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Abstract
We report on a method of working with probability density functions over a finite interval using a novel
infinitely dimensional algebra. A connection to Fourier analysis is drawn and a method of approximating
densities is developed. We also look at the problem of filtering and show how this algebra is helpful in
discussing the Kalman and Bayes filters.

1 Introduction
In previous work [2, 3, 4] we have developed a linear algebra for working with probability densities over a finite
number of discrete states. In this work we discuss the extension to a finite continuous interval. Let f(x) be a
probability density function (PDF) for the random variable, x, over the interval

[
a, b
]
. This is a non-negative

function that satisfies ∫ b

a
f(x) dx = 1

That is, it satisfies the axiom of total probability [15]. Note, the probability, p
(
x ∈
[
x1, x2

])
, that x is in some

sub-interval,
[
x1, x2

]
, is given by the integral under the density function in that region:

p
(
x ∈
[
x1, x2

])
=
∫ x2

x1

f(x) dx

Let f(x) and g(x) be PDFs over the interval
[
a, b
]
. We define the stochastic addition of these two densities as

f(x) ⊕ g(x) ! f(x)g(x)
∫ b

a f(x)g(x) dx

In other work, stochastic addition has been called logarithmic opinion pooling [7] and can be traced back to the
Nash product [14]. We will use the symbol, # , to indicate stochastic subtraction. The scalar multiplication of
density, f(x), by a real scalar, λ, is defined as

λ·f(x) ! f(x)λ

∫ b
a f(x)λ dx

Under these definitions, the space of all probability density functions over the finite interval,
[
a, b
]
, is a vector

space [16] over the field R under the addition and scalar multiplication defined here. The new zero vector, ω(x),
is the uniform probability density function given by

ω(x) ! 1
d



where d ! b − a. It can be shown that we have an inner product space by using the following definition of the
inner product:

〈 f(x), g(x)〉 ! 1
2d

∫ b

a

∫ b

a
ln
f(x)
f(y)

ln
g(x)
g(y)

dx dy

By defining an appropriate basis, we may now express a probability density function as a sum of terms such as:

f(x) =
∞⊕

n=1

αn·ξn(x) ⊕ βn·ζn(x)

where ξn(x) and ζn(x) are basis vectors and αn and βn are the coefficients. For example, we might chose our
basis vectors to be given by

ξn(x) = exp φn(x)∫ b
a exp φn(x) dx

ζn(x) = exp ψn(x)∫ b
a exp ψn(x) dx

φn(x) =
√

2
d cos
(
2πnx−a

d

)
ψn(x) =

√
2
d sin
(
2πnx−a

d

)

which form a complete, orthonormal basis [9]. Specifically, we have

(∀m,n) 〈ξm(x), ξn(x)〉 = 〈ζm(x), ζn(x)〉 = δmn, 〈ξm(x), ζn(x)〉 = 0

where δmn is the Kronecker-delta. This follows directly from the definition of the inner product but makes use
of the additional knowledge that

(∀n)
∫ b

a
φn(x) dx =

∫ b

a
ψn(x) dx = 0

Expanding in terms of this basis is equivalent to doing a Fourier expansion [6] and in fact the coefficients, αn

and βn, are the usual Fourier coefficients. Note, however, we do not bother including the constant term, α0,
from the canonical Fourier expansion since

ξ0 =
exp(cos 0)
∫ b

a exp(cos 0) dx
=

1
d

= ω(x)

which is the zero vector and will not contribute to the expansion. The reason we do not need this term is simply
because we are trying to represent probability densities, which must satisfy the axiom of total probability (the
integral under the curve is constrained to be 1).

Since we have an orthonormal basis, to determine the expansion coefficients of a particular probability
density function, f(x), we must compute the inner product of the density with the appropriate basis vector as
follows:

αn = 〈 f(x), ξn(x)〉
βn = 〈 f(x), ζn(x)〉

which are the lengths of the projections of the PDF onto our basis functions. Equivalently, we can simply do a
Fourier expansion on the logarithm of our density, f(x), as follows:

αn =
√

2
d

∫ b

a
cos
(

2πn
x − a

d

)
ln f(x) dx

βn =
√

2
d

∫ b

a
sin
(

2πn
x − a

d

)
ln f(x) dx

which follows directly from the definition of the inner product. This certainly is of practical importance in that
we may now use any standard Fourier series implementation to approximate probability density functions over
a finite interval using this framework.

Figure 1 shows an example of approximating a probability density function. The true function is a mixture
of truncated Gaussians and a uniform probability density. The figure shows that a very good approximation
can be obtained using the Fourier approach outlined here with a small number of terms, n = 1 . . . N .
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Figure 1: Example of approximating a probability density function using an increasing number of
terms in a Fourier expansion (N = 5, 10, 15, 20).

2 Inner, Outer and Vector Products
To complete the claim that we have an algebra, we must define the vector product [8]. To do so we must
extend the notion of a probability density function to include a second, conditioning variable. Let f(x|y) be a
probability density function over x ∈

[
a, b
]

conditioned on y ∈
[
r, s
]

such that

(∀y)
∫ b

a
f(x|y) dx = 1

This function is directly analogous to a stochastic matrix whose columns (but not rows) sum to one; it is singly
but not doubly stochastic.

Let us also, at this juncture, introduce a normalization operator to simplify notation. It will render any
non-negative function over a finite interval a probability density function. If f(x) is such a non-negative function,
the normalization operator is defined as

↓x f(x) ! f(x)
∫ b

a f(x) dx

where the subscript, x, indicates we are normalizing with respect to x. We also introduce the stochastic transpose
operator to be

f(x|y)† ! ↓y f(x|y)

such that we can change the variable that is stochastic as follows:

g(y|x) = f(x|y)†

We now define the vector product as

f(x|y)⊗ g(y|z) ! ↓x exp〈 f(x|y)† , g(y|z)〉

The outer product is defined as
f(x) 〉〈 g(y) ! ↓x exp (ln f(x) ln g(y))
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where we note that the resultant is of the form

h(x|y) = f(x) 〉〈 g(y)

We also have the usual relation between the inner and outer product:

( f(x) 〉〈 g(y))⊗ h(y) ≡ 〈g(y),h(y)〉·f(x)

3 Functional Calculus
Given a complete basis for the probability density functions (e.g., the Fourier basis functions defined earlier), it
is not difficult to generalize the notion of calculus to this algebra and in fact, to linearize a nonlinear operator.
For simplicity, we will consider operators that map a probability density function over the interval [a, b] to
another such function. We denote such an operator by φ(f). Let bn denote our complete orthonormal basis
vectors where n = 1 . . .∞. The stochastic partial derivative of the ith component of the range of φ with respect
to the jth component of the domain of φ is then

ðφbi

ð fbj

! lim
λ→0

1
λ
〈bi,φ ( f ⊕ λ·bj) # φ ( f)〉

The resulting linearized operator (Jacobian) is

Φ =
⊕

i,j

ðφbi

ð fbj

·bi 〉〈 bj

which has been expressed in terms of the outer product. Note, that this would have to be evaluated at a
particular operating point to be used in practice. We may also wish to use only a finite number of basis
functions to approximate the linearization process.

As one example, consider the simple case when φ( f) = A⊗f , which is already a linear operator. In this case
the linearization procedure outlined above shows that Φ = A:

Φ =
⊕

i,j

〈bi,A⊗ bj〉· (bi 〉〈 bj)

=
⊕

i,j

〈
bi,




⊕

k,l

akl· (bk 〉〈 bl)



⊗ bj

〉
· (bi 〉〈 bj)

=
⊕

k,l

akl·
⊕

i,j

〈bi, bk〉〈bj , bl〉· (bi 〉〈 bj)

=
⊕

k,l

akl· (bk 〉〈 bl)

= A

As another example, consider the continuous version of a Markov [13] transition matrix:

φ( f) =
∫ b

a
g(y|x)f(x) dx

where g(y|x) is the conditional density describing how x and y are dependent. Let us assume we are using the
Fourier basis functions described earlier. Some computation reveals that

ðφξi

ð fξj

=
2
d

∫ b

a

1
φ(y)

cos
(

2πi
y − a

d

)∫ b

a
cos
(

2πj
x − a

d

)
g(y|x) f(x) dx dy

which still requires us to evaluate φ(y) ! φ( f(x)), unfortunately. This expression simplifies to

ðφξi

ð fξj

=
2
d

∫ b

a
cos
(

2πi
y − a

d

)∫ b

a
cos
(

2πj
x − a

d

)
g(y|x) dx dy

4



if we assume f(x) = ω and φ(ω) = ω, which is the assumption that our zero vector, ω, is the fixed-point of the
Markov transition matrix. The expressions are similar for the derivative involving the ζn basis functions (i.e.,
the sine terms).

We can also speak of the gradient of a functional of a PDF. Let φ( f) map PDFs to real numbers. The
stochastic partial derivative of φ with respect to the ith basis for f is defined as

ðφ
ð fbi

! lim
λ→0

φ( f ⊕ λ·bi) − φ( f)
λ

The stochastic gradient of φ with respect to f is then

∇fφ !
⊕

i

ðφ
ð fbi

·bi

where again in practice we may only choose to use a finite number of basis functions to approximate the gradient.
As an example consider the below functionals and their gradients shown on the right:

φ( f) = 1
2 〈 f # g, f # g〉 ∇fφ = f # g

φ( f) =
∫ b

a g(x) ln g(x)
f(x) dx ∇fφ = exp f(x)∫ b

a exp f(x) dx
# exp g(x)∫ b

a exp g(x) dx

The first is simply the inner product of the difference of two PDFs (similar to Euclidean squared distance)
while the second is the Kullback-Leibler [12] information theoretic distance between two PDFs. Note that these
gradients are exact and hence no approximation is necessary. Also, both measures are positive definite and thus
equating either gradient to the zero vector, ω, shows f = g is a minimum. The strength of the algebra here is
that no Lagrange multiplier was needed to enforce the axiom of total probability (it is included automatically).

4 Inference
A key issue when working with stochastic equations is inferring one probability density from another using
Bayes’ rule. In other words, computing the integral

f(y) =
∫ b

a
g(y|x)h(x) dx

= φ(h(x))

which can be quite expensive to do in the general nonlinear case. In this section we develop a method of
approximating this integral by viewing it as an operator, φ, taking h(x) to f(y). Our approach will be to
linearize the operator about the uniform probability density. We will work with the Fourier basis functions
described earlier but point out that the following can use any orthonormal basis.

Let the conditional density, g(y|x), be of the form

g(y|x) = ↓y exp



2
d

∑

i,j

αi,j cos
(

2πi
y − a

d
+ 2πj

x − a

d

)
+ βi,j sin

(
2πi

y − a

d
+ 2πj

x − a

d

)



=
⊕

i,j

αi,j ·
(
ξi(y) 〉〈 ξj(x) # ζi(y) 〉〈 ζj(x)

)
⊕ βi,j ·

(
ξi(y) 〉〈 ζj(x) # ζi(y) 〉〈 ξj(x)

)

where the second line shows how it may be expressed in terms of outer products of the Fourier basis functions
mentioned earlier.

Inserting g(y|x) into our expression for the Jacobian of the inference (Markov) operator computed previously,
and making the assumption that αi,j and βi,j are small so that

g(y|x) ≈ ↓y



1 +
2
d

∑

i,j

αi,j cos
(

2πi
y − a

d
+ 2πj

x − a

d

)
+ βi,j sin

(
2πi

y − a

d
+ 2πj

x − a

d

)


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we have, by employing expx ≈ 1 + x for small x, that the linearized operator is given by

Φ = g(y|x)

That is, the conditional density is the linearized operator of φ (for densities close to the uniform vector). This
implies we may do approximate inference by computing

f(y) = g(y|x)⊗ h(x)

Suppose that

f(y) =
⊕

i

νi·ξi(y) ⊕ ρi·ζi(y)

h(x) =
⊕

j

γj ·ξj(x) ⊕ ηj ·ζj(x)

Then, defining

ν !




ν0
...

νN



 , ρ !




ρ0
...

ρN



 , γ !




γ0
...

γN



 , η !




η0
...

ηN



 , α !




α0,0 · · · α0,N

...
. . .

...
αN,0 · · · αN,N



 , β !




β0,0 · · · β0,N

...
. . .

...
βN,0 · · · βN,N





we have [
ν
ρ

]
=
[
α β
β −α

] [
γ
η

]

as our approximate process of inference in terms of the Fourier coefficients. We note for the determinant of the
conditional density matrix that

∣∣∣∣

[
α β
β −α

]∣∣∣∣
2

=
∣∣∣∣

[
α β
β −α

] [
α β
β −α

]∣∣∣∣ =
∣∣∣∣

[
α2 + β2 0
0 α2 + β2

]∣∣∣∣ =
∣∣α2 + β2

∣∣2

so that the product of its 2N eigenvalues is given by

(
2N∏

n=1

λn

)2

=
∣∣α2 + β2

∣∣2

where the nth eigenvalue is denoted λn.
Recall that we assumed all of the αi,j and βi,j to be small. To be safe, a better criterion when using

this approximation is that all of the eigenvalues are smaller than 1 in magnitude, which will ensure that
information is lost through inference (as it is with the original operator). The special case that α = diag{αm}
and β = diag{βm} (i.e., they are diagonal), reveals that

(∀m = 1 . . . N) λ2
m = α2

m + β2
m

where we note that there are actually two sets of eigenvalues whose squares are identical. Thus, the boundary
between information being lost and gained through inference is given by α2

m +β2
m = 1. Later we will be working

with this special case of inference. We will also develop alternate techniques for inferring one density from
another, when the assumptions of this section are no longer valid.
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5 Joint Densities
We may also denote joint probability densities for N -dimensional continuous variables in our framework as f(x)
where x =

[
x1 · · · xN

]T with xi ∈
[
ai, bi

]
. We now require

∫ b

a
f(x) dx = 1

where a !
[
a1 · · · aN

]T and b !
[
b1 · · · bN

]T . In this case we must generalize the definitions of some of
the key operations including the inner product:

〈 f(x), g(x)〉 ! 1
2|D|

∫ b

a

∫ b

a
ln
f(x)
f(y)

ln
g(x)
g(y)

dx dy

where D ! diag{di} and di ! bi − ai.
We may still use the Fourier series expansion for a joint density but must generalize the basis functions to

be
ξn(x) = exp φn(x)∫ b

a exp φn(x) dx ζn(x) = exp ψn(x)∫ b
a exp ψn(x) dx

φn(x) =
√

2N

|D| cos
(
2πnTD−1(x− a)

)
ψn(x) =

√
2N

|D| sin
(
2πnTD−1(x− a)

)

where n !
[
n1 · · ·nN

]T . The series expansion is thus given as

f(x) =
∞⊕

n
αn·ξn(x) ⊕ βn·ζn(x)

where we note that the upper limit, ∞, is meant to imply summations over all possible combinations of the ni

with each variable independently marching towards infinity (it is an N -dimensional summation). The Fourier
coefficients are given as before by

αn = 〈 f(x), ξn(x)〉
βn = 〈 f(x), ζn(x)〉

A useful simplification occurs in the case that the joint density is independent in the xi. We will show this in
the context of N = 2 but the concept generalizes. Suppose we have a two-dimensional density, f(x) = f(x1, x2),
which is of the form

f(x1, x2) = g(x1)h(x2)

where g(x1) and h(x2) are one-dimensional densities. This product is somewhat reminiscent of a dyadic and it
is not hard to show is indeed a valid probability density function. To compute the Fourier coefficients, we use
the logarithmic form mentioned previously to reveal

αn1,n2 =
√

4
d1d2

∫ b1

a1

∫ b2

a2

ln f(x1, x2) cos
(

2πn1
x1 − a1

d1
+ 2πn2

x2 − a2

d2

)
dx1 dx2

=






√
2
d1

∫ b1
a1

ln g(x1) dx1 +
√

2
d2

∫ b2
a2

lnh(x2) dx2 if n1 = 0, n2 = 0
√

2
d1

∫ b1
a1

ln g(x1) cos
(
2πn1

x1−a1
d1

)
dx1 if n1 > 0, n2 = 0

√
2
d2

∫ b2
a2

lnh(x2) cos
(
2πn2

x2−a2
d2

)
dx2 if n1 = 0, n2 > 0

0 otherwise

=






αn1=0 + αn2=0 if n1 = 0, n2 = 0
αn1 if n1 > 0, n2 = 0
αn2 if n1 = 0, n2 > 0

0 otherwise
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where αn1 are the coefficients for g(x1) alone and αn2 are the coefficients for h(x2) alone. As before, we will
not need the coefficients for n1 = 0 and n2 = 0 since ξ0 = ω. Similarly we find

βn1,n2 =






βn1 if n1 > 0, n2 = 0
βn2 if n1 = 0, n2 > 0

0 otherwise

where βn1 are the coefficients for g(x1) alone and βn2 are the coefficients for h(x2) alone. Using these simplifi-
cations, the expansion for f(x1, x2) thus becomes

f(x1, x2) =

( ∞⊕

n1=1

αn1 ·ξn1
(x1) ⊕ βn1 ·ζn1

(x1)

)
⊕

( ∞⊕

n2=1

αn2 ·ξn2
(x2) ⊕ βn2 ·ζn2

(x2)

)

= g(x1) ⊕ h(x2)

which has the nice property of separation into a summation of terms. To see how this works directly, we can
use the definition of stochastic addition, generalized to two dimensions:

g(x1) ⊕ h(x2) =
g(x1)h(x2)∫ b1

a1

∫ b2
a2
g(x1)h(x2) dx1 dx2

=
g(x1)h(x2)(∫ b1

a1
g(x1) dx1

)(∫ b2
a2
h(x2) dx2

)

= g(x1)h(x2)

where we have used the axiom of total probability. This reveals the true nature of stochastic addition: it is an
expression of statistical independence (a.k.a., linearity).

As a final note, to compute the density over a subset of the dimensions of a joint density we integrate out
the undesired variables as follows:

g(x1) =
∫ b2

a2

f(x1, x2) dx2

which implies the following identity for joint densities wherein all of the xi are independent:

f(x) =
N⊕

i=1

∫ bj !=i

aj !=i

f(x) dxj $=i

where the integration in the ith term occurs over all variables, j = 1 . . . N , excluding i.

6 Filtering
Filtering can be thought of as combining estimates from different sources, with differing degrees of certainty.
In other words, it is the process of combining multiple PDFs into a single overall PDF. The Kalman filter [11]
allows this to be done in an optimal way when each of the estimates is a Gaussian. It is, however, a simplifying
case of the general problem of combining PDFs, which is handled quite nicely by the Bayes filter [5, 1, 10]. If we
let fi(x) represent estimates from several sources, the Bayes filter suggests that we combine them into a single
estimate, f(x), through

f(x) =
⊕

i

fi(x)

which is simply vector addition in our framework.
It turns out that if each of the fi(x) is a Gaussian, the Bayes filter exactly reproduces the Kalman filter1.

To see this, let each of the fi(x) be of the form

fi(x) = ↓x exp
(
−1

2
(xi − x̄i)TC−1

i (xi − x̄i)
)

1This requires that we let the integration limits be
[
a, b
]

=
[
−∞,∞

]
in the definition of stochastic addition, which is allowable.

However, the extension to infinite intervals becomes problematic for the inner product.
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where x̄i and Ci are the mean vector and covariance matrix, respectively, of the ith individual estimate, fi(x).
Carrying out the stochastic addition reveals

C−1 =
∑

i

C−1
i

x̄ = C
∑

i

C−1
i x̄i

where x̄ and C are the mean vector and covariance matrix of the overall Gaussian estimate, f(x). These equations
are the so-called inverse covariance updates for the Kalman filter, which do not require the explicit calculation
of the usual Kalman gain matrix.

In our framework, the L2-norm of a PDF is given as

‖ f‖L2 !
√

〈 f , f〉

and represents how far away that vector is from the uniform PDF (i.e., the zero vector). In other words, it is
a measure of the amount of information in a PDF, not unlike Shannon’s information metric [17]. For example,
the L2-norm of a truncated Gaussian is inversely proportional to the variance. To see this, let

f(x) =
exp
(
− 1

2σ2 (x − µ)2
)

∫ b
a exp
(
− 1

2σ2 (x − µ)2
)

dx

where µ and σ2 are the mean and variance, respectively. Then we have

‖ f‖L2 =



 1
2d

∫ b

a

∫ b

a

(
ln

exp
(
− 1

2σ2 (x − µ)2
)

exp
(
− 1

2σ2 (y − µ)2
)
)2

dx dy





1
2

=
1
σ2

(
1
4d

∫ b

a

∫ b

a

(
(x − µ)2 − (y − µ)2

)2
dx dy

) 1
2

∝ 1
σ2

This indicates that a PDF with a greater variance will have less information and vice versa, which has an
intuitive appeal: the variance affects only the “length” of the vector representing a truncated Gaussian. Note,
the L2-norm also depends on the location of the mean with respect to the truncated interval. In multiple
dimensions, the L2-norm is inversely proportional to the determinant of the covariance matrix.

As we are working with a vector space, we may now use the L2-norm to make the following statement about
the Bayes filter:

‖ f‖L2 ≤
∑

i

‖ fi‖L2

which follows directly from the triangle inequality for inner product spaces [8]. This states that the information
in the combined estimator can never exceed the sum of that in the individual estimators. Also, when the
individual estimators are not in perfect agreement (i.e., they are not parallel vectors), the information in the
overall estimator is reduced. Two truncated Gaussians, for example, are parallel when they have the same mean
but, possibly, different variances. For PDFs that are not Gaussian, it is difficult to speak of the Bayes filter
being optimal in the sense that the Kalman filter is optimal because variance is not necessarily an appropriate
measure to optimize for multi-modal PDFs.
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7 Time Dependence
In this section we begin to develop a technique to tackle estimation problems relevant to, for example, mobile
robotics. We will develop the equations for one dimension. Let x ∈

[
a, b
]

represent the position of a mobile
robot. Our estimate of the robot’s position is represented by the density, f(x). Here we must bring in the
concept of time, as the robot will be allowed to move. To do this we generalize our Fourier basis functions to
be of the form

ξn(x|v, t) = exp φn(x|v,t)∫ b
a exp φn(x|v,t) dx

ζn(x|v, t) = exp ψn(x|v,t)∫ b
a exp ψn(x|v,t) dx

φn(x|v, t) =
√

2
d cos
(

2πn
d (x − a − r)

)
ψn(x|v, t) =

√
2
d sin
(

2πn
d (x − a − r)

)

where

r =
∫ t

0
v(τ) dτ

and v(t) is the instantaneous velocity of the robot and t is the current time. These basis functions are, naturally,
the solution form of the classical wave equation.

It can be shown that these time-dependent basis functions may be built from outer products of the time-
independent basis functions as follows:

ξn(x|v, t) = ξn(x) 〉〈 ξn(v, t) ⊕ ζn(x) 〉〈 ζn(v, t)
ζn(x|v, t) = ζn(x) 〉〈 ξn(v, t) # ξn(x) 〉〈 ζn(v, t)

where

ξn(v, t) = ↓v,t exp
(

cos
2πnr

d

)

ζn(v, t) = ↓v,t exp
(

sin
2πnr

d

)

which follows from the trigonometric summation of angles identities. The outer product formulation becomes
quite useful if we are concerned about how well we can determine the current time. In some cases we may not
know exactly what time it is due errors in clock readings. Then, to determine the robot’s location at some
future time, we would require the use of the Markov transition function

f(x) =
∫
f(x|v, t)g(v, t) dv dt

where g(v, t) is a PDF over the velocity and time variables. We will be assuming this density to be a impulse-pdf
function, located at the correct velocity-time. We will relax this assumption in a later section.

Two forms for the equations of a propagating PDF (with no change in shape) are given by

f(x|v, t) =
⊕

n

αn[t]·ξn(x) ⊕ βn[t]·ζn(x)

=
⊕

n

αn[0]·ξn(x|v, t) ⊕ βn[0]·ζn(x|v, t)

where the first has the velocity/time dependence in the Fourier coefficients while the second has it in the basis
functions. To relate the above two forms we compute

αn[t] = 〈ξn(x),
⊕

m

αm·ξm(x|v, t) ⊕ βm·ζm(x|v, t)〉

βn[t] = 〈ζn(x),
⊕

m

αm·ξm(x|v, t) ⊕ βm·ζm(x|v, t)〉

10



from whence it follows that

αn[t + h] = αn[t] cos
(

2πnq

d

)
− βn[t] sin

(
2πnq

d

)

βn[t + h] = αn[t] sin
(

2πnq

d

)
+ βn[t] cos

(
2πnq

d

)

where q =
∫ t+h

t v(τ) dτ . which allows us to propagate the nth set of coefficients forward in time, given knowledge
of them at a previous time.

This is a perfect, time-reversible propagation, however, which is not realistic for robotics applications. This
came about through our assumption of perfect knowledge of the velocity and time. One way to avoid this is
to go back to the Markov transition and assume something other than an impulse for g(v, t). We could, for
example, use the approximate inference method outlined earlier. Another way to accommodate the growth of
uncertainty as the robot moves, is to install a gain which is determined by how far the robot moves. There are
several possibilities for the real gain, k ∈ [0, 1], but we might choose

k ! e−
1
2 r̂ ‖ f(x|v,t)‖

where r̂ =
∫ t
0 |v(τ)| dτ , κ ≥ 0 is a real, and the L2-norm of f can be gleaned from Parseval’s relation:

‖ f(x|v, t)‖2 =
∑

n

α2
n[t] + β2

n[t]

This gain has the appeal that our PDF takes on the form of a damped waveform. We have deviated somewhat
from the classic diffusion model which has v2 rather than |v| for the damping coefficient. The reason for this
deviation is empirical; growth of odometry errors, for example, are often given proportional to the distance the
robot has travelled. In the limit of small steps, k behaves as

k !
√

1
1 + κr̂ ‖ f(x|v, t)‖

The reasoning behind this choice for a gain derives from the desire to have additive variance, σ2, when f(x|t) is
Gaussian:

σ2[t + h] = σ2[t] + κ

∫ t+h

t
|v| dτ

where recall that in a previous section we reasoned that ‖ f‖ ∝ 1/σ2 for a Gaussian PDF. Note, κ = 0 implies
no loss of information as the PDF propagates. When κ > 0 information will be monotonically lost.

This part of our model accounts for all generic sensors that rely on the integration of some quantity forward
in time (e.g., encoders, inertial sensors). It allows us to propagate an old estimate of the robot’s position forward
in time as the robot is moving to arrive at

f(x|v, t + h) = k·
⊕

n

cos
(

2πnq

d

)
·fn(x|v, t) ⊕ sin

(
2πnq

d

)
·fn(x|v, t)⊥

where

fn(x|v, t) ! αn[t]·ξn(x) ⊕ βn[t]·ζn(x)
fn(x|v, t)⊥ ! αn[t]·ζn(x) # βn[t]·ξn(x)

and we have the useful relations

〈 fn(x|v, t), fn(x|v, t)⊥〉 = 0
ξn(x|v, t)⊥ = ζn(x|v, t)
ζn(x|v, t)⊥ = # ξn(x|v, t)
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Figure 2: Example of an initial Gaussian PDF that propagates to the right while degrading.

The use of the orthogonal complement operator, ⊥, avoids the need to use complex numbers in our framework,
which we feel is desirable. It is really just translating the PDF by one-quarter wavelength, d/4; the quadruple
composition of this operator is the identity operator. Figure 2 shows an example of a degrading Gaussian PDF
that is propagating to the right.

In terms of the Fourier coefficients, this can be written in matrix form as

fn[t + h] = kCn(h)fn[t]

where

fn[t] !
[
αn[t]
βn[t]

]
Cn(h) !

[
cos
( 2πnq

d

)
− sin
( 2πnq

d

)

sin
( 2πnq

d

)
cos
( 2πnq

d

)
]

If we only keep M terms in the Fourier expansion and define

f[t] !




f1[t]

...
fM [t]



 C(h) !




C1(h) · · · 0

...
. . .

...
0 · · · CM (h)





then the combined update equation is
f[t + h] = kC(h)f[t]

which is nonlinear due to the gain, k, which depends on

‖ f(x|v, t)‖2 ≈ f[t]T f[t]

where the approximation symbol indicates that we have kept only M terms in the Fourier expansion.
Note, it may make more sense to let k ∈ [0, 1] be given by

! e−κr̂

whence we have

f[t + h + s] = e−κ|v|(h+s)C(h + s)f[t]

=
(
e−κ|v|hC(h)

)(
e−κ|v|sC(s)

)
f[t]

when the velocity is constant. This is reasonable to expect as we would like our choice of integration time-step
to not affect the behaviour of the equations.

The matrix, C(h), is time-varying, but it should be noted that it preserves length (it is a rotation matrix
and hence |C| = 1); the rotation angle depends on how far the robot actually moved, h. With k ∈ [0, 1],
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we are always shortening our vector (losing information). We should also point out that we have made no
approximations up to this point except to keep only M basis vectors when approximating the PDF representing
the robot’s position. Specifically, we have not linearized anything up to this point. This is partly because we
have been working only in a single dimension, x.

8 Time and Joint Densities
To extend the time-dependent case to higher dimensions, we again must generalize our basis functions to be

ξn(x|v, t) = exp φn(x|v,t)∫ b
a exp φn(x|v,t) dx ζn(x|v, t) = exp ψn(x|v,t)∫ b

a exp ψn(x|v,t) dx

φn(x|v, t) =
√

2N

|D| cos
(
2πnTD−1(x− a− r)

)
ψn(x|v, t) =

√
2N

|D| sin
(
2πnTD−1(x− a− r)

)

where

r =
∫ t

0
v(τ) dτ

and v(t) !
[
v1 · · · vN

]T is the instantaneous velocity and t is time. As in the one-dimensional case, we find

αn[t + h] = αn[t] cos
(
2πnTD−1q

)
− βn[t] sin

(
2πnTD−1q

)

βn[t + h] = αn[t] sin
(
2πnTD−1q

)
+ βn[t] cos

(
2πnTD−1q

)

where q =
∫ t+h

t v(τ) dτ . This is the expression for the propagation of PDFs without degradation included. We
now would like to include a diffusion-like process but it might be directional. That is, information will be lost
at different rates, in different directions. Our gain will thus be of the form

kn ! exp
(
−n

TKr̂
nTn

)

where r̂ =
∫ t
0 |v| dτ and K is an appropriately sized positive semi-definite real square matrix. Since n is really

a vector pointing in the direction of travel of the nth mode, this has the effect of degrading modes which are
parallel to Kr̂. Letting

fn[t] !
[
αn[t]
βn[t]

]
Cn(h) !

[
cos
(
2πnTD−1q

)
− sin
(
2πnTD−1q

)

sin
(
2πnTD−1q

)
cos
(
2πnTD−1q

)
]

Then, in terms of the Fourier coefficients, our update can be written in matrix form as

fn[t + h] = knCn(h)fn[t]

so that, again, each mode can be updated completely independently (unless we were to once again include the
factor of ‖ f(x|v, t)‖ in the gain, kn).
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9 Gaussian Inference
In the previous two sections, we outlined a method of propagating a PDF waveform including a degradation of
information over distance travelled. The resulting model can be used to represent the degradation of information,
given the knowledge of the quantity, r (distance travelled). This is really an approximate model based on
empirical knowledge. In this section we attempt to provide a better justification for using this type of model.
We will be assuming that r is Gaussian with mean, µ, and variance, σ2. We represent its density using

h(r) = ↓r exp
(
− (r − µ)2

2σ2

)

We then seek to compute

f(x) =
∫
g(x|r)h(r) dr

where

g(x|r) = ↓x exp
√

2
d

∑

n

(
αn cos
(

2πn
x − a − r

d

)
+ βn sin

(
2πn

x − a − r

d

))

We then seek to linearize each of the sines and cosines (with respect to r) about the mean of the Gaussian such
that

cos
(

2πn
x − a − r

d

)
≈ cn +

2πn

d
sn(r − µ)

sin
(

2πn
x − a − r

d

)
≈ sn − 2πn

d
cn(r − µ)

where
cn ! cos

(
2πn

x − a − µ

d

)
sn ! sin

(
2πn

x − a − µ

d

)

Note, we could have linearized g(x|r) directly as

g(x|r) ≈ g(x|µ) ⊕ (r − µ)·g′(x|µ)

where

g′(x|µ) = lim
h→0

1
h
· (g(x|r + h) # g(x|r))

∣∣∣∣
r=µ

= ↓x exp
√

2
d

∑

n

2πn

d
(αnsn − βncn)

Using these approximations, we have for the desired integral that

f(x) =
∫
g(x|r)h(r) dr

≈ ↓x

∫
exp

(
− (r − µ)2

2σ2
+
√

2
d

∑

n

αn

(
cn +

2πn

d
sn(r − µ)

)
+ βn

(
sn − 2πn

d
cn(r − µ)

))
dr

= exp
√

2
d

∑

n

(αncn + βnsn) ⊕ exp
σ2

d

(
∑

n

2πn

d
(αnsn − βncn)

)2

⊕
∫

exp
(
− (r − µ̂)2

2σ2

)
dr

= g(x|µ) ⊕
1
2
σ2·g′2(x|µ)

where

µ̂ ! µ + σ2

√
2
d

∑

n

2πn

d
(αnsn − βncn)

g′2(x|µ) ! ↓x exp

(√
2
d

∑

n

2πn

d
(αnsn − βncn)

)2
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The third term above was dropped since
∫ ∞

−∞
exp
(
− (r − µ̂)2

2σ2

)
dr =

√
2πσ2

which is a constant with respect to x and thus the term becomes ω, the zero vector. We also see that the
integration has yielded a nonlinear term, g′2(x|µ). This nonlinear term is somewhat problematic in that we do
not have a simple matrix update for the Fourier coefficients. However, we may proceed by decomposing this
term over the basis functions once again such that

ν̂n ! 〈ξn, g′2(x|µ)〉
ρ̂n ! 〈ζn, g′2(x|µ)〉

Expanding the cosine coefficient we find

ν̂n =
√

2
d

∫ b

a
cos
(

2πm
x − a

d

)(√
2
d

∑

m

2πm

d
(αmsm − βmcm)

)2

=
2
d

√
2
d

∫ b

a
cos
(

2πm
x − a

d

)(∑

m

γm cos
(

2πm
x − a

d

)
+ ηm sin

(
2πm

x − a

d

))2

where

γm ! −2πm

d

(
αm sin

(
2πm

µ

d

)
+ βm cos

(
2πm

µ

d

))

ηm ! 2πm

d

(
αm cos

(
2πm

µ

d

)
− βm sin

(
2πm

µ

d

))

Computing this integral we find

ν̂n =






1
4

√
2
d

(
γ2

n/2 − η2
n/2 + 2γnγ2n + 2ηnη2n

)
if n even

1
4

√
2
d (2γnγ2n + 2ηnη2n) if n odd

ρ̂n =






1
4

√
2
d

(
2γn/2ηn/2 − 2ηnγ2n + 2γnη2n

)
if n even

1
4

√
2
d (−2ηnγ2n + 2γnη2n) if n odd

Letting
f(x) =

⊕

n

νn·ξn(x) ⊕ ρn·ζn(x)

we find that

νn = αn cos
(
2πn

µ

d

)
− βn sin

(
2πn

µ

d

)
+

1
2
σ2ν̂n

ρn = αn sin
(
2πn

µ

d

)
+ βn cos

(
2πn

µ

d

)
+

1
2
σ2ρ̂n

which is very similar to a previous set of equations, with the new hatted (nonlinear) terms on the right. Notice
that as the variance, σ2, tends to zero, we recover our perfect wave propagation from before where the distance
the waveform travels is the mean of the Gaussian, µ. We should also point out that the Fourier coefficients are
now coupled in the update equations through the hatted quantities.

We could also consider keeping an additional term in the Taylor expansion of g(x|r) such that

g(x|r) ≈ g(x|µ) ⊕ (r − µ)·g′(x|µ) ⊕
1
2!

(r − µ)2·g′′(x|µ)
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where

g′′(x|µ) = lim
h→0

1
h
· (g′(x|r + h) # g′(x|r))

∣∣∣∣
r=µ

= ↓x exp−
√

2
d

∑

n

(
2πn

d

)2

(αncn + βnsn)

In this case we have for f(x) that

f(x) = g(x|µ) ⊕
1
2
σ̂2·g′2(x|µ) ⊕

∫
exp
(
− (r − µ̂)2

2σ̂2

)
dr

where

σ̂2 !
(

1
σ2

+
√

2
d

∑

n

(
2πn

d

)2

(αncn + βnsn)

)−1

µ̂ ! µ + σ̂2

√
2
d

∑

n

2πn

d
(αnsn − βncn)

Keeping up to terms of order σ2 and σ4, we have

f(x) = g(x|µ) ⊕
1
2
σ2·
(
g′2(x|µ) ⊕ g′′(x|µ)

)
⊕

1
4
σ4
(
2·g′2(x|µ)·g′′ # g′′2(xµ)

)

where

g′2(x|µ)·g′′(x|µ) ! ↓x exp

(√
2
d

∑

n

2πn

d
(αnsn − βncn)

)2(
−
√

2
d

∑

n

(
2πn

d

)2

(αncn + βnsn)

)

g′′2(x|µ) ! ↓x exp

(
−
√

2
d

∑

n

(
2πn

d

)2

(αncn + βnsn)

)2

We see that additional nonlinear terms have appeared and thus these would have to be decomposed onto the
basis functions in order to come up with a Fourier coefficient update as before.

If we drop the σ4 terms then the Fourier updates are

νn =

(
1 − 1

2
σ2

(
2πn

d

)2
)(

αn cos
(
2πn

µ

d

)
− βn sin

(
2πn

µ

d

))
+

1
2
σ2ν̂n

ρn =

(
1 − 1

2
σ2

(
2πn

d

)2
)(

αn sin
(
2πn

µ

d

)
+ βn cos

(
2πn

µ

d

))
+

1
2
σ2ρ̂n

which differ from the previous update equations by our inclusion of the term involving g′′(x|µ). Figure 3 shows
an example of using this update. The input or initial pdf is a Gaussian and which should propagate to the right
and degrade. We see that the approximations begin to break down as the variance is increased too far.

The major drawback of this technique is that more and more Fourier modes will become active with multiple
applications of the inference. Really we would like something that keeps the number of active Fourier modes
constant.
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Figure 3: Approximate Gaussian inference with increasing variance.
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10 An Example
In this section we consider the specific case that we are working with a mobile robot with a nonholonomic
constraint whose state is given by x =

[
x y θ

]T and whose continuous time kinematics are given by

ẋ = v cos θ
ẏ = v sin θ

θ̇ = ω

where v and ω are the translational and rotational speeds, respectively. The robot’s change in position, ra in
the absolute reference frame, Fa, will be given by

ra = Cabrb = vh

where rb is the position change in a body-fixed frame, Fb. The body-fixed frame has the x-coordinate in the
direction of travel and the z-coordinate straight up, perpendicular to the xy-plane. The rotation matrix from
Fb to Fa is denoted Cab(θ) and is given by

Cab(θ) !




cos θ sin θ 0
− sin θ cos θ 0

0 0 1





Integrating the kinematics equations over a short interval reveals

rb =




vω−1 sinωh

vω−1(1 − cosωh)
ωh





where we have assumed v and ω to be constants in order to perform the integration (reasonable for small h).
Defining Kb = diag{kx, ky, kθ}, we construct the damping coefficient, kn, as

kn = exp
(
−|nTCab(θ)Kbrb|

nTn

)

where we note that
nTCab(θ)Kbrb = nTKara

with Ka = Cab(θ)KbCT
ab(θ).

To use this in practice, we assume that v, ω, and t can be measured from, for example, odometry and a
clock. This allows us to determine rb. The determination of Cab(θ) requires the knowledge of θ, which we do
not have, directly. Instead we must use an estimate. This brings up the next issue, which is what to do in
general when we do not have perfect knowledge of v.
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