lie groups, such as SO(3). Therefore, we can write

dC = |det (J)| dφ, (7.107)

for the calculation of an infinitesimal volume element.
It turns out that

|det (J)| = 2
1− cosφ

φ2
=

2

φ2

(
1− 1 +

φ2

2!
− φ4

4!
+
φ6

6!
− φ8

8!
+ · · ·

)

= 1− 1

12
φ2 +

1

360
φ4 − 1

20160
φ6 + · · · , (7.108)

14 We are slightly abusing notation here by writing dC, but hopefully it is clear from

context what is meant.

7.1 Geometry 239

where φ = |φ|. For most practical situations we can safely use just the
first two or even one term of this expression.

Integrating functions of rotations can then be carried out like this:
∫

SO(3)

f(C) dC →
∫

|φ|<π
f(φ) |det (J)| dφ, (7.109)

where we are careful to ensure |φ| < π so as to sweep out all of SO(3)
just once (due to the surjective-only nature of the exponential map).

Poses

We briefly summarize the SE(3) and Ad(SE(3)) results as they are
very similar to SO(3). We can define right and left distance metrics:

ξ12 = ln
(
T−1

1 T2

)∨
= ln

(T −1
1 T 2

)g
, (7.110a)

ξ21 = ln
(
T2T

−1
1

)∨
= ln

(T 2T −1
1

)g
. (7.110b)

The 4× 4 and 6× 6 inner products are

〈
ξ∧1 , ξ

∧
2

〉
= −tr

(
ξ∧1

[
1
2
1 0

0T 1

]
ξ∧

T

2

)
= ξT1 ξ2, (7.111a)

〈
ξf1 , ξ

f
2

〉
= −tr

(
ξf1

[
1
4
1 0
0 1

2
1

]
ξf

T

2

)
= ξT1 ξ2. (7.111b)

Note that we could adjust the weighting matrix in the middle to weight
rotation and translation differently if we so desired. The right and left
distances are

ξ12 =
√〈
ξ∧12, ξ

∧
12

〉
=
√〈
ξf12, ξ

f
12

〉
=
√
ξT12ξ12 = |ξ12|, (7.112a)

ξ21 =
√〈
ξ∧21, ξ

∧
21

〉
=
√〈
ξf21, ξ

f
21

〉
=
√
ξT21ξ21 = |ξ21|. (7.112b)

Using the parametrization

T = exp
(
ξ∧
)

(7.113)

and the perturbation

T′ = exp
(
(ξ + δξ)

∧)
, (7.114)

the differences (relative to T) are

ln (δTr)
∨

= ln
(
T−1T′

)∨ ≈ Jr δξ, (7.115a)

ln (δT`)
∨

= ln
(
T′T−1

)∨ ≈ J` δξ. (7.115b)

The right and left infinitesimal volume elements are

dTr = |det(Jr)| dξ , (7.116a)

dT` = |det(J`)| dξ . (7.116b)

240 Matrix Lie Groups

We have that

det(J`) = det(T Jr) = det(T) det(Jr) = det(Jr), (7.117)

since det(T) = (det(C))
2

= 1. We can therefore write

dT = |det(J)| dξ (7.118)

for our integration volume. Finally, we have that

|det(J)| = |det(J)|2 =

(
2

1− cosφ

φ2

)2

= 1− 1

6
φ2 +

1

80
φ4 − 17

30240
φ6 + · · · , (7.119)

and again we probably will never need more than two terms of this
expression.

To integrate functions over SE(3), we can now use our infinitesimal
volume in the calculation:∫

SE(3)

f(T) dT =

∫

R3,|φ|<π
f(ξ) |det (J)| dξ, (7.120)

where we limit φ to the ball of radius π (due to the surjective-only
nature of the exponential map) but let ρ ∈ R3.

7.1.7 Interpolation

We will have occasion later to interpolate between two elements of a ma-
trix Lie group. Unfortunately, the typical linear interpolation scheme,

x = (1− α)x1 + αx2, α ∈ [0, 1], (7.121)

will not work because this interpolation scheme does not satisfy closure
(i.e., the result is no longer in the group). In other words,

(1− α) C1 + αC2 /∈ SO(3), (7.122a)

(1− α) T1 + αT2 /∈ SE(3) (7.122b)

for some values of α ∈ [0, 1] with C1,C2 ∈ SO(3), T1,T2 ∈ SE(3). We
must rethink what interpolation means for Lie groups.

Rotations

There are many possible interpolation schemes that we could define.
One of these is the following:

C =
(
C2C

T
1

)α
C1, α ∈ [0, 1], (7.123)

where C,C1,C2 ∈ SO(3). We see that when α = 0, we have C = C1,
and when α = 1, we have C2. The nice thing about this scheme is that

7.1 Geometry 241

we guarantee closure, meaning C ∈ SO(3) for all α ∈ [0, 1]. This is
because we know that C21 = exp

(
φ∧
)

= C2C
T
1 is still a rotation matrix

due to closure of the Lie group. Exponentiating by the interpolation
variable keeps the result in SO(3),

Cα
21 = exp

(
φ∧
)α

= exp
(
αφ∧

)
∈ SO(3), (7.124)

and finally, compounding with C1 results in a member of SO(3), again
due to closure of the group. We can also see that we are essentially just
scaling the rotation angle of C21 by α, which is appealing intuitively.

Our scheme in (7.123) is actually similar to (7.121), if we rearrange
it a bit:

x = α(x2 − x1) + x1. (7.125)

Or, letting x = ln(y), x1 = ln(y1), x2 = ln(y2), we can rewrite it as

y =
(
y2 y

−1
1

)α
y1, (7.126)

which is very similar to our proposed scheme. Given our understanding
of the relationship between so(3) and SO(3) (i.e., through the expo-
nential map), it is therefore not a leap to understand that (7.123) is
somehow defining linear-like interpolation in the Lie algebra, where we
can treat elements as vectors.

To examine this further, we let C = exp (ϕ∧) ,C1 = exp
(
φ∧1
)
,C2 =

exp
(
φ∧2
)
∈ SO(3) with ϕ,φ1,φ2 ∈ R3. If we are able to make the

assumption that φ is small (in the sense of distance from the previous
section), then we have

ϕ = ln (C)
∨

= ln
((

C2C
T
1

)α
C1

)∨

= ln
(
exp

(
αφ∧

)
exp

(
φ∧1
))∨ ≈ αJ(φ1)−1φ+ φ1, (7.127)

which is comparable to (7.125) and is a form of linear interpolation.
Another case worth noting is when C1 = 1, whereupon

C = Cα
2 , ϕ = αφ2, (7.128)

with no approximation.
Another way to interpret our interpolation scheme is that it is enforc-

ing a constant angular velocity, ω. If we think of our rotation matrix
as being a function of time, C(t), then the scheme is

C(t) =
(
C(t2)C(t1)T

)α
C(t1), α =

t− t1
t2 − t1

. (7.129)

Defining the constant angular velocity as

ω =
1

t2 − t1
φ, (7.130)

242 Matrix Lie Groups

the scheme becomes

C(t) = exp ((t− t1)ω∧) C(t1). (7.131)

This is exactly the solution to Poisson’s equation, (6.45),

Ċ(t) = ω∧C(t), (7.132)

with constant angular velocity15. Thus, while other interpolation schemes
are possible, this one has a strong physical connection.

Perturbed Rotations

Another thing that will be very useful to investigate, is what hap-
pens to C if we perturb C1 and/or C2 a little bit. Suppose now that
C′,C′1,C

′
2 ∈ SO(3) are the perturbed rotation matrices with the (left)

differences16 given as

δϕ = ln
(
C′CT

)∨
, δφ1 = ln

(
C′1C

T
1

)∨
, δφ2 = ln

(
C′2C

T
2

)∨
.

(7.133)
The interpolation scheme must hold for the perturbed rotation matri-
ces:

C′ =
(
C′2C

′T
1

)α
C′1, α ∈ [0, 1]. (7.134)

We are interested in finding a relationship between δϕ and δφ1, δφ2.
Substituting in our perturbations we have

exp (δϕ∧) C =
(

exp
(
δφ∧2

)
C2C

T
1 exp

(
−δφ∧1

)
︸ ︷︷ ︸
≈ exp((φ+J(φ)−1(δφ2−C21 δφ1))∧)

)α
exp

(
δφ∧1

)
C1,

(7.135)
where we have assumed the perturbations are small to make the ap-
proximation hold inside the brackets. Bringing the interpolation vari-
able inside the exponential, we have

exp (δϕ∧) C

≈ exp
((
αφ+ αJ(φ)−1(δφ2 −C21 δφ1)

)∧)

︸ ︷︷ ︸
≈ exp((αJ(αφ)J(φ)−1(δφ2−C21 δφ1))∧) Cα

21

exp
(
δφ∧1

)
C1

≈ exp
((
αJ(αφ)J(φ)−1(δφ2 −C21 δφ1)

)∧)

× exp
(
(Cα

21δφ1)
∧)

Cα
21C1︸ ︷︷ ︸
C

. (7.136)

15 Kinematics will be discussed in further detail later in this chapter.
16 In anticipation of how we will use this result, we will consider perturbations on the left,

but we saw in the previous section that there are equivalent perturbations on the right

and in the middle.

7.1 Geometry 243

Dropping the C from both sides, expanding the matrix exponentials,
distributing the multiplication, and then keeping only first-order terms
in the perturbation quantities, we have

δϕ = αJ(αφ)J(φ)−1(δφ2 −C21 δφ1) + Cα
21 δφ1. (7.137)

Manipulating a little further (using several identities involving the Ja-
cobians), we can show that this simplifies to

δϕ = (1−A(α,φ)) δφ1 + A(α,φ) δφ2, (7.138)

where

A(α,φ) = αJ(αφ)J(φ)−1. (7.139)

We see that this has a very nice form that mirrors the usual linear
interpolation scheme. Notably, when φ is small, then A(α,φ) ≈ α1.

Although we have a means of computing A(α,φ) in closed form (via
J(·)), we can work out a series expression for it as well. In terms of our
series expressions for J(·) and its inverse, we have

A(α,φ) = α

(∞∑

k=0

1

(k + 1)!
αk
(
φ∧
)k
)

︸ ︷︷ ︸
J(αφ)

(∞∑

`=0

B`
`!

(
φ∧
)`
)

︸ ︷︷ ︸
J(φ)−1

. (7.140)

We can use a discrete convolution, or Cauchy product (of two series),

Baron

Augustin-Louis

Cauchy

(1789-1857) was a

French

mathematician

who pioneered the

study of continuity

in terms of

infinitesimals,

almost

singlehandedly

founded complex

analysis, and

initiated the study

of permutation

groups in abstract

algebra.

to rewrite this as

A(α,φ) =
∞∑

n=0

Fn(α)

n!

(
φ∧
)n
, (7.141)

where

Fn(α) =
1

n+ 1

n∑

m=0

(
n+ 1

m

)
Bmα

n+1−m =
α−1∑

β=0

βn, (7.142)

is a version of Faulhaber’s formula. The first few Faulhaber coefficients
Johann Faulhaber

(1580-1635) was a

German

mathematician

whose major

contribution

involved

calculating the

sums of powers of

integers. Jakob

Bernoulli makes

references to

Faulhaber in his

Ars Conjectandi.

(as we will call them) are

F0(α) = α, F1(α) =
α(α− 1)

2
, F2(α) =

α(α− 1)(2α− 1)

6
,

F3(α) =
α2(α− 1)2

4
, (7.143)

Putting these back into A(α,φ), we have

A(α,φ) = α1 +
α(α− 1)

2
φ∧ +

α(α− 1)(2α− 1)

12
φ∧φ∧

+
α2(α− 1)2

24
φ∧φ∧φ∧ + · · · , (7.144)

where we likely would not need many terms if φ is small.

244 Matrix Lie Groups

Alternate Interpretation of Perturbed Rotations

Technically speaking, the last sum on the far right of (7.142) does not
make much sense since α ∈ [0, 1], but we can also get to this another
way. Let us pretend for the moment that α is in fact a positive inte-
ger. Then we can expand the exponentiated part of our interpolation
formula according to

(
exp

(
δφ∧

)
C
)α

= exp
(
δφ∧

)
C · · · exp

(
δφ∧

)
C︸ ︷︷ ︸

α

, (7.145)

where C = exp
(
φ∧
)
. We can then move all of the δφ terms to the far

left so that
(
exp

(
δφ∧

)
C
)α

= exp
(
δφ∧

)
exp

(
(C δφ)

∧) · · · exp
((

Cα−1 δφ
)∧)

Cα,

(7.146)
where we have not yet made any approximations. Expanding each of
the exponentials, multiplying out, and keeping only terms first-order
in δφ leaves us with

(
exp

(
δφ∧

)
C
)α ≈

(
1 +

((
α−1∑

β=0

Cβ

)
δφ

)∧)
Cα

=
(
1 + (A(α,φ) δφ)

∧)
Cα, (7.147)

where

A(α,φ) =
α−1∑

β=0

Cβ =
α−1∑

β=0

exp
(
βφ∧

)
=

α−1∑

β=0

∞∑

n=0

1

n!
βn
(
φ∧
)n

=
∞∑

n=0

1

n!

(
α−1∑

β=0

βn
)

︸ ︷︷ ︸
Fn(α)

(
φ∧
)n

=
∞∑

n=0

Fn(α)

n!

(
φ∧
)n
, (7.148)

which is the same as (7.141). Some examples of Faulhaber’s coefficients
are:

F0(α) = 00 + 10 + 20 + · · ·+ (α− 1)0 = α, (7.149a)

F1(α) = 01 + 11 + 21 + · · ·+ (α− 1)1 =
α(α− 1)

2
, (7.149b)

F2(α) = 02 + 12 + 22 + · · ·+ (α− 1)2 =
α(α− 1)(2α− 1)

6
, (7.149c)

F3(α) = 03 + 13 + 23 + · · ·+ (α− 1)3 =
α2(α− 1)2

4
, (7.149d)

which are the same as what we had before. Interestingly, these expres-
sions work even when α ∈ [0, 1].

7.1 Geometry 245

Poses

Interpolation for elements of SE(3) parallels the SO(3) case. We define
the interpolation scheme as the following:

T =
(
T2T

−1
1

)α
T1, α ∈ [0, 1]. (7.150)

Again, this scheme ensures that T = exp
(
ζ∧
)
∈ SE(3) as long as

T1 = exp
(
ξ∧1
)
,T2 = exp

(
ξ∧2
)
∈ SE(3). Let T21 = T2T

−1
1 = exp

(
ξ∧
)
,

so that

ζ = ln (T)
∨

= ln
((

T2T
−1
1

)α
T1

)∨
= ln

(
exp

(
α ξ∧

)
exp

(
ξ∧1
))∨

≈ αJ (ξ1)−1ξ + ξ1, (7.151)

where the approximation on the right holds if ξ is small. When T1 = 1,
the scheme becomes

T = Tα
2 , ζ = α ξ2, (7.152)

with no approximation.

Perturbed Poses

As in the SO(3) case, it will be useful to investigate what happens to T
if we perturb T1 and/or T2 a little bit. Suppose now that T′,T′1,T

′
2 ∈

SE(3) are the perturbed transformation matrices with the (left) differ-
ences given as

δζ = ln
(
T′T−1

)∨
, δξ1 = ln

(
T′1T

−1
1

)∨
, δξ2 = ln

(
T′2T

−1
2

)∨
.

(7.153)
The interpolation scheme must hold for the perturbed transformation
matrices:

T′ =
(
T′2T

′−1

1

)α
T′1, α ∈ [0, 1]. (7.154)

We are interested in finding a relationship between δζ and δξ1, δξ2.
The derivation is very similar to SO(3), so we will simply state the

result:

δζ = (1−A(α, ξ)) δξ1 + A(α, ξ) δξ2, (7.155)

where

A(α, ξ) = αJ (αξ)J (ξ)−1, (7.156)

and we note this is a 6 × 6 matrix. Again, we see this has a very nice
form that mirrors the usual linear interpolation scheme. Notably, when
ξ is small, then A(α, ξ) ≈ α1. In series form, we have

A(α, ξ) =
∞∑

n=0

Fn(α)

n!

(
ξf
)n
, (7.157)

where the Fn(α) are the Faulhaber coefficients discussed earlier.

246 Matrix Lie Groups

7.1.8 Homogeneous Points

As discussed in Section 6.3.1, points in R3 can be represented using 4×1
homogeneous coordinates (Hartley and Zisserman, 2000), as follows:

p =




sx
sy
sz
s


 =

[
ε
η

]
,

where s is some real, nonzero scalar, ε ∈ R3, and η is scalar. When s
is zero, it is not possible to convert back to R3, as this case represents
points that are infinitely far away. Thus, homogeneous coordinates can
be used to describe near and distant landmarks with no singularities
or scaling issues (Triggs et al., 2000). They are also a natural repre-
sentation in that points may then be transformed from one frame to
another very easily using transformation matrices (e.g., p2 = T21 p1).

We will later make use of the following two operators17 for manipu-
lating 4× 1 columns:

[
ε
η

]�
=

[
η1 −ε∧
0T 0T

]
,

[
ε
η

]}
=

[
0 ε
−ε∧ 0

]
, (7.158)

which result in a 4× 6 and 6× 4, respectively. With these definitions,
we have the following useful identities:

ξ∧p ≡ p�ξ, pTξ∧ ≡ ξTp}, (7.159)

where ξ ∈ R6 and p ∈ R4, which will prove useful when manipulat-
ing expressions involving points and poses together. We also have the
identity,

(Tp)
� ≡ Tp�T −1, (7.160)

which is similar to some others we have already seen.

7.1.9 Calculus and Optimization

Now that we have introduced homogeneous points, we formulate a bit
of calculus to allow us to optimize functions of rotations and/or poses,
sometimes in combination with three-dimensional points. As usual, we
first study rotations and then poses. Absil et al. (2009) provides a much
more detailed look at how to carry out optimization on matrix mani-
folds, exploring first-order, second-order, and trust-region methods.

17 The � operator for 4× 1 columns is similar to the � operator defined by Furgale

(2011), which did not have the negative sign.

7.1 Geometry 247

Rotations

We have already seen in Section 6.2.5 a preview of perturbing expres-
sions in terms of their Euler angles. We first consider directly taking
the Jacobian of a rotated point with respect to the Lie algebra vector
representing the rotation:

∂(Cv)

∂φ
, (7.161)

where C = exp(φ∧) ∈ SO(3) and v ∈ R3 is some arbitrary three-
dimensional point.

To do this, we can start by taking the derivative with respect to a
single element of φ = (φ1, φ2, φ3). Applying the definition of a derivative
along the 1i direction, we have

∂(Cv)

∂φi
= lim

h→0

exp ((φ+ h1i)
∧) v − exp

(
φ∧
)
v

h
, (7.162)

which we will refer to as a directional derivative. Since we are interested
in the limit of h infinitely small, we can use the approximate BCH
formula to write

exp ((φ+ h1i)
∧) ≈ exp ((Jh1i)

∧) exp
(
φ∧
)

≈ (1 + h(J1i)
∧) exp

(
φ∧
)
, (7.163)

where J is the (left) Jacobian of SO(3), evaluated at φ. Plugging this
back into (7.162), we find that

∂(Cv)

∂φi
= (J1i)

∧
Cv = − (Cv)

∧
J 1i. (7.164)

Stacking the three directional derivatives alongside one another pro-
vides the desired Jacobian:

∂(Cv)

∂φ
= − (Cv)

∧
J. (7.165)

Moreover, if Cv appears inside another scalar function, u(x), with x =
Cv, then we have

∂u

∂φ
=
∂u

∂x

∂x

∂φ
= −∂u

∂x
(Cv)

∧
J, (7.166)

by the chain rule of differentiation. The result is the transpose of the
gradient of u with respect to φ.

If we wanted to perform simple gradient descent of our function, we
could take a step in the direction of the negative gradient, evaluated at
our linearization point, Cop = exp

(
φ∧op

)
:

φ = φop − αJT (Copv)
∧ ∂u

∂x

∣∣∣∣
T

x=Copv︸ ︷︷ ︸
δ

, (7.167)

248 Matrix Lie Groups

where α > 0 defines the step size.
We can easily see that stepping in this direction (by a small amount)

will reduce the function value:

u
(
exp

(
φ∧
)
v
)
− u

(
exp

(
φ∧op

)
v
)
≈ −α δT

(
JJT

)
δ︸ ︷︷ ︸

≥0

. (7.168)

However, this is not the most streamlined way we could optimize u
with respect to C because it requires that we store our rotation as a
rotation vector, φ, which has singularities associated with it. Plus, we
need to compute the Jacobian matrix, J.

A cleaner way to carry out optimization is to find an update step for
C in the form of a small rotation on the left18 rather than directly on
the Lie algebra rotation vector representing C:

C = exp
(
ψ∧
)
Cop. (7.169)

The previous update can actually be cast in this form by using the
approximate BCH formula once again:

C = exp
(
φ∧
)

= exp
((
φop − αJTδ

)∧)

≈ exp
(
−α

(
JJTδ

)∧)
Cop, (7.170)

or in other words, we could let ψ = −αJJTδ to accomplish the same
thing as before, but this still requires that we compute J. Instead, we
can essentially just drop JJT > 0 from the update and use

ψ = −αδ, (7.171)

which still reduces the function,

u (Cv)− u (Copv) ≈ −α δTδ︸ ︷︷ ︸
≥0

, (7.172)

but takes a slightly different direction to do so.
Another way to look at this is that we are computing the Jacobian

with respect to ψ, where the perturbation is applied on the left19. Along
the ψi direction, we have

∂ (Cv)

∂ψi
= lim

h→0

exp (h1∧i) Cv −Cv

h

≈ lim
h→0

(1 + h1∧i) Cv −Cv

h
= − (Cv)

∧
1i. (7.173)

Stacking the three directional derivatives together, we have

∂ (Cv)

∂ψ
= − (Cv)

∧
, (7.174)

18 A right-hand version is also possible.
19 This is sometimes called a (left) Lie derivative.

7.1 Geometry 249
Figure 7.3

During

optimization, we

keep our nominal

rotation, Cop, in

the Lie group and

consider a

perturbation, ψ, to

take place in the

Lie algebra, which

is locally the

tangent space of

the group.

SO(3)

� (Copv)
^

Cv
Copv

so(3)

Cv = exp
�
 ^�Copv ⇡ Copv � (Copv)

^

which is the same as our previous expression but without the J.
An even simpler way to think about optimization is to skip the

derivatives altogether and think in terms of perturbations. Choose a
perturbation scheme,

C = exp
(
ψ∧
)
Cop, (7.175)

where ψ is a small perturbation applied to an initial guess, Cop. When
we take the product of the rotation and a point, v, we can approximate
the expression as follows:

Cv = exp
(
ψ∧
)
Copv ≈ Copv − (Copv)

∧
ψ. (7.176)

This is depicted graphically in Figure 7.3. Inserting this perturbation
scheme into the function to be optimized, we have

u (Cv) = u
(
exp

(
ψ∧
)
Copv

)
≈ u

((
1 +ψ∧

)
Copv

)

≈ u(Copv)− ∂u

∂x

∣∣∣∣
x=Copv

(Copv)
∧

︸ ︷︷ ︸
δT

ψ = u(Copv) + δTψ. (7.177)

Then pick a perturbation to decrease the function. For example, gra-
dient descent suggests we would like to pick

ψ = −αDδ, (7.178)

with α > 0 a small step size and D > 0 any positive-definite matrix.
Then apply the perturbation within the scheme to update the rotation,

Cop ← exp
(
−αDδ∧

)
Cop, (7.179)

and iterate to convergence. Our scheme guarantees Cop ∈ SO(3) at
each iteration.

The perturbation idea generalizes to more interesting optimization
schemes than basic gradient descent, which can be quite slow. Consider
the alternate derivation of the Gauss-Newton optimization method

250 Matrix Lie Groups

from Section 4.3.1. Suppose we have a general nonlinear, quadratic
cost function of a rotation of the form,

J(C) =
1

2

∑

m

(um(Cvm))
2
, (7.180)

where um(·) are scalar nonlinear functions and vm ∈ R3 are three-
dimensional points. We begin with an initial guess for the optimal ro-
tation, Cop ∈ SO(3), and then perturb this (on the left) according to

C = exp
(
ψ∧
)
Cop, (7.181)

where ψ is the perturbation. We then apply our perturbation scheme
inside each um(·) so that

um (Cvm) = um
(
exp(ψ∧)Copvm

)
≈ um

((
1 +ψ∧

)
Copvm

)

≈ um(Copvm)︸ ︷︷ ︸
βm

− ∂um
∂x

∣∣∣∣
x=Copvm

(Copvm)
∧

︸ ︷︷ ︸
δTm

ψ, (7.182)

is a linearized version of um(·) in terms of our perturbation, ψ. Inserting
this back into our cost function, we have

J(C) ≈ 1

2

∑

m

(
δTmψ + βm

)2

, (7.183)

which is exactly quadratic in ψ. Taking the derivative of J with respect
to ψ, we have

∂J

∂ψT
=
∑

m

δm
(
δTmψ + βm

)
. (7.184)

We can set the derivative to zero to find the optimal perturbation, ψ?,
that minimizes J : (∑

m

δmδ
T
m

)
ψ? = −

∑

m

βmδm. (7.185)

This is a linear system of equations, which we can solve for ψ?. We
then apply this optimal perturbation to our initial guess, according to
our perturbation scheme:

Cop ← exp
(
ψ?∧

)
Cop, (7.186)

which ensures that at each iteration, we have Cop ∈ SO(3). We iter-
ate to convergence and then output C? = Cop at the final iteration as
our optimized rotation. This is exactly the Gauss-Newton algorithm,
but adapted to work with the matrix Lie group, SO(3), by exploit-
ing the surjective-only property of the exponential map to define an
appropriate perturbation scheme.

7.1 Geometry 251

Poses

The same concepts can also be applied to poses. The Jacobian of a
transformed point with respect to the Lie algebra vector representing
the transformation is

∂(Tp)

∂ξ
= (Tp)

�J , (7.187)

where T = exp(ξ∧) ∈ SE(3) and p ∈ R4 is some arbitrary three-
dimensional point, expressed in homogeneous coordinates.

However, if we perturb the transformation matrix on the left,

T← exp (ε∧) T, (7.188)

then the Jacobian with respect to this perturbation (i.e., the (left) Lie
derivative) is simply

∂(Tp)

∂ε
= (Tp)

�
, (7.189)

which removes the need to calculate the J matrix.
Finally, for optimization, suppose we have a general nonlinear, qua-

dratic cost function of a transformation of the form

J(T) =
1

2

∑

m

(um(Tpm))
2
, (7.190)

where um(·) are nonlinear functions and pm ∈ R4 are three-dimensional
points expressed in homogeneous coordinates. We begin with an initial
guess for the optimal transformation, Top ∈ SE(3), and then perturb
this (on the left) according to

T = exp (ε∧) Top, (7.191)

where ε is the perturbation. We then apply our perturbation scheme
inside each um(·) so that

um (Tpm) = um (exp(ε∧)Toppm) ≈ um ((1 + ε∧) Toppm)

≈ um(Toppm)︸ ︷︷ ︸
βm

+
∂um
∂x

∣∣∣∣
x=Toppm

(Toppm)
�

︸ ︷︷ ︸
δTm

ε (7.192)

is a linearized version of um(·) in terms of our perturbation, ε. Inserting
this back into our cost function, we have

J(T) =
1

2

∑

m

(
δTmε+ βm

)2

, (7.193)

which is exactly quadratic in ε. Taking the derivative of J with respect
to ε, we have

∂J

∂εT
=
∑

m

δm
(
δTmε+ βm

)
. (7.194)

S
O

(3
)

Id
en

ti
ti

es
an

d
A

p
p

ro
x
im

at
io

n
s

L
ie

A
lg

eb
ra

L
ie

G
ro

u
p

(l
ef

t)
J
ac

ob
ia

n

u
∧

=

 u
1

u
2

u
3

 ∧

=

 
0

−
u

3
u

2

u
3

0
−
u

1

−
u

2
u

1
0

 

(α
u

+
β
v

)∧
≡
α

u
∧

+
β
v
∧

u
∧T
≡
−

u
∧

u
∧
v
≡
−

v
∧
u

u
∧
u
≡

0
(W

u
)∧
≡

u
∧

(t
r(

W
)
1
−

W
)
−

W
T
u
∧

u
∧
v
∧
≡
−

(u
T
v

)
1

+
v
u
T

u
∧
W

v
∧
≡
−

(−
tr

(v
u
T

)
1

+
v
u
T

)
×

(−
tr

(W
)
1

+
W

T
)

+
tr

(W
T
v
u
T

)
1
−

W
T
v
u
T

u
∧
v
∧
u
∧
≡

u
∧
u
∧
v
∧

+
v
∧
u
∧
u
∧

+
(u

T
u

)
v
∧

(u
∧
)3

+
(u

T
u

)
u
∧
≡

0
u
∧
v
∧
v
∧

+
v
∧
v
∧
u
∧

+
2(

v
T
v

)u
∧
≡

(v
∧
u
∧
v

)∧

[u
∧
,v
∧
]
≡

u
∧
v
∧
−

v
∧
u
∧
≡

(u
∧
v

)∧
[u
∧
,[

u
∧
,.
..
[u
∧
,

︸
︷︷

︸
n

v
∧
] .
..
]]
≡

((
u
∧
)n

v
)∧

C
=

ex
p
(φ
∧
) ≡

∑
∞ n=

0
1 n
!

(φ
∧
) n

≡
co

s
φ
1

+
(1
−

co
s
φ

)a
a
T

+
si

n
φ
a
∧

≈
1

+
φ
∧

C
−

1
≡

C
T
≡
∑
∞ n=

0
1 n
!

(−
φ
∧
) n
≈

1
−
φ
∧

φ
=
φ
a

a
T
a
≡

1
C
T
C
≡

1
≡

C
C
T

tr
(C

)
≡

2
co

s
φ

+
1

d
et

(C
)
≡

1
C

a
≡

a
C
φ

=
φ

C
a
∧
≡

a
∧
C

C
φ
∧
≡
φ
∧
C

(C
u

)∧
≡

C
u
∧
C
T

ex
p

((
C

u
)∧

)
≡

C
ex

p
(u
∧
)
C
T

J
=
∫ 1 0

C
α
d
α
≡
∑
∞ n=

0
1

(n
+

1
)!

(φ
∧
) n

≡
si

n
φ

φ
1

+
(1
−

si
n
φ

φ

) a
a
T

+
1
−

c
o
s
φ

φ
a
∧

≈
1

+
1 2
φ
∧

J
−

1
≡
∑
∞ n=

0
B
n

n
!

(φ
∧
) n

≡
φ 2

co
t
φ 2
1

+
(1
−

φ 2
co

t
φ 2

) a
a
T
−

φ 2
a
∧

≈
1
−

1 2
φ
∧

ex
p
((φ

+
δφ

)∧
) ≈

ex
p

((
J
δφ

)∧
)

ex
p
(φ
∧
)

C
≡

1
+
φ
∧
J

J
(φ

)
≡

C
J

(−
φ

)

(ex
p
(δ
φ
∧
) C
) α
≈
(1

+
(A

(α
,φ

)
δφ

)∧
) C

α

A
(α
,φ

)
=
α

J
(α
φ

)J
(φ

)−
1

=
∑
∞ n=

0
F
n

(α
)

n
!

(φ
∧
) n

α
,β
∈
R
,

u
,v
,φ
,δ
φ
∈
R

3
,

W
,A

,J
∈
R

3
×

3
,

C
∈
S
O

(3
)

S
E

(3
)

Id
en

ti
ti

es
an

d
A

p
p

ro
x
im

at
io

n
s

L
ie

A
lg

eb
ra

L
ie

G
ro

u
p

(l
ef

t)
J
ac

o
b

ia
n

x
∧

=

[u v

] ∧
=

[v
∧

u
0
T

0

]

x
f

=

[u v

] f
=

[v
∧

u
∧

0
v
∧

]

(α
x

+
β
y

)∧
≡
α

x
∧

+
β
y
∧

(α
x

+
β
y

)f
≡
α

x
f

+
β
y
f

x
f
y
≡
−

y
f
x

x
f
x
≡

0

(x
∧
)4

+
(v

T
v

)
(x
∧
)2
≡

0

(x
f

)5
+

2
(v

T
v

)
(x

f
)3

+
(v

T
v

)2
(x

f
)
≡

0
[x
∧
,y
∧
]
≡

x
∧
y
∧
−

y
∧
x
∧
≡

(x
f
y

)∧

[x
f
,y

f
]
≡

x
f
y
f
−

y
f
x
f
≡

(x
f
y

)f

[x
∧
,[

x
∧
,.
..
[x
∧
,

︸
︷︷

︸
n

y
∧
] .
..
]]
≡

((
x
f

)n
y

)∧

[x
f
,[

x
f
,.
..
[x

f
,

︸
︷︷

︸
n

y
f
] .
..
]]
≡

((
x
f

)n
y

)f

p
�

=

[ε η

] �
=

[η
1
−
ε
∧

0
T

0
T

]

p
}

=

[ε η

] }
=

[
0

ε
−
ε
∧

0

]

x
∧
p
≡

p
�
x

p
T
x
∧
≡

x
T
p
}

ξ
=

[ρ φ

]

T
=

ex
p
(ξ
∧
) ≡

∑
∞ n=

0
1 n
!

(ξ
∧
) n

≡
1

+
ξ
∧

+
(1
−

c
o
s
φ

φ
2

) (ξ
∧
)2

+
(φ
−

si
n
φ

φ
3

) (ξ
∧
)3

≈
1

+
ξ
∧

T
≡
[C

J
ρ

0
T

1

]

ξ
f
≡

ad
(ξ
∧
)

T
=

ex
p
(ξ

f
) ≡

∑
∞ n=

0
1 n
!

(ξ
f
) n

≡
1

+
(3

si
n
φ
−
φ

c
o
s
φ

2
φ

) ξ
f

+
(4
−
φ

si
n
φ
−

4
c
o
s
φ

2
φ
2

) (
ξ
f
) 2

+
(si

n
φ
−
φ

c
o
s
φ

2
φ
3

) (
ξ
f
) 3

+
(2
−
φ

si
n
φ
−

2
c
o
s
φ

2
φ
4

) (
ξ
f
) 4

≈
1

+
ξ
f

T
=

A
d

(T
)
≡
[C

(J
ρ

)∧
C

0
C

]

tr
(T

)
≡

2
co

s
φ

+
2
,

d
et

(T
)
≡

1
A

d
(T

1
T

2
)

=
A

d
(T

1
)

A
d

(T
2
)

T
−

1
≡

ex
p
(−
ξ
∧
) ≡

∑
∞ n=

0
1 n
!

(−
ξ
∧
) n
≈

1
−
ξ
∧

T
−

1
≡
[C

T
−

C
T
r

0
T

1

]

T
−

1
≡

ex
p
(−
ξ
f
) ≡

∑
∞ n=

0
1 n
!

(−
ξ
f
) n
≈

1
−
ξ
f

T
−

1
≡
[C

T
−

C
T

(J
ρ

)∧

0
C
T

]

T
ξ
≡
ξ

T
ξ
∧
≡
ξ
∧
T
,

T
ξ
f
≡
ξ
f
T

(T
x

)∧
≡

T
x
∧
T
−

1
,

(T
x

)f
≡

T
x
f
T
−

1

ex
p
((T

x
)∧
) ≡

T
ex

p
(x
∧
)
T
−

1

ex
p
((T

x
)f
) ≡

T
ex

p
(x

f
)
T
−

1

(T
p

)�
≡

T
p
�
T
−

1

(T
p

)�
T

(T
p

)�
≡

T
−
T
p
�
T

p
�
T
−

1

J
=
∫ 1 0

T
α
d
α
≡
∑
∞ n=

0
1

(n
+

1
)!

(ξ
f
) n

=
1

+
(4
−
φ

si
n
φ
−

4
c
o
s
φ

2
φ
2

) ξ
f

+
(4

φ
−

5
si

n
φ

+
φ

c
o
s
φ

2
φ
3

) (
ξ
f
) 2

+
(2
−
φ

si
n
φ
−

2
c
o
s
φ

2
φ
4

) (
ξ
f
) 3

+
(2

φ
−

3
si

n
φ

+
φ

c
o
s
φ

2
φ
5

) (
ξ
f
) 4

≈
1

+
1 2
ξ
f

J
≡
[J

Q
0

J

]

J
−

1
≡
∑
∞ n=

0
B
n

n
!

(ξ
f
) n
≈

1
−

1 2
ξ
f

J
−

1
≡
[J
−

1
−

J
−

1
Q

J
−

1

0
J
−

1

]

Q
=
∑
∞ n=

0

∑
∞ m

=
0

1
(n

+
m

+
2
)!

(φ
∧
) n
ρ
∧
(φ
∧
) m

≡
1 2
ρ
∧

+
(φ
−

si
n
φ

φ
3

) (
φ
∧
ρ
∧

+
ρ
∧
φ
∧

+
φ
∧
ρ
∧
φ
∧
)

+
(φ

2
+

2
c
o
s
φ
−

2
2
φ
4

) (
φ
∧
φ
∧
ρ
∧

+
ρ
∧
φ
∧
φ
∧
−

3
φ
∧
ρ
∧
φ
∧
)

+
(2

φ
−

3
si

n
φ

+
φ

c
o
s
φ

2
φ
5

) (
φ
∧
ρ
∧
φ
∧
φ
∧

+
φ
∧
φ
∧
ρ
∧
φ
∧
)

ex
p
((ξ

+
δξ

)∧
) ≈

ex
p

((
J
δξ

)∧
)

ex
p
(ξ
∧
)

ex
p
((ξ

+
δξ

)f
) ≈

ex
p

((
J
δξ

)f
)

ex
p
(ξ

f
)

T
≡

1
+
ξ
f
J

J
ξ
f
≡
ξ
f
J

J
(ξ

)
≡

T
J

(−
ξ
)

(ex
p
(δ
ξ
∧
) T
) α
≈
(1

+
(A

(α
,ξ

)
δξ

)∧
) T

α

A
(α
,ξ

)
=
α
J

(α
ξ
)J

(ξ
)−

1
=
∑
∞ n=

0
F
n

(α
)

n
!

(ξ
f
) n

α
,β
∈
R
,

u
,v
,φ
,δ
φ
∈
R

3
,

p
∈
R

4
,

x
,y
,ξ
,δ
ξ
∈
R

6
,

C
∈
S
O

(3
),

J
,Q
∈
R

3
×

3
,

T
,T

1
,T

2
∈
S
E

(3
),

T
∈

A
d

(S
E

(3
))
,
J
,A
∈
R

6
×

6

254 Matrix Lie Groups

We can set the derivative to zero to find the optimal perturbation, ε?,
that minimizes J :

(∑

m

δmδ
T
m

)
ε? = −

∑

m

βmδm. (7.195)

This is a linear system of equations, which we can solve for ε?. We then
apply this optimal perturbation to our initial guess, according to our
perturbation scheme,

Top ← exp
(
ε?
∧
)

Top, (7.196)

which ensures that at each iteration, we have Top ∈ SE(3). We iter-
ate to convergence and then output T? = Top at the final iteration
as the optimal pose. This is exactly the Gauss-Newton algorithm, but
adapted to work with the matrix Lie group, SE(3), by exploiting the
surjective-only property of the exponential map to define an appropri-
ate perturbation scheme.

Gauss-Newton Discussion

This approach to Gauss-Newton optimization for our matrix Lie groups
where we use a customized perturbation scheme has three key proper-
ties:

(i) We are storing our rotation or pose in a singularity-free for-
mat,

(ii) At each iteration we are performing unconstrained optimiza-
tion,

(iii) Our manipulations occur at the matrix level so that we do not
need to worry about taking the derivatives of a bunch of scalar
trigonometric functions, which can easily lead to mistakes.

This makes implementation quite straightforward. We can also easily
incorporate both of the practical patches to Gauss-Newton that were
outlined in Section 4.3.1 (a line search and Levenberg-Marquardt) as
well as the ideas from robust estimation described in 5.3.2.

7.1.10 Identities

We have seen many identities and expressions in this section related
to our matrix Lie groups, SO(3) and SE(3). The previous two pages
summarize these. The first page provides identities for SO(3) and the
second for SE(3).

7.2 Kinematics 255

7.2 Kinematics

We have seen how the geometry of a Lie group works. The next step
is to allow the geometry to change over time. We will work out the
kinematics associated with our two Lie groups, SO(3) and SE(3).

7.2.1 Rotations

We have already seen the kinematics of rotations in the previous chap-
ter, but this was before we introduced Lie groups.

Lie Group

We know that a rotation matrix can be written as

C = exp
(
φ∧
)
, (7.197)

where C ∈ SO(3) and φ = φa ∈ R3. The rotational kinematic equation
relating angular velocity, ω, to rotation (i.e., Poisson’s equation) is
given by20

Ċ = ω∧C or ω∧ = ĊCT . (7.198)

We will refer to this as kinematics of the Lie group; these equations are
singularity-free since they are in terms of C, but have the constraint
that CCT = 1. Owing to the surjective-only property of the exponen-
tial map from so(3) to SO(3), we can also work out the kinematics in
terms of the Lie algebra.

Lie Algebra

To see the equivalent kinematics in terms of the Lie algebra, we need
to differentiate C:

Ċ =
d

dt
exp

(
φ∧
)

=

∫ 1

0

exp
(
αφ∧

)
φ̇
∧

exp
(
(1− α)φ∧

)
dα, (7.199)

where the last relationship comes from the general expression for the
time derivative of the matrix exponential:

d

dt
exp (A(t)) =

∫ 1

0

exp (αA(t))
dA(t)

dt
exp ((1− α)A(t)) dα. (7.200)

20 Compared to (6.45) in our earlier development, this ω is opposite in sign. This is

because we have adopted the robotics convention described in Section 6.3.2 for the

angle of rotation, and this leads to the form in (7.197); this in turn means we must use

the angular velocity associated with that angle, and this is opposite in sign to the one

we discussed earlier.

256 Matrix Lie Groups

From (7.199) we can rearrange to have

ĊCT =

∫ 1

0

Cα φ̇
∧

C−α dα =

∫ 1

0

(
Cα φ̇

)∧
dα

=

(∫ 1

0

Cα dα φ̇

)∧
=
(
J φ̇
)∧
, (7.201)

where J =
∫ 1

0
Cα dα is the (left) Jacobian for SO(3) that we saw earlier.

Comparing (7.198) and (7.201) we have the pleasing result that

ω = J φ̇, (7.202)

or

φ̇ = J−1ω, (7.203)

which is an equivalent expression for the kinematics but in terms of
the Lie algebra. Note that J−1 does not exist at |φ| = 2πm, where m
is a non-zero integer, due to singularities of the 3× 1 representation of
rotation; the good news is that we no longer have constraints to worry
about.

Numerical Integration

Because φ has no constraints, we can use any numerical method we like
to integrate (7.203). The same is not true if we want to integrate (7.198)
directly, since we must enforce the constraint that CCT = 1. There are
a few simple strategies we can use to do this.

One approach is to assume that ω is piecewise constant. Suppose
ω is constant between two times, t1 and t2. In this case, (7.198) is a
linear, time-invariant, ordinary differential equation, and we know the
solution will be of the form

C(t2) = exp ((t2 − t1)ω∧)︸ ︷︷ ︸
C21∈ SO(3)

C(t1), (7.204)

where we note that C21 is in fact in the correct form to be a rotation
matrix. Let the rotation vector be

φ = φa = (t2 − t1)ω, (7.205)

with angle, φ = |φ|, and axis, a = φ/φ. Then construct the rotation
matrix through our usual closed-form expression:

C21 = cosφ1 + (1− cosφ) aaT + sinφa∧. (7.206)

The update then proceeds as

C(t2) = C21 C(t1), (7.207)

which mathematically guarantees that C(t2) will be in SO(3) since

7.2 Kinematics 257

C21,C(t1) ∈ SO(3). Repeating this over and over for many small time
intervals allows us to integrate the equation numerically.

However, even if we do follow an integration approach (such as the
one above) that claims to keep the computed rotation in SO(3), small
numerical errors may eventually cause the result to depart SO(3) through
violation of the orthogonality constraint. A common solution is to peri-
odically ‘project’ the computed rotation, C /∈ SO(3), back onto SO(3).
In other words, we can try to find the rotation matrix, R ∈ SO(3), that
is closest to C in some sense. We do this by solving the following opti-
mization problem (Green, 1952):

arg max
R

J(R), J(R) = tr
(
CRT

)
−1

2

3∑

i=1

3∑

j=1

λij
(
rTi rj − δij

)

︸ ︷︷ ︸
Lagrange multiplier terms

, (7.208)

where the Lagrange multiplier terms are necessary to enforce the RRT =
1 constraint. Note that δij is the Kronecker delta and

RT =
[
r1 r2 r3

]
, CT =

[
c1 c2 c3

]
. (7.209)

We also note that

tr
(
CRT

)
= rT1 c1 + rT2 c2 + rT3 c3. (7.210)

We then take the derivative of J with respect to the three rows of R,
revealing

∂J

∂rTi
= ci −

3∑

j=1

λijrj, ∀i = 1 . . . 3. (7.211)

Setting this to zero, ∀i = 1 . . . 3, we have that

[
r1 r2 r3

]
︸ ︷︷ ︸

RT



λ11 λ12 λ13

λ21 λ22 λ23

λ31 λ32 λ33




︸ ︷︷ ︸
Λ

=
[
c1 c2 c3

]
︸ ︷︷ ︸

CT

. (7.212)

Note, however, that Λ can be assumed to be symmetric owing to the
symmetry of the Lagrange multiplier terms. Thus, what we know so
far is that

ΛR = C, Λ = ΛT , RTR = RRT = 1.

We can solve for Λ by noticing

Λ2 = ΛΛT = Λ RRT

︸ ︷︷ ︸
1

ΛT = CCT ⇒ Λ =
(
CCT

) 1
2 ,

with (·) 1
2 indicating a matrix square-root. Finally,

R =
(
CCT

)− 1
2 C,

258 Matrix Lie Groups

which simply looks like we are ‘normalizing’ C. Computing the projec-
tion whenever the orthogonality constraint is not satisfied (to within
some threshold) and then overwriting the integrated value,

C← R, (7.213)

ensures that we do not stray too far from SO(3)21.

7.2.2 Poses

There is an analogous approach to kinematics for SE(3) that we will
develop next.

Lie Group

We have seen that a transformation matrix can be written as

T =

[
C r
0T 1

]
=

[
C Jρ
0T 1

]
= exp

(
ξ∧
)
, (7.214)

where

ξ =

[
ρ
φ

]
.

Suppose the kinematics in terms of separated translation and rotation
are given by

ṙ = ω∧r + ν, (7.215a)

Ċ = ω∧C, (7.215b)

where ν and ω are the translational and rotational velocities, respec-
tively. Using transformation matrices, this can be written equivalently
as

Ṫ = $∧T or $∧ = ṪT−1, (7.216)

where

$ =

[
ν
ω

]
,

is the generalized velocity22 . Again, these equations are singularity-free
but still have the constraint that CCT = 1.
21 Technically, this matrix square-root approach only works under certain conditions. For

some pathological C matrices, it can produce an R where det R = −1 instead of

det R = 1, as desired. This is because we have not enforced the det R = 1 constraint in

our optimization properly. A more rigorous method, based on singular-value

decomposition and that handles the more difficult cases, is presented later in

Section 8.1.3. A sufficient test to know whether this matrix square-root approach will

work is to check that det C > 0 before applying it. This should almost always be true

in real situations where our integration step is small. If it is not true, the detailed

method in Section 8.1.3 should be used.
22 We can also write the kinematics equivalently in 6× 6 format:

Ṫ = $fT .

7.2 Kinematics 259

Lie Algebra

Again, we can find an equivalent set of kinematics in terms of the Lie
algebra. As in the rotation case, we have that

Ṫ =
d

dt
exp

(
ξ∧
)

=

∫ 1

0

exp
(
αξ∧

)
ξ̇
∧

exp
(
(1− α)ξ∧

)
dα, (7.217)

or equivalently,

ṪT−1 =

∫ 1

0

Tα ξ̇
∧

T−α dα =

∫ 1

0

(
T α ξ̇

)∧
dα

=

((∫ 1

0

T α dα

)
ξ̇

)∧
=
(
J ξ̇

)∧
, (7.218)

where J =
∫ 1

0
T α dα is the (left) Jacobian for SE(3). Comparing (7.216)

and (7.218), we have that

$ = J ξ̇, (7.219)

or

ξ̇ = J −1$, (7.220)

for our equivalent kinematics in terms of the Lie algebra. Again, these
equations are now free of constraints.

Hybrid

There is, however, another way to propagate the kinematics by noting
that the equation for ṙ is actually linear in the velocity. By combining
the equations for ṙ and φ̇, we have

[
ṙ

φ̇

]
=

[
1 −r∧

0 J−1

] [
ν
ω

]
, (7.221)

which still has singularities at the singularities of J−1 but no longer
requires us to evaluate Q and avoids the conversion r = Jρ after we
integrate. This approach is also free of constraints. We can refer to this
as a hybrid method, as the translation is kept in the usual space and
the rotation is kept in the Lie algebra.

Numerical Integration

Similarly to the SO(3) approach, we can integrate (7.220) without wor-
rying about constraints, but integrating (7.216) takes a little more care.

Just as in the SO(3) approach, we could assume that $ is piecewise
constant. Suppose $ is constant between two times, t1 and t2. In this

260 Matrix Lie Groups

case, (7.216) is a linear, time-invariant, ordinary differential equation,
and we know the solution will be of the form

T(t2) = exp ((t2 − t1)$∧)︸ ︷︷ ︸
T21∈ SE(3)

T(t1), (7.222)

where we note that T21 is in fact in the correct form to be a transfor-
mation matrix. Let

ξ =

[
ρ
φ

]
= (t2 − t1)

[
ν
ω

]
= (t2 − t1)$, (7.223)

with angle, φ = |φ|, and axis, a = φ/φ. Then construct the rotation
matrix through our usual closed-form expression:

C = cosφ1 + (1− cosφ) aaT + sinφa∧. (7.224)

Build J and calculate r = Jρ. Assemble C and r into

T21 =

[
C r
0T 1

]
. (7.225)

The update then proceeds as

T(t2) = T21 T(t1), (7.226)

which mathematically guarantees that T(t2) will be in SE(3) since
T21,T(t1) ∈ SE(3). Repeating this over and over for many small time
intervals allows us to integrate the equation numerically. We can also
project the upper-left, rotation matrix part of T back onto SO(3) pe-
riodically23, reset the lower left block to 0T , and reset the lower-right
block to 1, to ensure T does not stray too far from SE(3).

With Dynamics

We can augment our kinematic equation for pose with an equation for
the translational/rotational dynamics (i.e., Newton’s second law) as
follows (D’Eleuterio, 1985):

kinematics: Ṫ = $∧T, (7.227a)

dynamics: $̇ = −M−1$fTM$ + a, (7.227b)

where T ∈ SE(3) is the pose, $ ∈ R6 is the generalized velocity (in
the body frame), a ∈ R6 is a generalized applied force (per mass, in the
body frame), and M ∈ R6×6 is a generalized mass matrix of the form

M =

[
m1 −mc∧

mc∧ I

]
, (7.228)

with m the mass, c ∈ R3 the center of mass, and I ∈ R3×3 the inertia
matrix, all in the body frame.

23 See the numerical integration section on rotations, above, for the details.

7.2 Kinematics 261

7.2.3 Linearized Rotations

Lie Group

We can also perturb our kinematics about some nominal solution (i.e.,
linearize), both in the Lie group and the Lie algebra. We begin with
the Lie group. Consider the following perturbed rotation matrix, C′ ∈
SO(3):

C′ = exp
(
δφ∧

)
C ≈

(
1 + δφ∧

)
C, (7.229)

where C ∈ SO(3) is the nominal rotation matrix and δφ ∈ R3 is a
perturbation as a rotation vector. The perturbed kinematics equation,
Ċ′ = ω′∧C′, becomes

d

dt

((
1 + δφ∧

)
C
)

︸ ︷︷ ︸
Ċ′

≈
(
ω + δω︸ ︷︷ ︸

ω′

)∧ (
1 + δφ∧

)
C︸ ︷︷ ︸

C′

, (7.230)

after inserting our perturbation scheme. Dropping products of small
terms, we can manipulate this into a pair of equations,

nominal kinematics: Ċ = ω∧C, (7.231a)

perturbation kinematics: δφ̇ = ω∧ δφ+ δω, (7.231b)

which can be integrated separately and combined to provide the com-
plete solution (approximately).

Lie Algebra

Perturbing the kinematics in the Lie algebra is more difficult but equiv-
alent. In terms of quantities in the Lie algebra, we have

φ′ = φ+ J(φ)−1 δφ, (7.232)

where φ′ = ln(C′)∨ is the perturbed rotation vector, φ = ln(C)∨ the
nominal rotation vector, and δφ the same perturbation as in the Lie
group case.

We start with the perturbed kinematics, φ̇′ = J(φ′)−1ω′, and then
inserting our perturbation scheme, we have

d

dt

(
φ+ J(φ)−1 δφ

)

︸ ︷︷ ︸
φ̇′

≈
(
J(φ) + δJ︸ ︷︷ ︸

J(φ′)

)−1
(ω + δω)︸ ︷︷ ︸

ω′

. (7.233)

262 Matrix Lie Groups

We obtain δJ through a perturbation of J(φ′) directly:

J(φ′) =

∫ 1

0

C′
α

dα =

∫ 1

0

(
exp

(
δφ∧

)
C
)α
dα

≈
∫ 1

0

(
1 + (A(α,φ) δφ)

∧)
Cα dα

=

∫ 1

0

Cα dα

︸ ︷︷ ︸
J(φ)

+

∫ 1

0

α
(
J(αφ)J(φ)−1 δφ

)∧
Cα dα

︸ ︷︷ ︸
δJ

, (7.234)

where we have used the perturbed interpolation formula from Sec-
tion 7.1.7. Manipulating the perturbed kinematics equation, we have

φ̇− J(φ)−1 J̇(φ)J(φ)−1 δφ+ J(φ)−1δφ̇

≈
(
J(φ)−1 − J(φ)−1 δJ J(φ)−1

)
(ω + δω) . (7.235)

Multiplying out, dropping the nominal solution, φ̇ = J(φ)−1ω, as well
as products of small terms, we have

δφ̇ = J̇(φ) J(φ)−1 δφ− δJ φ̇+ δω. (7.236)

Substituting in the identity24

J̇(φ)− ω∧J(φ) ≡ ∂ω

∂φ
, (7.237)

we have

δφ̇ = ω∧ δφ+ δω +
∂ω

∂φ
J(φ)−1 δφ− δJ φ̇

︸ ︷︷ ︸
extra term

, (7.238)

which is the same as the Lie group result for the perturbation kinemat-
ics, but with an extra term; it turns out this extra term is zero:

∂ω

∂φ
J(φ)−1 δφ =

(
∂

∂φ

(
J(φ) φ̇

))
J(φ)−1 δφ

=

(
∂

∂φ

∫ 1

0

Cα φ̇ dα

)
J(φ)−1 δφ =

∫ 1

0

∂

∂φ

(
Cα φ̇

)
dα J(φ)−1 δφ

= −
∫ 1

0

α
(
Cα φ̇

)∧
J(αφ) dα J(φ)−1 δφ

=

∫ 1

0

α
(
J(αφ)J(φ)−1 δφ

)∧
Cα dα

︸ ︷︷ ︸
δJ

φ̇ = δJ φ̇, (7.239)

where we have used an identity derived back in Section 6.2.5 for the

24 This identity is well known in the dynamics literature (Hughes, 1986).

7.2 Kinematics 263

derivative of a rotation matrix times a vector with respect to a three-
parameter representation of rotation. Thus, our pair of equations is

nominal kinematics: φ̇ = J(φ)−1ω, (7.240a)

perturbation kinematics: δφ̇ = ω∧ δφ+ δω, (7.240b)

which can be integrated separately and combined to provide the com-
plete solution (approximately).

Solutions Commute

It is worth asking whether integrating the full solution is (approxi-
mately) equivalent to integrating the nominal and perturbation equa-
tions separately and then combining them. We show this for the Lie
group kinematics. The perturbed solution will be given by:

C′(t) = C′(0) +

∫ t

0

ω′(s)∧C′(s) ds. (7.241)

Breaking this into nominal and perturbation parts, we have

C′(t) ≈ (1 + δφ(0)∧) C(0) +

∫ t

0

(ω + δω)
∧

(1 + δφ(s)∧) C(s) ds

≈ C(0) +

∫ t

0

ω(s)∧C(s) ds

︸ ︷︷ ︸
C(t)

+ δφ(0)∧C(0) +

∫ t

0

(ω(s)∧ δφ(s)∧C(s) + δω(s)∧C(s)) ds

︸ ︷︷ ︸
δφ(t)∧C(t)

≈ (1 + δφ(t)∧) C(t), (7.242)

which is the desired result. The rightmost integral on the second line
can be computed by noting that

d

dt

(
δφ∧C

)
= δφ̇

∧
C + δφ∧Ċ =

(
ω∧ δφ+ δω︸ ︷︷ ︸
perturbation

)∧
C + δφ∧

(
ω∧C︸ ︷︷ ︸
nom.

)

= ω∧ δφ∧C− δφ∧ω∧C + δω∧C + δφ∧ω∧C

= ω∧ δφ∧C + δω∧C, (7.243)

where we have used the nominal and perturbation kinematics.

Integrating the Solutions

In this section, we make some observations about integrating the nom-
inal and perturbation kinematics. The nominal equation is nonlinear

264 Matrix Lie Groups

and can be integrated numerically (using either the Lie group or Lie
algebra equations). The perturbation kinematics,

δφ̇(t) = ω(t)∧ δφ(t) + δω(t), (7.244)

is a LTV equation of the form

ẋ(t) = A(t) x(t) + B(t) u(t). (7.245)

The general solution to the initial value problem is given by

x(t) = Φ(t, 0) x(0) +

∫ t

0

Φ(t, s) B(s) u(s) ds, (7.246)

where Φ(t, s) is called the state transition matrix and satisfies

Φ̇(t, s) = A(t) Φ(t, s),

Φ(t, t) = 1.

The state transition matrix always exists and is unique, but it cannot al-
ways be found analytically. Fortunately, for our particular perturbation
equation, we can express the 3×3 state transition matrix analytically25:

Φ(t, s) = C(t)C(s)T . (7.247)

The solution is therefore given by

δφ(t) = C(t)C(0)T δφ(0) + C(t)

∫ t

0

C(s)T δω(s) ds. (7.248)

We need the solution to the nominal equation, C(t), but this is readily
available. To see this is indeed the correct solution, we can differentiate:

δφ̇(t) = Ċ(t)C(0)T δφ(0)+Ċ(t)

∫ t

0

C(s)T δω(s) ds+C(t) C(t)T δω(t)

= ω(t)∧
(

C(t)C(0)T δφ(0) + C(t)

∫ t

0

C(s)T δω(s) ds

︸ ︷︷ ︸
δφ(t)

)
+ δω(t)

= ω(t)∧δφ(t) + δω(t), (7.249)

which is the original differential equation for δφ(t). We also see that
our state transition matrix satisfies the required conditions:

d

dt

(
C(t)C(s)T

)

︸ ︷︷ ︸
Φ̇(t,s)

= Ċ(t)C(s)T = ω(t)∧C(t)C(s)T︸ ︷︷ ︸
Φ(t,s)

, (7.250a)

C(t)C(t)T︸ ︷︷ ︸
Φ(t,t)

= 1. (7.250b)

25 The nominal rotation matrix, C(t), is the fundamental matrix of the state transition

matrix.

7.2 Kinematics 265

Thus, we have everything we need to integrate the perturbation kine-
matics as long as we can also integrate the nominal kinematics.

7.2.4 Linearized Poses

We will only briefly summarize the perturbed kinematics for SE(3) as
they are quite similar to the SO(3) case.

Lie Group

We will use the perturbation,

T′ = exp
(
δξ∧

)
T ≈

(
1 + δξ∧

)
T, (7.251)

with T′,T ∈ SE(3) and δξ ∈ R6. The perturbed kinematics,

Ṫ′ = $′∧T′, (7.252)

can then be broken into nominal and perturbation kinematics:

nominal kinematics: Ṫ = $∧T, (7.253a)

perturbation kinematics: δξ̇ = $f δξ + δ$, (7.253b)

where $′ = $+δ$. These can be integrated separately and combined
to provide the complete solution (approximately).

Integrating the Solutions

The 6× 6 transition matrix for the perturbation equation is

Φ(t, s) = T (t)T (s)−1, (7.254)

where T = Ad(T). The solution for δξ(t) is

δξ(t) = T (t)T (0)−1 δξ(0) + T (t)

∫ t

0

T (s)−1 δ$(s) ds. (7.255)

Differentiating recovers the perturbation kinematics, where we require
the 6× 6 version of the nominal kinematics in the derivation:

Ṫ (t) = $(t)fT (t), (7.256)

which is equivalent to the 4× 4 version.

With Dynamics

We can also perturb the joint kinematics/dynamics equations in (7.227).
We consider perturbing all of the quantities around some operating
points as follows:

T′ = exp
(
δξ∧

)
T, $′ = $ + δ$, a′ = a + δa, (7.257)

266 Matrix Lie Groups

so that the kinematics/dynamics are

Ṫ′ = $′
∧
T′, (7.258a)

$̇′ = −M−1$′
fTM$′ + a′. (7.258b)

If we think of δa as an unknown noise input, then we would like to
know how this turns into uncertainty on the pose and velocity vari-
ables through the chain of dynamics and kinematics. Substituting the
perturbations into the motion models, we can separate into a (nonlin-
ear) nominal motion model,

nominal kinematics: Ṫ = $∧T, (7.259a)

nominal dynamics: $̇ = −M−1$fTM$ + a, (7.259b)

and (linear) perturbation motion model,

perturbation kinematics: δξ̇ = $f δξ + δ$, (7.260a)

perturbation dynamics: δ$̇ = M−1
(

(M$)
fT −$fM

)
δ$ + δa,

(7.260b)

which we can write in combined matrix form:
[
δξ̇
δ$̇

]
=

[
$f 1

0 M−1
(

(M$)
fT −$fM

)
] [

δξ
δ$

]
+

[
0
δa

]
. (7.261)

Finding the transition matrix for this LTV SDE may be difficult, but
it can be integrated numerically.

7.3 Probability and Statistics

We have seen throughout this chapter that elements of matrix Lie
groups do not satisfy some basic operations that we normally take for
granted. This theme continues when working with random variables.
For example, we often work with Gaussian random variables, which
typically take the form,

x ∼ N (µ,Σ), (7.262)

where x ∈ RN (i.e., x lives in a vectorspace). An equivalent way to
look at this is that x comprises a ‘large’, noise-free component, µ, and
a ‘small’, noisy component, ε, that is zero-mean:

x = µ+ ε, ε ∼ N (0,Σ). (7.263)

This arrangement works because all the quantities involved are vectors
and the vectorspace is closed under the + operation. Unfortunately,
our matrix Lie groups are not closed under this type of addition, and
so we need to think of a different way of defining random variables.

This section will introduce our definitions of random variables and

7.3 Probability and Statistics 267

probability density functions (PDFs) for rotations and poses, and then
present four examples of using our new probability and statistics. We
follow the approach outlined by Barfoot and Furgale (2014), which
is a practical method when uncertainty on rotation does not become
too large. This approach was inspired by and builds on the works of
Su and Lee (1991, 1992); Chirikjian and Kyatkin (2001); Smith et al.
(2003); Wang and Chirikjian (2006, 2008); Chirikjian (2009); Wolfe
et al. (2011); Long et al. (2012); Chirikjian and Kyatkin (2016). It
must be noted that Chirikjian and Kyatkin (2001) (and the revision in
(Chirikjian and Kyatkin, 2016)) explain how to represent and propagate
PDFs on groups even when the uncertainty becomes large, whereas the
discussion here is relevant only when uncertainty is reasonably small.

7.3.1 Gaussian Random Variables and PDFs

We will discuss general random variables and PDFs briefly, and then
focus on Gaussians. We frame the main discussion in terms of rotations
and then state the results for poses afterward.

Rotations

We have seen several times the dual nature of rotations/poses in the
sense that they can be described in terms of a Lie group or a Lie al-
gebra, each having advantages and disadvantages. Lie groups are nice
because they are free of singularities but have constraints; this is also
the form that is usually required in order to rotate/transform some-
thing in the real world. Lie algebras are nice because we can treat
them as vectorspaces (for which there are many useful mathematical
tools26), and they are free of constraints, but we need to worry about
singularities.

It seems logical to exploit the vectorspace character of a Lie alge-
bra in defining our random variables for rotations and poses. In this
way, we can leverage all the usual tools from probability and statistics,
rather than starting over. Given this decision, and using (7.263) for
inspiration, there are three possible ways to define a random variable
for SO(3) based on the different perturbation options:

SO(3) so(3)

left C = exp (ε∧`) C̄ φ ≈ µ+ J−1
` (µ) ε`

middle C = exp ((µ+ εm)∧) φ = µ+ εm
right C = C̄ exp (ε∧r) φ ≈ µ+ J−1

r (µ) εr

where ε`, εm, εr ∈ R3 are random variables in the usual (vectorspace)
sense, µ ∈ R3 is a constant, and C = exp(φ∧), C̄ = exp (µ∧) ∈ SO(3).

26 Including probability and statistics.

268 Matrix Lie Groups

In each of these three cases, we know through the surjective-only prop-
erty of the exponential map and the closure property of Lie groups
that we will ensure that C = exp

(
φ∧
)
∈ SO(3). This idea of mapping

a random variable onto a Lie group through the exponential map is
sometimes informally referred to as ‘injecting’ noise onto the group,
but this is misleading27.

Looking to the Lie algebra versions of the perturbations, we can see
the usual relationships between the left, middle, right: εm ≈ J−1

` (µ) ε` ≈
J−1
r (µ) εr. Based on this, we might conclude that all the options are

equally good. However, in the middle option, we must keep the nominal
component of the variable in the Lie algebra as well as the perturbation,
which means we will have to contend with the associated singularities.
On the other hand, both the left and right perturbation approaches al-
low us to keep the nominal component of the variable in the Lie group.
By convention, we will choose the left perturbation approach, but one
could just as easily pick the right.

This approach to defining random variables for rotations/poses in
some sense gets the best of both worlds. We can avoid singularities
for the large, nominal part by keeping it in the Lie group, but we can
exploit the constraint-free, vectorspace character of the Lie algebra for
the small, noisy part. Since the noisy part is assumed to be small, it will
tend to stay away from the singularities associated with the rotation-
vector parameterization28.

Thus, for SO(3), a random variable, C, will be of the form29

C = exp (ε∧) C̄, (7.264)

where C̄ ∈ SO(3) is a ‘large’, noise-free, nominal rotation and ε ∈ R3

is a ‘small’, noisy component (i.e., it is just a regular, random variable
from a vectorspace). This means that we can simply define a PDF for
ε, and this will induce a PDF on SO(3):

p(ε) → p(C). (7.265)

We will mainly be concerned with Gaussian PDFs in our estimation

27 Mathematically, injection means that at most one element of the Lie algebra should

map to each element of the Lie group. As we have seen, the exponential map linking

the Lie algebra to the Lie group is surjective-only, which means every element of the

Lie algebra maps to some element of the Lie group and every element of the Lie group

is mapped to from many elements of the Lie algebra. If we limit the rotation angle

magnitude, |φ| < π, then the exponential map is bijective, meaning both surjective and

injective (i.e., one-to-one and onto). However, we may not want to impose this limit,

whereupon the injective property does not hold.
28 This approach works reasonably well as long as the perturbation is small. If this is not

the case, a more global approach to defining a random variable on Lie groups is

required, but these are less well explored (Chirikjian and Kyatkin, 2001; Lee et al.,

2008; Chirikjian and Kyatkin, 2016).
29 We will drop the ` subscript from here to keep things clean.

7.3 Probability and Statistics 269

problems, and in this case we let

p(ε) =
1√

(2π)3 det(Σ)
exp

(
−1

2
εT Σ−1 ε

)
, (7.266)

or ε ∼ N (0,Σ). Note that we can now think of C̄ as the ‘mean’ rotation
and Σ as the associated covariance.

By definition, p(ε) is a valid PDF, and so
∫
p(ε) dε = 1. (7.267)

We deliberately avoid making the integration limits explicit because we
have defined ε to be Gaussian, which means it has probability mass out
to infinity in all directions. However, we assume that most of the prob-
ability mass is encompassed in |ε| < π for this to make sense. Referring
back to Section 7.1.6, we know that we can relate an infinitesimal vol-
ume element in the Lie algebra to an infinitesimal volume element in
the Lie group according to

dC = |det(J(ε))| dε, (7.268)

where we note that due to our choice of using the left perturbation, the
Jacobian, J, is evaluated at ε (which will hopefully be small) rather
than at φ (which could be large); this will hopefully keep J very close
to 1. We can use this to now work out the PDF that is induced on C.
We have that

1 =

∫
p(ε) dε (7.269)

=

∫
1√

(2π)3 det(Σ)
exp

(
−1

2
εT Σ−1 ε

)
dε (7.270)

=

∫
1√

(2π)3 det(Σ)
exp

(
−1

2
ln
(
CC̄T

)∨T
Σ−1 ln

(
CC̄T

)∨) 1

|det(J)|
︸ ︷︷ ︸

p(C)

dC,

(7.271)

where we indicate the induced p(C). It is important to realize that
p(C) looks like this due to our choice to define p(ε) directly30.

A common method of defining the mean rotation, M ∈ SO(3), is the
unique solution of the equation

∫
ln
(
CMT

)∨
p(C) dC = 0. (7.272)

Switching variables from C to ε, this is equivalent to
∫

ln
(
exp (ε∧) C̄MT

)∨
p(ε) dε = 0. (7.273)

30 It is also possible to work in the other direction by first defining p(C) (Chirikjian,

2009).

270 Matrix Lie Groups

Taking M = C̄, we see that
∫

ln
(
exp (ε∧) C̄MT

)∨
p(ε) dε =

∫
ln
(
exp (ε∧) C̄C̄T

)∨
p(ε) dε

=

∫
ε p(ε) dε = E[ε] = 0, (7.274)

which validates our logic in referring to C̄ as the mean earlier.
The corresponding covariance, Σ, computed about M, can be defined

as

Σ =

∫
ln
(
exp (ε∧) C̄MT

)∨
ln
(
exp (ε∧) C̄MT

)∨T
p(ε) dε

=

∫
ln
(
exp (ε∧) C̄C̄T

)∨
ln
(
exp (ε∧) C̄C̄T

)∨T
p(ε) dε

=

∫
εεT p(ε) dε = E[εεT], (7.275)

which implies that choosing ε ∼ N (0,Σ) is a reasonable thing to do
and matches nicely with the noise ‘injection’ procedure. In fact, all
higher-order statistics defined in an analogous way will produce the
statistics associated with ε as well.

As another advantage to this approach to representing random vari-
ables for rotations, consider what happens to our rotation random vari-
ables under a pure (deterministic) rotation mapping. Let R ∈ SO(3) be
a constant rotation matrix that we apply to C to create a new random
variable, C′ = R C. With no approximation we have

C′ = R C = R exp (ε∧) C̄ = exp
(
(Rε)

∧)
R C̄ = exp (ε′∧) C̄′, (7.276)

where

C̄′ = R C̄, ε′ = R ε ∼ N
(
0,R Σ RT

)
. (7.277)

This is very appealing, as it allows us to carry out this common oper-
ation exactly.

Poses

Similarly to the rotation case, we choose to define a Gaussian random
variable for poses as

T = exp (ε∧) T̄, (7.278)

where T̄ ∈ SE(3) is a ‘large’ mean transformation and ε ∈ R6 ∼
N (0,Σ) is a ‘small’ Gaussian random variable (i.e., in a vectorspace).

The mean transformation, M ∈ SE(3), is the unique solution of the
equation, ∫

ln
(
exp (ε∧) T̄M−1

)∨
p(ε) dε = 0. (7.279)

7.3 Probability and Statistics 271

Taking M = T̄, we see that
∫

ln
(
exp (ε∧) T̄M−1

)∨
p(ε) dε =

∫
ln
(
exp (ε∧) T̄T̄−1

)∨
p(ε) dε

=

∫
ε p(ε) dε = E[ε] = 0, (7.280)

which validates our logic in referring to T̄ as the mean.
The corresponding covariance, Σ, computed about M, can be defined

as

Σ =

∫
ln
(
exp (ε∧) T̄M−1

)∨
ln
(
exp (ε∧) T̄M−1

)∨T
p(ε) dε

=

∫
ln
(
exp (ε∧) T̄T̄−1

)∨
ln
(
exp (ε∧) T̄T̄−1

)∨T
p(ε) dε

=

∫
εεT p(ε) dε = E[εεT], (7.281)

which implies that choosing ε ∼ N (0,Σ) is a reasonable thing to do
and matches nicely with the noise ‘injection’ procedure. In fact, all
higher-order statistics defined in an analogous way will produce the
statistics associated with ε as well.

Again, consider what happens to our transformation random vari-
ables under a pure (deterministic) transformation mapping. Let R ∈
SE(3) be a constant transformation matrix that we apply to T to cre-
ate a new random variable, T′ = R T. With no approximation we have

T′ = R T = R exp (ε∧) T̄ = exp
(
(Rε)∧)R T̄ = exp (ε′∧) T̄′, (7.282)

where

T̄′ = R T̄, ε′ = R ε ∼ N
(
0,RΣRT

)
, (7.283)

and R = Ad(R).

7.3.2 Uncertainty on a Rotated Vector

Consider the simple mapping from rotation to position given by

y = Cx, (7.284)

where x ∈ R3 is a constant and

C = exp (ε∧) C̄, ε ∼ N (0,Σ). (7.285)

Figure 7.4 shows what the resulting density over y looks like for some
particular values of C̄ and Σ. We see that, as expected, the samples
live on a sphere whose radius is |x| since rotations preserve length.

We might be interested in computing E[y] in the vectorspace R3 (i.e.,

272 Matrix Lie Groups

Figure 7.4

Depiction of

uncertainty on a

vector

y = Cx ∈ R3,

where x is

constant and C =

exp (ε∧) C̄,φ ∼
N (0,Σ) is a

random variable.

The dots show

samples of the

resulting density

over y. The

contours (of

varying darkness)

show the 1, 2, 3

standard deviation

equiprobable

contours of ε

mapped to y. The

solid black line is

the noisefree

vector, ȳ = C̄x.

The grey, dashed,

dotted, and

dash-dotted lines

show various

estimates of E[y]

using brute-force

sampling, the

sigmapoint

transformation, a

second-order

method, and a

fourth-order

method.

not exploiting special knowledge that y must have length |x|). We can
imagine three ways of doing this:

(i) Drawing a large number of random samples and then averag-
ing.

(ii) Using the sigmapoint transformation.
(iii) An analytical approximation.

For (iii), we consider expanding C in terms of ε so that

y = Cx =

(
1 + ε∧ +

1

2
ε∧ε∧ +

1

6
ε∧ε∧ε∧ +

1

24
ε∧ε∧ε∧ε∧ + · · ·

)
C̄x.

(7.286)

7.3 Probability and Statistics 273

Since ε is Gaussian, the odd terms average to zero such that

E[y] =

(
1 +

1

2
E [ε∧ε∧] +

1

24
E [ε∧ε∧ε∧ε∧] + · · ·

)
C̄x. (7.287)

Going term by term, we have

E [ε∧ε∧] = E
[
−(εTε)1 + εεT

]
= −tr

(
E
[
εεT

])
1 + E

[
εεT

]

= −tr (Σ) 1 + Σ, (7.288)

and

E [ε∧ε∧ε∧ε∧] = E
[
−(εTε) ε∧ε∧

]

= E
[
−(εTε)

(
−(εTε)1 + εεT

)]

= tr
(
E
[(
εTε

)
εεT

])
1− E

[(
εTε

)
εεT

]

= tr (Σ (tr (Σ) 1 + 2Σ)) 1−Σ (tr (Σ) 1 + 2Σ)

=
(

(tr (Σ))
2

+ 2 tr
(
Σ2
))

1−Σ (tr (Σ) 1 + 2Σ) , (7.289)

where we have used the multivariate version of Isserlis’ theorem. Higher-
order terms are also possible, but to fourth order in ε, we have

E[y] ≈
(

1 +
1

2
(−tr (Σ) 1 + Σ)

+
1

24

((
(tr (Σ))

2
+ 2 tr

(
Σ2
))

1−Σ (tr (Σ) 1 + 2Σ)
))

C̄x. (7.290)

We refer to the method keeping terms to second order in ε as ‘second-
order’ and the method keeping terms to fourth order in ε as ‘fourth-
order’ in Figure 7.4. The fourth-order method is very comparable to
the sigmapoint method and random sampling.

7.3.3 Compounding Poses

In this section, we investigate the problem of compounding two poses,
each with associated uncertainty, as depicted in Figure 7.5.

Figure 7.5

Combining a chain

of two poses into a

single compound

pose.
�
T̄1,⌃1

�
T̄2,⌃2

 �
T̄,⌃

)

Theory

Consider two noisy poses, T1 and T2; we keep track of their nominal
values and associated uncertainties:

{
T̄1,Σ1

}
,
{
T̄2,Σ2

}
. (7.291)

274 Matrix Lie Groups

Suppose now we let

T = T1T2, (7.292)

as depicted in Figure 7.5. What is
{
T̄,Σ

}
? Under our perturbation

scheme we have,

exp (ε∧) T̄ = exp (ε∧1) T̄1 exp (ε∧2) T̄2. (7.293)

Moving all the uncertain factors to the left side, we have

exp (ε∧) T̄ = exp (ε∧1) exp
((T̄ 1ε2

)∧)
T̄1T̄2, (7.294)

where T̄ 1 = Ad
(
T̄1

)
. If we let

T̄ = T̄1T̄2, (7.295)

we are left with

exp (ε∧) = exp (ε∧1) exp
((T̄ 1ε2

)∧)
. (7.296)

Letting ε′2 = T̄ 1ε2, we can apply the BCH formula to find

ε = ε1 + ε′2 +
1

2
εf1 ε

′
2 +

1

12
εf1 ε

f
1 ε
′
2 +

1

12
ε′f2 ε

′f
2 ε1 −

1

24
ε′f2 ε

f
1 ε

f
1 ε
′
2 + · · · .

(7.297)
For our approach to hold, we require that E [ε] = 0. Assuming that
ε1 ∼ N (0,Σ1) and ε′2 ∼ N

(
0,Σ′2

)
are uncorrelated with one another,

we have

E [ε] = − 1

24
E [ε′f2 ε

f
1 ε

f
1 ε
′
2] +O

(
ε6
)
, (7.298)

since everything except the fourth-order term has zero mean. Thus, to
third order, we can safely assume that E [ε] = 0, and thus (7.295) seems
to be a reasonable way to compound the mean transformations31.

The next task is to compute Σ = E [εεT]. Multiplying out to fourth

31 It is also possible to show that the fourth-order term has zero mean,

E
[
ε′f2 ε

f
1 ε

f
1 ε
′
2

]
= 0, if Σ1 is of the special form

Σ1 =

[
Σ1,ρρ 0

0 σ2
1,φφ1

]
,

where the ρ and φ subscripts indicate a partitioning of the covariance into the

translation and rotation components, respectively. This is a common situation for Σ1

when we are, for example, propagating uncertainty on velocity through the kinematics

equations presented for SE(3); from (7.222) we have, T1 = exp ((t2 − t1)$∧), where

$ is the (noisy) generalized velocity. In this case, we are justified in assuming E [ε] = 0

all the way out to fifth order (and possibly further).

7.3 Probability and Statistics 275

order, we have

E
[
εεT

]
≈ E

[
ε1ε

T
1 + ε′2ε

′T
2 +

1

4
εf1

(
ε′2ε
′T
2

)
εf

T

1

+
1

12

(
(εf1 ε

f
1)
(
ε′2ε
′T
2

)
+
(
ε′2ε
′T
2

)
(εf1 ε

f
1)

T

+ (ε′f2 ε
′f
2)
(
ε1ε

T
1

)
+ (ε′f2 ε

′f
2)
(
ε1ε

T
1

))]
(7.299)

where we have omitted showing any terms that have an odd power in
either ε1 or ε′2 since these will by definition have expectation zero. This
expression may look daunting, but we can take it term by term. To save
space, we define and make use of the following two linear operators:

〈〈A〉〉 = −tr (A) 1 + A, (7.300a)

〈〈A,B〉〉 = 〈〈A〉〉〈〈B〉〉+ 〈〈BA〉〉, (7.300b)

with A,B ∈ Rn×n. These provide the useful identity,

−u∧Av∧ ≡ 〈〈vuT ,AT 〉〉, (7.301)

where u,v ∈ R3 and A ∈ R3×3. Making use of this repeatedly, we have
out to fourth order,

E
[
ε1ε

T
1

]
= Σ1 =

[
Σ1,ρρ Σ1,ρφ

ΣT
1,ρφ Σ1,φφ

]
, (7.302a)

E
[
ε′2ε
′T
2

]
= Σ′2 =

[
Σ′2,ρρ Σ′2,ρφ
Σ′

T

2,ρφ Σ′2,φφ

]
= T̄ 1Σ2T̄ T

1 , (7.302b)

E [εf1 ε
f
1] = A1 =

[
〈〈Σ1,φφ〉〉 〈〈Σ1,ρφ + ΣT

1,ρφ〉〉
0 〈〈Σ1,φφ〉〉

]
, (7.302c)

E
[
ε′

f

2 ε
′f
2

]
= A′2 =

[
〈〈Σ′2,φφ〉〉 〈〈Σ′2,ρφ + Σ′

T

2,ρφ〉〉
0 〈〈Σ′2,φφ〉〉

]
, (7.302d)

E
[
εf1

(
ε′2ε
′T
2

)
εf

T

1

]
= B =

[
Bρρ Bρφ

BT
ρφ Bφφ

]
, (7.302e)

where

Bρρ = 〈〈Σ1,φφ,Σ
′
2,ρρ〉〉+ 〈〈ΣT

1,ρφ,Σ
′
2,ρφ〉〉

+ 〈〈Σ1,ρφ,Σ
′T
2,ρφ〉〉+ 〈〈Σ1,ρρ,Σ

′
2,φφ〉〉, (7.303a)

Bρφ = 〈〈Σ1,φφ,Σ
′T
2,ρφ〉〉+ 〈〈ΣT

1,ρφ,Σ
′
2,φφ〉〉, (7.303b)

Bφφ = 〈〈Σ1,φφ,Σ
′
2,φφ〉〉. (7.303c)

276 Matrix Lie Groups

The resulting covariance is then

Σ4th ≈ Σ1 + Σ′2︸ ︷︷ ︸
Σ2nd

+
1

4
B +

1

12

(
A1Σ

′
2 + Σ′2AT

1 + A′2Σ1 + Σ1A′
T

2

)

︸ ︷︷ ︸
additional fourth-order terms

,

(7.304)
correct to fourth order32. This result is essentially the same as that of
Wang and Chirikjian (2008) but worked out for our slightly different
PDF; it is important to note that while our method is fourth order
in the perturbation variables, it is only second order in the covariance
(same as Wang and Chirikjian (2008)). Chirikjian and Kyatkin (2016)
provide helpful insight on the relationship between these results. In
summary, to compound two poses, we propagate the mean using (7.295)
and the covariance using (7.304).

Sigmapoint Method

We can also make use of the sigmapoint transformation (Julier and
Uhlmann, 1996) to pass uncertainty through the compound pose change.
In this section, we tailor this to our specific type of SE(3) perturbation.
Our approach to handling sigmapoints is quite similar to that taken by
Hertzberg et al. (2013) and also Brookshire and Teller (2012). In our
case, we begin by approximating the joint input Gaussian using a finite
number of samples, {T1,`,T2,`}:
LLT = diag(Σ1,Σ2), (Cholesky decomposition; L lower-triangular)

ψ` =
√
λ col`L, ` = 1 . . . L,

ψ`+L = −
√
λ col`L, ` = 1 . . . L,

[
ε1,`

ε2,`

]
= ψ`, ` = 1 . . . 2L,

T1,` = exp
(
ε∧1,`
)
T̄1, ` = 1 . . . 2L,

T2,` = exp
(
ε∧2,`
)
T̄2, ` = 1 . . . 2L,

where λ is a user-definable scaling constant33 and L = 12. We then pass
each of these samples through the compound pose change and compute
the difference from the mean:

ε` = ln
(
T1,`T2,`T̄

−1
)∨
, ` = 1 . . . 2L. (7.305)

These are combined to create the output covariance according to

Σsp =
1

2λ

2L∑

`=1

ε`ε
T
` . (7.306)

32 The sixth order terms require a lot more work, but it is possible to compute them

using Isserlis’ theorem.
33 For all experiments in this section, we used λ = 1; we need to ensure that the

sigmapoints associated with the rotational degrees of freedom have length less than π

to avoid numerical problems.

7.3 Probability and Statistics 277

Note, we have assumed that the output sigmapoint samples have zero
mean in this formula, to be consistent with our mean propagation. In-
terestingly, this turns out to be algebraically equivalent to the second-
order method (from the previous section) for this particular nonlinear-
ity since the noise sources on T1 and T2 are assumed to be uncorrelated.

Simple Compound Example

In this section, we present a simple qualitative example of pose com-
pounding and in Section 7.3.3 we carry out a more quantitative study on
a different setup. To see the qualitative difference between the second-
and fourth-order methods, let us consider the case of compounding
transformations many times in a row:

exp (ε∧K) T̄K =

(
K∏

k=1

exp (ε∧) T̄

)
exp (ε∧0) T̄0. (7.307)

As discussed earlier, this can be viewed as a discrete-time integration
of the SE(3) kinematic equations as in (7.222). To keep things simple,
we make the following assumptions:

T̄0 = 1, ε0 ∼ N (0,0), (7.308a)

T̄ =

[
C̄ r̄
0T 1

]
, ε ∼ N (0,Σ) , (7.308b)

C̄ = 1, r̄ =



r
0
0


 , Σ = diag

(
0, 0, 0, 0, 0, σ2

)
. (7.308c)

Although this example uses our three-dimensional tools, it is confined
to a plane for the purpose of illustration and ease of plotting; it cor-
responds to a rigid body moving along the x-axis but with some un-
certainty only on the rotational velocity about the z-axis. This could
model a unicycle robot driving in the plane with constant translational
speed and slightly uncertain rotational speed (centered about zero). We
are interested in how the covariance matrix fills in over time.

According to the second-order scheme, we have

T̄K =




1 0 0 Kr
0 1 0 0
0 0 1 0
0 0 0 1


 , (7.309a)

ΣK =




0 0 0 0 0 0

0 K(K−1)(2K−1)

6
r2σ2 0 0 0 −K(K−1)

2
rσ2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 −K(K−1)

2
rσ2 0 0 0 Kσ2



, (7.309b)

278 Matrix Lie Groups
Figure 7.6

Example of

compounding

K = 100 uncertain

transformations

(Section 7.3.3).

The light grey lines

and grey dots show

1000 individual

sampled

trajectories

starting from (0, 0)

and moving

nominally to the

right at constant

translational

speed, but with

some uncertainty

on rotational

velocity. The gray

1-sigma covariance

ellipse is simply

fitted to the

samples to show

what keeping

xy-covariance

relative to the

start looks like.

The black dotted

(second-order) and

dash-dotted

(fourth-order) lines

are the principal

great circles of the

1-sigma covariance

ellipsoid, given by

ΣK , mapped to

the xy-plane.

Looking to the

area (95, 0),

corresponding to

straight ahead, the

fourth-order

scheme has some

non-zero

uncertainty (as do

the samples),

whereas the

second-order

scheme does not.

We used r = 1 and

σ = 0.03.

x

0 20 40 60 80 100

y

-50

-40

-30

-20

-10

0

10

20

30

40

50

samples
second-order
fourth-order

where we see that the top-left entry of ΣK , corresponding to uncer-
tainty in the x-direction, does not have any growth of uncertainty.
However, in the fourth-order scheme, the fill-in pattern is such that
the top-left entry is non-zero. This happens for several reasons, but
mainly through the Bρρ submatrix of B. This leaking of uncertainty
into an additional degree of freedom cannot be captured by keeping
only the second-order terms. Figure 7.6 provides a numerical example
of this effect. It shows that both the second- and fourth-order schemes
do a good job of representing the ‘banana’-like density over poses, as
discussed by Long et al. (2012). However, the fourth-order scheme has
some finite uncertainty in the straight-ahead direction (as do the sam-
pled trajectories), while the second-order scheme does not.

Compound Experiment

To quantitatively evaluate the pose-compounding techniques, we ran
a second numerical experiment in which we compounded two poses,

7.3 Probability and Statistics 279

including their associated covariance matrices:

T̄1 = exp
(
ξ̄
∧
1

)
, ξ̄1 =

[
0 2 0 π/6 0 0

]T
,

Σ1 = α× diag

{
10, 5, 5,

1

2
, 1,

1

2

}
, (7.310a)

T̄2 = exp
(
ξ̄
∧
2

)
, ξ̄2 =

[
0 0 1 0 π/4 0

]T
,

Σ2 = α× diag

{
5, 10, 5,

1

2
,
1

2
, 1

}
, (7.310b)

where α ∈ [0, 1] is a scaling parameter that increases the magnitude of
the input covariances parametrically.

We compounded these two poses according to (7.293), which results
in a mean of T̄ = T̄1T̄2. The covariance, Σ, was computed using four
methods:

(i) Monte Carlo: We drew a large number, M = 1, 000, 000, of ran-
dom samples (εm1

and εm2
) from the input covariance matri-

ces, compounded the resulting transformations, and computed
the covariance as Σmc = 1

M

∑M
m=1 εmε

T
m with εm = ln

(
TmT̄−1

)∨
and Tm = exp

(
ε∧m1

)
T̄1 exp

(
ε∧m2

)
T̄2. This slow-but-accurate ap-

proach served as our benchmark to which the other three much
faster methods were compared.

(ii) Second-Order: We used the second-order method described above
to compute Σ2nd.

(iii) Fourth-Order: We used the fourth-order method described above
to compute Σ4th.

(iv) Sigmapoint: We used the sigmapoint transformation described
above to compute Σsp.

We compared each of the last three covariance matrices to the Monte
Carlo one using the Frobenius norm:

ε =

√
tr
(

(Σ−Σmc)
T

(Σ−Σmc)
)
.

Figure 7.7 shows that for small input covariance matrices (i.e., α small)
there is very little difference between the various methods and the errors
are all low compared to our benchmark. However, as we increase the
magnitude of the input covariances, all the methods get worse, with the
fourth-order method faring the best by about a factor of seven based
on our error metric. Note that since α is scaling the covariance, the
applied noise is increasing quadratically.

The second-order method and the sigmapoint method have indistin-
guishable performance, as they are algebraically equivalent. The fourth-
order method goes beyond both of these by considering higher-order

280 Matrix Lie Groups

Figure 7.7

Results from

Compound

Experiment: error,

ε, in computing

covariance

associated with

compounding two

poses using three

methods, as

compared to

Monte Carlo. The

sigmapoint and

second-order

methods are

algebraically

equivalent for this

problem and thus

appear the same

on the plot. The

input covariances

were gradually

scaled up via the

parameter, α,

highlighting the

improved

performance of the

fourth-order

method.

Noise scaling,
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o

v
a

ri
a

n
c
e

 e
rr

o
r,

0

0.5

1

1.5

2

2.5

3

3.5

4

α

ε

sigmapoint
second-order
fourth-order

terms in the input covariance matrices. We did not compare the compu-
tational costs of the various methods as they are all extremely efficient
as compared to Monte Carlo.

It is also worth noting that our ability to correctly keep track of
uncertainties on SE(3) decreases with increasing uncertainty. This can
be seen directly in Figure 7.7, as error increases with increasing un-
certainty. This suggests that it may be wise to use only relative pose
variables to keep uncertainties small.

7.3.4 Fusing Poses

This section will investigate a different type of nonlinearity, the fusing
of several pose estimates, as depicted in Figure 7.8. We will approach
this as an estimation problem, our first involving quantities from a
matrix Lie group. We will use the optimization ideas introduced in
Section 7.1.9.

Figure 7.8

Combining K pose

estimates into a

single fused

estimate.

�
T̄1,⌃1

�
T̄2,⌃2

�
T̄,⌃

�
T̄K ,⌃K

...

)

Theory

Suppose that we have K estimates of a pose and associated uncertain-
ties:

{
T̄1,Σ1

}
,
{
T̄2,Σ2

}
, . . . ,

{
T̄K ,ΣK

}
. (7.311)

7.3 Probability and Statistics 281

If we think of these as uncertain (pseudo)-measurements of the true
pose, Ttrue, how can we optimally combine these into a single estimate,{
T̄,Σ

}
?

As we have seen in the first part of this book, vectorspace solution
to fusion is straightforward and can be found exactly in closed form:

x̄ = Σ
K∑

k=1

Σ−1
k x̄k, Σ =

(
K∑

k=1

Σ−1
k

)−1

. (7.312)

The situation is somewhat more complicated when dealing with SE(3),
and we shall resort to an iterative scheme.

We define the error (that we will seek to minimize) as ek(T), which
occurs between the individual measurement and the optimal estimate,
T, so that

ek(T) = ln
(
T̄kT

−1
)∨
. (7.313)

We use our approach to pose optimization outlined earlier34, wherein
we start with an initial guess, Top, and perturb this (on the left) by a
small amount, ε, so that

T = exp (ε∧) Top. (7.314)

Inserting this into the error expression, we have

ek(T) = ln
(
T̄kT

−1
)∨

= ln
(
T̄k T−1

op︸ ︷︷ ︸
small

exp (−ε∧)
)∨

= ln (exp (ek(Top)∧) exp (−ε∧))
∨

= ek(Top)−Gk ε, (7.315)

where ek(Top) = ln
(
T̄kT

−1
op

)∨
and Gk = J (−ek(Top))−1. We have

used the approximate BCH formula from (7.100) to arrive at the fi-
nal expression. Since ek(Top) is fairly small, this series will converge,
rapidly and we can get away with keeping just a few terms. With our
iterative scheme, ε will (hopefully) converge to zero, and hence we are
justified in keeping only terms linear in this quantity.

We define the cost function that we want to minimize as

J(T) =
1

2

K∑

k=1

ek(T)T Σ−1
k ek(T)

≈ 1

2

K∑

k=1

(ek(Top)−Gk ε)
T

Σ−1
k (ek(Top)−Gk ε) , (7.316)

which is already (approximately) quadratic in ε. It is in fact a squared

34 It is worth mentioning that we are using our constraint-sensitive perturbations for

matrix Lie groups in two distinct ways in this section. First, the perturbations are used

as a means of injection noise on the Lie group so that probability and statistics can be

defined. Second, we are using a perturbation to carry out iterative optimization.

282 Matrix Lie Groups

Mahalanobis distance (Mahalanobis, 1936) since we have chosen the
weighting matrices to be the inverse covariance matrices; thus mini-
mizing J with respect to ε is equivalent to maximizing the joint like-
lihood of the individual estimates. It is worth noting that because we
are using a constraint-sensitive perturbation scheme, we do not need
to worry about enforcing any constraints on our state variables during
the optimization procedure. Taking the derivative with respect to ε and
setting to zero results in the following system of linear equations for
the optimal value of ε:

(
K∑

k=1

GT
kΣ−1

k Gk

)
ε? =

K∑

k=1

GT
kΣ−1

k ek(Top). (7.317)

While this may appear strange compared to (7.312), the Jacobian terms
appear because our choice of error definition is in fact nonlinear owing
to the presence of the matrix exponentials. We then apply this optimal
perturbation to our current guess,

Top ← exp (ε?∧) Top, (7.318)

which ensures Top remains in SE(3), and iterate to convergence. At
the last iteration, we take T̄ = Top as the mean of our fused estimate
and

Σ =

(
K∑

k=1

GT
kΣ−1

k Gk

)−1

(7.319)

for the covariance matrix. This approach has the form of a Gauss-
Newton method as discussed in Section 7.1.9.

This fusion problem is similar to one investigated by Smith et al.
(2003), but they only discuss the K = 2 case. Our approach is closer
to that of Long et al. (2012), who discuss the N = 2 case and derive
closed-form expressions for the fused mean and covariance for an ar-
bitrary number of individual measurements, K; however, they do not
iterate their solution and they are tracking a slightly different PDF.
Wolfe et al. (2011) also discuss fusion at length, albeit again using a
slightly different PDF than us. They discuss non-iterative methods of
fusion for arbitrary K and show numerical results for K = 2. We be-
lieve our approach generalizes all of these previous works by (i) allowing
the number of individual estimates, K, to be arbitrary, (ii) keeping an
arbitrary number of terms in the approximation of the inverse Jaco-
bian, N , and (iii) iterating to convergence via a Gauss-Newton style
optimization method. Our approach may also be simpler to implement
than some of these previous methods.

7.3 Probability and Statistics 283

Figure 7.9

Results from

Fusion

Experiment: (left)

average final cost

function, J , as a

function of the

number of terms,

N , kept in J−1;

(right) same for

the

root-mean-squared

pose error with

respect to the true

pose. Both plots

show that there is

benefit in keeping

more than one

term in J−1. The

data point denoted

‘∞’ uses the

analytical

expression to keep

all the terms in the

expansion.Number of terms,
1 2 3 4 5 6

A
v
e

ra
g

e
 f

in
a

l
c
o

s
t

fu
n

c
ti
o

n
,

5.8754

5.8755

5.8755

5.8755

5.8756

5.8757

5.8757

5.8758

∞

N

J

Number of terms,
1 2 3 4 5 6

R
M

S
 e

rr
o

r
(c

o
m

p
a

re
d

 t
o

 t
ru

e
 p

o
s
e

),

2.7713

2.7714

2.7714

2.7715

2.7715

2.7716

2.7716

2.7717

2.7717

∞

N

ε

Fusion Experiment

To validate the pose fusion method from the previous subsection, we
used a true pose given by

Ttrue = exp
(
ξ∧true

)
, ξtrue =

[
1 0 0 0 0 π/6

]T
, (7.320)

and then generated three random pose measurements,

T̄1 = exp (ε∧1) Ttrue, T̄2 = exp (ε∧2) Ttrue, T̄3 = exp (ε∧3) Ttrue,
(7.321)

where

ε1 ∼ N
(

0, diag

{
10, 5, 5,

1

2
, 1,

1

2

})
,

ε2 ∼ N
(

0, diag

{
5, 15, 5,

1

2
,
1

2
, 1

})
,

ε3 ∼ N
(

0, diag

{
5, 5, 25, 1,

1

2
,
1

2

})
. (7.322)

We then solved for the pose using our Gauss-Newton technique (it-
erating until convergence), using the initial condition, Top = 1. We
repeated this for N = 1 . . . 6, the number of terms kept in Gk =
J (−ek(Top))−1. We also used the closed-form expression to compute
J analytically (and then inverted numerically), and this is denoted by
‘N =∞’.

284 Matrix Lie Groups

Figure 7.10

Results from

Fusion

Experiment: (left)

convergence of the

cost function, J ,

with successive

Gauss-Newton

iterations. This is

for just one of the

M trials used to

generate

Figure 7.9; (right)

same as left, but

zoomed in to show

that the

N = 2, 4,∞
solutions do

converge to

progressively lower

costs.

Number of Iterations
1 2 3 4 5 6 7 8 9 10

A
v
e
ra

g
e
 f
in

a
l
c
o
s
t
fu

n
c
ti
o
n
,

8.5

9

9.5

10

10.5

11

11.5

12

12.5

13

13.5

J

second-order
fourth-order
infinite-order

Number of Iterations
4 5 6 7 8 9 10

A
v
e
ra

g
e
 f
in

a
l
c
o
s
t
fu

n
c
ti
o
n
,

8.859

8.86

8.861

8.862

8.863

8.864

8.865

8.866

8.867

8.868

J

Figure 7.9 plots two performance metrics. First, it plots the final
converged value of the cost function, Jm, averaged over M = 1000
random trials, J = 1

M

∑M
m=1 Jm. Second, it plots the root-mean-squared

pose error (with respect to the true pose), of our estimate, T̄m, again
averaged over the same M random trials:

ε =

√√√√ 1

M

M∑

m=1

εTmεm, εm = ln
(
TtrueT̄

−1
m

)∨
.

The plots show that both measures of error are monotonically reduced
with increasing N . Moreover, we see that for this example almost all
of the benefit is gained with just four terms (or possibly even two).
The results for N = 2, 3 are identical as are those for N = 4, 5. This
is because in the Bernoulli number sequence, B3 = 0 and B5 = 0, so
these terms make no additional contribution to J −1. It is also worth
stating that if we make the rotational part of the covariances in (7.322)
any bigger, we end up with a lot of samples that have rotated by more
than angle π, and this can be problematic for the performance metrics
we are using.

Figure 7.10 shows the convergence history of the cost, J , for a single
random trial. The left side shows the strong benefit of iterating over
the solution, while the right side shows that the cost converges to a
lower value by keeping more terms in the approximation of J −1 (cases

7.3 Probability and Statistics 285

N = 2, 4,∞ shown). It would seem that taking N = 4 for about seven
iterations gains most of the benefit, for this example.

7.3.5 Propagating Uncertainty through a Nonlinear Camera
Model

In estimation problems, we are often faced with passing uncertain quan-
tities through nonlinear measurement models to produce expected mea-
surements. Typically this is carried out via linearization (Matthies and
Shafer, 1987). Sibley (2007) shows how to carry out a second-order
propagation for a stereo camera model accounting for landmark uncer-
tainty, but not pose uncertainty. Here we derive the full second-order
expression for the mean (and covariance) and compare this with Monte
Carlo, the sigmapoint transformation, and linearization. We begin by
discussing our representation of points and then present the Taylor-
series expansion of the measurement (camera) model followed by an
experiment.

Perturbing Homogeneous points

As we have seen in Section 7.1.8, points in R3 can be represented using
4× 1 homogeneous coordinates as follows:

p =




sx
sy
sz
s


 , (7.323)

where s is some real, non-negative scalar.
To perturb points in homogeneous coordinates we will operate di-

rectly on the xyz components by writing

p = p̄ + D ζ, (7.324)

where ζ ∈ R3 is the perturbation and D is a dilation matrix given by

D =




1 0 0
0 1 0
0 0 1
0 0 0


 . (7.325)

We thus have that E[p] = p̄ and

E[(p− p̄)(p− p̄)T] = DE[ζζT] DT , (7.326)

with no approximation.

286 Matrix Lie Groups

Taylor-Series Expansion of Camera Model

It is common to linearize a nonlinear observation model for use in pose
estimation. In this section, we show how to do a more general Taylor-
series expansion of such a model and work out the second-order case
in detail. Our camera model will be

y = g(T,p), (7.327)

where T is the pose of the camera and p is the position of a landmark
(as a homogeneous point). Our task will be to pass a Gaussian rep-
resentation of the pose and landmark, given by {T̄, p̄,Ξ} where Ξ is
a 9 × 9 covariance for both quantities, through the camera model to
produce a mean and covariance for the measurement35, {y,R}.

We can think of this as the composition of two nonlinearities, one
to transfer the landmark into the camera frame, z(T,p) = Tp, and
one to produce the observations from the point in the camera frame,
y = s(z). Thus we have

g(T,p) = s(z(T,p)). (7.328)

We will treat each one in turn. If we change the pose of the camera
and/or the position of the landmark a little bit, we have

z = Tp = exp (ε∧) T̄ (p̄ + D ζ) ≈
(

1 + ε∧ +
1

2
ε∧ε∧

)
T̄ (p̄ + D ζ) ,

(7.329)
where we have kept the first two terms in the Taylor series for the pose
perturbation. If we multiply out and continue to keep only those terms
that are second-order or lower in ε and ζ we have

z ≈ z̄ + Zθ +
1

2

4∑

i=1

θTZ i θ︸ ︷︷ ︸
scalar

1i, (7.330)

where 1i is the ith column of the 4× 4 identity matrix and

z̄ = T̄p̄, (7.331a)

Z =
[(

T̄p̄
)�

T̄D
]
, (7.331b)

Z i =

[
1}
i

(
T̄p̄
)�

1}
i T̄D(

1}
i T̄D

)T
0

]
, (7.331c)

θ =

[
ε
ζ

]
. (7.331d)

Arriving at these expressions requires repeated application of the iden-
tities from Section 7.1.8.
35 In this example, the only sources of uncertainty come from the pose and the point and

we neglect inherent measurement noise, but this could be incorporated as additive

Gaussian noise, if desired.

7.3 Probability and Statistics 287

To then apply the nonlinear camera model, we use the chain rule (for
first and second derivatives), so that

g (T,p) ≈ ḡ + Gθ +
1

2

∑

j

θT Gj θ︸ ︷︷ ︸
scalar

1j, (7.332)

correct to second order in θ, where

ḡ = s(z̄), (7.333a)

G = SZ, S =
∂s

∂z

∣∣∣∣
z̄

, (7.333b)

Gj = ZT Sj Z +
4∑

i=1

1Tj S 1i︸ ︷︷ ︸
scalar

Z i, (7.333c)

Sj =
∂2sj
∂z ∂zT

∣∣∣∣
z̄

, (7.333d)

j is an index over the rows of s(·), and 1j is the jth column of the
identity matrix. The Jacobian of s(·) is S and the Hessian of the jth
row, sj(·), is Sj.

If we only care about the first-order perturbation, we simply have

g (T,p) = ḡ + Gθ, (7.334)

where ḡ and G are unchanged from above.
These perturbed measurement equations can then be used within

any estimation scheme we like; in the next subsection we will use these
with a stereo camera model to show the benefit of the second-order
terms.

Propagating Gaussian Uncertainty through the Camera

Suppose that the input uncertainties, embodied by θ, are zero-mean,
Gaussian,

θ ∼ N (0,Ξ) , (7.335)

where we note that in general there could be correlations between the
pose, T, and the landmark, p.

Then, to first order, our measurement is given by

y1st = ḡ + Gθ, (7.336)

and ȳ1st = E[y1st] = ḡ since E[θ] = 0 by assumption. The (second-
order) covariance associated with the first-order camera model is given
by

R2nd = E
[
(y1st − ȳ1st) (y1st − ȳ1st)

T
]

= G Ξ GT . (7.337)

288 Matrix Lie Groups

For the second-order camera model, we have

y2nd = ḡ + Gθ +
1

2

∑

j

θT Gj θ 1j, (7.338)

and consequently,

ȳ2nd = E[y2nd] = ḡ +
1

2

∑

j

tr (Gj Ξ) 1j, (7.339)

which has an extra non-zero term as compared to the first-order cam-
era model. The larger the input covariance Ξ is, the larger this term
can become, depending on the nonlinearity. For a linear camera model,
Gj = 0 and the second- and first-order camera model means are iden-
tical.

We will also compute a (fourth-order) covariance, but with just
second-order terms in the camera model expansion. To do this properly,
we should expand the camera model to third order as there is an addi-
tional fourth-order covariance term involving the product of first- and
third-order camera-model terms; however, this would involve a compli-
cated expression employing the third derivative of the camera model.
As such, the approximate fourth-order covariance we will use is given
by

R4th ≈ E
[
(y2nd − ȳ2nd) (y2nd − ȳ2nd)

T
]

= G Ξ GT − 1

4

(J∑

i=1

tr (Gi Ξ) 1i
)(J∑

j=1

tr (Gj Ξ) 1j
)T

+
1

4

J∑

i,j=1

9∑

k,`,m,n=1

Gik`Gjmn
(

Ξk`Ξmn + ΞkmΞ`n + ΞknΞ`m
)
,

(7.340)

where Gikl is the k`th element of Gi and Ξk` is the k`th element of
Ξ. The first- and third-order terms in the covariance expansion are
identically zero owing to the symmetry of the Gaussian density. The last
term in the above makes use of Isserlis’ theorem for Gaussian variables.

Sigmapoint Method

Finally, we can also make use of the sigmapoint transformation to pass
uncertainty through the nonlinear camera model. As in the pose com-
pounding problem, we tailor this to our specific type of SE(3) pertur-
bation. We begin by approximating the input Gaussian using a finite

7.3 Probability and Statistics 289

number of samples, {T`,p`}:
LLT = Ξ, (Cholesky decomposition; L lower-triangular) (7.341a)

θ` = 0, (7.341b)

θ` =
√
L+ κ col`L, ` = 1 . . . L, (7.341c)

θ`+L = −
√
L+ κ col`L, ` = 1 . . . L, (7.341d)[

ε`
ζ`

]
= θ`, (7.341e)

T` = exp (ε∧`) T̄, (7.341f)

p` = p̄ + D ζ`, (7.341g)

where κ is a user-definable constant36 and L = 9. We then pass each of
these samples through the nonlinear camera model:

y` = s (T` p`) , ` = 0 . . . 2L. (7.342)

These are combined to create the output mean and covariance accord-
ing to

ȳsp =
1

L+ κ

(
κy0 +

1

2

2L∑

`=1

y`

)
, (7.343a)

Rsp =
1

L+ κ

(
κ (y0 − ȳsp)(y0 − ȳsp)T

+
1

2

2L∑

`=1

(y` − ȳsp)(y` − ȳsp)T
)
. (7.343b)

The next section will provide the details for a specific nonlinear camera
model, s(·), representing a stereo camera.

Stereo Camera Model

To demonstrate the propagation of uncertainty through a nonlinear
measurement model, s(·), we will employ our midpoint stereo camera
model given by

s(ρ) = M
1

z3

z, (7.344)

where

s =




s1

s2

s3

s4


 , z =

[
ρ
1

]
=




z1

z2

z3

z4


 , M =




fu 0 cu fu
b
2

0 fv cv 0
fu 0 cu −fu b2
0 fv cv 0


 , (7.345)

and fu, fv are the horizontal, vertical focal lengths (in pixels), (cu, cv)
is the optical center of the images (in pixels), and b is the separation

36 For all experiments in this section, we used κ = 0.

290 Matrix Lie Groups

between the cameras (in metres). The optical axis of the camera is
along the z3, direction.

The Jacobian of this measurement model is given by

∂s

∂z
= M

1

z3




1 0 − z1
z3

0

0 1 − z2
z3

0

0 0 0 0
0 0 − z4

z3
1


 , (7.346)

and the Hessian is given by

∂2s1

∂z∂zT
=
fu
z2

3




0 0 −1 0
0 0 0 0
−1 0 2z1+bz4

z3
− b

2

0 0 − b
2

0


 ,

∂2s2

∂z∂zT
=

∂2s4

∂z∂zT
=
fv
z2

3




0 0 0 0
0 0 −1 0
0 −1 2z2

z3
0

0 0 0 0


 ,

∂2s3

∂z∂zT
=
fu
z2

3




0 0 −1 0
0 0 0 0
−1 0 2z1−bz4

z3

b
2

0 0 b
2

0


 , (7.347)

where we have shown each component separately.

Camera Experiment

We used the following methods to pass a Gaussian uncertainty on cam-
era pose and landmark position through the nonlinear stereo camera
model:

(i) Monte Carlo: We drew a large number, M = 1, 000, 000, of ran-
dom samples from the input density, passed these through the
camera model, and then computed the mean, ȳmc, and covariance,
Rmc. This slow-but-accurate approach served as our benchmark
to which the other three much faster methods were compared.

(ii) First/Second-Order: We used the first-order camera model to com-
pute ȳ1st and R2nd, as described above.

(iii) Second/Fourth-Order: We used the second-order camera model to
compute ȳ2nd and R4th, as described above.

(iv) Sigmapoint: We used the sigmapoint method described above to
compute ȳsp and Rsp.

The camera parameters were

b = 0.25 m, fu = fv = 200 pixels, cu = cv = 0 pixels.

7.3 Probability and Statistics 291

Figure 7.11

Results from

Stereo Camera

Experiment: (left)

mean and (right)

covariance errors,

εmean and εcov, for

three methods of

passing a Gaussian

uncertainty

through a

nonlinear stereo

camera model, as

compared to

Monte Carlo. The

parameter, α,

scales the

magnitude of the

input covariance

matrix.

Noise scaling,
0 0.5 1

M
e
a
n
 e

rr
o
r

(c
o
m

p
a
re

d
 t
o
 M

o
n
te

 C
a
rl
o
)

[p
ix

e
ls

],

0

2

4

6

8

10

12

14

16

18

20

α

ε
m
e
a
n

sigmapoint
first-order
second-order

Noise scaling,
0 0.5 1

C
o
v
.
e
rr

o
r

(c
o
m

p
a
re

d
 t
o
 M

o
n
te

 C
a
rl
o
)

[p
ix

e
ls

2
],

0

500

1000

1500

2000

2500

3000

3500

4000

α

ε
c
o
v

sigmapoint
second-order
fourth-order

We used the camera pose T = 1 and let the landmark be located at

p =
[
10 10 10 1

]T
. For the combined pose/landmark uncertainty,

we used an input covariance of

Ξ = α× diag

{
1

10
,

1

10
,

1

10
,

1

100
,

1

100
,

1

100
, 1, 1, 1

}
,

where α ∈ [0, 1] is a scaling parameter that allowed us to parametrically
increase the magnitude of the uncertainty.

To gauge performance, we evaluated both the mean and covariance
of each method by comparing the results to those of the Monte Carlo
simulation according to the following metrics:

εmean =
√

(ȳ − ȳmc)T (ȳ − ȳmc),

εcov =
√

tr ((R−Rmc)T (R−Rmc)),

where the latter is the Frobenius norm.
Figure 7.11 shows the two performance metrics, εmean and εcov, for

each of the three techniques over a wide range of noise scalings, α.
We see that the sigmapoint technique does the best on both mean
and covariance. The second-order technique does reasonably well on
the mean, but the corresponding fourth-order technique does poorly

292 Matrix Lie Groups

Figure 7.12

Results from

Stereo Camera

Experiment: A

portion of the left

image of a stereo

camera showing

the mean and

covariance (as a

one-standard-

deviation ellipse)

for four methods of

imaging a

landmark with

Gaussian

uncertainty on the

camera’s pose and

the landmark’s

position. This case

corresponds to the

α = 1 data point

in Figure 7.11.

Horizontal Image Coordinate [pixels]
100 150 200 250 300

V
e
rt

ic
a
l
Im

a
g
e
 C

o
o
rd

in
a
te

 [
p
ix

e
ls

]

100

120

140

160

180

200

220

240

260

280

300

Monte Carlo
sigmapoint
first/second-order
second/fourth-order

on the covariance (due to our inability to compute a fully fourth-order-
accurate covariance, as explained earlier).

Figure 7.12 provides a snapshot of a portion of the left image of the
stereo camera with the mean and one-standard-deviation covariance
ellipses shown for all techniques. We see that the sigmapoint technique
does an excellent job on both the mean and the covariance, while the
others do not fare as well.

7.4 Summary

The main take-away points from this chapter are as follows:

1. While rotations and poses cannot be described using vectorspaces,
we can describe them using the matrix Lie groups, SO(3) and SE(3).

2. We can perturb both rotations and poses conveniently by using the
exponential map, which (surjective-only) maps R3 and R6 to SO(3)
and SE(3), respectively. We can use this mapping for two different
purposes within state estimation:

(i) to adjust a point estimate (i.e., mean or MAP) of rotation or
pose by a little bit during an optimal estimation procedure.

(ii) to define Gaussian-like PDFs for rotations and poses by map-
ping Gaussian noise onto SO(3) and SE(3) through the expo-
nential map.

7.5 Exercises 293

3. Our ability to represent uncertainty for rotations and poses using
the methods in this chapter is limited to only small amounts. We
cannot represent uncertainty globally on SO(3) and SE(3) using our
Gaussian-like PDFs; for this, refer to Chirikjian and Kyatkin (2016).
However, these methods are good enough to allow us to modify the
estimation techniques from the first part of the book for use with
rotations and poses.

The last part of the book will bring together these matrix-Lie-group
tools with the estimation techniques from the first part of the book, in
order to carry out state estimation for practical robotics problems.

7.5 Exercises

7.5.1 Prove that

(Cu)
∧ ≡ Cu∧CT .

7.5.2 Prove that

(Cu)
∧ ≡ (2 cosφ+ 1)u∧ − u∧C−CTu∧.

7.5.3 Prove that

exp
(
(Cu)

∧) ≡ C exp (u∧) CT .

7.5.4 Prove that

(T x)
∧ ≡ Tx∧T−1.

7.5.5 Prove that

exp
(
(T x)

∧) ≡ T exp (x∧) T−1.

7.5.6 Work out the expression for Q`(ξ) in (7.86b).
7.5.7 Prove that

x∧p ≡ p�x.

7.5.8 Prove that

pTx∧ ≡ xTp}.

7.5.9 Prove that
∫ 1

0

αn(1− α)m dα ≡ n!m!

(n+m+ 1)!
.

Hint: use integration by parts.
7.5.10 Prove the identity

J̇(φ)− ω∧J(φ) ≡ ∂ω

∂φ
,

where

ω = J(φ) φ̇,

294 Matrix Lie Groups

are the rotational kinematics expressed in so(3). Hint: it can be
shown one term at a time by writing out each quantity as a series.

7.5.11 Show that

(Tp)
� ≡ Tp�T −1.

7.5.12 Show that

(Tp)
�T

(Tp)
� ≡ T −Tp�

T

p�T −1.

7.5.13 Starting from the SE(3) kinematics,

Ṫ = $∧T,

show that the kinematics can also be written using the adjoint
quantities:

Ṫ = $fT .
7.5.14 Show that it is possible to work with a modified version of the

homogeneous-point representation when using the adjoint quanti-
ties:

Ad
(

4×1︷︸︸︷
Tp

)
︸ ︷︷ ︸

6×3

= Ad(T)︸ ︷︷ ︸
6×6

Ad(p)︸ ︷︷ ︸
6×3

,

where we abuse notation and define an adjoint operator for a
homogeneous point as

Ad

([
c
1

])
=

[
c∧

1

]
,

Ad−1

([
A
B

])
=

[
(AB−1)∨

1

]
,

with c a 3× 1 and A,B both 3× 3.

Part III

Applications

295

8

Pose Estimation Problems

In this last part of the book, we will address some key three-dimensional
estimation problems from robotics. We will bring together the ideas
from Part I on classic state estimation with the three-dimensional ma-
chinery of Part II.

This chapter will start by looking at a key problem, aligning two
point-clouds (i.e., collections of points) using the principle of least
squares. We will then return to the EKF and batch state estimators and
adjust these to work with rotation and pose variables, in the context of
a specific pose estimation problem. Our focus will be on localization of
a vehicle when the geometry of the world is known. The next chapter
will address the more difficult scenario of unknown world geometry.

8.1 Point-Cloud Alignment

In this section, we will study a classic result in pose estimation. Specifi-
cally, we present the solution for aligning two sets of three-dimensional
points, or point-clouds, while minimizing a least-squares cost function.
The caveat is that the weights associated with each term in the cost
function must be scalars, not matrices; this can be referred to as ordi-
nary least squares1.

This result is used commonly in the popular iterative closest point
(ICP) (Besl and McKay, 1992) algorithm for aligning three-dimensional
points to a three-dimensional model. It is also used inside outlier rejec-
tion schemes, such as RANSAC (Fischler and Bolles, 1981) (see Sec-
tion 5.3.1), for rapid pose determination using a minimal set of points.

We will present the solution using three different parameterizations
of the rotation/pose variable: unit-length quaternions, rotation ma-
trices, and then transformation matrices. The (non-iterative) quater-
nion approach comes down to solving an eigenproblem, while the (non-
iterative) rotation-matrix approach turns into a singular-value decom-
position. Finally, the iterative transformation matrix approach only
involves solving a system of linear equations.

1 This problem finds its origin in spacecraft attitude determination, with the famous

Wahba’s problem (Wahba, 1965).

297

298 Pose Estimation Problems

Figure 8.1

Definition of

reference frames

for a point-cloud

alignment problem.

There is a

stationary

reference frame

and a moving

reference frame,

attached to a

vehicle. A

collection of points,

Pj , is observed in

both frames, and

the goal is to

determine the

relative pose of the

moving frame with

respect to the

stationary one by

aligning the two

point-clouds.

I

F�!i

Pj

r�!
pji

r�!
pjvk

r�!
vki

Vk

Vk�1

Vk+1

F�!vk

F�!vk�1

F�!vk+1

estimated

measured

knownstationary

moving

8.1.1 Problem Setup

We will use the setup in Figure 8.1. There are two reference frames,
one non-moving, F−→i, and one attached to a moving vehicle, F−→vk . In
particular, we haveM measurements, rpjvkvk

, where j = 1 . . .M , of points
from the vehicle (expressed in the moving frame F−→vk). We assume these
measurements could have been corrupted by noise.

Let us assume that we know r
pji
i , the position of each point, Pj,

located and expressed in the non-moving frame, F−→i. For example, in
the ICP algorithm, these points are determined by finding the closest
point on the model to each observed point. Thus, we seek to align a
collection of M points expressed in two different references frames. In
other words, we want to find the translation and rotation that best
align the two point-clouds2. Note that in this first problem we are only
carrying out the alignment at a single time, k. We will consider a point-
cloud tracking problem later in the chapter.

8.1.2 Unit-Length Quaternion Solution

We will present the unit-length quaternion approach to aligning point-
clouds first3. This solution was first studied by Davenport (1965) in the
aerospace world and later by Horn (1987b) in robotics. We will use our
quaternion notation defined earlier in Section 6.2.3. The quaternion ap-
proach has an advantage over the rotation-matrix case (to be described
in the next section) because the constraints required to produce a valid
rotation are easier for unit-length quaternions.

2 An unknown scale between the two point-clouds is also sometimes folded into the

problem; we will assume the two point-clouds have the same scale.
3 Our focus in this book is on the use of rotation matrices, but this is an example of a

problem where unit-length quaternions make things easier, and therefore we include

the derivation.

8.1 Point-Cloud Alignment 299

To work with quaternions, we define the following 4×1 homogeneous
versions of our points:

yj =

[
rpjvkvk

1

]
, pj =

[
r
pji
i

1

]
, (8.1)

where we have dropped the sub- and superscripts, except for j, the
point index.

We would like to find the translation, r, and rotation, q, that best
align these points, thereby giving us the relative pose between F−→vk and
F−→i. We note that the relationships between the quaternion versions of

the translation, r, and rotation, q, and our usual 3×1 translation, rvkii ,
and 3× 3 rotation matrix, Cvki are defined by

[
rpjvkvk

1

]

︸ ︷︷ ︸
yj

=

[
Cvki 0
0T 1

]

︸ ︷︷ ︸
q−1+q⊕

([
r
pji
i

1

]

︸ ︷︷ ︸
pj

−
[
rvkii

0

]

︸ ︷︷ ︸
r

)
, (8.2)

which is just an expression of the geometry of the problem in the ab-
sence of any noise corrupting the measurements. Using the identity
in (6.19), we can rewrite this as

yj = q−1+
(pj − r)

+
q, (8.3)

which again is in the absence of any noise.
Referring to (8.3), we could form an error quaternion for point Pj as

ej = yj − q−1+
(pj − r)

+
q, (8.4)

but instead we can manipulate the above to generate an error that
appears linear in q:

e′j = q+ej =
(
yj
⊕ − (pj − r)

+
)

q. (8.5)

We will define the total objective function (to minimize), J , as

J(q, r, λ) =
1

2

M∑

j=1

wje
′T
j e′j −

1

2
λ
(
qTq− 1

)
,

︸ ︷︷ ︸
Lagrange multiplier term

(8.6)

where the wj are unique scalar weights assigned to each of the point
pairs. We have included the Lagrange multiplier term on the right to
ensure the unit-length constraint on the rotation quaternion. It is also
worth noting that selecting e′j over ej has no effect on our objective
function since

e′
T

j e′j =
(
q+ej

)T (
q+ej

)
= eTj q+Tq+ej = eTj

(
q−1+

q
)+

ej = eTj ej.

(8.7)

300 Pose Estimation Problems

Inserting the expression for e′j into the objective function, we see

J(q, r, λ) =
1

2

M∑

j=1

wjq
T
(
yj
⊕ − (pj − r)

+
)T (

yj
⊕ − (pj − r)

+
)

q

− 1

2
λ
(
qTq− 1

)
. (8.8)

Taking the derivative of the objective function with respect to q, r, and
λ, we find

∂J

∂qT
=

M∑

j=1

wj
(
yj
⊕ − (pj − r)

+
)T (

yj
⊕ − (pj − r)

+
)

q− λq, (8.9a)

∂J

∂rT
= q−1⊕

M∑

j=1

wj
(
yj
⊕ − (pj − r)

+
)

q, (8.9b)

∂J

∂λ
= −1

2

(
qTq− 1

)
. (8.9c)

Setting the second to zero, we find

r = p− q+y+q−1, (8.10)

where p and y are defined below. Thus, the optimal translation is the
difference of the centroids of the two point-clouds, in the stationary
frame.

Substituting r into the first and setting to zero, we can show

Wq = λq, (8.11)

where

W =
1

w

M∑

j=1

wj
(

(yj − y)
⊕ − (pj − p)

+
)T (

(yj − y)
⊕ − (pj − p)

+
)
,

(8.12a)

y =
1

w

M∑

j=1

wjyj, p =
1

w

M∑

j=1

wjpj, w =
M∑

j=1

wj. (8.12b)

We can see this is just an eigenproblem4. If the eigenvalues are positive
and the smallest eigenvalue is distinct (i.e., not repeated), then finding
the smallest eigenvalue and the corresponding unique eigenvector will
yield q to within a multiplicative constant and our constraint that
qTq = 1 makes the solution unique.

4 The eigenproblem associated with an N ×N matrix, A, is defined by the equation

Ax = λx. The N (not necessarily distinct) eigenvalues, λi, are found by solving for the

roots of det (A− λ1) = 0 and then for each eigenvalue the corresponding eigenvector,

xi, is found (to within a multiplicative constant) through substitution of the eigenvalue

into the original equation and appropriate manipulation. The case of non-distinct

eigenvalues is tricky and requires advanced linear algebra.

8.1 Point-Cloud Alignment 301

Figure 8.2 Steps

involved in aligning

two point-clouds.

{yj ,pj} {w,y,p,W} {r,q}

point-clouds
with

correspondences

point-cloud
statistical
moments

pose
change

aligned
point-clouds

To see that we want the smallest eigenvalue, we first note that W
is both symmetric and positive-semidefinite. Positive-semidefiniteness
implies that all the eigenvalues of W are non-negative. Next, we can
set (8.9a) to zero so that an equivalent expression for W is

W =
M∑

j=1

wj
(
yj
⊕ − (pj − r)

+
)T (

yj
⊕ − (pj − r)

+
)
. (8.13)

Substituting this into the objective function in (8.8), we immediately
see that

J(q, r, λ) =
1

2
qT Wq︸︷︷︸

λq

−1

2
λ
(
qTq− 1

)
=

1

2
λ. (8.14)

Thus, picking the smallest possible value for λ will minimize the objec-
tive function.

However, there are some complications if W is singular or the small-
est eigenvalue is not distinct. Then there can be multiple choices for
the eigenvector corresponding to the smallest eigenvalue, and therefore
the solution may not be unique. We will forgo discussing this further
for the quaternion method as it would require advanced linear algebra
techniques (e.g., Jordan normal form) and instead return to this issue
in the next section when using rotation matrices.

Note, we have not made any approximations or linearizations in our
technique, but this depends heavily on the fact that the weights are
scalar not matrices. Figure 8.2 shows the process to align two point-
clouds. Once we have the r and q, we can construct the final estimates
of the rotation matrix, Ĉvki, and translation, r̂vkii , from

[
Ĉvki 0
0T 1

]
= q−1+

q⊕,

[
r̂vkii

0

]
= r, (8.15)

and then we can construct an estimated transformation matrix accord-
ing to

T̂vki =

[
Ĉvki −Ĉvkir̂

vki
i

0T 1

]
, (8.16)

which combines our rotation and translation into a single answer for

302 Pose Estimation Problems

the best alignment of the point-clouds. Referring back to Section 6.3.2,
we may actually be interested in T̂ivk , which can be recovered using

T̂ivk = T̂−1
vki

=

[
Ĉivk r̂vkii

0T 1

]
. (8.17)

Both forms of the transformation matrix are useful, depending on how
the solution will be used.

8.1.3 Rotation Matrix Solution

The rotation-matrix case was originally studied outside of robotics by
Green (1952) and Wahba (1965) and later within robotics by Horn
(1987a) and Arun et al. (1987) and later by Umeyama (1991) consider-
ing the det C = 1 constraint. We follow the approach of de Ruiter and
Forbes (2013), which captures all of the cases in which C can be deter-
mined uniquely. We also identify how many global and local solutions
can exist for C when there is not a single global solution.

As in the previous section, we will use some simplified notation to
avoid repeating sub- and super-scripts:

yj = rpjvkvk
, pj = r

pji
i , r = rvkii , C = Cvki. (8.18)

Also, we define

y =
1

w

M∑

j=1

wjyj, p =
1

w

M∑

j=1

wjpj, w =
M∑

j=1

wj, (8.19)

where the wj are scalar weights for each point. Note that, as compared
to the last section, some of the symbols are now 3×1 rather than 4×1.

We define an error term for each point:

ej = yj −C(pj − r). (8.20)

Our estimation problem is then to globally minimize the cost function,

J(C, r) =
1

2

M∑

j=1

wje
T
j ej =

1

2

M∑

j=1

wj (yj −C(pj − r))
T

(yj −C(pj − r)) ,

(8.21)
subject to C ∈ SO(3) (i.e., CCT = 1 and det C = 1).

Before carrying out the optimization, we will make a change of vari-
ables for the translation parameter. Define

d = r + CTy − p, (8.22)

which is easy to isolate for r if all the other quantities are known. In

8.1 Point-Cloud Alignment 303

this case, we can rewrite our cost function as

J(C,d) =
1

2

M∑

j=1

wj ((yj − y)−C(pj − p))
T

((yj − y)−C(pj − p))

︸ ︷︷ ︸
depends only on C

+
1

2
dTd
︸ ︷︷ ︸

depends only on d

, (8.23)

which is the sum of two semi-positive-definite terms, the first depending
only on C and the second only on d. We can minimize the second
trivially by taking d = 0, which in turn implies that

r = p−CTy. (8.24)

As in the quaternion case, this is simply the difference of the centroids
of the two point-clouds, expressed in the stationary frame.

What is left is to minimize the first term with respect to C. We note
that if we multiply out each smaller term within the first large term,
only one part actually depends on C:

((yj − y)−C(pj − p))
T

((yj − y)−C(pj − p))

= (yj − y)T (yj − y)︸ ︷︷ ︸
independent of C

−2
(
(yj − y)TC(pj − p)

)
︸ ︷︷ ︸

tr(C(pj−p)(yj−y)T)

+ (pj − p)T (pj − p)︸ ︷︷ ︸
independent of C

.

(8.25)

Summing this middle term over all the (weighted) points, we have

1

w

M∑

j=1

wj
(
(yj − y)TC(pj − p)

)
=

1

w

M∑

j=1

wjtr
(
C(pj − p)(yj − y)T

)

= tr

(
C

1

w

M∑

j=1

wj(pj − p)(yj − y)T
)

= tr
(
CWT

)
, (8.26)

where

W =
1

w

M∑

j=1

wj(yj − y)(pj − p)T . (8.27)

This W matrix plays a similar role to the one in the quaternion section,
by capturing the spread of the points (similar to an inertia matrix in
dynamics), but it is not exactly the same. Therefore, we can define a
new cost function that we seek to minimize with respect to C as

J(C,Λ, γ) = −tr(CWT) + tr
(
Λ(CCT − 1)

)
+ γ(det C− 1)︸ ︷︷ ︸

Lagrange multiplier terms

, (8.28)

where Λ and γ are Lagrange multipliers associated with the two terms

304 Pose Estimation Problems

on the right; these are used to ensure that the resulting C ∈ SO(3).
Note that when CCT = 1 and det C = 1, these terms have no effect
on the resulting cost. It is also worth noting that Λ is symmetric since
we only need to enforce six orthogonality constraints. This new cost
function will be minimized by the same C as our original one.

Taking the derivative of J(C,Λ, γ) with respect to C, Λ, and γ, we
have5

∂J

∂C
= −W + 2ΛC + γ det C︸ ︷︷ ︸

1

C−T︸︷︷︸
C

= −W + LC, (8.29a)

∂J

∂Λ
= CCT − 1, (8.29b)

∂J

∂γ
= det C− 1, (8.29c)

where we have lumped together the Lagrange multipliers as L = 2Λ +
γ1. Setting the first equation to zero, we find that

LC = W. (8.30)

At this point, our explanation can proceed in a simplified or detailed
manner, depending on the level of fidelity we want to capture.

Before moving forward, we show that it is possible to arrive at (8.30)
using our Lie group tools without the use of Lagrange multipliers. We
consider a perturbation of the rotation matrix of the form

C′ = exp
(
φ∧
)
C, (8.31)

and then take the derivative of the objective function with respect to φ
and set this to zero for a critical point. For the derivative with respect
to the ith element of φ we have

∂J

∂φi
= lim

h→0

J(C′)− J(C)

h

= lim
h→0

−tr(C′WT) + tr(CWT)

h

= lim
h→0

−tr(exp(h1∧i)CWT) + tr(CWT)

h

≈ lim
h→0

−tr((1 + h1∧i)CWT) + tr(CWT)

h

= lim
h→0

−tr(h1∧i CWT)

h
= −tr

(
1∧i CWT

)
. (8.32)

5 We require these useful facts to take the derivatives:
∂
∂A

det A = det(A) A−T ,
∂
∂A

tr(ABT) = B,
∂
∂A

tr(BAAT) = (B + BT)A.

8.1 Point-Cloud Alignment 305

Setting this to zero, we require

(∀i) tr
(
1∧i CWT

︸ ︷︷ ︸
L

)
= 0. (8.33)

Owing to the skew-symmetric nature of the ∧ operator, this implies
that L = CWT is a symmetric matrix for a critical point. Taking the
transpose and right-multiplying by C, we come back to (8.30). We now
continue with the main derivation.

Simplified Explanation

If we somehow knew that det W > 0, then we could proceed as follows.
First, we postmultiply (8.30) by itself transposed to find

L CCT

︸ ︷︷ ︸
1

LT = WWT . (8.34)

Since L is symmetric, we have that

L =
(
WWT

) 1
2 , (8.35)

which we see involves a matrix square-root. Substituting this back
into (8.30), the optimal rotation is

C =
(
WWT

)− 1
2 W. (8.36)

This has the same form as the projection onto SO(3) discussed in
Section 7.2.1.

Unfortunately, this approach does not tell the entire story since it
relies on assuming something about W, and therefore does not capture
all of the subtleties of the problem. With lots of non-coplanar points,
this method will typically work well. However, there are some difficult
cases for which we need a more detailed analysis. A common situation
in which this problem occurs is when carrying out alignments using just
three pairs of noisy points in the RANSAC algorithm discussed earlier.
The next section provides a more thorough analysis of the solution that
handles the difficult cases.

Detailed Explanation

The detailed explanation begins by first carrying out a singular-value
decomposition (SVD)6 on the (square, real) matrix, W, so that

W = UDVT , (8.37)

6 The singular-value decomposition of a real M ×N matrix, A, is a factorization of the

form A = UDVT where U is an M ×M real, orthogonal matrix (i.e., UTU = 1), D is

an M ×N matrix with real entries di ≥ 0 on the main diagonal (all other entries zero),

and V is an N ×N real, orthogonal matrix (i.e., VTV = 1). The di are called the

singular values and are typically ordered from largest to smallest along the diagonal of

D. Note that the SVD is not unique.

306 Pose Estimation Problems

where U and V are square, orthogonal matrices and D = diag(d1, d2, d3)
is a diagonal matrix of singular values, d1 ≥ d2 ≥ d3 ≥ 0.

Returning to (8.30), we can substitute in the SVD of W so that

L2 = LLT = LCCTLT = WWT = UD VTV︸ ︷︷ ︸
1

DTUT = UD2UT .

(8.38)
Taking the matrix square-root, we can write that

L = UMUT , (8.39)

where M is the symmetric, matrix square root of D2. In other words,

M2 = D2. (8.40)

It can be shown (de Ruiter and Forbes, 2013) that every real, symmetric
M satisfying this condition can be written in the form

M = YDSYT , (8.41)

where S = diag(s1, s2, s3) with si = ±1 and Y an orthogonal matrix
(i.e., YTY = YYT = 1). An obvious example of this is Y = 1 with si =
±1 and any values for di; a less obvious example that is a possibility
when d1 = d2 is

M =



d1 cos θ d1 sin θ 0
d1 sin θ −d1 cos θ 0

0 0 d3




=




cos θ
2
− sin θ

2
0

sin θ
2

cos θ
2

0
0 0 1




︸ ︷︷ ︸
Y



d1 0 0
0 −d1 0
0 0 d3




︸ ︷︷ ︸
DS




cos θ
2
− sin θ

2
0

sin θ
2

cos θ
2

0
0 0 1



T

︸ ︷︷ ︸
YT

, (8.42)

for any value of the free parameter, θ. This illustrates an important
point, that the structure of Y can become more complex in correspon-
dence with repeated singular values (i.e., we cannot just pick any Y).
Related to this, we always have that

D = YDYT , (8.43)

due to the relationship between the block structure of Y and the mul-
tiplicity of the singular values in D.

Now, we can manipulate the objective function that we want to min-
imize as follows:

J = −tr(CWT) = −tr(WCT) = −tr(L) = −tr(UYDSYTUT)

= −tr(YTUTUY︸ ︷︷ ︸
1

DS) = −tr(DS) = −(d1s1 + d2s2 + d3s3).

(8.44)

8.1 Point-Cloud Alignment 307

There are now several cases to consider.

Case (i): det W 6= 0
Here we have that all of the singular values are positive. From (8.30)

and (8.39) we have that

det W = det L det C︸ ︷︷ ︸
1

= det L = det(UYDSYTUT)

= det(YTUTUY)︸ ︷︷ ︸
1

det D det S = det D︸ ︷︷ ︸
>0

det S. (8.45)

Since the singular values are positive, we have that det D > 0. Or in
other words, the signs of the determinants of S and W must be the
same, which implies that

det S = sgn (det S) = sgn (det W) = sgn
(
det(UDVT)

)

= sgn
(
det U︸ ︷︷ ︸
±1

det D︸ ︷︷ ︸
>0

det V︸ ︷︷ ︸
±1

)
= det U det V = ±1. (8.46)

Note that we have det U = ±1 since (det U)2 = det(UTU) = det 1 = 1
and the same for V. There are now four subcases to consider:

Subcase (i-a): det W > 0
Since det W > 0 by assumption, we must also have det S = 1 and

therefore to uniquely minimize J in (8.44) we must pick s1 = s2 = s3 =
1 since all of the di are positive and therefore we must have Y diagonal.
Thus, from (8.30) we have

C = L−1W =
(
UYDSYTUT

)−1
UDVT

= UY S−1

︸︷︷︸
S

D−1YT UTU︸ ︷︷ ︸
1

DVT = UYSD−1 YTD︸ ︷︷ ︸
DYT

VT

= UYSYTVT = USVT , (8.47)

with S = diag(1, 1, 1) = 1, which is equivalent to the solution provided
in our ‘simplified explanation’ in the last section.

Subcase (i-b): det W < 0, d1 ≥ d2 > d3 > 0
Since det W < 0 by assumption, we have det S = −1, which means

exactly one of the si must be negative. In this case, we can uniquely
minimize J in (8.44) since the minimum singular value, d3, is distinct,
whereupon we must pick s1 = s2 = 1 and s3 = −1 for the mini-
mum. Since s1 = s2 = 1, we must have Y diagonal and can therefore
from (8.30) we have that

C = USVT , (8.48)

with S = diag(1, 1,−1).

308 Pose Estimation Problems

Subcase (i-c): det W < 0, d1 > d2 = d3 > 0
As in the last subcase, we have det S = −1, which means exactly one

of the si must be negative. Looking to (8.44), since d2 = d3 we can pick
either s2 = −1 or s3 = −1 and end up with the same value for J . With
these values for the si we can pick any of the following for Y:

Y = diag(±1,±1,±1), Y =



±1 0 0
0 ± cos θ

2
∓ sin θ

2

0 ± sin θ
2
± cos θ

2


 , (8.49)

where θ is a free parameter. We can plug any of these Y in to find
minimizing solutions for C using (8.30):

C = UYSYTVT , (8.50)

with S = diag(1, 1,−1) or S = diag(1,−1, 1). Since θ can be anything,
this means there are an infinite number of solutions that minimize the
objective function.

Subcase (i-d): det W < 0, d1 = d2 = d3 > 0
As in the last subcase, we have det S = −1, which means exactly one

of the si must be negative. Looking to (8.44), since d1 = d2 = d3 we
can pick s1 = −1 or s2 = −1 or s3 = −1 and end up with the same
value for J , implying there an infinite number of minimizing solutions.

Case (ii): det W = 0
This time there are three subcases to consider depending on how

many singular values are zero.

Subcase (ii-a): rank W = 2
In this case, we have d1 ≥ d2 > d3 = 0. Looking back to (8.44) we

see that we can uniquely minimize J by picking s1 = s2 = 1 and since
d3 = 0, the value of s3 does not affect J and thus it is a free parameter.
Again looking to (8.30) we have

(UYDSYTUT)C = UDVT . (8.51)

Multiplying by UT from the left and V from the right, we have

D UTCV︸ ︷︷ ︸
Q

= D, (8.52)

since DS = D due to d3 = 0 and then YDYT = D from (8.43).
The matrix, Q, above will be orthogonal since U, C, and V are all
orthogonal. Since DQ = D, D = diag(d1, d2, 0), and QQT = 1, we
know that Q = diag(1, 1, q3) with q3 = ±1. We also have that

q3 = det Q = det U det C︸ ︷︷ ︸
1

det V = det U det V = ±1, (8.53)

8.1 Point-Cloud Alignment 309

and therefore rearranging (and renaming Q as S), we have

C = USVT , (8.54)

with S = diag(1, 1,det U det V).

Subcase (ii-b): rank W = 1
In this case, we have d1 > d2 = d3 = 0. We let s1 = 1 to minimize J

and now s2 and s3 do not affect J and are free parameters. Similarly
to the last subcase, we end up with an equation of the form

DQ = D, (8.55)

which, along with D = diag(d1, 0, 0) and QQT = 1, implies that Q will
have one of the following forms:

Q =




1 0 0
0 cos θ − sin θ
0 sin θ cos θ




︸ ︷︷ ︸
det Q=1

or Q =




1 0 0
0 cos θ sin θ
0 sin θ − cos θ




︸ ︷︷ ︸
det Q=−1

, (8.56)

with θ ∈ R a free parameter. This means there are infinitely many
minimizing solutions. Since

det Q = det U det C︸ ︷︷ ︸
1

det V = det U det V = ±1, (8.57)

we have (renaming Q as S) that

C = USVT , (8.58)

with

S =








1 0 0
0 cos θ − sin θ
0 sin θ cos θ


 if det U det V = 1




1 0 0
0 cos θ sin θ
0 sin θ − cos θ


 if det U det V = −1

. (8.59)

Physically, this case corresponds to all of the points being collinear (in
at least one of the frames) so that rotating about the axis formed by
the points through any angle, θ, does not alter the objective function
J .

Subcase (ii-c): rank W = 0
This case corresponds to there being no points or all the points co-

incident and so any C ∈ SO(3) will produce the same value of the
objective function, J .

310 Pose Estimation Problems

Summary:
We have provided all of the solutions for C in our point-alignment

problem; depending on the properties of W, there can be one or in-
finitely many global solutions. Looking back through all the cases and
subcases, we can see that if there is a unique global solution for C, it
is always of the form

C = USVT , (8.60)

with S = diag(1, 1,det U det V) and W = UDVT is a singular-value
decomposition of W. The necessary and sufficient conditions for this
unique global solution to exist are:

(i) det W > 0, or
(ii) det W < 0 and minimum singular value distinct: d1 ≥ d2 >

d3 > 0, or
(iii) rank W = 2.

If none of these conditions is true, there will be infinite solutions for C.
However, these cases are fairly pathological and do not occur frequently
in practical situations.

Once we have solved for the optimal rotation matrix, we take Ĉvki =
C as our estimated rotation. We build the estimated translation as

r̂vkii = p− ĈT
vki

y (8.61)

and, if desired, combine the translation and rotation into an estimated
transformation matrix,

T̂vki =

[
Ĉvki −Ĉvkir̂

vki
i

0T 1

]
, (8.62)

that provides the optimal alignment of the two point-clouds in a single
quantity. Again, as mentioned in Section 6.3.2, we may actually be
interested in T̂ivk , which can be recovered using

T̂ivk = T̂−1
vki

=

[
Ĉivk r̂vkii

0T 1

]
. (8.63)

Both forms of the transformation matrix are useful, depending on how
the solution will be used.

Example 8.1 We provide an example of subcase (i-b) to make things
tangible. Consider the following two point-clouds that we wish to align,
each consisting of six points:

p1 = 3× 11, p2 = 2× 12, p3 = 13, p4 = −3× 11,

p5 = −2× 12, p6 = −13,

y1 = −3× 11, y2 = −2× 12, y3 = −13, y4 = 3× 11,

y5 = 2× 12, y6 = 13,

8.1 Point-Cloud Alignment 311

where 1i is the ith column of the 3× 3 identity matrix. The points in
the first point-cloud are the centers of the faces of a rectangular prism
and each point is associated with a point in the second point-cloud on
the opposite face of another prism (that happens to be in the same
location as the first)7.

Using these points, we have the following:

p = 0, y = 0, W =
1

6
diag(−18,−8,−2), (8.64)

which means the centroids are already on top of one another so we only
need to rotate to align the point-clouds.

Using the ‘simplified approach’, we have

C =
(
WWT

)− 1
2 W = diag(−1,−1,−1). (8.65)

Unfortunately, we can easily see that det C = −1 and so C /∈ SO(3),
which indicates this approach has failed.

For the more rigorous approach, a singular-value decomposition of
W is

W = UDVT , U = diag(1, 1, 1), D =
1

6
diag(18, 8, 2),

V = diag(−1,−1,−1). (8.66)

We have det W = −4/3 < 0 and see that there is a unique mini-
mum singular value, so we need to use the solution from subcase (i-
b). The minimal solution is therefore of the form C = USVT with
S = diag(1, 1,−1). Plugging this in, we find

C = diag(−1,−1, 1), (8.67)

so that det C = 1. This is a rotation about the 13 axis through an angle
π, which brings the error on four of the points to zero and leaves two
of the points with non-zero error. This brings the objective function
down to its minimum of J = 4.

Testing for Local Minima

In the previous section, we searched for global minima to the point-
alignment problem and found there could be one or infinitely many.
We did not, however, identify whether it was possible for local minima
to exist, which we study now. Looking back to (8.30), this is the condi-
tion for a critical point in our optimization problem and therefore any
solution that satisfies this criterion could be a minimum, a maximum,
or a saddle point of the objective function, J .

If we have a solution, C ∈ SO(3), that satisfies (8.30), and we want

7 As a physical interpretation, imagine joining each of the six point pairs by rubber

bands. Finding the C that minimizes our cost metric is the same as finding the

rotation that minimizes the amount of elastic energy stored in the rubber bands.

312 Pose Estimation Problems

to characterize it, we can try perturbing the solution slightly and see
whether the objective function goes up or down (or both). Consider a
perturbation of the form

C′ = exp
(
φ∧
)
C, (8.68)

where φ ∈ R3 is a perturbation in an arbitrary direction, but con-
strained to keep C′ ∈ SO(3). The change in the objective function δJ
by applying the perturbation is

δJ = J(C′)− J(C) = −tr(C′WT) + tr(CWT) = −tr
(
(C′ −C)WT

)
,

(8.69)
where we have neglected the Lagrange multiplier terms by assuming
the perturbation keeps C′ ∈ SO(3).

Now, approximating the perturbation out to second order, since this
will tell us about the nature of the critical points, we have

δJ ≈ −tr

(((
1 + φ∧ +

1

2
φ∧φ∧

)
C−C

)
WT

)

= −tr
(
φ∧CWT

)
− 1

2
tr
(
φ∧φ∧CWT

)
. (8.70)

Then, plugging in the conditions for a critical point from (8.30), we
have

δJ = −tr
(
φ∧UYDSYTUT

)
− 1

2
tr
(
φ∧φ∧UYDSYTUT

)
. (8.71)

It turns out that the first term is zero (because it is a critical point),
which we can see from

tr
(
φ∧UYDSYTUT

)
= tr

(
YTUTφ∧UYDS

)

= tr
((

YTUTφ
)∧

DS
)

= tr (ϕ∧DS) = 0, (8.72)

where

ϕ =



ϕ1

ϕ2

ϕ3


 = YTUTφ, (8.73)

and owing to the properties of a skew-symmetric matrix (zeros on the
diagonal). For the second term, we use the identity u∧u∧ = −uTu 1 +
uuT to write

δJ = −1

2
tr
(
φ∧φ∧UYDSYTUT

)

= −1

2
tr
(
YTUT

(
−φTφ1 + φφT

)
UYDS

)

= −1

2
tr
((
−ϕ2 1 +ϕϕT

)
DS

)
, (8.74)

8.1 Point-Cloud Alignment 313

where ϕ2 = ϕTϕ = ϕ2
1 + ϕ2

2 + ϕ2
3.

Manipulating a little further, we have

δJ =
1

2
ϕ2tr(DS)− 1

2
ϕTDSϕ

=
1

2

(
ϕ2

1(d2s2 + d3s3) + ϕ2
2(d1s1 + d3s3) + ϕ2

3(d1s1 + d2s2)
)
, (8.75)

the sign of which depends entirely on the nature of DS.
We can verify the ability of this expression to test for a minimum

using the unique global minima identified in the previous section. For
subcase (i-a), where d1 ≥ d2 ≥ d3 and s1 = s2 = s3, we have

δJ =
1

2

(
ϕ2

1(d2 + d3) + ϕ2
2(d1 + d3) + ϕ2

3(d1 + d2)
)
> 0 (8.76)

for all ϕ 6= 0, confirming a minimum. For subcase (i-b) where d1 ≥
d2 > d3 > 0 and s1 = s2 = 1, s3 = −1, we have

δJ =
1

2

(
ϕ2

1 (d2 − d3)︸ ︷︷ ︸
>0

+ϕ2
2 (d1 − d3)︸ ︷︷ ︸

>0

+ϕ2
3(d1 + d2)

)
> 0, (8.77)

for all ϕ 6= 0, again confirming a minimum. Finally, for subcase (ii-a)
where d1 ≥ d2 > d3 = 0 and s1 = s2 = 1, s3 = ±1, we have

δJ =
1

2

(
ϕ2

1d2 + ϕ2
2d1 + ϕ2

3(d1 + d2)
)
> 0, (8.78)

for all ϕ 6= 0, once again confirming a minimum.
The more interesting question is whether there are any other local

minima to worry about or not. This will become important when we use
iterative methods to optimize rotation and pose variables. For example,
let us consider subcase (i-a) a little further in the case that d1 > d2 >
d3 > 0. There are some other ways to satisfy (8.30) and generate a
critical point. For example, we could pick s1 = s2 = −1 and s3 = 1 so
that det S = 1. In this case we have

δJ =
1

2

(
ϕ2

1 (d3 − d2)︸ ︷︷ ︸
<0

+ϕ2
2 (d3 − d1)︸ ︷︷ ︸

<0

+ϕ2
3 (−d1 − d2)︸ ︷︷ ︸

<0

)
< 0, (8.79)

which corresponds to a maximum since any ϕ 6= 0 will decrease the
objective function. The other two cases, S = diag(−1, 1,−1) and S =
diag(1,−1,−1), turn out to be saddle points since depending on the
direction of the perturbation, the objective function can go up or down.
Since there are no other critical points, we can conclude there are no
local minima other than the global one.

Similarly for subcase (i-b), we need det S = −1 and can show that
S = diag(−1,−1,−1) is a maximum and that S = diag(−1, 1, 1) and
S = diag(1,−1, 1) are saddle points. Again, since there are no other

314 Pose Estimation Problems

critical points, we can conclude there are no local minima other than
the global one.

Also, for subcase (ii-a) we in general have

δJ =
1

2

(
ϕ2

1d2s2 + ϕ2
2d1s1 + ϕ2

3(d1s1 + d2s2)
)
, (8.80)

and so the only way to create a local minimum is to pick s1 = s2 = 1,
which is the global minimum we have discussed earlier. Thus, again
there are no additional local minima.

Iterative Approach

We can also consider using an iterative approach to solve for the optimal
rotation matrix, C. We will use our SO(3)-sensitive scheme to do this.
Importantly, the optimization we carry out is unconstrained, thereby
avoiding the difficulties of the previous two approaches8. Technically,
the result is not valid globally, only locally, as we require an initial
guess that is refined from one iteration to the next; typically only a few
iterations are needed. However, based on our discussion of local minima
in the last section, we know that in all the important situations where
there is a unique global minimum, there are no additional local minima
to worry about.

Starting from the cost function where the translation has been elim-
inated,

J(C) =
1

2

M∑

j=1

wj ((yj − y)−C(pj − p))
T

((yj − y)−C(pj − p)) ,

(8.81)
we can insert the SO(3)-sensitive perturbation,

C = exp
(
ψ∧
)
Cop ≈

(
1 +ψ∧

)
Cop, (8.82)

where Cop is the current guess and ψ is the perturbation; we will seek
an optimal value to update the guess (and then iterate). Inserting the
approximate perturbation scheme into the cost function turns it into
a quadratic in ψ for which the minimizing value, ψ?, is given by the
solution to

Cop

(
− 1

w

M∑

j=1

wj(pj − p)∧(pj − p)∧
)

︸ ︷︷ ︸
constant

CT
opψ

?

= − 1

w

M∑

j=1

wj(yj − y)∧Cop(pj − p). (8.83)

8 The iterative approach does not require solving either an eigenproblem nor carrying

out a singular-value decomposition.

8.1 Point-Cloud Alignment 315

At first glance, the right-hand side appears to require recalculation
using the individual points at each iteration. Fortunately, we can ma-
nipulate it into a more useful form. The right-hand side is a 3 × 1
column, and its ith row is given by

1Ti

(
− 1

w

M∑

j=1

wj(yj − y)∧Cop(pj − p)

)

=
1

w

M∑

j=1

wj(yj − y)T1∧i Cop(pj − p)

=
1

w

M∑

j=1

wjtr
(
1∧i Cop(pj − p)(yj − y)T

)

= tr
(
1∧i CopW

T
)
, (8.84)

where

W =
1

w

M∑

j=1

wj(yj − y)(pj − p)T , (8.85)

which we already saw in the non-iterative solution. Letting

I = − 1

w

M∑

j=1

wj(pj − p)∧(pj − p)∧, (8.86a)

b =
[
tr (1∧i CopW

T)
]
i
, (8.86b)

the optimal update can be written in closed form as

ψ? = CopI
−1CT

op b. (8.87)

We apply this to the initial guess,

Cop ← exp
(
ψ?∧

)
Cop, (8.88)

and iterate to convergence, taking Ĉvki = Cop at the final iteration as
our rotation estimate. After convergence, the translation is given as in
the non-iterative scheme:

r̂vkii = p− ĈT
vki

y. (8.89)

Notably, both I and W can be computed in advance, and therefore
we do not require the original points during execution of the iterative
scheme.

Three Non-collinear Points Required

Clearly, to solve uniquely for ψ? above, we need det I 6= 0. A sufficient
condition is to have I positive-definite, which implies that for any x 6= 0,
we must have

xT I x > 0. (8.90)

316 Pose Estimation Problems

We then notice that

xT I x = xT
(
− 1

w

M∑

j=1

wj(pj − p)∧(pj − p)∧
)

x

=
1

w

M∑

j=1

wj ((pj − p)∧x)
T

((pj − p)∧x)︸ ︷︷ ︸
≥0

≥ 0. (8.91)

Since each term in the sum is non-negative, the total must be non-
negative. The only way to have the total be zero is if every term in the
sum is also zero, or

(∀j) (pj − p)∧x = 0. (8.92)

In other words, we must have x = 0 (not true by assumption), pj = p,
or x parallel to pj − p. The last two conditions are never true as long
as there are at least three points and they are not collinear.

Note that having three non-collinear points only provides a sufficient
condition for a unique solution for ψ? at each iteration, and does not
tell us about the number of possible global solutions to minimize our
objective function in general. This was discussed at length in the pre-
vious sections, where we learned there could be one or infinitely many
global solutions. Moreover, if there is a unique global minimum, there
are no local minima to worry about.

8.1.4 Transformation Matrix Solution

Finally, for completeness, we also can provide an iterative approach to
solving for the pose change using transformation matrices and their
relationship to the exponential map9. As in the previous two sections,
we will use some simplified notation to avoid repeating sub- and super-
scripts:

yj =

[
yj
1

]
=

[
rpjvkvk

1

]
, pj =

[
pj
1

]
=

[
r
pji
i

1

]
,

T = Tvki =

[
Cvki −Cvkir

vki
i

0T 1

]
. (8.93)

We have used a different font for the homogeneous representations of
the points; we will be making connections back to the previous sec-
tion on rotation matrices so we also keep the non-homogeneous point
representations around for convenience.

We define our error term for each point as

ej = yj −Tpj, (8.94)

9 We will use the optimization approach outlined in Section 7.1.9.

8.1 Point-Cloud Alignment 317

and our objective function as

J(T) =
1

2

M∑

j=1

wje
T
j ej =

1

2

M∑

j=1

wj
(
yj −Tpj

)T (
yj −Tpj

)
, (8.95)

where wj > 0 are the usual scalar weights. We seek to minimize J with
respect to T ∈ SE(3). Notably, this objective function is equivalent to
the ones for the unit-quaternion and rotation-matrix parameterizations,
so the minima should be the same.

To do this, we use our SE(3)-sensitive perturbation scheme,

T = exp (ε∧) Top ≈ (1 + ε∧) Top, (8.96)

where Top is some initial guess (i.e., operating point of our lineariza-
tion) and ε is a small perturbation to that guess. Inserting this into the
objective function, we then have

J(T) ≈ 1

2

M∑

j=1

wj
(
(yj − zj)− z�j ε

)T (
(yj − zj)− z�j ε

)
, (8.97)

where zj = Toppj and we have used that

ε∧ zj = z�j ε, (8.98)

which was explained in Section 7.1.8.
Our objective function is now exactly quadratic in ε, and therefore

we can carry out a simple, unconstrained optimization for ε. Taking the
derivative, we find

∂J

∂εT
= −

M∑

j=1

wjz
�T
j

(
(yj − zj)− z�j ε

)
. (8.99)

Setting this to zero, we have the following system of equations for the
optimal ε?:

(
1

w

M∑

j=1

wjz
�T
j z�j

)
ε? =

1

w

M∑

j=1

wjz
�T
j (yj − zj). (8.100)

While we could use this to compute the optimal update, both the left-
and right-hand sides require construction from the original points at
each iteration. As in the previous section on the iterative solution using
rotation matrices, it turns out we can manipulate both sides into forms
that do not require the original points.

Looking to the left-hand side first, we can show that

1

w

M∑

j=1

wjz
�T
j z�j = T −Top︸ ︷︷ ︸

>0

(
1

w

M∑

j=1

wjp
�T
j p�j

)

︸ ︷︷ ︸
M

T −1
op︸︷︷︸
>0

, (8.101)

318 Pose Estimation Problems

where

T op = Ad(Top), M =

[
1 0
p∧ 1

] [
1 0
0 I

] [
1 −p∧

0 1

]
,

w =
M∑

j=1

wj, p =
1

w

M∑

j=1

wjpj, I = − 1

w

M∑

j=1

wj(pj − p)∧(pj − p)∧.

(8.102)

The 6×6 matrix, M, has the form of a generalized mass matrix (Murray
et al., 1994) with the weights as surrogates for masses. Notably, it is
only a function of the points in the stationary frame and is therefore a
constant.

Looking to the right-hand side, we can also show that

a =
1

w

M∑

j=1

wjz
�T
j (yj − zj) =

[
y −Cop(p− rop)

b− y∧Cop(p− rop)

]
, (8.103)

where

b =
[
tr (1∧i CopW

T)
]
i
, Top =

[
Cop −Coprop

0T 1

]
, (8.104)

W =
1

w

M∑

j=1

wj(yj − y)(pj − p)T , y =
1

w

M∑

j=1

wjyj. (8.105)

Both W and y we have seen before and can be computed in advance
from the points and then used at each iteration of the scheme.

Once again, we can write the solution for the optimal update down
in closed form:

ε? = T opM−1T T
op a. (8.106)

Once computed, we simply update our operating point,

Top ← exp
(
ε?
∧
)

Top, (8.107)

and iterate the procedure to convergence. The estimated transforma-
tion is then T̂vki = Top at the final iteration. Alternatively, T̂ivk = T̂−1

vki

may be the output of interest.
Note, applying the optimal perturbation through the exponential

map ensures that Top remains in SE(3) at each iteration. Also, looking
back to Section 4.3.1, we can see that our iterative optimization of T
is exactly in the form of a Gauss-Newton style estimator, but adapted
to work with SE(3).

Three Non-collinear Points Required

It is interesting to consider when (8.100) has a unique solution. It im-
mediately follows from (8.101) that

detM = det I. (8.108)

8.2 Point-Cloud Tracking 319

Therefore, to uniquely solve for ε? above, we need det I 6= 0. A sufficient
condition is to have I positive-definite, which (we saw in the previous
section on rotation matrices) is true as long as there are at least three
points and they are not collinear.

8.2 Point-Cloud Tracking

In this section, we study a problem very much related to point-cloud
alignment, namely, point-cloud tracking. In the alignment problem, we
simply wanted to align two point-clouds to determine the vehicle’s pose
at a single time. In the tracking problem, we want to estimate the pose
of an object over time through a combination of measurements and a
prior (with inputs). Accordingly, we will set up motion and observation
models and then show how we can use these in both recursive (i.e.,
EKF) and batch (i.e., Gauss-Newton) solutions.

8.2.1 Problem Setup

We will continue to use the situation depicted in Figure 8.1. The state
of the vehicle comprises

rvkii : translation vector from I to Vk, expressed in F−→i

Cvki : rotation matrix from F−→i to F−→vk

or alternatively,

Tk = Tvki =

[
Cvki −Cvkir

vki
i

0T 1

]
, (8.109)

as a single transformation matrix. We use the shorthand

x = {T0,T1, . . . ,TK} , (8.110)

for the entire trajectory of poses. Our motion prior/inputs and mea-
surements for this problem are as follows:

(i) Motion Prior/Inputs:

– We might assume the known inputs are the initial pose (with
uncertainty),

Ť0, (8.111)

as well as the translational velocity, νivkvk , and angular velocity
of the vehicle, ωivkvk , which we note are expressed in the vehicle
frame. We combine these as

$k =

[
νivkvk
ωivkvk

]
, k = 1 . . .K, (8.112)

at a number of discrete times (we will assume the inputs

320 Pose Estimation Problems

are piecewise-constant in time). Together, the inputs can be
written using the shorthand,

v =
{
Ť0,$1,$2, . . . ,$K

}
. (8.113)

(ii) Measurements:

– We assume we are capable of measuring the position of a
particular stationary point, Pj, in the vehicle frame, rpjvkvk

. We
assume the position of the point is known in the stationary
frame, r

pji
i . Note that there could also be measurements of

multiple points, hence the subscript j. We will write

yjk = rpjvkvk
, (8.114)

for the observation of point Pj at discrete time k. Together,
the measurements can be written using the shorthand,

y = {y11, . . . ,yM1, . . . ,y1K , . . .yMK} . (8.115)

This pose estimation problem is fairly generic and could be used to
describe a variety of situations.

8.2.2 Motion Priors

We will derive a general discrete-time, kinematic motion prior that can
be used within a number of different estimation algorithms. We will
start in continuous time and then move to discrete time.

Continuous Time

We will start with the SE(3) kinematics10,

Ṫ = $∧T, (8.116)

where the quantities involved are perturbed by process noise according
to

T = exp
(
δξ∧

)
T̄, (8.117a)

$ = $̄ + δ$. (8.117b)

We can separate these into nominal and perturbation kinematics as
in (7.253):

nominal kinematics: ˙̄T = $̄∧T̄, (8.118a)

perturbation kinematics: δξ̇ = $̄f δξ + δ$, (8.118b)

where we will think of δ$(t) as process noise that corrupts the nominal
kinematics. Thus, integrating the perturbed kinematic equation allows

10 To be clear, T = Tvki in this equation and $ is the generalized velocity expressed in

F−→vk .

8.2 Point-Cloud Tracking 321

us to track uncertainty in the pose of the system. While we could do
this in continuous time, we will next move to discrete time to prepare
to use this kinematic model in the EKF and batch, discrete-time MAP
estimators.

Discrete Time

If we assume quantities remain constant between discrete times, then
we can use the ideas from Section 7.2.2 to write

nominal kinematics: T̄k = exp (∆tk$̄
∧
k)︸ ︷︷ ︸

Ξk

T̄k−1, (8.119a)

perturbation kinematics: δξk = exp (∆tk$̄
f
k)︸ ︷︷ ︸

Ad(Ξk)

δξk−1 + wk, (8.119b)

with ∆tk = tk − tk−1 for the nominal and perturbation kinematics in
discrete time. The process noise is now wk = N (0,Qk).

8.2.3 Measurement Model

We next develop a measurement model and then linearize it.

Nonlinear

Our 3× 1 measurement model can be compactly written as

yjk = DT Tkpj + njk, (8.120)

where the position of the known points on the moving vehicle are ex-
pressed in 4 × 1 homogeneous coordinates (bottom row equal to 1),

pj =

[
r
pji
i

1

]
, (8.121)

and

DT =




1 0 0 0
0 1 0 0
0 0 1 0


 , (8.122)

is a projection matrix used to ensure the measurements are indeed 3×1
by removing the 1 on the bottom row. We have also now included,
njk ∼ N (0,Rjk), which is Gaussian measurement noise.

Linearized

We linearize (8.120) in much the same way as the motion model through
the use of perturbations:

Tk = exp
(
δξ∧k

)
T̄k, (8.123a)

yjk = ȳjk + δyjk. (8.123b)

322 Pose Estimation Problems

Substituting these into the measurement model, we have

ȳjk + δyjk = DT
(
exp

(
δξ∧k

)
T̄k

)
pj + njk. (8.124)

Subtracting off the nominal solution (i.e., the operating point in our
linearization),

ȳjk = DT T̄kpj, (8.125)

we are left with

δyjk ≈ DT
(
T̄kpj

)�
δξk + njk, (8.126)

correct to first order. This perturbation measurement model relates
small changes in the input to the measurement model to small changes
in the output, in an SE(3)-constraint-sensitive manner.

Nomenclature

To match the notation used in our derivations of our nonlinear estima-
tors, we define the following symbols:

T̂k : 4× 4 corrected estimate of pose at time k

P̂k : 6× 6 covariance of corrected estimate at time k

(for both translation and rotation)

Ťk : 4× 4 predicted estimate of pose at time k

P̌k : 6× 6 covariance of predicted estimate at time k

(for both translation and rotation)

Ť0 : 4× 4 prior input as pose at time 0

$k : 6× 1 prior input as generalized velocity at time k

Qk : 6× 6 covariance of process noise

(for both translation and rotation)

yjk : 3× 1 measurement of point j from vehicle at time k

Rjk : 3× 3 covariance of measurement j at time k

We will use these in two different estimators, the EKF and batch
discrete-time MAP estimation.

8.2.4 EKF Solution

In this section, we seek to estimate the pose of our vehicle using the
classic EKF, but carefully applied to our situation involving rotations.

Prediction Step

Predicting the mean forward in time is not difficult in the case of the
EKF; we simply pass our prior estimate and latest input through the

8.2 Point-Cloud Tracking 323

nominal kinematics model in (8.119):

Ťk = exp (∆tk$
∧
k)︸ ︷︷ ︸

Ξk

T̂k−1. (8.127)

To predict the covariance of the estimate,

P̌k = E
[
δξ̌kδξ̌

T

k

]
, (8.128)

we require the perturbation kinematics model in (8.119),

δξ̌k = exp (∆tk$
f
k)︸ ︷︷ ︸

Fk−1=Ad(Ξk)

δξ̂k−1 + wk. (8.129)

Thus, in this case, the coefficient matrix of the linearized motion model
is

Fk−1 = exp (∆tk$
f
k) , (8.130)

which depends only on the input and not the state due to our conve-
nient choice of representing uncertainty via the exponential map. The
covariance prediction proceeds in the usual EKF manner as

P̌k = Fk−1P̂k−1F
T
k−1 + Qk. (8.131)

The corrective step is where we must pay particular attention to the
pose variables.

Correction Step

Looking back to (8.126) for the perturbation measurement model,

δyjk = DT
(
Ťkpj

)�
︸ ︷︷ ︸

Gjk

δξ̌k + njk, (8.132)

we see that the coefficient matrix of the linearized measurement model
is

Gjk = DT
(
Ťkpj

)�
, (8.133)

which is evaluated at the predicted mean pose, Ťk.
To handle the case in which there are M observations of points on

the vehicle, we can stack the quantities as follows:

yk =




y1k

...
yMk


 , Gk =




G1k

...
GMk


 , Rk = diag (R1k, . . . ,RMk) .

(8.134)
The Kalman gain and covariance update equations are then unchanged
from the generic case:

Kk = P̌kG
T
k

(
GkP̌kG

T
k + Rk

)−1
, (8.135a)

P̂k = (1−KkGk) P̌k. (8.135b)

324 Pose Estimation Problems

Note that we must be careful to interpret the EKF corrective equations
properly since

P̂k = E
[
δξ̂kδξ̂

T

k

]
. (8.136)

In particular, for the mean update, we rearrange the equation as follows:

εk = ln
(
T̂kŤ

−1
k

)∨

︸ ︷︷ ︸
update

= Kk (yk − y̌k)︸ ︷︷ ︸
innovation

, (8.137)

where εk = ln
(
T̂kŤ

−1
k

)∨
is the difference of the corrected and predicted

means and y̌k is the nonlinear, nominal measurement model evaluated
at the predicted mean:

y̌k =




y̌1k

...
y̌Mk


 , y̌jk = DT Ťkpj, (8.138)

where we have again accounted for the fact that there could be M
observations of points on the vehicle. Once we have computed the mean
correction, εk, we apply it according to

T̂k = exp (ε∧k) Ťk, (8.139)

which ensures the mean stays in SE(3).

Summary

Putting the pieces from the last two sections together, we have our
canonical five EKF equations for this system:

predictor:
P̌k = Fk−1P̂k−1F

T
k−1 + Qk, (8.140a)

Ťk = Ξk T̂k−1, (8.140b)

Kalman gain: Kk = P̌kG
T
k

(
GkP̌kG

T
k + Rk

)−1
, (8.140c)

corrector:
P̂k = (1−KkGk) P̌k, (8.140d)

T̂k = exp
(
(Kk (yk − y̌k))

∧)
Ťk. (8.140e)

We have essentially modified the EKF so that all the mean calculations
occur in SE(3), the Lie group, and all of the covariance calculations
occur in se(3), the Lie algebra. As usual, we must initialize the filter
at the first timestep using Ť0. Although we do not show it, we could
easily turn this into an iterated EKF by relinearizing about the latest
estimate and iterating over the correction step. Finally, the algorithm
has T̂vki = T̂k so we can compute T̂ivk = T̂−1

k if desired.

8.2 Point-Cloud Tracking 325

8.2.5 Batch Maximum a Posteriori Solution

In this section, we return to the discrete-time, batch estimation ap-
proach to see how this works on our pose tracking problem.

Error Terms and Objective Function

As usual for batch MAP problems, we begin by defining an error term
for each of our inputs and measurements. For the inputs, Ť0 and $k,
we have

ev,k(x) =

{
ln
(
Ť0T

−1
0

)∨
k = 0

ln
(
ΞkTk−1T

−1
k

)∨
k = 1 . . .K

, (8.141)

where Ξk = exp (∆tk$
∧
k) and we have used the convenient shorthand,

x = {T0, . . . ,TK}. For the measurements, yjk, we have

ey,jk(x) = yjk −DTTkpj. (8.142)

Next we examine the noise properties of these errors.
Taking the Bayesian point of view, we consider that the true pose

variables are drawn from the prior (see Section 4.1.1) so that

Tk = exp
(
δξ∧k

)
Ťk, (8.143)

where δξk ∼ N
(
0, P̌k

)
.

For the first input error, we have

ev,0(x) = ln
(
Ť0T

−1
0

)∨
= ln

(
Ť0Ť

−1
0 exp

(
−δξ∧0

))∨
= −δξ0, (8.144)

so that

ev,0(x) ∼ N
(
0, P̌0

)
. (8.145)

For the later input errors, we have

ev,k(x) = ln
(
ΞkTk−1T

−1
k

)∨

= ln
(
Ξk exp

(
δξ∧k−1

)
Ťk−1Ť

−1
k exp

(
−δξ∧k

))∨

= ln
(
ΞkŤk−1Ť

−1
k︸ ︷︷ ︸

1

exp
((

Ad(Ξk) δξk−1

)∧)
exp

(
−δξ∧k

))∨

≈ Ad(Ξk) δξk−1 − δξk
= −wk, (8.146)

so that

ev,k(x) ∼ N (0,Qk) . (8.147)

For the measurement model, we consider that the measurements are
generated by evaluating the noise-free versions (based on the true pose
variables) and then corrupted by noise so that

ey,jk(x) = yjk −DTTkpj = njk, (8.148)

326 Pose Estimation Problems

so that

ey,jk(x) ∼ N (0,Rjk) . (8.149)

These noise properties allow us to next construct the objective func-
tion that we want to minimize in our batch MAP problem:

Jv,k(x) =

{
1
2
ev,0(x)T P̌−1

0 ev,0(x) k = 0
1
2
ev,k(x)TQ−1

k ev,k(x) k = 1 . . .K
, (8.150a)

Jy,k(x) =
1

2
ey,k(x)TR−1

k ey,k(x), (8.150b)

where we have stacked the M point quantities together according to

ey,k(x) =




ey,1k(x)
...

ey,Mk(x)


 , Rk = diag (R1k, . . . ,RMk) . (8.151)

The overall objective function that we will seek to minimize is then

J(x) =
K∑

k=0

(Jv,k(x) + Jy,k(x)) . (8.152)

the next section will look at linearizing our error terms in order to carry
out Gauss-Newton optimization.

Linearized Error Terms

It is fairly straightforward to linearize our error terms (in order to carry
out Gauss-Newton optimization) just as we earlier linearized our mo-
tion and observation models. We will linearize about an operating point
for each pose, Top,k, which we can think of as our current trajectory
guess that will be iteratively improved. Thus, we will take

Tk = exp (ε∧k) Top,k, (8.153)

where εk will be the perturbation to the current guess that we seek to
optimize at each iteration. We will use the shorthand

xop = {Top,1,Top,2, . . . ,Top,K} , (8.154)

for the operating point of the entire trajectory.
For the first input error, we have

ev,0(x) = ln
(
Ť0T

−1
0

)∨
= ln

(
Ť0T

−1
op,0︸ ︷︷ ︸

exp(ev,0(xop)∧)

exp (−ε∧0)
)∨
≈ ev,0(xop)− ε0,

(8.155)

where ev,0(xop) = ln
(
Ť0T

−1
op,0

)∨
is the error evaluated at the operating

point. Note, we have used a very crude version of the BCH formula to
arrive at the approximation on the right (i.e., only the first two terms),

8.2 Point-Cloud Tracking 327

but this approximation will get better as ε0 goes to zero, which will
happen as the Gauss-Newton algorithm converges11.

For the input errors at the later times, we have

ev,k(x) = ln
(
ΞkTk−1T

−1
k

)∨

= ln
(
Ξk exp

(
ε∧k−1

)
Top,k−1T

−1
op,k exp (−ε∧k)

)∨

= ln
(
ΞkTop,k−1T

−1
op,k︸ ︷︷ ︸

exp(ev,k(xop)∧)

exp
((

Ad
(
Top,kT

−1
op,k−1

)
εk−1

)∧)
exp (−ε∧k)

)∨

≈ ev,k(xop) + Ad
(
Top,kT

−1
op,k−1

)
︸ ︷︷ ︸

Fk−1

εk−1 − εk, (8.156)

where ev,k(xop) = ln
(
ΞkTop,k−1T

−1
op,k

)∨
is the error evaluated at the

operating point.

For the measurement errors, we have

ey,jk(x) = yjk −DTTkpj

= yjk −DT exp (ε∧k) Top,kpj

≈ yjk −DT (1 + ε∧k) Top,kpj

= yjk −DTTop,kpj︸ ︷︷ ︸
ey,jk(xop)

−
(
DT (Top,kpj)

�
)

︸ ︷︷ ︸
Gjk

εk. (8.157)

We can stack all of the point measurement errors at time k together so
that

ey,k(x) ≈ ey,k(xop)−Gkεk, (8.158)

where

ey,k(x) =




ey,1k(x)
...

ey,Mk(x)


 , ey,k(xop) =




ey,1k(xop)
...

ey,Mk(xop)


 , Gk =




G1k

...
GMk


 .

(8.159)
Next, we will insert these approximations into our objective function
to complete the Gauss-Newton derivation.

11 We could also include the SE(3) Jacobian to do better here, as was done in

Section 7.3.4, but this is a reasonable starting point.

328 Pose Estimation Problems

Gauss-Newton Update

To set up the Gauss-Newton update, we define the following stacked
quantities:

δx =




ε0

ε1

ε2

...
εK



, H =




1
−F0 1

−F1
. . .
. . . 1

−FK−1 1
G0

G1

G2

. . .

GK




,

e(xop) =




ev,0(xop)
ev,1(xop)

...
ev,K−1(xop)
ev,K(xop)
ey,0(xop)
ey,1(xop)

...
ey,K−1(xop)
ey,K(xop)




, (8.160)

and

W = diag
(
P̌0,Q1, . . . ,QK ,R0,R1, . . . ,RK

)
, (8.161)

which are identical in structure to the matrices in the nonlinear version.
The quadratic (in terms of the perturbation, δx) approximation to the
objective function is then

J(x) ≈ J(xop)− bT δx +
1

2
δxTA δx, (8.162)

where

A = HTW−1H︸ ︷︷ ︸
block-tridiagonal

, b = HTW−1e(xop). (8.163)

Minimizing with respect to δx, we have

A δx? = b, (8.164)

8.3 Pose-Graph Relaxation 329

for the optimal perturbation,

δx? =




ε?0
ε?1
...
ε?K


 . (8.165)

Once we have the optimal perturbation, we update our operating point
through the original perturbation scheme,

Top,k ← exp
(
ε?
∧

k

)
Top,k, (8.166)

which ensures that Top,k stays in SE(3). We then iterate the entire
scheme to convergence. As a reminder we note that at the final iteration
we have T̂vki = Top,k as our estimate, but if we prefer we can compute

T̂ivk = T̂−1
vki

.
Once again, the main concept that we have used to derive this Gauss-

Newton optimization problem involving pose variables is to compute
the update in the Lie algebra, se(3), but store the mean in the Lie
group, SE(3).

8.3 Pose-Graph Relaxation

Another classic problem that is worth investigating in our framework
is that of pose-graph relaxation. Here we do not explicitly measure
any points in the stationary frame, but instead begin directly with a
set of relative pose ‘measurements’ (a.k.a., pseudomeasurements) that
may have come from some form of dead-reckoning. The situation is
depicted in Figure 8.3, where we can consider each white triangle to
be a reference frame in three dimensions. We refer to this diagram as
a pose graph in that it only involves poses and no points.

Importantly, pose graphs can contain closed loops (as well as leaf
nodes), but unfortunately, the relative pose measurements are uncer-
tain and do not necessarily compound to identity around any loop.
Therefore, our task is to ‘relax’ the pose graph with respect to one (ar-
bitrarily selected) pose, called pose 0. In other words, we will determine
an optimal estimate for each pose relative to pose 0, given all of the
relative pose measurements.

8.3.1 Problem Setup

There is an implicit reference frame, F−→k, located at pose k in Figure 8.3.
We will use a transformation matrix to denote the pose change from
F−→0 to F−→k:

Tk : transformation matrix representing pose of F−→k relative to F−→0.

330 Pose Estimation Problems

Figure 8.3 In the

pose-graph

relaxation

problem, only

relative pose

change

‘measurements’ are

provided, and the

task is to

determine where

each pose is in

relation to one

privileged pose,

labelled 0, which is

fixed. We cannot

simply compound

the relative

transforms due to

the presence of

closed loops,

around which the

relative transforms

may not compound

to identity.

�
T̄k`,⌃k`

relative pose

change

leaf

closed loop

fixed
T0

TkT`

Our task will be to estimate this transformation for all the poses (other
than pose 0).

As mentioned above, the measurements will be a set of relative pose
changes between nodes in the pose graph. The measurements will be
assumed to be Gaussian (on SE(3)) and thus have a mean and a co-
variance given by

{
T̄k`,Σk`

}
. (8.167)

Explicitly, a random sample, Tk`, is drawn from this Gaussian density
according to

Tk` = exp
(
ξ∧k`
)
T̄k`, (8.168)

where

ξk` ∼ N (0,Σk`) . (8.169)

Measurements of this type can arise from a lower-level dead-reckoning
method such as wheel odometry, visual odometry, or inertial sensing.
Not all pairs of poses will have relative measurements, making the
problem fairly sparse in practice.

8.3.2 Batch Maximum Likelihood Solution

We will follow a batch ML approach very similar to the pose-fusion
problem described in Section 7.3.4. As usual, for each measurement we
will formulate an error term:

ek`(x) = ln
(
T̄k`

(
TkT

−1
`

)−1
)∨

= ln
(
T̄k`T`T

−1
k

)∨
, (8.170)

where we have used the shorthand

x = {T1, . . . ,TK} , (8.171)

8.3 Pose-Graph Relaxation 331

for the state to be estimated. We will adopt the usual SE(3)-sensitive
perturbation scheme,

Tk = exp (ε∧k) Top,k, (8.172)

where Top,k is the operating point and εk the small perturbation. In-
serting this into the error expression, we have

ek`(x) = ln
(
T̄k` exp (ε∧`) Top,`T

−1
op,k exp (−ε∧k)

)∨
. (8.173)

We can pull the ε` factor over to the right without approximation:

ek`(x) = ln

(
T̄k`Top,`T

−1
op,k︸ ︷︷ ︸

small

exp
((T op,kT −1

op,`ε`
)∧)

exp (−ε∧k)

)∨
,

(8.174)
where T op,k = Ad(Top,k). Since both ε` and εk will be converging
toward zero, we can combine these approximately and write

ek`(x) ≈ ln

(
exp (ek`(xop)∧) exp

((T op,kT −1
op,`ε` − εk

)∧)
)∨
, (8.175)

where we have also defined

ek`(xop) = ln
(
T̄k`Top,`T

−1
op,k

)∨
, (8.176a)

xop = {Top,1, . . . ,Top,K} . (8.176b)

Finally, we can use the BCH approximation in (7.100) to write our
linearized error as

ek`(x) ≈ ek`(xop)−Gk` δxk`, (8.177)

where

Gk` =
[
−J (−ek`(xop))

−1 T op,kT −1
op,` J (−ek`(xop))

−1
]
, (8.178a)

δxk` =

[
ε`
εk

]
. (8.178b)

We may choose to approximate J ≈ 1 to keep things simple, but as we
saw in Section 7.3.4, keeping the full expression has some benefit. This
is because even after convergence ek`(xop) 6= 0; these are the non-zero
residual errors for this least-squares problem.

With our linearized error expression in hand, we can now define the
ML objective function as

J(x) =
1

2

∑

k,`

ek`(x)TΣ−1
k` ek`(x), (8.179)

where we note that there will be one term in the sum for each relative

332 Pose Estimation Problems

pose measurement in the pose graph. Inserting our approximate error
expression, we have

J(x) ≈ 1

2

∑

k,`

(
ek`(xop)−Gk`Pk` δx

)T
Σ−1
k`

(
ek`(xop)−Gk`Pk` δx

)
,

(8.180)
or

J(x) ≈ J(xop)− bT δx +
1

2
δxTA δx, (8.181)

where

b =
∑

k,`

PT
k`G

T
k`Σ

−1
k` ek`(xop), (8.182a)

A =
∑

k,`

PT
k`G

T
k`Σ

−1
k` Gk`Pk`, (8.182b)

δxk` = Pk` δx, (8.182c)

and Pk` is a projection matrix to pick out the k`th perturbation vari-
ables from the full perturbation state,

δx =



ε1

...
εK


 . (8.183)

Our approximate objective function is now exactly quadratic and we
minimize J(x) with respect to δx by taking the derivative:

∂J(x)

∂ δxT
= −b + A δx (8.184)

Setting this to zero, the optimal perturbation, δx?, is the solution to
the following linear system:

A δx? = b. (8.185)

As usual, the procedure iterates between solving (8.185) for the optimal
perturbation,

δx? =



ε?1
...
ε?K


 , (8.186)

and updating the nominal quantities using the optimal perturbations
according to our original scheme,

Top,k ← exp
(
ε?
∧

k

)
Top,k, (8.187)

which ensures that Top,k ∈ SE(3). We continue until some convergence

criterion is met. Once converged, we set T̂k0 = Top,k at the last iteration
as the final estimates for the vehicle poses relative to pose 0.

8.3 Pose-Graph Relaxation 333

Figure 8.4 The

pose-graph

relaxation

procedure can be

initialized by

finding a spanning

tree (solid lines)

within the pose

graph. The dotted

measurements are

discarded (only for

initialization) and

then all the pose

variables are

compounded

outward from pose

0.

8.3.3 Initialization

There are several ways to initialize the operating point, xop, at the
start of the Gauss-Newton procedure. A common method is to find a
spanning tree as in Figure 8.4; the initial values of the pose variables can
be found by compounding (a subset of) the relative pose measurements
outward from the chosen privileged node 0. Note, the spanning tree is
not unique and as such different initialization can be computed. A
shallow spanning tree is preferable over a deep one so that as little
uncertain as possible is accumulated to any given node.

8.3.4 Exploiting Sparsity

There is inherent sparsity in pose graphs, and this can be exploited to
make the pose-graph relaxation procedure more computationally effi-
cient12. As shown in Figure 8.5, some nodes (shown as open triangles)
in the pose graph have either one or two edges, creating two types of
local chains:

(i) Constrained: both ends of the chain have a junction (closed-
triangle) node and thus the chain’s measurements are important
to the rest of the pose graph.

(ii) Cantilevered: only one end of the chain has a junction (closed-
triangle) node and thus the chain’s measurements do not affect
the rest of the pose graph.

We can use any of the pose-compounding methods from Section 7.3.3
to combine the relative pose measurements associated with the con-
strained local chains and then treat this as a new relative pose mea-
surement that replaces its constituents. Once this is done, we can use

12 The method in this section should be viewed as an approximation to the brute-force

approach in the previous section, owing to the fact that it is a nonlinear system.

334 Pose Estimation Problems

Figure 8.5 The

pose-graph

relaxation method

can be sped up by

exploiting the

inherent sparsity in

the pose graph.

The open-triangle

nodes only have

one or two edges

and thus do not

need to be solved

for initially.

Instead, the

relative

measurements

passing through

the open-triangle

nodes (dotted) are

combined allowing

the closed-triangle

nodes to be solved

for much more

efficiently. The

open-triangle

nodes also can be

solved for

afterwards.

the pose-graph relaxation approach to solve for the reduced pose graph
formed from only the junction (shown as closed-triangle) nodes.

Afterwards, we can treat all the junction nodes as fixed, and solve for
the local chain (open-triangle) nodes. For those nodes in cantilevered
local chains, we can simply use one of the pose-compounding methods
from Section 7.3.3 to compound outward from the one junction (closed-
triangle) node associated with the chain. The cost of this compounding
procedure is linear in the length of the local chain (and iteration is not
required).

For each constrained local chain, we can run a smaller pose-graph
relaxation just for that chain to solve for its nodes. In this case, the two
bounding junction (closed-triangle) nodes will be fixed. If we order the
variables sequentially along the local chain, the A matrix for this pose-
graph relaxation will be block-tridiagonal and thus the cost of each
iteration will be linear in the length of the chain (i.e., sparse Cholesky
decomposition followed by forward-backward passes).

This two-phased approach to pose-graph relaxation is not the only
way to exploit the inherent sparsity in order to gain computational
efficiency. A good sparse solver should be able to exploit the sparsity in
the A matrix for the full system as well, avoiding the need to identify
and bookkeep all of the local chains.

8.3.5 Chain Example

It is worthwhile to provide an example of pose-graph relaxation for the
short constrained chain in Figure 8.6. We only need to solve for poses
1, 2, 3, and 4 since 0 and 5 are fixed. The A matrix for this example is

8.3 Pose-Graph Relaxation 335

Figure 8.6

Example

pose-graph

relaxation problem

for a constrained

chain of poses.

Here the black

poses are fixed and

we must solve for

the white poses,

given all the

relative pose

measurements.

fixed

�
T̄10,⌃10

�
T̄21,⌃21

 �
T̄32,⌃32

 �
T̄43,⌃43

�
T̄54,⌃54

T0

T1

T2
T3

T4
T5

fixed

given by

A =




A11 A12

AT
12 A22 A23

AT
23 A33 A34

AT
34 A44




=




Σ′
−1

10 + T T
21Σ

′−1

21 T 21 −T T
21Σ

′−1

21

−Σ′
−1

21 T 21 Σ′
−1

21 + T T
32Σ

′−1

32 T 32 −T T
32Σ

′−1

32

−Σ′
−1

32 T 32 Σ′
−1

32 + T T
43Σ

′−1

43 T 43 −T T
43Σ

′−1

43

−Σ′
−1

43 T 43 Σ′
−1

43 + T T
54Σ

′−1

54 T 54




(8.188)

where

Σ′
−1

k` = J −Tk` Σ−1
k` J −1

k` , (8.189a)

T k` = T op,kT −1
op,`, (8.189b)

J k` = J (−ek`(xop)) . (8.189c)

The b matrix is given by

b =




b1

b2

b3

b4


 =




J −T10 Σ−1
10 e10(xop)− T T

21J −T21 Σ−1
21 e21(xop)

J −T21 Σ−1
21 e21(xop)− T T

32J −T32 Σ−1
32 e32(xop)

J −T32 Σ−1
32 e32(xop)− T T

43J −T43 Σ−1
43 e43(xop)

J −T43 Σ−1
43 e43(xop)− T T

54J −T54 Σ−1
54 e54(xop)


 . (8.190)

We can see that for this chain example, A is block-tridiagonal and
we can therefore solve the A δx? = b equation quite efficiently using a
sparse Cholesky decomposition as follows. Let

A = UUT , (8.191)

where U is an upper-triangular matrix of the form

U =




U11 U12

U22 U23

U33 U34

U44


 . (8.192)

336 Pose Estimation Problems

The blocks of U can be solved for as follows:

U44U
T
44 = A44 : solve for U44 using Cholesky decomposition,

U34U
T
44 = A34 : solve for U34 using linear algebra solver,

U33U
T
33 + U34U

T
34 = A33 : solve for U33 using Cholesky decomposition,

U23U
T
33 = A23 : solve for U23 using linear algebra solver,

U22U
T
22 + U23U

T
23 = A22 : solve for U22 using Cholesky decomposition,

U12U
T
22 = A12 : solve for U12 using linear algebra solver,

U11U
T
11 + U12U

T
12 = A11 : solve for U11 using Cholesky decomposition.

Then we can carry out a backward pass followed by a forward pass to
solve for δx?:

backward pass forward pass
Uc = b UT δx? = c

U44c4 = b4 UT
11 ε

?
1 = c1

U33c3 + U34c4 = b3 UT
12 ε

?
1 + UT

22 ε
?
2 = c2

U22c2 + U23c3 = b2 UT
23 ε

?
2 + UT

33 ε
?
3 = c3

U11c1 + U12c2 = b1 UT
34 ε

?
3 + UT

44 ε
?
4 = c4

First we proceed down the left column solving for c4, c3, c2, and c1.
Then we proceed down the right column solving for ε?1, ε?2, ε?3, and ε?4.
The cost of solving for each of U, c, and finally δx? is linear in the
length of the chain. Once we solve for δx?, we update the operating
points of each pose variable,

Top,k ← exp
(
ε?
∧

k

)
Top,k, (8.193)

and iterate the entire procedure to convergence. For this short chain,
exploiting the sparsity may not be worthwhile, but for very long con-
strained chains the benefits are obvious.

9

Pose-and-Point Estimation Problems

In this chapter of the book, we will address one of the most fundamen-
tal problems in mobile robotics, estimating the trajectory of a robot
and the structure of the world around it (i.e., point landmarks) to-
gether. In robotics, this is called the simultaneous localization and map-
ping (SLAM) problem. However, in computer vision an almost identical
problem came to prominence through the application of aligning aerial
photographs into a mosaic; the classic solution to this problem is called
bundle adjustment (BA). We will look at BA through the lens of our
SE(3) estimation techniques.

9.1 Bundle Adjustment

Photogrammetry, the process of aerial map building, has been in use
since the 1920s (Dyce, 2013). It involves flying an airplane along a
route, taking hundreds or thousands of pictures of the terrain below,
and then stitching these together into a mosaic. In the early days,
photogrammetry was a highly laborious process; printed photographs
were spread out on a large surface and aligned by hand. From the late
1920s until the 1960s, clever projectors called multiplex stereoplotters
were used to more precisely align photos, but it was still a painstaking,
manual process. The first automated stitching of photos occurred in
the 1960s with the advent of computers and an algorithm called bun-
dle adjustment (Brown, 1958). Starting around the 1970s, aerial map
making was gradually replaced by satellite-based mapping (e.g., the US
Landsat program), but the basic algorithms for image stitching remain
the same (Triggs et al., 2000). It is worth noting that the robustness of
automated photogrammetry was increased significantly with the inven-
tion of modern feature detectors in computer vision, starting with the
work of Lowe (2004). Today, commercial software packages exist that
automate the photogrammetry process well, and they all essentially use
BA for alignment.

337

338 Pose-and-Point Estimation Problems

Figure 9.1

Definition of

reference frames

for the bundle

adjustment

problem. There is

a stationary

reference frame

and a moving

reference frame,

attached to a

vehicle. A

collection of points,

Pj , are observed by

the moving vehicle

(using a camera)

and the goal is to

determine the

relative pose of the

moving frame with

respect to the

stationary one (at

all of the times of

interest) as well as

the positions of all

of the points in the

stationary frame.

I

F�!i

Pj

r�!
pji

r�!
pjvk

r�!
vki

Vk

Vk�1

Vk+1

F�!vk

F�!vk�1

F�!vk+1

estimated

measured

estimatedstationary

moving

9.1.1 Problem Setup

Figure 9.1 shows the setup for our bundle adjustment problem. The
state that we wish to estimate is

Tk = Tvki : transformation matrix representing the pose

of the vehicle at time k

pj =

[
r
pji
i

1

]
: homogeneous point representing the position

of landmark j

where k = 1 . . .K and j = 1 . . .M and we will use the cleaner ver-
sion of the notation to avoid writing out all the sub- and super-scripts
throughout the derivation. We will use the shorthand,

x = {T1, . . . ,TK ,p1, . . . ,pM} , (9.1)

to indicate the entire state that we wish to estimate as well as xjk =
{Tk,pj} to indicate the subset of the state including the kth pose and
jth landmark. Notably, we exclude T0 from the state to be estimated
as the system is otherwise unobservable; recall the discussion in Sec-
tion 5.1.3 about unknown measurement bias.

9.1.2 Measurement Model

There are two main differences between the problem treated here and
the one from the previous chapter. First, we are now estimating the
point positions in addition to the poses. Second, we will introduce a
nonlinear sensor model (e.g., a camera) such that we have a more com-
plicated measurement than simply the point expressed in the vehicle
frame.

9.1 Bundle Adjustment 339

Nonlinear Model

The measurement, yjk, will correspond to some observation of point j
from pose k (i.e., some function of rpjvkvk

). The measurement model for
this problem will be of the form

yjk = g (xjk) + njk, (9.2)

where g(·) is the nonlinear model and njk ∼ N (0,Rjk) is additive
Gaussian noise. We can use the shorthand

y = {y10, . . .yM0, . . . ,y1K , . . . ,yMK} , (9.3)

to capture all the measurements that we have available.
As discussed in Section 7.3.5, we can think of the overall observation

model as the composition of two nonlinearities: one to transform the
point into the vehicle frame and one to turn that point into the actual
sensor measurement through a camera (or other sensor) model. Letting

z(xjk) = Tkpj, (9.4)

we can write

g (xjk) = s (z(xjk)) , (9.5)

where s(·) is the nonlinear camera model1. In other words, we have
g = s ◦ z, in terms of the composition of functions.

Perturbed Model

We will go one step beyond simply linearizing our model and work
out the perturbed model to second order. This could be used, for ex-
ample, to estimate the bias in using ML estimation, as discussed to
Section 4.3.3.

We define the following perturbations to our state variables:

Tk = exp (ε∧k) Top,k ≈
(

1 + ε∧k +
1

2
ε∧k ε

∧
k

)
Top,k, (9.6a)

pj = pop,j + D ζj, (9.6b)

where

D =




1 0 0
0 1 0
0 0 1
0 0 0


 (9.7)

is a dilation matrix so that our landmark perturbation, ζj, is 3 × 1.
We will use the shorthand xop = {Top,1, . . . ,Top,K ,pop,1, . . . ,pop,M}
to indicate the entire trajectory’s linearization operating point as well
as xop,jk = {Top,k,pop,j} to indicate the subset of the operating point

1 See Section 6.4 for several possibilities for the camera (or sensor) model.

340 Pose-and-Point Estimation Problems

including the kth pose and jth landmark. The perturbations will be
denoted

δx =




ε1

...
εK
ζ1
...
ζM




, (9.8)

with the pose quantities on top and the landmark quantities on the
bottom. We will also use

δxjk =

[
εk
ζj

]
(9.9)

to indicate just the perturbations associated with the kth pose and the
jth landmark.

Using the perturbation schemes above, we have that

z(xjk) ≈
(

1 + ε∧k +
1

2
ε∧k ε

∧
k

)
Top,k

(
pop,j + D ζj

)

≈ Top,kpop,j + ε∧kTop,kpop,j + Top,kD ζj

+
1

2
ε∧k ε

∧
kTop,kpop,j + ε∧kTop,kD ζj

= z(xop,jk) + Zjk δxjk +
1

2

∑

i

1i δx
T
jkZ ijk δxjk︸ ︷︷ ︸

scalar

, (9.10)

correct to second order, where

z(xop,jk) = Top,kpop,j, (9.11a)

Zjk =
[
(Top,kpop,j)

�
Top,kD

]
, (9.11b)

Z ijk =

[
1}
i (Top,kpop,j)

�
1}
i Top,kD(

1}
i Top,kD

)T
0

]
, (9.11c)

and i is an index over the rows of z(·), and 1i is the ith column of the
identity matrix, 1.

To then apply the nonlinear camera model, we use the chain rule (for

9.1 Bundle Adjustment 341

first and second derivatives), so that

g(xjk) = s (z(xjk))

≈ s

(
zop,jk + Zjk δxjk +

1

2

∑

m

1m δx
T
jkZmjk δxjk

︸ ︷︷ ︸
δzjk

)

≈ s(zop,jk) + Sjk δzjk +
1

2

∑

i

1Ti δz
T
jkSijk δzjk

= s(zop,jk)

+
∑

i

1i
(
1Ti Sjk

)
(

Zjk δxjk +
1

2

∑

m

1m δx
T
jkZmjk δxjk

)

+
1

2

∑

i

1i

(
Zjk δxjk +

1

2

∑

m

1m δx
T
jkZmjk δxjk

)T

× Sijk

(
Zjk δxjk +

1

2

∑

m

1m δx
T
jkZmjk δxjk

)

≈ g(xop,jk) + Gjk δxjk +
1

2

∑

i

1i δx
T
jk Gijk δxjk︸ ︷︷ ︸

scalar

, (9.12)

correct to second order, where

g(xop,jk) = s(z(xop,jk)), (9.13a)

Gjk = SjkZjk, (9.13b)

Sjk =
∂s

∂z

∣∣∣∣
z(xop,jk)

, (9.13c)

Gijk = ZT
jk Sijk Zjk +

∑

m

1Ti Sjk1m︸ ︷︷ ︸
scalar

Zmjk, (9.13d)

Sijk =
∂2si
∂z ∂zT

∣∣∣∣
z(xop,jk)

, (9.13e)

and i is an index over the rows of s(·), and 1i is the ith column of the
identity matrix, 1.

If we only care about the linearized (i.e., first-order) model, then we
can simply use

g(xjk) ≈ g(xop,jk) + Gjk δxjk, (9.14)

for our approximate observation model.

342 Pose-and-Point Estimation Problems

9.1.3 Maximum Likelihood Solution

We will set up the bundle adjustment problem using the ML framework
described in Section 4.3.3, which means we will not use a motion prior2.

For each observation of a point from a pose, we define an error term
as

ey,jk(x) = yjk − g (xjk) , (9.15)

where yjk is the measured quantity and g is our observation model de-
scribed above. We seek to find the values of x to minimize the following
objective function:

J(x) =
1

2

∑

j,k

ey,jk(x)TR−1
jk ey,jk(x), (9.16)

where x is the full state that we wish to estimate (all poses and land-
marks) and Rjk is the symmetric, positive-definite covariance matrix
associated with the jkth measurement. If a particular landmark is not
actually observed from a particular pose, we can simply delete the ap-
propriate term from the objective function. The usual approach to this
estimation problem is to apply the Gauss-Newton method. Here we
will derive the full Newton’s method and then approximate to arrive
at Gauss-Newton.

Newton’s Method

Approximating the error function, we have

ey,jk(x) ≈ yjk − g(xop,jk)︸ ︷︷ ︸
ey,jk(xop)

−Gjkδxjk −
1

2

∑

i

1i δx
T
jk Gijk δxjk, (9.17)

and thus for the perturbed objective function, we have

J(x) ≈ J(xop)− bT δx +
1

2
δxT A δx, (9.18)

correct to second order, where

b =
∑

j,k

PT
jkG

T
jkR

−1
jk ey,jk(xop), (9.19a)

A =
∑

j,k

PT
jk

(
GT
jkR

−1
jk Gjk −

Gauss-Newton neglects this term︷ ︸︸ ︷∑

i

1Ti R−1
jk ey,jk(xop)

︸ ︷︷ ︸
scalar

Gijk

)
Pjk,

(9.19b)

δxjk = Pjk δx, (9.19c)

2 In robotics, when a motion prior or odometry smoothing terms are introduced, we

typically call this SLAM.

9.1 Bundle Adjustment 343

where Pjk is an appropriate projection matrix to pick off the jkth
components of the overall perturbed state, δx.

It is worth noting that A is symmetric, positive-definite. We can see
the term that Gauss-Newton normally neglects in the Hessian of J .
When ey,jk(xop) is small, this new term has little effect (and this is the
usual justification for its neglect). However, far from the minimum, this
term will be more significant and could improve the rate and region of
convergence3. We will consider the Gauss-Newton approximation in the
next section.

We now minimize J(x) with respect to δx by taking the derivative:

∂J(x)

∂ δxT
= −b + A δx. (9.20)

Setting this to zero, the optimal perturbation, δx?, is the solution to
the following linear system:

A δx? = b. (9.21)

As usual, the procedure iterates between solving (9.21) for the optimal
perturbation,

δx? =




ε?1
...
ε?K
ζ?1
...
ζ?M




, (9.22)

and updating the nominal quantities using the optimal perturbations
according to our original schemes,

Top,k ← exp
(
ε?
∧

k

)
Top,k, (9.23a)

pop,j ← pop,j + D ζ?j , (9.23b)

which ensure that Top,k ∈ SE(3) and pop,j keeps its bottom (fourth)
entry equal to 1. We continue until some convergence criterion is met.
Once converged, we set T̂vki = Top,k and p̂

pji
i = pop,j at the last itera-

tion as the final estimates for the vehicle poses and landmark positions
of interest.

Gauss-Newton Method

Typically in practice, the Gauss-Newton approximation to the Hessian
is taken so that at each iteration we solve the linear system

A δx? = b, (9.24)

3 In practice, including this extra term sometimes makes the numerical stability of the

whole procedure worse, so it should be added with caution.

344 Pose-and-Point Estimation Problems

with

b =
∑

j,k

PT
jkG

T
jkR

−1
jk ey,jk(xop), (9.25a)

A =
∑

j,k

PT
jkG

T
jkR

−1
jk GjkPjk, (9.25b)

δxjk = Pjk δx. (9.25c)

This has the significant advantage of not requiring the second deriva-
tive of the measurement model to be computed. Assembling the linear
system, we find it has the form

GTR−1G︸ ︷︷ ︸
A

δx? = GTR−1ey(xop)︸ ︷︷ ︸
b

, (9.26)

with

Gjk =
[
G1,jk G2,jk

]
,

G1,jk = Sjk (Top,kpop,j)
�
, G2,jk = SjkTop,kD, (9.27)

using the definitions from earlier.
In the case of K = 3 free poses (plus fixed pose 0) and M = 2

landmarks, the matrices have the form

G =
[
G1 G2

]
=




G2,10

G2,20

G1,11 G2,11

G1,21 G2,21

G1,12 G2,12

G1,22 G2,22

G1,13 G2,13

G1,23 G2,23




,

ey(xop) =




ey,10(xop)
ey,20(xop)
ey,11(xop)
ey,21(xop)
ey,12(xop)
ey,22(xop)
ey,13(xop)
ey,23(xop)




,

R = diag (R10,R20,R11,R21,R12,R22,R13,R23) , (9.28)

under one particular ordering of the measurements.
In general, multiplying out the left-hand side, A = GTR−1G, we see

that

A =

[
A11 A12

AT
12 A22

]
, (9.29)

9.1 Bundle Adjustment 345

where

A11 = GT
1 R−1G1 = diag (A11,1, . . . ,A11,K) , (9.30a)

A11,k =
M∑

j=1

GT
1,jkR

−1
jk G1,jk, (9.30b)

A12 = GT
1 R−1G2 =




A12,11 · · · A12,M1

...
. . .

...
A12,1K · · · A12,MK


 , (9.30c)

A12,jk = GT
1,jkR

−1
jk G2,jk, (9.30d)

A22 = GT
2 R−1G2 = diag (A22,1, . . . ,A22,M) , (9.30e)

A22,j =
K∑

k=0

GT
2,jkR

−1
jk G2,jk. (9.30f)

The fact that both A11 and A22 are block-diagonal means this system
has a very special sparsity pattern that can be exploited to efficiently
solve for δx? at each iteration. This will be discussed in detail in the
next section.

9.1.4 Exploiting Sparsity

Whether we choose to use Newton’s method or Gauss-Newton, we are
faced with solving a system of the following form at each iteration:

[
A11 A12

AT
12 A22

]

︸ ︷︷ ︸
A

[
δx?1
δx?2

]

︸ ︷︷ ︸
δx?

=

[
b1

b2

]

︸ ︷︷ ︸
b

, (9.31)

where the state, δx?, has been partitioned into parts corresponding to
(1) the pose perturbation, δx?1 = ε?, and (2) the landmark perturba-
tions, δx?2 = ζ?.

It turns out that the Hessian of the objective function, A, has a
very special sparsity pattern as depicted in Figure 9.2; it is sometimes
referred to as an arrowhead matrix. This pattern is due to the presence
of the projection matrices, Pjk, in each term of A; they embody the
fact that each measurement involves just one pose variable and one
landmark.

As seen in Figure 9.2, we have that A11 and A22 are both block-
diagonal because each measurement involves only one pose and one
landmark at a time. We can exploit this sparsity to efficiently solve (9.21)
for δx?; this is sometimes referred to as sparse bundle adjustment. There
are few different ways to do this; we will discuss the Schur complement
and a Cholesky technique.

346 Pose-and-Point Estimation Problems

Figure 9.2

Sparsity pattern of

A. Non-zero

entries are

indicated by *.

This structure is

often referred to as

an arrowhead

matrix, because

the ζ part is large

compared to the ε

part.

* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *

* * * * * * * * *
* * * * * * * * *

* * * * * * * * *
* * * * * * * * *

* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *

* * * * * * * * *
* * * * * * * * *

* * * * * * * * *
* * * * * * * * *

. . .

. . .

. . .

. . .

...
...

...

...
...

...

...
...

...

...
...

...

...
...

...

...
...

...

...
...

...

...
...

...

...

...

...

...

.✏0

✏0

✏k

✏k ✏K

✏K

⇣1

⇣1

⇣j

⇣j

⇣M

⇣M

A =

✏1

✏1

Schur Complement

Typically, the Schur complement is used to manipulate (9.31) into a
form that is more efficiently solved. This can be seen by premultiplying
both sides by

[
1 −A12A

−1
22

0 1

]
,

so that
[
A11 −A12A

−1
22 AT

12 0
AT

12 A22

] [
δx?1
δx?2

]
=

[
b1 −A12A

−1
22 b2

b2

]
,

which has the same solution as (9.31). We may then easily solve for
δx?1 and since A22 is block-diagonal, A−1

22 is cheap to compute. Fi-
nally, δx?2 (if desired) can also be efficiently computed through back-
substitution, again owing to the sparsity of A22. This procedure brings
the complexity of each solve down from O ((K +M)3) without spar-
sity to O (K3 +K2M) with sparsity, which is most beneficial when
K �M .

A similar procedure can be had by exploiting the sparsity of A11, but
in robotics problems we may also have some additional measurements
that perturb this structure and, more importantly, δx?2 is usually much
larger than δx?1 in bundle adjustment. While the Schur complement
method works well, it does not directly provide us with an explicit
method of computing A−1, the covariance matrix associated with δx?,
should we desire it. The Cholesky approach is better suited to this end.

9.1 Bundle Adjustment 347

Cholesky Decomposition

Every symmetric positive-definite matrix, including A, can be factored
as follows through a Cholesky decomposition:

[
A11 A12

AT
12 A22

]

︸ ︷︷ ︸
A

=

[
U11 U12

0 U22

]

︸ ︷︷ ︸
U

[
UT

11 0
UT

12 UT
22

]

︸ ︷︷ ︸
UT

, (9.32)

where U is an upper-triangular matrix. Multiplying this out reveals

U22U
T
22 = A22 : cheap to compute U22 via Cholesky

due to A22 block-diagonal,

U12U
T
22 = A12 : cheap to solve for U12

due to U22 block-diagonal,

U11U
T
11 + U12U

T
12 = A11 : cheap to compute U11 via Cholesky

due to small size of δx?1,

so that we have a procedure to very efficiently compute U, owing to
the sparsity of A22. Note that U22 is also block-diagonal.

If all we cared about was efficiently solving (9.31), then after com-
puting the Cholesky decomposition we can do so in two steps. First,
solve

Uc = b, (9.33)

for a temporary variable, c. This can be done very quickly since U
is upper-triangular and so can be solved from the bottom to the top
through substitution and exploiting the additional known sparsity of
U. Second, solve

UT δx? = c, (9.34)

for δx?. Again, since UT is lower-triangular we can solve quickly from
the top to the bottom through substitution and exploiting the sparsity.

Alternatively, we can invert U directly so that
[
U11 U12

0 U22

]−1

=

[
U−1

11 −U−1
11 U12U

−1
22

0 U−1
22

]
, (9.35)

which can again be computed efficiently due to the fact that U22 is
block-diagonal and U11 is small and in upper-triangular form. Then we
have that

UT δx? = U−1b, (9.36)

or [
UT

11 0
UT

12 UT
22

] [
δx?1
δx?2

]
=

[
U−1

11 (b1 −U12U
−1
22 b2)

U−1
22 b2

]
, (9.37)

which allows us to compute δx?1 and then back-substitute for δx?2, sim-
ilarly to the Schur complement method.

348 Pose-and-Point Estimation Problems

Figure 9.3 A BA

problem with only

three

(non-collinear)

point landmarks

and two free poses

(1 and 2). Pose 0 is

fixed. It turns out

this problem does

not have a unique

solution as there

are too few

landmarks to

constrain the two

free poses. There is

one term in the

cost function,

Jy,jk, for each

measurement, as

shown.

T0

T1

T2

p1

p2

p3

Jy,10
Jy,21

Jy,22

Jy,32

Jy,11

Jy,11

fixed

However, unlike the Schur complement method, A−1 is now com-
puted easily:

A−1 =
(
UUT

)−1
= U−TU−1 = LLT

=

[
U−T11 0

−U−T22 UT
12U

−T
11 U−T22

]

︸ ︷︷ ︸
L

[
U−1

11 −U−1
11 U12U

−1
22

0 U−1
22

]

︸ ︷︷ ︸
LT

=

[
U−T11 U−1

11 −U−T11 U−1
11 U12U

−1
22

−U−T22 UT
12U

−T
11 U−1

11 U−T22

(
UT

12U
−T
11 U−1

11 U12 + 1
)
U−1

22

]
, (9.38)

where we see additional room for efficiency through repeated products
inside the final matrix.

9.1.5 Interpolation Example

It will be instructive to work out the details for the small BA prob-
lem in Figure 9.3. There are three (non-collinear) point landmarks and
two free poses (1 and 2). We will assume pose 0 is fixed to make the
problem observable. We will also assume that the measurements of our
point landmarks are three-dimensional; thus the sensor could be either
a stereo camera or a range-azimuth-elevation sensor, for example. Un-
fortunately, there is not enough information present to uniquely solve
for the two free poses as well as the positions of the three landmarks.
This type of situation arises in rolling-shutter cameras and scanning-
while-moving laser sensors.

In the absence of any measurements of additional landmarks, our
only recourse is to assume something about the trajectory the vehicle
has taken. There are essentially two possibilities:

(i) Penalty Term: we can take a maximum a posteriori (MAP)
approach that assumes a prior density over trajectories and
encourages the solver to select a likely trajectory that is com-
patible with the measurements by introducing a penalty term

9.1 Bundle Adjustment 349

in the cost function. This is essentially the simultaneous local-
ization and mapping (SLAM) approach and will be treated in
the next section.

(ii) Constraint: we can stick with a maximum likelihood (ML) ap-
proach, but constrain the trajectory to be of a particular form.
Here we will do this by assuming the vehicle has a constant six-
degree-of-freedom velocity between poses 0 and 2 so that we
can use pose interpolation for pose 1. This reduces the number
of free pose variables from two to one and provides a unique
solution.

We will first set up the equations as though it were possible to solve for
both poses 1 and 2 and then introduce the pose-interpolation scheme.

The state variables to be estimated are

x = {T1,T2,p1,p2,p3} . (9.39)

We use the usual perturbation schemes,

Tk = exp (ε∧k) Top,k, pj = pop,j + Dζj, (9.40)

and stack our perturbation variables as

δx =




ε1

ε2

ζ1

ζ2

ζ3



. (9.41)

At each iteration, the optimal perturbation variables should be the
solution to the linear system,

A δx? = b, (9.42)

where the A and b matrices for this problem have the form

A =




A11 A13 A14

A22 A24 A25

AT
13 A33

AT
14 AT

24 A44

AT
25 A55



, b =




b1

b2

b3

b4

b5



, (9.43)

350 Pose-and-Point Estimation Problems

with

A11 = GT
1,11R

−1
11 G1,11 + GT

1,21R
−1
21 G1,21,

A22 = GT
1,22R

−1
22 G1,22 + GT

1,32R
−1
32 G1,32,

A33 = GT
2,10R

−1
10 G2,10 + GT

2,11R
−1
11 G2,11,

A44 = GT
2,21R

−1
21 G2,21 + GT

2,22R
−1
22 G2,22,

A55 = GT
2,30R

−1
30 G2,30 + GT

2,32R
−1
32 G2,32,

A13 = GT
1,11R

−1
11 G2,11,

A14 = GT
1,21R

−1
21 G2,21,

A24 = GT
1,22R

−1
22 G2,22,

A25 = GT
1,32R

−1
32 G2,32,

and

b1 = GT
1,11R

−1
11 ey,11(xop) + GT

1,21R
−1
21 ey,21(xop),

b2 = GT
1,22R

−1
22 ey,22(xop) + GT

1,32R
−1
32 ey,32(xop),

b3 = GT
2,10R

−1
10 ey,10(xop) + GT

2,11R
−1
11 ey,11(xop),

b4 = GT
2,21R

−1
21 ey,21(xop) + GT

2,22R
−1
22 ey,22(xop),

b5 = GT
2,30R

−1
30 ey,30(xop) + GT

2,32R
−1
32 ey,32(xop).

Unfortunately, A is not invertible in this situation, which means that
we cannot solve for δx? at any iteration.

To remedy the problem, we will assume that the vehicle has followed
a constant-velocity trajectory so that we can write T1 in terms of T2

using the pose-interpolation scheme of Section 7.1.7. To do this, we
require the times corresponding to each pose:

t0, t1, t2. (9.44)

We then define the interpolation variable,

α =
t1 − t0
t2 − t0

, (9.45)

so that we can write

T1 = Tα, (9.46)

where T = T2. Our usual perturbation scheme is

T = exp (ε∧) Top ≈ (1 + ε∧) Top, (9.47)

and for the interpolated variable we have

Tα = (exp (ε∧) Top)
α ≈

(
1 +

(A(α, ξop)ε
)∧)

Tα
op, (9.48)

where A is the interpolation Jacobian and ξop = ln(Top)∨. Using this

9.1 Bundle Adjustment 351

pose-interpolation scheme, we can write the old stacked perturbation
variables in terms of a new reduced set:




ε1

ε2

ζ1

ζ2

ζ3




︸ ︷︷ ︸
δx

=




A(α, ξop)
1

1
1

1




︸ ︷︷ ︸
I




ε
ζ1

ζ2

ζ3




︸ ︷︷ ︸
δx′

, (9.49)

where we will call I the interpolation matrix. Our new set of state
variables to be estimated is

x′ = {T,p1,p2,p3} , (9.50)

now that we have eliminated T1 as a free variable. Returning to our
original ML cost function, we can now rewrite it as

J(x′) ≈ J(x′op)− b′
T

δx′ +
1

2
δx′

T

A′ δx′, (9.51)

where

A′ = ITAI, b′ = ITb. (9.52)

The optimal perturbation (that minimizes the cost function), δx′
?

, is
now the solution to

A′ δx′
?

= b′. (9.53)

We update all the operating points in

x′op = {Top,pop,1,pop,2,pop,3} , (9.54)

using the usual schemes,

Top ← exp
(
ε?
∧
)

Top, pop,j ← pop,j + Dζ?j , (9.55)

and iterate to convergence.
Importantly, applying the interpolation matrix on either side of A to

create A′ does not completely destroy the sparsity. In fact, the bottom-
right block corresponding to the landmarks remains block-diagonal, and
thus A′ is still an arrowhead matrix:

A′ =




∗ ∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗


 , (9.56)

where ∗ indicates a non-zero block. This means that we can still exploit
the sparsity using the methods of the previous section, while interpo-
lating poses.

It turns out that we can use this interpolation scheme (and others) for
more complicated BA problems as well. We just need to decide which

352 Pose-and-Point Estimation Problems

pose variables we want to keep in the state and which to interpolate,
then build the appropriate interpolation matrix, I.

9.2 Simultaneous Localization and Mapping

The SLAM problem is essentially the same as BA, except that we
also typically know something about how the vehicle has moved (i.e.,
a motion model) and can therefore include inputs, v, in the problem.
Logistically, we only need to augment the BA cost function with ad-
ditional terms corresponding to the inputs (Sibley, 2006). Smith et al.
(1990) is the classic reference on SLAM and Durrant-Whyte and Bai-
ley (2006); Bailey and Durrant-Whyte (2006) provide a detailed sur-
vey of the area. The difference is essentially that BA is a maximum
likelihood (ML) problem and SLAM is a maximum a posteriori (MAP)
problem. Our approach is a batch-SLAM method (Lu and Milios, 1997)
similar to the Graph SLAM approach of Thrun and Montemerlo (2005),
but using our method of handling pose variables in three-dimensional
space.

9.2.1 Problem Setup

Another minor difference is that by including inputs/priors, we can
also assume that we have a prior on the initial state, T0, so that it can
be included in the estimation problem (unlike BA)4. Our state to be
estimated is thus

x = {T0, . . . ,TK ,p1, . . . ,pM} . (9.57)

We assume the same measurement model as the BA problem, and the
measurements are given by

y = {y10, . . .yM0, . . . ,y1K , . . . ,yMK} . (9.58)

We will adopt the motion model from Section 8.2 and the inputs are
given by

v =
{
Ť0,$1,$2, . . . ,$K

}
. (9.59)

We will next set up the batch MAP problem.

4 We could also chose not to estimate it and simply hold it fixed, which is very common.

9.2 Simultaneous Localization and Mapping 353

9.2.2 Batch Maximum a Posteriori Solution

We define the following matrices:

δx =

[
δx1

δx2

]
, H =

[
F−1 0
G1 G2

]
, W =

[
Q 0
0 R

]
,

e(xop) =

[
ev(xop)
ey(xop)

]
, (9.60)

where

δx1 =




ε0

ε1

...
εK


 , δx2 =




ζ1

ζ2
...
ζM


 ,

ev(xop) =




ev,0(xop)
ev,1(xop)

...
ev,K(xop)


 , ey(xop) =




ey,10(xop)
ey,20(xop)

...
ey,MK(xop)


 ,

Q = diag
(
P̌0,Q1, . . . ,QK

)
, R = diag (R10,R20, . . . ,RMK) ,

F−1 =




1
−F0 1

−F1
. . .
. . . 1

−FK−1 1



, (9.61)

G1 =




G1,10

...
G1,M0

G1,11

...
G1,M1

. . .

. . .

G1,1K

...
G1,MK




, G2 =




G2,10

. . .

G2,M0

G2,11

. . .

G2,M1

...

...
G2,1K

. . .

G2,MK




.

354 Pose-and-Point Estimation Problems

From Sections 8.2.5 for the motion priors and 9.1.3 for the measure-
ments, the detailed blocks are

Fk−1 = Ad
(
Top,kT

−1
op,k−1

)
, k = 1 . . .K,

ev,k(xop) =

{
ln
(
Ť0T

−1
op,0

)∨
k = 0

ln
(
exp ((tk − tk−1)$∧k) Top,k−1T

−1
op,k

)∨
k = 1 . . .K

,

(9.62)

G1,jk = Sjk (Top,kpop,j)
�
, G2,jk = SjkTop,kD,

ey,jk(xop) = yjk − s (Top,kpop,j) .

Finally, the objective function can be written as usual as

J(x) ≈ J(xop)− bT δx +
1

2
δxTA δx, (9.63)

where

A = HTW−1H, b = HTW−1e(xop), (9.64)

whereupon the minimizing perturbations, δx?, are the solutions to

A δx? = b. (9.65)

We solve for δx?, then update our operating points according to

Top,k ← exp
(
ε?
∧

k

)
Top,k, pop,j ← pop,j + Dζ?j , (9.66)

and iterate to convergence. As in the BA case, once converged we set
T̂vki = Top,k and p̂

pji
i = pop,j at the last iteration as the final estimates

for the vehicle poses and landmark positions of interest.

9.2.3 Exploiting Sparsity

Introducing the motion priors does not destroy the nice sparsity of the
original BA problem. We can see this by noting that

A =

[
A11 A12

AT
12 A22

]
= HTW−1H

=

[
F−TQ−1F−1 + GT

1 R−1G1 GT
1 R−1G2

GT
2 R−1G1 GT

2 R−1G2

]
. (9.67)

Compared to the BA problem, blocks A12 and A22 have not changed
at all, showing that A is still an arrowhead matrix with A22 block-
diagonal. We can thus exploit this sparsity to solve for the perturbations
at each iteration efficiently using either the Schur or Cholesky methods.

While block A11 is now different than the BA problem,

A11 = F−TQ−1F−1

︸ ︷︷ ︸
prior

+ GT
1 R−1G1︸ ︷︷ ︸

measurements

, (9.68)

9.2 Simultaneous Localization and Mapping 355

Figure 9.4 A

SLAM problem

with only three

(non-collinear)

point landmarks

and three free

poses. Pose 0 is not

fixed as we have

some prior

information about

it. There is one

term in the cost

function for each

measurement,

Jy,jk, and motion

prior, Jv,k, as

shown.

T0

T1

T2

p1

p2

p3

Jv,0
Jv,1

Jv,2

Jy,10
Jy,21

Jy,22

Jy,32

<latexit sha1_base64="51H8Mpr7VV2I0ZVTUfKDnCHyJwY=">AAACB3icbVDLSsNAFL2pr1pfVZdugkVwUUqixdpdwY24qmAf0JYymd62QyeTMDMRQugHuHWr/+BO3PoZ/oJf4TQtvg8MHM65h3vneCFnSjvOm5VZWl5ZXcuu5zY2t7Z38rt7TRVEkmKDBjyQbY8o5ExgQzPNsR1KJL7HseVNLmZ+6xalYoG40XGIPZ+MBBsySrSR2lf9JC6eOtN+vuCUnBT2X+IuSKGWhRT1fv69Owho5KPQlBOlOq4T6l5CpGaU4zTXjRSGhE7ICDuGCuKj6iXpvVP7yCgDexhI84S2U/V7IiG+UrHvmUmf6LH67c3E/7xOpIfnvYSJMNIo6HzRMOK2DuzZ5+0Bk0g1jw0hVDJzq03HRBKqTUW5bhpMRKDTcvpjJAOU05wpx/3qpGpQKS9I1f0sp3lScs9K7nW5UCvOW4IsHMAhHIMLFajBJdShARQ43MMDPFp31pP1bL3MRzPWIrMPP2C9fgAhHZpY</latexit>

Jy,30fixed

<latexit sha1_base64="6rhVHxnGvJQseT9NGq63Sbnjlcc=">AAACB3icbVDLSgMxFL3js9ZX1aWbwSK4KGUixdpdwY24qmAf0JaSSW/b0ExmSDJCGfoBbt3qP7gTt36Gv+BXmE6L7wOBwzn3cG+OHwmujee9OUvLK6tr65mN7ObW9s5ubm+/ocNYMayzUISq5VONgkusG24EtiKFNPAFNv3xxcxv3qLSPJQ3ZhJhN6BDyQecUWOl1lUvmRQImfZyea/opXD/ErIg+WoGUtR6ufdOP2RxgNIwQbVuEy8y3YQqw5nAabYTa4woG9Mhti2VNEDdTdJ7p+6xVfruIFT2SeOm6vdEQgOtJ4FvJwNqRvq3NxP/89qxGZx3Ey6j2KBk80WDWLgmdGefd/tcITNiYgllittbXTaiijJjK8p20mAiQ5OW0xsh7aOaZm055KuTikW5tCAV8llO47RIzorkupSvFuYtQQYO4QhOgEAZqnAJNagDAwH38ACPzp3z5Dw7L/PRJWeROYAfcF4/AB9+mlc=</latexit>

Jy,11

we have seen previously (e.g., Section 8.2.5) that it is block-tridiagonal.
Thus, we could choose to exploit the sparsity of A11 rather than A22, if
the number of poses were large compared to the number of landmarks,
for example. In this case, the Cholesky method is preferred over the
Schur one as we do not need to construct A−1

11 , which is actually dense.
Kaess et al. (2008, 2012) provide incremental methods of updating the
batch-SLAM solution that exploit sparsity beyond the primary block
structure discussed here.

9.2.4 Example

Figure 9.4 shows a simple SLAM problem with three point landmarks
and three free poses. In contrast to the BA example of Figure 9.3, we
now allow T0 to be estimated as we have some prior information about
it,
{
Ť0, P̌0

}
, in relation to an external reference frame (shown as the

black, fixed pose). We have shown graphically all of the terms in the
objective function5, one for each measurement and input, totalling nine
terms:

J = Jv,0 + Jv,1 + Jv,2︸ ︷︷ ︸
prior terms

+ Jy,10 + Jy,30 + Jy,11 + Jy,21 + Jy,22 + Jy,32︸ ︷︷ ︸
measurement terms

(9.69)
Also, with the motion priors we have used, A is always well condi-
tioned and will provide a solution for the trajectory, even without any
measurements.

5 Sometimes this type of diagram is called a factor graph with each ‘factor’ from the

posterior likelihood over the states becoming a ‘term’ in the objective function, which

is really just the negative log likelihood of the posterior over states.

10

Continuous-Time Estimation

All of our examples in this last part of the book have been in discrete
time, which is sufficient for many applications. However, it is worth
investigating how we might make use of the continuous-time estimation
tools from Sections 3.4 and 4.4 when working with state variables in
SE(3). To this end, we show one way to start from a specific nonlinear,
stochastic differential equation and build motion priors that encourage
trajectory smoothness1. We then show where these motion priors could
be used within a trajectory estimation problem. Finally, we show how
to interpolate for query poses at times in between the main solution
times, using Gaussian process interpolation.

10.1 Motion Prior

We will begin by discussing how to represent general motion priors on
SE(3). We will do this in the context of a specific nonlinear, stochastic
differential equation. We will also further simplify this to make the
analysis tractable.

10.1.1 General

Ideally, we would like to use the following system of nonlinear, stochas-
tic, differential equations to build our motion prior2:

Ṫ(t) = $(t)∧T(t), (10.1a)

$̇(t) = w(t), (10.1b)

w(t) ∼ GP (0,Q δ(t− t′)) . (10.1c)

To use this to build our motion priors, we will need to estimate the pose,
T(t), and the body-centric, generalized velocity, $(t), at some times
of interest: t0, t1, . . . , tK . White noise, w(t), enters the system through
the generalized angular acceleration; in the absence of noise, the body-
centric, generalized velocity is constant. The trouble with using this

1 See Furgale et al. (2015) for a survey of continuous-time methods.
2 It is this model that we approximated as a discrete-time system in the previous two

chapters in order to build discrete-time motion priors.

357

358 Continuous-Time Estimation

model directly in continuous time is that it is nonlinear and the state
is of the form {T(t),$(t)} ∈ SE(3) × R3. Even the nonlinear tools
from Section 4.4 do not directly apply in this situation.

Gaussian Processes for SE(3)

Inspired by the way we have handled Gaussian random variables for
Lie groups, we can define a Gaussian process for poses in which the
mean function is defined on SE(3)×R3 and the covariance function is
defined on se(3)× R3:

mean function:
{
Ť(t), $̌

}
, (10.2a)

covariance function: P̌(t, t′), (10.2b)

combination: T(t) = exp (ξ(t)∧) Ť(t), (10.2c)

$(t) = $̌ + η(t), (10.2d)[
ξ(t)
η(t)

]

︸ ︷︷ ︸
γ(t)

∼ GP
(
0, P̌(t, t′)

)
. (10.2e)

While we could attempt to specify the covariance function directly, we
prefer to define it via a stochastic differential equation. Fortunately, we
can use (7.253) from Section 7.2.4 to break the above SDE into nominal
(mean) and perturbed (noise) parts:

nominal (mean): ˙̌T(t) = $̌∧Ť(t), (10.3a)

˙̌$ = 0, (10.3b)

perturbation (cov):

[
ξ̇(t)
η̇(t)

]

︸ ︷︷ ︸
γ̇(t)

=

[
$̌f 1
0 0

]

︸ ︷︷ ︸
A

[
ξ(t)
η(t)

]

︸ ︷︷ ︸
γ(t)

+

[
0
1

]

︸︷︷︸
L

w(t), (10.3c)

w(t) ∼ GP (0,Q δ(t− t′)) . (10.3d)

The (deterministic) differential equation defining the mean function is
nonlinear and can be integrated in closed form,

Ť(t) = exp ((t− t0)$̌∧) Ť0, (10.4)

while the SDE defining the covariance function is linear, time-invariant3

and thus we can apply the tools from Section 3.4, specifically 3.4.3, to
build a motion prior. It is important to note that this new system of
equations only approximates the (ideal) one at the start of the section;
they will be very similar when ξ(t) remains small. Anderson and Bar-
foot (2015) provide a different method of approximating the desired
nonlinear SDE that employs local variables.

3 While we have that the prior generalized velocity does not change over time, in general

we could use whatever time-varying function we like, $̌(t), but the computation of the

transition function will become more complicated. Letting it be piecewise constant

between measurement times would be a straightforward extension.

10.1 Motion Prior 359

Transition Function

With $̌ constant, the transition function for the perturbation system
is

Φ(t, s) =

[
exp ((t− s)$̌f) (t− s)J ((t− s)$̌)

0 1

]
, (10.5)

with no approximation. This can be checked by verifying that Φ(t, t) =
1 and Φ̇(t, s) = AΦ(t, s). We can also see this by working out the
transition function directly for this LTI system:

Φ(t, s) = exp (A(t− s))

=
∞∑

n=0

(t− s)n
n!

An

=
∞∑

n=0

(t− s)n
n!

([
$̌f 1
0 0

])n

=

[∑∞
n=0

(t−s)n
n!

($̌f)
n

(t− s)∑∞n=0
(t−s)n
(n+1)!

($̌f)
n

0 0

]

=

[
exp ((t− s)$̌f) (t− s)J ((t− s)$̌)

0 1

]
. (10.6)

Notably, it is somewhat rare that we can find the transition function
so neatly when A is not nilpotent.

Error Terms

With the transition function in hand, we can define error terms for use
within a maximum-a-posterior estimator. The error term at the first
timestep will be

ev,0(x) = −γ(t0) = −
[

ln
(
T0Ť

−1
0

)∨
$0 − $̌

]
, (10.7)

where P̌0 is our initial state uncertainty. For later times, k = 1 . . .K,
we define the error term to be

ev,k(x) = Φ(tk, tk−1)γ(tk−1)− γ(tk), (10.8)

which takes a bit of explanation. The idea is to formulate the error on
se(3)× R3 since this is where the covariance function lives. It is worth
noting that the mean function for γ(t) was defined to be zero, making
this error definition straightforward. We can also write this as

ev,k(x) = Φ(tk, tk−1)

[
ln
(
Tk−1Ť

−1
k−1

)∨
$k−1 − $̌

]
−
[

ln
(
TkŤ

−1
k

)∨
$k − $̌

]
, (10.9)

360 Continuous-Time Estimation

in terms of the quantities to be estimated: Tk, $k, Tk−1, and $k−1.
The covariance matrix associated with this error is given by

Qk =

∫ tk

tk−1

Φ(tk, s)LQL
TΦ(tk, s)

T ds, (10.10)

which is described in more detail in Section 3.4.3; again, we are using
the SDE defined on se(3)×R3 to compute this covariance. Despite hav-
ing the transition matrix in closed form, this integral is best computed
either numerically or by making an approximation or simplification
(which we do in the next section). The combined objective function for
the entire motion prior is thus given by

Jv(x) =
1

2
ev,0(x)T P̌−1

0 ev,0(x) +
1

2

K∑

k=1

ev,k(x)TQ−1
k ev,k(x), (10.11)

which does not contain any terms associated with the measurements.

Linearized Error Terms

To linearize our error terms defined above, we adopt the SE(3) per-
turbation scheme for poses and the usual one for generalized velocities,

Tk = exp (ε∧k) Top,k, (10.12a)

$k = $op,k +ψk, (10.12b)

where {Top,k,$op,k} is the operating point and (εk,ψk) is the pertur-
bation. Using the pose perturbation scheme we see that

ξk = ln
(
TkŤ

−1
k

)∨
= ln

(
exp (ε∧k) Top,kŤ

−1
k

)∨

= ln
(
exp (ε∧k) exp

(
ξ∧op,k

))∨ ≈ ξop,k + εk, (10.13)

where ξop,k = ln
(
Top,kŤ

−1
k

)∨
. We have used a very approximate ver-

sion of the BCH formula here, which is only valid if both εk and ξop,k

are both quite small. The former is reasonable since εk → 0 as our esti-
mation scheme converges. The latter will be so if the motion prior has
low uncertainty; we have essentially already made this assumption in
separating our SDE into the nominal and perturbation parts. Inserting
this linearization results in the following linearized error terms:

ev,k(x) ≈
{

ev,0(xop)− θ0 k = 0
ev,k(xop) + Fk−1θk−1 − θk k = 1 . . .K

, (10.14)

where

θk =

[
εk
ψk

]
, (10.15)

10.1 Motion Prior 361

is the stacked perturbation for both the pose and generalized velocity
at time k and

Fk−1 = Φ (tk, tk−1) . (10.16)

Defining

δx1 =




θ0

θ1

...
θK


 , ev(xop) =




ev,0(xop)
ev,1(xop)

...
ev,K(xop)


 ,

F−1 =




1
−F0 1

−F1
. . .
. . . 1

−FK−1 1



,

Q = diag
(
P̌0,Q1, . . . ,QK

)
, (10.17)

we can write the approximate motion-prior part of the objective func-
tion in block form as

Jv(x) ≈ 1

2

(
ev(xop)− F−1 δx1

)T
Q−1

(
ev(xop)− F−1 δx1

)
, (10.18)

which is quadratic in the perturbation, δx1.

10.1.2 Simplification

Computing the Qk blocks in the general case can be done numerically.
However, we can evaluate them in closed form fairly easily for the
specific case of no rotational motion (in the mean of the prior only).
To do this, we define the (constant) generalized velocity to be of the
form

$̌ =

[
ν̌
0

]
. (10.19)

The mean function will be a constant, linear velocity (i.e., no angular
rotation), ν̌. We then have that

$̌f$̌f =

[
0 ν̌∧

0 0

] [
0 ν̌∧

0 0

]
= 0, (10.20)

so that

exp ((t− s)$̌f) = 1 + (t− s)$̌f, (10.21a)

J ((t− s)$̌) = 1 +
1

2
(t− s)$̌f, (10.21b)

362 Continuous-Time Estimation

with no approximation. The transition function is therefore

Φ(t, s) =

[
1 + (t− s)$̌f (t− s)1 + 1

2
(t− s)2$̌f

0 1

]
. (10.22)

We now turn to computing the Qk blocks starting from

Qk =

∫ tk

tk−1

Φ(tk, s)LQL
TΦ(tk, s)

T ds. (10.23)

Plugging in the quantities involved in the integrand we have

Qk =

[
Qk,11 Qk,12

QT
k,12 Qk,22

]
, (10.24a)

Qk,11 =

∫ ∆tk:k−1

0

(
(∆tk:k−1 − s)2Q+

1

2
(∆tk:k−1 − s)3

×
(
$̌fQ+Q$̌fT

)
+

1

4
(∆tk:k−1 − s)4$̌fQ$̌fT

)
ds,

(10.24b)

Qk,12 =

∫ ∆tk:k−1

0

(
(∆tk:k−1 − s)Q+

1

2
(∆tk:k−1 − s)2$̌fQ

)
ds,

(10.24c)

Qk,22 =

∫ ∆tk:k−1

0

Q ds, (10.24d)

∆tk:k−1 = tk − tk−1. (10.24e)

Carrying out the integrals (of simple polynomials) we have

Qk,11 =
1

3
∆t3k:k−1Q+

1

8
∆t4k:k−1

(
$̌fQ+Q$̌fT

)

+
1

20
∆t5k:k−1$̌

fQ$̌fT , (10.25a)

Qk,12 =
1

2
∆t2k:k−1Q+

1

6
∆t3k:k−1$̌

fQ, (10.25b)

Qk,22 = ∆tk:k−1Q. (10.25c)

These expressions can be used to build Qk from the known quantities,
$̌, Q, and ∆tk:k−1.

10.2 Simultaneous Trajectory Estimation and Mapping

Using the motion prior from the previous section to smooth the so-
lution, we can set up a simultaneous trajectory estimation and map-
ping (STEAM) problem. STEAM is really just a variant of simulta-
neous localization and mapping (SLAM), where we have the ability to
inherently query the robot’s underlying continuous-time trajectory at
any time of interest, not just the measurement times. We show first

10.2 Simultaneous Trajectory Estimation and Mapping 363

how to solve for the state at the measurement times. Then, we show
how to use Gaussian process interpolation to solve for the state (and
covariance) at other query times.

10.2.1 Problem Setup

The use of our continuous-time motion prior is a fairly straightforward
modification of the discrete-time approach from Section 9.2.2. The state
to be estimated is now

x = {T0,$0, . . . ,TK ,$K ,p1, . . . ,pM} , (10.26)

which includes the poses, the generalized velocity variables, and the
landmark positions. The times, t0, t1, . . . , tK correspond to the mea-
surements times and the measurements available in our problem are

y = {y10, . . .yM0, . . . ,y1K , . . . ,yMK} , (10.27)

which remain the same as the discrete-time SLAM case.

10.2.2 Measurement Model

We use the same measurement model as the discrete-time SLAM case
but slightly modify some of the block matrices to account for the fact
that the estimated state now includes the $k quantities, which are not
required in the measurement error terms. We continue to use the usual
perturbation scheme for the landmark positions:

pj = pop,j + Dζj, (10.28)

where pop,j is the operating point and ζj is the perturbation.
To build the part of the objective function associated with the mea-

surements, we define the following matrices:

δx2 =




ζ1

ζ2
...
ζM


 , ey(xop) =




ey,10(xop)
ey,20(xop)

...
ey,MK(xop)


 ,

R = diag (R10,R20, . . . ,RMK) , (10.29)

364 Continuous-Time Estimation

and

G1 =




G1,10

...
G1,M0

G1,11

...
G1,M1

. . .

. . .

G1,1K

...
G1,MK




, G2 =




G2,10

. . .

G2,M0

G2,11

. . .

G2,M1

...

...
G2,1K

. . .

G2,MK




.

(10.30)

The detailed blocks are

G1,jk =
[
Sjk (Top,kpop,j)

�
0
]
, G2,jk = SjkTop,kD,

ey,jk(xop) = yjk − s (Top,kpop,j) ,

where we see that the only change from the SLAM case is that the G1,jk

matrix has a padding 0 to account for the fact that the ψk perturbation
variable (associated with $k) is not involved in the observation of
landmark j from pose k. The part of the objective function associated
with the measurements is then approximately

Jy(x) ≈ 1

2
(ey(xop)−G1 δx1 −G2 δx2)

T
R−1

× (ey(xop)−G1 δx1 −G2 δx2) , (10.31)

which is again quadratic in the perturbation variables, δx1 and δx2.

10.2.3 Batch Maximum a Posteriori Solution

With both the motion prior and the measurement terms in hand, we
can write the full MAP objective function as

J(x) = Jv(x) + Jy(x) ≈ J(xop)− bT δx + δxTA δx, (10.32)

with

A = HTW−1H, b = HTW−1e(xop), (10.33)

10.2 Simultaneous Trajectory Estimation and Mapping 365

and

δx =

[
δx1

δx2

]
, H =

[
F−1 0
G1 G2

]
, W =

[
Q 0
0 R

]
,

e(xop) =

[
ev(xop)
ey(xop)

]
. (10.34)

The minimizing perturbation, δx?, is the solution to

A δx? = b. (10.35)

As usual, we solve for δx?, then apply the optimal perturbations using
the appropriate schemes,

Top,k ← exp
(
ε?
∧

k

)
Top,k, (10.36a)

$op,k ←$op,k +ψ?
k, (10.36b)

pop,j ← pop,j + Dζ?j , (10.36c)

and iterate to convergence. Similarly to the SLAM case, once converged
we set T̂vki = Top,k, $̂

vki
vk

= $op,k, and p̂
pji
i = pop,j at the last iteration

as the final estimates for the vehicle poses, generalized velocity, and
landmark positions of interest at the measurement times.

10.2.4 Exploiting Sparsity

Introducing the continuous-time motion priors does not destroy the
nice sparsity of the discrete-time SLAM problem. We can see this by
noting that

A =

[
A11 A12

AT
12 A22

]
= HTW−1H

=

[
F−TQ−1F−1 + GT

1 R−1G1 GT
1 R−1G2

GT
2 R−1G1 GT

2 R−1G2

]
. (10.37)

Compared to the SLAM problem, blocks A12 and A22 have not changed
at all, showing that A is still an arrowhead matrix with A22 block-
diagonal. We can thus exploit this sparsity to solve for the perturbations
at each iteration efficiently using either the Schur or Cholesky methods.

The block A11 looks very similar to the discrete-time SLAM case,

A11 = F−TQ−1F−1

︸ ︷︷ ︸
prior

+ GT
1 R−1G1︸ ︷︷ ︸

measurements

, (10.38)

but recall that the G1 matrix is slightly different due the fact that we
are estimating both pose and generalized velocity at each measurement
time. Nevertheless, A11 is still block-tridiagonal. Thus, we could choose
to exploit the sparsity of A11 rather than A22, if the number of poses
were large compared to the number of landmarks, for example. In this

366 Continuous-Time Estimation

Figure 10.1 It is

possible to use our

continuous-time

estimation

framework to

interpolate (for the

mean and the

covariance)

between the main

estimation times

(i.e., measurement

times).

Ťk+1

Ťk

T̂k

T̂k+1

T̂⌧

prior

posterior

posterior interpolated
posterior

Ť⌧ prior prior

case, the Cholesky method is preferred over the Schur one as we do not
need to construct A−1

11 , which is actually dense. Yan et al. (2014) explain
how to use the sparse-GP method within the incremental approach of
Kaess et al. (2008, 2012).

10.2.5 Interpolation

After we have solved for the state at the measurement times, we can also
now use our Gaussian process framework to interpolate for the state
at one or more query times. The situation is depicted in Figure 10.1,
where our goal is to interpolate the posterior pose (and generalized
velocity) at query time, τ .

Because we have deliberately estimated a Markovian state for our
chosen SDE defining the prior, {Tk,$k}, we know that to interpolate
at time τ , we need only consider the two measurements times on either
side. Without loss of generality, we assume

tk ≤ τ < tk+1. (10.39)

The difference between the posterior and the prior at times τ , tk, and
tk+1 we write as

γτ =

[
ln
(
T̂τŤ

−1
τ

)∨

$̂τ − $̌

]
, γk =

[
ln
(
T̂kŤ

−1
k

)∨

$̂k − $̌

]
,

γk+1 =

[
ln
(
T̂k+1Ť

−1
k+1

)∨

$̂k+1 − $̌

]
, (10.40)

where we note that the posterior values at the two measurement times
come from the operating point values at the last iteration of the main

MAP solution:
{

T̂k, $̂k

}
= {Top,k,$op,k}.

Using these definitions, we can go ahead and carry out state interpo-
lation (for the mean) on se(3)×R3 using the approach from Section 3.4:

γτ = Λ(τ)γk + Ψ(τ)γk+1, (10.41)

10.2 Simultaneous Trajectory Estimation and Mapping 367

where

Λ(τ) = Φ(τ, tk)−QτΦ(tk+1, τ)TQ−1
k+1Φ(tk+1, tk), (10.42a)

Ψ(τ) = QτΦ(tk+1, τ)TQ−1
k+1. (10.42b)

We have all the required pieces to build these two matrices except Qτ ,
which is given by

Qτ =

∫ τ

tk

Φ(τ, s)LQLTΦ(τ, s)T ds. (10.43)

We can either integrate this numerically, or adopt the linear-motion
simplification,

$̌ =

[
ν̌
0

]
, (10.44)

whereupon

Qτ =

[
Qτ,11 Qτ,12

QT
τ,12 Qτ,22

]
, (10.45a)

Qτ,11 =
1

3
∆t3τ :kQ+

1

8
∆t4τ :k

(
$̌fQ+Q$̌fT

)

+
1

20
∆t5τ :k$̌

fQ$̌fT , (10.45b)

Qτ,12 =
1

2
∆t2τ :kQ+

1

6
∆t3τ :k$̌

fQ, (10.45c)

Qτ,22 = ∆tτ :kQ, (10.45d)

∆tτ :k = τ − tk. (10.45e)

Plugging this in, we can evaluate

γτ =

[
ξτ
ητ

]
, (10.46)

and then compute the interpolated posterior on SE(3)× R3 as

T̂τ = exp
(
ξ∧τ
)
Ť, (10.47a)

$̂τ = $̌ + ητ . (10.47b)

The cost of this trajectory query is O(1) since it only involves two
measurement times in the interpolation equation. We can repeat this
as many times as we like for different values of τ . A similar approach
can be used to interpolate the covariance at the query time using the
methods from Section 3.4.

10.2.6 Postscript

It is worth pointing out that while our underlying approach in this
chapter considers a trajectory that is continuous in time, we are still

368 Continuous-Time Estimation

discretizing it in order to carry out the batch MAP solution at the mea-
surement times and also the interpolation at the query times. The point
is that we have a principled way to query the trajectory at any time
of interest, not just the measurement times. Moreover, the interpola-
tion scheme is chosen up front and provides the abilities to (i) smooth
the solution based on a physically motivated prior and, (ii) carry out
interpolation at any time of interest.

It is also worth noting that the Gaussian process approach taken in
this chapter is quite different from the interpolation approach taken in
Section 9.1.5. There we forced the motion between measurement times
to have constant body-centric generalized velocity: it was a constraint-
based interpolation method. Here we are defining a whole distribution
of possible trajectories and encouraging the solution to find one that
balances the prior with the measurements: this is a penalty-term ap-
proach. Both approaches have their merits.

Finally, it is worth making a point about the estimation philoso-
phy used in this chapter. We have claimed that we presented a MAP
method. However, in the nonlinear chapter, the MAP approach always
linearized the motion model about the current MAP estimate. On the
surface, it appear that we have done something slightly different in this
chapter: to separate the desired nonlinear SDE into the nominal and
perturbation components, we essentially linearized about the mean of
the prior. We then built an error term for the motion prior and lin-
earized that about the current MAP estimate. However, the other way
to look at it is that we simply replaced the desired SDE with a slightly
different one that was easier to work with and then applied the MAP
approach for SE(3). This is not the only way to apply the Gaussian
process, continuous-time approach to estimation on SE(3), but we hope
it provides one useful example; Anderson and Barfoot (2015) provide
an alternative.

References

Absil, P A, Mahony, R, and Sepulchre, R. 2009. Optimization on Matrix Manifolds.
Princeton University Press.

Anderson, S, and Barfoot, T D. 2015 (28 September - 2 October). Full STEAM
Ahead: Exactly Sparse Gaussian Process Regression for Batch Continuous-Time
Trajectory Estimation on SE(3). In: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).

Anderson, S, Barfoot, T D, Tong, C H, and Särkkä, S. 2015. Batch Nonlinear
Continuous-Time Trajectory Estimation as Exactly Sparse Gaussian Process Re-
gression. Autonomous Robots, special issue on “Robotics Science and Systems”,
39(3), 221–238.

Arun, K S, Huang, T S, and Blostein, S D. 1987. Least-Squares Fitting of Two 3D
Point Sets. IEEE Transactions on Pattern Analysis and Machine Intelligence,
9(5), 698–700.

Bailey, T, and Durrant-Whyte, H. 2006. Simultaneous Localisation and Mapping
(SLAM): Part II State of the Art. IEEE Robotics and Automation Magazine,
13(3), 108–117.

Barfoot, T D, Forbes, J R, and Furgale, P T. 2011. Pose Estimation using Linearized
Rotations and Quaternion Algebra. Acta Astronautica, 68(1-2), 101–112.

Barfoot, T D, Tong, C H, and Särkkä, S. 2014 (12-16 July). Batch Continuous-
Time Trajectory Estimation as Exactly Sparse Gaussian Process Regression. In:
Proceedings of Robotics: Science and Systems (RSS).

Barfoot, Timothy D, and Furgale, Paul T. 2014. Associating Uncertainty with
Three-Dimensional Poses for use in Estimation Problems. IEEE Transactions on
Robotics, 30(3), 679–693.

Bayes, Thomas. 1764. Essay towards solving a problem in the doctrine of chances.
Philosophical Transactions of the Royal Society of London.

Besl, P J, and McKay, N D. 1992. A Method for Registration of 3-D Shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 14(2), 239–256.

Bierman, G J. 1974. Sequential Square Root Filtering and Smoothing of Discrete
Linear Systems. Automatica, 10(2), 147–158.

Bishop, Christopher M. 2006. Pattern Recognition and Machine Learning. Secaucus,
NJ, USA: Springer-Verlag New York, Inc.

Box, M J. 1971. Bias in Nonlinear Estimation. Journal of the Royal Statistical
Society, Series B, 33(2), 171–201.

Brookshire, J, and Teller, S. 2012 (July). Extrinsic Calibration from Per-Sensor
Egomotion. In: Proceedings of Robotics: Science and Systems.

Brown, D C. 1958. A Solution to the General Problem of Multiple Station Analytical
Stereotriangulation. RCA-MTP Data Reduction Technical Report No. 43 (or
AFMTC TR 58-8). Patrick Airforce Base, Florida.

Bryson, A E. 1975. Applied Optimal Control: Optmization, Estimation and Control.
Taylor and Francis.

369

370 References

Chen, C S, Hung, Y P, and Cheng, J B. 1999. RANSAC-based DARCES: A new
approach to fast automatic registration of partially overlapping range images.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(11), 1229–
1234.

Chirikjian, G S. 2009. Stochastic Models, Information Theory, and Lie Groups:
Classical Results and Geometric Methods. Vol. 1-2. New York: Birkhauser.

Chirikjian, G S, and Kyatkin, A B. 2001. Engineering Applications of Noncommu-
tative Harmonic Analysis: With Emphasis on Rotation and Motion Groups. CRC
Press.

Chirikjian, G S, and Kyatkin, A B. 2016. Harmonic Analysis for Engineers and
Applied Scientists: Updated and Expanded Edition. Dover Publications.

Corke, P. 2011. Robotics, Vision, and Control. Springer Tracts in Advanced Robotics
73. Springer.

Davenport, P B. 1965. A Vector Approach to the Algebra of Rotations with Appli-
cations. Tech. rept. X-546-65-437. NASA.

de Ruiter, A H J, and Forbes, J R. 2013. On the Solution of Wahba’s Problem on
SO(n). Journal of the Astronautical Sciences, 60(1), 1–31.

D’Eleuterio, G M T. 1985 (June). Multibody Dynamics for Space Station Manip-
ulators: Recursive Dynamics of Topological Chains. Tech. rept. SS-3. Dynacon
Enterprises Ltd.

Devlin, Keith. 2008. The Unfinished Game: Pascal, Fermat, and the Seventeenth-
Century Letter that Made the World Modern. Basic Book.

Dudek, G, and Jenkin, M. 2010. Compuational Principles of Mobile Robotics.
Cambridge University Press.

Durrant-Whyte, H, and Bailey, T. 2006. Simultaneous Localisation and Mapping
(SLAM): Part I The Essential Algorithms. IEEE Robotics and Automation Mag-
azine, 11(3), 99–110.

Dyce, M. 2013. Canada between the photograph and the map: Aerial photography,
geographical vision and the state. Journal of Historical Geography, 39, 69–84.

Fischler, M, and Bolles, R. 1981. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Commu-
nications of ACM, 24(6), 381–395.

Furgale, P T. 2011. Extensions to the Visual Odometry Pipeline for the Exploration
of Planetary Surfaces. Ph.D. thesis, University of Toronto.

Furgale, P T, Tong, C H, Barfoot, T D, and Sibley, G. 2015. Continuous-Time Batch
Trajectory Estimation Using Temporal Basis Functions. International Journal of
Robotics Research, 34(14), 1688–1710.

Green, B F. 1952. The Orthogonal Approximation of an Oblique Structure in Factor
Analysis. Psychometrika, 17(4), 429–440.

Hartley, R, and Zisserman, A. 2000. Multiple View Geometry in Computer Vision.
Cambridge University Press.

Hertzberg, C, Wagner, R, Frese, U, and Schröder, L. 2013. Integrating generic
sensor fusion algorithms with sound state representations through encapsulation
of manifolds. Information Fusion, 14(1), 57 – 77.

Holland, P W, and Welsch, R E. 1977. Robust Regression Using Iteratively
Reweighted Least-Squares. Communications in Statistics – Theory and Meth-
ods, 6(9), 813–827.

Horn, B K P. 1987a. Closed-Form Solution of Absolute Orientation using Orthonor-
mal Matrices. Journal of the Optical Society of America A, 5(7), 1127–1135.

Horn, B K P. 1987b. Closed-Form Solution of Absolute Orientation using Unit
Quaternions. Journal of the Optical Society of America A, 4(4), 629–642.

Hughes, Peter C. 1986. Spacecraft Attitude Dynamics. Dover.

References 371

Jazwinski, A H. 1970. Stochastic Processes and Filtering Theory. Academic, New
York.

Julier, S, and Uhlmann, J. 1996. A General Method for Approximating Nonlin-
ear Transformations of Probability Distributions. Tech. rept. Robotics Research
Group, University of Oxford.

Kaess, M, Ranganathan, A, and Dellaert, R. 2008. iSAM: Incremental Smoothing
and Mapping. IEEE TRO, 24(6), 1365–1378.

Kaess, M, Johannsson, H, Roberts, R, Ila, V, Leonard, J J, and Dellaert, F. 2012.
iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree. IJRR, 31(2),
217–236.

Kalman, R E. 1960a. Contributions to the Theory of Optimal Control. Boletin de
la Sociedad Matematica Mexicana, 5, 102–119.

Kalman, R E. 1960b. A New Approach to Linear Filtering and Prediction Problems.
Trans. ASME, Journal of Basic Engineering, 82, 35–45.

Kelly, Alonzo. 2013. Mobile Robotics: Mathematics, Models, and Methods.
Cambridge University Press.

Klarsfeld, S, and Oteo, J A. 1989. The Baker-Campbell-Hausdorff formula and
the convergence of the Magnus expansion. Journal of Phys. A: Math. Gen., 22,
4565–4572.

Lee, T, Leok, M, and McClamroch, N H. 2008. Global Symplectic Uncertainty
Propagation on SO(3). Pages 61–66 of: Proceedings of the 47th IEEE Conference
on Decision and Control.

Long, A W, Wolfe, K C, Mashner, M J, and Chirikjian, G S. 2012. The Banana
Distribution is Gaussian: A Localization Study with Exponential Coordinates.
In: Proceedings of Robotics: Science and Systems.

Lowe, D G. 2004. Distinctive Image Features from Scale-Invariant Keypoints. In-
ternational Journal of Computer Vision, 60(2), 91–110.

Lu, F, and Milios, E. 1997. Globally Consistent Range Scan Alignment for Envir-
onment Mapping. Auton. Robots, 4(4), 333–349.

MacTavish, K A, and Barfoot, T D. 2015 (3-5 June). At All Costs: A Comparison
of Robust Cost Functions for Camera Correspondence Outliers. Pages 62–69 of:
Proceedings of the 12th Conference on Computer and Robot Vision (CRV).

Madow, William F. 1949. On the Theory of Systematic Sampling, II. Annals of
Mathematical Statistics, 30, 333–354.

Mahalanobis, P. 1936. On the Generalized Distance in Statistics. Pages 49–55 of:
Proceedings of the National Institute of Science, vol. 2.

Matthies, L, and Shafer, S A. 1987. Error Modeling in Stereo Navigation. IEEE
Journal of Robotics and Automation, 3(3), 239–248.

Maybeck, Peter S. 1994. Stochastic Models, Estimation and Control. Navtech Book
and Software Store.

McGee, L A, and Schmidt, S F. 1985 (November). Discovery of the Kalman Filter
as a Practical Tool for Aerospace and Industry. Tech. rept. NASA-TM-86847.
NASA.

Murray, R M, Li, Z, and Sastry, S. 1994. A Mathematical Introduction to Robotic
Manipulation. CRC Press.

Papoulis, Athanasios. 1965. Probability, Random Variables, and Stochastic Pro-
cesses. McGraw-Hill Book Company, New York.

Peretroukhin, V, Vega-Brown, W, Roy, N, and Kelly, J. 2016 (16-21 May). PROBE-
GK: Predictive Robust Estimation Using Generalized Kernels. Pages 817–824 of:
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA).

Rasmussen, C E, and Williams, C K I. 2006. Gaussian Processes for Machine
Learning. Cambridge, MA: MIT Press.

372 References

Rauch, H E, Tung, F, and Striebel, C T. 1965. Maximum Likelihood Estimates of
Linear Dynamic Systems. AIAA Journal, 3(8), 1445–1450.

Särkkä, S. 2006. Recursive Bayesian Inference on Stochastic Differential Equations.
Ph.D. thesis, Helsinki University of Technology.

Särkkä, S. 2013. Bayesian Filtering and Smoothing. Cambridge University Press.
Sastry, S. 1999. Nonlinear Systems: Analysis, Stability, and Control. New York:

Springer.
Shannon, Claude E. 1948. A Mathematical Theory of Communication. The Bell

System Technical Journal, 27, 379–423, 623–656.
Sherman, J, and Morrison, W J. 1949. Adjustment of an Inverse Matrix Corre-

sponding to Changes in the Elements of a Given Column or Given Row of the
Original Matrix. Annals of Mathematics and Statistics, 20, 621.

Sherman, J, and Morrison, W J. 1950. Adjustment of an Inverse Matrix Corre-
sponding to a Change in One Element of a Given Matrix. Annals of Mathematics
and Statistics, 21, 124–127.

Sibley, G. 2006. A Sliding Window Filter for SLAM. Tech. rept. University of
Southern California.

Sibley, G., Sukhatme, G., and Matthies, L. 2006. The Iterated Sigma Point Kalman
Filter with Applications to Long-Range Stereo. In: Proceedings of Robotics: Sci-
ence and Systems.

Sibley, Gabe. 2007. Long Range Stereo Data-Fusion From Moving Platforms. Ph.D.
thesis, University of Southern California.

Simon, D. 2006. Optimal State Estimation: Kalman, H Infinity, and Nonlinear
Approaches. Wiley-Interscience.

Smith, P, Drummond, T, and Roussopoulos, K. 2003. Computing MAP Trajec-
tories by Representing, Propagating, and Combining PDFs Over Groups. In:
Proceedings of the IEEE International Conference on Computer Vision.

Smith, Randall C., Self, Matthew, and Cheeseman, Peter. 1990. Estimating Un-
certain Spatial Relationships in Robotics. Pages 167–193 of: Cox, Ingemar J.,
and Wilfong, Gordon T. (eds), Autonomous Robot Vehicles. New York: Springer
Verlag.

Stengel, R F. 1994. Optimal Control and Estimation. Dover Publications Inc.
Stillwell, J. 2008. Naive Lie Theory. Springer.
Stuelpnagel, J. 1964. On the Parameterization of the Three-Dimensional Rotation

Group. SIAM Review, 6(4), 422–430.
Su, S F, and Lee, C S G. 1991. Uncertainty manipulation and propagation and

verification of applicability of actions in assembly tasks. Pages 2471–2476 of:
Proceedings of the IEEE International Conference on Robotics and Automation,
vol. 3.

Su, S F, and Lee, C S G. 1992. Manipulation and propagation of uncertainty and
verification of applicability of actions in assembly tasks. IEEE Transactions on
Systems, Man and Cybernetics, 22(6), 1376–1389.

Thrun, S., and Montemerlo, M. 2005. The GraphSLAM Algorithm With Appli-
cations to Large-Scale Mapping of Urban Structures. International Journal on
Robotics Research, 25(5/6), 403–430.

Thrun, Sebastian, Fox, Dieter, Burgard, Wolfram, and Dellaert, Frank. 2001. Robust
Monte Carlo localization for mobile robots. Artificial Intelligence, 128(1–2), 99–
141.

Thrun, Sebastian, Burgard, Wolfram, and Fox, Dieter. 2006. Probabilistic Robotics.
MIT Press.

Tong, C H, Furgale, P T, and Barfoot, T D. 2013. Gaussian Process Gauss-Newton
for Non-Parametric Simultaneous Localization and Mapping. International Jour-
nal of Robotics Research, 32(5), 507–525.

References 373

Triggs, W, McLauchlan, P, Hartley, R, and Fitzgibbon, A. 2000. Bundle Adjustment:
A Modern Synthesis. Pages 298–375 of: Triggs, W, Zisserman, A, and Szeliski, R
(eds), Vision Algorithms: Theory and Practice. LNCS. Springer Verlag.

Umeyama, S. 1991. Least-Squares Estimation of Transformation Parameters Be-
tween Two Point Patterns. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 13(4), 376–380.

Wahba, G. 1965. A Least-Squares Estimate of Spacecraft Attitude. SIAM Review,
7(3), 409.

Wang, Y, and Chirikjian, G S. 2006. Error Propagation on the Euclidean Group
With Applications to Manipulator Kinematics. IEEE Transactions on Robotics,
22(4), 591–602.

Wang, Y, and Chirikjian, G S. 2008. Nonparametric Second-order Theory of Er-
ror Propagation on Motion Groups. International Journal of Robotics Research,
27(11), 1258–1273.

Wolfe, K, Mashner, M, and Chirikjian, G. 2011. Bayesian Fusion on Lie Groups.
Journal of Algebraic Statistics, 2(1), 75–97.

Woodbury, M A. 1950. Inverting Modified Matrices. Tech. rept. 42. Statistical
Research Group, Princeton University.

Yan, X, Indelman, V, and Boots, B. 2014. Incremental Sparse GP Regression for
Continuous-time Trajectory Estimation and Mapping. In: Proceedings of the
NIPS Workshop on Autonomously Learning Robots.

Zhang, Zhengyou. 1997. Parameter Estimation Techniques: A Tutorial with Appli-
cation to Conic Fitting. Image and Vision Computing, 15(1), 59–76.

Index

adaptive estimation, 166
adjoint, 226, 227
affine transformation, 203
algebra, 217
Apianus, Petrus, xv
arrowhead matrix, 345, 346
axiom of total probability, 9

BA, see bundle adjustment
Baker, Henry Frederick, 231
Baker-Campbell-Hausdorff, 231, 232,

234, 237, 247, 248, 274, 281, 326,
331, 360, 393

Bayes filter, xv, 3, 68, 91, 97–103, 107,
115, 116, 127, 142

Bayes’ rule, 3, 10, 33, 40, 50, 94, 98
Bayes, Thomas, 11
Bayesian, 9
Bayesian inference, 11, 24, 39, 44, 46,

68–70, 91, 92, 135, 137, 143, 146
BCH, see Baker-Campbell-Hausdorff
belief function, 97
Bernoulli numbers, 232
Bernoulli, Jakob, 232, 243
Bessel’s correction, 12
Bessel, Friedrich Wilhelm, 12
best linear unbiased estimate, 70
biased, 103, 139
BLUE, see best linear unbiased

estimate
bundle adjustment, 337, 348, 351, 352,

354, 355

camera, 199
Campbell, John Edward, 231
Cauchy cost function, 164
Cauchy product, 243
Cauchy, Baron Augustin-Louis, 243
causal, 58
Cayley-Hamilton theorem, 49
Cayley-Rodrigues parameters, 182
Cholesky decomposition, 52–55, 87, 90,

110, 111, 119, 120, 124, 129, 276,
289, 334, 335, 345, 347, 354, 355,
365

Cholesky smoother, 53
Cholesky, André-Louis, 52

consistent, 71, 152
continuous time, xvi, 4, 9, 32, 33, 37,

74, 88, 91, 96, 143, 147, 320, 321,
357, 358, 362, 363, 365–368

covariance estimation, 166
covariance matrix, 12
Cramér, Harold, 14
Cramér-Rao lower bound, 14, 15, 31,

32, 70, 72, 118
CRLB, see Cramér-Rao lower bound
cross product, 175, 176
cubic Hermite polynomial, 86
curvature, 196

DARCES, see data-aligned
rigidity-constrained exhaustive
search

data association, 151, 159
data-aligned rigidity-constrained

exhaustive search, 161
Dirac, Paul Adrien Maurice, 33
directional derivative, 247, 393
discrete time, 28, 32, 37, 51, 58, 74, 80,

87, 88, 96, 97, 127, 143, 147, 149,
277, 319–322, 325, 357, 363, 365

disparity, 208
dot product, 175, 177

early estimation milestones, 3
EKF, see extended Kalman filter
epipolar constraint, 203
epipolar line, 203
essential matrix (of computer vision),

201
estimate, 38
estimation, see state estimation
Euler parameters, see unit-length

quaternions
Euler’s rotation theorem, 180, 216
Euler, Leonhard, 178
exponential map, 219
extended Kalman filter, 70, 91, 100,

101, 103, 104, 106, 107, 109, 115,
118, 121, 122, 124–127, 134, 142,
143, 149, 297, 319, 321–324

exteroceptive, 3
extrinsic sensor parameters, 199

375

376 Index

factor graph, 355
Faulhaber’s formula, 243
Faulhaber, Johann, 243
filter, 59
Fisher, Sir Ronald Aylmer, 15
fixed-internal smoother, 43, 51
focal length, 200
Frenet, Jean Frédéric, 196
Frenet-Serret frame, 196, 198, 212
frequentist, 9
Frobenius norm, 279, 291
frontal projection model, 199
fundamental matrix (of computer

vision), 203
fundamental matrix (of control theory),

145, 264

Gauss, Carl Friedrich, 2, 3
Gauss-Newton optimization, 129–134,

138, 139, 142, 249, 250, 254, 282,
283, 318, 319, 326–329, 333, 342,
343, 345

Gaussian estimator, 50, 63, 107
Gaussian filter, 115
Gaussian inference, 19
Gaussian noise, 1, 2, 70, 88, 92, 100,

101, 151, 152, 155, 321, 339
Gaussian probability density function,

9, 13–16, 18–20, 22, 24, 26, 28–31,
33, 60, 63, 93, 99–102, 104, 105,
107–113, 115, 119, 120, 124, 126,
136, 146, 268, 288, 330

Gaussian process, xvi, 4, 9, 32, 33,
74–77, 81, 85, 87, 143, 145–148,
357, 358, 363, 366

Gaussian random variable, 9, 16, 20, 24,
37, 266, 267, 270

Geman-McClure cost function, 164
generalized mass matrix, 318
generalized velocity, 258
Gibbs vector, 182
Gibbs, Josiah Willard, 182
global positioning system, 4, 159–161
GP, see Gaussian process
GPS, see global positioning system
group, 216

Hamilton, Sir William Rowan, 181
Hausdorff, Felix, 231
Heaviside step function, 79
Heaviside, Oliver, 182
Hermite basis function, 87
Hermite, Charles, 86
homogeneous coordinates, 193, 246, 285
homography matrix, 205

ICP, see iterative closest point
identity matrix, 175
IEKF, see iterated extended Kalman

filter

improper rotation, 216
IMU, see inertial measurement unit
inconsistent, 103
inertial measurement unit, 209, 211, 213
information form, 56, 57, 67
information matrix, 53
information vector, 50
injection, 268
injective, 20
inner product, see dot product
interoceptive, 3
interpolation matrix, 351
intrinsic parameter matrix, 202
inverse covariance form, see information

form
inverse-Wishart distribution, 166
IRLS, see iterated reweighted least

squares
ISPKF, see iterated sigmapoint

Kalman filter
Isserlis’ theorem, 16, 288
Isserlis, Leon, 16
Itō calculus, 77
Itō, Kiyoshi, 77
iterated extended Kalman filter,

105–107, 109, 124–127, 136, 137,
142, 146, 148

iterated sigmapoint Kalman filter, 123,
125–127

iterative closest point, 297, 298
iteratively reweighted least squares, 165

Jacobi’s formula, 222
Jacobi, Gustav Jacob, 218
Jacobian, 224, 233, 234, 248
John Harrison, 2
joint probability density function, 10

Kálmán, Rudolf Emil, 2
Kōwa, Seki, 232
Kalman filter, xv, 2, 3, 37, 58, 63,

68–70, 72, 153, 154, 159
Kalman gain, 67
kernel matrix, 75, 80
KF, see Kalman filter
kinematics, 184, 197, 198, 255, 256, 258,

259, 261–263, 265, 266, 274, 320,
321, 323

kurtosis, 12, 115

law of large numbers, 108
Levenberg-Marquardt, 132, 254
LG, see linear-Gaussian
Lie algebra, 217
Lie derivative, 248
Lie group, see matrix Lie group
Lie product formula, 232
Lie, Marius Sophus, 215
lifted form, 39, 44, 78
line search, 132, 254

Index 377

linear time-invariant, 83, 359
linear time-varying, 77, 81, 144, 264,

266
linear, time-varying, 37
linear-Gaussian, 38, 39, 43, 44, 46, 59,

61, 64, 73, 98, 159
Lovelace, Ada, 232
LTI, see linear time-invariant
LTV, see linear time-varying

M-estimation, 163
Möbius, Augustus Ferdinand, 193
Mahalanobis, 282
Mahalanobis distance, 28, 41
Mahalanobis, Prasanta Chandra, 28
many-to-one, 220
MAP, see maximum a posteriori
marginalization, 11
Markov property, 64, 97
matrix inversion lemma, see

Sherman-Morrison-Woodbury
matrix Lie group, 215, 216
maximum a posteriori, 39, 40, 63, 64,

69, 88, 89, 91, 94, 95, 106, 107,
125–128, 137, 138, 148, 151, 321,
322, 325, 326, 352, 364, 368

maximum likelihood, 137, 138, 149,
151, 330, 331, 339, 342, 351

mean, 11, 15
mean rotation, 269
ML, see maximum likelihood
Monte Carlo, 100, 108, 279, 290
Moore-Penrose pseudoinverse, see

pseudoinverse
mutual information, 14, 30

NASA, see National Aeronautics and
Space Administration

National Aeronautics and Space
Administration, 3, 100

Newton’s method, 129
NLNG, see nonlinear, non-Gaussian
non-commutative group, 182, 188, 215
nonlinear, non-Gaussian, 91, 96, 97
normalized image coordinates, 200
normalized product, 13, 22

observability, 2, 49, 156
observability matrix, 49
onto, 220
optical axis, 199
outlier, 151, 161, 162

particle filter, 91, 115–118
PDF, see probability density function
point-cloud alignment, 297
point-clouds, 297
Poisson’s equation, 186
Poisson, Siméon Denis, 186
pose-graph relaxation, 329

poses, 173, 192, 216, 218, 222, 234, 239,
245, 251, 258, 265, 270, 273, 280

posterior, 11, 38
power spectral density martrix, 77
power spectral density matrix, 33
prior, 11, 38
probability, 9
probability density function, 9–12,

14–16, 19, 22–26, 28–30, 34, 95,
97–99, 101, 104, 107–113, 115, 116,
148, 268, 269, 276, 282

probability distributions, 10
proper rotation, 216
pseudoinverse, 43

quaternion, 298

RAE, see range-azimuth-elevation
random sample consensus, 162, 168,

169, 297, 305
random variable, 9
range-azimuth-elevation, 208, 209
RANSAC, see random sample

consensus
Rao, Calyampudi Radhakrishna, 14
Rauch, Herbert E., 55
Rauch-Tung-Striebel smoother, 3, 51,

55, 58
realization, 12, 14, 38
reference frame, 174
robust cost, 164
rotary reflection, 216
rotation matrix, 176, see also rotations
rotations, 173, 215, 220, 232, 237, 240,

242, 247, 255, 261, 267
RTS, see Rauch-Tung-Striebel

sample covariance, 12
sample mean, 12
Schmidt, Stanley F., 100
Schur complement, 19, 65, 345, 346,

348, 354, 355, 365, 366
Schur, Issai, 19
SDE, see stochastic differential equation
Serret, Joseph Alfred, 196
Shannon information, 14, 28, 29, 33
Shannon, Claude Elwood, 14
Sherman-Morrison-Woodbury, 23, 45,

55–57, 75, 123, 136, 137, 147
sigmapoint, 110, 115, 120
sigmapoint Kalman filter, 91, 118, 121,

122, 124–127
sigmapoint transformation, 110, 113,

114, 119, 120, 148, 272, 276, 279,
285, 288

simultaneous localization and mapping,
342, 352, 355, 363–365

simultaneous trajectory estimation and
mapping, 362

singular-value decomposition, 305

378 Index

skewness, 12, 115
SLAM, see simultaneous localization

and mapping
sliding-window filter, 142
smoother, 59
SMW, see

Sherman-Morrison-Woodbury
SP, see sigmapoint
sparse bundle adjustment, 345
special Euclidean group, see also poses,

216
special orthogonal group, see also

rotations, 215
SPKF, see sigmapoint Kalman filter
state, 1, 38
state estimation, 1, 4, 38
state transition matrix, 264
statistical moments, 11
statistically independent, 10, 12, 20, 30
STEAM, see simultaneous trajectory

estimation and mapping
stereo baseline, 206
stereo camera, 92
stochastic differential equation, 144,

266, 358, 360, 366, 368
Striebel, Charlotte T., 55
surjective-only, 220
SWF, see sliding-window filter
Sylvester’s determinant theorem, 30
Sylvester, James Joseph, 30

tangent space, 218
taxonomy of filtering methods, 127
torsion, 196
transformation matrix, 193, see also

poses
transition function, 77
transition matrix, 38, 78
Tung, Frank F., 55

UKF, see sigmapoint Kalman filter
unbiased, 14, 71, 152
uncertainty ellipsoid, 29
uncorrelated, 12, 20
unimodular, 238
unit-length quaternions, 180
unscented Kalman filter, see sigmapoint

Kalman filter

variance, 15
vector, 174
vectrix, 174

white noise, 33

Appendix A

Supplementary Material

Material generated since the first edition.

A.1 Lie Group Tools

A.1.1 SE(3) Derivative

On occasion, we may want to take the derivative of the product of a
6 × 6 transformation matrix and a 6 × 1 column, with respect to the
6× 1 pose variable.

To do this, we can start by taking the derivative with respect to a
single element of ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6). Applying the definition of a
derivative along the 1i direction, we have

∂(T (ξ)x)

∂ξi
= lim

h→0

exp ((ξ + h1i)
f) x− exp

(
ξf
)
x

h
, (A.1)

which we previously referred to as a directional derivative. Since we are
interested in the limit of h infinitely small, we can use the approximate
BCH formula to write

exp ((ξ + h1i)
f) ≈ exp ((J (ξ)h1i)

f) exp
(
ξf
)

≈ (1 + h(J (ξ)1i)
f) exp

(
ξf
)
, (A.2)

where J (ξ) is the (left) Jacobian of SE(3), evaluated at ξ. Plugging
this back into (A.1), we find that

∂(T (ξ)x)

∂ξi
= (J (ξ)1i)

f T (ξ)x = − (T (ξ)x)
f J (ξ) 1i. (A.3)

Stacking the six directional derivatives alongside one another provides
the desired Jacobian:

∂(T (ξ)x)

∂ξ
= − (T (ξ)x)

f J (ξ). (A.4)

379

380 Supplementary Material

A.2 Kinematics

A.2.1 SO(3) Jacobian Identity

An important identity that is used frequently in rotational kinematics
is

J̇(φ)− ω∧J(φ) ≡ ∂ω

∂φ
, (A.5)

where the relationship between angular velocity and the rotational pa-
rameter derivative is

ω = J(φ)φ̇. (A.6)

Beginning with the right-hand side, we have

∂ω

∂φ
=

∂

∂φ

(
J(φ)φ̇

)
=

∂

∂φ

(∫ 1

0

C(φ)αdα

︸ ︷︷ ︸
J(φ)

φ̇

)

=

∫ 1

0

∂

∂φ

(
C(αφ)φ̇

)
dα = −

∫ 1

0

(
C(αφ)φ̇

)∧
αJ(αφ) dα. (A.7)

Noting that

d

dα
(αJ(αφ)) = C(αφ),

∫
C(αφ)dα = αJ(αφ), (A.8)

we can then integrate by parts to see that

∂ω

∂φ
= −

(
αJ(αφ)φ̇

)∧
αJ(αφ)

∣∣∣∣
α=1

α=0︸ ︷︷ ︸
ω∧J(φ)

+

∫ 1

0

(
αJ(αφ)φ̇

)∧
C(αφ)

︸ ︷︷ ︸
Ċ(αφ)

dα

= −ω∧J(φ) +
d

dt

∫ 1

0

C(φ)αdα

︸ ︷︷ ︸
J(φ)

= J̇(φ)− ω∧J(φ), (A.9)

which is the desired result.

A.2.2 SE(3) Jacobian Identity

We can derive a similar identity for pose kinematics:

J̇ (ξ)−$fJ (ξ) ≡ ∂$

∂ξ
, (A.10)

where the relationship between generalized velocity and the pose pa-
rameter derivative is

$ = J (ξ)ξ̇. (A.11)

A.3 Smoothers 381

Beginning with the right-hand side, we have

∂$

∂ξ
=

∂

∂ξ

(
J (ξ)ξ̇

)
=

∂

∂ξ

(∫ 1

0

T (ξ)αdα

︸ ︷︷ ︸
J (ξ)

ξ̇

)

=

∫ 1

0

∂

∂ξ

(
T (αξ)ξ̇

)
dα = −

∫ 1

0

(
T (αξ)ξ̇

)f
αJ (αξ) dα. (A.12)

Noting that

d

dα
(αJ (αξ)) = T (αξ),

∫
T (αξ)dα = αJ (αξ), (A.13)

we can then integrate by parts to see that

∂$

∂ξ
= −

(
αJ (αξ)ξ̇

)f
αJ (αξ)

∣∣∣∣
α=1

α=0︸ ︷︷ ︸
$fJ (ξ)

+

∫ 1

0

(
αJ (αξ)ξ̇

)f
T (αξ)

︸ ︷︷ ︸
Ṫ (αξ)

dα

= −$fJ (ξ) +
d

dt

∫ 1

0

T (ξ)αdα

︸ ︷︷ ︸
J (ξ)

= J̇ (ξ)−$fJ (ξ), (A.14)

which is the desired result.

A.3 Smoothers

A.3.1 Posterior Covariance in the Cholesky Smoother

In the development of the Cholesky smoother in 3.2.2, we did not ex-
plain how to extract the posterior covariance of the estimate without
inverting the full matrix. We had defined the block-tridiagonal inverse
of the posterior covariance as

P̂−1 = LLT , (A.15)

where the non-zero sub-blocks of L were

L =




L0

L10 L1

L21 L2

. . .
. . .

LK−1,K−2 LK−1

LK,K−1 LK



. (A.16)

The covariance is therefore

P̂ = L−TL−1, (A.17)

382 Supplementary Material

where

L−1 =




L−1
0

−L−1
1 L10L

−1
0

. . .
. . .

. . .
. . . L−1

K−2

. . .
. . . −L−1

K−1LK−1,K−2L
−1
K−2 L−1

K−1

. . .
. . . L−1

K LK,K−1L
−1
K−1LK−1,K−2L

−1
K−2 −L−1

K LK,K−1L
−1
K−1 L−1

K




.

(A.18)

Unfortunately, the lower triangle of L−1 is now dense and so is P̂.
Luckily, we can still solve for only the main block diagonal (and ad-
ditional diagonals upto some block bandwidth) in O(K) time using a
backward recursion. We will show this for the main diagonal and one
additional diagonal, which is necessary for the covariance interpolation
formula in (3.198b).

The blocks of P̂ are

P̂ =




P̂0 P̂T
10

. . .
. . .

. . .
. . .

P̂10 P̂1 P̂T
21

. . .
. . .

. . .
. . . P̂21

. . .
. . .

. . .
. . .

. . .
. . .

. . . P̂K−2 P̂T
K−1,K−2

. . .
. . .

. . .
. . . P̂K−1,K−2 P̂K−1 P̂T

K,K−1

. . .
. . .

. . .
. . . P̂K,K−1 P̂K




, (A.19)

where we note the matrix is in general dense but we have only as-
signed symbols to the blocks we will use. Multiplying out L−TL−1 and
comparing to P̂ we can establish a backward recursive relationship:

P̂k−1 = L−Tk−1

(
1 + LT

k,k−1P̂kLk,k−1

)
L−1
k−1, (A.20a)

P̂k,k−1 = −P̂kLk,k−1L
−1
k−1, (A.20b)

which we initialize with

P̂K = L−TK L−1
K . (A.21)

As we have already computed all of the blocks of L in the Cholesky
smoother, we can simply include this calculation in the backward pass
if we want the posterior covariance associated with our estimate. This
does not change the complexity of the overall algorithm, which remains
at O(K), albeit with a slightly higher coefficient.

A.3 Smoothers 383

A.3.2 Posterior Covariance in the RTS Smoother

We can manipulate the covariance backward recursion into the canon-
ical RTS form as follows. First, we note that

Lk,k−1L
−1
k−1 = Lk,k−1L

T
k−1︸ ︷︷ ︸

−Q−1
k Ak−1

L−Tk−1L
−1
k−1︸ ︷︷ ︸

(Ik−1+AT
k−1Q−1

k Ak−1)−1

= −
(
Ak−1P̂k−1,fA

T
k−1 + Qk︸ ︷︷ ︸

P̌k,f

)−1
Ak−1P̂k−1,f

= −
(
P̂k−1,fA

T
k−1P̌

−1
k,f

)T
. (A.22)

Also, we have that

L−Tk−1L
−1
k−1 = (Ik−1 + AT

k−1Q
−1
k Ak−1)−1

= P̂k−1,f − P̂k−1,fA
T
k−1

(
Ak−1P̂k−1,fA

T
k−1 + Qk︸ ︷︷ ︸

P̌k,f

)−1
Ak−1P̂k−1,f

= P̂k−1,f −
(
P̂k−1,fA

T
k−1P̌

−1
k,f

)
P̌k,f

(
P̂k−1,fA

T
k−1P̌

−1
k,f

)T
. (A.23)

Plugging these two results into (A.20a) we have

P̂k−1 = P̂k−1,f +
(
P̂k−1,fA

T
k−1P̌

−1
k,f

)(
P̂k − P̌k,f

)(
P̂k−1,fA

T
k−1P̌

−1
k,f

)T
,

(A.24)

which we initialize with P̂K = P̂K,f and iterate backward. Finally, we
can also plug the same two results into (A.20b) to obtain

P̂k,k−1 = P̂k

(
P̂k−1,fA

T
k−1P̌

−1
k,f

)T
, (A.25)

for the blocks above and below the main diagonal of the full covari-
ance matrix, P̂; these are needed, for example, when interpolating for
additional times of interest using (3.198b).

	Acronyms and Abbreviations
	Notation
	Foreword
	Introduction
	A Little History
	Sensors, Measurements, and Problem Definition
	How This Book Is Organized
	Relationship to Other Books

	Part I Estimation Machinery
	Primer on Probability Theory
	Probability Density Functions
	Definitions
	Bayes' Rule and Inference
	Moments
	Sample Mean and Covariance
	Statistically Independent, Uncorrelated
	Normalized Product
	Shannon and Mutual Information
	Cramér-Rao Lower Bound and Fisher Information

	Gaussian Probability Density Functions
	Definitions
	Isserlis' Theorem
	Joint Gaussian PDFs, Their Factors, and Inference
	Statistically Independent, Uncorrelated
	Linear Change of Variables
	Normalized Product of Gaussians
	Sherman-Morrison-Woodbury Identity
	Passing a Gaussian through a Nonlinearity
	Shannon Information of a Gaussian
	Mutual Information of a Joint Gaussian PDF
	Cramér-Rao Lower Bound Applied to Gaussian PDFs

	Gaussian Processes
	Summary
	Exercises

	Linear-Gaussian Estimation
	Batch Discrete-Time Estimation
	Problem Setup
	Maximum A Posteriori
	Bayesian Inference
	Existence, Uniqueness, and Observability
	MAP Covariance

	Recursive Discrete-Time Smoothing
	Exploiting Sparsity in the Batch Solution
	Cholesky Smoother
	Rauch-Tung-Striebel Smoother

	Recursive Discrete-Time Filtering
	Factoring the Batch Solution
	Kalman Filter via MAP
	Kalman Filter via Bayesian Inference
	Kalman Filter via Gain Optimization
	Kalman Filter Discussion
	Error Dynamics
	Existence, Uniqueness, and Observability

	Batch Continuous-Time Estimation
	Gaussian Process Regression
	A Class of Exactly Sparse Gaussian Process Priors
	Linear Time-Invariant Case
	Relationship to Batch Discrete-Time Estimation

	Summary
	Exercises

	Nonlinear Non-Gaussian Estimation
	Introduction
	Full Bayesian Estimation
	Maximum a Posteriori Estimation

	Recursive Discrete-Time Estimation
	Problem Setup
	Bayes Filter
	Extended Kalman Filter
	Generalized Gaussian Filter
	Iterated Extended Kalman Filter
	IEKF Is a MAP Estimator
	Alternatives for Passing PDFs through Nonlinearities
	Particle Filter
	Sigmapoint Kalman Filter
	Iterated Sigmapoint Kalman Filter
	ISPKF Seeks the Posterior Mean
	Taxonomy of Filters

	Batch Discrete-Time Estimation
	Maximum A Posteriori
	Bayesian Inference
	Maximum Likelihood
	Discussion

	Batch Continuous-Time Estimation
	Motion Model
	Observation Model
	Bayesian Inference
	Algorithm Summary

	Summary
	Exercises

	Biases, Correspondences, and Outliers
	Handling Input/Measurement Biases
	Bias Effects on the Kalman Filter
	Unknown Input Bias
	Unknown Measurement Bias

	Data Association
	External Data Association
	Internal Data Association

	Handling Outliers
	RANSAC
	M-Estimation
	Covariance Estimation

	Summary
	Exercises

	Part II Three-Dimensional Machinery
	Primer on Three-Dimensional Geometry
	Vectors and Reference Frames
	Reference Frames
	Dot Product
	Cross Product

	Rotations
	Rotation Matrices
	Principal Rotations
	Alternate Rotation Representations
	Rotational Kinematics
	Perturbing Rotations

	Poses
	Transformation Matrices
	Robotics Conventions
	Frenet-Serret Frame

	Sensor Models
	Perspective Camera
	Stereo Camera
	Range-Azimuth-Elevation
	Inertial Measurement Unit

	Summary
	Exercises

	Matrix Lie Groups
	Geometry
	Special Orthogonal and Special Euclidean Groups
	Lie Algebras
	Exponential Map
	Adjoints
	Baker-Campbell-Hausdorff
	Distance, Volume, Integration
	Interpolation
	Homogeneous Points
	Calculus and Optimization
	Identities

	Kinematics
	Rotations
	Poses
	Linearized Rotations
	Linearized Poses

	Probability and Statistics
	Gaussian Random Variables and PDFs
	Uncertainty on a Rotated Vector
	Compounding Poses
	Fusing Poses
	Propagating Uncertainty through a Nonlinear Camera Model

	Summary
	Exercises

	Part III Applications
	Pose Estimation Problems
	Point-Cloud Alignment
	Problem Setup
	Unit-Length Quaternion Solution
	Rotation Matrix Solution
	Transformation Matrix Solution

	Point-Cloud Tracking
	Problem Setup
	Motion Priors
	Measurement Model
	EKF Solution
	Batch Maximum a Posteriori Solution

	Pose-Graph Relaxation
	Problem Setup
	Batch Maximum Likelihood Solution
	Initialization
	Exploiting Sparsity
	Chain Example

	Pose-and-Point Estimation Problems
	Bundle Adjustment
	Problem Setup
	Measurement Model
	Maximum Likelihood Solution
	Exploiting Sparsity
	Interpolation Example

	Simultaneous Localization and Mapping
	Problem Setup
	Batch Maximum a Posteriori Solution
	Exploiting Sparsity
	Example

	Continuous-Time Estimation
	Motion Prior
	General
	Simplification

	Simultaneous Trajectory Estimation and Mapping
	Problem Setup
	Measurement Model
	Batch Maximum a Posteriori Solution
	Exploiting Sparsity
	Interpolation
	Postscript

	References
	Index
	to 1.25Appendix ASupplementary Material
	Lie Group Tools
	SE(3) Derivative

	Kinematics
	SO(3) Jacobian Identity
	SE(3) Jacobian Identity

	Smoothers
	Posterior Covariance in the Cholesky Smoother
	Posterior Covariance in the RTS Smoother

