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Abstract
In this paper we question the appropriateness of using conventional matrix algebra in the analyses of such
systems as Markov chains and Hidden Markov Models. Stochastic matrices, whose entries are probabilities
and whose columns sum to unity, are central to many of these systems yet the set of such matrices under the
usual matrix addition and scalar multiplication does not constitute a vector space. To solve this dilemma,
we describe a new algebra which does allow the addition and scalar multiplication of stochastic matrices. We
show several examples of how the new operators required to construct this stochastic algebra are useful in
the analyses of Markov models. In particular, we cast the development of the classic Baum-Welch algorithm
in this new algebra. We also propose a gradient-ascent algorithm that is compared to Baum-Welch on a
simple example inspired by Markov’s original paper.

1 Introduction
Markov models are simple examples of stochastic processes that have connections to statistical physics. Since
their inception circa 1913 by Andrei Andreevich Markov [10], the most basic chains have been expanded in
several ways to include Hidden Markov Models (HMMs), Markov Decision Processes, Partially Observable
Markov Decision Processes, Decentralized Partially Observable Markov Decision Processes, Products of Hidden
Markov Models, and Markov Networks. This partial list shows the fervour with which Markov’s original ideas
have proliferated.

The primary objective of this paper is to suggest a rigourous way of treating Markov models. It is our
conjecture that conventional matrix algebra with which are all familiar is perhaps not the ideal tool for working
with matrices whose entries are probabilities. If we represent the probability density of a random variable over
m discrete states1 as a column vector then the axiom of total probability dictates that the sum of the entries
down this column must be unity. More generally, matrices whose entries are probabilities (i.e., real numbers
between 0 and 1) and whose columns sum to unity have been referred to as stochastic matrices in the context of
Markov chains for quite some time [5]. If x[t] =

[
p(Xi[t])

]
is a stochastic column and A =

[
p(Xi[t + 1]|Xj [t])

]
is

an appropriately sized square stochastic matrix, a Markov chain is represented by the simple difference equation

x[t + 1] = Ax[t]

The matrix, A, is often called the transition matrix. The constraint on the columns of stochastic matrices is
also known as the simplex constraint. Unfortunately, there is a problem when applying conventional matrix
algebraic operators, such as addition and scalar multiplication, to stochastic matrices.

The root of the problem mathematically is that although the stochastic matrices are a well defined subset of
the real matrices, they do not form a subspace of the real matrices. This is immediately clear when one tries to

1In this paper we discuss only discrete random variables.



add two stochastic matrices or multiply by a scalar using conventional operations. Alternatively, consider the
zero vector from the vector space formed by the real matrices. It is a matrix with all entries equal to zero. The
zero vector is not a stochastic matrix but its inclusion is a requirement of the establishment of a subspace.

Although we have made the situation to sound quite dire, we are prepared to offer a resolution. In what
follows, we will show that the set of stochastic matrices can still be thought of as a vector space but not under
the conventional matrix operations. We must redefine addition and scalar multiplication to be more suited to
stochastic matrices [2, 4]. As a point of comparision, the zero vector in our new vector space is the uniform
probability density. Our approach is really no more than a straightforward application of the general theory
of vector spaces [12]. Once this is done we no longer have to worry about the constraints associated with
probability densities, they are handled implicitly. In particular, we do not require awkward projections or the
more elegant Lagrange multipliers often called upon to re-establish said constraint. It furthermore becomes
possible to establish an inner product space, an associative algebra, and a vector calculus including a gradient
operator for our new vector space. To distinguish our new methodology from conventional matrix algebra, it
will be referred to as stochastic algebra, as it is based on stochastic matrices.

Once this stochastic algebra has been established it is relatively easy to handle the equations of Markov
models. We might stress from the onset, however, that the equation of even a basic Markov chain is considered
to be nonlinear. Thus we have traded an equation that appears linear (although it is not) in conventional
algebra for a nonlinear one in stochastic algebra. In this paper we will examine both Markov chains and Hidden
Markov Models to show the applicability of this new approach. These Markov models have been used to model
population dynamics, human speech, and noisy robot sensors, for example. When fitting an HMM to data, the
classic Baum-Welch algorithm is a popular choice. We show how it may be developed in our new algebra. In
the course of this development, the gradient of a function of a stochastic matrix is computed. As such, a simple
gradient-ascent approach to fitting an HMM to data follows quite naturally. We compare this new algorithm
to Baum-Welch on a simple example inspired by Markov’s original paper, in which he fits a Markov chain to
data reflecting the alternation of vowels and consonants in Aleksandr Pushkin’s classic poem, Eugene Onegin.

We begin with a presentation of the new stochastic algebra and stochastic calculus, followed by analyses of
Markov chains and Hidden Markov Models, and conclude with the example.

2 The Algebra
Stochastic matrices are often used to represent probability densities and conditional probability tables (CPTs)
when random variables are discrete. The earliest reference we have found to the use of the term stochastic
matrix is Dmitriev [5] but they have also been called Markov matrices [10]. The set of stochastic matrices mSn

is
mSn =

{
A = [aij ] ∈ mRn

∣∣∣∣∣

m∑

i=1

aij = 1, aij > 0

}

Each column of a stochastic matrix may be thought of as probability density over m discrete “states”. In the
limiting case that only one state is occupied with probability 1, the density is called deterministic and must be
treated carefully. In the event that no one state is occupied with probability 1 but at least one state is occupied
with probability 0, the density is called partially stochastic and again must be treated with care. When all states
are equally probable we have a uniform probability density. Thus we introduce the uniform matrix, Ω ∈ mSn,
which is

Ω = [uij ], uij =
1
m

This will be referred to simply as ω in the case of a single column. As discussed above, some new operators
are now introduced for stochastic matrices. These definitions are critical in establishing a vector space. The
normalization operator denoted ↓R, where R = [rij ] ∈ mRn with rij > 0 is

↓R =
[

rij∑m
k=1 rkj

]

This operation renders any positive real matrix a stochastic matrix ( ↓R ∈ mSn ).



Figure 1: Graphical depiction of the vector space, 3S, in relation to the usual Cartesian space, 3R.
The new vector space is the two-dimensional shaded triangular surface shown with the zero vector,
ω, marked at the centroid of the triangle.

We redefine the addition operator for stochastic matrices as follows. Let A = [aij ], B = [bij ] ∈ mSn. The
vector addition of A and B, denoted A ⊕ B, is

A ⊕ B = ↓[aijbij ]

In the case that the operands are deterministic, vector addition must be computed in the limit. Also, when
addition is negative, the symbol, $, is used. In words, vector addition is accomplished by taking the direct
product of the entries and then renormalizing each column. This vector addition has also been called logarithmic
opinion pooling [6] and can be traced back to the Nash product [11]. It is also the operator used to combine
experts in recent products-of-experts models [8].

Scalar multiplication must be redefined as well to be compatible with stochastic matrices. It is carried out
by taking the exponent of each entry with the scalar and then renormalizing the columns. Let A = [aij ] ∈ mSn

and λ ∈ R. The scalar multiplication of λ with vector A, denoted λ·A, is

λ·A = ↓[aλ
ij ]

In the case that A is deterministic, scalar multiplication must be computed in the limit. With these definitions
in hand it is possible to prove that the set mSn is a vector space over the field R under the vector addition and
scalar multiplication defined above. The uniform matrix, Ω, is the zero vector of mSn.

We also define an inner product associated with this space. Let x = [xi], y = [yi] ∈ mS. Then

〈x, y〉 =
1

2m

m∑

i=1

m∑

j=1

ln
(

xi

xj

)
ln

(
yi

yj

)

The inner product will be necessary in establishing the gradient of a scalar function with a stochastic matrix as
a parameter. Note the general properties of the inner product, namely, 〈x, y〉 = 〈y, x〉, 〈x, x〉 ≥ 0, and 〈x, x〉 = 0
only when x = ω (i.e., the zero vector). The inner product is also linear such that

〈α·u ⊕ β·v, γ·x ⊕ δ·y〉 = αγ〈u, x〉 + αδ〈u, y〉 + βγ〈v, x〉 + βδ〈v, y〉

We furthermore make the claim that we have an associative algebra for stochastic matrices, or a stochastic
algebra. To justify this claim, we require a vector product (in addition to the already established vector space)
but in the interests of brevity, we elect not to present it here. This algebra allows one to consider all the usual
algebraic concepts including: the adjoint, an outer product, bases, subspaces, projections, determinant, rank,
the eigenproblem, the Cayley-Hamilton theorem, and an isomorphism to the familiar matrix algebra [2, 4, 3].
Naturally, it provides a novel inverse for a stochastic matrix.

There is another operator that is not required in the establishment of the stochastic algebra but which is
particularly useful for Markov models. The stochastic transpose operator, denoted A† , where A = [aij ], is

A† = ↓[aji]



Note, in the case that
∑

k ajk = 0 then the jth column of A† is defined to be the uniform column (this is a
limiting case). This operator takes the transpose of a stochastic matrix and then renormalizes the columns.

3 Vector Calculus
It is not surprising that we can associate with our stochastic algebra a corresponding stochastic calculus. As
mSn is a vector space, all the typical results from vector calculus may be obtained including derivatives of
stochastic matrices, partial derivatives, and Jacobians [2, 4]. In much of the work involving Markov models to
follow, we will be trying to minimize a scalar error function of a stochastic parameter. To this end we must be
able to compute the gradient of a scalar function with respect to a stochastic vector.

The stochastic gradient of a real scalar function, F (x), with respect to stochastic vector, x ∈ nS, is denoted
∇xF ∈ nS and is the unique vector that satisfies

F (x ⊕ ∆x) − F (x) = 〈∇xF, ∆x〉 + O(∆x2)

where ∆x ∈ nS. When ∆x is sufficiently small we may neglect the O(∆x2) terms. Upon doing so it is possible
to establish that the gradient may be expressed as

∇xF = ↓
[
exp

ðF (x)
ðxj

]

The stochastic partial derivative, denoted ðF (x)/ðxj , is given by

ðF (x)
ðxj

! lim
λ→0

1
λ

(
F (x ⊕ λ·ξj) − F (x)

)
= xj

(
∂F

∂xj
−

n∑

k=1

xk
∂F

∂xk

)

where ∂F/∂xj is the usual partial derivative of a scalar function with respect to a scalar variable, ξj is the jth

column of Ξ = ↓[exp δij ], and δij is the Kronecker delta. Note that
∑n

j=1 ðF/ðxj = 0.
If we are looking for a density, x, to minimize (or maximize) a scalar function, F (x), the usual approach is to

compute the gradient, set it equal to the zero vector, and solve for the critical points. In conventional algebra
one must include a Lagrange multiplier to maintain the constraint that probabilities sum to unity. We should
mention that the Lagrange multiplier approach assumes the critical points are on the interior of the probability
simplex (as opposed to the boundary).

We will see that in stochastic algebra we do not need to include a Lagrange multiplier explicitly when solving
for the critical points as the simplex constraint has been maintained implicitly. Setting the stochastic gradient
to the stochastic zero vector we have

∇xF = ω

which implies that ðF/ðxj = φ where φ is an unknown constant. It turns out that φ = 0 in general which may
be found by summing over all j and using

∑n
j=1 ðF/ðxj = 0. Thus, the critical points are found by solving

(∀j)
ðF

ðxj
= xj

(
∂F

∂xj
−

n∑

k=1

xk
∂F

∂xk

)
= 0

If we furthermore assume that the critical points are not on the boundary of the probability simplex2 (i.e.,
(∀j) xj > 0), which is what the Lagrange multiplier approach assumes, we may divide out the factor xj above.
It is not hard to show that an equivalent set of equations is

(∀j)
∂F

∂xj
− 1

n

n∑

k=1

∂F

∂xk
= 0

which are precisely the n − 1 independent equations one ends up with by using conventional algebra with a
Lagrange multiplier. Thus, our algebra (and calculus) effectively has the Lagrange multiplier built in and thus
we need not worry about including it explicitly. These are all the basic results we need to begin our analyses of
Markov models.

2This will always be so given our definition of the stochastic vector space as it does not allow for zero entries except in the limit.



4 Markov Chains
We begin with some thoughts on the most basic form of Markov chains. A Markov chain can be expressed by
the following stochastic equation

x[t + 1] = Ax[t] x[0] = x0
where x = [xi], x0 = [x0,i] ∈ nS, and A = [aij ] ∈ nSn. A Markov chain is characterized by Θ = {A, x0}. The
state of such a system is random variable, X, which takes on values from an alphabet of size n at each time-step,
drawn from density, x = [xi] ∈ nS. The ordered sequence for X up to time τ is thus

H = (H0,H1,H2, . . . ,Hτ )

where Ht ∈ {1, . . . , n} are independently drawn and τ is the size of the sequence.
It is useful to examine the process of fitting a Markov chain to some sequence, H, as described above.

Namely, given H, what is the best model, Θ = {A, x0}? This is, which model will maximize the probability of
producing the data? In turns out to be easier to construct our objective function, F (Θ), to be the logarithm3

of the probability of the data

F (Θ) ! ln p(H|Θ) = ln

(
τ∏

t=1

a(Ht,Ht−1)

)
x0(H0) = lnx0(H0) +

τ∑

t=1

ln a(Ht,Ht−1)

where a(Ht,Ht−1) is the element from A for transitioning from the state at time t − 1 to that at time t and
x0(H0) is the probability of starting in state, H0. Note that we have introduced the notation a(α,β), in place
of aαβ to avoid the use of subscripts on subscripts; these two notations will be used interchangeably throughout
the rest of the paper.

We would like to find a Θ∗ = {A∗, x∗0} to maximize F (Θ). To do this we compute the gradients of F (Θ)
with respect to each of A and x0 which are both stochastic matrices. Now

∂F

∂aij
=

1
aij

τ∑

t=1

δ(Ht, i)δ(Ht−1, j)

where δ(Ht, i) is a Kronecker delta which is 1 when Ht = i and 0 otherwise. We thus have for the partial
derivative with respect to stochastic element, aij , that

ðF

ðaij
= aij

(
∂F

∂aij
−

n∑

k=1

akj
∂F

∂akj

)

=
τ∑

t=1

(δ(Ht, i)δ(Ht−1, j) − aijδ(Ht−1, j))

∇AF = ↓
[
exp

ðF

ðaij

]

= ↓
[
exp

τ∑

t=1

(δ(Ht, i)δ(Ht−1, j) − aijδ(Ht−1, j))

]

where we have noticed
∑n

k=1 δ(Ht, k) = 1. Setting the gradient4 equal to the zero vector, ∇AF = Ω, it is
straightforward to solve analytically for

A∗ = ↓
[

τ∑

t=1

δ(Ht, i)δ(Ht−1, j)

]

3The logarithm is a monotonically increasing function so to maximize this is equivalent to maximizing its argument.
4Technically speaking, we only defined the stochastic partial derivative and stochastic gradient for stochastic columns, but we

hope their extensions to stochastic matrices are clear from usage.



which is simply the normalized frequency count of transitioning from state j to i, as expected. Using the same
process for x0 we arrive at

x∗0 = ↓[δ(H0, i)]

which has a 1 in the row corresponding to H0 and 0 in all other rows. With this basic result in hand, we now
turn to a more complicated Markov model for which it is not possible to solve for the optimal model so easily.

5 Hidden Markov Models
A Hidden Markov Model (HMM) can be expressed by the following stochastic equations

x[t + 1] = Ax[t] x[0] = x0
y[t] = Cx[t]

where x = [xi], x0 = [x0,i] ∈ nS, A = [aij ] ∈ nSn, y = [yi] ∈ mS, and C = [cij ] ∈ mSn. an HMM is a
Markov chain with an associated output equation producing symbols from some alphabet of size, m, and is
characterized by Θ = {A,C, x0}. The random variable, X, is called the hidden variable, because its identity
at each time-step is unknown. Let Y be the random variable representing the output, also called the visible
variable. The probability density associated with Y is y = [P (Yi)] = [yi] ∈ mS. Our visible sequence, V , drawn
from y is,

V = (V0, V1, . . . , Vτ )

where Vt ∈ {1, . . . , m} are independently drawn and τ is the size of the sequence. We assume Y has taken on
value Vt when X has taken on Ht. To be clear, the usual assumption with this model is an observer has access
only to the visible sequence, V , and not the hidden sequence, H. With this in mind, we will examine two key
problems associated with HMMs:

" Compute the probability of some particular visible sequence, V , given the model, Θ.
" Fit a model, Θ, given a visible sequence, V .

The latter problem may really be seen to be the inverse of the former. As we will see, our new framework may
be used to develop both the classic Baum-Welch solution and a new gradient-ascent approach to this inverse
problem. Hence, we claim to have a novel inverse algorithm.

5.1 Probability of Visible Sequence
Traditionally this problem is solved using either the forward or backward procedure which make use of the
recursively defined sequences

p(V0, . . . , Vt,Ht = i|Θ) = αi[t + 1] = c(Vt+1, i)
∑n

j=1 aijαj [t] αi[0] = c(V0, i)x0,i

p(Vt+1, . . . , Vτ |Ht = i,Θ) = βi[t] =
∑n

j=1 ajiβj [t + 1] c(Vt+1, j) βi[τ ] = 1

where the αi are called the forward variables and the βi are the backwards variables. The probability of the
visible sequence, V , given the model, can be efficiently computed as

p(V |Θ) =
n∑

i=1

αi[τ ] =
n∑

i=1

βi[0] c(V0, i)x0,i

Incidently, we may use the forward variables to construct a recursive forward state estimator in matrix form as
follows: [

p(Ht = i|V0, . . . , Vt,Θ)
]

= x̂for[t + 1] = Ax̂for[t] ⊕ C†y[t + 1] x̂for[0] = x0
where y[t + 1] =

[
δ(Vt+1, i)

]
∈ mS. This is related to the forward variables through

x̂for[t] = ↓
[
αi[t]

]

This may be used to estimate the state of random variable, X, as visible symbols are generated online. It was
originally proposed by [1] and now gets used frequently as a belief estimator when solving POMDPs [7], for
example. In stochastic algebra, it can be seen to take the general form of nonlinear observer.



5.2 Fitting an HMM to Data
We now examine the problem of determining the best model, Θ∗ = {A∗,C∗, x∗0}, given a particular visible
sequence, V . We assume the corresponding hidden sequence, H, is unknown. As in the case of the Markov
chain we construct our objective function as the logarithm of the probability of the data, given the model,

F (Θ) ! ln p(V |Θ) = ln
∑

ν

p(V,Hν |Θ)

where ν is an index over all possible hidden sequences (there are nτ of them). Also note that

p(V,Hν |Θ) =

(
τ∏

t=1

c(Vt,H
ν
t )a(Hν

t ,Hν
t−1)

)
x0(Hν

0 )

As before we must compute the gradient of F with respect to our stochastic parameters. For simplicity we will
assume we are only going to fit the transition matrix, A, for the remainder of this section. In general one would
do the same thing for C and x0 as well. After a little manipulation we find for A that

ðF

ðaij
=

∑

ν

p(Hν |V,Θ)
ð

ðaij
ln p(V,Hν |Θ)

=
∑

ν

p(Hν |V,Θ)
τ∑

t=1

ð
ðaij

ln a(Hν
t ,Hν

t−1)

=
∑

ν

p(Hν |V,Θ)
τ∑

t=1

aij

(
∂

∂aij
ln a(Hν

t ,Hν
t−1) −

n∑

k=1

akj
∂

∂akj
ln a(Hν

t ,Hν
t−1)

)

=
∑

ν

p(Hν |V,Θ)
τ∑

t=1

(
δ(Hν

t , i)δ(Hν
t−1, j) − aijδ(Hν

t−1, j)
)

= µj (āij − aij)

where we have defined

µj =
∑

ν

p(Hν |V,Θ)
τ∑

t=1

δ(Hν
t−1, j)

āij =
1
µj

∑

ν

p(Hν |V,Θ)
τ∑

t=1

δ(Hν
t , i)δ(Hν

t−1, j)

It is important to note that Ā =
[
āij

]
∈ nSn is the expected normalized frequency count and still depends on A.

The gradient may now be written as

∇AF = ↓
[
exp

ðF

ðaij

]

= ↓[expµj (āij − aij)]

It is not possible to equate the gradient to the zero vector, Ω, and solve for the best A∗. We instead must
turn our attention to approaches that iteratively improve the model. We will examine two such procedures,
the classic Baum-Welch algorithm and a direct gradient-ascent algorithm. It is important to point out that the
most efficient way to compute Ā is using the forward/backward variables as follows

Ā = ↓
[

τ−1∑

t=1

c(Vt+1, i)βi[t + 1]aijαj [t]∑n
k,l=1 c(Vt+1, k)βk[t + 1]aklαl[t]

]

which avoids the highly expensive proposition of actually considering all possible hidden sequences.



5.3 Baum-Welch Algorithm
The Baum-Welch algorithm falls into the category of expectation-maximization wherein one uses the current
model to estimate the expected normalized frequency count, Ā. This is performed iteratively until the model
has converged. Thus, if we let Ā(s) =

[
ā(s)

ij

]
represent this quantity, evaluated using the model, A(s) =

[
a(s)

ij

]
,

from iteration, s, we may make the following approximation to the gradient

∇AF ≈ ↓
[
exp µj

(
ā(s)

ij − a(s+1)
ij

)]

so that upon equating to zero, Ω, we find A(s+1) = Ā(s). Thus, the optimal model at iteration (s + 1) is the
expected normalized frequency count as computed using the model from iteration (s). This is the same as
the result for the Markov chain but it is the expected normalized frequency count. The Baum-Welch iterative
update for A is thus

A(s+1) ← Ā(s)

We can show that this update is guaranteed increase the objective function. To first order, the change in the
objective function according to our definition of the stochastic gradient5 will be

F (A(s+1)) − F (A(s)) = 〈∇AF
∣∣
A(s) ,A(s+1) $ A(s)〉

=
n∑

i=1

n∑

j=1

µj

(
ā(s)

ij − a(s)
ij

) (
ln ā(s)

ij − ln a(s)
ij

)

which is positive definite6. It is in fact the symmetrical version of the Kullback-Leibler information theoretic
measure [9] which is often used as the objective function from the beginning when solving this problem. We
elected to show it comes out quite naturally when using stochastic algebra. One hopes that after a great many
iterations, the process converges such that

A∗ = lim
s→∞

A(s)

the final solution is the optimal model. It should be pointed out, however, that the Baum-Welch algorithm
finds a local maximum. The update equations are similar for C and x0.

5.4 Gradient-Ascent Algorithm
We now suggest using simple gradient-ascent in our stochastic algebra. Rather than selectively choosing to
evaluate part of the gradient using the model from the previous iteration, we evaluate the entire gradient using
the previous model. We then add this gradient to the stochastic parameter (using stochastic addition) to arrive
at an update rule. For A the update is thus

A(s+1) ← A(s) ⊕ η·∇AF
∣∣
A(s)

where η > 0 ∈ R is a small constant. This algorithm is guaranteed to increase the objective function when η is
small which may easily be seen using the definition of the gradient

F (A(s+1)) − F (A(s)) = 〈∇AF
∣∣
A(s) , η·∇AF

∣∣
A(s)〉

= η
n∑

i=1

n∑

j=1

µ2
j

(
ā(s)

ij − a(s)
ij

)2

which is positive definite given η > 0. This algorithm uses all the same quantities as the Baum-Welch algorithm
so it will be interesting to compare the two. One of the main differences is that we have some control over the
convergence rate whereas classic Baum-Welch does not.

5In computing the change in objective function we use the gradient evaluated entirely at iteration (s), rather than the approxi-
mation employed in developing the Baum-Welch update.

6Technically speaking, we only defined the inner product for stochastic columns. To arrive at the expression for the change
in objective function, we computed the sum over all j of the inner product between column j of the stochastic gradient of A and
column j of the change, δA = A(s+1) ! A(s).



We should mention that our proposed algorithm is equivalent to reparametrizing a stochastic column, x ∈ nS,
using the following

x = ↓
[
exp yi

]

where the yi are real numbers, not constrained in any way. We then perform exact gradient-ascent using the
yi parameters rather than the xi (which are constrained). Computing the gradient using conventional matrix
algebra with the chain rule reveals

∇yF =
[

∂xi
∂yj

]T
∇xF

=
[∑n

j=1
∂F
∂xj

∂xj

∂yi

]

=
[
xi

(
∂F
∂xi

−
∑n

j=1 xj
∂F
∂xj

)]

=
[ ðF

ðxi

]

whereupon the update rule for the yi is

yi ← yi + η
ðF

ðxi

or in terms of x we have
x← x ⊕ η·

[
exp ðF

ðxi

]

which is precisely gradient-ascent (η > 0) in stochastic algebra.

6 A Simple Example
We now consider an example inspired by Markov’s original analysis of the alternation of vowels and consonants
in Aleksandr Pushkin’s classic poem, Eugene Onegin7. We use only Chapter 1, Sonnet 6 which in the original
Russian text is

LATYN! NZ MODY VYXLA NYNE:
TAK, ESLI PRAVDU VAM SKAZAT",
ON ZNAL DOVOL!NO PO-LATYNI,
QTOB #PIGRAFY RAZBIRAT!,
POTOLKOVAT! OB $VEPALE,
V KONCE PIS!MA POSTAVIT! VALE,
DA POMNIL, HOT" NE BEZ GREHA,
IZ #NEIDY DVA STIHA.
ON RYT!S% NE IMEL OHOTY
V HRONOLOGIQESKOĬ PYLI
BYTOPISANI% ZEMLI:
NO DNEĬ MINUVXIH ANEKDOTY
OT ROMULA DO NAXIH DNEĬ
HRANIL ON V PAM%TI SVOEĬ.

De gustibus non disputandum
Has lost cachet, for Latin’s dead;
Yet shown a Latin phrase at random,
Eugene could tell you what it said;
He’d carve the meat from Juvenal’s gristle,
Conclude with Vale an epistle,
And knew by heart, though slightly skew,
Aeneid verses – one or two.
He lacked the yen to go out poking
Into the dusty lives of yore –
Historic details made him snore;
But as for anecdotes and joking –
Droll tales from Romulus till now –
He’d stocked a pile behind his brow.

where the English translation to the right may be found in Hofstadter [13]. The canonical Cyrillic alphabet
consists of 33 symbols, 11 of which are vowels:

A, E, Ë, I, Ĭ, O, U, Y, #, $, %

and the rest we consider to be consonants. Removing all punctuation, spaces, and the word ‘vale’ we create the
sequence

H = (1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2,

1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2,

1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1,

1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1,

1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1,

2, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2,

1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 2)

7It is somewhat ironic that since Markov’s original paper many English translations of Pushkin’s poem have been attempted,
differing greatly in their details. It would be amusing to consider Pushkin’s poem as a Hidden Markov Model, itself, with the
translations as visible sequences.
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Figure 2: Convergence history for training a transition matrix representing the alternation of conso-
nants and vowels in Pushkin’s Eugene Onegin. Plot shows a typical convergence history for both the
Baum-Welch algorithm and direct gradient-ascent with η = 0.05. In this limited example gradient-
ascent is superior.

where state 1 indicates a consonant and state 2 indicates a vowel. Fitting a two-state Markov chain to this
sequence reveals

A = ↓
[

55 107
108 11

]
x0 =

[
1
0

]

We also consider an HMM wherein a visible sequence is produced by viewing the hidden sequence through a
noisy channel8. We pick

C =
[

p 1 − p
1 − p p

]

with p = 0.8 and generate a visible sequence, V , from the above hidden sequence. We attempt to come up with
a transition matrix, A, to maximize the probability of this visible sequence, p(V |A), while keeping C and x0
fixed.

We compared the Baum-Welch algorithm with basic gradient-ascent (with η = 0.05) as discussed above for
100 different visible sequences. Both algorithms started with A = Ω for all 100 test cases. Figure 2 shows the
convergence of p(V |A), our objective function, for a single test case. In every case both algorithms converged
to identical transition matrices. We found gradient descent to convergence approximately twice as fast as
Baum-Welch in 86 out of 100 cases.

In the other 14 cases both algorithms still converged to the same solution but Baum-Welch was faster (by
at least an order of magnitude). In all of these 14 cases both algorithms converged to a matrix of the form

A =
[

q 1
1 − q 0

]

That is, the second column was deterministic. The given visible sequence led to a transition matrix that
transitions from a vowel to a consonant with probability 1 and transitions from a vowel to another vowel with
probability 0. It is not difficult to understand why gradient-ascent is slower in this case. In stochastic algebra,
deterministic columns may be viewed as being infinitely far away from the zero column, ω. Thus, when the
gradient step is fixed in size it will take a very long time to get to “infinity”. Baum-Welch is less susceptible
to this problem as the step size it takes is effectively variable as can be seen in the change of the objective
function. It will therefore get to “infinity” more quickly. In the 86 cases that gradient-ascent was faster than
Baum-Welch, the ability to vary step size was far less important.

8This is fairly representative of the authors’ lack of proficiency in Russian.



7 Conclusion
We have shown that a new algebra may be constructed wherein the set of stochastic matrices forms a vector
space. Various new operators were introduced and used in the analyses of Markov chains and Hidden Markov
Models. This rigourous framework allows an elegant treatment of both systems. Using the stochastic gradient
operator, a straightforward gradient-ascent algorithm was tested against the classic Baum-Welch algorithm
for Hidden Markov Models on a simple example. It was found that some tuning of the convergence rate
was necessary, but that gradient-ascent could be made to converge faster than Baum-Welch except when the
converged solution involved a deterministic column. In such an event Baum-Welch was much faster than
gradient-ascent. The robustness of the Baum-Welch algorithm is superior but these results suggest further
study of gradient-ascent for training HMMs is warranted.
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