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Abstract

The primary objective of this thesis is to develop a method for the

offline generation of a map containing only Google Earth (GE) ren-

dered images against which an Unmanned Aerial Vehicle (UAV) is able

to localize using vision online. This eliminates the need for a manual

mapping flight and would allow the UAV to fly in new unseen areas

autonomously. The first part of this thesis presents a novel method

for localizing live UAV images against a collection of rendered and en-

coded GE images that is fast and has low storage requirements. The

second part of this thesis implements this new measurement into the

existing Visual Teach & Repeat (VT&R) system. This includes writ-

ing a script to generate a compatible map entirely offline, computing

the measurement in the VT&R pipeline, and using the measurement in

the localization optimization. We demonstrate the performance of us-

ing GE image-based measurements on a dataset of real UAV collected

images at six different times of day.
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Chapter 1

Introduction

1.1 Background and Motivation

Unmanned Aerial Vehicles (UAVs) are being used more and more in

a wide variety of outdoor applications, such as surveillance and re-

connaissance, agriculture monitoring, package delivery, and emergency

response, yet they remain primarily dependent on GPS for localiza-

tion. The disadvantage of a GPS-based localization system is that it is

susceptible to dropout, interference, and intentional jamming. Due to

safety concerns regarding GPS failure, UAVs are limited to line-of-sight

flights so that the operator is able to take over in case of failure.

Vision is often used as an additional sensor, or as the primary sensor

in GPS-denied environments, due to its low weight and fast computa-

tion; however, current vision-based methods are limited as well. Visual

Odometry (VO) is commonly employed, but still requires corrections to

prevent drift. Visual Simultaneous Localization and Mapping (SLAM)

is a common solution to the issue of drift, but its use on UAVs has been

primarily demonstrated in indoor environments or small areas [8], [31],

[37]. With a focus on providing capabilities for longer outdoor flights,

there is still much to be improved upon with UAV vision systems.

One system providing outdoor autonomous flight capabilities is Vi-
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CHAPTER 1. INTRODUCTION 2

sual Teach and Repeat (VT&R) [12]. This method generates a locally

consistent visual map on an outbound pass under manual or GPS con-

trol, and the UAV is then able to return autonomously along the path

without GPS using a stereo camera. The requirement for a mapping

pass is the largest downside to this approach. GPS or manual opera-

tion is required to generate the map limiting where the UAV is able to

fly. As well, because VT&R relies primarily on point-feature match-

ing (e.g., Speeded-Up Robust Features (SURF) [6]), the return pass

must be completed shortly after the outbound pass so that the light-

ing conditions along the path have not changed significantly. It does

not allow for the repeated traversal of the path using a map generated

much earlier.

A unique opportunity for outdoor aerial vehicles is the existence of

easily available databases of satellite images covering the entire globe.

Google Earth (GE) is one of the most accessible. In many areas, GE

has used the satellite images to generate a detailed 3D reconstruction

of the area. This reconstruction takes into account the 3D structures

of buildings, trees, and other objects, making it possible to render a

realistic image at any desired pose. In [27], the idea to replace the

manual outbound mapping pass in VT&R with a virtual pass in GE

was proposed.

The biggest challenge with this idea is finding a way to accurately

and robustly localize real live images captured from a UAV with the

artificial, reconstructed images rendered from GE in real time. Since

the satellite images used for the reconstruction were captured years

ago, there are differences with the live images in terms of lighting,

small object movement (e.g. vehicles, trailers), large structural changes

(e.g. building additions/demolitions), and unusual object reconstruc-

tion, particularly for non-rectangular objects like trees. This makes it
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difficult for feature-based methods to obtain accurate and robust results

in many cases.

Figure 1.1: Between the real images and the GE images there are differences in
colour and lighting, the movement, addition, or removal of smaller objects like cars
and trailers, and renovations to some of the buildings.

Proof of concept for the ability to match live images and GE im-

ages was demonstrated by Patel et al. [27] who developed a mutual-

information(MI)-based matching scheme. In their work, GE images

were rendered all around the desired flight path. MI was used to se-

lect the best initial GE match to the live image and a finer alignment

optimization was also conducted. This approach was computationally

expensive and would require storing thousands of full-sized images on

board the UAV. It was never fully integrated with the existing VT&R
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system and is not capable of running in real time.

In this thesis, we develop a new method to localize live UAV images

to pre-rendered images from GE that is fast and storage efficient. As

in [27], images are rendered around the desired flight path in GE. With

this novel method, an autoencoder is then trained on these path-specific

images to compress them to a much smaller vector representation. The

same autoencoder is used to compress the live image as well. The

compressed live image vector is compared to all nearby compressed GE

image vectors through an inner-product kernel. This results in weights

associated with each of the corresponding GE image poses. From these

weights, a localization for the longitude, latitude, and heading with

accompanying covariance is computed.

This method is described in detail in Chapters 2 and 3. Image

registration using this method has been demonstrated on a real UAV

dataset of images collected along a 1.1km path at six different times of

day covering several lighting conditions. In comparison with [27], we are

able to achieve the same accuracy performance on image registration

and run in 1% of the computation time with approximately half the

storage requirements.

The second half of this thesis integrates this new measurement into

the existing VT&R system. This includes generating a VT&R com-

patible teach pass using only monocular images and pose data from

GE automatically and entirely offline. The computation of the new

GE image-based measurement mentioned above is added into the C++

pipeline and used as an additional factor in the localization optimiza-

tion. This work is described in Chapter 4 and is demonstrated by

running the modified VT&R system using the offline generated map on

the real, multiple time of day dataset.
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1.2 Related Work

1.2.1 Aerial Image Registration

Aerial image registration typically takes a live downward-facing image

from a UAV and estimates the relative pose change to align it with a

georeferenced satellite image. Early works in this area looked at using

edge detection followed by image warping to find an optimal alignment

[11], or a combination of classical techniques with learned semantic

segmentation [24]. Both of these appraoches require the presence of

buildings or roads in the images and perform better at high-altitude

flights where more structure is present in the images. They suffer in

areas comprising mainly grass and trees.

Feature-based localization is the current standard for visual state

estimation. Traditional point features (such as SIFT [18], SURF[6],

and BRIEF[9]) have led to significant achievements in localization and

mapping systems. For example, features have been used to match street

view images to images captured from a ground robot [3] and a UAV

[19, 20]. This is achieved by first performing place recognition using

a visual bag-of-words technique and is followed by image registration

using Scale Invariant Feature Transform (SIFT) keypoints. However,

a disadvantage of low-level point-based features is that they often look

drastically different under different lighting conditions, seasonal change,

or between image modalities.

As an alternative to point-based features, some works have intro-

duced bespoke detectors that identify larger image structures. Instead

of applying the same generic descriptor to images from all locations,

Linegar et al. [17] and McManus et al. [22] curate a large bank of spa-

tially indexed detectors for distinctive visual elements. They achieve

this by collecting multiple images with a variety of appearances at a lo-
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cation, partitioning the images into tiles, and training SVM detectors

on each of the tiles. An iterative classification process removes non-

distinctive tiles that are consistently mislabelled and uses a geometric

consistency check to select distinctive patches in each of the images.

Learning-based methods for visual pose estimation have also been

increasing in popularity. When provided with enough training data,

a network is capable of learning to predict the global pose given a

single image within the training area as demonstrated with PoseNet

[16]. Networks are also capable of computing the relative pose change

between two images [23], [14]. The benefit of learning-based approaches

is that given enough training data, they should be able to learn to be

robust to changes in lighting and season; however, these approaches are

limited by the available training data. Real data is expensive to collect

and label, and synthetic data does not typically generalize directly to

the real world. An alternative is the use of unsupervised methods [41],

[40], [29], which have become more popular with self-driving and the

large datasets available.

Registering images of different modalities, such as GE images and

real images, poses an additional problem. It is difficult to match fea-

tures across modalities and training a network requires large quantities

of both types of images or a sim-to-real domain transfer. Mutual In-

formation (MI) is a measure of the mutual dependence between two

variables. In the context of images, it is maximized when the images

are correctly aligned and was initially used in the medical field to regis-

ter images of different modalities [35]. It has since been used in robotic

localization systems such as [32][25] to register live camera images to

images generated from 3D meshes. Most relevant to this thesis is the

work done by Patel et al. [27] where the optimal warping parameters

to maximize the MI between a georeferenced satellite image and a live
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UAV image were found. This method was able to achieve less than

3m and 3° root mean square error (RMSE) on real datasets collected

at various times of day; however, it is largely limited by the costly

computation and storage requirements. This method will be used for

comparison with the results in Chapter 3 and a more detailed back-

ground can be found in Section 3.2.1.

1.2.2 Visual Teach & Repeat

The Visual Teach and Repeat (VT&R) method [12] enables the long

distance autonomous, outdoor, aerial navigation in GPS-denied envi-

ronments. VT&R is a system by which a robot is capable of long-range

autonomy using a stereo camera as its sole sensor. For the teach pass,

the robot is manually driven over a desired path while constructing

a local topologically connected map. The robot is then able to au-

tonomously repeat this path by localizing to the pre-built map. By

repeating the path over gradual changes in experience (e.g., lighting

conditions, seasonal variations, etc.) the map can be extended to allow

for more robust localization performance in varying conditions [28].

The VT&R system has been successfully adapted for use onboard a

multirotor UAV to allow for the completion of autonomous emergency

returns in the case of GPS failure [36]. The UAV flies out under GPS

or manual control and is able to return along the same path if GPS

fails using the onboard camera. This approach is limited as a GPS or

manual flight is still required for the outbound pass, and in the case of

emergency, the UAV must return along the same path it flew out on

even if a shorter return route exists. The ability to localize to existing

map images, which is the main focus of this thesis, would allow the

UAV to autonomously fly routes that have never been flown before.

A more detailed explanation of the VT&R system and how it has
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been modified for use on a UAV can be found in Section 4.2.

1.3 Contributions

The main contributions of this thesis are:

• An autoencoder trained purely on GE images for a specified path

that is capable of encoding never before seen real images along the

same path into a low-dimensional vector. This allows for the effi-

cient storage and comparison between real images and GE images.

The development and performance of this network is detailed in

Chapter 2.

• A method using this trained autoencoder to generate a codebook

of georeferenced satellite images and match a live image to this

codebook through inner kernel computations to obtain a localiza-

tion measurement with covariance. The methodology to compute

this measurement and its performance on real data is detailed in

Chapter 3. Along with contribution #1, this work resulted in the

following journal paper:

Mollie Bianchi and Timothy D. Barfoot. UAV Localization Using

Autoencoded Satellite Images. IEEE Robotics and Automation

Letters (RAL), 6(2):1761–1768, 2021. doi: 10.1109/LRA.2021.3060397.

• A script to automatically generate offline a VT&R compatible map

provided only with a set of path coordinates, GE rendered images

at the specified coordinates, and the encoded GE reference images.

The development and explanation of steps performed by this script

are detailed in Chapter 4.

• Modifications to the VT&R pipeline adding the computation of

the GE image-based measurement to the localization pipeline and
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adding this measurement as an additional factor in the localization

optimization. The development and the evaluation of the modified

VT&R system on a dataset of real UAV images at six different

times of day is detailed in Chapter 4.



Chapter 2

Autoencoding Satellite Images

2.1 Introduction

One of the unique opportunities of working with aerial vehicles is that

large databases of high-resolution satellite images exist for much of

the world and are easily accessible. One of these databases is Google

Earth (GE). In addition to planar satellite images, GE has used the

satellite images to create 3D reconstructions of many areas. Images can

be rendered at any location, altitude, and orientation in one of these

3D reconstructed areas and the result is an image manufactured from

multiple satellite images that takes into account the geometry of the

scene. This is ideal for lower-altitude flights where planer assumptions

break down since the height of buildings is significant compared to the

UAV altitude and causes a parallax effect as the UAV flies.

Due to computation and connectivity constraints onboard the UAV,

it is not feasible to render images from the GE reconstruction as the

UAV flies. Therefore a map of these images must be created offline

and loaded onto the UAV. One of the limiting factors of [27] was the

large storage requirements and lengthy computation time required to

process thousands of full-size images. A method was needed that could

compress the images to a much smaller representation but still retain

10
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enough information that the compressed representations could be used

to match between the live and GE images. Autoencoders are neural

networks commonly used for the compression of images and were se-

lected for this task.

Exploiting the idea of place-specific excellence, we focused on train-

ing a specific autoencoder offline for each flight path. In order to do

so, images are rendered offline in GE all around the desired flight path

and are then used as training data for the autoencoder. After training,

the autoencoder is able to generalize and successfully compress never-

before-seen live images. The next step after generating a codebook of

compressed GE reference images is to develop a means of matching

the encoded live image to these reference images, which is the focus of

Chapter 3.

This chapter is organized as follows. First, we provide some back-

ground on autoencoders and how they are typically used. Then, we

discuss the procedure for rendering the images from GE, the network

structure selected, and the training regime. We conclude with the per-

formance and some areas for future work.

2.2 Background and Related Work

An autoencoder typically refers to a neural network containing encoder

and decoder sections. The input is fed into the encoder part of the

network which compresses it down to a lower-dimensional vector. This

encoded vector is provided as input to the decoder network. The de-

coder then upsamples from this vector to result in a final output that

is the same size as the original input. Typically images are used as the

input. By training to minimize some loss function between the original

image and the reconstructed image, the network can learn to retain
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the key features in the bottleneck vector. If desired, an additional loss

function can be implemented on the compressed vectors to encourage

them into following a selected distribution.

Many works use an encoder to compress the original images and

then perform computations with the vector representations. For exam-

ple, Hou et al. [15] use a deep feature consistent loss function during

training to learn to encode facial images. They then linearly combine

the vectors and decode to generate images with new or mixed facial fea-

tures. There has been a lot of work on autoencoders, including trying

new loss functions [30], adversarial autoencoders [21], and combining

autoencoders with neural autoregressive models [10].

Similar to our work, Sundermeyer et al. [33] use an autoencoder

to generate a codebook of images rendered in simulation at various

6DoF poses around an object. They then encode a real live image of

the object and match it against the codebook to get an estimate of the

object’s pose. They use a generalized version of a denoising autoencoder

[34]. A denoising autoencoder adds random artificial noise to the input

image, but the reconstruction target is kept noise free. They show that

this training regime enforces invariance against noise and also different

input regimes, which aids in the transfer from sim to real data.

2.3 Rendering Google Earth Images

Given a desired path, images are rendered from GE [1] at the intended

orientation every 0.5m along the path. Additional images are rendered

at 0.5m lateral offsets out to 5m on both sides of the path. This requires

42 images for each meter of the path. This coverage could be modified

based on expected performance of the UAV. For example, if the UAV is

expected to operate in windy conditions more images could be rendered
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further from the path. Regardless, this leads to a high number of images

for non-trivial path lengths. Storing and comparing these images in full

size would be infeasible. The next step and key aspect of this method

is to use an autoencoder to compress the images to a low-dimensional

representation while maintaining the key features of each image such

that comparisons with an encoded live image yield sensible results.

2.4 Network Structure

The autoencoder architecture is based on [15] as implemented in [2].

The input is a 320×160 greyscale GE image. The encoder is composed

of six layers. Each of the first five layers performs a 2D convolution with

a kernel size of four and a stride of two followed by a batch normaliza-

tion layer. The number of channels doubles as indicated in Figure 2.1.

Finally, a linear layer maps the output of the final convolution layer to

the bottleneck vector. Different sizes were experimented with for the

dimension of the bottleneck, but a bottleneck of dimension 1000 was

decided upon as it was the smallest size that could still achieve the

desired accuracy.

The decoder part of the network behaves opposite the encoder. A

linear layer first maps the bottleneck variable to 1024 channels. This is

then passed to the first of five layers, each of which performs upsampling

by a factor of two, followed by convolution with a kernel size of three

and stride of one, and batch normalization. The number of channels

is halved in each layer until an output greyscale image with the same

dimensions as the input image is generated. To obtain the compressed

image vector, the output after only the encoder part of the network is

used.
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Figure 2.1: The encoder network has five convolutional layers each followed by a batch
normalization layer. The number of input channels, output channels, and stride is
indicated in parentheses. The final layer of the encoder is a linear layer producing
a 1000 dimensional vector. The first layer of the decoder network is a linear layer
mapping the bottleneck vector to 1024 channels. There are five more layers, each
of which performs upsampling by a factor of two, followed by convolution and batch
normalization. An L2 loss function is used between the reconstructed image and the
original image as well as between outputs of corresponding layers in the encoder and
decoder.
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Figure 2.2: The training and validation errors, orange and blue respectively, decrease
when training with or without skip losses. However, the errors on samples from two
real datasets, red and green, decrease more when training with skip losses.

2.5 Training

The autoencoder is trained solely using the precollected images from

GE for a specific desired path. A new autoencoder would need to be

trained for each path. Since only the GE images are used for training,

this step can be completed entirely offline before ever flying the path.

The loss function used to train the network is a combination of

photometric L2 loss between the input and output images, i.e., L =

(Iinput − Ioutput)
2, and L2 loss between the outputs of corresponding

layers (referred to as skip losses). These skip losses help each layer of the

decoder to learn to perform the opposite of the corresponding encoder

layer. These additional skip losses are weighted with a value of 0.01

and were found to improve performance on the real image validation

sets.

For the path used in the experiments, the network was trained with

approximately 48,000 images. The network was trained for 20 epochs

with a learning rate of 1e-4. On an Nvidia DGX Station using a single

Tesla V100 GPU training took around 20 hours to complete.
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2.6 Performance

The purpose of the autoencoder is to generate lower-dimensional rep-

resentations of the images that still retain enough of the key structural

information to be used for matching. Using the trained autoencoder,

320× 160 images are able to be compressed to a 1000 dimensional vec-

tor. This is a significant reduction from the 51,200 pixels in the original

image and an even larger reduction from the 176,400 pixels used in the

larger sized images in [27].

Figure 2.3: GE images used for training the autoencoder are shown on the left and
the corresponding reconstructions are on the right.

To get a sense of how much key structural information is retained in

the encoded vectors, we visualize the reconstructed images. Figure 2.3

shows some example GE training images from various parts along the

path in the left column and their corresponding reconstructions in the

right column. The reconstructions retain a lot of the core information
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from the original images. From just a 1000-dimensional vector, the

position of the roads, buildings, and trees can be recovered.

Figure 2.4 shows real images collected from the UAV in the left

column and their corresponding reconstructions on the right. These

real images were not used in any part of the training. In comparison

with the training image reconstructions, these reconstructions are not

as sharp or crisp but the main structural elements are present. The

buildings, paved parking lots, roads and grassy areas can be seen in the

reconstructions.

Figure 2.4: The original real UAV images are shown on the left and the corresponding
reconstructions are on the right. The real UAV images were not used during training,
but the network is still able to generate a reasonable encoding from which the core
scene elements can be extracted.

In Chapter 3, the encoded vectors are used in kernel computations

to compute a measure of similarity between the GE images and a live

image. In order for this similarity measure to be accurate, the network
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must able to accurately encode both GE and real images. A more de-

tailed, quantitative evaluation of the comparisons between the encoded

vectors can be seen in Chapter 3.

2.7 Summary

In this chapter, we detailed the training procedure for an autoencoder

to learn to compress GE and real images along the path. The key

aspect of this procedure is that the encoder is trained entirely on images

rendered from GE, yet it can still generalize fairly well to live images.

This offline-only aspect is towards the goal of generating a map entirely

offline, which would allow a UAV to fly autonomously in new areas

without having to complete an online mapping pass.

By reducing the size of images required, from 320×160 or 51,200 pix-

els, to just 1000 dimensions, we have significantly reduced the storage

requirements required with a map of thousands of images. Since our

encoded image sizes are so small, we can actually render more images

at a finer spacing than [27] and still use less storage. This reduction

also has a positive impact on the computation time. Using fewer di-

mensions to represent the same image will speed up any calculations.

The next chapter details how we use the encoded vectors to get a lo-

calization measurement and present quantitative results for the storage

and runtime requirements.



Chapter 3

Localization Using Kernels

3.1 Introduction

Using the autoencoded reference images as described in the previous

chapter, we are able to generate a codebook to which we will match

the live image. This proposed approach can be divided into several

steps as depicted in Figure 1. The first step is offline preprocessing.

Images are rendered from GE around the desired flight path and an

autoencoder is trained for this specific path as described in Chapter

2. The encoded reference images and the trained encoder weights are

then saved. While the offline processing is significant, it only needs to

be completed once per path and would eliminate the need for manual

mapping flights before each autonomous flight as is currently done in

[36].

In the online component of the pipeline, the live image is passed

through the trained encoder and compared to a subset of nearby en-

coded reference images using an inner product kernel computation.

This results in a set of weights for each reference image, which are

used alongside the known reference image coordinates to compute a

weighted average localization measurement for the latitude, longitude,

and yaw of the live image. The weights are also used to compute a

19
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covariance estimate which is used for outlier rejection.

We evaluate this new method on a real world dataset collected at six

different times of day. The performance is comparable to [27] achieving

an RMSE of less than 3m, but our new method runs in 1% of the com-

putation time and with approximately half the storage requirements.

Figure 3.1: 1. Offline before flight, images are rendered in a grid pattern around the
desired path using Google Earth [1]. An example of this grid pattern is shown at
the bottom of the figure. 2. These images are used to train an autoencoder using
photometric loss and skip losses. 3. All the encoded training images and the encoder
are transferred onto the UAV. 4. The live image captured by the UAV is passed
through the trained encoder. 5. The encoded live image is compared with a subset
of the encoded reference images using an inner-product kernel outputting a weight
for each reference image. 6. These weights are used to compute the localization and
covariance.
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This chapter is organized as follows. First, we provide a background

on related work in three relevant areas. Then we go into the details

of how the localization measurement is obtained from the codebook.

Finally, we provide some experimental results and comparisons with

[27] before concluding with a summary.

3.2 Related Work

3.2.1 Mutual Information Based Matching

The most relevant method for localization using satellite images, and

the one that will be used for comparison, is the Mutual Information(MI)

based approach presented by Patel et al. [27]. This was largely inspired

by [25, 26] in which MI had been used to localize monocular camera

images within a textured 3D model of the environment. Adapting this

idea to a UAV, Patel et al. [27] were able to achieve less than 3m

and 3° RMSE on low-altitude flights at six different times of day. In

their work, images were rendered from GE beforehand every 3m along

the path and around the path at intervals of 6m. The Normalized In-

formation Distance (NID), which is a MI based metric, was computed

between the live image and all images within 4m of the prior pose es-

timate (e.g., from filtering) to select the best-matching image. The

alignment between this geo-referenced image and the live image was

then computed by a series of coarse and refined optimizations of the

warping parameters. Each step of the optimization required numeri-

cally computing the Jacobian of the NID with respect to the warping

parameters. This process was quite slow making this method incapable

of running in real time. As well, the images were stored in their full

560 × 315 resolution resulting in large storage costs for longer paths.

We build on the idea of prerendering images around a desired path in
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GE, but improve upon [27] by eliminating the costly optimization step,

improving runtime, and decreasing storage requirements.

3.2.2 Kernels

Kernels, such as the inner-product or exponential kernel, are often used

for matching patches between images [13], [39]. They provide a mea-

sure of the similarity between the two patches and are fast to compute,

but they are not commonly used for comparisons of whole images due

to the high number of pixels involved. In this new method, we use ker-

nels on the autoencoded representations of whole images. Since these

autoencoded images are small enough to quickly compute a kernel be-

tween them, it eliminates the need for extracting and matching patches

from an image.

3.2.3 Learning a Codebook

Sundermeyer et al. [33] use a similar method to what is proposed in

this work to perform 6D Object Detection. Instead of explicitly learn-

ing from 3D pose annotations during training, they implicitly learn

representations from rendered 3D model views. Using a denoising au-

toencoder, they generate a codebook containing the encoded represen-

tations of tens of thousands of rendered images from simulation of the

desired object at uniformly distributed poses. The same autoencoder

is used to encode a live image and a cosine similarity metric is used to

match the live image with the closest poses from the codebook.
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3.3 Computing the Localization Measurement

3.3.1 Latitude and Longitude

To minimize time spent loading the autoencoded GE reference images,

all image vectors are stacked and loaded into a 1000 × N dimensional

matrix denoted Yge, which is loaded onto the GPU. Then, based on

a prediction of the current live image pose, Yge is indexed to include

only the reference images that are 4m ahead and behind along the path,

which is the same search area used in [27]. The live image is passed

through the trained autoencoder and the resulting compressed 1000×1

vector is denoted as y. The weights, w, are computed for the subset of

autoencoded GE reference images using a basic inner-product kernel:

w = YT
gey. (3.1)

The weights represent a similarity measurement between the live image

and each of the reference images. Since there are 336 images in our

nearby area and thus being used for comparison, many of these images

have low, but non-zero, weights. These weights tend to pull the mean

value towards the centre of the area covered by the reference images.

To prevent this and get a result closer to the images with the highest

weights, a new set of weights, wth, is created by setting all values of

the weights less than one standard deviation of the max weight to zero.

The thresholded weights are then normalized:

w̄th =
wth∑
iwth,i

. (3.2)

The longitude and latitude coordinates of each reference image are

stacked in a 2 × N matrix Xge. The thresholded weights are used
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to compute the localization for the longitude and latitude according to

x̂ =

[
x̂

ŷ

]
= Xgew̄th. (3.3)

3.3.2 Yaw

Instead of rendering reference images at multiple headings and includ-

ing them in the previous computation, we use a similar tactic to Wol-

cott and Eustice [38]. The heading computation is performed after the

above step by rotating the live image. First, the reference image with

the largest weight, y?ge, is selected for comparison. The uncompressed

live image is then rotated in 1° increments between -5° and 5°. All

these rotated images are encoded and stacked into an 1000×11 matrix,

Yθ. The kernel computation from (3.1) is repeated:

wθ = YT
θ y?ge. (3.4)

These weights are normalized, w̄θ, and then used to compute a heading

measurement following the same procedure as in (3.3) using a stacked

vector of the rotation values, xθ:

θ̂ = xTθ w̄θ. (3.5)

This mean heading value, θ̂, by which the live image has been rotated is

then subtracted from the heading of the selected reference image, β, to

get a global heading, β − θ̂. While not included here, a similar process

could be used to get an estimate for altitude without having to render



CHAPTER 3. LOCALIZATION USING KERNELS 25

additional reference images. The full localization is then

p̂ =


x̂

ŷ

β − θ̂

 . (3.6)

3.4 Computing Covariance

In the above computations, we generate a set of weights. These weights

can indicate a sense of how confident we are in the localization. If the

weights are very sharply peaked, as they are in the example on the left

side of Figure 3.2, we are more confident in our estimate. If instead the

weights are more evenly spread out, as on the right side of Figure 3.2,

or there are two peaks, we are less confident in our measurement. We

can use the following equation to generate a covariance estimate based

on the original weight values:

P =
∑
i

wi(xge,i − x̂)(xge,i − x̂)T . (3.7)

Figure 3.2: On the left, we show an example of a highly peaked weight distribution,
which results in a smaller covariance. On the right, we show an example of a more
spread out distribution, which yields a larger covariance.
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Figure 3.3: Plots of the RMSE for the longitude and latitude coordinates of the sunrise
test are shown here with accompanying 3σ uncertainty envelope. The registrations
that were rejected due to either σlong or σlat > 5 are shown in red.

3.4.1 Outlier Rejection

Since we compute a covariance with our localization based on the

weights, we can also use this to reject outliers. When the weights

have a single narrow peak away from the edges of the area covered by

the reference images, the σ2
long and σ2

lat values are small. When the

weights are more spread out with a less-well-defined peak, when there

are multiple peaks, or when the peak occurs very close to the edge of

the reference area, this results in larger values for σ2
long and/or σ2

lat. We

reject localizations that have either σlong or σlat greater than 5. Figure

3.3 plots the RMSE for the longitude and latitude coordinates for one
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of the flights in the experiments section with accompanying covariance.

Rejected registrations are indicated in red.

3.5 Experimental Results

3.5.1 Experimental Setup and Dataset

Image registration to obtain the longitude, latitude, and heading was

performed on the same dataset as in [27]. We did not focus on estimat-

ing the roll, pitch, or altitude of the vehicle as those can be measured

by complementary sensors to vision. In this dataset, the data was col-

lected at UTIAS using a DJI Matrice 600 Pro multirotor UAV with

a 3-axis DJI Ronin-MX gimbal (see Figure 3.4). A StereoLabs ZED

camera provides stereo images at 10FPS. The RTK-GPS system and

IMU provide the vehicle pose for ground truth.

Figure 3.4: The dataset was collected by a 3-axis gimballed stereo camera on a
multirotor UAV also equipped with an RTK-GPS module to collect the ground truth
pose.
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The dataset consists of six traversals of a 1132m path over built-up

areas with roads and buildings as well as large areas of grass and trees as

seen in Figure 3.5. Each run captures the distinctive lighting condition

at different times of day: sunrise, morning, noon, afternoon, evening,

and sunset. These lighting conditions are shown at three locations

along the path in Figure 3.6 alongside the accompanying GE rendered

image. The UAV flies at an altitude of 40m with a constant heading

and the camera pointed in the nadir direction.

Figure 3.5: The 1.1km path covers a variety of terrain around UTIAS including large
areas of vegetation and more built-up areas with roads and buildings. The path starts
in the center of the image and proceeds in a clockwise direction.
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There is an unknown offset between the RTK-GPS frame and the GE

frame so 10% of the successful image registrations are used to align the

frames. These registrations are then omitted from all error calculations

[27].

(a) Substantial differences in colour can be seen between the GE image and the real images.
The presence of shadows also varies throughout the times of day with the real images.

(b) Large shadows are present on the east side of the dome in the afternoon and evening
images, but not in the GE image.

(c) Shadows on the west side of the building are present in the GE image and the morning
run of the data.

Figure 3.6: The dataset consists of six runs at different times of day: sunrise, morn-
ing, noon, afternoon, evening, and sunset. Images from each of these runs and the
corresponding GE image are shown at three locations along the path.
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3.5.2 Performance Under Various Lighting Conditions

Image registration was performed on each of the six lighting conditions

included in the dataset. The best performance was achieved on the

morning lighting condition in terms of registration success rate and

RMSE. As seen in Figure 3.6, the morning lighting condition has shad-

ows on the west side of buildings and trees. In the GE images, the

shadows also appear on the west side of the objects. The registration

results for the morning lighting condition can be seen in Figure 3.7a.

The grey dots indicate the reference image positions and the green dots

indicate the ground truth. The blue dots are the localization results. It

can be seen that the localization results follow the ground truth quite

closely in most areas.

The evening dataset has large shadows appearing on the east side

of objects which is opposite to how the shadows appear in the GE

images. The localization performance on this evening dataset was the

worst out of the six lighting conditions in terms of registration success

rate and RMSE. The results can be seen in Figure 3.7b, where blue dots

indicate successful localization results and red dots indicate localization

results that were rejected by our outlier rejection method. While there

are some areas along the path where the registrations that are deemed

successful stray from the ground truth, most localizations with large

errors are identified and rejected.

It should be noted that these are pure image registration results

and they have not been passed through any sort of filtering. Adding

in a prior estimate from VO and a motion model should help smooth

out the path and propagate the estimate forward in areas where the

localization was not successful. This is the focus of Chapter 4 where

we integrate the localization results with the VT&R system.
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(a) MORNING

(b) EVENING

Figure 3.7: Registration results showing our best (morning) and worst (evening)
localization results. Grey dots indicate the reference image positions. Green dots
indicate the ground truth live image positions. Blue dots indicate accepted localiza-
tions and red dots indicate rejected localizations. Shadows on the opposite sides of
objects as compared to the GE reference images cause higher errors and more rejected
registrations in the evening run.
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Figure 3.8: An example frame from each of the three areas indicated in Figure 3.7 for
the morning lighting condition is shown at the top of this figure and for the evening
lighting condition on the bottom. For each lighting condition, the top row shows the
overlay between the live image and the GE reference image closest to the localization.
The heat maps plotted in the bottom row show the value of the weights for each of
the nearby GE reference images with yellow indicating a higher weight. The resulting
localization and covariance is shown in green for successful registrations and in red
for rejected registrations. The ground truth is shown in magenta.

Figure 3.8 shows some examples from three different areas along the

path (indicated as A, B, and C in Figure 3.7) for the morning and

evening light condition in the upper half and lower half, respectively.

The top row for each lighting condition shows an overlay of a live image

at that location and the GE reference image closest to the localization.

The bottom row shows a heat map of the value of the weights of the

nearby GE reference images computed from an inner-product with the
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live image. Here a yellow colour indicates a higher weighting. The

resulting localization from the weighted average computation and the

covariance estimate are plotted as well. For the successful registrations

(Morning A, B, C, and Evening A), the covariance envelope is smaller

and the resulting localization is plotted in green. For the rejected lo-

calizations (Evening B and C), shadows cause the highest weights to

occur on misaligned images at the very edge of the reference images. In

these cases, the covariance that results from the weights is larger than

in the successful registrations, very elongated, and does not pass our

threshold for outlier rejection. In these unsuccessful cases, the rejected

localization result and covariance are plotted in red.

3.5.3 Comparison with State of the Art

All Registrations

Most vision-based localization methods rely on features. Previously,

Patel et al. [27] evaluated the ability of SURF features to match be-

tween GE rendered images and live images on the same path used here

under various lighting conditions using the VT&R framework in [36].

Using the GE images for the teach pass and the live images for the

repeat, features were only capable of producing less than 7% successes

per repeat if a successful registration is defined as having greater than

30 Maximum Likelihood Estimation Sample Consensus (MLESAC) in-

liers. We are not currently aware of any works localizing GE images

to real UAV images at a similar altitude and orientation as our flight

path other than [27].

For performance evaluation, we compare our new method with the

MI-based approach from [27] and were able to achieve comparable re-

sults on the same dataset. In Table 3.1, we present our RMSE for the

longitude, latitude, and heading for all registrations on each of the six
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runs. We achieve lower errors as compared to the results presented in

[27]. We use the same search area as in [27] to select our subset of

reference images, which correspond to a maximum RMSE of 6.4m.

Table 3.1: Comparison of Errors for All Registrations

Lighting

Condition

All Registrations RMSE

longitude [m] latitude [m] yaw [degree]

Ours MI [27] Ours MI [27] Ours MI [27]

Sunrise 1.18 1.87 0.98 1.47 0.35 2.80

Morning 0.90 2.24 0.95 1.39 0.31 2.97

Noon 1.04 1.26 0.87 1.02 0.36 2.70

Afternoon 1.84 2.14 0.90 1.57 0.35 2.63

Evening 2.53 4.09 1.19 3.63 0.42 5.25

Sunset 1.64 3.03 0.97 1.95 0.37 3.06

Successful Registrations

In Table 3.2, the error results from only successful registrations are

compared against the errors from successful registrations in [27]. We

also compare two different methods for determining whether a localiza-

tion is successful with our method. For “Ours A”, we use the outlier

rejection scheme described in Section 3.4.1 to reject registrations with

a high covariance estimate. For “Ours B”, we use the outlier rejection

from [27] along with our localization method. In [27], registrations are

deemed unsuccessful if the localization is too far from the previous es-

timate. There is minimal difference in the performance between “Ours

A” and “Ours B”. The benefit of our outlier rejection scheme is that

it is based purely on the covariance of the localization result and does

not require a prior estimate.



CHAPTER 3. LOCALIZATION USING KERNELS 35

Table 3.2: Comparison of Errors for Successful Registrations

Lighting Condition

Sunrise Morning Noon Afternoon Evening Sunset

R
e
g
is

tr
a
ti

o
n

S
u
cc

e
ss

Ours A 98.8 100 100 98.0 90.0 97.4

Ours B 99.9 100 100 98.6 96.0 98.7

MI [27] 94.7 95.1 97.8 96.0 81.3 87.5

S
u
cc

e
ss

fu
l

R
e
g
is

tr
a
ti

o
n

R
M

S
E

L
on

gi
tu

d
e

[m
]

Ours A 1.05 0.90 1.04 1.64 2.16 1.37

Ours B 1.17 0.90 1.04 1.67 2.17 1.48

MI [27] 1.10 1.02 0.78 1.69 3.03 1.95

L
at

it
u
d
e

[m
] Ours A 0.97 0.95 0.87 0.88 1.18 0.96

Ours B 0.97 0.95 0.87 0.87 1.14 0.94

MI [27] 0.71 0.58 0.61 0.91 1.32 1.12

Y
aw

[d
eg

re
e] Ours A 0.35 0.31 0.36 0.34 0.42 0.36

Ours B 0.35 0.31 0.36 0.34 0.41 0.36

MI [27] 2.28 2.57 1.82 1.17 2.49 2.64

In comparison with [27], for all but the noon lighting condition, we

achieve lower RMSE error on the longitude coordinate. For the latitude

coordinate, we have lower RMSE error for three of the runs and for the

other three runs we are an average of 0.3m higher. Our success rate

of registrations is higher for all the lighting conditions. Particularly in

the evening and sunset runs, we see an increase of approximately 10%

in the success rate accompanied by a decrease in RMSE as compared

to [27].



CHAPTER 3. LOCALIZATION USING KERNELS 36

Storage and Runtime Comparison

The most significant advantage of our method over [27] is the substan-

tial reduction in runtime. For the purpose of comparison, both methods

were run on a Lenovo P52 laptop with an Intel i7 8th generation core,

a Nvidia Quadro P2000 GPU, and 32 GB of RAM. With the MI based

approach of [27], the average runtime to complete the 1.1km path used

in the experiments is approximately 18000 seconds, or 5 hours. With

our new method, the average runtime is only 221 seconds, or just under

four minutes. This substantial reduction is largely due to the fact that

a single MI calculation takes on average 109 milliseconds but a single

kernel computation only takes 0.26 milliseconds. The full MI based

registration can take between 5 and 35 seconds per frame due to the

costly optimization component which requires warping the image and

recomputing the MI up to 150 times per registration. Instead, the full

kernel-based registration per frame takes between 0.09 seconds and 0.15

seconds.

Table 3.3: Runtime and Storage Requirements Comparison

Comparison Method

Kernel (Ours) MI [27]

Average Runtime
for 1.1 km Path

221 s 18422 s

Average Time per Frame 0.11 s 9.23 s

Average Time per
Comparison Computation

0.26 ms 109 ms

Storage Cost per Image 4.2 kB 88 kB

Storage Cost per m of Path 0.241 MB 0.722 MB

Fixed Storage Cost 158 MB 0 MB

Total Cost for 1.1km Path 423 MB 794 MB
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Both approaches are still limited by the storage available on the

UAV. By encoding the reference images, we only need 1000 numbers to

represent each image. Recording these numbers as half-precision floats

only requires 4.2 kB per image. In [27], the reference images are stored

as 560 × 315 4-bit greyscale images requiring approximately 88 kB of

storage which is 22 times as large. As a result of this reduction, we

are able to render more images per meter of the path while still having

a lower per meter storage cost, 0.241 MB compared to 0.722 MB. En-

coding the images also makes the base comparison computation faster.

An inner-product computation between two 1000 dim vectors takes on

average 0.26ms, whereas a MI computation between two 176,400 pixel

images takes on average 109ms. The disadvantage of our approach is

that in addition to the autoencoded reference images, we must also

store the weights for the trained neural networks in order to encode the

live image on board. However, this is a fixed cost that does not increase

with the length of the path. So for the 1.1km path in the dataset used,

our total storage is still less than what is required by [27] for the same

path. Computation and storage comparisons are summarized in Table

3.3.

3.6 Summary

In this chapter, we presented a means for localizing a real UAV im-

age using a collection of encoded reference images rendered from GE.

The kernel-based computation is fast and accurate. We evaluated our

method on a dataset of images collected by a real UAV at six differ-

ent times of day. The performance was comparable to the next best

method [27] achieving RMSE of less than 3m on a 1.1km path. The

largest benefit of our new method is that it runs in 1% of the compu-



CHAPTER 3. LOCALIZATION USING KERNELS 38

tation time and has only half the storage requirements as compared to

[27].

The ability to localize a live image to images from GE is one step

further towards being able to operate a UAV autonomously in new,

never before seen areas. Given a map rendered offline entirely com-

prised of GE images, we have now developed a means to localize the

UAV against it. The next chapter looks at generating this map and

integrating the new GE image-based measurement into the existing

VT&R system onboard the UAV.



Chapter 4

Integration with VT&R

4.1 Introduction

The ultimate goal of this thesis topic is to develop a method to enable a

UAV to fly autonomously in new, never-flown-before areas. Currently,

the VT&R system onboard the UAV requires an outbound mapping

pass flown under manual or GPS control. As well, because of the sig-

nificant changes to scene appearance due to lighting changes under an

aerial perspective and the brittle nature of features upon which the

VT&R system is based, this mapping pass needs to be repeated be-

fore every autonomous flight. We seek to eliminate the need for this

repeated mapping pass and replace it with an offline map creation sys-

tem using GE images that can be used for repeated flights at various

times of day.

The purpose of this chapter is to integrate the localization measure-

ment obtained from the GE codebook of images as described in Chapter

3 with the VT&R system. In order to do so, we developed a map gener-

ation technique that can be performed entirely offline before any flight

data is collected using only GE images and data that is available offline.

The resulting map is fully compatible with the VT&R system.

We also developed an additional module to run inside the VT&R

39
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localization pipeline that computes the localization measurement as

described in Chapter 3. This measurement is then used as an additional

factor in the optimization to find the transform from the map vertex

to the live image. This allows it to be used with or without features.

Adding the measurement to the VT&R system means we are able to

take advantage of the existing infrastructure including easy integration

with the UAV controller.

This chapter is organized as follows. First, we provide some back-

ground and details on the current VT&R system. Then, we go over the

offline map generation procedure and how the new localization mea-

surement is incorporated into the existing factor graph. Finally, we

show some experimental results running the full VT&R system with

these additions on real UAV data with the offline generated map.

4.2 Overview of VT&R

This section provides an overview of the Visual Teach and Repeat

(VT&R) system and specifically how it has been implemented for use

on a multirotor UAV.

VT&R consists of two stages: the teach pass where the map is cre-

ated, and the repeat pass where the vehicle localizes to the generated

map and operates autonomously. With the UAV, the focus is on com-

pleting emergency returns purely using vision after GPS fails [36]. For

this application, the UAV completes an outbound teach pass under

GPS or manual control. Then a GPS failure is simulated by turning off

GPS, and the UAV returns autonomously along the path by travelling

in the reverse direction purely using vision.
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Figure 4.1: The teach pass is constructed by running VO on an outbound flight pass.
Quick VO estimates the transformation from the previous keyframe to the current
frame. Once a threshold for translation or rotation has been exceeded, a new keyframe
is dropped and added to the graph. Refined VO runs bundle adjustment on the last
five keyframes and updates the position of the landmark measurements.

On the outbound teach pass, a map is generated by saving keyframes

as vertices in a Spatio-Temporal Pose Graph (STPG) based on the re-

sults of feature-based visual odometry (VO). Beginning with an initial

keyframe, a stereo camera is used to extract features and Quick VO

(QVO) is performed to estimate the transform from the latest keyframe

to the current image. QVO optimizes this transform based on minimiz-

ing the cost function associated with the motion prior, the landmark

measurements, and the IMU measurements. In Figure 4.1, QVO is

solving for T43. Once the requirement to drop a keyframe has been

reached, e.g., the threshold for rotation or translation has been ex-

ceeded, a vertex is added to the graph. The edge from the previous

vertex to the newly dropped vertex stores the transformation between

the keyframes. This type of edge, i.e., an edge between vertices on the

same run, is referred to as a temporal edge. The 3D positions of all the

landmarks observed at that keyframe are also saved in the vertex. Once

a new keyframe is dropped, Refined VO (RVO) runs bundle adjustment

on the last five keyframes using a similar cost function as in QVO. In
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addition to optimizing the transformations between keyframes, RVO

also adjusts the landmark positions.

In the original implementation of VT&R on ground vehicles, there

is nothing to ensure the map is globally consistent. When running

VT&R onboard the UAV, it has been noted that the results from VO

are consistently under scaled in comparison with the ground truth from

GPS. This is one of the difficulties of using a stereo camera with a small

baseline at higher altitudes. Since the current application for UAVs

is emergency returns after GPS failure, this means that the GPS is

available during the teach pass. GPS can then be used as a cost term

during the teach pass to help improve this scale difference.

Figure 4.2: The repeat pass of VT&R on the UAV runs in the opposite direction
of the teach pass. QVO and RVO run as in the teach pass but when a keyframe is
dropped it is also localized to the map. Additional spatial edges between vertices in
the repeat pass and the teach pass store the transformation from the map keyframe
to the repeat keyframe.
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On the repeat pass, QVO and RVO run as described above, but

once a new keyframe is dropped it must also be localized back to the

teach pass in order to correct the drift associated with VO. VT&R

keeps track of the spatially closest vertex in the teach pass as the es-

timate for the UAV pose evolves. The localization problem is trying

to find the transformation from this closest teach vertex to the new

keyframe dropped during the repeat pass. Looking at Figure 4.2, this

is solving for TA0. The cost function consists of terms from the land-

mark measurements observed at both keyframes and a prior estimate

of the transformation. The prior estimate comes from compounding

the transforms already stored in the map from VO and the previous

localization, i.e. TABTB1T10. Adding this prior term smooths out the

localization results.

4.3 Offline Map Creation

In order to create a map offline, we need to replicate the graph gener-

ation that occurs during the teach pass of VT&R. As described above,

VT&R runs QVO and RVO to generate a graph consisting of ver-

tices at each keyframe that store the observed 3D landmark positions

and edges connecting these vertices containing the transformations be-

tween keyframes. The graph is saved using the Robochunk library.

Robochunk is a fast serialization library based on Google’s protocol

buffers.

The first step is to decide on a desired path and record the world

coordinates every 1m along this path. These will be the coordinates of

the teach vertices. Next, a monocular GE image needs to be rendered

at each vertex pose. A C++ script has been written to complete the

next steps automatically when provided with a list of path coordinates
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and the folder location of the corresponding images.

Using the Robochunk tools, a new graph is created. The first vertex

that gets added to the graph will act as the origin. To insert the next

vertex, the relative transform from the previous camera frame needs

to be computed from the global camera frame coordinates. With the

known global coordinates we can construct a transform, Tiw, from the

world frame, Fw, to the camera frame, Fi. Since we have Tiw for all

the images we can use them to find the transform from the previous

camera frame to the next camera frame: Ti,i−1 = TiwT−1
i−1,w. Ti,i−1

is then stored in the edge connecting vertex i and i − 1. This edge is

designated as a temporal edge.

The next step is to save the 3D positions of the visible landmarks

at each vertex. Since we are using monocular images we do not have

a pair of stereo images separated by the camera’s baseline. Instead,

we use adjacent images to act as a pseudo-stereo pair where we use

the distance between them as the baseline. We use the existing feature

detection and matching modules from VT&R to extract and match

features between adjacent image pairs.

In order to reject outlier matches, we check that the match satisfies

an epipolar constraint. Since the image pairs are not separated by

a translation purely along the x-axis (as would be the case with most

stereo pairs), the epipolar line will run on a diagonal through the image.

We can find this line using [5]

qTi Fi,i−1qi−1 = 0, (4.1)

where

Fi,i−1 = K−TEi,i−1K
−1, (4.2)



CHAPTER 4. INTEGRATION WITH VT&R 45

and K is the known camera calibration matrix. We construct the es-

sential matrix, Ei,i−1, using the known rotation, Ci,i−1, and translation,

ri−1
i,i−1, between the camera poses:

Ei,i−1 = Ci,i−1r
i,i−1∧
i−1 . (4.3)

Then with the coordinates of the feature in image i, qi = [ui vi 1]T , and

image i− 1, qi−1 = [ui−1 vi−1 1]T our constraint is

qTi Fi,i−1qi−1 < δ, (4.4)

where we choose δ = 0.01.

Figure 4.3: A feature at image coordinates qi−1 can lie anywhere along a line extend-
ing from the camera’s pinhole through that point on the image plane depending on
its depth away from the camera. This depth also affects where that feature will lie
on a second image plane separated from the first image plane by a translation, but
the feature must lie on an epipolar line that satisfies qT

i Fi,i−1qi−1 = 0.
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If a matched pair passes the outlier rejection, we then solve for the

depth and 3D landmark position. We can write an equation relating the

image coordinates of the feature and the 3D position of the landmark

in that camera frame using the known calibration quantities:

[
uk

vk

]
=

1

zk

[
f 0 cx

0 f cy

]
xk

yk

zk

 , k = i, i− 1. (4.5)

For the desired path used in the experiments, the camera frames are

all at a constant altitude and heading, see Figure 4.4. Therefore, the

transformation matrix is simply

Ti,i−1 =


1 0 0 ∆xi,i−1

i−1

0 1 0 ∆yi,i−1
i−1

0 0 1 0

0 0 0 1

 . (4.6)

Figure 4.4: All the GE images are rendered at a constant altitude and heading with
the cameras oriented in the nadir direction. Between the camera frames, there is only
translation along the x and y axes.
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We can then relate the 3D landmark positions as observed in the two

camera frames: 
xi

yi

zi

 = Ti,i−1


xi−1

yi−1

zi−1

 , (4.7)

which gives three equations:

xi = xi−1 + ∆xi,i−1
i−1 , (4.8)

yi = yi−1 + ∆yi,i−1
i−1 , (4.9)

zi = zi−1. (4.10)

Since the flight path is at a constant altitude, we can see that the depth

from each camera to the landmark is the same, i.e., zi = zi−1, which

we will simply denote as z. Substituting (4.8) and (4.9) into (4.5), we

arrive at

[
ui

vi

]
=

1

z

[
f 0 cx

0 f cy

]
xi−1 + ∆xi,i−1

i−1

yi−1 + ∆yi,i−1
i−1

z

 . (4.11)

Using (4.11) and (4.5) with k = i − 1, we can write two equations for

z:

z =
f∆xi,i−1

i−1

ui − ui−1
, (4.12)

z =
f∆yi,i−1

i−1

vi − vi−1
. (4.13)

In a perfect scenario, these two equations would give the same result for
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z. In actuality, due to noise in the feature detection they give slightly

different answers, so we then average the two results for z to get a depth

measurement.

Once we have z, we can plug this back into (4.5) with k = i rear-

ranged to solve for xi and yi:

xi =
z

f
(ui − cx), (4.14)

yi =
z

f
(vi − cy). (4.15)

Now that we have the 3D landmark positions, [xi yi z]T , they can be

saved in the ith graph vertex.

There are some additional quantities that also need to be saved in

the graph in order for VT&R to run properly. This includes storing

the camera calibration in the vertex and the transform from vehicle

to sensor, Tsv. For Tsv, we save the stationary transform, i.e., the

rotation component is fixed in the nadir direction and the translation

component is fixed at [0.039m, 0.125m, 0.168m] at each vertex.

At this point, we have generated a graph that contains the same

information as if it had been generated using the VT&R teach system

except we constructed the edge transforms using global coordinates for

each vertex, which makes our map globally accurate instead of just

locally consistent.

4.3.1 Adding Encoded Reference Images into the Map

The next step is to add the encoded reference images into the generated

map. In order to do so, all the images must be rendered ahead of time

from GE and encoded as described in detail in Chapter 2. Using the

coordinates for each reference image, they are assigned to the closest

graph vertex. Each vertex will have around 42, 1000-dimensional en-



CHAPTER 4. INTEGRATION WITH VT&R 49

coded vectors. Since Robochunk, which is the library used to save the

VT&R graph, stores all data as a one-dimensional array, the 42 vectors

are flattened. Because of corner cases where there are slightly more or

less than 42 vectors, the exact number of vectors is also saved in the

vertex to be used when loading from the graph and reshaping back into

a 2D array.

We transform the global coordinates for each encoded vector to the

frame of the first map vertex, which acts as the origin for the whole

map. We then save these transformed coordinates in the same vertex

with their corresponding encoded vector.

With the addition of these encoded vectors and coordinates, the

offline generated map now contains all the information necessary to

run VT&R and localize using the GE reference images.

4.4 Modifications to the Visual Teach and Repeat

System

With the offline, generated map, we have eliminated the need for an

outbound mapping pass. This means that the UAV can fly out au-

tonomously along the path instead of only being able to return back-

wards along the outbound path. With this change, the repeat pass is

now flown in the same direction as the teach pass, see Figure 4.5 as

compared to Figure 4.2.
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Figure 4.5: Using the offline generated map, the UAV now flies in the same direction
as the map during the repeat pass. In the generated teach pass we are storing the
encoded reference images, which will be used to compute an additional localization
measurement shown by the orange triangles. The dotted orange lines indicate the
additional factor that we are trying to minimize in the localization optimization.

In addition to the vertices and landmarks stored in the map in the

original VT&R, we are now also storing a codebook of multiple GE

reference images at each vertex. From this codebook, we will be able

to compute an additional localization measurement to be used during

the localization optimization.

4.4.1 Running the Pytorch Network in C++

The original encoder network was written in Python 3 using PyTorch

1.2. PyTorch includes a C++ API that can be used after installing

the binary distribution. To use the C++ library in VT&R, the Torch

package and folder location need to be added to the CMakeLists file

in VT&R asrl navigation. The torch/torch.h file can then be

included in the relevant C++ files.
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PyTorch also has the built-in capability to export a model, including

the network structure and weights, to a serialized representation that

can be loaded and executed purely from C++. This is enabled by Torch

Script. In Python, running the command:

torch.jit.script(TrainedEnocderModel)

creates an instance of ScriptModule that is ready for serialization. In

order to serialize it, simply call save on the instance and pass it a .pt

filename and location. In the C++ file, after including torch/torch.h,

the serialized model representation can be loaded using:

torch::jit::script::Module encoder =

torch::jit::load("path/to/.pt/file") .

4.4.2 Google Earth Localizer Module

A new module named ge localizer was created and added to the lo-

calization assembly. This module uses the method described in Chapter

3 to obtain a localization measurement and then saves it in the cache

to later be accessed by the localization optimization. The new mod-

ule runs after the ransac module and just before the steam module as

shown in Figure 4.6.

In the ge localizer module, the first step is to retrieve the live

image, resize it to 320× 160, and normalize all the pixel values so they

are between 0 and 1. The torch::from blob function is used to con-

vert the image from a opencv::Mat variable type to a torch::Tensor

type. As a result of the opencv conventions, the third dimension

of the converted tensor needs to be moved to the second position.

This tensor can then be added to an array of torch::jitt::IValues

which can be used as the input to the encoder model by running
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encoder.forward(inputs.toTensor()). The output will be a tensor

containing the encoded vector representation of the live image.

Figure 4.6: The
original local-
izer assembly
modules are
shown in grey
and the newly
added module,
ge localizer is
shown in green.

The next step is to retrieve all the nearby encoded

reference images stored in the map. VT&R keeps track

of the closest map vertex, so we take advantage of this

existing capability to select the nearby reference im-

ages. Starting from two vertices prior to the closest

map vertex and ending at ten vertices after, all the

encoded references images stored in these vertices are

loaded. This covers an area along the path from approx-

imately 2m behind and 10m ahead of the current image.

Along with the encoded images, the corresponding co-

ordinates are loaded from the vertices as well. Stacking

all the loaded reference images, the weights are com-

puted according to Equation 3.1. Following the rest of

the procedure in Chapter 3, we also compute the stan-

dard deviation of the weights and threshold all weights

less than half a standard deviation from the max value

to zero and normalize. All the loaded coordinates are

stacked and we use (3.3) to obtain our measurement.

The resulting measurement will be the position of

the live camera frame relative to the origin of the

map/the first vertex, pq00 = [xq00 yq00 ]T because all of the coordinates

are saved in the origin frame, F0. In the steam module, the optimiza-

tion is solving for the transform from the closest map vertex to the live

camera frame, so we convert this measurement into the closest map

vertex frame, pqmm = [xqmm yqmm ]T , and save it in the map cache.
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4.4.3 Scaling the Visual Odometry

The resulting transforms from both QVO and RVO have been observed

to have a translation component that is significantly smaller than the

ground truth value, see Figure 4.8. The transform from QVO, which is

based on feature matches between the live image and the last keyframe

image and a motion model, is used to generate a prior estimate for the

localization optimization. This prior estimate helps to smooth out the

localization measurements and propagates the pose estimate forward

in areas where the GE measurements are classified as outliers. If the

scale of the VO is significantly off, it is difficult to rely on the VO

measurements for a longer period of time without getting off the path

and being unable to recover.

The VO scale being much smaller than the true scale was less no-

ticeable when the map pass was generated online using VO because

the map was also much smaller. When generating the map with global

coordinates this issue becomes much more apparent and so we need to

estimate the scale online. Similar to the approach taken in [27], we

estimate a scale factor for the VO as the UAV travels along the path

based on a sliding window of the most recent GE measurements.

We do this by maintaining a rolling average, d̄VO of the last 30 QVO

distances between keyframes. Since QVO estimates the transform from

the previous keyframe to the current image, we compute the magni-

tude of the translation component of this transform every time a new

keyframe is dropped. This is then used to update d̄VO.

Finding the distance between adjacent GE measurements requires

recording the last GE measurement in the origin frame, pi−1,0
0 . Then

when we obtain the next GE measurement expressed in the origin

frame, we can compute pi,i−1
0 = pi,00 − pi−1,0

0 . We use the magnitude

of pi,i−1
0 to compute the distance between adjacent GE measurements
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and use it to maintain our rolling average of the last 30 distances, d̄GE.

Since the GE measurements can include outliers, if the current distance

between GE measurements is greater than twice or less than half of d̄GE,

it is not used to update the average.

To understand how the computed scale is used to adjust the QVO

result, we need to explain what happens in the localization chain. The

localization chain keeps track of the following vertices (see Figure 4.7a):

• Twig Vertex: the last keyframe in the repeat pass that has been

localized

• Branch Vertex: the vertex to which the twig vertex has been

localized

• Petiole Vertex: the newly dropped keyframe that is going to be

localized next

• Trunk Vertex: the closest map vertex to the petiole vertex, and

the vertex against which the petiole vertex will be localized (can

be the same as the Branch Vertex)

Once a new keyframe is dropped, but just before it is localized,

the localization chain resets the twig and branch vertices. To do this

it compounds Tpe,tw, Ttw,br, and Tbr,tr and saves this as a new prior

estimate for Ťtw,br. Instead, we now multiply the translation component

of Ttw,br by the scale factor, λ, which we compute as

λ =
d̄GE

d̄VO

, (4.16)

before computing the new Ťtw,br value. This is shown in Figure 4.7b.

Finally, the twig vertex is updated to be the same as the petiole vertex

and the branch is updated to be the same as the trunk vertex. See

Figure 4.7c.
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(a) Before resetting the twig and branch vertices.

(b) Compounding the transforms, including the scaled Tpe,tw, to get a new Ťtw,br.

(c) Updating the twig and branch vertices.

Figure 4.7: The three stages of resetting the twig and branch vertices.
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The Ťtw,br that is stored in the localization chain is accessed by the

steam module to act as a prior in the optimization problem. After the

optimization runs, Ťtw,br is updated with the optimized value, Ttw,br.

4.4.4 Adding GE Measurement to Localization Optimization

The localization optimization runs in the steam module shown in Fig-

ure 4.6. It uses the STEAM library to find the optimal transform, Tqm,

from the closest map vertex (i.e. the trunk vertex) to the live image

based on a collection of cost terms. Prior to any modifications, these

cost terms consisted of the landmarks observed by both the map vertex

and the live vertex and a prior transform that comes from VO as ex-

plained in the previous section. Between the map vertex images from

GE and the live images, there are very few or no landmark matches.

The GE measurement term is added to the optimization so that even

if there are no landmark matches we still have a cost term aside from

just the prior.

From the ge localizer module, we have a measurement pqmm =

[xqmm yqmm ]T from the trunk vertex frame to the live image. For the

path used in the experiments, the UAV flies at a constant altitude

and heading and uses a gimbal to stabilize the camera. So we create

a pseudo-measurement for the other degrees of freedom holding them

fixed. We combine this with the GE measurement to get a measurement

of map to query transform:

TGE
qm =


1 0 0 xqmm

0 1 0 yqmm

0 0 1 0

0 0 0 1

 . (4.17)

Since our measurement is in the form of a transform and the
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state we are optimizing for is Tqm, we can use the existing

steam::TransformErrorEval error evaluator, which evaluates the fol-

lowing error:

eGE = ln(TGE
qmT−1

qm)∨. (4.18)

To minimize the impact of outlier measurements, we use a robust cost

function. Specifically, we use the Steam library steam::DcsLossFunc(3)

initialized with a threshold of 3 [4]. This implements the following loss

function:

L(e) =

1
2e

2 e2 ≤ k2

2k2e2

(k2+e2) −
1
2k

2 e2 > k2,
(4.19)

where e is the whitened error norm and we have selected k = 3.

This cost function downweights the GE measurement when the cost

is higher as would be the case with outliers. We use a fixed covariance

of diag(10, 10, 0.1, 0.1, 0.1, 0.1) for all the GE measurements.

In the original VT&R implementation, the initial guess for Tqm

comes from the output of the ransac module running on the feature

matches. Since there are very few if any feature matches, we instead use

Ťtw,br which as described in the previous section comes from QVO and

the previous keyframe localization. Ťtw,br is also used in a prior cost

term in the optimization problem. The prior cost term uses a standard

L2 Loss function and the uncertainty is fixed at diag(2, 2, 2, 2, 2, 2).

4.5 Experimental Results

We evaluate the modified VT&R system on the same dataset used for

evaluation in Chapter 2. That is a 1.1km path flown around UTIAS

at six different times of day by a DJI Matrix 600 Pro multirotor UAV

equipped with a 3-axis DJI Ronin-MX gimbal and a StereoLabs ZED

camera. RTK-GPS was used for ground truth. See Section 3.5.1 for a
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more detailed description.

In the experiments, we generate the map offline using the script

developed as explained in Section 4.3. The repeat is then conducted

using the VT&R offline tools providing the location of the generated

map and the real data as input.

4.5.1 Scaling the VO

We first evaluate the performance of our online scaling method. To

plot the VO results, we compound all of the transformations. Figure

4.8 shows the original results from QVO after running VT&R on the

morning dataset in magenta. The ground truth of this run is plotted

in green so the original QVO is clearly undersized, but the shape of the

path looks accurate. The light blue line shows the scaled QVO results,

which are closer to the ground truth in terms of magnitude but the

drift is more apparent.

Figure 4.9 shows the computed scale factor versus keyframe for all

six runs. We wait until ten measurements have occurred before we start

to estimate the scale, which accounts for the first 10 scale factors being

equal to 1. Throughout the path, the scale varies typically staying

between 2.0 and 2.5. Between the six runs, the scale seems to follow

the same trend. The large increase in the evening and afternoon runs

around keyframe 250 is likely caused by outlier measurements as this is

one of the hardest areas along the path to localize due to the presence

of shadows.
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Figure 4.8: The results from QVO for the morning dataset are compounded and
plotted. The original, unscaled QVO results are shown in magenta. The scaled QVO
results are shown in light blue. The path starts at (0,0) and proceeds clockwise.

Figure 4.9: The estimated scale factor versus keyframes for each of the six dataset
runs.
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Table 4.1 shows the ground truth path lengths in meters for each of

the runs. The length of the path from compounding all the unscaled

QVO transforms is just under 50% of the ground truth length for all

lighting conditions. When using the scaled QVO, we can see an im-

provement in terms of the magnitude of the path length. In all cases,

it is either very close to the ground truth length or slightly larger.

Table 4.1: Comparison of Path Lengths

Lighting

Condition

Length of Path

Ground Truth Unscaled QVO Scaled QVO

m % of GT m % of GT m % of GT

Sunrise 1137.17 100 537.89 47 1145.46 100

Morning 1134.94 100 534.19 47 1180.25 104

Noon 1134.79 100 533.40 47 1153.75 102

Afternoon 1137.55 100 538.22 47 1184.03 104

Evening 1131.29 100 528.52 47 1149.33 102

Sunset 1131.82 100 540.87 48 1144.35 101

4.5.2 Localization Performance

We were able to successfully complete runs on all six datasets. By

combining the scaled QVO and the GE measurements in our localiza-

tion optimization, we were able to obtain an estimate that is globally

accurate and smooth. In areas where the GE measurements were signif-

icantly far from the path, our robust cost function downweighted their

contribution. The scaled QVO was able to propagate the estimate for-

ward until more reasonable GE measurements were able to be obtained.

This reliance on scaled QVO often occurred in the lower right portion

of the paths as seen in Figures 4.13, 4.14, and 4.15.

There is a trade-off between smoothness and accuracy that comes

with trusting the scaled QVO more than the GE measurements. But
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as can be seen in the following figures our combined localization results

perform better than either the scaled QVO or the GE measurements

on their own.

There are some areas where the GE measurements are consistently

offset from the path and this results in our localization being offset

from the ground truth path as well. We can see this on the left side

of Figure 1.7. There are significant shadows in this area which causes

the GE measurement to align the tree line incorrectly. However, the

localization result is able to stay close to the path and recover once it

leaves that area.

Table 4.2 shows our RMSE on the latitude, longitude, and alti-

tude coordinates for each of the six lighting conditions included in the

dataset. As with the pure registration results, our best runs occurred

on the sunrise and morning datasets where the shadow conditions most

closely resemble those in GE. The worst runs occurred on the afternoon

and evening dataset where we see shadows falling on the opposite sides

of objects as compared to GE.

Table 4.2: Comparison of Errors

Lighting

Condition

RMSE for Localization Result

longitude [m] latitude [m] altitude [m]

Sunrise 1.54 1.91 0.05

Morning 1.93 1.87 0.08

Noon 2.25 1.60 0.05

Afternoon 3.94 2.09 0.21

Evening 3.91 2.46 0.08

Sunset 2.71 1.70 0.07

Figure 4.16 shows the cumulative distribution of the latitude errors

for all six datasets. The best performing runs, sunrise and morning,

have approximately 80% of all latitude errors less than 2m. The worst
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performing runs, afternoon and evening, have 60% of latitude errors less

than 3m. Figure 4.17 shows the cumulative distribution of the longitude

errors. All runs except for the evening run have 80% of longitude errors

less than 2m. For the evening run, 75% are less than 3m.

Figure 4.10: Position estimates for the 1132km sunrise path. The ground truth path
is shown in dark green. The raw measurements from the GE localizer are shown in
red. The compounded, scaled QVO estimates are shown in light blue. The optimized
localization results that combine these two sources are shown in dark blue. For the
sunrise path, the GE measurements are quite close to the ground truth and adding
the scaled QVO factor helps smooth out the overall path.
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Figure 4.11: Position estimates for the 1132km morning path. The ground truth path
is shown in dark green. The raw measurements from the GE localizer are shown in
red. The compounded, scaled QVO estimates are shown in light blue. The optimized
localization results that combine these two sources are shown in dark blue. For the
morning path, most of the GE measurements are quite close to the ground truth
except for a small part in the lower right part of the plot. Here we can see the raw
GE measurements in red are off the path, but our estimate in blue is able to ignore
these and propagate forward with scaled QVO.
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Figure 4.12: Position estimates for the 1132km noon path. The ground truth path
is shown in dark green. The raw measurements from the GE localizer are shown in
red. The compounded, scaled QVO estimates are shown in light blue. The optimized
localization results that combine these two sources are shown in dark blue. For
the noon path, the GE measurements are less smooth compared to the sunrise and
morning runs but we can see how combining with the scaled QVO smooths out the
result.
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Figure 4.13: Position estimates for the 1132km afternoon path. The ground truth
path is shown in dark green. The raw measurements from the GE localizer are
shown in red. The compounded, scaled QVO estimates are shown in light blue. The
optimized localization results that combine these two sources are shown in dark blue.
For the afternoon path, we can see that the GE measurements are now starting to
struggle. Along the bottom of the path, which corresponds to the wooded area, the
measurements are quite jerky. We also see some areas on the lefthand side where the
GE measurements are consistently off the path. This is an area where shadows cast
by the treeline seem to cause a constant offset in the measurements. The combined
localization result is still quite smooth and does a reasonable job of tracking the path.
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Figure 4.14: Position estimates for the 1132km evening path. The ground truth path
is shown in dark green. The raw measurements from the GE localizer are shown in
red. The compounded, scaled QVO estimates are shown in light blue. The optimized
localization results that combine these two sources are shown in dark blue. For the
evening path, we have the worst GE measurements. There are quite a few areas
where the red line jumps around or is far from the path. This resulted in a more
heavy reliance on VO in those areas.
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Figure 4.15: Position estimates for the 1132km sunset path. The ground truth path
is shown in dark green. The raw measurements from the GE localizer are shown in
red. The compounded, scaled QVO estimates are shown in light blue. The optimized
localization results that combine these two sources are shown in dark blue. For the
sunset path, we have quite a few bad GE measurements. However, by combining with
the scaled QVO, our localization results do a reasonable job smoothing them out and
following the ground truth path.
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Figure 4.16: For the sunrise and morning runs, 80% of the latitude errors are less
than 2m. 80% of the latitude errors for the noon and sunset runs are less than 3m.
The afternoon and evening runs are the worst-performing runs with only 60% of the
latitude errors being less than 3m.

Figure 4.17: For every run except the evening run, approximately 80% of the longitude
errors are less than 2m. For the evening run (purple), 75% are less than 3m.
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4.6 Summary

In this chapter, we detailed a procedure for generating entirely offline

a map that is compatible with the VT&R system using only images

rendered from GE. We also modified the VT&R system to add the

GE image-based measurement to the localization optimization. This

involved converting the encoder model from Python to C++, adding

a ge localizer module to run during the localization pipeline, and

including the GE image-based measurement in the localization opti-

mization. We also added a VO scale factor estimator to improve the

prior estimate from VO.

We evaluated this modified version of VT&R on a dataset of real

UAV images collected at six different times of day. We were able to

achieve less than 4m RMSE and for most of the runs, 80% of the errors

were less than 2m. By adding the GE image-based measurement to

the VT&R system, we can take advantage of the existing infrastruc-

ture onboard the UAV including being able to easily integrate with the

controller in future work.



Chapter 5

Conclusions and Future Work

5.1 Summary and Contributions

The primary goal of this thesis was to make advances towards a system

that generates an offline map using satellite images from which a UAV

is able to localize against in real time. The primary benefit of such a

system is that a UAV would be able to fly autonomously in new, never-

before-flown areas without having to map it under manual or GPS

control first. Towards this goal, we have made four main contributions.

The first contribution is the development of an autoencoder trained

entirely on GE rendered images for a specific path that is capable of

generalizing to real never-before-seen images. By rendering 42 images

in GE per meter of the desired path, we obtain enough training data to

teach the encoder to compress a 320×160 image containing 51,2000 pix-

els into a 1000 dimensional vector while maintaining the core structural

information. This significant reduction in size has positive implications

for storage requirements and computation time. The major benefit is

that the network does not require any real UAV images during training.

The second contribution is a method for computing a localization

measurement provided a subset of encoded reference images from GE

and a live image. This method uses inner product kernels to make a
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series of comparisons and generate a set of weights to indicate how well

the reference image matches with the live image. These weights are

then used alongside the known reference image coordinates to produce

a weighted average localization measurement. We experimentally eval-

uated this method on a 1.1 km dataset consisting of real UAV images

captured at six different times of day. We were able to achieve com-

parable performance to the current best method for localizing using

GE images [27], i.e., RMSE errors under 3m. However, unlike [27], our

method is likely capable of running in real time taking only 1% of the

computation time of [27]. We also have lower storage requirements us-

ing approximately half the storage needed by [27]. Together with the

first contribution, this resulted in a journal publication [7].

The third contribution is the means to automatically generate offline

a VT&R compatible map containing the encoded GE reference images.

Provided with the global coordinates every 1m along a desired path

and a monocular GE image rendered at each of these coordinates, a

script has been developed using the Robochunk library to produce a

VT&R compatible map including recording the visible landmarks at

each vertex. Also given a collection of encoded reference images and

accompanying coordinates, each reference image will automatically be

stored in the closest map vertex.

The fourth contribution is integrating the new GE image-based mea-

surement into the existing VT&R code. This includes converting the

encoder which was originally written in Python to C++ and creating

a new ge localizer module to run during the localization pipeline.

An additional VO scale factor computation has been added as well to

improve the prior estimate from QVO. The GE image-based measure-

ment has been added to the localization optimization. The modified

version of VT&R has been evaluated on a real dataset of UAV images
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collected at six different lighting conditions using the offline generated

map detailed above. There is some tradeoff between smoothness of the

path and accuracy, but we are able to obtain less than 4m RMSE on

all runs. For most lighting conditions, 80% of the errors are less than

2m.

5.2 Lessons Learned and Areas of Future Work

One of the largest lessons learned during this thesis is the importance

of a good prior estimate. This system relies on the prior estimate to

select the subset of GE reference images and when it is inaccurate, it

can quickly lead into a bad feedback loop. If we choose the wrong

subset of reference images based on the prior, we will get a bad GE

measurement. This means the next selection will be even further off

and the estimate will quickly devolve from the path.

During the initial trials, we did not compute a scale factor for QVO.

In the harder areas of the path, the pose would quickly diverge from

the path after relying on VO. To work around this, we added a separate

scale estimation based on a sliding window of past measurements. In

the future instead of estimating the scale separately, the scale could be

added as a state variable into the localization optimization. This would

likely add some robustness to the scale estimation.

Most of the errors in the GE measurements occur in areas where

there are large shadows present in the live images but not in the GE

images or vice versa. Some more work could be done on making the

encoder more invariant to lighting conditions. A possible idea for this is

using a denoising autoencoder as in [33]. By adding noise to the input

training image, but not to the reconstruction target, the encoder learns

to be more invariant to changes in the input image. Sundermeyer et al.
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[33] have used this to match real images to simulated images, similar

to our application.

Finally, the next step is to test this system onboard the UAV. Begin-

ning with open-loops tests to confirm the system is capable of running

in real time on the UAV hardware and then based on the onboard per-

formance, potentially moving onto closed-loop tests with the controller.
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