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Abstract

Radar is an important sensor in autonomous driving due to its inherent robustness to dust, fog,

rain, and snow. This thesis aims to demonstrate that radar can serve as a viable alternative to

lidar for mapping and localization. To achieve this, we developed a data collection platform called

Boreas, which includes a 128-beam lidar, a spinning mechanical radar, and a GNSS/IMU. Over

one year, we gathered 350km of driving data under varying seasons and weather conditions. This

dataset enabled the experiments conducted throughout this thesis and has been adopted by the wider

research community. Our first contribution was to quantify the importance of motion distortion

and Doppler effects on radar localization and to propose a lightweight method to compensate for

them. Subsequently, we demonstrated a self-supervised radar odometry pipeline that combined a

deep-learned front-end with a classical probabilistic back-end. We then developed a radar-based

mapping and localization pipeline using the Visual Teach and Repeat paradigm. We conducted a

thorough comparison of radar-to-radar, radar-to-lidar, and lidar-to-lidar localization showing that

our radar-based localization is sufficiently accurate to enable autonomous navigation. The prospect

of localizing radar to lidar maps is promising, given that many autonomous driving companies

already utilize lidar maps. Additionally, using radar to localize on lidar maps can harness most of

the advantages of radar. To further improve the performance of our radar odometry, we investigated

fusing pointcloud measurements with an inertial measurement unit. This investigation led us to

compare treating an IMU as an input to a motion model versus as a measurement of the state. We

addressed this research question by performing an analysis on a 1D simulation, a 3D lidar-inertial

simulation, and the Newer College Dataset. Our continuous-time lidar-inertial odometry, based on a

Singer prior, achieved state-of-the-art results. This research informed the design of our radar-inertial

odometry, based on a white-noise-on-acceleration prior, where we demonstrate results competitive

with the state of the art on the Boreas dataset.
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Notation

Tvi ∈ SE(3) denotes a transformation matrix, where

Tvi =

[
Cvi rivv

0T 1

]
, (1)

Cvi ∈ SO(3) is a rotation matrix, and rivv ∈ R3 is the translation vector from the vehicle frame v to

the inertial frame i as measured in the vehicle frame. Tvi transforms points from the inertial frame

to the vehicle frame. u∧ is the skew-symmetric operator,

u∧ =



u1

u2

u3




∧

=




0 −u3 u2

u3 0 −u1
−u2 u1 0


 . (2)

We overload this operator by re-using it on 6× 1 vectors such that

x∧ =

[
u

v

]∧
=

[
v∧ u

0T 0

]
. (3)

(·)∨ is then the inverse of this operator. A rotation matrix can be constructed using the exponential

map with

C = exp(ϕ∧) =

∞∑

n=0

1

n!
(ϕ∧)n. (4)

Similarly, a transformation can also be constructed using an exponential map with

T = exp(ξ∧) =

∞∑

n=0

1

n!
(ξ∧)n, (5)

where

ξ =

[
ρ

ϕ

]
, (6)

ρ is a translational component, and ϕ is a rotational component. The inverse of the exponential

map is the logarithmic map, ln(·)∨. In this thesis, we make frequent use of body-centric velocity,

ϖ = ϖvi
v , where

ϖvi
v =

[
νvi
v

ωvi
v ,

]
, (7)
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νvi
v = ṙviv is the body-centric linear velocity, and ωvi

v is the angular velocity that would be measured

by a gyroscope in the vehicle frame. Poisson’s equation is given by

Ċvi = −(ωvi
v )∧Cvi. (8)

The (·)⊙ operator is used to reverse the order of the operands when Jacobians are being derived,

x∧p = p⊙x (9a)

p⊙ =

[
ρ

η

]⊙
=

[
η1 −ρ∧

0T 0T

]
, (9b)

where x ∈ R6, and p is a homogeneous point. Ad(T) represents the adjoint of a member of SE(3),

Ad(T) = T =

[
C (Jρ)∧C

0 C

]
. (10)

Another operator we use is

x⋏ =

[
u

v

]⋏
=

[
v∧ u∧

0 v∧

]
. (11)

For more details on notation, we refer the reader to [16].
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Chapter 1

Introduction

Autonomous vehicles have the potential to transform personal mobility. It is anticipated that with

increased autonomous vehicle capabilities, annual fatalities due to traffic accidents may be reduced.

Many traffic fatalities are the result of human error, whether that be driving under the influence of

alcohol, speeding, distracted driving, or drowsy driving [111, 110, 109]. These are all cases where

autonomous driving technology has the potential to intervene and minimize loss of life. At the same

time, there has been a proliferation of radar in the context of robotics, with applications including

autonomous vehicles [1], mining [4], and disaster response [113]. However, most autonomous vehicles

today rely primarily on cameras and lidar for perception, and lidar has emerged as a dominant sensor

for mapping and localization. Although cameras and lidars have been shown to achieve sufficient

performance under nominal conditions, adverse weather remains an open problem. Radar sensors

may provide a solution.

Thanks to its longer wavelength, radar is robust to small particles such as dust, fog, rain, and

snow, which can negatively impact cameras and lidar. Figure 1.1 depicts our autonomous driving

data collection platform, Boreas, alongside a qualitative comparison of camera, lidar, and radar data

taken during a sunny day and a snowstorm. During the snowstorm, the lidar pointcloud becomes

littered with detections associated with snowflakes and is partially blocked by a build-up of ice, while

the radar data appears relatively unperturbed. Furthermore, radar tends to have a more extended

detection range. Radar can also transmit through certain materials, allowing it to see beyond the

line of sight of visual sensors like cameras and lidars. These features make radar particularly well-

suited for inclement weather. However, radar typically has a coarser spatial resolution than lidar

and produces noisier measurements. Radar also has a larger beam divergence than lidar. This large

beam divergence and long wavelength mean that radar measurements notably depend on the sensed

objects’ macroscopic geometry and material properties. For these reasons, detecting and matching

features between radar scans is challenging. In Table 1.1, we provide a high-level comparison of lidar,

vision, and radar in the context of mapping and localization for autonomous vehicles. Figure 1.2

further illustrates some of the common sources of noise present in radar, which make it challenging

to work with.

1
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(a) Boreas data-collection platform

(b) Sun vs. snow in the Boreas dataset

Figure 1.1: (a) depicts our Boreas data-collection platform, which includes a Navtech radar, Velodyne

128-beam lidar, FLIR Blackfly S camera, and an Applanix POS LV GNSS/IMU. (b) provides a

qualitative comparison of data collected on a sunny day and during a snowstorm.

Table 1.1: Comparison of mapping and localization sensors for autonomous vehicles.

Lidar Vision Radar

Pros
✓ Accurate

✓ Dense pointcloud

✓ Works irrespective of

environment geometry

✓ Inherently robust to weather

✓ Long Range

✓ Multiple returns per measurement

Cons ✗ Weather

✗ Brittle to large appearance

changes (lighting)

✗ Weather

✗ Noisy

✗ Sparse

In this thesis, we demonstrate radar-based odometry and metric localization that approach lidar’s

performance and can operate even under extreme weather conditions where lidar is expected to

fail. One of this thesis’s main contributions is comparing radar-to-radar, radar-to-lidar, and lidar-

to-lidar localization performance across varying seasonal and weather conditions. We show that

our radar-to-lidar localization is sufficient to enable autonomous vehicle operation; this was not

conclusively demonstrated in the prior literature. The remainder of this thesis centers around the

various challenges and aspects of working with radar, such as motion distortion, Doppler effects,



CHAPTER 1. INTRODUCTION 3

Multipath Reflections

Speckle Noise

Receiver Saturation

Figure 1.2: This figure depicts some of the common sources of noise present in radar. This data was
collected while driving in a tunnel.

building a comprehensive dataset, and fusing inertial measurements to reduce the gap between

radar and lidar-based odometry.

In our work, we present results using a mechanical spinning radar produced by Navtech as

depicted in Figure 1.1. The Navtech radar’s range and azimuth resolutions are competitive with

other radar sensors. The main advantage to using the Navtech is that it provides a 360◦ field

of view. This field of view could also be achieved by panelling several automotive radars around

a robot. However, this would require calibrating the extrinsic transformations between multiple

radars and ensuring accurate temporal synchronization. The Navtech radar also provides the raw

power vs. range spectrum for each scanned azimuth; this is something that many automotive radar

suppliers still do not offer. By having access to the raw data, we have the freedom to tune our feature

extraction for each application. Another key difference between the Navtech radar and automotive

radar is that Doppler velocity measurements are not currently supported by the Navtech radar.

Nevertheless, the results presented in this thesis can also apply to a comparable combination of

automotive radar sensors.

Figure 1.3 depicts a high-level timeline of publications in radar-based mapping and localization

for robotics. This list is by no means exhaustive, and its purpose is merely to highlight some

of the important works over the years that have influenced the developments in this thesis. We

include a selection of our publications in this timeline to provide the reader with a sense of how the

contributions of this thesis fit in with the broader work conducted in this field. There continues to

be plenty of research in radar-based odometry, localization, and SLAM. However, we omit some of

these recent works for the sake of brevity.
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t

Clark and Durrant-Whyte [46] First radar-based localization using retroreflectors1998

Dissanayake et al. [51] First radar-based SLAM2001

Jose and Adams [77] Proposed a new radar SLAM approach without retroreflectors2004

Chandran and Newman [38] Radar motion estimation from map quality2006

Rouveure et al. [128] First radar SLAM using correlative scan matching2009

Checchin et al. [41] Radar SLAM using Fourier-Mellin transform2010

Mullane et al. [102] Random finite set approach to radar SLAM2011

Callmer et al. [35] First radar SLAM using visual feature matching2011

Kellner et al. [78] First instantaneous ego-motion estimation using Doppler radar2013

Vivet et al. [150] First Doppler-enabled spinning radar ego-motion estimation2013

Schuster et al. [133] Radar SLAM using automotive radar on small scale2016

Cen and Newman [36] Large-scale radar odometry using spinning radar2018

Barnes et al. [20] Radar odometry using deep-learned correlative scan matching2020

Holder et al. [69] Pose graph SLAM using automotive radar2019

Barnes et al. [19] The Oxford Radar RobotCar dataset2020

Barnes and Posner [18] Deep-learned feature matching radar odometry trained with poses2020

Săftescu et al. [131] The first radar place recognition paper2020

Tang et al. [146] First to demonstrate ground-based radar localization to satellite imagery2020

Yin et al. [158] One of the first to demonstrate radar-to-lidar localization2020

Hong et al. [70] Demonstrated radar SLAM in all weather conditions2020

Ng et al. [106] B-spline continuous-time radar-inertial odometry using automotive radar2021

Burnett et al. [28] (Chapter 5) Quantified motion distortion and Doppler effects2021

Burnett et al. [29] (Chapter 6) Self-supervised learning-based radar odometry2021

Adolfsson et al. [3] Demonstrated accurate radar odometry, rivalling lidar2021

Burnett et al. [30] (Chapter 7) Compared radar to lidar localization across weather2022

Burnett et al. [31] (Chapter 4) The Boreas autonomous driving dataset2023

Burnett et al. [32] (Chapter 9) Continuous-time radar-inertial odometry

using a Gaussian process prior
2025

Figure 1.3: A brief history of radar for mapping and localization in robotics. This list is by no

means exhaustive but rather highlights some of the relevant prior work that influenced this thesis

and includes some of the publications produced in accordance with this thesis.
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(Chapter 6)
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(Chapter 9)

Singer-LIO [33]
(Chapter 8)

Lidar
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Figure 1.4: Conceptual map of the published works associated with this thesis.

1.1 Overview of Thesis

In Figure 1.4, we present a conceptual map of the published papers presented in this thesis, excluding

our dataset paper. In general, this thesis centres around radar-based mapping and localization. The

primary algorithmic difference between our published works is how we obtain correspondences be-

tween radar (or lidar) scans. For feature-based approaches, we first detect keypoints and then match

descriptors. In Chapter 5, we used hand-crafted descriptors for this purpose, and in Chapter 6 we

use deep-learned features which were trained in a self-supervised fashion. Another way of obtaining

correspondences is to perform pointcloud registration using iterative closest point (ICP), where an

initial guess is required since this is an iterative solver. We use an ICP-like solver in Chapter 7,

Chapter 8, and Chapter 9. Since we often have a good initial guess, thanks to motion priors or

other sensors such as an IMU, these approaches based on ICP are quite robust. However, if one

needs to localize without a prior initial guess, then the feature-based approaches will be of more use.

This thesis also frequently presents results for lidar-based approaches to compare and contrast with

radar. We also have two publications using inertial measurement units (IMUs). One unique aspect

of this thesis is that all of the papers in this conceptual map involve some aspect of continuous-time

state estimation. In most of the chapters, we provide radar odometry results. Chapter 7 is the

exception where we instead provide metric localization results. In Figure 1.5, we provide an exam-

ple of a lidar map and radar map generated using the approach we present in Chapter 9. In the

following, we provide a brief description of each chapter and the associated publications.

Chapter 2: Related Work We provide a review of relevant literature here.

Chapter 3: Continous-Time State Estimation using Gaussian Processes We provide a

brief review of prior work in the area of continuous-time state estimation using Gaussian processes.

Chapter 4: Boreas: A Multi-Season Autonomous Driving Dataset

Associated publication: “Boreas: A multi-season autonomous driving dataset” K. Burnett et al.

(The International Journal of Robotics Research (IJRR), 2023) [31]
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Prior to this thesis, no single dataset could be used to compare radar localization to lidar localization

across varying seasonal and weather conditions. The Boreas dataset was created to address this need.

Our dataset includes over 350km of driving data collected over one year. I was the sole first author

of a journal publication [31] based on this dataset and did most of the work to collect and process

the dataset. The novel contributions of this dataset include:

• Data collected on a repeated route over one year, including multiple weather conditions such

as snowstorms.

• A unique high-quality sensor configuration including a 128-beam lidar and a 360◦ radar.

• An online leaderboard for radar odometry, metric localization, and object detection.1

• A Python development kit for working with the dataset.2

Chapter 5: Motion Distortion and Doppler Effects in Spinning Radar Navigation

Associated publication: “Do we need to compensate for motion distortion and Doppler effects

in spinning radar navigation?” K. Burnett, A. P. Schoellig, T. D. Barfoot (IEEE Robotics and

Automation Letters (RA-L), 2020) (presented at the IEEE Conference on Robotics and Automation

(ICRA), 2021) [28]

When working with the Navtech radar, two important distortion effects need to be considered: mo-

tion distortion, which results from the scanning-while-moving nature of the sensor, and Doppler

distortion, which results from the ego-motion of the vehicle corrupting range measurements. As the

second novel contribution of this thesis, we were the first to quantify the importance of these distor-

tion effects in radar odometry and radar-based mapping and localization. We showed that motion

distortion is important for radar odometry, but Doppler distortion can be neglected. However, it is

important to compensate for both distortion effects for radar-based mapping and localization. I was

the sole first author of the publication based on this work [28]. We make our code for this project

publicly available3.

Chapter 6: Combining Probabilistic Estimation and Self-Supervised Feature Learning

Associated publication: *“Radar odometry combining probabilistic estimation and unsupervised

feature learning” K. Burnett, D. J. Yoon, A. P Schoellig, T. D. Barfoot (presented at Robotics:

Science and Systems 2021) [29] *Equal contribution was shared with my co-author David Yoon where

I focused on the front-end feature detection and David focused on the back-end state estimation.

It is challenging to detect and match keypoints between radar scans reliably. In [28], we experimented

with matching ORB features [130] and compared this to a radial statistics descriptor [36]. We

observed that bad feature matches have a negative effect on radar odometry performance. To

address this, we investigated learning-based radar odometry [29]. As the third novel contribution

of this thesis, we were the first to demonstrate self-supervised radar odometry combining a classic

probabilistic back-end with a deep learning front-end. Self-supervised methods are important in

the context of robotics because labeling datasets is both expensive and time-consuming. We can

achieve the best of both worlds by combining deep learning with probabilistic state estimation.

1https://www.boreas.utias.utoronto.ca
2https://github.com/utiasASRL/pyboreas
3https://github.com/keenan-burnett/yeti_radar_odometry

https://www.boreas.utias.utoronto.ca
https://github.com/utiasASRL/pyboreas
https://github.com/keenan-burnett/yeti_radar_odometry
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Deep learning can be leveraged to process rich sensor data, while classical estimators can deal

with probabilities and out-of-distribution samples through outlier rejection schemes. At the time of

publication, our method was the top learning-based point-wise radar odometry method on the Oxford

Radar Robotcar Dataset [19], outperforming a comparable supervised method, UnderTheRadar [18].

This work was published as a conference paper where I contributed equally with my co-author, David

Yoon [29]. We make our code for this project publicly available4.

Chapter 7: Are We Ready for Radar to Replace Lidar?

Associated publication: *“Are We Ready for Radar to Replace Lidar in All-Weather Mapping

and Localization?” K. Burnett, Y. Wu, D. J. Yoon, A. P. Schoellig, T. D. Barfoot (IEEE Robotics

and Automation Letters (RA-L), 2022) (presented at the International Conference on Intelligent

Robots and Systems (IROS), 2022) *Equal contribution was shared with my co-author Yuchen Wu.

I led research on this project. The implementation was a tight collaboration with my co-author.

Another strategy for working with radar data is to extract keypoints and register radar pointclouds

using some variation of Iterative Closest Point (ICP). ICP relies on having a good initial guess as

it is a local solver. This way, learning-based features can be more robust in localizing across a

broader range of initial guesses. As the fourth novel contribution of this thesis, we were the first

to provide a detailed comparison between radar and lidar localization across varying seasonal and

weather conditions [30]. We implemented topometric localization using the visual tech and repeat

framework. We compared lidar-to-lidar, radar-to-radar, and radar-to-lidar localization. Performing

cross-modal localization between radar data and a lidar map allows us to take advantage of radar’s

robust sensing capabilities while using existing lidar maps that many autonomous driving companies

already have. A surprising result of this work was that we observed that lidar-based localization

can still outperform radar-based localization under moderate levels of precipitation. However, we

also showed that our radar-based localization is sufficiently accurate to enable autonomous driving.

Furthermore, we expect lidar-based localization to cease functioning under more extreme weather

conditions, whereas radar should still function normally. This work was published as a journal paper

where I shared equal contribution with my co-author, Yuchen Wu [30]. We make our code for this

project publicly available5.

Chapter 8: IMU as an Input versus a Measurement

Associated publication: “IMU as an Input versus a Measurement of the State in Inertial-Aided

State Estimation” K. Burnett, A. P. Schoellig, T. D. Barfoot (Robotica, 2024) [33]

To address some of the shortcomings of radar and to reduce the gap between radar and lidar

localization, we investigated combining radar with an inertial measurement unit (IMU). Radars

and IMUs are high-rate sensors, and the problem of how best to fuse these measurements led us

to consider why IMU measurements are often treated as an input to a motion model. The fifth

contribution of this thesis is a comparison between treating an IMU as input to a motion model vs.

a measurement of the state. The novel contributions are as follows:

• We provide a detailed comparison of treating an IMU as an input to a motion model vs.

a measurement of the state on a 1D simulation problem. Such a comparison has not been

4https://github.com/utiasASRL/hero_radar_odometry
5https://github.com/utiasASRL/vtr3

https://github.com/utiasASRL/hero_radar_odometry
https://github.com/utiasASRL/vtr3
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previously presented in the literature.

• We show how to perform preintegration using heterogeneous factors (a combination of binary

and unary factors) using continuous-time state estimation. To our knowledge, this has not

been shown before in the literature.

• We present our novel approach to lidar-inertial odometry using a Singer prior, which includes

body-centric acceleration in the state. We also provide experimental results in simulation and

on the Newer College Dataset.

I was the sole first author of a journal paper based on this work [33]. We make our code for this

project publicly available6.

Chapter 9: Continuous-Time Radar-Inertial Odometry

Associated publication: “Continuous-Time Radar-Inertial and Lidar-Inertial Odometry using a

Gaussian Process Motion Prior” K. Burnett, A. P. Schoellig, T. D. Barfoot (IEEE Transactions on

Robotics (T-RO), 2024) [32]

As the sixth contribution of this thesis, we demonstrate continuous-time radar-inertial and lidar-

inertial odometry using a Gaussian process motion prior. The novel contributions are summarized

as follows,

• We demonstrate continuous-time lidar-inertial and radar-inertial odometry using a Gaussian

process motion prior where the preintegration cost is linear in the number of estimation times.

• We provide experimental results of our real-time approach on three datasets: KITTI-raw [61],

Boreas [31] and the Newer College Dataset [123].

• We demonstrate radar-inertial odometry with a spinning mechanical radar using gyroscope and

accelerometer measurements. To our knowledge, this has not been previously demonstrated

in the literature.

• We provide a detailed comparison of lidar-inertial and radar-inertial odometry performance

across varying seasonal and weather conditions.

I was the sole first author of a journal paper based on this work [32]. We make our code for this

project publicly available7.

6https://github.com/utiasASRL/steam_icp
7https://github.com/utiasASRL/steam_icp

https://github.com/utiasASRL/steam_icp
https://github.com/utiasASRL/steam_icp


(a) Lidar map of UTIAS (coloured by height)

(b) Radar map of UTIAS (coloured by intensity)

Figure 1.5: This figure depicts lidar and radar maps of the University of Toronto Institute for
Aerospace Studies.
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Chapter 2

Related Work

In this chapter, we review relevant work related to this thesis. The central theme of this thesis is

radar-based mapping and localization. Another important theme is the application of continuous-

time estimation techniques. We will review relevant work on overarching topics here while reserving

some literature review for individual chapters where the discussion of the relevant work is isolated

to that chapter.

2.1 Related Work

2.1.1 Lidar Odometry

Lidar odometry methods can be broadly classified into feature-based approaches, which seek to

extract and match sparse geometric features, and direct methods, which work directly with raw lidar

pointclouds. Direct methods usually rely on a variation of iterative closest point (ICP) to match

pairs of pointclouds [121]. Due to the large number of points produced by modern lidar sensors

(∼100k points per scan), these methods incur a heavy computational load. Recent methods rely on

coarse voxelization and efficient data structures for map storage and retrieval [48, 151, 156, 44] to

enable real-time operation. Care must also be taken to tune ICP parameters, such as the maximum

point-to-point matching distance, to ensure reliable and fast convergence. There are also several

ICP variants to choose from, such as point-to-point, point-to-plane, and Generalized ICP [121, 134].

Examples of feature-based methods include LOAM [161], which matches edge and plane features,

and SuMa++ [45], which matches surfels using ICP aided by semantic segmentation labels from

a neural network. Feature-based methods tend to work well in structured environments but may

experience a drop in performance in unstructured environments. For a more detailed literature

review on lidar odometry and lidar-inertial odometry, we refer readers to the recent survey by Lee

et al. [89].

2.1.2 Lidar-Inertial Odometry

Prior works have leveraged inertial measurement units (IMUs) to address several shortcomings

of lidar-only odometry. Firstly, IMU measurements can be used to compensate for the motion-

distortion effect of lidar sensors [161]. Furthermore, IMUs can enable lidar-inertial odometry to

10
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tackle trajectories with more aggressive motion and potentially degenerate geometry. Previous

lidar-inertial odometry literature can then be sorted based on the degree of integration between the

lidar and IMU modalities, ranging from loosely coupled to tightly coupled. Tightly coupled methods

directly incorporate IMU data into the pointcloud alignment optimization.

LOAM [161] is an example of a loosely coupled approach where an IMU is used to undistort

lidar pointclouds for use in ICP within a discrete-time state estimation framework where the IMU

preintegration may be used as an initial guess for ICP. LIO-SAM [135] and LION [141] are examples

of loosely coupled approaches that undistort lidar data using an IMU and then include both relative

pose estimates from ICP and preintegrated IMU measurements in a factor graph. DLIO [44] is a

recent example of a loosely coupled approach where an IMU is used to undistort lidar data. Prein-

tegrated IMU measurements are then combined with pose estimates from ICP using a hierarchical

geometric observer. LIOM [157] is an example of a tightly coupled lidar-inertial odometry using a

factor graph. FAST-LIO2 [156] is another tightly coupled approach that uses an iterated extended

Kalman filter.

Even after incorporating an IMU, some challenges remain, such as handling harsh environmental

conditions such as dust, fog, rain, and snow that can adversely affect lidar data. Figure 1.1 depicts

an example where lidar data is affected by snow and ice build-up. Radar is being investigated as a

potential alternative to lidar in order to tackle these problems

2.1.3 Radar-Based Mapping and Localization

Radar mapping and localization is a long-standing research area in robotics. The first methods

to demonstrate radar-based localization relied on reflective beacons installed in the environment

[46, 51]. These reflective beacons were easy to discriminate from background noise however they

severely limit the area in which radar-based localization could be deployed. Without such beacons,

traditional radar filtering techniques such as Constant False Alarm Rate (CFAR) [125] have proven to

be difficult to tune for radar-based localization. Setting the threshold too high results in insufficient

features, which can cause localization to fail. Setting the threshold too low results in a noisy radar

pointcloud and a registration process susceptible to local minima. Due to the noise inherent to

radar, applying methods designed for lidar or vision is challenging.

Several methods have been proposed to deal with high noise in radar measurements. Jose and

Adams [77] proposed to estimate the probability of target presence and to include radar cross-section

in their simultaneous localization and mapping (SLAM) setup with limited success. Chandran and

Newman [38] maximized an estimate of map quality to recover both the vehicle motion and radar

map. These two prior works were limited to parking-lot-scale areas and the performance was partially

limited by the quality of the radar sensors that they had access to at the time.

Rouveure et al. [128] and Checchin et al. [41] eschewed sparse feature extraction entirely by

matching dense radar scans using 3D (x-y-yaw) cross-correlation and the Fourier-Mellin transform,

respectively. Dense correlation remains a popular approach to radar odometry but less so for map-

ping and localization so far. Maps constructed using dense correlation will often require more storage

space. In addition, it is challenging to account for motion distortion using this approach. Never-

theless, given the availability of high-performance parallel computing (GPUs) on many robotics

platforms, this approach and its variants continue to hold promise. Recent publications in this area

include the work by Park et al. [114] where they use the Fourier Mellin Transform on Cartesian and
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log-polar radar images to estimate rotation and translation sequentially. Barnes et al. [20] demon-

strated a fully differentiable, correlation-based radar odometry pipeline. Their approach learns a

binary mask to remove distractor features before using brute force search to find the pose with the

minimum cross-correlation.

Mullane et al. [102] proposed to use a random-finite-set formulation of SLAM in situations of

high clutter and data association ambiguity. However, their approach incurs a heavy computational

load for little added benefit. Vivet et al. [149] and Kellner et al. [78] proposed to use the relative

Doppler velocity measurements to estimate the instantaneous egomotion. Indeed, Doppler velocity

measurements can be used for odometry on their own, or can serve as useful motion priors in ICP-

like estimators or even dense correlation. Callmer et al. [35] proposed to leverage features originally

designed for vision to enable landmark-based SLAM. Schuster et al. [133] subsequently refined this

approach by designing bespoke radar feature descriptors. Schuster et al. primarily worked with

automotive radar where only a sparse set of targets is provided. Due to this data sparsity, it then

becomes critical to obtain the correct correspondences between features using bespoke descriptors.

Rapp et al. [124] used Normalized Distributions Transform (NDT) to perform probabilistic ego-

motion estimation with radar.

In their seminal work, Cen and Newman demonstrated accurate large-scale radar odometry using

a spinning mechanical radar [36]. The accuracy and scale demonstrated in their work exceeded that

which was previously demonstrated. Their work presented a new method to extract stable keypoints

and perform scan matching using graph matching. Further research in this area has been spurred

by the introduction of the Oxford Radar RobotCar Dataset [19], which includes lidar, vision, and

radar data from a Navtech radar.

Odometry has recently been a central focus of radar-based navigation research. Components of

an odometry pipeline can be repurposed for mapping and localization, which is the ultimate goal of

this research. In [37], Cen et al. present an update to their radar odometry pipeline with improved

keypoint detection, descriptors, and a new graph-matching strategy leading to improved odometry

performance. Aldera et al. [5] train a focus of attention policy to downsample the measurements

given to data association, thus speeding up the odometry pipeline. Aldera et al. [6] train a classifier

on the principal eigenvector of their graph matching problem to predict and correct for failures in

radar odometry. In [18], Barnes and Posner present a deep-learning-based keypoint detector and

descriptor that are learned directly from radar data using differentiable point matching and pose

estimation. In [70, 71], Hong et al. demonstrate a radar-SLAM pipeline capable of handling extreme

weather. More recent work in radar-based localization has focused on improving aspects of radar

odometry [85, 3, 7] and developing better SLAM pipelines [69].

The popularization of the Oxford dataset as well as MulRan [79] and our own Boreas dataset [31]

have enabled more standardized comparisons between competing methods, enabling the community

to better measure progress. For example, when Barnes and Posner published their work in 2020

[18], the state of the art in radar odometry was around 2% translational drift (KITTI metric) on the

Oxford dataset. Since then, the state of the art is now around 0.5% translational drift on the Boreas

dataset. There is not yet a single popular dataset for assessing radar odometry using automotive

radar, so the results presented in the area are somewhat disjointed but it appears that progress

is being made [164] [68]. The use of low-cost radar sensors has recently become a salient area of

research for indoor positioning systems under conditions unfavourable to vision [82] [94] [99] [72].
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Other research in radar-based localization focuses on topological localization (also known as place

recognition), which can be used by downstream metric mapping and localization systems to identify

loop closures. Săftescu et al. [131] learn a metric space embedding for radar scans using a convolu-

tional neural network. Nearest-neighbour matching is then used to recognize locations at test time.

Gadd et al. [58] improve this place recognition performance by integrating a rotationally invariant

metric space embedding into a sequence-based trajectory matching system previously applied to

vision [101]. De Martini et al. [47] proposed a two-stage system to integrate topological localization

with metric pose estimation. A related avenue of research has been to localize radar scans using

existing satellite imagery [146] [144] [145] or the pre-built lidar maps [158, 159].

Currently, the state of the art for radar odometry (without machine learning) with a spinning

mechanical radar is CFEAR, which extracts only the k strongest detections on each scanned azimuth

and subsequently matches the live radar scan to a sliding window of keyframes in a manner similar

to ICP [4]. At the recent 2024 Radar in Robotics competition, the winning entry was CFEAR++

[91], which is built on top of CFEAR while also using semantic segmentation to focus on radar points

associated with buildings as well as an IMU for a rotation prior.

Automotive radar sensors offer range and azimuth resolutions approximately on par with me-

chanically actuated radar. It is possible to replace a single 360-degree rotating radar with several

automotive radars panelled around a vehicle [34]. Each target will then enjoy a relative Doppler

velocity measurement, which can be used to estimate ego-motion [78]. However, recent work [85, 59]

indicates that the target extraction algorithms built into automotive radar may not be optimal for

mapping and localization. Thus, sensors that expose the underlying signal data offer greater flexi-

bility since the feature extraction algorithm can be tuned for the desired application. Furthermore,

many automotive radar sensors do not provide access to the raw data cube but instead provide access

to a sparse set of targets resulting from feature extraction via Constant False Alarm Rate (CFAR)

and Fast Fourier Transforms (FFTs). When the raw data is unavailable, we cannot tune the feature

extraction process for our desired application (mapping and localization). Other single-chip radar

sensors or cascaded radar sensors produced by Texas Instruments provide access to the raw sensor

data. However, they tend to provide angular resolutions significantly worse than that provided by

either the Navtech radar or automotive radar. From a researcher’s perspective, the Navtech sensor is

also convenient because it provides 360-degree coverage with a single sensor. It removes the need for

engineering effort in extrinsic calibration and temporal synchronization of multiple sensors. Recent

works have benefited from advancements in radar sensors where frequency-modulated continuous

wave (FMCW) radar sensors now possess target elevation in 3D. For a more detailed review of

radar-based localization, we refer readers to the survey by Harlow et al. [65].

2.1.4 Continuous-Time State Estimation

There are two main classes of continuous-time approaches: parametric approaches that rely on

temporal basis functions and non-parametric approaches such as Gaussian processes. Two popular

examples of parametric approaches are linear interpolation and cubic B-splines.

Linear interpolation is often performed in the Lie algebra between pairs of discrete trajectory

samples. This approach assumes a constant velocity between pairs of poses and relies on sampling

the trajectory at a sufficiently high rate to support dynamic motions. These approaches some-

times upsample the estimated trajectory using splines to remove motion distortion from pointclouds.
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Smoothness factors may be included to penalize acceleration between pairs of poses. Examples of

linear interpolation approaches include [23, 108, 162]. CT-ICP is an example of linear interpolation

where their innovation was to parametrize each lidar scan as a pair of poses at the start and end

of the scan and to model the motion during a scan with constant velocity while allowing trajectory

discontinuities between scans [49].

Parametric approaches represent the trajectory using a finite set of temporal basis functions.

Previous examples of parametric approaches include [57, 119]. Recent examples of parametric ap-

proaches applied to lidar odometry and lidar-inertial odometry include [53, 122, 112, 96, 86], all of

which use B-splines.

Non-parametric approaches such as Gaussian processes (GPs) seek to model a continuous-time

trajectory implicitly given a set of measurements of the state. The state at a set of estimation times

can then be determined by performing Gaussian process regression. These estimation times may

be chosen independently of the measurement times. The posterior GP may then be queried at any

time of interest. In prior work, it was shown that for vector spaces, a linear time-varying stochastic

differential equation can be interpreted as a Gaussian process, and batch continuous-time trajectory

estimation can be performed efficiently thanks to the exact sparsity of the inverse kernel matrix owing

to the Markovian nature of the state [11]. This approach enables linear time complexity instead of

the usual cubic time complexity for Gaussian process regression. Furthermore, this work showed

that posterior interpolation could be performed as an O(1) operation. Subsequently, Anderson and

Barfoot extended this approach to work with SE(3) where the trajectory is divided into a sequence

of local GPs [10]. Recently, Le Gentil and Vidal-Calleja employed Gaussian processes to model

the linear acceleration and angular velocities in continuous time given a set of IMU measurements

[88, 87]. They then used their estimated GP to upsample IMU measurements towards undistorting

pointclouds and to provide improved preintegration measurements for inertial-aided state estimation.

One appealing aspect of our approach is that we start from a physically motivated prior: white noise

on acceleration or constant velocity. Furthermore, compared to the linear interpolation approaches,

the Gaussian process prior provides a principled manner to construct motion priors and perform

interpolation. In addition, the hyper-parameters of the GP can be learned from a training set using

maximum likelihood, enabling a data-driven approach to fine-tune the GP for each application.

Determining the spacing of control points is an important engineering challenge in using B-splines,

which can be avoided by using Gaussian processes instead. For a comparison of splines and Gaussian

processes, we refer the reader to Johnson et al. [75]. We refer the reader to Talbot et al. [142] for

an up-to-date literature review of continuous-time state estimation.



Chapter 3

Continous-Time State Estimation

using Gaussian Processes

In this chapter, we review prior work that demonstrated continuous-time trajectory estimation as

exactly sparse Gaussian process regression [10, 11, 16]. We first consider states that can be described

using a vector space representation and then present prior work for handling Lie groups such as

SE(3). Here, we consider systems with a Gaussian process (GP) prior and a linear measurement

model:

x(t) ∼ GP(x̌(t), P̌(t, t′)), (3.1a)

yk = Ckx(tk) + nk, (3.1b)

where x(t) is the state, x̌(t) is the mean function, P̌(t, t′) is the covariance function, and yk are

measurements corrupted by zero-mean Gaussian noise nk ∼ N (0,Rk). In this section, we restrict

our attention to a class of GP priors resulting from linear time-invariant (LTI) stochastic differential

equations (SDEs) of the form

ẋ(t) = Ax(t) +Bu(t) +Lw(t), (3.2)

w(t) ∼ GP(0,Qδ(t− t′)),

where w(t) is a white-noise Gaussian process, Q is a power spectral density matrix, and u(t) is a

known exogenous input. The general solution to this differential equation is

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, s)(Bu(s) +Lw(s))ds, (3.3)

where Φ(t, s) = exp(A(t− s)) is the transition function. The mean function is

x̌(t) = E[x(t)] = Φ(t, t0)x̌0 +

∫ t

t0

Φ(t, s)Bu(s)ds. (3.4)

15
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Over a sequence of estimation times, t0 < t1 < · · · < tK , the mean function can be written as

x̌(tk) = Φ(tk, t0)x̌0 +

k∑

n=1

Φ(tk, tn)Bnun, (3.5)

assuming piecewise-constant input un. This can be rewritten in a lifted form as

x̌ = ABu, (3.6)

where A is the lifted lower-triangular transition matrix, the inverse of which is

A−1 =




1

−Φ(t1, t0)
. . .

. . . 1

−Φ(tK , tK−1) 1



, (3.7)

B = diag(1,B1, · · · ,BK), and u = [x̌T
0 uT

1 · · · uT
K ]T . See [16] for further details on the formulations

above. The covariance function is then

P̌(t, t′) = E[(x(t)− E[x(t)])(x(t′)− E[x(t′)])T ] (3.8)

= Φ(t, t0)P̌0Φ(t′, t0)
T +

∫ min(t,t′)

t0

Φ(t, s)LQLTΦ(t′, s)T ds.

The covariance can also be rewritten in a lifted form using the same set of estimation times as above,

P̌ = AQAT , (3.9)

where Q = diag(P̌0,Q1, · · · ,QK), and

Qk =

∫ ∆tk

0

exp(A(∆tk − s))LQLT exp(A(∆tk − s))T ds. (3.10)

Our prior over the entire trajectory can then be written as

x ∼ N (x̌, P̌), (3.11)

where P̌ is the kernel matrix. Note that the inverse kernel matrix P̌−1 is block-tridiagonal thanks to

the Markovian nature of the state. This sparsity property also holds for linear time-varying (LTV)

SDEs, provided that they are also Markovian [10]. The exact sparsity of P̌−1 is what allows us to

perform efficient Gaussian process regression. This fact can be observed more easily by inspecting

the following linear system of equations

(
P̌−1 +CTR−1C

)
︸ ︷︷ ︸

P̂−1

x̂ = A−TQ−1Bu+CTR−1y, (3.12)

where the Hessian is on the left-hand side, P̂−1, is block-tridiagonal since P̌−1 is block-tridiagonal,

and CTR−1C is block-diagonal. Thus, this linear system of equations can be solved in O(K) time
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using a sparse Cholesky solver. The exact sparsity of P̌−1 also enables us to perform efficient

Gaussian process interpolation. The standard GP interpolation formulas are given by

x̂(τ) = x̌(τ) + P̌(τ)P̌−1(x̂− x̌), (3.13a)

P̂(τ, τ) = P̌(τ, τ) + P̌(τ)P̌−1
(
P̂− P̌

)
P̌−T P̌(τ)T , (3.13b)

where

P̌(τ) =
[
P̌(τ, t0) P̌(τ, t1) · · · P̌(τ, tK)

]
. (3.14)

The key to performing efficient interpolation relies on the sparsity of

P̌(τ)P̌−1 =
[
0 · · · 0 Λ(τ) Ψ(τ) 0 · · · 0

]
, (3.15)

where

Ψ(τ) = QτΦ(tk+1, τ)
TQ−1

k+1, (3.16a)

Λ(τ) = Φ(τ, tk)−Ψ(τ)Φ(tk+1, tk), (3.16b)

are the only nonzero block-columns at indices k + 1 and k, respectively. Thus, each interpolation

query of the posterior trajectory is an O(1) operation.

3.1 Continuous-Time Estimation on SE(3)

This section reviews continuous-time estimation on SE(3) using the white-noise-on-acceleration prior

as first described in [10]. We begin with the following nonlinear time-varying stochastic differential

equation,

Ṫ(t) = ϖ(t)∧T(t) (3.17a)

ϖ̇(t) = w′(t), w′(t) ∼ GP(0,Q′δ(t− t′)) (3.17b)

where T(t) ∈ SE(3) is the pose, ϖ(t) = [νT ωT ]T ∈ R6 is the body-centric velocity consisting of

a linear ν(t) and angular ω(t) component, and w′(t) is a white-noise Gaussian process where Q′

is the symmetric positive-definite power-spectral density matrix. We refer to this as white-noise-

on-acceleration due to white noise being injected on the body-centric acceleration ϖ̇(t). The above

nonlinear time-varying stochastic differential equation is then approximated using a sequence of local

linear time-invariant stochastic differential equations [10]. Between pairs of estimation times, tk and

tk+1, k = 0 . . .K − 1, local pose variables are defined in the Lie algebra ξk(t) ∈ se(3) such that



3.1. CONTINUOUS-TIME ESTIMATION ON SE(3) 18

T(tk)

ϖ(tk)

T(t)

ϖ(t) T(tk+1)

ϖ(tk+1)

ξk(tk) = 0
ξk(t) = ln(T(t)T(tk)

−1)∨

Figure 3.1: This figure illustrates the definition of the local variable ξk(t) which is in the tangent

space of the pose at time tk. The larger triangles denote the state at estimation times while the

smaller triangle in the middle denotes the interpolated state at time t.

T(t) = exp(ξk(t)
∧)T(tk). (3.18)

The local kinematic equations are then defined as

ξ̈k(t) = wk(t), wk(t) ∼ GP(0,Qδ(t− t′)). (3.19)

This approximation of (3.17) holds so long as the process noise is small and the rotational motion

between pairs of estimation times is also small. The local Markovian state variables are defined as

γk(t) =

[
ξk(t)

ξ̇k(t)

]
. (3.20)

The local LTI SDE defined by (3.19), (3.20) is then stochastically integrated to arrive at the following

local GP:

γk(t) ∼ GP(Φ(t, tk)γ̌k(tk)),Φ(t, tk)P̌(tk)Φ(t, tk)
T +Qk), (3.21)

where

Φ(t, tk) =

[
1 (t− tk)1
0 1

]
(3.22)

is the transition function,

Qk =

[
1
3 (t− tk)3Q 1

2 (t− tk)2Q
1
2 (t− tk)2Q (t− tk)Q

]
(3.23)

is the covariance between two times, t, tk, and γ̌k(tk), P̌(tk) are the initial mean and covariance at

t = tk, the starting point of the local variable. Over a sequence of estimation times, t0 < t1 < · · · <
tK , the kernel matrix can be written as

P̌ = cov(δx) = AQAT , (3.24)

where, as before, A is the lifted transition matrix and Q = diag(P̌0,Q1, · · · ,QK). Again, even

though the kernel matrix is dense, the inverse kernel matrix P̌−1 = A−TQ−1A−1 is block-tridiagonal.

The exact sparsity of the inverse kernel matrix is what allows us to perform batch trajectory estima-

tion as exactly sparse Gaussian process regression. As a result, the computation for batch trajectory

estimation scales linearly with the number of estimation times.

To convert our continuous-time formulation into a factor graph, we construct a sequence of
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motion prior factors between pairs of estimation times,

Jv,k =
1

2
eTv,kQ

−1
k ev,k, (3.25a)

ev,k = γk(tk+1)− γ̌k(tk+1)−Φ(tk+1, tk)(γk(tk)− γ̌k(tk)), (3.25b)

where J denotes a cost factor, e denotes an error function, and γ̌k(t) = E[γk(t)] is the prior mean.

In the absence of exogenous control inputs, γ̌k(t) = Φ(t, tk)γ̌k(tk) and so (3.25b) simplifies to

ev,k = γk(tk+1)−Φ(tk+1, tk)γk(tk). (3.26)

To translate this prior factor, which is defined in terms of the local variables, into the global variables,

we first rearrange (3.18) as

ξk(t) = ln(T(t)T(tk)
−1)∨. (3.27)

We then use the following conversion for body-centric velocity:

ξ̇k(t) = J (ξk(t))
−1ϖ(t). (3.28)

From (3.27), (3.28), we can then define the local Markovian variable in terms of the global variables

with

γ(t) =

[
ln(T(t)T(tk)

−1)∨

J
(
ln(T(t)T(tk)

−1)∨
)−1

ϖ(t)

]
. (3.29)

The motion prior factors can then be written in terms of the global variables,

ev,k =

[
ln(Tk+1T

−1
k )∨ − (tk+1 − tk)ϖk

J
(
ln(Tk+1T

−1
k )∨

)−1
ϖk+1 −ϖk

]
, (3.30)

where we observe that the motion prior is penalizing the state estimates from deviating from a

constant velocity.

After performing batch trajectory estimation using these motion prior factors, the sparsity of

the prior allows Gaussian process interpolation to be performed as an O(1) operation where

T̂(τ) = exp ((Λ1(τ)γ̂k(tk) +Ψ1(τ)γ̂k(tk+1))
∧) T̂k,

ϖ̂(τ) = J (ln(T̂(τ)T̂−1
k )∨)(Λ2(τ)γ̂k(tk) +Ψ2(τ)γ̂k(tk+1)) (3.31)

are the interpolation equations involving only the two states bracketing the desired interpolation

time: tk < τ < tk+1. Ψ(τ) = [Ψ1(τ)
T Ψ2(τ)

T ]T and Λ(τ) = [Λ1(τ)
T Λ2(τ)

T ]T are the interpola-

tion matrices that result from the standard GP interpolation formula in (3.16). When performing

continuous-time trajectory estimation, we use the posterior interpolation formulas to build measure-

ment factors at times between our desired estimation times.



Chapter 4

Boreas: A Multi-Season

Autonomous Driving Dataset

Autonomous vehicle research and development to date has focused on achieving sufficient reliability

in ideal conditions such as the sunny climates observed in San Francisco, California, or Phoenix,

Arizona. Adverse weather conditions, such as rain and snow, remain outside the operational envelope

for many of these systems. Additionally, most self-driving vehicles rely on highly accurate maps for

localization and perception. These maps are costly to maintain and may degrade due to seasonal

changes. These shortcomings must be addressed so that self-driving vehicles can be deployed safely.

To encourage research in this area, we have created the Boreas dataset, a large multi-modal

dataset collected by driving a repeated route over one year. The dataset features over 350km of

driving data with stark seasonal variations and multiple sequences with adverse weather, such as

rain and falling snow. Our data-taking platform, shown in Figure 1.1, includes a 128-beam lidar, a 5

MP camera, and a 360◦ scanning radar. Globally consistent centimetre-accurate ground-truth poses

are obtained by post-processing global navigation satellite system (GNSS), inertial measurement

unit (IMU), wheel encoder data, and a secondary correction subscription. Our dataset supports

benchmarks for odometry, metric localization, and 3D object detection.

This dataset may be used to study the effects of seasonal variation on long-term localization.

It also enables comparisons of vision, lidar, and radar-based mapping and localization pipelines.

Comparisons may include the robustness of individual sensing modalities to adverse weather or the

resistance to map degradation.

20
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Table 4.1: Related datasets. Lead: public leaderboard. Size: For perception datasets, size is given as

the number of annotated frames and the number of annotations (3D boxes). GT: ground truth pose

source. (A): automotive radar. (N): 360◦ Navtech radar. RTK (Real-Time Kinematic) uses a global

positioning system (GPS) base station and differential measurements to improve GPS accuracy.

RTX uses data from a global network of tracking stations to calculate corrections. This can be

used to achieve cm-level accuracy without a base station [12]. †Waymo’s Mid-Range, Short-Range

proprietary 3D lidar. ‡The Oxford Robotcar dataset contains one sequence with snow on the ground

but that sequence has no falling snow.

Name Lead Size Camera Lidar Radar GT Night Rain Snow Seasons

Perception

ApolloScape

[73]
✓

144k

70k boxes
2x9.2MP 1x64C ✗ GPS/IMU ✓ ✓ ✗ ✗

Argoverse

[39]
✓

22k

993k boxes

7x2.3MP

+2x5MP
2x32C ✗ GPS/IMU ✓ ✗ ✗ ✗

CADC

[120]
✗

7.5k

372k boxes
8x1.3MP 1x32C ✗ GPS/IMU + RTK ✗ ✗ ✓ ✗

KITTI (Object)

[61]
✓

15k

200k boxes
4x1.4MP 1x64C ✗ GPS/IMU + RTK ✗ ✗ ✗ ✗

nuScenes

[34]
✓

40k

1.4M boxes
6x1.4MP 1x32C ✓(A)

GPS/IMU

+ Lidar Loc
✓ ✓ ✗ ✗

RADIATE

[136]
✗

44k

200k boxes
2x0.25MP 1x32C ✓(N) GPS/IMU ✓ ✓ ✓ ✗

Waymo OD

[140]
✓

230k

12M boxes
5x2.5MP

1(MR†)

4(SR†)
✗ GPS/IMU ✓ ✓ ✗ ✗

Boreas-Objects-V1 ✓
7.1k

320k boxes
1x5MP 1x128C ✓(N) GPS/IMU ✗ ✗ ✗ ✗

Localization

KITTI (Odometry)

[61]
✓

39km

22 seqs
4x1.4MP 1x64C ✗ GPS/IMU + RTK ✗ ✗ ✗ ✗

Complex Urban

[74]
✗

451km

40 seqs
2x1.9MP

2x16C

+ 2x1C
✗ SLAM ✗ ✗ ✗ ✗

Oxford RobotCar

[97]
✗

1000km

100 seqs

3x1.2MP

+3x1MP

1x4C

+ 2x1C
✗ GPS/IMU + RTK ✓ ✓ ✗‡ ✓

Oxford Radar

[19]
✗

280km

32 seqs

3x1.2MP

+3x1MP

2x32C

+ 2x1C
✓(N) GPS/IMU + VO ✗ ✓ ✗ ✗

MulRan

[79]
✗

124km

12 seqs
✗ 1x64C ✓(N) SLAM ✗ ✗ ✗ ✗

Boreas ✓
350km

44 seqs
1x5MP 1x128C ✓(N) GPS/IMU + RTX ✓ ✓ ✓ ✓

4.1 Related Work

Many published autonomous driving datasets focus on perception, particularly 3D object detection

and semantic segmentation of images and lidar pointclouds. However, these datasets tend to lack
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variation in weather and season. Further, many of these datasets do not provide radar data. Thanks

to their longer wavelength, automotive radar sensors are robust to precipitation, dust, and fog. For

this reason, radar may play a key role in enabling autonomous vehicles to operate in adverse weather.

The Boreas dataset addresses these shortcomings by including a 360◦ scanning radar and data taken

during various weather conditions (sun, cloud, rain, night, snow) and seasons.

Another significant fraction of datasets focus on the problem of localization, usually odome-

try. The Boreas dataset includes a high-density lidar (128-beam) and a 360◦ scanning radar. The

combination of these sensors and the significant weather variation in this dataset enables detailed

comparisons between the localization capabilities of these two sensing modalities; this is something

that previous datasets could not support due to either not having a radar sensor or insufficient

weather variation. Furthermore, our post-processed ground-truth poses are sufficiently accurate to

support a public leaderboard for odometry and metric localization. Another dataset that focuses on

adverse weather is RADIATE [136]. Whereas RADIATE focuses on perception, our dataset focuses

on localization. Our dataset is larger and includes repeated traversals of a route with higher-quality

localization ground truth. Furthermore, our dataset provides higher-resolution radar, lidar, and

camera data. For a detailed comparison of related datasets, see Table 4.1.

4.2 Data Collection

Most of the Boreas dataset was collected by driving a repeated route near the University of Toronto

over one year. Figure 4.1 illustrates the seasonal variations observed over this time. Figure 4.2

compares camera, lidar, and radar measurements in three distinct weather conditions: falling snow,

rain, and sun. The primary repeated route will be referred to as the Glen Shields route and is

depicted in Figure 4.4. Additional routes were collected as a single standalone sequence or a small

number of repeated traversals. The Glen Shields route can be used for research related to long-term

localization, while the other routes allow for experiments that test for generalization to previously

unseen environments. The frequency of different metadata tags is displayed in Figure 4.5.
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Figure 4.1: This figure depicts one year of seasonal changes in the Boreas dataset. Each image rep-

resents a camera image that was taken on a different day. The sequences are sorted in chronological

order from left to right and top to bottom, starting in November, 2020 and finishing in November,

2021. Note that the sequences are not evenly spaced in time.

4.3 Sensors

Table 4.2 provides detailed specifications for the sensors used in this dataset. Figures 4.6 and 4.7

illustrate the placement of the different sensors on Boreas.
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4.4 Dataset Format

4.4.1 Data Organization

The Boreas dataset is divided into sequences, which include all sensor data and ground-truth poses

from a single drive. Sequences are identified by the date and time they were collected with the

format boreas-YYYY-MM-DD-HH-MM. The data for each sequence is organized as shown in Figure 4.8.

4.4.2 Timestamps

The name of each file corresponds to its timestamp. These timestamps are given as UNIX epoch times

in microseconds. All sensor timestamps were synchronized to the coordinated universal time (UTC)

time reported by the Applanix POS LV. The Velodyne lidar was synchronized using a standard

hardwired connection to the Applanix POS LV carrying a pulse-per-second (PPS) signal and NMEA

messages. The camera was configured to emit a square-wave pulse where the rising edge of each

pulse corresponds with the start of a new camera exposure event. The Applanix POS LV was then

configured to receive and timestamp these event signals. Camera timestamps were then corrected

in post using the recorded event times and exposure values: tcamera = tevent +
1
2exposure(tevent).

Figure 4.2: Weather variation in the Boreas dataset. Note that the lidar pointcloud becomes littered

with detections associated with snowflakes during falling snow and that the radar data remains

relatively unperturbed across the weather conditions.
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Figure 4.3: Time synchronization of sensors on Boreas.

The data-recording computer was synchronized to UTC in a fashion similar to the Velodyne, using

an RS-232 serial cable carrying a PPS signal and NMEA messages. The Navtech radar synchronizes

its local clock using network time protocol (NTP). Since the data-recording computer publishing

the NTP time is synchronized to UTC, the radar is thereby also synchronized to UTC.

For lidar pointclouds, the timestamp corresponds to the temporal middle of the scan. Each lidar

point also has a timestamp associated with it. These point times are given in seconds relative to

the middle of the scan. For radar scans, the timestamp also corresponds to the middle of the scan:

⌊M2 ⌋ − 1 where M is the number of azimuths. Each scanned radar azimuth is timestamped in the

same format as the filename, a UNIX epoch time. Figure 4.3 shows a diagram of our synchronization

setup.

4.4.3 File Formats

Camera images are rectified and anonymized by default. We use Anonymizer to blur license plates

and faces [148]. Images are stored in the commonly-used png format. Lidar pointclouds are stored

in a binary format to minimize storage requirements. Our devkit provides methods for working with

these binary formats in C++ and Python. Each point has six fields: [x, y, z, i, r, t] where (x, y, z)

is the position of the point with respect to the lidar, i is the intensity of the reflected infrared

signal, r is the ID of the laser that made the measurement, and t the point timestamp explained in

Section 4.4.2. Raw radar scans are stored as 2D polar images: M azimuths x R range bins. We follow

Oxford’s convention and embed timestamp and encoder information into the first eleven columns

(bytes) of each scanned azimuth. Each scanned azimuth is timestamped individually. Each range

bin stores the reflected radar power in dB half-steps. Each row of the polar image corresponds to a

scanned azimuth. The first eight columns / bytes of each azimuth / row represent a 64-bit integer,

the UNIX epoch timestamp of each azimuth in microseconds. The next two columns represent a

16-bit unsigned integer, the rotational encoder value. The next column is unused but preserved for

compatibility with the Oxford format. See [19] for further details on the Navtech sensor and this file

format. The polar radar scans can be readily converted into a top-down Cartesian representation,

as shown in Figure 4.2.



4.4. DATASET FORMAT 26

Figure 4.4: The Glen Shields route in Toronto, Ontario, Canada. Mapbox satellite data was used

to generate this figure.
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Figure 4.5: Frequency of metadata tags in the Boreas dataset. Snow: snow is on the ground,

snowing: it is actively snowing, alternate: a route other than Glen Shields.
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Figure 4.6: A close-up view of Boreas’ sensor configuration.

https://youtu.be/Cay6rSzeo1E
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Note that measurements are not synchronous as in other datasets (KITTI [61], CADC [120]),

which means that measurements with the same index do not have the same timestamp. However,

given the timestamps and relative pose information, different sensor measurements can still be fused

together. Lidar pointclouds are not motion-corrected, but we provide methods for removing motion

distortion in our devkit. Navtech radar scans suffer from motion distortion and Doppler distortion,

[28] and [29] provide methods to compensate for these effects.

Table 4.2: Sensor specifications. †Position accuracy changes over time as a function of the number of

visible satellites. †These numbers represent expected accuracy in nominal conditions. ‡Our Navtech

radar’s firmware was upgraded partway through the project, older sequences have a range resolution

of 0.0596m, and a range of 200m.

Sensor Specifications

Applanix • 2-4cm RTX accuracy (RMS)†

POS LV 220 • 200 Hz

Navtech CIR304-H • 0.0438m range solution‡

Radar • 0.9◦ horizontal resolution

• 250m range‡

• 4 Hz

FLIR Blackfly S • 2448x2048 (5 MP)

Camera • 81◦ HFOV x 71◦ VFOV

(BFS-U3-51S5C) • 10 Hz

Velodyne • 128 beams

Alpha-Prime • 0.1◦ vertical resolution (variable)

Lidar • 0.2◦ horizontal resolution

• 360◦ HFOV x 40◦ VFOV

• 300m range (10% reflectivity)

• ∼ 2.2M points/s

• 10 Hz
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Figure 4.7: Boreas sensor placement. Distances are given in metres. Measurements shown are

approximate. Refer to the calibrated extrinsics contained in the dataset for precise measurements.

boreas-YYYY-MM-DD-HH-MM

applanix
camera_poses.csv
imu.csv
gps_post_process.csv
lidar_poses.csv
radar_poses.csv

calib
camera0_intrinsics.yaml
P_camera.txt
T_sens1_sens2.txt

camera
<timestamp>.png

lidar
<timestamp>.bin

radar
<timestamp>.png

route.html
video.mp4

Figure 4.8: Data organization for a single Boreas sequence.

4.5 Ground-Truth Poses

Ground-truth poses are obtained by post-processing GNSS, IMU, and wheel encoder measurements,

along with corrections obtained from an RTX subscription using Applanix’s POSPac software suite.

Positions and velocities are given with respect to a fixed East-North-Up frame ENUref. The position



4.6. CALIBRATION 29

of ENUref is aligned with the first pose of the first sequence (boreas-2020-11-26-13-58), but the

orientation is defined to be tangential to the geoid as defined in the WGS-84 convention such that x

points East, y points North, and z points up. applanix/gps post process.csv contains the post-

processed ground truth in the Applanix frame at 200Hz for each sequence. We follow the convention

used by [16] for describing rotations and 4 × 4 homogeneous transformation matrices. Each sensor

frame’s ground truth is stored as a row in applanix/<sensor> poses.csv with the following format:

[t, x, y, z, vx, vy, vz, r, p, y, ωz, ωy, ωx] where t is the epoch timestamp in microseconds that matches

the filename, rsee = [x y z]T is the position of the sensor s with respect to ENUref as measured

in ENUref, v
se
e = [vx vy vz]

T is the velocity of the sensor with respect to ENUref, (r, p, y) are the

roll, pitch, and yaw angles, which can be converted into a rotation matrix between the sensor frame

and ENUref. ωse
s = [ωx ωy ωz]

T are the angular velocities of the sensor with respect to ENUref as

measured in the sensor frame. The pose of the sensor frame is then: Tes =


Ces rsee

0T 1


 ∈ SE(3)

where Ces = C1(roll)C2(pitch)C3(yaw) [16]. We also provide post-processed IMU measurements

in applanix/imu.csv at 200Hz in the Applanix frame, including linear acceleration and angular

velocity.

The residual root mean square (RMS) position error reported by Applanix is typically less than

5cm in nominal conditions but can be as high as 20-40cm in urban canyons. Figure 4.9 shows

the residual RMS errors resulting from the post-processing conducted by the Applanix POSPac

software. The estimated error can change depending on the visibility of satellites. Note that these

values represent global estimates, and that relative pose estimates are more accurate over short time

horizons.

4.6 Calibration

4.6.1 Camera Intrinsics

Camera intrinsics are calibrated using MATLAB’s camera calibrator [98] and are recorded in

camera0 intrinsics.yaml. Images under camera/ have already been rectified. The rectified camera

matrix P is stored in P camera.txt. To project lidar points onto a camera image, we use the pose

of the camera Tec at time tc and the pose of the lidar Tel at time tl to compute a transform from

the lidar frame to the camera frame given by Tcl = T−1
ec Tel. Each point in the lidar frame is then

transformed into the camera frame with xc = Tclxl, where xl = [x y z 1]T . The projected image

coordinates are then obtained using [16]:
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Figure 4.9: Post-processed RMS position, velocity, and orientation residual error vs. time reported

by Applanix’s POSPac software for a sequence collected on 2021-09-07. Note: an arc-minute is 1
60

of one degree.
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4.6.2 Sensor Extrinsics

The extrinsic calibration between the camera and lidar is obtained using MATLAB’s camera-to-lidar

calibrator [98]. The results of this calibration are illustrated in Figure 4.10. We use correlative scan

matching via the Fourier Mellin transform [41] to calibrate the radar-to-lidar rotation. Several lidar-

radar pairs were collected while the vehicle was stationary at different locations. The final rotation

estimate is obtained by averaging the results from several measurement pairs [27]. The translation

between the lidar and radar is obtained from the computer-assisted design (CAD) model of the roof

rack. The results of the radar-to-lidar calibration are shown in Figure 4.11. The extrinsics between

the lidar and the Applanix reference frame were obtained using Applanix’s in-house calibration tools.

Their tool outputs this relative transform as a by-product of a batch optimization aiming to estimate

the most likely vehicle path given a sequence of lidar pointclouds and post-processed GNSS/IMU

measurements. All extrinsic calibrations are provided as 4x4 homogeneous transformation matrices

under the calib/ folder.
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(a) Perspective View

(b) Coloured Pointcloud

Figure 4.10: Lidar points projected onto a camera image using the camera-lidar calibration. (a)

Lidar points are coloured based on their longitudinal distance from the vehicle. (b) Lidar points are

given RGB colour values based on their projected location on the camera image.

4.7 3D Annotations

We provide a set of 3D bounding box annotations for a subset of the Boreas dataset obtained in

sunny weather. We refer to this as the Boreas-Objects-V1 dataset. Annotations were obtained using

the Scale.ai data annotation service [132]. 7111 lidar frames were annotated at 5Hz, resulting in

326,180 unique 3D box annotations. Since the lidar data was collected at 10Hz, the annotations

may be interpolated between frames to double the number of annotated frames at a slightly lower

fidelity. The data is divided into 53 continuous scenes, each 20-70 seconds long. The scenes are

divided into 37 training scenes and 16 test scenes where the ground truth labels have been withheld

for the benchmark. Figure 4.12 displays two statistics for our annotations.
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Figure 4.11: Lidar measurements are drawn in red using a bird’s eye view projection with the ground

plane removed. Radar targets are first extracted from the raw radar data and then are drawn as

blue pixels. The two sensors have been aligned using the radar-to-lidar calibration.

We use the same folder structure as in Figure 4.8 but with an additional folder, labels/. Similar

to KITTI, annotations for a particular frame are stored in a text file with the same filename (times-

tamp) as the lidar frame. Each row of a label file corresponds to a different 3D box annotation with

the format: [uuid, type, dx, dy, dz, x, y, z, yaw]. The uuid is a unique ID for a particular object track

consistent across frames within a particular scene. The type is the semantic class for an object that

can be one of: {Car, Cyclist, Pedestrian, Misc}. The Car class includes coupes, sedans, SUVs, vans,

pick-up trucks, and ambulances. The Cyclist class includes people riding motorcycles but excludes

parked bicycles. The Misc class includes buses, industrial trucks, streetcars, and trains. Objects

are labelled within a rectangular area centred on the lidar +/- 75m in both dimensions. Bounding

box locations (x, y, z) and orientations (yaw) are given with respect to the lidar frame. (dx, dy, dz)

represent the bounding box dimensions (length, width, and height). Figure 4.13 shows an example

of our 3D object annotations for lidar, camera, and radar.
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Figure 4.12: 3D annotation statistics for Boreas-Objects-V1.

Figure 4.13: Examples of 3D annotations in the Boreas-Objects-V1 dataset.

4.8 Benchmark Metrics

We support online leaderboards for odometry, metric localization, and 3D object detection. For

odometry, we use the same metrics as the KITTI dataset [61]. The KITTI odometry metrics average

the relative position and orientation errors over every sub-sequence of length (100m, 200m, 300m,

..., 800m); this results in two metrics, a translational drift reported as a percentage of path length

and a rotational drift reported as degrees per metre travelled. For 3D object detection, we also defer

to the KITTI dataset by reporting the mean average precision (mAP) on a per-class basis. For cars,

a 70% overlap counts as a true positive, and for pedestrians, 50%. These ratios are used as they

are the same as those used in the KITTI dataset. We do not divide our dataset based on difficulty

levels.

Our metric localization leaderboard aims to benchmark mapping and localization pipelines. In

this scenario, we envision a situation where one or more repeated traversals of the Glen Shields route

are used to construct a map offline. Any data from the training sequences may be used to construct
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a map. Then, during a test sequence, the goal would be to perform metric localization between

the live sensor data and the pre-built map. Localization approaches may use temporal filtering

and can leverage the IMU if desired, but GNSS information will not be available. The goal of this

benchmark is to simulate localizing a vehicle in real time; as such, methods may not use future sensor

information in an acausal manner. Our goal is to support both global and relative map structures.

Only one of the training sequences will be specified as the map sequence used by the benchmark.

For 3D localization, users must choose either the lidar or the camera as the reference sensor. For 2D

localization, only the radar frames are used as a reference. For each (camera—lidar—radar) frame

s2 in the test sequence, users will specify the ID (timestamp) of the (camera—lidar—radar) frame

s1 in the map sequence that they are providing a relative pose with respect to: T̂s1,s2 . We then

compute root-mean-squared error (RMSE) values for the translation and rotation as follows:

Te = Ta,s1Ts1,s2T̂
−1
s1,s2T−1

a,s1 =


Ce re

0T 1


 , (4.3)

re =
[
xe ye ze

]T
, (4.4)

ϕe = arccos

(
tr Ce − 1

2

)
, (4.5)

where Ts1,s2 is the known ground truth pose, and Ta,s1 is the calibrated transform from the sensor

frame to the Applanix frame (x-right, y-forwards, z-up). xe, ye, ze are the lateral, longitudinal, and

vertical errors, respectively. We calculate RMSE values for xe, ye, ze, ϕe.

Users can also provide 6× 6 covariance matrices Σi for each localization estimate. A pose with

uncertainty is described as T = exp(ξ∧)T where ξ ∼ N (0,Σ) [16]. Given T̂i = T̂s1,s2(ti), we

compute an average consistency score c for the localization and covariance estimates where

ξi = ln
(
TiT̂

−1
i

)∨
=
[
ρ1 ρ2 ρ3 ψ1 ψ2 ψ3

]T
, (4.6)

c =

(
N∑

i=1

ξTi Σ
−1
i ξi

Ndim(ξi)

)1/2

. (4.7)

A consistency score close to 1 is ideal. c < 1 means that the method is over-confident, c > 1

means that the method is under-confident. Note that the above metrics will be averaged across the

test sequences.

4.9 Development Kit

As part of this dataset, we provide a development kit for new users to get started. The primary

purpose of the devkit is to act as a wrapper around the dataset to be used in Python; this allows

users to query frames and the associated ground truth for either odometry, localization, or 3D object

detection. We also provide convenient methods for removing motion distortion from pointclouds,

working with polar radar scans, and converting to and from Lie algebra and Lie group representa-

tions. The devkit also provides several ways to visualize sensor data. We also provide introductory

Jupyter notebooks tutorials, including projecting lidar onto a camera frame and visualizing 3D

boxes. Evaluation scripts used by our benchmark will be stored in the devkit, allowing users to
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validate their algorithms before submission to the benchmark. The development kit can be found

at boreas.utias.utoronto.ca.

4.10 Conclusions

In this chapter, we presented Boreas, a multi-season autonomous driving dataset with over 350km

of driving data collected over one year. The dataset provides a unique, high-quality sensor suite

including a Velodyne Alpha-Prime (128-beam) lidar, a 5MP camera, a 360◦ Navtech radar, and

accurate ground-truth poses obtained from an Applanix POS LV with an RTX subscription. We

also provide 3D object labels for a subset of the Boreas data obtained in sunny weather. The

primary purpose of this dataset is to enable further research into long-term localization across

seasons and adverse weather conditions. Our website provides an online leaderboard for odometry,

metric localization, and 3D object detection. Given this dataset, we can now focus on some of the

challenges inherent to working with spinning radar, such as motion distortion and Doppler effects.

https://www.boreas.utias.utoronto.ca


Chapter 5

Motion Distortion and Doppler

Effects in Spinning Radar

Navigation

Prior works made tremendous progress in applying the Navtech radar to odometry [36, 37, 5, 20,

18, 114] and place recognition [131, 58, 79]. However, most of these works made the simplifying

assumption that a radar scan is collected at a single instant in time. In reality, the sensor is rotating

while the vehicle is moving, causing the radar scan to be distorted in a cork-screw fashion. Range

measurements of the Navtech radar are also impacted by Doppler frequency shifts resulting from

the relative velocity between the sensor and its surroundings. Both distortion effects become more

pronounced as the speed of the ego-vehicle increases. Most automotive radar sensors are unaffected

by either distortion effect. However, the Navtech radar provides 360◦ coverage with accurate range

and azimuth resolution, making it an appealing navigation sensor.

In this chapter, we quantify motion distortion’s effect on radar-based navigation. We also revisit

a lightweight estimator, Motion-Compensated RANSAC [9], which can recover the motion between

a pair of scans and remove the distortion. Motion distortion and Doppler distortion were previously

described by Rouveure et al. [129] who provided a method for compensating for these effects given

proprioceptive sensors measuring linear and angular velocity such as a wheel odometer and a gyro-

scope. Doppler distortion was also briefly acknowledged in [36]. Our work is the first to quantify the

impact on radar-based navigation and to provide a method to compensate for it without requiring

an auxilliary sensor.

As our primary experiment to demonstrate the effects of motion distortion, we perform radar

odometry on the Oxford Radar RobotCar Dataset [19]. As an additional experiment, we perform

metric localization using our own data-taking platform, shown in Figure 1.1. Qualitative results of

both distortion effects are also provided. Rather than focusing on achieving state-of-the-art navi-

gation results, this chapter aims to show that motion distortion and Doppler effects are significant

and can be compensated for with relative ease. Motion distortion has been treated in the literature

through the use of continuous-time trajectory estimation [9, 15, 11, 10, 57] for lidars [22] and rolling-

shutter cameras [66], but these tools are yet to be applied to spinning radar. This chapter focuses

36
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(a) Feature Extraction (b) Data Association (c) MC-RANSAC Inliers (d) MC-RANSAC Inliers
Rotating

Figure 5.1: This figure illustrates our feature extraction and matching process. (a) displays our
raw extracted features. (b) displays the output of our ORB-descriptor-based data association. (c)
and (d) show the inlier set resulting from motion-compensated RANSAC while driving straight and
rotating.

on the problem of motion distortion and Doppler effects using the Navtech radar sensor, which has

not received attention in these prior works.

5.1 Methodology

5.1.1 Feature Extraction

Feature detection in radar data is more challenging than in lidar or vision due to its higher noise

floor and lower spatial resolution. Constant False Alarm Rate (CFAR) [126] is a simple feature

detector popular for radar. CFAR is designed to estimate the local noise floor and capture relative

peaks in the radar data. One-dimensional CFAR can be applied to Navtech data by convolving each

azimuth with a sliding window detector.

As discussed in [36], CFAR produces many redundant keypoints, is difficult to tune, and produces

false positives due to the noise artifacts present in radar. Instead, Cen et al. [36] proposed a detector

that estimates a signal’s noise statistics and then scales the power at each range by the probability

that it is a real detection. In [37], Cen et al. proposed an alternative detector that identifies

continuous regions of the scan with high intensity and low gradients. Keypoints are then extracted

by locating the middle of each continuous region. We will refer to these detectors as Cen2018 and

Cen2019, respectively.

The original formulations of these detectors did not lend themselves to real-time operation. As

such, we made several modifications to improve the runtime. For Cen2018, we use a Gaussian filter

instead of a binomial filter, and we calculate the mean of each azimuth instead of using a median

filter. We do not remove multipath reflections.

Cen2019 was designed to be easier to tune and have fewer redundant keypoints. However, we

found that by adjusting the probability threshold of detections, Cen2018 obtained better odometry

performance when combined with our RANSAC-based scan matching. Based on these preliminary

tests, we concluded that Cen2018 was the best choice for our experiments. Figure 5.1(a) shows

Cen2018 features plotted on top of a Cartesian radar image.

We convert the raw radar scans output by the Navtech sensor, which are in polar form, into
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Cartesian form. We then calculate an ORB descriptor [130] for each keypoint on the Cartesian image.

There may be better keypoint descriptors for radar data, such as the learned feature descriptors

employed in [18]. However, ORB descriptors are quick to implement, rotationally invariant, and

resistant to noise.

For data association, we perform brute-force matching of ORB descriptors. We then apply a

nearest-neighbor distance ratio test [93] to remove false matches. The remaining matches are sent

to our RANSAC-based estimators. Figure 5.1(b) shows the result of the initial data association.

Note that there are several outliers. Figure 5.1(c),(d) shows the remaining inliers after performing

RANSAC.

5.1.2 Motion Distortion

The output of data association is not perfect and often contains outliers. As a result, it is common to

employ an additional outlier rejection scheme during estimation. In this chapter, we use RANSAC

[54] to find an outlier-free set that can then be used to estimate the desired transform. If we

assume that two radar scans are taken at times t̄1 and t̄2, then the transformation between them

can be estimated directly using the closed-form solution to aligning two 3D point sets with known

correspondences by Arun et al. [13].

During each iteration of RANSAC, a random subset of size S is drawn from the initial matches,

and a candidate transform is generated. The algorithm terminates if the number of inliers exceeds

the desired threshold or a maximum number of iterations is reached. Radar scans are 2D, so we

use S = 2. The estimation process is repeated on the largest inlier set to obtain a more accurate

transform. We will refer to this approach as rigid RANSAC.

Our derivation of motion-compensated RANSAC follows closely from [9]. However, we are apply-

ing the algorithm to a scanning radar in 2D instead of a two-axis scanning lidar in 3D. Furthermore,

our derivation is shorter and uses updated notation from [16].

The principal idea behind motion-compensated RANSAC is to estimate the velocity of the sensor

instead of estimating a transformation. We make the simplifying assumption that the linear and

angular velocity between a pair of scans is constant. To account for motion distortion, we remove

the assumption that radar scans are taken at a single instant in time. Data association produces

two sets of corresponding measurements, ym,1 and ym,2, where m = 1...M . Each pair of features, m,

is extracted from sequential radar frames 1 and 2 at times tm,1 and tm,2. The temporal difference

between a pair of measurements is ∆tm := tm,2 − tm,1. The generative model for measurements is

given as

ym,1 := f(Ts(tm,1)pm) + nm,1, (5.1)

ym,2 := f(Ts(tm,2)pm) + nm,2,

where f(·) is a nonlinear transformation from Cartesian to cylindrical coordinates and Ts(t) is a 4

x 4 homogeneous transformation matrix representing the pose of the sensor frame F
⃗
s with respect

to the inertial frame F
⃗
i at time t. pm is the original landmark location in the inertial frame. We

assume that each measurement is corrupted by zero-mean Gaussian noise: nm,1 ∼ N (0,Rm,1). The



5.1. METHODOLOGY 39

y

x

F
⃗
s

P

ϕ

v

ω

u

Figure 5.2: This diagram illustrates the relationship between the ego-motion (v, ω) and the radial
velocity u.

transformation between a pair of measurements is defined as

Tm := Ts(tm,2)Ts(tm,1)
−1. (5.2)

To obtain our objective function, we convert feature locations from polar coordinates into local

Cartesian coordinates:

pm,2 = f−1(ym,2), (5.3)

pm,1 = f−1(ym,1). (5.4)

We then use the local transformation Tm to create a pseudomeasurement p̂m,2,

p̂m,2 = Tmpm,1. (5.5)

The error is then defined in the sensor coordinates and summed over each pair of measurements to

obtain our objective function:

em = pm,2 − p̂m,2, (5.6)

J(ϖ) :=
1

2

M∑

m=1

eTmR−1
cart,mem. (5.7)

Given our constant-velocity assumption, we can convert from a velocity vector ϖ into a transfor-

mation matrix using the following formula:

T = exp(∆tϖ∧). (5.8)

In order to optimize our objective function J(ϖ), we first need to derive the relationship between

Tm and ϖ. The velocity vector ϖ can be written as the sum of a nominal velocity ϖ and a

small perturbation δϖ. This lets us rewrite the transformation Tm as the product of a nominal

transformation Tm and a small perturbation δTm:

Tm = exp(∆tm(ϖ + δϖ)∧) = δTmTm. (5.9)

Let gm(ϖ) := Tmpm,1, which is nonlinear due to the transformation. Our goal is to linearize gm(ϖ)
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Figure 5.3: This figure depicts the sawtooth modulation pattern of an FMCW radar. The transmit-
ted signal is blue and the received signal is red.

about a nominal operating point. We can rewrite gm(ϖ) as:

gm(ϖ) = exp(∆tmδϖ
∧)Tmpm,1,

≈ (1 +∆tmδϖ
∧)Tmpm,1, (5.10)

where we use an approximation for small pose changes. We swap the order of operations using the

(·)⊙ operator [16]:

gm(ϖ) = Tmpm,1 +∆tm(Tmpm,1)
⊙δϖ

= gm + Gmδϖ, (5.11)

We can now rewrite the error function from (5.6):

em ≈ pm,2 − gm −Gmδϖ

= em −Gmδϖ. (5.12)

By inserting this equation for the error function into the objective function from (5.7), and taking

the derivative with respect to the perturbation and setting it to zero, ∂J(ϖ)
∂δϖT = 0, we obtain the

optimal update:

δϖ⋆ =

(∑

m

GT
mR−1

cart,mGm

)−1(∑

m

GT
mR−1

cart,mem

)
, (5.13)

where Rcart,m = HmRm,2HT
m is the covariance in the local Cartesian frame, h(·) = f−1(·), and

Hm = ∂h
∂x

∣∣
gm

. The optimal perturbation δϖ⋆ is used in a Gauss-Newton optimization scheme and

the process repeats until ϖ converges.

This method allows us to estimate the linear and angular velocity between radar scans directly

while accounting for motion distortion. These velocity estimates can then be used to remove the

motion distortion from a measurement relative to a reference time using (5.8). MC-RANSAC is

intended to be a lightweight method for showcasing the effects of motion distortion. A significant

improvement to this pipeline would be to use the inliers of MC-RANSAC as an input to another
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estimator, such as [10]. The inliers could also be used for mapping and localization or SLAM.

5.1.3 Doppler Correction

To compensate for the Doppler effects, we need to know the linear velocity of the sensor v; this can

either be obtained from a GPS/IMU or using the velocity estimated by MC-RANSAC. The motion

of the sensor results in a relative velocity between the sensor and its surrounding environment as

depicted Figure 5.2. This relative velocity causes the received frequency to be altered according to

the Doppler effect. Note that only the radial component of the velocity u = vx cos(ϕ) + vy sin(ϕ)

will result in a Doppler shift. The Radar Handbook by Skolnik [138] provides an expression for the

Doppler frequency:

fd =
2u

λ
, (5.14)

where λ is the wavelength of the signal. Note that for an object moving towards the radar (u > 0)

or vice versa, the Doppler frequency will be positive, resulting in a higher received frequency. For

FMCW radar such as the Navtech sensor, the distance to a target is determined by measuring the

change in frequency between the received signal and the carrier wave ∆f :

r =
c∆f

2(df/dt)
, (5.15)

where df/dt is the slope of the modulation pattern used by the carrier wave and c is the speed of light.

FMCW radar requires two measurements to disentangle the frequency shift resulting from range and

relative velocity. Since the Navtech sensor scans each azimuth only once, the measured frequency

shift is the combination of both the range difference and Doppler frequency. From Figure 5.3, we

can see that a positive Doppler frequency fd will increase the received frequency and reduce the

observed frequency difference ∆f . Thus, a positive Doppler frequency will decrease the apparent

range of a target.

The Navtech radar operates between 76 GHz and 77 GHz, resulting in a bandwidth of 1 GHz.

Navtech states that they use a sawtooth modulation pattern. Given 1600 measurements per second

and assuming the entire bandwidth is used for each measurement, df/dt ≈ 1.6× 1012.

Hence, if the forward velocity of the sensor is 1 m/s, a target positioned along the x-axis (forward)

of the sensor would experience a Doppler frequency shift of 510 Hz using (5.14). This increase in

the frequency of the received signal would decrease the apparent range to the target by 4.8 cm

using (5.15). Naturally, this effect becomes more pronounced as the velocity increases.

Let β = ft/(df/dt) where ft is the transmission frequency (ft ≈ 76.5 GHz). To correct for the

Doppler distortion, the range of each target needs to be corrected by the following factor:

∆rcorr = β(vx cos(ϕ) + vy sin(ϕ)). (5.16)

We use this simple correction in all our experiments with the velocity (vx, vy) coming from our

motion estimator.
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Table 5.1: Radar Odometry Results. *Odometry results from [18].

Method Trans. Error (%) % Improve (Trans.) Rot. Error (deg/m) % Improve (Rot.)

RO Cen* [36] 3.7168 - 0.0095 -

Rigid RANSAC 3.9777 -7.02 0.0141 -48.42

MC-RANSAC 3.6042 3.03 0.0119 -25.26

MC-RANSAC +

Doppler
3.5847 3.56 0.0118 -24.21

5.2 Experimental Results

To answer the question posed by this chapter, we have devised two experiments. The first is to

compare the performance of rigid RANSAC and MC-RANSAC (with or without Doppler correc-

tions) on radar odometry using the Oxford Radar RobotCar Dataset [19]. The second experiment

demonstrates the impact of both distortion effects on localization using our data. We also provide

qualitative results demonstrating both distortion effects.

The Navtech radar is a frequency-modulated continuous wave (FMCW) radar. The sensor out-

puts the received signal power at each range bin for each azimuth. The sensor spins at 4 Hz and

provides 400 measurements per rotation with a 163 m range, 4.32 cm range resolution, 1.8◦ horizontal

beamwidth, and 0.9◦ azimuth resolution.

The Oxford Radar RobotCar Dataset is an autonomous driving dataset that includes two 32-

beam lidars, six cameras, a GPS/IMU, and the Navtech sensor. The dataset includes thirty-two

traversals equating to 280 km of driving in total.

5.2.1 Odometry

Our goal is to compare two estimators whose main difference is the compensation of distortion effects.

We use the same number of maximum iterations (100) and the same inlier threshold (0.35 m) for

both rigid RANSAC and MC-RANSAC. We also fix the random seed before running either estimator

to ensure that the differences in performance are not due to the random selection of subsets.

For feature extraction, we use the same setup parameters for Cen2018 as in [36] except that we

use a higher probability threshold, zq = 3.0, and a Gaussian filter with σ = 17 range bins. We

convert polar radar scans into a Cartesian image with 0.2592 m per pixel and a width of 964 pixels

(250 m). We use a patch size of 21 pixels (5.4 m) for ORB descriptors. For data association, we use

a nearest-neighbor distance ratio of 0.8. For Doppler corrections, we use β = 0.049. For each radar

scan, extracting Cen2018 features takes approximately 35 ms. Rigid RANSAC runs in 1-2 ms and

MC-RANSAC in 20-50 ms. Calculating orb descriptors takes 5 ms, and brute-force matching takes

15 ms. These processing times were obtained on a quad-core Intel Xeon E3-1505M 3.0 GHz CPU

with 32 GB of RAM.

Odometry results are obtained by compounding the frame-to-frame scan matching results. Note

that we do not use a motion prior or perform additional smoothing on the odometry in order to

focus on frame-to-frame matching performance. Three sequences were used for parameter tuning.

The remaining 29 sequences are used to provide test results.

Table 5.1 summarizes the results of the odometry experiment. We use KITTI-style odometry
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Figure 5.4: This figure provides our KITTI-style odometry results on the Oxford dataset. We
provide our translational and rotational drift as a function of path length and speed. MC-RANSAC:
motion-compensated RANSAC, MC+DOPP: motion and distortion compensated.

metrics [61] to quantify the translational and rotational drift as is done in [18]. The metrics are

obtained by averaging the translational and rotational drifts for all subsequences of lengths (100, 200,

..., 800) metres. The table shows that motion-compensated RANSAC results in a 9.4% reduction in

translational drift and a 15.6% reduction in rotational drift; this shows that compensating for motion

distortion has a modest impact on radar odometry. The table also indicates that Doppler effects have

a negligible impact on odometry. Our interpretation is that Doppler distortion impacts sequential

radar scans in a similar manner, such that scan registration is minimally impacted. Notably, a

large fraction of the Oxford dataset was collected at low speeds (0-5 m/s); this causes the motion

distortion and Doppler effects to be less noticeable.

Figure 5.4 depicts each method’s translational and rotational drift as a function of path length and

speed. Motion compensation improves the odometry performance across most cases. Interestingly,

MC-RANSAC does not increase in error as much as rigid RANSAC as the path length increases.

Naturally, we expect rigid RANSAC to become much worse than MC-RANSAC at higher speeds.

However, we observe that as the speed of the vehicle increases, the motion tends to become more

linear (as in driving straight with less turns). When the vehicle’s motion is mostly linear, the motion

distortion does not impact rigid RANSAC as much. Figure 5.5 compares the odometry output of

both estimators against ground truth. The results further illustrate that compensating for motion

distortion improves performance.

5.2.2 Localization

This experiment aims to demonstrate the impact of motion distortion and Doppler effects on metric

localization. Unlike the previous experiment, we localize between scans taken while driving in

opposite directions. While most of the Oxford Radar dataset was captured at low speeds (0-10

m/s), in this experiment, we only used radar frames where the ego-vehicle’s speed was above 10

m/s. For this experiment, we use our data-taking platform, shown in Figure 1.1, which includes a
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Figure 5.5: This figure highlights the impact that motion distortion can have on the accuracy of
radar-based odometry. Note that motion-compensated RANSAC (MC-RANSAC) is much closer to
the ground truth.

Velodyne Alpha-Prime lidar, Navtech CIR204-H radar, Blackfly S camera, and an Applanix POSLV

GNSS.

Ground truth for this experiment was obtained from a 10 km drive using post-processed GNSS

data provided by Applanix, which has an accuracy of 12 cm. Radar scans were initially matched

by identifying pairs of proximal scans on the outgoing and return trips based on GPS data. The

Navtech timestamps were synchronized to GPS time for an accurate position estimate.

Our first observation was that localizing against a drive in reverse is harder than odometry where

scans are matched with roughly the same orientation. When viewed from different angles, objects

have different radar cross-sections, which causes them to appear differently. Consequently, radar

scans may lose or gain features when pointed in the opposite direction. This change in the radar

scan’s appearance prevented ORB features from matching.

As a replacement for ORB descriptors, we turned to the Radial Statistics Descriptor (RSD)

described in [36], [37]. Instead of calculating descriptors based on the Cartesian radar image, RSD

operates on a binary Cartesian grid derived from the detected feature locations. This grid can be

thought of as a radar target occupancy grid. For each keypoint, RSD divides the binary grid into

M azimuth slices and N range bins centred around the keypoint. The number of keypoints (pixels)

in each azimuth slice and range bin is counted to create two histograms. In [37], a fast Fourier

transform of the azimuth histogram is concatenated with a normalized range histogram to form the

final descriptor.

In our experiment, we found that the range histogram was sufficient on its own, with the azimuth

histogram offering only a minor improvement. It should be noted that these descriptors are more

expensive to compute (60 ms) and match (30 ms) than ORB descriptors. These processing times

were obtained using the same hardware as in Section 5.2.1.

The results of our localization experiment are summarized in Table 5.2. In each case, we use our

RANSAC estimator from Section 6.3. The results in the table are obtained by calculating the median

translation and rotation error. Compensating for motion distortion results in a 41.7% reduction in

translation error. Compensating for Doppler effects results in a further 67.7% reduction in translation

error. Together, compensating for both effects results in a 81.2% reduction in translation error. Note

that the scan-to-scan translation error is larger than in the odometry experiment due to the increased

difficulty of localizing against a reverse drive. Figure 5.6 depicts a histogram of the localization errors



5.2. EXPERIMENTAL RESULTS 45

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Translation Error (m)

0

50

100

150

200

250

N
u

m
b

e
r 

o
f 

R
a
d

a
r 

P
a
ir

s

RIGID

MC

MC+Dopp

Figure 5.6: By compensating for motion distortion alone (MC) or both motion and Doppler distortion
(MC + DOPP), metric localization improves.

Table 5.2: MC-RANSAC Metric Localization Results

Method Trans. Error (m) Rot. Error (deg)

No Compensation 2.2976 0.7110

Motion-Compensated 1.3403 1.0766

Motion-Compensated +

Doppler-Compensated
0.4327 0.9984

in this experiment.

5.2.3 Qualitative Results

In this section, we present qualitative results of removing motion distortion and Doppler effects from

radar data. In Figure 5.7, we have plotted points from our Velodyne lidar in red and extracted radar

targets in green. In this example, the ego-vehicle is driving at 15 m/s with vehicles approaching

from the opposite direction on the left-hand side of the road. To directly compare lidar and radar

measurements, we have aligned each sensor’s output spatially and temporally using post-processed

GPS data and timestamps. Motion distortion is removed from the lidar points before the comparison

is made. We use the lidar measurements to visualize the distortion in the radar scan. Figure 5.7(a)

shows what the original alignment looks like when the radar scan is distorted. Figure 5.7(b) shows

what the alignment looks like after compensating for motion distortion and Doppler effects. Note

that static objects such as trees align much better with the lidar data in Figure 5.7(b). It is interesting

that some moving vehicles (boxed in blue) are less aligned after removing distortion. Here, we do

not know the other vehicles’ velocities and, therefore, the true relative velocity with respect to the

ego-vehicle. These results indicate that additional velocity information for each object is required

to align dynamic objects. We leave this problem for future work.
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5.3 Conclusions

In our odometry experiment, compensating for motion distortion had a modest impact of reducing

translational drift by 9.4%. Compensating for Doppler effects had a negligible effect on odometry

performance. We postulate that Doppler effects are negligible for odometry because their effects are

quite similar from one frame to the next. In our localization experiment, we observed that com-

pensating for motion distortion and Doppler effects reduced translation error by 41.7% and 67.7%,

respectively, with a combined reduction of 81.2%. We also provided qualitative results demonstrat-

ing the impact of both distortion effects. We noted that each dynamic object’s velocity is required

to properly undistort points associated with dynamic objects. In summary, the Doppler effect can

be safely ignored for the radar odometry problem, but motion distortion should be accounted for to

achieve the best results. For metric localization, especially for localizing in the opposite direction

from which the map was built, both motion distortion and Doppler effects need to be compensated.

Accounting for these effects is computationally cheap but requires an accurate estimate of the linear

and angular velocity of the sensor.

In our experiments, we observed that the performance is largely limited by the front-end feature

detection and matching performance. It is challenging to tune handcrafted features that generalize

across all scenes. In the following chapter, we investigate an approach where features are learned

in a data-driven fashion using a deep learning front-end. MC-RANSAC also uses a simple motion-

compensating estimator. In subsequent chapters, we will employ a more sophisticated estimator,

STEAM, based on the work by Anderson and Barfoot [10].

(a) Distorted (b) Motion and Doppler Distortion Removed

Figure 5.7: Lidar points are shown in red, radar targets are shown in green, vehicles are boxed in

blue. (a) Both motion distortion and Doppler effects are present in the radar scan. (b) Motion

distortion and Doppler effects have been removed from the radar data. Note that static objects

(highlighted by yellow arrows) align much better in (b). Some of the moving vehicles (boxed in

blue) are less aligned after removing distortion. Here we do not know the other vehicles’ velocities

and therefore the true relative velocity with respect to the ego-vehicle.



Chapter 6

Combining Probabilistic

Estimation and Self-Supervised

Feature Learning

Previous approaches to radar odometry have either relied on hand-crafted feature extraction [36, 37,

5, 6, 28, 70, 3, 85], correlative scan matching [114, 20], or a supervised learning algorithm [20, 18] that

relies on trajectory groundtruth. Barnes and Posner [18] previously showed that learned features

have the potential to outperform hand-crafted features. To address these limitations, we propose a

method to learn features directly from radar data without relying on groundtruth pose information.

This chapter presents a self-supervised radar odometry pipeline that approaches the state of the

art as reported on the Oxford Radar RobotCar Dataset [19]. Our network parameters are trained

using only the onboard radar sensor, alleviating the need for an accurate groundtruth trajectory.

To our knowledge, this is the first example of a self-supervised radar odometry pipeline. We show

additional experimental results on 100 km of radar data from the Boreas dataset. We also compare

radar odometry performance in ideal and harsh weather conditions.

Our approach is based on the Exactly Sparse Gaussian Variational Inference (ESGVI) parameter

learning framework of Barfoot et al. [17], a nonlinear batch state estimation framework that provides

a family of scalable estimators from a variational objective. Model parameters can be optimized

jointly with the state using a data likelihood objective. Yoon et al. [160] applied the framework to

train a deep network, demonstrating feature learning for lidar odometry with only onboard lidar data.

We extend their methodology and apply it to radar odometry. Our approach is modular, enabling

the use of modern deep-learning tools and classical estimators with minimal interface requirements.

Importantly, our method does not require the estimator to be differentiable, a limitation of some

other learning-based methods [20].

The hybridization of deep learning and probabilistic state estimation allows us to achieve the

best of both worlds. Deep learning can be leveraged to process rich sensor data, while classical

estimators can be used to deal with probabilities and out-of-distribution samples through outlier

rejection schemes, motion priors, and other estimation tools. Furthermore, classical estimators

make incorporating additional sensors and constraints relatively straightforward.

47
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6.1 Related Work

Prior works in radar odometry relied on hand-crafted feature detectors and descriptors [36] or cum-

bersome phase correlation techniques [20]. Barnes and Posner [18] showed that learned features can

result in superior radar odometry performance. At the time of publishing, their work represented

the state of the art for point-based radar odometry. Despite these results, their approach requires

the estimator to be differentiable, and they require groundtruth poses as a supervisory signal. Our

approach does not suffer from either of these drawbacks.

Barfoot et al. [17] presented the ESGVI framework and showed that model parameters can be

jointly optimized along with the state using an Expectation-Maximization (EM) iterative optimiza-

tion scheme on a data likelihood objective. In the E-step, model parameters are held fixed, and the

state is optimized. In the M-step, the state distribution is held fixed, and the model parameters are

optimized. This idea originates from a line of work that applied EM for linear system identification

[137, 62]. Ghahramani and Roweis [63] extended the idea to simple nonlinearities approximated with

Gaussian radial basis functions. Wong et al. [154] first applied EM under the ESGVI framework

to large-scale trajectory estimation by learning noise models robust to outliers. Yoon et al. [160]

demonstrated the first application of ESGVI parameter learning to a deep network, where lidar

features for odometry were learned without groundtruth. We apply their methodology and adapt it

for radar odometry.

Our framework shares similarities with the Variational Autoencoder (VAE) [80] framework, as

both start from a data likelihood objective and optimize the Evidence Lower Bound (ELBO). In

contrast to the VAE, which approximates latent state inference with a network, our framework

applies classic state estimation (e.g., factor graph optimization). Extensions to the VAE for problems

with graphical structure exist [76], but our method makes use of existing estimation tools familiar

to the robotics field. Most similar to our framework is the work of DeTone et al. [50]. They present

a self-supervised visual odometry framework with a deep network frontend trained according to a

bundle adjustment backend. Compared to their framework, ours is based on a probabilistic objective

and can handle uncertainty in the posterior estimates.

6.2 Exactly Sparse Gaussian Variational Inference Parame-

ter Learning

This section summarizes parameter learning in the ESGVI framework as presented in prior work

[17, 154, 160]. The loss function is the negative log-likelihood of the observed data,

L = − ln p(z|θ), (6.1)

where z is the data (e.g., radar measurements), and θ are the parameters (e.g., network parameters).

We apply the usual EM1 decomposition after introducing the latent trajectory, x, which is written

1While the acronym stays the same, we work with the negative log-likelihood and are technically applying Expec-
tation Minimization.
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Figure 6.1: This figure depicts the factor graph of our radar odometry pipeline. xk and zk are
defined as the state of the vehicle and the radar scan at time tk, respectively. The vehicle trajectory
is estimated over a sliding window of w frames, where w = 3 in this figure. The deep network
parameters are denoted by θ. The output of the network is a set of feature locations (xi, yi), their
associated inverse covariance matrices, Wi, and their learned descriptors, di, which are together
represented by stars in the diagram. These features are then matched between pairs of frames using
a differentiable softmax matcher. The matched features are then used to form measurement factors,
ϕm. A white-noise-on-acceleration motion prior is applied to create prior factors, ϕp.

as

L =
∫ ∞

−∞
q(x) ln

(
p(x|z,θ)
q(x)

)
dx︸ ︷︷ ︸

≤ 0

−
∫ ∞

−∞
q(x) ln

(
p(x, z|θ)
q(x)

)
dx︸ ︷︷ ︸

upper bound

, (6.2)

where we define our posterior approximation as a multivariate Gaussian distribution, q(x) = N (µ,Σ).

We work with the upper bound term, commonly referred to as the (negative) ELBO. Applying

the definition of entropy of a Gaussian and dropping constants, we can rewrite the term as the

ESGVI loss functional,

V (q|θ) = Eq[ϕ(x, z|θ)] +
1

2
ln
(
|Σ−1|

)
, (6.3)

where E[·] is the expectation operator, | · | is the matrix determinant, and we define the joint factor

ϕ(x, z|θ) = − ln p(x, z|θ).
We apply Generalized EM (GEM) [104], a variation of EM that does not run the M-step to

completion (convergence), to gradually optimize the data likelihood, L . In the E-step, we hold θ

fixed and optimize V (q|θ) for q(x). In the M-step, we hold q(x) fixed and optimize V (q|θ) for θ.

When the expectation over the posterior, q(x), is approximated at the mean of the Gaussian, the

E-step is the familiar Maximum A Posteriori (MAP) estimator [17].
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6.3 Self-Supervised Deep Learning for Radar Odometry

6.3.1 Problem Definition

This subsection summarizes the sliding-window odometry formulation presented by Yoon et al. [160].

The state we estimate at time tk is xk = {Tk,0,ϖk}, where the pose Tk,0 ∈ SE(3) is a transformation

between frames at tk and t0, and ϖk ∈ R6 is the body-centric velocity2. We optimize a sliding

window of w frames, tτ , . . . , tτ+w−1, where each state has a corresponding radar scan. The first

pose of the window, Tτ,0, is locked (not optimized) and treated as the reference frame for keypoint

matching.

Our joint factor, ϕ(x, z|θ), splits into motion prior factors and measurement factors. Figure 6.1

shows an example factor graph illustration. We write ϕ(x, z|θ) as

τ+w−1∑

k=τ+1

(
ϕp(xk−1, xk) +

Lk∑

ℓ=1

ϕm(zℓk, r
ℓ
τ |xτ , xk,θ)

)
, (6.4)

where zℓk is the ℓth keypoint measurement in frame k, which has a total of Lk keypoints, and

rℓτ is its matched point from frame τ . For the motion prior factors, ϕp, we apply a white-noise-

on-acceleration prior as presented by Anderson and Barfoot [10], which is defined in (3.17). The

measurement factors, ϕm, are of the form:

ϕm(zℓk, r
ℓ
τ |xτ , xk,θ) =

1

2
eℓk

T
Wℓ

keℓk − ln
∣∣Wℓ

k

∣∣ , (6.5)

eℓk = D
(
zℓk − Tk,0T0,τrℓkτ

)
, (6.6)

where we use the log-likelihood of a Gaussian as the factor, and D is a 3 × 4 constant projection

matrix that removes the homogeneous element. The homogenous keypoint, zℓk, its point match,

rℓkτ , and its inverse covariance (weight) matrix, Wℓ
k, are quantities that depend on the network

parameters, θ.

2Despite the radar being a 2D sensor, we formulate our problem in SE(3) to be compatible with other 3D sensor
modalities.
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Figure 6.2: We based our network on the architecture presented by Barnes and Posner [18]. The

network outputs detector scores for keypoint detection, weight scores predicting keypoint uncertainty,

and descriptors for matching. The weight scores are composed into 2×2 inverse covariance matrices

(see (6.9), the corresponding image is the log-determinant). Descriptors are the concatenation of all

encoder layer outputs after resizing via bilinear interpolation. The encoder and decoder layers are

a double application of a 3× 3 convolution, batch normalization, and ReLU nonlinearity. The layer

sizes vary by a factor of 2 through max-pooling (encoder) and bilinear upsampling (decoder). Note

that the output size is the same as the input and is visually smaller in the interest of space. An

output 1 × 1 convolution is applied for the detector and weight scores. The detector score map is

partitioned into uniform cells, where a spatial softmax and weighted summation of coordinates are

applied to yield a keypoint for each cell. Corresponding weights and descriptors are obtained via

bilinear sampling.

6.3.2 Network

Our network is based on the architecture presented by Barnes and Posner [18], which is a U-Net

[127] style convolutional encoder-multi-decoder architecture to output radar keypoints, weights, and

descriptors. The input to the network is a 2D Cartesian projection of the polar radar data. Example

radar scans are shown at the top of Figure 6.1.

An illustration of our network architecture is shown in Figure 6.2. A dense descriptor map is

created by resizing the output of each encoder block before concatenation into a 248-channel tensor.

In our approach, the weight score is a 3-channel tensor, and the detector score is a 1-channel tensor.

The detector score tensor is then partitioned into (N = 400) equally sized cells, with each producing

a candidate 2D keypoint. A spatial softmax within each cell, followed by a weighted summation of

pixel coordinates, produces the image-space keypoint coordinates of each cell. The corresponding

descriptor and weight score vectors are bilinearly sampled using the keypoint coordinates. The

image coordinates are converted to metric coordinates using the known m/pixel resolution. Finally,

we formulate the 3D homogenous keypoint, zℓk, by appending a 0 as a third coordinate and a 1 as

the fourth homogenous element.

Our detector produces a candidate keypoint for each square cell in a uniformly partitioned radar

image; this leads to candidate keypoints in image regions void of data (i.e., black regions of a radar

image). As we are training without groundtruth, we found it necessary to mask (reject) these

keypoints in practice. We threshold each azimuth of the polar radar scan by a scalar multiple,

β = 3, of its mean intensity, where exceeding the threshold is considered valid. Projecting the result



6.3. SELF-SUPERVISED DEEP LEARNING FOR RADAR ODOMETRY 52

into Cartesian space produces a binary mask of valid pixels. We then threshold on the ratio of valid

pixels in each square cell for robustness to noise. Keypoints belonging to cells with less than 5%

valid pixels are rejected.

A dense match between each keypoint descriptor and the reference descriptor tensor is applied

with a softmax to preserve differentiability. We compute the dot product between each keypoint

descriptor and all descriptors of the reference:

cℓ
T

k = dℓ T
k

[
d1
τ · · · dN

τ

]
, (6.7)

where dℓ
k is the descriptor vector of keypoint zℓk, and d1

τ , . . . ,dN
τ are the descriptor vectors of the

reference. We apply a softmax on cℓk and compute a weighted summation. The reference match for

keypoint zℓk is therefore

rℓkτ =
[
p1
τ · · · pN

τ

]
× softmax(T cℓk), (6.8)

where T = 100 is a softmax temperature constant, p1
τ , . . . ,pN

τ are the homogeneous reference coor-

dinates, and pn
τ ∈ R4.

The weight score vectors of each keypoint are assembled into matrices with the following decom-

position [92, 160]:

Wℓ
k =

 R 0

0T c

, R =

 1 0

d3 1

exp d1 0

0 exp d2

 1 0

d3 1

T

, (6.9)

where (d1, d2, d3) is the weight score vector corresponding to keypoint zℓk, and c = 104 is a constant

corresponding to the (inverse) variance of the third coordinate (which will always be 0). Visualiza-

tions of the learned keypoint covariances, R−1, are shown in Figure 6.3 as uncertainty ellipses.

6.3.3 Training and Inference

We follow the training methodology of Yoon et al. [160], which blends the GEM iterative optimization

scheme required by ESGVI with Stochastic Gradient Descent (SGD) applied in conventional network

training. The E-step, which optimizes for the current best posterior estimate, q(x), is simply included

in the forward propagation routine. Windows of radar scans are randomly sampled as a mini-batch

of data. Forward propagation is summarized as:

1. Traditional forward propagation of the network to output radar features (see Section 6.3.2).

2. Construct the motion prior factors, ϕp, and measurement factors, ϕm, (see Section 6.3.1 and

6.3.2).

3. Batch inference for the current best posterior estimate q(x) for each window (E-step).

We approximate the E-step with the Gauss-Newton algorithm, which involves approximations to

the Hessian and approximating the expectation in (6.3) at only the mean of the posterior.

The M-step is network backpropagation on the loss functional (6.3), which only applies to the

measurement factors since the motion prior factors are constant with respect to the parameters, θ.

Similar to the E-step, we approximate the expectation at only the mean of the posterior. Intuitively,

we are using our best-guess trajectory as a supervisory signal to then carry out standard SGD to

train the feature network.
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Figure 6.3: A visualization of keypoints (red) on radar images with 5 standard deviation uncertainty
ellipses (yellow). Many keypoints have elongated uncertainties consistent to the scene geometry, and
as expected, keypoints further away from the sensor (image centre) are more uncertain.

6.3.4 Outlier Rejection

We apply the Geman-McClure robust cost function on the measurement factors, ϕm, in the E-step

for outlier rejection. For the M-step, we follow Yoon et al. [160] and apply a constant threshold,

α, on the squared Mahalanobis distance of the measurement factor with the current best posterior

estimate,

eℓk
T

Wℓ
keℓk > α, (6.10)

where eℓk is as defined in (6.6). We do not backpropagate keypoint matches greater than α = 16.

After training, we improved odometry performance by rejecting keypoints with inverse covariances

that have a log determinant, log|R|, less than a threshold (η = 4.0). We also use RANSAC at test

time and only produce an estimate based on the inliers.

6.4 Experimental Results

6.4.1 Experiment Setup

We evaluate our approach, Hybrid-Estimate Radar Odometry (HERO), on the publicly available

Oxford Radar RobotCar Dataset [19] and on the Boreas dataset. The Oxford dataset is divided into

32 sequences, each approximately 10 km long. We follow existing work by training on 24 sequences,

validating on 1 sequence, and testing on the same 7 sequences as [18].

Our implementation is a hybrid between Python and C++, where network-related code is imple-
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Table 6.1: Radar Odometry Results. (HC): Hand-crafted, (L): Learned.

Methods Supervision
Translational

Error (%)

Rotational Error

(deg/1000m)

UnderTheRadar [18] Supervised (L) 2.0583 6.7

Cen RO [36] Unsupervised (HC) 3.7168 9.5

MC-RANSAC [28] Unsupervised (HC) 3.3190 10.93

CFEAR [3] Unsupervised (HC) 1.76 5.0

HERO (Ours) Self-Supervised (L) 1.9879 6.524

mented in Python using PyTorch [116], and estimation-related code is implemented using STEAM3,

an open-source C++ estimation library. When training the network, we use a fixed random seed

and the Adam optimizer [81] with a learning rate of 1 × 10−5 and a mini-batch size of 1 window

(w = 4) for up to 100k iterations. The Navtech radar sensor used in the Oxford dataset has a range

resolution of 0.0438 m/bin. We chose a Cartesian resolution of 0.2628 m/pixel to minimize projec-

tion errors as an integer multiple of the radar resolution. The Cartesian radar images are made to

be square with a width of 640 pixels. For the spatial softmax operation, each cell is 32× 32 pixels,

resulting in 400 total keypoints. We use a softmax temperature of 100. For the motion prior, Qc is

made to be diagonal. The entries of Q−1
c can be considered penalty terms on body-centric linear and

angular acceleration. It is possible to learn Qc as is done [154]. However, in our implementation,

the values are hand-tuned. Similar to Barnes and Posner [18], we augment our training data with

random rotations of up to 0.26 radians. Our sliding-window implementation4 takes on average 0.07

seconds, 0.13 seconds, and 0.18 seconds for window sizes of 2, 3, and 4, respectively. Since the radar

sensor spins at 4 Hz, our current implementation is real-time capable. During evaluation, we use the

timestamp of each measurement to do continuous-time estimation with STEAM to compensate for

motion distortion. For more information on this approach, we refer readers to the work of Anderson

et al. [10] [11].

6.4.2 Oxford Radar RobotCar Dataset

Here, we compare our radar odometry results with other point-based radar odometry methods,

including Cen and Newman [36] (Cen RO), Barnes and Posner [18] (Under the Radar), CFEAR

[3], and Burnett et al. [28] (MC-RANSAC). Following these previous works, we report our results

using the KITTI odometry metrics [60], which average the relative position and orientation errors

over every sub-sequence of length (100 m, 200 m, · · · , 800 m). The results in Table 6.1 show that

our method, HERO, is competitive with other unsupervised radar odometry methods, surpassing

the hand-crafted algorithms Cen RO and MC-RANSAC. In addition, our method exceeds the per-

formance of Under the Radar, a learned point-based radar odometry approach, without needing

any groundtruth supervision. This feature gives our method an advantage for deployment in re-

gions where a source of high-quality groundtruth is unavailable. Sources of groundtruth, such as

a GNSS/IMU system, are costly and require a clear line of sight to the sky for GPS reception.

Notably, the authors of the Oxford Radar RobotCar Dataset [18] state that the accuracy of their

3https://github.com/utiasASRL/steam
4On an Nvidia Tesla V100 GPU and 2.2 GHz Intel Xeon CPU.

https://github.com/utiasASRL/steam
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Figure 6.4: This figure depicts the results of our self-supervised Hybrid-Estimate Radar Odometry
(HERO) in blue alongside the results of a hand-crafted radar odometry pipeline based on motion
compensated RANSAC (MC-RANSAC) [28] in red. The groundtruth trajectory is plotted in black
(GT). Sequence: 2019-01-10-14-02-34-radar-oxford-10k.

GPS/INS system varied significantly due to poor GPS reception [97]. They addressed this issue by

including visual odometry and loop closures in a large-scale optimization [18]. Figure 6.4 illustrates

an example sequence comparing our odometry method to MC-RANSAC.

We provide an ablation study of our method in Table 6.2. We first compare our baseline to the

following variations:

• Scalar Weight: Instead of learning a 2× 2 weight (inverse covariance) matrix (see (6.9)), we

learn a scalar weight.

• No Mah. Threshold: We do not apply the outlier rejection threshold on the squared

Mahalanobis distance 6.10.

• No Masking: We do not mask keypoints in void regions of the radar images, as described in

Section 6.3.2.

• No Augmentation: We do not augment our training data with random rotations.

We also show the effect of varying the window size of our sliding window optimization and the

resolution of the projected radar images. Our baseline uses a window size of 4 and a resolution of

0.2628 m/pixel.

The results in Table 6.2 suggest that rotation augmentation, masking keypoints, and thresholding

on Mahalanobis distance were the most significant hyperparameters. We theorize that because a

large fraction of the Oxford dataset consists of driving straight or waiting at a red light, training

without rotation augmentation makes it less likely that the network will learn to match features

across large frame-to-frame rotations properly. Putting a hard threshold on the Mahalanobis distance

before backpropagation allows us to only backpropagate the errors from likely inliers. The masking
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Table 6.2: Ablation study. Results for sequence 2019-01-10-14-02-34-radar-oxford-10k.

Configuration
Translational

Error (%)

Rotational Error

(deg/1000m)

Baseline 2.262 7.601

Scalar Weight 2.484 7.997

No Mah. Threshold 3.083 9.300

No Masking 3.203 10.07

No Augmentation 5.054 16.60

Window Size 2 2.488 7.901

Window Size 3 2.393 7.657

Cart Res: 0.2160 2.396 7.602

Cart Res: 0.3024 2.407 7.927

Baseline + (log|R| < 4.0) 1.953 6.532

of keypoints from empty regions of the input radar scan was necessary to achieve good odometry

results. We believe adding this additional structure to the learning problem is needed for the self-

supervised model to succeed.

6.4.3 Additional Experiments on the Boreas Dataset

In this section, we provide additional experimental results for our radar odometry using 100 km

of driving from the Boreas dataset. See Chapter 4 for more details on the Boreas dataset. We do

not require groundtruth position data to train our network, but obtain it for the test sequences

to calculate KITTI odometry drift metrics. Groundtruth positioning is obtained from the post-

processed GNSS results and is accurate to within 2-4 cm.

The 100 km of total driving data is divided into 11 sequences, each approximately 9 km in length.

We use 7 sequences for training, 1 for validation, and 3 for testing. Two of the 3 test sequences were

taken during a snow storm, and the other was taken on a sunny day.

Figure 1.1 illustrates the large differences in weather conditions. Between the sunny and snowy

days, there were significant visual appearance changes. Most of the lane lines are not visible during

the snow storm. The contrast between the lidar data taken on the two days (after the ground

plane is removed) is even more stark. During the snow storm, the lidar scan is littered with many

detections associated with snow flakes. Although we do not provide experimental results for this, it

seems probable that the accuracy of a lidar odometry system would suffer under these conditions.

However, Charron et al. [40] have shown that these effects can be compensated. Unsurprisingly, it is

difficult to discern the difference between the radar scans other than the movement of large vehicles.

The odometry drift results reported in Table 6.3 exemplify the robustness of radar to inclement

weather. The drift rates on the snowy days were lower than on the sunny day. We postulate that

the error increases on a sunny day due to increased vehicle speed. It is interesting to note that our

rotation drift metrics here are lower than on the Oxford dataset. While it is difficult to point to a

single factor as the reason for this difference in performance, we note that our trajectory involves

fewer turns, and we use a different source of groundtruth for testing. In Figure 6.5, we provide a

plot of our odometry results during a snowy sequence. Here, we have plotted the results of training

on the Oxford dataset and testing on this sequence, as well as training on the Boreas dataset and
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Figure 6.5: Odometry results on the snowy Boreas sequence 2021-01-26-11-22.

Table 6.3: Boreas test results.

Sequence Weather Trained On
Translational

Error (%)

Rotational Error

(deg/1000m)

01-26-10-59 Snow Boreas 2.003 5.599

01-26-11-22 Snow Boreas 1.980 5.288

02-09-12-55 Sun Boreas 2.073 5.886

01-26-10-59 Snow Oxford 2.355 8.137

01-26-11-22 Snow Oxford 2.112 6.442

02-09-12-55 Sun Oxford 2.546 8.911

testing on this sequence. There is a noticeable increase in the drift rate when transferring from the

Oxford dataset to this Boreas dataset. We hypothesize that this difference is mainly due to the

sensors’ different range resolutions.

6.5 Conclusions

In this chapter, we applied the ESGVI parameter learning framework to learn radar features for

odometry using only the onboard radar data. Our odometry performance on the Oxford Radar

RobotCar Dataset approaches the current state of the art, which is a hand-crafted method [3]. We

provided additional experimental results on 100 km of driving in an urban setting. Within this

dataset, we demonstrated the effectiveness of radar odometry during heavy snowfall.

In recent years, robotics research has become increasingly reliant on high-quality datasets for

training deep learning algorithms. The size and scope of these datasets is a limiting factor in the

performance of many robotic systems. However, collecting and annotating these datasets is an

expensive and labour-intensive process. For this reason, it is important that research in robotics

trends towards solutions that are data efficient. By foregoing the need for groundtruth, our self-

supervised architecture enables large quantities of training data to be collected with relative ease.
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Our framework is a hybrid of modern deep learning and classic probabilistic state estimation.

Deep learning can be used to process rich sensor data, while probabilistic estimation can be used

to handle out-of-distribution samples through outlier rejection schemes. Furthermore, our modular

framework enables many future extensions and avenues of research. Now that we have a highly

performant radar odometry approach, the next logical step is to build a radar-based mapping and

localization framework to enable robots to navigate autonomously. It is also important to consider

whether our proposed radar-based localization is useful, given that lidar-based localization is readily

available and has been shown to work well under nominal weather conditions.



Chapter 7

Are We Ready for Radar to

Replace Lidar?

Many autonomous driving companies leverage detailed semantic maps to drive safely. These maps

may include the locations of lanes, pedestrian crossings, traffic lights, and more. In this case, the

vehicle no longer has to detect each of these features from scratch in real time. Instead, given the

vehicle’s current position, the semantic map can be used as a prior to simplify the perception task.

However, it then becomes critical to know the robot’s pose within the map with sufficient accuracy

and reliability.

Dense lidar maps can be built using offline batch optimization while incorporating IMU measure-

ments for improved local alignment and GPS for improved global alignment [90]. Highly accurate

localization can be subsequently performed by aligning a live lidar scan with a pre-built map with

reasonable robustness to weather conditions [152, 21]. Vision-based mapping and localization is

an alternative that can be advantageous in the absence of environmental geometry. However, ro-

bustness to large appearance change (e.g., lighting) is a difficult and ongoing research problem [64].

Radar-based systems present another compelling alternative.

Models of atmospheric attenuation show that radar can operate under certain adverse weather

conditions where lidar cannot. These conditions may include heavy rain (>25mm/hr), dense fog

(>0.1g/m3), or a dust cloud (>10g/m3) [25, 24]. Existing literature does not describe the operational

envelope of current lidar or radar sensors for localization. Prior works have assumed that lidar

localization is susceptible to moderate rain or snow, necessitating the use of radar. In this chapter,

we attempt to shed some light on this topic by comparing the performance of three topometric

localization systems: radar-only, lidar-only, and a cross-modal radar-to-lidar system. We compare

these systems across varying seasonal and weather conditions using the Boreas dataset, as described

in Chapter 4. Such a comparison of topometric localization methods has not been shown in the

literature before and forms our primary contribution.

Prior work has focused on localizing radar scans to satellite imagery [146, 144, 145] or to pre-built

lidar maps [158, 159]. Localizing live radar scans to existing lidar maps built in ideal conditions is

a desirable option, as we still benefit from the robustness of radar without incurring the expense

of building brand-new maps. However, the global localization errors reported in these works are in

2https://youtu.be/Cay6rSzeo1E/
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Figure 7.1: The 8km Glen Shields route2 in Toronto. The yellow stars correspond to UTIAS,
Dufferin, and Glen Shields (left to right) as in Figure 7.4.

the range of 1m or greater. We demonstrate that we can successfully localize live radar scans to a

pre-built lidar map with a relative localization error of around 0.1m.

In this chapter, we implement topometric localization that follows the Teach and Repeat paradigm

[56, 117] without using GPS or IMU measurements. Hong et al. [71] recently compared the perfor-

mance of their radar SLAM to SuMa, surfel-based lidar SLAM [21]. On the Oxford RobotCar dataset

[19], they show that SuMa outperforms their radar SLAM. However, in their experiments, SuMa

often fails partway through a route. Our interpretation is that SuMa losing track is likely due to an

implementation detail inherent to SuMa itself rather than a shortcoming of all lidar-based SLAM

systems. Importantly, our results seem to conflict with theirs by showing that lidar localization can

operate successfully in even moderate to heavy snowfall. However, topometric localization may be

more robust to adverse weather since it uses both odometry and localization to a pre-built map. In

addition, we have a 128-beam lidar, which is more dense than the lidar used in their experiments.

7.1 Methodology

7.1.1 Lidar/Radar Teach and Repeat Overview

Teach and Repeat is an autonomous route following framework that manually teaches a robot a

network of traversable paths [56, 118, 83]. A key enabling idea is the construction of a topometric

map [14] of the taught paths, represented as a pose graph in Figure 7.2. In the teach pass, a

sequence of sensor data (i.e., lidar or radar) from a driven route is processed into local submaps

stored along the path (vertices) and are connected by relative pose estimates (edges). In the repeat

pass, a new sequence of sensor data following the same route is processed into a new branch of

the pose graph while simultaneously being localized against the vertices of the previous sequence

to account for odometric drift. By localizing against local submaps along the taught paths, the

robot can accurately localize and route-follow without needing an accurate global reconstruction. In

this chapter, we focus on the estimation pipeline of Teach and Repeat (Figure 7.3). We divide the

pipeline into: Preprocessing, Odometry and Mapping, and Localization
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Fk=0 Fk Fr... ...
T̂rk

(a) Teach Pass

Fk=0 Fk′ Fk Fr... ...

Fm=0 Fm′ Fm... ...

T̂rk

T̂rmŤrm

(b) Repeat Pass

Figure 7.2: The structure of the pose graph during (a) the teach pass and (b) the repeat pass. Fr

is the moving robot frame, and others are vertex frames. We use subscript k for vertex frames from
the current pass (teach or repeat) and m for vertex frames from the reference pass (always teach).
During both teach and repeat passes, we estimate the transformation from the latest vertex frame
Fk to the robot frame Fr, T̂rk, using odometry. For repeat passes only, we define Fk′ to be the
latest vertex frame that has been successfully localized to the reference pass, Fm′ the corresponding
map vertex of Fk′ , and Fm the spatially closest map vertex to Fr. A prior estimate of the transform
from Fm to Fr, Ťrm, is generated by compounding transformations through Fm′ , Fk′ , and Fk,
which is then used to compute the posterior T̂rm.

Preprocessing

This module performs feature extraction and filtering on raw sensor data, which in our work is from

either lidar or radar sensors. More sensor-specific information is provided in 7.1.2.

Odometry and Mapping

During both teach and repeat passes, this module estimates the transformation between the submap

of the latest (local) vertex frame, Fk, and the latest live sensor scan at the current moving robot

frame, Fr (i.e., T̂rk in Figure 7.2(a)). If the translation or rotation of T̂rk exceeds a predefined

threshold (10m / 30 degrees), we add a new vertex Fk+1 connected with a new edge Tk+1,k = T̂rk.

Each edge consists of the mean relative pose and its covariance (uncertainty) estimate. The new

submap stored at Fk+1 is an accumulation of the last n = 3 processed sensor scans. All submaps

are motion-compensated and stored in their respective (local) vertex frame. The live scan is also

motion compensated and sent as input to the Localization module. We present the details of our

motion-compensated odometry algorithm in Section 7.1.3.

Localization

During the repeat pass, this module localizes the motion-compensated live scan of the robot frame,

Fr, against the submap of the spatially closest vertex frame, Fm, of the previous sequence (i.e., T̂rm

as shown in Figure 7.2(b)). Vertex frame Fm is chosen by leveraging our latest odometry estimate

and traversing the pose graph edges. Given the pose graph in Figure 7.2(b), the initial estimate to
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Figure 7.3: The data processing pipeline of our Teach and Repeat implementation, divided into
three modules: Preprocessing, Odometry and Mapping, and Localization. See 7.1.1 for a detailed
description of each module.

Fm is

Ťrm = TrkTkk′Tk′m′Tm′m. (7.1)

We localize using ICP with Ťrm as a prior, resulting in T̂rm. If ICP alignment is successful, we

add a new edge between the vertex of Fm and the latest vertex of the current sequence, Fk, by

compounding the mean localization result with the latest odometry result,

T̂km = T̂−1
rk T̂rm, (7.2)

as well as their covariances. We present the details of the ICP optimization in Section 7.1.4.

7.1.2 Raw Data Preprocessing

Lidar

We first perform voxel downsampling for each incoming lidar scan with voxel size dl = 0.3m. Only

one point closest to the voxel centre is kept. Next, we extract plane features from the downsampled

pointcloud by applying Principle Component Analysis (PCA) to each point and its neighbors from

the raw scan. We define a feature score from PCA to be

s = 1− λmin/λmax, (7.3)

where λmin and λmax are the minimum and maximum eigenvalues, respectively. The downsampled

pointcloud is filtered by this score, keeping no more than 20,000 points with scores above 0.95. We

associate each point with its eigenvector of λmin from PCA as the underlying normal.

Radar

We first extract point targets from each azimuth for each radar scan using the Bounded False Alarm

Rate (BFAR) detector as described in [7]. BFAR adds a constant offset b to the usual Cell-Averaging

CFAR threshold: T = a · Z + b. We use the same (a, b) parameters as [7]. For each azimuth, we

also perform peak detection by calculating the centroid of contiguous groups of detections as is done

in [36]. We obtained a modest performance improvement by retaining the maximum of the left

and right sub-windows relative to the cell under test as in (greatest-of) GO-CFAR [125]. These

polar targets are then transformed into Cartesian coordinates and are passed to the Odometry and
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Mapping module without further filtering.

7.1.3 VTR3 Continuous-Time Odometry

Our odometry algorithm combines the iterative data association of ICP with a continuous-time

trajectory represented as exactly sparse Gaussian Process regression [10]. Our trajectory is x(t) =
{T(t),ϖ(t)}, where T(t) ∈ SE(3) is our robot pose and ϖ(t) ∈ R6 is the body-centric velocity.

Following Anderson and Barfoot [10], the GP motion prior is defined in (3.17).

The prior (3.17) is applied in a piecewise fashion between an underlying discrete trajectory of

pose-velocity state pairs, xi = {Ti,ϖi}, that each correspond to the representative timestamp of

the ith sensor scan. Each pose, Ti, is the relative transform from the latest vertex, Fk, to the robot

frame, Fr, that corresponds to the ith sensor scan (i.e., Trk). Likewise, ϖi is the corresponding

body-centric velocity. We seek to align the latest sensor scan i to the latest vertex submap in frame

Fk (see Figure 7.2).

We define a nonlinear optimization for the latest state xi, locking all previous states. The cost

function is

Jodom = ϕmotion +

M∑

j=1

(
1

2
eTodom,jR−1

j eodom,j

)

︸ ︷︷ ︸
measurements

. (7.4)

In the interest of space, we refer readers to Anderson and Barfoot [10] for the squared-error cost

expression of the motion prior, ϕmotion. Each measurement error term is

eodom,j = D
(

pj
k − T(tj)−1Trsqj

)
, (7.5)

where qj is a homogeneous point with corresponding timestamp tj from the ith sensor scan, Trs

is the extrinsic calibration from the sensor frame Fs to the robot frame Fr, T(tj) is a pose from

our trajectory queried at tj
3, pj

k is a homogeneous point from the kth submap associated to qj and

expressed in Fk, and D is a constant projection that removes the 4th homogeneous element. We

define R−1
j as either a constant diagonal matrix for radar data (point-to-point) or by using the outer

product of the corresponding surface normal estimate for lidar data (point-to-plane).

We optimize for xi = {Ti,ϖi} iteratively using Gauss-Newton, but with nearest-neighbours data

association after every Gauss-Newton iteration. VTR3 odometry is therefore performed with the

following steps:

1. Temporarily transform all points qj to frame Fk using the latest trajectory estimate (motion

undistortion).

2. Associate each point to its nearest neighbour in the map to identify its corresponding map

point pjk in Fk.

3. Formulate the cost function J in (7.4) and perform a single Gauss-Newton iteration to update

Ti and ϖi.

4. Repeat steps 1 to 3 until convergence.

3Through interpolation, T(tj) depends on the state variables xi = {Ti,ϖi} and xi−1 = {Ti−1,ϖi−1} since
tj > ti−1 [10].
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Figure 7.4: Our test sequences were collected by driving a repeated route over the source of one
year. Our experiments use 2020-11-26 as our reference sequence for building maps. The remaining
six sequences, which include sequences with rain and snow, are used to benchmark localization
performance, which amounts to 48km of test driving. These camera images are provided for context.

The output of VTR3 at the timestamp of the latest sensor scan is then the odometry output T̂r,k.

7.1.4 Localization ICP

We use ICP to localize the motion-compensated live scan of the robot frame, Fr, against the submap

of the spatially closest vertex frame, Fm, of the previous sequence. The resulting relative transfor-

mation is T̂rm, as shown in Figure 7.2(b). The nonlinear cost function is

Jloc = ϕpose +

M∑

j=1

(
1

2
eTloc,jR−1

j eloc,j
)
, (7.6)

where we use Ťrm from (7.1) as an initial guess and a prior:

ϕpose =
1

2
ln(ŤrmT−1

rm)∨
T Q−1

rm ln(ŤrmT−1
rm)∨, (7.7)

where ln (·) is the logarithm map and the operator ∨ is the inverse of ∧ [16]. The covariance Qrm can

be computed by compounding the edge covariances corresponding to the relative transformations in

(7.1). Since all pointclouds are already motion-compensated, the measurement error term is simply

eloc,j = D
(
pj
m − T−1

rmTrsqj

)
, (7.8)

where qj is a homogeneous point from the motion-compensated live scan, and pj
m is the nearest

neighbour submap point to qj . See Section 7.1.3 for how we define Trs, D, and R−1
j .
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Figure 7.5: These histograms show the spread of the localization error for lidar-to-lidar, radar-to-
radar, and radar-to-lidar, during a snowstorm (2021-01-26).

7.1.5 Doppler-Compensated ICP

In our prior work, [28], we showed that current Navtech radar sensors are susceptible to Doppler

distortion and that this effect becomes significant during mapping and localization. A relative

velocity between the sensor and the surrounding environment causes the received frequency to be

altered according to the Doppler effect. If the velocity in the sensor frame is known, this effect can

be compensated for using a simple additive correction factor ∆qj . Compensating for this effect is

more important in mapping and localization or in teach and repeat, but less important for odometry

as we showed in Chapter 5. In this chapter, we include this correction factor, which depends on a

continuous-time interpolation of the estimated body-centric velocity ϖ(t) at the measurement time

of each target tj , in the measurement error term for VTR3 radar odometry:

eodom,j = D
(

pj
k − T(tj)−1Trs(qj +∆qj)

)
(7.9)

where ∆qj = DTβajaTj Dq⊙
j Ad(Tsr)ϖ(tj), (7.10)

β is Doppler distortion constant inherent to the sensor [28], and aj is a 3 × 1 unit vector in the

direction of qj .
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Figure 7.6: Here we plot metric localization errors during a snowstorm (2021-01-26). Note that lidar
localization estimates remain accurate even with 1/4 of its field of view being blocked by a layer of
ice as shown in Figure 7.8.
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Figure 7.7: This figure shows the live radar pointcloud (blue) registered to a submap (red) built

during the teach pass. In (a) we are performing radar-to-radar localization and so the submap is

made up of radar points. In (b) we are localizing a radar pointcloud (blue) to a previously built

lidar submap.
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snow

(a) Lidar with snow detections (b) Lidar with outliers removed

Figure 7.8: This figure illustrates the noisy lidar data used to localize during the 2021-01-26 sequence.

Points are coloured by their z-height. In (a), the ground plane has been removed, and the pointcloud

has been randomly downsampled by 50% to highlight the snowflake detections. Note that a layer

of ice blocks a large forward section of the lidar’s field of view. However, as the results in Table 7.2

and Figure 7.1.5 show, lidar localization remains quite robust under these adverse conditions. (b)

shows the lidar pointcloud after filtering points by their normal score as in Equation 7.3 and only

retaining the inliers of truncated least squares. Note that the snowflake detections seem to disappear,

illustrating the robustness of our lidar pipeline.

7.2 Experimental Results

This section compares the performance of radar-only, lidar-only, and radar-to-lidar topometric lo-

calization using the Boreas datset. See Chapter 4 for more details on the Boreas dataset. In this

experiment, we used seven sequences of the Glen Shields route (shown in Figure 7.1) chosen for

their distinct weather conditions.. These sequences are depicted in Figure 7.4. During the teach

pass, a map is constructed using the reference sequence 2020-11-26. The radar-only and lidar-only

pipelines use their respective sensor types to construct the map. No GPS or IMU information is

required during the map-building process. Note that our test sequences include significant seasonal

variation, with ten months separating the initial teach pass and the final repeat pass. Sequences

2021-06-29 and 2021-09-08 include trees with full foliage, while the remaining sequences lack this.

2021-01-26 was collected during a snowstorm, 2021-06-29 was collected in the rain, and 2021-09-08

was collected at night.

During each of the repeat traversals, our topometric localization outputs a relative localization

estimate between the live sensor frame s2 and a sensor frame in the map s1: T̂s1,s2 . We then compute

RMSE values for the relative translation and rotation error as in [31]. We separate translational

error into lateral and longitudinal components. Since the Navtech radar is a 2D sensor, we restrict

our comparison to SE(2) by omitting z errors and reporting heading error as the rotation error.

Figure 7.1.4 depicts the spread of localization error during sequence 2021-01-26. Note that,

although lidar-to-lidar localization is the most accurate, radar-to-radar localization remains reason-

ably competitive. The longitudinal and heading errors incur a bias when localizing radar scans to

lidar maps. The longitudinal bias could be due to some residual Doppler distortion effects, and the
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heading bias could result from an error in the radar-to-lidar extrinsic calibration. A video showcasing

radar mapping and localization can be found at this link4.

Figure 7.1.5 shows the localization errors as a function of time during the snowstorm sequence

2021-01-26. Surprisingly, lidar localization appears to be unperturbed by the adverse weather con-

ditions. During the snowstorm sequence, the lidar pointcloud becomes littered with detections

associated with snowflakes, and a large section of the horizontal field of view becomes blocked by a

layer of ice as shown in Figure 7.8 (a). However, in Figure 7.8 (b), we show that in actuality, these

snowflake detections have little impact on ICP registration after filtering by normal score and only

retaining the inliers of truncated least squares. Charron et al. [40] previously demonstrated that

snowflake detections can be removed from lidar pointclouds, although we do not use their method

here. The robustness of our lidar pipeline to both weather and seasonal variations is reflected in the

RMSE results displayed in Table 7.2.

Our results show that contrary to the assertions made by prior works, lidar localization can be

robust to moderate levels of precipitation and seasonal variation. More work is required by the

community to identify operational conditions where radar localization has a clear advantage. These

conditions may include heavy precipitation, dense fog, or dust clouds. Nevertheless, we demonstrated

that our radar localization is reasonably competitive with lidar. Furthermore, radar localization may

still be an important redundant system in autonomous vehicles. Figure 7.7 illustrates the live scan

and submap during radar-to-radar and radar-to-lidar localization.

It is important to recognize that the results reported in this chapter are taken at a snapshot

in time. Radar localization is not as mature of a field as lidar localization and radar sensors still

have room to improve. Incorporating IMU or wheel encoder measurements would improve the

performance of all three compared systems. The detector we used, BFAR [7], did not immediately

work when applied to a new radar with different noise characteristics. A learning-based approach to

feature extraction and matching may improve performance. Switching to a landmark-based pipeline

or one based on image correlation may also be interesting avenues for comparison.

Radar-to-lidar localization is attractive because it allows us to use existing lidar maps, which

many autonomous driving companies already have, while taking advantage of the robustness of radar

sensing. Radar-based maps are less useful than lidar maps since they lack sufficient detail to create

semantic maps.

Table 7.2 shows the computational and storage requirements of the different pipelines discussed

in this chapter. We used a Lenovo P53 laptop with Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz

and 32GB of memory. A GPU was not used. Our radar-based maps use less storage (5.6MB/km)

than our lidar-based maps (86.4MB/km).

7.3 Conclusions

In this chapter, we compared the performance of lidar-to-lidar, radar-to-radar, and radar-to-lidar

topometric localization. Our results showed that radar-based pipelines are a viable alternative to

lidar localization, but lidar continues to yield the best results. Surprisingly, our experiments showed

that lidar-only mapping and localization is robust to adverse weather, such as a snowstorm with a

partial sensor blockage due to ice. We identified several areas for future work and noted that more

4https://youtu.be/okS7pF6xX7A

https://youtu.be/okS7pF6xX7A
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Table 7.1: Metric Localization RMSE Results (Reference Sequence: 2020-11-26)

Lidar-to-Lidar

lateral (m) longitudinal (m) heading (deg)

2020-12-04 0.060 0.059 0.035

2021-01-26 0.023 0.026 0.040

2021-02-09 0.030 0.031 0.041

2021-03-09 0.021 0.028 0.035

2021-06-29 0.025 0.056 0.050

2021-09-08 0.030 0.036 0.048

mean 0.032 0.039 0.042

Radar-to-Radar

lateral (m) longitudinal (m) heading (deg)

2020-12-04 0.072 0.082 0.211

2021-01-26 0.048 0.055 0.227

2021-02-09 0.053 0.051 0.235

2021-03-09 0.051 0.053 0.233

2021-06-29 0.069 0.095 0.246

2021-09-08 0.067 0.110 0.269

mean 0.060 0.074 0.237

Radar-to-Lidar

lateral (m) longitudinal (m) heading (deg)

2020-12-04 0.074 0.135 0.135

2021-01-26 0.095 0.128 0.183

2021-02-09 0.061 0.125 0.135

2021-03-09 0.057 0.123 0.135

2021-06-29 0.069 0.122 0.139

2021-09-08 0.063 0.108 0.161

mean 0.070 0.124 0.148

experiments are needed to identify conditions where the performance of radar-based pipelines exceeds

that of lidar. Given these results, our goal is to reduce the performance gap between radar and lidar-

based odometry by including an inertial measurement measurement unit (IMU). We investigate this

topic in Chapter 9. In the following chapter, we compare treating IMU measurements as an input

to a motion model vs. treating it as a measurement of the state. This investigation is important to

this thesis as it informed our design decisions toward creating a radar-inertial odometry pipeline.



Table 7.2: Computational and Storage Requirements

Odom.

(FPS)

Loc.

(FPS)

Storage

(MB/km)

Lidar-to-Lidar 3.6 3.0 86.4

Radar-to-Radar 5.3 5.1 5.6

Radar-to-Lidar N/A 5.1 86.4
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Chapter 8

IMU as an Input versus a

Measurement

Inertial measurement units (IMUs) are important sensors in state estimation. A popular approach

in robotics is to treat IMU measurements as inputs to a motion model and then to numerically

integrate the motion model to form relative motion factors between pairs of estimation times in a

process known as preintegration [95, 55, 26]. In this paper, we investigate the treatment of IMUs as

a measurement of the state using continuous-time state estimation with a Gaussian process motion

prior. We compare treating an IMU as an input vs. a measurement on a simple 1D simulation

problem. We then test our approach to lidar-inertial odometry using a simulated environment and

compare it to a baseline representing the IMU-as-input approach. Finally, we provide experimental

results for our lidar-inertial odometry on the Newer College Dataset.

Preintegration was initially devised to avoid estimating the state at each measurement time in

(sliding-window) batch trajectory estimation. We will show that by employing our continuous-time

estimation techniques, we can achieve the same big-O complexity as classic preintegration, which is

linear in the number of measurements.

8.1 Related Work

Lupton and Sukkarieh [95] were the first to show that a temporal window of inertial measurements

could be summarized using a single relative motion factor in a method known as preintegration.

Forster et al. [55] then showed how to perform preintegration on the manifold SO(3). Subsequently,

Brossard et al. [26] demonstrated how to perform preintegration on the manifold of extended poses

SE2(3), showing that this approach captures the uncertainty resulting from IMU measurements

more consistently than SO(3) × R3. These approaches treat the IMU as an input to a motion

model. This approach has a few shortcomings. First, it conflates the IMU measurement noise

with the underlying process noise. Second, it is unclear how the state and covariance should be

propagated in the absence of IMU measurements. IMU measurement dropout is rare. However,

it is worth considering the possibility in safety-critical applications. The third issue is that classic

preintegration does not lend itself well to dealing with multiple high-rate sensors such as a lidar and

an IMU or multiple asynchronous IMUs.

71
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Previous work in continuous-time lidar-only odometry and lidar-inertial odometry include [53,

122, 112, 106, 96, 86] all of which employed B-splines. In B-spline approaches, exact derivatives

of the continuous-time trajectory can be computed, creating unary factors for each accelerometer

and gyroscope measurement and removing the need for preintegration. However, the spacing of

control points greatly impacts the smoothness of B-spline trajectories. Determining this spacing

is an important engineering challenge in B-spline approaches; this can be avoided by working with

Gaussian processes instead. For a detailed comparison between B-splines and Gaussian processes in

continuous-time state estimation, we refer the reader to [75].

Recently, Zheng and Zhu [163] demonstrated continuous-time lidar-inertial odometry using Gaus-

sian processes where rotation is decoupled from translation. They use a white-noise-on-jerk prior for

position in a global frame, a white-noise-on-acceleration prior for rotation using a sequence of local

Gaussian processes, and a white-noise-on-velocity prior for the IMU biases. Using this approach,

they demonstrate competitive performance on the HILTI SLAM benchmark [67]. One consequence

of estimating position in a global frame is that the power spectral density matrix Q of the prior

must typically be isotropic. In contrast, a body-centric approach allows lateral-longitudinal-vertical

dimensions to be weighted differently. In addition, as was shown by Brossard et al. [26], decoupling

rotation from translation does not capture the uncertainty resulting from IMU measurements as

accurately as keeping them coupled. However, one clear advantage of their approach is that all

parts of the state are directly observable by the measurements, whereas in our approach, angular

acceleration is not directly observable.

In the previous chapter, we demonstrated continuous-time lidar-only odometry [30] using a white-

noise-on-acceleration motion prior. Lidar-only odometry using a white-noise-on-jerk prior [143] and

a Singer prior [154] have also been previously demonstrated. In this chapter, we choose to work with

the Singer prior, which includes body-centric acceleration in the state. By including acceleration in

the state, we can treat gyroscope and accelerometer measurements as direct measurements of the

state rather than as inputs to a motion model.

Another approach based on Gaussian processes is that of Le Gentil and Vidal-Calleja [88, 87].

They employ six independent Gaussian processes, three for global frame acceleration and three for

angular velocity. They optimize for the state at several inducing points given a set of IMU measure-

ments over a preintegration window. They then analytically integrate these Gaussian processes to

obtain preintegrated measurements that can be queried at any time of interest.

8.2 1D Simulation Comparison

In this section, we investigate an approach where IMU measurements are treated as direct measure-

ments of the state using a continuous-time motion prior. We compare the performance of these two

approaches on a simulated toy problem where we estimate the position and velocity of a 1D robot

given noisy measurements of position and acceleration. Position measurements are acquired at a

lower rate (10Hz), while acceleration measurements are acquired at a higher rate (100Hz). We aim

to reduce the number of states estimated through preintegration for both approaches.
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8.2.1 IMU as Input

As a baseline, we consider treating IMU measurements as inputs to a discrete motion model,

[
pk

ṗk

]

︸ ︷︷ ︸
xk

=

[
1 ∆tk1

0 1

]

︸ ︷︷ ︸
Φ(tk,tk−1)

[
pk−1

ṗk−1

]

︸ ︷︷ ︸
xk−1

+

[
1
2∆t

2
k

∆tk

]

︸ ︷︷ ︸
Bk

uk, (8.1)

where ∆tk = tk− tk−1, Φ(tk, tk−1) is the transition function, and uk are acceleration measurements.

A preintegration window is then defined between two endpoints, (tk−1, tk), which includes times

τ0, . . . , τJ . Following the approach of [95, 55], the preintegrated measurements ∆xk,k−1 are computed

as

∆xk,k−1 =

J∑

n=1

Φ(τJ , τn)Bnun. (8.2)

These preintegrated measurements can be used to replace the acceleration measurements with a

single relative motion factor between two endpoints:

Jv,k =
1

2
eTkΣ

−1
k ek, (8.3a)

ek = xk −Φ(tk, tk−1)xk−1 −∆xk,k−1, (8.3b)

where

Σk =

J∑

n=1

Φ(τJ , τn)BnQnB
T
nΦ(τJ , τn)

T , (8.4)

and Qn is the covariance of the acceleration input un ∼ N (0,Qn). Note that in this approach,

uncertainty is propagated using the covariance on the acceleration input, Qn, which conflates IMU

measurement noise and the underlying process noise. If the acceleration measurements were to drop

out suddenly, it is unclear how the state and covariance should be propagated using this approach.

It can be shown that preintegration is mathematically equivalent to marginalizing out the states

between xk−1 and xk. The overall objective function that we seek to minimize is then

J(x) =

K∑

k=0

(Jv,k(x) + Jy,k(x)) , (8.5)

where

Jy,k =
1

2
(yk −Ckxk)

T
R−1

k (yk −Ckxk) (8.6)

are the measurement factors, and Rk is the associated measurement covariance.

8.2.2 A Generalization to Preintegration

In section 8.2.1, we showed how to perform preintegration when considering acceleration measure-

ments as inputs to a motion model following closely from [95, 55]. In this section, we generalize

the concept of preintegration to support heterogeneous factors (a combination of binary and unary

factors). As a motivating example, consider having measurements of position, such as from a GPS,

and measurements of acceleration coming from an accelerometer. These are unary measurement
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marginalize marginalize

Figure 8.1: In this factor graph, we consider a case where we would like to marginalize several
states out of the full Bayesian posterior. The triangles represent states, and the black dots represent
factors. This factor graph could potentially correspond to doing continuous-time state estimation
with binary motion prior factors, unary measurement factors, and a unary prior factor on the initial
state x0.

factors, called such, because they only involve a single state. The binary factors here are motion

prior factors derived from our Gaussian process motion prior, which is called binary because they

are between two states. In classic preintegration, the only factors that are preintegrated are binary.

Here, we show that we can simply use the formulas for querying a Gaussian process posterior at

the endpoints of the preintegration window to form a preintegration factor that summarizes all the

measurements contained therein. First, we consider the joint density of the state at a set of query

times (τ0 < τ1 < · · · < τJ) and the measurements,

p

([
xτ

y

])
= N

([
x̌τ

Cx̌τ

]
,

[
P̌τ,τ P̌τC

T

CP̌T
τ R+CP̌CT

])
. (8.7)

We then perform the usual factoring using a Schur complement to obtain the posterior,

p(xτ |y) = N
(
x̌τ + P̌τC

T (CP̌C+R)−1(y −Cx̌),

P̌τ,τ − P̌τC
T (CP̌CT +R)−1CP̌T

τ

)
, (8.8)

where we obtain expressions for x̂τ and P̂τ,τ . We rearrange this further by inserting P̌−1P̌ after the

first instance of P̌τ and by applying the Sherman-Morrison-Woodbury identities to obtain

x̂τ = x̌τ + P̌τ P̌
−1(P̌−1 +CTR−1C)−1CTR−1(y −Cx̌), (8.9a)

P̂τ,τ = P̌τ,τ − P̌τ P̌
−1(P̌−1 +CTR−1C)−1CTR−1CP̌T

τ , (8.9b)

where we note that (P̌−1 +CTR−1C) is block-tridiagonal, and so the product

(P̌−1+CTR−1C)−1CTR−1(y−Cx̌) can be evaluated in O(K) time using a sparse Cholesky solver.

When we encounter products resembling A−1b where A is block-tridiagonal, we can instead solve

Az = b for z using an efficient solver that takes advantage of the sparsity of A. Finally, the product

P̌τ P̌
−1 is quite sparse, having only two nonzero block columns per block row as shown earlier in

(3.15). It follows that x̂τ and P̂τ,τ can be computed in time that scales linearly with the number

of measurements. Now, we consider the case where the query times consist of the beginning and

end of a preintegration window, (tk, tk+1). The queried mean and covariance can be treated as

pseudomeasurements summarizing the measurements contained in the preintegration window. We

adjust our notation to make it clear that these are now being treated as measurements by using x̃
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Figure 8.2: This figure depicts the results of our preintegration, which can incorporate heterogeneous
factors. The resulting joint Gaussian factor in (8.10) can be thought of as two unary factors, one
each for xk and xk+1, and an additional binary factor between xk and xk+1.

instead of x̂. What we obtain is a joint Gaussian factor for the states at times tk and tk+1,

J =
1

2

[
xk − x̃k

xk+1 − x̃k+1

]T [
P̃k,k P̃k,k+1

P̃k,k+1 P̃k+1,k+1

]−1 [
xk − x̃k

xk+1 − x̃k+1

]
. (8.10)

A diagram depicting how this affects the resulting factor graph is shown in Figure 8.2. Using this

approach, we can ‘preintegrate’ heterogeneous factors between pairs of states. One clear advantage of

this approach is that it offers a tidy method for bookkeeping measurement costs and uncertainties. In

the appendix, we provide an alternative formulation using a Schur complement with the same linear

time complexity. Indeed, marginalization with a Schur complement is equivalent to the presented

marginalization approach using a Gaussian process. However, the Gaussian process still serves a

useful purpose in creating motion prior factors. Furthermore, the Gaussian process provides methods

for interpolating the posterior.

It is unclear how to extend this marginalization approach to SE(3) due to our choice to ap-

proximate SE(3) trajectories using sequences of local Gaussian processes [10]. This marginalization

approach could be applied using a global GP formulation like the one presented by Le Gentil and

Vidal-Calleja [87]. However, their approach must contend with rotational singularities. We leave the

extension to SE(3) as an area of future work. In our implementation of lidar-inertial odometry, we

instead use the posterior Gaussian process interpolation formula as in (3.31) to form continuous-time

measurement factors. This is actually an approximation, as it is not exactly the same as marginaliza-

tion. However, we have found that the interpolation approach works well in practice. Furthermore,

the interpolation approach lends itself to parallelization, enabling a highly efficient implementation.

8.2.3 IMU as Measurement

In our proposed approach, we treat IMU measurements as direct measurements of the state within

a continuous-time estimation framework. For the 1D toy problem, we chose to use a Singer prior,

which is defined by the following linear time-invariant (LTI) stochastic differential equation (SDE),

...
p (t) = −αp̈(t) +w(t), (8.11)

w(t) ∼ GP(0,Qcδ(t− t′)),

where w(t) is a white noise Gaussian process and Qc = 2ασ2 is the power spectral density matrix

[153]. By varying α and σ2, the Singer prior can model motion priors ranging from white-noise-on-

acceleration (α → ∞, σ̃2 = α2σ2) to white-noise-on-jerk (α→0).The discrete-time motion model
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is given by

xk = Φ(tk, tk−1)xk−1 +wk, wk ∼ N (0,Qk), (8.12)

where wk is the process noise, xk = [pT
k ṗT

k p̈T
k ]

T , Φ(tk, tk−1) is the state transition function, and Qk

is the discrete-time covariance. Expressions for Φ(tk, tk−1) and Qk for the Singer prior are provided

by Wong et al. [153] and are repeated in the appendix. The binary motion prior factors are given

by

Jv,k =
1

2
eTkQ

−1
k ek, (8.13a)

ek = xk −Φ(tk, tk−1)xk−1. (8.13b)

The unary measurement factors have the same form as in (8.6) except that now accelerations are

treated as direct measurements of the state. In addition, the overall objective is the same as in

(8.5). We arrive at the linear system of equations from (3.12). By default, this approach would

require estimating the state at each measurement time. To reduce the size of the state space, as in

Section 8.2.1, we build preintegrated factors using the approach presented in Section 8.2.2 to bundle

together both the unary measurement factors as well as the binary motion prior factors into a single

factor. Similarly to the IMU-as-input approach, we preintegrate between pairs of states associated

with the low-rate measurement times.
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Figure 8.3: The estimated trajectories of IMU-as-input and IMU-as-measurement are plotted along-

side the ground-truth trajectory, which is sampled from white-noise-on-jerk motion prior with

Qc = 1.0. Both methods were pretrained on a hold-out validation set of simulated trajectories.
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Figure 8.4: This figure depicts 1000 simulated trajectories sampled from a white-noise-on-jerk

(WNOJ) prior where x̌0 = [0.0 0.0 1.0]T , P̌0 = diag(0.001, 0.001, 0.001), Qc = 1.0.
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Figure 8.5: This figure compares the performance of the baseline IMU-as-input approach vs. our

proposed IMU-as-measurement approach that leverages a Gaussian process (GP) motion prior. The

ground-truth trajectories are sampled from a white-noise-on-jerk (WNOJ) prior, as shown in Fig-

ure 8.4. The IMU input covariance Qk for the IMU-as-input method was trained on a validation

set with a value of 0.00338. The parameters of our proposed method were also trained on the same

validation set, with values of σ2 = 1.0069, α = 0.0. Rpos for both methods was chosen to match the

simulated noise added to the position measurements. Similarly, Racc for the IMU-as-measurement

approach was set to match the simulated noise added to the acceleration measurements. In the

bottom row, the chi-squared bounds have a different size because the dimension of the state in

IMU-as-measurement is greater (it includes acceleration), and so the dimension of the chi-squared

distribution increases, resulting in a tighter chi-squared bound.

8.2.4 Simulation Results

In this section, we compare two different approaches to combining high-rate acceleration measure-

ments with low-rate position measurements. We refer to these two different approaches as IMU-

as-input and IMU-as-measurement. The comparison is conducted on a toy 1D simulation problem.
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Figure 8.6: This figure depicts 1000 simulated trajectories sampled from a Singer prior where x̌0 =
[0.0 1.0 0.0]T , P̌0 = diag(0.001, 0.001, 0.001), α = 10.0, σ2 = 1.0. A large value of α is intended to
approximate a white-noise-on-acceleration (WNOA) prior.

We sample trajectories from a GP motion prior as defined in (3.11) by using standard methods for

sampling from a multidimensional Gaussian [16].

In our first simulation, we sample trajectories from a white-noise-on-jerk (WNOJ) motion prior

with Qc = 1.0. Figure 8.3 provides a qualitative comparison of the IMU-as-input and IMU-as-

measurement approaches for a single sampled simulation trajectory. Note that the performance of

the two estimators, including their 3-σ confidence bounds, appears to be nearly identical. Figure 8.4

depicts 1000 trajectories sampled from this motion prior. To simulate noisy sensors, we also cor-

rupt both position and acceleration measurements using zero-mean Gaussian noise where ypos,k =[
1 0 0

]
xk + npos,k, npos,k ∼ N (0, σ2

pos), yacc,k =
[
0 0 1

]
xk + nacc,k, nacc,k ∼ N (0, σ2

acc). In

the simulation, we set σpos = 0.01m, σacc = 0.01m/s2.

Both IMU-as-input and IMU-as-measurement have parameters that must be tuned on the dataset.

For this purpose, we use a separate training set of 100 sampled trajectories. For the IMU-as-input

approach, we learn the covariance of the acceleration input Qk using maximum likelihood over the

training set, where we benefit from using noiseless ground truth states in simulation. The objective

that we seek to minimize is

J =
1

2
ln
∣∣P̌
∣∣+ 1

2T

T∑

t=1

(xt − x̌)T P̌−1(xt − x̌), (8.14)

where xt are validation set trajectories, x̌ = Av is the full trajectory prior for the IMU-as-input

method, P̌ = AQAT is the prior covariance over the whole trajectory, A is the lifted transition

matrix as in (3.7), v =
[
x̌T
0 ∆xT

1,0 · · · ∆xT
K,K−1

]T
, and Q = diag(P̌0,Σ1, · · · ,ΣK).

Using a numerical optimizer, we found that Qk ≈ 0.00338 given a WNOJ motion prior with

Qc = 1.0, and acceleration measurement noise of σ2
acc = 0.0001m2/s4. Note that the input covariance

Qk is much greater than the simulated noise on the acceleration measurements σ2
acc. This is because,

for the IMU-as-input approach, the covariance on the acceleration input Qk conflates two sources of

noise: the IMU measurement noise and the underlying process noise. It also means that Qk must

be trained and adapted to new datasets to maintain a consistent estimator.
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Figure 8.7: This figure summarizes the results of our second simulation experiment where the ground-

truth trajectories were sampled from a Singer prior with α = 10.0, σ2 = 1.0. The trained acceleration

input covariance for IMU-as-input was Qk ≈ 0.00283. The trained Singer prior parameters were

α = 10.2442, σ2 = 1.0074. Note that even though the underlying prior changed by a lot from the

first simulation to the second, from a white-noise-on-jerk prior to an approximation of a white-noise-

on-jerk prior, both estimators were able to remain unbiased and consistent.

For the IMU-as-measurement approach, we need to train the parameters of our Gaussian process

(GP) motion prior. To highlight the versatility of our proposed approach, we employ a Singer

motion prior [153], which can model priors ranging from white-noise-on-acceleration (WNOA) to

white-noise-on-jerk (WNOJ). The Singer prior is parametrized by an inverse length scale matrix α

and a variance σ2, both diagonal. For values of α close to zero, numerical optimizers encounter

difficulties due to numerical instabilities of Qk and its Jacobians. Instead, we derive the analytical

gradients to learn {α,σ2} using gradient descent following the approach presented by Wong et al.



8.2. 1D SIMULATION COMPARISON 81

[153]. The objective that we seek to minimize is

J =
1

2

T∑

t=1

K∑

k=1

(
eTk,tQ

−1
k,tek,t + ln |Qk,t|

)
, (8.15)

where both ek,t and Qk,t are functions of the Singer prior parameters {α,σ2}. Further details on

the analytical gradients are provided in the appendix. Note that the approach of Wong et al. [153]

supports learning the parameters of the Singer prior even with noisy ground truth; however, we

must first estimate the measurement covariances and then keep them fixed during the optimization.

To learn both the GP parameters and the measurement covariances simultaneously, Wong et al.

leverage exactly sparse Gaussian variational inference [154].

Figure 8.5 shows the results of our first simulation experiment with the WNOJ prior. Each

row in Figure 8.5 is a box plot of a metric computed independently for each of the 1000 simulated

trajectories. The blue boxes represent the interquartile range, the red lines are the medians, the

whiskers correspond to the 2.5 and 97.5 percentiles, and the red dots denote outliers (data points

beyond the whiskers). The black dashed lines in the first, third, and fourth rows correspond to the

target value of 0 for the mean error and 1 for the normalized estimation error squared (NEES).

Underneath each box plot, we also compute the mean value of the metrics across all data points.

In the first row of Figure 8.5, we can see that the mean error in both position and velocity is

close to zero for both estimators. The grey lines in the first row denote a 95% two-sided confidence

interval, a statistical test to check that the estimators are unbiased. We expect to see the whiskers

of the box plots lie within the 95% confidence interval to confirm that the estimator is unbiased,

which is the case.

The third row displays a commonly used method for computing the normalized estimation error

squared (NEES). This method uses the marginals of the posterior covariance and relies on the

ergodic hypothesis to treat the error from each timestep as being independent. In this case, we

compute the marginal covariance at each timestep for position and velocity only so that the results

of the two estimators can be compared directly. The grey lines denote a 95% chi-squared bound, a

statistical test for checking that the estimators are consistent. Interestingly, we observe that neither

estimator passes the statistical test in this case even though the mean and median NEES are close

to 1. It appears that, in this case, the ergodic hypothesis is not valid.

In the fourth row, we present an alternative formulation of the NEES that uses the full posterior

covariance over the entire trajectory. In this case, we are satisfied that both estimators pass the

statistical test to confirm that they are consistent. The main difference between this version of the

NEES and the previous one is that we have retained the cross-covariance terms between timesteps.

In summary, we observe that the two approaches achieve nearly identical performance. Both

estimators are unbiased and consistent so long as their parameters are trained on a training set.

Figures 8.6, 8.7 depict the results of our second experiment where the ground-truth trajectories

are sampled from a Singer prior with α = 10.0, σ2 = 1.0. This large value of α is intended to

approximate a white-noise-on-acceleration prior. Our results show that both estimators are capable

of adapting to a dataset with a different underlying motion prior while remaining unbiased and

consistent.
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Figure 8.8: This figure depicts a factor graph of our sliding window lidar-inertial odometry using
a continuous-time motion prior. The larger triangles represent the estimation times that form our
sliding window. The state x(t) = {T(t),ϖ(t), ϖ̇(t),b(t)} includes the pose T(t), the body-centric
velocity ϖ(t), the body-centric acceleration ϖ̇(t), and the IMU biases b(t). The grey-shaded state
xk−2 is next to be marginalized and is held fixed during the optimization of the current window.
The smaller triangles are interpolated states that we do not directly estimate during optimization.
Instead, we construct continuous-time measurement factors using the posterior Gaussian process
interpolation formula. We include a unary prior on xk−2 to denote the prior information from the
sliding window filter.

8.2.5 Discussion

As mentioned previously, the big-O time complexity of classic preintegration and our approach are

the same. In practice, our approach is slightly slower but not by much. Using a modern CPU, either

approach can be considered real-time capable. Note that the number of preintegration windows could

be adjusted and each preintegration window could be computed in parallel to make the approach

more efficient. In this way, we could parallelize the solving of some estimation problems. We are

motivated by sensor configurations that cannot be easily handled by classic preintegration such

as multiple asynchronous high-rate sensors. This could include a lidar and an IMU or multiple

asynchronous IMUs. Note that our approach also enables the preintegration of more than just IMU

measurements and can include additional measurements such as position and velocity measurements.

We only demonstrate our preintegration on a vector space in section 8.2.2. The extension of this

new preintegration method to SE(3) remains an area of future work.

8.3 Lidar-Inertial Odometry

Our lidar-inertial odometry is implemented as sliding-window batch trajectory estimation. The

factor graph corresponding to our approach is depicted in Figure 8.8. The state

x(t) = {T(t),ϖ(t), ϖ̇(t),b(t)} consists of the SE(3) pose Tvi(t), the body-centric velocity ϖvi
v (t),

the body-centric acceleration ϖ̇vi
v (t), and the IMU biases b(t). We approximate the SE(3) trajectory

using a sequence of local Gaussian processes as in [10]. Between pairs of estimation times, the local

variable ξk(t) is defined as

ξk(t) = ln(T(t)T(tk)
−1)∨. (8.16)
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We use (8.16) and the following to convert between global and local variables:

ξ̇k(t) = J (ξk(t))
−1ϖ(t), (8.17)

ξ̈k(t) ≈ −
1

2
(J (ξk(t))

−1ϖ(t))⋏ϖ(t) +J (ξk(t))
−1ϖ̇(t), (8.18)

where the approximation for ξ̈k(t) was originally derived by Tang et al. [143]. We use a Singer prior,

introduced in [153], which is defined by the following Gaussian process,

ξ̈k(t) ∼ GP(0,σ2 exp(−ℓ−1|t− t′|)), (8.19)

and which can equivalently be represented using the following linear time-invariant stochastic dif-

ferential equation,

γ̇k(t) = Aγk(t) + Lw(t), (8.20)

where w(t) ∼ GP(0,Qcδ(t− t′),

γk(t) =




ξk(t)

ξ̇k(t)

ξ̈k(t)


 , A =




1 0 0

0 1 0

0 0 −α


 , L =




0

0

1


 ,

σ2 is a variance, ℓ is a length scale, α = ℓ−1, and w(t) is a white-noise Gaussian process where

Qc = 2ασ2 is the associated power spectral density matrix. As shown in (3.21), (8.20) can be

stochastically integrated to arrive at a local Gaussian process

γk(t) ∼ GP(Φ(t, tk)γ̌k(tk)),Φ(t, tk)P̌(tk)Φ(t, tk)
T +Qk), (8.21)

where the formulation for the transition function Φ(t, tk) and the covariance Qk can be found

Appendix E. To convert our continuous-time formulation into a factor graph, we build a sequence of

motion prior factors between pairs of estimation times using (3.25). Our IMU measurement model

is [
ã

ω̃

]
=

[
aviv −Cvigi

ωvi
v

]
+

[
ba

bω

]
+

[
wa

wω

]
, (8.22)

where ba and bω are the accelerometer and gyroscope biases, wa ∼ N (0,Ra) and wω ∼ N (0,Rω)

are zero-mean Gaussian noise. Due to angular velocity and acceleration being a part of the state,

the associated IMU error function is straightforward:

Jimu,ℓ =
1

2

[
ea,ℓ

eω,ℓ

]T [
Ra

Rω

]−1 [
ea,ℓ

eω,ℓ

]
, (8.23a)

ea,ℓ = ãℓ − ν̇(τℓ) +Cvi(τℓ)gi − ba(τℓ), (8.23b)

eω,ℓ = ω̃ℓ − ω(τℓ)− bω(τℓ), (8.23c)
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where we rely on forming measurement factors using the posterior Gaussian process interpolation

formula. For each of these continuous-time measurement factors, we compute Jacobians of the

perturbation to the state at the interpolated times with respect to the bracketing estimation times.

This is an approximation, as it is not exactly the same as marginalization. However, we have found

it to work well in practice. We also include motion prior factors for the IMU biases,

Jv,b,k =
1

2
eTv,b,kQ

−1
b,kev,b,k, (8.24a)

ev,b,k = b(tk+1)− b(tk), (8.24b)

where Qb,k = Qb∆tk is the covariance resulting from a white-noise-on-velocity motion prior, and

Qb is the associated power spectral density matrix. We use point-to-plane factors. The associated

error function is

Jp2p,j = eTp2p,jR
−1
p2p,jep2p,j , (8.25a)

ep2p,j = αjn
T
j D(pj −Tvi(τj)

−1Tvsqj), (8.25b)

where qj is the query point, pj is the matched point in the local map, nj is an estimate of the surface

normal at pj given neighboring points in the map, D is a constant matrix removing the homogeneous

component, Tvs is a known extrinsic calibration between the lidar frame and the vehicle frame, and

αj = (σ2 − σ3)/σ1 [48] is a heuristic weight to favour planar neighborhoods. The objective function

that we seek to minimize is

J =
∑

k

Jv,k +
∑

j

Jp2p,j +
∑

ℓ

Jimu,ℓ. (8.26)

We solve this nonlinear least squares problem for the optimal perturbation to the state using Gauss-

Newton. Once the solver has converged, we update the pointcloud correspondences and iterate this

two-step process to convergence. In practice, we typically limit the maximum number of inner-loop

Gauss-Newton iterations to 10, and the number of outer-loop iterations to 10 to enable real-time

operation.

In our approach, we estimate the orientation of the gravity vector relative to the initial map

frame at startup. We perform sliding-window batch trajectory estimation where the sliding window

length is 200ms. We output the pose in the middle of the newest lidar scan.

8.4 IMU-as-Input Lidar-Inertial Baseline

As a baseline where IMU measurements are treated as an input, we consider a lidar-inertial odometry

approach where IMU measurements are used to de-skew the lidar pointcloud, and classic preintegra-

tion is used as a prior. The baseline is implemented as a sliding-window batch trajectory estimation,

and the factor graph corresponding to the baseline approach is depicted in Figure 8.9. The state

x(tk) = {Civ(tk), r
vi
i (tk),v

vi
i (tk),b(tk)} consists of the orientation Civ(tk), position rvii (tk), velocity

vvi
i (tk), and IMU biases. All variables are expressed in a global frame. We use classic preintegration

to form binary factors between pairs of estimated states in the sliding window [55]. At each iteration

of the optimization, we integrate the IMU measurements to extrapolate for the state at each IMU
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Figure 8.9: This figure depicts a factor graph of our baseline approach that uses IMU measurements
to de-skew the pointcloud and to form relative motion priors using classic preintegration. The
larger triangles represent the estimation times that form our sliding window. The state x(tk) =
{Civ(tk), r

vi
i (tk),v

vi
i (tk),b(tk)} includes the orientation and position in a global frame, the velocity

in a global frame, and the IMU biases. The grey-shaded state xk−2 is next to be marginalized.
The smaller triangles are extrapolated states that we do not directly estimate during optimization.
Instead, we extrapolate for these states using IMU integration starting at an estimated state. The
factor graph includes a unary prior on xk−2 to denote the prior information from the sliding window
filter

measurement time using

Cj = Ci

j−1∏

k=i

exp (∆tk(ω̃k − bω(tk))
∧) , (8.27a)

vj = vi + g∆tij +

j−1∑

k=i

Ck(ãk − ba(tk))∆tk, (8.27b)

rj = ri +

j−1∑

k=i

[
vk∆tk +

1

2
g∆t2k +

1

2
Ck(ãk − ba(tk))∆t

2
k

]
. (8.27c)

The position at a given lidar point time can be obtained by linearly interpolating between the

positions at the IMU measurement times. The orientation at a given lidar point time can be

obtained using the following formula,

C(τj) = C(tℓ)
(
C(tℓ)

TC(tℓ+1)
)α

(8.28)

where α = (τj − tℓ)/(tℓ+1 − tℓ). Using these interpolated states, we can write the point-to-plane

error function as

ep2p,j = nT
j

(
pj −Civ(τj)(Cvsqj + rsvv )− rvii (τj)

)
. (8.29)

The Jacobians of this error function with respect to perturbations to the state variables are provided

in the appendix.

8.5 Lidar-Inertial Simulation
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Figure 8.10: This figure depicts an example lidar pointcloud produced by our simulation, which
contains motion distortion. The pointcloud is coloured based off which wall the lidar point is
reflected

In this section, we compare the performance of our lidar-inertial odometry to the baseline imu-as-

input approach in a simulated environment. The simulated environment is a rectangular room, and

we simulate trajectories using sinusoidal body-centric velocities,

[ϖ(t)]j = Aj sin(2πfjt), (8.30)

where Aj and fj are configurable amplitude and frequency parameters. The resulting body-centric

acceleration can be obtained via differentiation,

[ϖ̇(t)]j = Aj2πfj cos(2πfjt). (8.31)

We then step through the simulation to replicate the lidar firing sequence of a Velodyne Alpha-

Prime 128-beam lidar, obtaining the pose of the sensor for each firing sequence. Starting with

T0 = Tvi(t0) = 1,

Tk+1 ≈ exp

((
ϖ(tk)∆tk +

1

2
∆t2kϖ̇(tk)

)∧
)
Tk, (8.32)

where ∆tk is very small (53.3µs). By generating the trajectories in this way, it is straightforward

to extract the body-centric angular velocity and linear acceleration to simulate IMU measurements.

We use the measurement model in (8.22) to simulate biases and gravity components. We simulate

a constant nonzero bias on each gyroscope and accelerometer axis. We include zero-mean Gaussian

noise on IMU measurements and Gaussian noise on the range measurement of each lidar point. We

chose measurement noises that were close to what we experienced on our experimental platform.

Figure 8.10 depicts an example pointcloud produced in our simulation environment where the points

are coloured based on which wall they are reflected. Figure 8.11 compares the trajectory estimated

by our lidar-inertial odometry with the ground truth.

For the simulation parameters, we use an IMU rate of 200Hz, a simulation length of 20s, and

three motion regimes denoted slow, medium, and fast. For each of these motion regimes, we ran-

domly sample the amplitudes and frequencies of the body-centric velocities used in the simulation of

a sequence. Table 8.1 gives the ranges for these parameters. One set of amplitudes and frequencies
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Table 8.1: Lidar-inertial simulation parameter ranges for the different motion regimes.

Slow Medium Fast

Linear Velocity Amplitude [m/s] A ∈ [0.1, 0.5] A ∈ [0.5, 1.0] A ∈ [1.0, 2.0]

Angular Velocity Amplitude [rad/s] A ∈ [0.1, 0.5] A ∈ [0.5, 1.0] A ∈ [1.0, 2.0]

Linear Velocity Frequency [Hz] f ∈ [0.5, 1.0] f ∈ [1.0, 2.0] f ∈ [2.0, 4.0]

Angular Velocity Frequency [Hz] f ∈ [1.0, 2.0] f ∈ [2.0, 4.0] f ∈ [4.0, 8.0]

Table 8.2: Simulation results. Root Mean Squared Absolute Trajectory Error (m). For each speed
category (slow, medium, fast), 20 randomized sequences were created. The results in this table are
the overall root mean squared absolute position error across 20 sequences, for each approach

Slow Medium Fast

Baseline (IMU as Input) 0.0026 2.1734 Failed

Singer-LIO 0.0026 0.0025 0.0208

Singer-LO + Gyro 0.0052 0.0085 0.0445

Singer-LO 0.0012 12.34 Failed

is sampled for each of the 20 sequences simulated for the three motion regimes. We set the standard

deviation of the accelerometer measurement noise to 0.02 m/s
2
, the standard deviation of the gyro-

scope measurement noise to 0.01 rad/s, and the standard deviation of the lidar range measurements

to 0.02m. The accelerometers were given a constant bias of 0.05 m/s
2
, and the gyroscopes were

given a constant bias of 0.05 rad/s.

We compare the performance of our lidar-inertial odometry against the baseline in Table 8.2,

where we also show the performance of our approach using lidar only, and the gyroscope and lidar

only. We obtained the results by computing the absolute trajectory error between our estimated

trajectories and the ground truth using the evo evaluation tool1. The results in the table are the

overall root mean squared error obtained by concatenating the error from each sequence. The results

show that in the low-speed regime, the imu-as-input baseline approach and our imu-as-measurement

approach based on the Singer prior achieve nearly identical results. This is unsurprising as it appears

to replicate the results from Section 8.2.4. Interestingly, our lidar-only approach performs the best

on the slow regime. However, in the medium and fast regime, the advantage of our lidar-inertial

approach becomes apparent. In the medium regime, the baseline imu-as-input approach begins to

break down. This is possibly due to the fact that the motion is no longer approximately constant

acceleration and constant angular rate. On the other hand, our lidar-inertial approach performs

roughly the same in the medium regime. Our lidar-only approach also breaks down in the medium

regime. In the fast regime, our lidar-inertial and lidar with gyro approaches achieve respectable

results, while the lidar-only approach and the imu-as-input baseline fail.

8.6 Experimental Results

In this section, we provide experimental results on the Newer College Dataset [123]. This dataset

features a 64-beam Ouster lidar and provides the internal IMU measurements of the Ouster lidar.

1https://github.com/MichaelGrupp/evo

https://github.com/MichaelGrupp/evo
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Figure 8.11: This figure depicts the results of our lidar-inertial simulation where the ground truth
position (dashed line) is compared to the position estimated by Singer-LIO coloured by the absolute
position error. This trajectory is an example of one of the slow sequences

Ground-truth poses were obtained by matching live lidar poses to a map of the environment created

using a survey-grade lidar at several stationary poses. This dataset is somewhat unique because it

features several sequences with highly dynamic motions. In Table 8.3, we compare the performance

of using our continuous-time Singer prior using lidar only (Singer-LO), lidar and a gyroscope only

(Singer-LO + Gyro), and a full lidar-inertial setup including an accelerometer (Singer-LIO). We

also compare the performance of our approach to some comparable works in the literature such as

CT-ICP [48], a lidar-only approach, FAST-LIO2 [156] and DLIO [44], which can be considered the

prior state of the art for this dataset, and SLICT [108] and CLIO [96], which are two continuous-time

approaches that use linear interpolation and B-splines, respectively.

Our approach, Singer-LIO, demonstrates the best performance on the 01-Short and 02-Long

sequences and also demonstrates the best overall performance. Interestingly, the sequences in which

we expected the IMU to make the most difference were 05-Quad w/ Dynamics and 06-Dynamic

Spinning due to their dynamic motions. However, we observe that in these sequences, our lidar-only

approach performs similarly or even better, replicating the results of our lidar-inertial simulation.

It appears that, in this dataset, the addition of an IMU mainly helps in areas with geometric

degeneracies rather than the areas with dynamic motions. Sequences 05-Quad w/ Dynamics and

06-Dynamic Spinning are very similar to our lidar-inertial simulation in the slow regime, as they are

conducted in a rectangular quad at New College, Oxford. FAST-LIO2 and DLIO can be considered

state-of-the-art IMU-as-input approaches, and our approach demonstrates a clear advantage over

these methods.
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Table 8.3: Newer College dataset results. Root Mean Squared Absolute Trajectory Error (m).
Estimated trajectory aligned with ground truth using Umeyama algorithm. ∗ uses loop closures, †

results obtained from [44], ‡ uses camera images

Newer College Dataset 01-Short 02-Long 05-Quad w/ Dynamics 06-Dynamic Spinning 07-Parkland Mound Overall

CT-ICP∗ [48] 0.36

KISS-ICP† [151] 0.6675 1.5311 0.1040 Failed 0.2027

FAST-LIO2† [156] 0.3775 0.3324 0.0879 0.0771 0.1483 0.3152

DLIO [44] 0.3606 0.3268 0.0837 0.0612 0.1196 0.3048

SLICT∗ [108] 0.3843 0.3496 0.1155 0.0844 0.1290 0.3263

CLIO∗‡ [96] 0.408 0.381 0.091

Singer-LO (Ours) 0.4543 Failed 0.1120 0.0804 Failed

Singer-LO + Gyro (Ours) 0.3044 0.3267 0.1092 0.0818 0.1457 0.2887

Singer-LIO (Ours) 0.3020 0.3186 0.1091 0.0821 0.1411 0.2832

8.7 Conclusions

In this chapter, we compared treating an IMU as an input to a motion model vs. treating it as

a measurement of the state. On a 1D simulation problem, we showed that these two approaches

performed identically when the data is sampled from either a constant velocity or constant accel-

eration prior and both methods are trained on a hold-out set. We demonstrated our approach to

continuous-time lidar-inertial odometry using the Singer prior, where body-centric acceleration is

included in the state. Our simulated environment showed that our lidar-inertial odometry outper-

formed lidar-only odometry and an IMU-as-input baseline approach. On the Newer College Dataset,

we demonstrated state-of-the-art results. There is still plenty of work to be done to treat IMU mea-

surements as measurements of the state. Similar to non-uniform B-splines, it would be interesting

to investigate a setup where the parameters of the Singer prior are adjusted on the fly to adjust

between smooth vs. highly dynamic motion periods. When the IMU is treated as a measurement

of the state, this allows us now to incorporate exogenous control inputs into our Gaussian process

motion prior. This could be a promising area of research for estimating the state of drones where the

torque commanded to the motors is often known. Our approach to combining multiple asynchronous

high-rate sensors may prove beneficial in other sensor configurations, such as multiple asynchronous

IMUs. Although we achieved state-of-the-art performance using our Singer-LIO, the algorithm is

not quite real-time. In addition, the lidar-only version of our approach, Singer-LO, is somewhat

brittle. These shortcomings informed the design of our lidar-inertial and radar-inertial odometry

in the following chapter, where we instead employ a white-noise-on-acceleration motion prior and

choose to preintegrate accelerometer measurements to form relative body-centric velocity factors.



Chapter 9

Continuous-Time Radar-Inertial

Odometry

In Chapter 7, we showed that lidar localization can still function under moderate levels of pre-

cipitation [30]. Nevertheless, radar may perform better under more extreme weather conditions.

Furthermore, radar-based localization may be valuable as a redundant backup system in safety-

critical applications. Our goal in this chapter is to tackle the problem of aggressive motion using

continuous-time state estimation and an inertial measurement unit (IMU). In addition, we apply

our approach to radar-inertial odometry to address adverse weather conditions. Our secondary goal

is to reduce the performance gap between radar and lidar odometry by incorporating an IMU.

Inertial measurement units play an important role in many robotic estimation systems and are

often fused with low-rate exteroceptive measurements from sensors such as a camera. The addition

of an IMU encourages the estimated trajectory to be locally smooth and helps the overall pipeline to

be more robust to temporary failures of the exteroceptive measurements. Ordinarily, in discrete-time

batch state estimation, one would need to estimate the state at each measurement time. However,

due to the high rate of IMUs (100Hz - 1000Hz), the number of measurement times can become quite

large, and consequently, the computational requirements can become too expensive for real-time

operation.

To address this problem, Lupton and Sukkarieh [95] proposed to preintegrate IMU measurements

between pairs of consecutive camera measurements to combine them into a single relative motion

factor. This significantly improves runtime since we only need to estimate the state at each camera

measurement. Forster et al. [55] then showed how to perform on-manifold preintegration within

the space of 3D rotations, SO(3). Recently, Brossard et al. [26] demonstrated how to perform on-

manifold preintegration within the space of extended poses, SE2(3), which captures the uncertainty

resulting from IMU measurements more consistently.

Classical preintegration was designed to address the problem of combining a low-rate sensor

with a high-rate inertial sensor. However, in some cases, we must work with multiple high-rate

sensors such as a lidar or radar and an IMU. While lidar sensors typically spin at around 10Hz, the

laser measurements are acquired at a much higher rate, on the order of 10kHz. At this rotational

rate (10Hz), the robot’s motion causes the pointclouds to become distorted due to the scanning-

while-moving nature of the sensor. Our previous work addressed this motion-distortion effect using

90
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Figure 9.1: A lidar map generated of the University of Toronto obtained during a sequence of the
Boreas dataset. This high-quality map is generated as a byproduct of our odometry pipeline. The
pointcloud is coloured by intensity.

continuous-time point-to-point factors and a Gaussian process motion prior [30]. This allowed us

to estimate the sensor’s pose and body-centric velocity while undistorting the data. Given this

previously demonstrated success, we are motivated to apply our continuous-time techniques to radar-

inertial and lidar-inertial odometry. It is possible to employ a constant-velocity assumption [151]

when the motion of a robot is relatively smooth, such as in the case of heavy ground robots.

However, continuous-time approaches present considerable advantages when working with highly

dynamic motions, such as in the case of drones or walking robots. Using the Newer College Dataset,

we will demonstrate this in the experimental results section.

We aim to treat the lidar, radar, and IMU all as high-rate measurements using continuous-

time estimation. We are thus faced with the choice of picking a suitable Gaussian process motion

prior. In this chapter, we use a white-noise-on-acceleration motion prior [10]. In this setup, angular

velocity and body-centric linear velocity are a part of our state. As such, we treat the gyroscope as

a direct measurement of the state rather than preintegrating it. However, since acceleration is not

a part of the state, we still need to preintegrate the accelerometer measurements to form relative

velocity factors. We only need to integrate the accelerometer measurements once, as we rely on the

Gaussian process estimation framework to do the remaining integration into position. Other motion

prior factors are also possible, such as white-noise-on-jerk [143], or the Singer prior [154], both of

which include body-centric acceleration in the state. Our experiments showed that including these

higher-order derivatives in the state sometimes improved performance. However, the effect was not

consistent across datasets. Furthermore, we observed that including acceleration in the state made

the overall pipeline less reliable; thus, we opted not to include it.

Another work that employed Gaussian processes in continuous-time state estimation is that of

Le Gentil and Vidal-Calleja [87]. They proposed to model the state using six independent Gaussian

processes, three for angular velocity and three for linear acceleration. They estimate the state of

the Gaussian processes at several inducing points given the measurements and then analytically

integrate these Gaussian processes to form relative motion factors on position, velocity, and rotation

in a manner similar to classical preintegration. They use a squared exponential kernel, which misses

out on the potential benefits of using a sparse kernel. As a result, the computational complexity

of their approach is O(J3 + J2N) while ours is only O(J +N) where J is the number of inducing

points and N is the number of query times. In our approach, all six degrees of freedom are coupled
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through the motion prior. Consequently, our approach has the potential to provide better calibrated

covariance estimates. Their exponential kernel results in a fully connected factor graph, so dividing

a longer trajectory into a sequence of local chunks effectively drops connections from the graph. In

our approach, dividing a longer trajectory into a sequence of local GPs is less of an approximation

due to the Markovian nature of the state that results from a sparse kernel. In addition, our approach

can still perform continuous-time lidar odometry during IMU measurement dropout by falling back

on the Gaussian process motion prior. Our approach is tightly coupled since we directly include

IMU measurements in the pointcloud alignment optimization. In contrast, their approach uses the

IMU to undistort the scans before the alignment optimization. Another important difference is how

we compensate for motion distortion. [87] undistorts pointclouds using the upsampled preintegrated

IMU measurements, whereas our approach uses the posterior of our continuous-time trajectory,

which includes both IMU and lidar measurements. In Figure 9.1, we provide a qualitative example

of a lidar map generated using our approach.

Finally, it should be noted that our work focuses on the back-end continuous-time state estimation

and is compatible with other works that focus on the front-end pointcloud preprocessing, submap

keyframing strategy, and efficient map storage improvements [156, 44]. Also, our framework supports

adding additional continuous-time measurement factors such as wheel odometry and Doppler velocity

measurements [155]. We provide experimental results in the autonomous driving domain and using

a hand-held sensor mast demonstrating that our approach is generalizable to different domains.

9.1 Related Work

Radar-inertial odometry literature tends to focus on either low-cost consumer-grade radar for resource-

constrained applications such as UAVs or automotive-grade radar for large-scale outdoor applica-

tions. Examples of prior work using consumer-grade radar include [82, 8, 115, 52, 99, 100, 42, 72].

Examples of prior work using automotive radar include [106, 164, 84]. The work closest to ours is

that of Ng et al. [106], which demonstrated continuous-time radar-inertial odometry using four auto-

motive radars. In our approach, we use a Gaussian process motion prior to enable continuous-time

trajectory estimation whereas their approach uses cubic B-splines. Another important difference

is that our approach uses continuous-time point-to-plane factors. In contrast, their approach uses

only the Doppler velocity measurements from each sensor in conjunction with an IMU. The radar

used in this thesis does not currently support Doppler velocity measurements. However, we have

previously shown that our continuous-time motion prior supports incorporating these measurement

factors when they are available [155]. To our knowledge, our work is the first to demonstrate radar-

inertial odometry using a spinning mechanical radar. Previous works have used a combination

of wheel odometry and single-axis gyroscopes [128, 103, 150] to compensate for motion distortion

and as a prediction step in a filter. In contrast, our work fuses both gyroscope and accelerometer

measurements with point-to-point factors using our continuous-time framework.

The radar and lidar sensors used in this thesis rely on mechanical actuation. As a consequence,

these sensors suffer from a motion-distortion effect while moving. In addition, it is difficult to com-

bine these sensors with asynchronous IMU measurements without resorting to ad-hoc interpolation

schemes. These challenges motivate the use of continuous-time trajectory estimation. Figure 9.2

illustrates the high-rate and asynchronous nature of the sensor measurements.
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Figure 9.3: This figure depicts a factor graph of our sliding window lidar-inertial odometry using

a continuous-time motion prior. The larger triangles represent the estimation times that form our

sliding window. The state x(t) = {T(t),ϖ(t),b(t)} includes the pose T(t), the body-centric veloc-

ity ϖ(t), and the IMU biases b(t). The grey-shaded state xk−2 is next to be marginalized and is

held fixed during the optimization of the current window. The smaller triangles are interpolated

states that we do not directly estimate during optimization. Instead, we construct continuous-time

measurement factors using the posterior Gaussian process interpolation formula in Equation 3.31.

The ICP measurement times and gyroscope measurement times may be asynchronous. The prein-

tegrated velocity factors do not need to align with the estimated state times and could be between

two interpolated states. We include a unary prior on xk−2 to denote the prior information from the

sliding window filter.

9.2 Radar-Inertial and Lidar-Inertial Odometry

This section describes our lidar-inertial odometry, which is implemented as sliding-window batch

trajectory estimation. The factor graph corresponding to our approach is depicted in Figure 9.3.

The state x(t) = {T(t),ϖ(t),b(t)} consists of the SE(3) pose Tvi(t), the body-centric velocity

ϖvi
v (t), and the IMU biases b(t). We use a white-noise-on-acceleration prior, as defined in (3.17).

Our IMU measurement model is given in (8.22). Due to angular velocity being a part of the state,

t

Radar

IMU

State

Figure 9.2: This figure illustrates our asynchronous sensor timing where states are estimated for each
scan obtained by the radar. Our radar outputs measurements at 1600Hz while our lidar outputs
unique timestamps at roughly 40kHz and our IMU outputs measurements at 200Hz.
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the associated gyroscope error function is straightforward:

Jω,ℓ =
1

2
eTω,ℓR

−1
ω eω,ℓ, (9.1a)

eω,ℓ = ω̃ℓ − ω(τℓ)− bω(τℓ). (9.1b)

We preintegrate accelerometer measurements over a short temporal window tk ≤ τ1 < · · · < τN <

tk+1 to form a relative velocity factor,

∆ν(tk+1, τ1) =

N∑

n=1

(
ãn +Cvi(τn)gi − ba(τn)

)
∆tn, (9.2)

where the associated factor is given by

Ja,k =
1

2
eTa,kRa(tk+1, τ1)

−1ea,k, (9.3a)

ea,k = ν(tk+1)− ν(τ1)−∆ν(tk+1, τ1). (9.3b)

The covariance associated with the preintegrated velocity factor is Ra(tk+1, τ1) =
∑

n Ra∆t
2
n.

In error functions (9.1b) (9.3b), we use a continuous-time interpolation of the state. We use the

posterior GP interpolation formula (3.31) to interpolate for the measurement times. Interpolating

the state at a given measurement time effectively converts a unary measurement factor into a binary

factor between the two bracketing estimation times. For example, a first-order linearization of the

gyroscope error is given by

eω,ℓ ≈ ēω,ℓ +
∂eω,ℓ

∂δω(τℓ)

(
∂δω(τℓ)

∂δxk
δxk +

∂δω(τℓ)

∂δxk+1
δxk+1

)
, (9.4)

where we have included the Jacobians of the perturbation at the interpolated time τℓ with respect

to the perturbations at the bracketing estimation times (tk, tk+1). We provide these interpolation

Jacobians in the Appendix. Using the posterior interpolation formula in this way is an approximation

as this is not equivalent to marginalizing out the measurement times. However, we have found this

approximation to be fast and to work well in practice. The computational cost of our approach

scales linearly with both the number of estimation times and the number of measurement times.

This is different from the approach of Le Gentil and Vidal-Calleja [87], where the computational

cost of preintegration scales with the cube of the number of estimation times in the preintegration

window.

We use point-to-plane factors similar to iterative closest point (ICP). The associated error func-

tion is

Jp2p,j = eTp2p,jR
−1
p2p,jep2p,j , (9.5a)

ep2p,j = αjn
T
j D(pj −Tvi(τj)

−1Tvsqj), (9.5b)

where qj is the query point, pj is the matched point in the local map, nj is an estimate of the

surface normal at pj given neighboring points in the map, D is a constant matrix removing the

homogeneous component, Tvs is an extrinsic calibration between the lidar frame and the vehicle

frame, and αj = (σ2 − σ3)/σ1 [48, 49] is a heuristic weight to favour planar neighborhoods. Query
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Figure 9.4: This figure depicts the simple architecture diagram for STEAM-LIO. In the radar-based
pipelines, keypoints are first extracted using a constant false alarm rate (CFAR) detector. In the
lidar-based pipelines, we randomly shuffle the order of the points and then downsample using a
coarse voxel grid. At the optimization stage, we alternate between finding correspondences between
the live undistorted pointcloud and the sliding local map, and estimating the trajectory using sliding
window batch trajectory estimation. The inner loop of the optimization stage involves optimizing
a nonlinear least-squares problem with Gauss-Newton. At the map maintenance stage, we add
registered points to the sliding local map, and optionally cull voxels that have been unobserved for
several consecutive frames.

points are matched to a sliding local voxel map centred on the current estimate of the robot’s position.

Once a voxel has reached its maximum number of allocated points, new points are not added. This

helps to keep the state estimate from exhibiting a random walk while stationary by keeping the

map fixed. Depending on the dataset, we clear voxels in the map if they have not been observed

for approximately one second. We found this to be important in the Boreas dataset, especially

for sequences with snowstorms where erroneous snow detections would accumulate in the map and

eventually cause ICP to fail by drastically increasing the number of outlier points. Interestingly, the

addition of IMU measurements made our lidar-inertial pipeline more robust to this accumulation of

noise.

Our Gaussian process prior introduces a set of motion prior factors between estimation times,

which penalizes the state for deviating from a constant velocity. These motion prior factors are

defined in (3.25a) (3.25b). We also include motion prior factors for the IMU biases,

Jv,b,k =
1

2
eTv,b,kQ

−1
b,kev,b,k, (9.6a)

ev,b,k = b(tk+1)− b(tk), (9.6b)

where Qb,k = Qb∆tk is the covariance resulting from a white-noise-on-velocity motion prior, and Qb

is the associated power spectral density matrix. The objective function that we seek to minimize is

then

J =
∑

k

Jv,k +
∑

j

Jp2p,j +
∑

ℓ

Jω,ℓ +
∑

k

Ja,k. (9.7)

We solve this nonlinear least-squares problem for the optimal perturbation to the state using

Gauss-Newton. Once the solver has converged, we update the pointcloud correspondences and

iterate this two-step process to convergence. In practice, we typically limit the maximum number

of inner-loop Gauss-Newton iterations to 5, and the number of outer-loop iterations to 10 to enable

real-time operation.
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Algorithm 1 STEAM-LIO

Input: map: {pi}, new frame: {qj , τj}, IMU: {ω̃ℓ, ãℓ},
x̂(t),A, c from previous iteration

Output: x̂(t) = {T̂(t), ϖ̂(t), b̂(t)} where t ∈ [tk−2, tk]

1: T(tk)← exp(∆tkϖ(tk−1)
∧)T(tk−1)

2: ϖ(tk)←ϖ(tk−1), b(tk)← b(tk−1)
3: x̂(t),A, c← SlideWindow(x̂(t),A, c,xk)
4: {qj , τj} ← Downsample({qj , τj})
5: x ← 0, ||∆x|| ← ∞
6: while ||∆x|| > Touter ∧ x < Nouter do
7: {q̄j} ← Undistort({qj , τj}, x̂(t))
8: {pj ,nj} ← Matching({pi}, {q̄j})
9: J ← Jv(xk−1,xk) + Jω(x(t), {ω̃ℓ})

+ Ja(x(t), {ãℓ}) + Jp2p(x(t), {pj ,nj ,qj , τj})
10: y ← 0, ||δx|| ← ∞,∆J ←∞,xprev ← x̂(t)
11: while ||δx|| > Tinner ∧∆J > δJ ∧ y < Ninner do
12: A, c← buildAndUpdateGN(A, c, J, x̂(t))
13: δx← CholeskySolve(A, c)
14: x̂(t)← UpdateState(x̂(t), δx)
15: J,∆J ← UpdateCost(x̂(t), J)
16: y ← y + 1
17: end while
18: ||∆x|| ← Dist(xprev, x̂(t))
19: x← x+ 1
20: end while
21: {pi} ← UpdateMap({pi}, {qj , τj}, x̂(t))

9.2.1 Implementation Details

Algorithm 1 provides pseudocode for STEAM-LIO at a high level, and Figure 9.4 depicts the software

architecture for our approach. We first initialize the new state using constant velocity for a new

lidar frame. We then slide the estimation window forward and marginalize out states that are no

longer involved in the current optimization problem. For lidar odometry, a coarse voxelization of the

input pointcloud is then performed where the default is 1.5m. At each iteration of the outer loop,

we first undistort the lidar frame using the posterior trajectory estimate of the previous iteration to

obtain correspondences between the live frame and the local map. We then build the optimization

problem given the set of lidar factors, IMU measurements, and motion prior factors derived from

the Gaussian process motion. This optimization problem is then minimized using Gauss-Newton.

Finally, the undistorted points are added to the sliding local map. The local map also has a coarse

discretization of 1.0m, but we allow up to 20 points in each voxel with a minimum point distance of

0.1m. CT-ICP inspired this voxelization strategy [48].

To achieve real-time performance, we found it necessary to implement timestamp binning, where

the original timestamp frequency is downsampled to reduce the number of state interpolations and

associated Jacobians that need to be computed. For the KITTI-raw and Newer College Dataset, we

downsample lidar timestamps to 5kHz. For the Boreas dataset, we downsample lidar timestamps to

400Hz. We have found that reducing the timestamp frequency in this way can retain most of the

benefits of continuous-time state estimation while still operating efficiently.
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9.2.2 Gravity Vector Orientation

In our approach, we estimate the orientation of the gravity vector relative to the initial map frame

at startup. We do this by first estimating the orientation of the gravity frame using an initial set of

accelerometer measurements,

J =
∑

n

eTa,nR
−1
a ea,n + ln(Cig)

∨T

P̌−1
g ln(Cig)

∨ + bT
a P̌

−1
b ba, (9.8a)

ea,n = ãn −Cigg − ba, (9.8b)

where we assume that the robot is stationary at startup, and we impose a weak prior on Cig to

constrain the rotational degree of freedom not observed by the accelerometer measurements. This

estimate of the gravity vector orientation then serves as a prior for the gravity vector orientation

included in the state at t = 0. We hold our estimate of the gravity vector orientation fixed once it

has been marginalized from the sliding window.

We experimented with including the gravity vector orientation in the state:

x(t) = {T(t),ϖ(t),b(t),Cig(t)}. In this case, we include a motion prior factor for the gravity vector

orientation,

Jv,g,k =
1

2
eTv,g,kQ

−1
g,kev,g,k, (9.9a)

ev,g,k = ln(Cig(tk)Cig(tk+1)
−1)∨, (9.9b)

In our experiments, we did not observe any benefit from including the gravity vector orientation

in the state. However, some recent work by Nemiroff et al. [105] has shown that it can be beneficial

to mapping accuracy in challenging scenarios.

9.2.3 Sliding Window Marginalization

In our approach, we perform sliding window batch trajectory estimation. The length of the sliding

window is equivalent to two lidar frames or roughly 200ms. We output the pose in the middle of

the newest lidar frame so that the latency is equivalent to competing approaches. In Figure 9.3,

the darkly shaded state xk−2 is slated to be marginalized and is held fixed during optimization.

However, there are still several continuous-time measurement factors between states xk−2 and xk−1.

At each iteration of our Gauss-Newton solver, we first interpolate the state at each measurement

time and update the associated measurement Jacobians before marginalizing xk−2. For example,
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Figure 9.5: Odometry results on the KITTI-raw dataset. Sequences shown from left to right are 00,

02, 07, 08. The ground-truth trajectory is shown as a solid red line, and the STEAM-LO trajectory

estimate is shown as a blue dashed line. Note that the estimated trajectory was computed online

with a sliding window of 200ms and does not use any loop closures.

9.2.4 Radar-Inertial Odometry

The architecture of our radar-inertial odometry is largely the same as our lidar-inertial odometry.

We note the important differences here. The radar we use in this chapter is the Navtech CIR304-

H, a mechanical spinning radar providing a 360◦ horizontal field of view. This sensor is 2D only;

as such, we do not estimate the gravity vector’s orientation and remove the gravity term from

the preintegrated velocity factor in (9.2). The Navtech sensor outputs a raw polar radar image

corresponding to a power vs. range spectrum for each scanned azimuth. We use a constant false

alarm rate (CFAR) detector with an additional constant threshold tuned to the noise floor of the

sensor [7] where we retain the maximum of the left and right subwindows, a variant known as GO-

CFAR [125]. The output of CFAR detection is a pointcloud that we register to a sliding local map.

When a voxel in the map has not been observed for several consecutive frames (one second), we delete

the points in this voxel. Without this map maintenance procedure, we have found that our radar

odometry tends to fail due to the significant amount of noise in the radar pointclouds. The Navtech

radar scans each azimuth only once, and as such, range measurements are corrupted by a Doppler

distortion dependent on the robot’s egomotion [28]. The Doppler-compensated point-to-point ICP

error for radar odometry is then

ep2p,j = ρ
(
D
(
pj −T(τj)

−1Tvs(qj +∆qj)
))
, (9.12a)

∆qj = βDTaja
T
j Dq⊙

j T svϖ(τj), (9.12b)

and where ρ(·) is a Cauchy robust cost function, D is a constant matrix that removes the homoge-

neous component, pj is a reference point in the local map, T(τj) is the continuous-time interpolation

of the robot pose, Tvs is an extrinsic transformation between the sensor and vehicle frame, qj is the

live query point, ∆qj is an additive correction factor to compensate for the Doppler distortion, β is

Doppler distortion constant inherent to the sensor [28], aj is a 3× 1 unit vector in the direction of

qj , the ⊙ operator swaps the order of the operands associated with the skew-symmetric ∧ operator

[16], and T sv = Ad(Tsv).
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Table 9.1: KITTI-raw results (22km / 0.6h): KITTI RTE (%). The average is computed over all
segments of all sequences as in [48]. Note that CT-ICP optimizes one lidar frame at a time, while
our algorithm optimizes two frames in a sliding window. For a fair comparison, we evaluate our
algorithm using the estimated poses at the front of the window (i.e., newest timestamp).

KITTI-raw 00 01 02 03 (N/A) 04 05 06 07 08 09 10 Overall Seq. Avg. ∆T

CT-ICP [48] 0.51 0.81 0.55 0.43 0.27 0.28 0.35 0.80 0.47 0.49 0.55 0.50 65ms [48]

KISS-ICP [151] 0.51 0.71 0.54 0.35 0.31 0.26 0.32 0.83 0.49 0.58 0.55 0.49 26ms [151]

STEAM-ICP [155] 0.49 0.65 0.50 0.38 0.26 0.28 0.32 0.81 0.46 0.53 0.52 0.47 138ms

Constant Velocity 0.60 1.62 0.60 0.36 0.30 0.27 0.37 0.92 0.52 0.90 0.66 0.65 44ms

STEAM-LO (Ours) 0.49 0.63 0.51 0.38 0.26 0.30 0.33 0.84 0.49 0.49 0.53 0.47 89ms

9.3 Experimental Results

We provide experimental results on three datasets, KITTI-raw [61], the Newer College Dataset

(NCD) [123], and the Boreas dataset [31]. KITTI-raw was chosen as it is a popular dataset for

benchmarking lidar odometry. The raw version of the dataset contains the motion-distorted point-

clouds, whereas the original version is motion-compensated using GPS poses. Since this work aims

to demonstrate continuous-time state estimation using motion-distorted sensors, we present results

for KITTI-raw and not the original KITTI dataset. The Newer College dataset was chosen as it has

become a standard dataset for benchmarking lidar-inertial odometry. The NCD dataset is somewhat

unique in that it features several sequences with aggressive high-frequency motions obtained using

a handheld sensor mast. These types of trajectories are rarely observed when working with heavy

ground robots. Finally, we provide results using the Boreas dataset to demonstrate continuous-time

radar inertial odometry and provide a detailed comparison with lidar. We provide average runtime

estimates in all experiments using an Intel Xeon CPU E5-2698 v4 with 16 threads.

For the lidar-based pipelines, we use the same parameters for the diagonal of Q, the power

spectral density matrix, diag(Q) = {50, 50, 50, 5, 5, 5}. These parameters were obtained by tuning

on a training split of the Boreas dataset and were verified to work well on KITTI-raw and the Newer

College Dataset. The diagonal of Q−1 can be understood as weighting cost terms on body-centric

acceleration. We separately tune the IMU measurement covariances and bias motion priors for

Boreas and the Newer College Dataset. We downsample lidar timestamps to 400Hz on the Boreas

dataset to achieve real-time performance. However, as we could already run in real-time, we do

not downsample timestamps on KITTI-raw or the Newer College Dataset. On the Boreas dataset,

we clear voxels that have not been observed for one second. We incrementally build a map on the

Newer College Dataset to enable implicit loop closures by revisiting previously mapped areas.

9.3.1 KITTI-Raw Results

The KITTI dataset was collected in Karlsruhe, Germany, using an autonomous driving platform

with a 64-beam Velodyne lidar and an OXTS RTK GPS. The dataset was primarily collected in

an urban environment with some sequences including a brief highway portion. Table 9.1 shows our

quantitative results. We compare ourselves against CT-ICP and KISS-ICP, which represent the

state of the art on this dataset. We also compare ourselves against our previously published work,

STEAM-ICP [155]. We include two different methods for aggregating the results across sequences.

In the Overall column, we concatenate the subsequence errors of the KITTI metric and average

across these. In the Sequence Error column, we simply average the results for each sequence. The
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Table 9.2: Newer College dataset results (6km / 1.3h): root mean squared ATE (m). Trajectories
are aligned with the ground truth using the Umeyama algorithm. ⋆ uses explicit loop closures, †
results obtained from [43], ‡ uses camera.

Newer College Dataset 01-Short 02-Long 05-Quad w/ Dynamics 06-Dynamic Spinning 07-Parkland Mound ∆T

CT-ICP⋆ [48] 0.36 430ms [48]

KISS-ICP† [151] 0.6675 1.5311 0.1040 Failed 0.2027 167ms†

FAST-LIO2† [156] 0.3775 0.3324 0.0879 0.0771 0.1483 43ms†

DLIO [44] 0.3606 0.3268 0.0837 0.0612 0.1196 36ms [44]

SLICT⋆ [108] 0.3843 0.3496 0.1155 0.0844 0.1290

CLIO⋆‡ [96] 0.408 0.381 0.091

Constant Velocity 0.8558 2.5792 0.3575 Failed 0.5960 163ms

STEAM-LO (Ours) 0.3398 0.4546 0.1083 0.0802 0.1537 138ms

STEAM-LO + Gyro (Ours) 0.3055 0.3340 0.1090 0.0824 0.1444 76ms

STEAM-LIO (Ours) 0.3042 0.3372 0.1086 0.0821 0.1444 74ms

Table 9.3: Boreas Odometry Results (102km / 4.3h): translational drift (%) / rotational drift
(deg/100m). The first three columns are evaluated in SE(3) whereas the last four columns are
evaluated in SE(2).

Boreas VTR3-Lidar [30] STEAM-LO STEAM-LIO STEAM-LO(SE2) VTR3-Radar [30] STEAM-RO STEAM-RIO

2020-12-04 0.49 / 0.14 0.41 / 0.13 0.39 / 0.13 0.13 / 0.05 1.92 / 0.53 1.43 / 0.41 0.93 / 0.26

2021-01-26 0.51 / 0.16 0.62 / 0.21 0.53 / 0.18 0.30 / 0.11 2.27 / 0.66 1.10 / 0.33 0.61 / 0.18

2021-02-09 0.49 / 0.14 0.38 / 0.13 0.38 / 0.13 0.14 / 0.06 1.94 / 0.59 1.27 / 0.38 0.63 / 0.20

2021-03-09 0.57 / 0.17 0.47 / 0.15 0.46 / 0.15 0.13 / 0.05 2.00 / 0.59 1.24 / 0.35 0.71 / 0.19

2020-04-22 0.49 / 0.15 0.39 / 0.13 0.39 / 0.13 0.13 / 0.05 2.56 / 0.63 1.48 / 0.41 0.99 / 0.27

2021-06-29-18 0.58 / 0.17 0.48 / 0.16 0.48 / 0.16 0.14 / 0.06 1.86 / 0.56 1.55 / 0.46 1.04 / 0.29

2021-06-29-20 0.62 / 0.18 0.52 / 0.17 0.52 / 0.17 0.16 / 0.06 1.94 / 0.59 1.70 / 0.48 0.96 / 0.26

2021-09-08 0.57 / 0.17 0.47 / 0.16 0.47 / 0.16 0.16 / 0.06 1.88 / 0.57 2.01 / 0.59 1.22 / 0.35

2021-09-09 0.63 / 0.19 0.52 / 0.18 0.55 / 0.19 0.20 / 0.06 1.98 / 0.60 2.16 / 0.64 1.19 / 0.33

2021-10-05 0.59 / 0.17 0.50 / 0.16 0.49 / 0.16 0.16 / 0.06 2.87 / 0.78 2.27 / 0.63 1.01 / 0.28

2021-10-26 0.48 / 0.14 0.40 / 0.14 0.38 / 0.13 0.14 / 0.06 1.89 / 0.53 1.88 / 0.53 0.97 / 0.27

2021-11-06 0.50 / 0.15 0.40 / 0.14 0.41 / 0.14 0.15 / 0.06 1.24 / 0.34 1.86 / 0.54 1.07 / 0.29

2021-11-28 0.46 / 0.14 0.41 / 0.14 0.37 / 0.13 0.15 / 0.06 1.24 / 0.38 1.95 / 0.57 1.04 / 0.29

Seq. Avg. 0.54 / 0.16 0.46 / 0.15 0.45 / 0.15 0.16 / 0.06 2.02 / 0.58 1.68 / 0.49 0.95 / 0.27

∆T 250ms 88ms 97ms 88ms 75ms 115ms 139ms

results show that our translational drift is slightly lower than CT-ICP and KISS-ICP but not quite

as good as STEAM-ICP. However, our approach is demonstrably real-time, whereas STEAM-ICP

is not. Figure 9.5 provides some qualitative examples of the trajectories estimated by our lidar

odometry. This dataset does not provide raw IMU measurements, so we cannot use it to benchmark

our lidar-inertial odometry. The main purpose of testing on this dataset is to show that, without

an IMU, our implementation of continuous-time lidar odometry is competitive with the state of the

art.

9.3.2 Newer College Dataset Results

The Newer College Dataset was collected using a handheld sensor mast at the University of Oxford.

The dataset includes approximately 6km or 1.3h of data. The sensor suite includes a 64-beam Ouster

lidar and an Intel Realsense camera. Both the Ouster lidar and the Intel camera have internal IMUs.

We use the 100Hz IMU measurements provided by the Ouster to avoid potential time synchronization

problems between the lidar and the IMU. Ground truth for this dataset was obtained by registering

lidar scans in the dataset to a surveyed lidar map of the university campus. Table 9.2 shows our

quantitative results for this dataset. Again, we include CT-ICP and KISS-ICP since they are well-
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known lidar odometry approaches. DLIO [44] and FAST-LIO2 [156] are also included as these

approaches currently represent the state of the art for lidar-inertial odometry. Finally, we include

SLICT [108] and CLIO [96] as these are continuous-time approaches that use linear interpolation

and B-splines, respectively. It is challenging to directly compare to other methods due to significant

difference in front-end preprocessing and map storage strategies. Nevertheless, we show that our

approach is competitive with the state of the art while still being real-time capable. As of writing,

ours is the only continuous-time lidar-inertial odometry with confirmed real-time performance on

the Newer College Dataset. SLICT quotes their average runtime as 205ms on the NTU Viral dataset

[107] using two 16-beam lidars, and CLIO quotes their runtime as being 218s for a 397s sequence

using a single 16-beam lidar. Note that Table 9.2 contains originally published results, except for

the results provided for FAST-LIO2 and KISS-ICP where the results were obtained from [43].
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Figure 9.6: This figure depicts the trajectory estimated by STEAM-LIO during the long sequence

of the Newer College Dataset. The trajectory is coloured according to the absolute trajectory error

when compared against the ground truth. The estimated trajectory was aligned with the ground

truth using the Umeyama algorithm [147].

Interestingly, the sequences with the most aggressive motions (05, 06) displayed the smallest

differences between our continuous-time lidar-only and lidar-inertial odometry. We postulate that

this was due to these sequences being collected in a rectangular quad (shown in Figure 9.7) with

plenty of geometric features for point-to-plane ICP. In this dataset, adding an IMU seems to have

the most noticeable improvement in sequences where brief periods lack sufficient geometric features.

The majority of the lidar-inertial performance improvement seems to come from using the gyroscope

with only a minor additional improvement when the accelerometer is included.

Our lidar-only approach, STEAM-LO, achieves better results on sequence 01-Short than all

of the previous lidar-inertial methods. Furthermore, STEAM-LO performs the best out of the

lidar-only approaches on sequence 06-Dynamic Spinning, where KISS-ICP and our constant-velocity

baseline fail due to the rapid rotations observed in this sequence. It can be seen in Table 9.4

that our continuous-time approach, STEAM-LO, significantly outperforms KISS-ICP, which relies

on a constant-velocity assumption. Our lidar-inertial approach, STEAM-LIO, performs best on

sequence 01-Short while remaining competitive with the other lidar-inertial approaches on the other

sequences. Suppose we compute an overall absolute trajectory error for the entire Newer College

Dataset by concatenating the squared errors across all timestamps of all sequences. In that case, our

approach (0.2946m) outperforms FAST-LIO2 (0.3152m) and DLIO (0.3048m). The performance of

our approach on the Newer College Dataset highlights the value of our continuous-time technique.
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In Figure 9.6, we provide a qualitative example of the trajectory estimated by our approach. In

this case, the trajectory is coloured by the absolute trajectory error (ATE). The estimated trajectory

is first aligned with the ground truth using the Umeyama algorithm [147] before computing the ATE

as defined in [139]. Even though we do not use explicit loop closure factors, we rely on implicitly

closing the loop when we revisit previously mapped areas. This allows us to achieve a low ATE for

an odometry method. Usually, ATE is used to benchmark SLAM approaches and not odometry.

(a) Panoramic image of the courtyard at New College, Oxford

(b) Lidar map of the courtyard coloured by reflectivity

Figure 9.7: In this figure, we provide a qualitative example of the map produced by our lidar-inertial

odometry using the first 150 seconds of the “quad with dynamics” sequence from the Newer College

Dataset [123]. In order to produce this figure, we adjusted configuration parameters to produce a

denser map.

We provide another qualitative example of our lidar-inertial odometry in Figure 9.7, where we

plot the lidar map generated by our approach alongside a panoramic image of the courtyard of New

College, Oxford. In this case, the pointcloud is coloured using the Ouster reflectivity. We used

a finer voxelization to produce a denser map here. This map was produced using the Quad with

Dynamics sequence from the Newer College Dataset, which features dynamic swinging motions of

the sensor mast. Even with this dynamic motion, we can produce a high-quality map.

9.3.3 Ablation Study

In addition to the continuous-time odometry methods presented in this work, we present baseline

results using a constant-velocity assumption. We approximate the body-centric velocity using the
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Figure 9.8: Root mean squared error vs. the number of estimation times per lidar scan for STEAM-
LO for sequence 01-Short of the Newer College Dataset.
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Figure 9.9: Root mean squared error vs. the number of estimation times per lidar scan for STEAM-
LIO for sequence 01-Short of the Newer College Dataset.

following formula, which includes the poses at the two previous timesteps,

ϖ̌k ≈
1

∆tk−1
ln
(
Tk−1T

−1
k−2

)∨
. (9.13)

Using this prediction of the velocity, we can deskew the pointcloud using the following formula,

q̃j := exp((tk − τj)ϖ̌∧
k )Tvsqj . (9.14)

We then reformulate our point-to-plane error function as

ep2p,j = αjn
T
j D(pj −T−1

k q̃j), (9.15)

where we minimize a cost function including these point-to-plane factors using our nonlinear least-

squares solver without including any explicit prior on Tk. We refer to this approach as Constant

Velocity in Table 9.1 and Table 9.2. On the KITTI-raw dataset, the constant-velocity approach

achieves respectable results but is not quite competitive with the state of the art. However, the

approach is computationally efficient. The gap between the constant-velocity approach and our

continuous-time approach is much more apparent on the Newer College Dataset. Similar to KISS-

ICP, our constant-velocity baseline fails on the Dynamic Spinning sequence.

Here, we analyze the effect of varying the number of additional evenly spaced estimation times

for each lidar scan. The default, zero, refers to having an estimation time at the beginning and end
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Figure 9.10: Root mean squared error (RMSE) vs. the lidar timestamp frequency for STEAM-LO
for sequence 01-Short of the Newer College Dataset.
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Figure 9.11: Root mean squared error (RMSE) vs. the lidar timestamp frequency for STEAM-LIO
for sequence 01-Short of the Newer College Dataset.

of each scan. As shown in Figure 9.8, STEAM-LO’s performance improves slightly when increasing

the number of extra estimation times to four. However, the improvement does not continue when

the number of estimation times is increased further. In addition, the runtime increases substantially

by doing so. For STEAM-LIO, the performance is relatively flat when increasing the number of

estimation times, as seen in Figure 9.9. Similar experiments varying the number of estimation times

or basis functions were previously presented in [57, 75].

We also analyze the effect of downsampling the number of unique lidar timestamps. The number

of points is unchanged, but the associated timestamps are rounded to reduce the effective timestamp

frequency. This requires less continuous-time interpolations of the state, and fewer Jacobians need

to be computed during optimization. Overall, the effect is that the continuous-time deskewing is

made coarser, and the required runtime is reduced.

In Figure 9.10, STEAM-LO’s performance worsens noticeably as the lidar timestamp frequency

is reduced. However, at lower timestamp frequencies, STEAM-LO becomes real-time. For STEAM-

LIO, the performance worsens only modestly as the timestamp frequency is reduced, and the reduc-

tion in runtime is also more modest, as depicted in Figure 9.11.

Finally, we analyze the effect of varying the parameters of the diagonal of Q, the power spectral

density matrix, where the default parameters are diag(Q) = {50, 50, 50, 5, 5, 5}.
In Table 9.4, we can see that STEAM-LO is more sensitive to varying the parameters of Q than

STEAM-LIO. The performance of STEAM-LO improves substantially when decreasing Q. The

effect of this reduction is to increase the weight of penalizing the state estimates from deviating
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from a constant velocity. However, STEAM-LO fails when increasing the parameters of Q.

9.3.4 Boreas Results

The Boreas dataset test set features 102km or 4.3h of driving data. See Chapter 4 for more details

on the Boreas dataset. We extract 200Hz raw IMU measurements from the Applanix logs and ensure

that the IMU measurements are not bias-corrected in any way by the GPS. Table 9.3 shows our

quantitative results for this experiment, where we compare several variations of our approach: lidar

odometry, lidar-inertial odometry, radar odometry, and radar-inertial odometry. We also compare

against our previously published work Visual Teach & Repeat 3 (VTR3) [28].

It is somewhat surprising that our lidar-inertial odometry does not do much better than our lidar

odometry here. We hypothesize that for relatively slow-moving ground vehicles, as in the Boreas

dataset, our continuous-time lidar odometry is sufficient to compensate for the motion distortion

in the pointcloud. As such, the additional inertial inputs do not significantly improve performance.

On the other hand, we can see that for radar odometry, including an IMU results in a significant

improvement of 43%. Our interpretation of this result is that, due to the sparsity and noisiness of

the radar data, there is more room for improvement by including an IMU. We improve our results

even further for our competition submission, STEAM-RIO++, described in the appendix.

Another observation is that when we evaluate our lidar odometry in SE(2), we observe a signif-

icant gap in lidar and radar odometry performance. This is somewhat contrary to what has been

shown in prior work where radar odometry appeared to be getting close to the performance of lidar

[4]. One important caveat is that the underlying ground truth is in SE(3), whereas radar odometry

is estimated in SE(2). As such, we have to project the ground truth from 3D to 2D before comparing

it to the radar odometry estimates. This projection becomes less accurate as the trajectory length

increases. The KITTI odometry metric computes the average drift over all subsequences of lengths

{100m, 200m, · · · , 800m}. Thus, it is likely that a large part of this apparent radar odometry error

is due to this projection error. It appears that we need an improved set of metrics to better compare

radar and lidar odometry in a fair manner. We leave this as an area of future work.

Figure 9.12 shows a qualitative example of trajectories estimated by our approach on the Boreas

dataset. Our lidar odometry remains close to the ground truth, while our lidar-inertial odometry

achieves a similar result. It can also be observed that our radar-inertial odometry is notably better

than our radar-only odometry. We also compare the odometry metrics as a function of path length

in Figure 9.13 where we observe that including an IMU results in only a minor improvement for lidar

odometry but results in a significant improvement for radar odometry. In Figure 9.14, we plot the

Table 9.4: ATE results (m) on sequence 01-Short of the Newer College Dataset when varying
diag(Q) = {50, 50, 50, 5, 5, 5}.

Q STEAM-LO STEAM-LIO

×1/4 0.3098 0.3080

×1/2 0.3287 0.3071

×1 0.3398 0.3042

×2 Failed 0.3057

×4 Failed 0.3083

×8 Failed 0.3056
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Figure 9.12: In this figure we compare the performance of odometry approaches presented in this
chapter using the Boreas dataset. The depicted sequence is 2021-01-26-10-59 which was collected
during a snowstorm.

odometry errors vs. time, comparing frame-to-frame odometry estimates vs. the ground truth. We

also plot the estimated 3σ uncertainty bounds in red. Note that our approach is quite consistent;

our estimated uncertainty does a good job of capturing the actual spread of the error. For each new

lidar frame, our approach estimates the pose of the vehicle in a drifting map frame T̂k = T̂v,i(tk)

where tk corresponds to the temporal middle of the scan. We first compose two of these estimates

to obtain a relative odometry pose change,

T̂k,k−1 = T̂kT̂
−1
k−1. (9.16)

The error that we compute is

ξk,k−1 = ln
(
T̂k,k−1T

−1
k,k−1

)∨
, (9.17)

where Tk,k−1 is the ground-truth odometry pose. We estimate a covariance P̂k,k for the pose of

each lidar frame by interpolating the covariance over the sliding window at time tk. See [16, §11.3.2]
for details. The covariance of T̂k,k−1, cov(T̂k,k−1) = Σk,k−1, is obtained using [16]

Σk,k−1 ≈ P̂k,k + T k,k−1P̂k−1,k−1T T
k,k−1, (9.18)

where T k,k−1 = Ad(T̂k,k−1). 9.17 and 9.18 are then used to produce the plots in Figure 9.14. We

compute the normalized estimation error squared (NEES) using

NEES =

K∑

k=1

ξTk,k−1Σ
−1
k,k−1ξk,k−1

dim(ξk,k−1)K
. (9.19)
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(a) Lidar Odometry Drift vs. Path Length
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(b) Radar Odometry Drift vs. Path Length

Figure 9.13: Here we compare odometric drift vs. path length for lidar and radar odometry. Lidar-
inertial odometry performs similarly to lidar odometry. However, radar-inertial odometry improves
noticeably over radar odometry.

For the lidar-inertial odometry shown in Figure 9.12 and Figure 9.14, we obtain a NEES of 1.04

where an ideal value is 1.0. This means that our estimator is slightly overconfident here.

In Figure 9.15, we compare the maps generated using our lidar-inertial odometry and our radar-

inertial odometry. The lidar map is coloured by height and is displayed using a top-down ortho-

graphic projection. Our lidar-inertial odometry has minimal drift, so the map it generates aligns

quite well with satellite imagery. The lidar map is capturing a high level of detail. To produce the

radar map in the figure, we took snapshots of the online radar map every 10m and aligned these

submaps using the estimated odometry. We then removed noisy detections from the radar map by

performing a radius outlier removal of points with less than two neighbors within a radius of 0.25m

and a statistical outlier removal of points greater than one standard deviation above the average

point-to-point distance. The radar map drifts slightly with respect to the lidar map. Note that

we did not use any loop closures to generate these maps, so there is room for improvement. Even

though these maps contain some drift, we showed in our prior work that maps only need to be locally

consistent to enable accurate localization [30].

9.4 Conclusions

In this chapter, we showed that our Gaussian process motion prior is often sufficient to compensate

for motion-distorted lidar data when there are sufficient geometric features. However, in challenging

scenarios such as in the Newer College Dataset, we showed that our continuous-time lidar odometry

could be augmented with IMU measurements to handle these conditions. Even in the presence of

aggressive motion, the majority of the improvement resulted from including gyroscope measurements,
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Figure 9.14: This figure plots error vs. time for our lidar-inertial odometry when compared to ground
truth on the first 100 seconds of sequence 2021-01-26-10-59. The red lines denote the estimated 3σ
uncertainty bounds. Each row represents a dimension of the log map of the pose error where ρ is a
translational dimension and ψ is a rotational dimension.

whereas the addition of accelerometer measurements yielded only a minor improvement. We showed

that we could improve our radar odometry by 43% by including inertial measurements. Contrary

to previous work, we showed that there is still a significant gap between the performance of radar

and lidar odometry under nominal conditions. Part of this gap may be explained by difficulties

comparing 3D and 2D odometry estimates. Improved metrics for this purpose is an area of future

work. Including body-centric acceleration in the state is another area of future work.



9.4. CONCLUSIONS 109

(a) Satellite image of UTIAS

(b) Lidar map of UTIAS (colored by height)

(c) Radar map of UTIAS (colored by intensity)
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Figure 9.15: This figure displays maps generated of the University of Toronto Institute for Aerospace

Studies (UTIAS). The data was obtained using the first 134 seconds of the 2021-02-09 Boreas

sequence.



Chapter 10

Conclusion

The main goal of this thesis was to show that radar can be a viable alternative to lidar as a localization

sensor in the autonomous driving domain. Toward this goal, we created the Boreas dataset, enabling

us to compare lidar and radar localization across varying seasons and weather conditions. We showed

that centimetre-accurate localization of radar to radar maps and radar to lidar maps is possible. In

doing so, we established that the challenges inherent to working with radar, such as sparse or noisy

measurements, can be overcome. This thesis also contributed to advancing the state of the art in

radar odometry, reducing the benchmark translational drift from 2% to 0.6%.

However, this thesis did not demonstrate results in adverse weather conditions where radar

showed a clear advantage over lidar. Other researchers have shown that radar can outperform lidar

in artificially created dense smoke conditions [113]. However, collecting adverse weather datasets in

the real world would benefit the community greatly by stress-testing our systems and potentially

showing a case where radar outperforms lidar; this is a clear area for future work. Nevertheless,

radar-based localization may prove valuable as a low-cost alternative to lidar-based localization,

where multiple cheap automotive radars can be used instead of the Navtech radar.

The radar-based localization methods presented in this work have numerous potential applica-

tions. In areas where robustness to adverse conditions is critical, radar may become integral to

robotics deployments. These potential applications include mining and disaster response. Marine

radar may also be important for localizing surface vessels in GPS-denied environments. Low-cost

single-chip radar may also be useful for indoor robotics applications. Will we ever have autonomous

vehicles in Canada operating in white-out, blizzard-like conditions? If we do, they will need radar

to make it happen.

We also presented a continuous-time lidar-inertial odometry method that is exceptionally robust

to agile motion. This work may be useful in quadruped robots, two-legged robots, or fast-moving

drones.

We showed that IMUs do not necessarily need to be treated as inputs to a motion model and

then preintegrated. Further, we showed that treating them as a measurement of the state may be

a fortuitous direction for further research. As future researchers seek to improve existing systems

by applying these methods in highly dynamic scenarios, our investigation may be a useful starting

point.

We continue to use the Boreas dataset extensively in our work, adding new data and improving
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the existing data. Among the broader research community, the Boreas dataset is starting to be

employed in others’ works and was also used as part of a radar odometry competition1. We hope

the Boreas dataset will continue to be used to benchmark and measure progress toward improving

radar odometry and localization.

10.1 Future Work

As we showed in Chapter 7, lidar localization can still outperform radar even under moderate

levels of precipitation. However, there remain conditions where we expect lidar to fail. For example,

Park et al. [113] demonstrated the superiority of radar in dense smoke conditions. It would be

interesting to attempt to collect datasets that include extreme weather events such as heavy rain,

blizzards, dense fog or smoke, or dust storms. In practice, collecting datasets such as these is

challenging due to the rarity of these events. However, these datasets would undoubtedly prove

valuable to the community for identifying and studying lidar-based localization failure modes and

finding ways to leverage radar or other sensors, such as IMUs, to overcome these failure modes.

It may be possible to simply rely on simulation environments to test our systems for robustness to

adverse weather. However, evaluating the sim-to-real gap for a simulator is challenging when we have

no real dataset in those conditions to compare it against. So, at the very least, datasets collected

in extreme weather conditions could be used to validate simulators attempting to generate such

conditions. Radar simulation is also an active area of research where one interesting problem is to

learn to generate novel viewpoints based on a real dataset towards training and testing autonomous

agents in a closed-loop simulator.

There has been plenty of work in developing radar-based autonomy. However, relatively few

system papers demonstrate these algorithms being applied in closed-loop robotic systems. There is

an opportunity to perform these experiments and report the results to the community.

Radar odometry and localization continue to be active areas of research. More performance may

yet be obtained from spinning mechanical radar odometry. However, we appear to be hitting a point

of diminishing returns. Furthermore, the current state of the art for radar odometry is likely already

sufficient to enable radar SLAM or radar localization. More work appears to be needed in the areas

of automotive radar, low-cost radar sensors, and marine radar. Radar SLAM continues to receive

interest, and some of the remaining challenges include robustness to radar noise and sparsity. There

is also work to be done in the area of Doppler-enabled spinning mechanical radar, which employs

alternating up-chirps and down-chirps in a triangle-wave pattern for the frequency modulation of

the radar.

In the area of mapping and localization in general, potential areas for future research include

addressing highly dynamic motions and sparse or degenerate geometry such as tunnels. As the field

has matured, the focus has shifted towards higher-level concepts such as localizability or certifying

map quality. In safety-critical applications, it would also be ideal to certify that the outputs of our

estimators are optimal, another active area of research.

In Chapter 8, we presented an approach to lidar-inertial odometry where the IMU is treated

as a measurement of the state. This framework would also work well for the combination of several

asynchronous IMUs. There is also further work to be done on treating IMUs as a measurement of

1https://sites.google.com/view/radar-robotics/competition

https://sites.google.com/view/radar-robotics/competition
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the state. One issue we encountered was that our local Gaussian process (GP) formulation did not

lend itself easily to preintegrating imu-as-a-measurement factors along with motion prior factors.

One potential solution might be to formulate a singularity-free global GP representation for SE(3).

To date, relatively few published works use a spinning mechanical radar for object detection either

in isolation or in combination with other sensors such as lidar or cameras. There is an opportunity

to do further work in this area.



Appendix A

Supplementary Results for HERO

Table A.1: Evaluation on 7 sequences from the Oxford Dataset. Performance is reported as trans-
lational drift (%) / rotational drift (deg/1000m) using the common KITTI odometry metric. This
table is restricted to algorithms that have been tested on similar sequences. Cen RO, Kung RO,
and MC-RANSAC are hand-crafted algorithms. Masking by Moving, Under the Radar, and HERO
are all learning-based algorithms. HERO is currently the only self-supervised learning-based radar
odometry approach. *Tested on all 32 sequences. **Uses dense correlation between scans.

Method Evaluation Sequences Mean

10-14-02 11-12-26 11-14-02 14-12-05 15-13-06 16-11-53 17-11-46

Cen RO [36] [18] N/A N/A N/A N/A N/A N/A N/A 3.72/9.5

Kung RO* [85] [85] N/A N/A N/A N/A N/A N/A N/A 1.96/6.0

Masking by Moving** [20] [20] N/A N/A N/A N/A N/A N/A N/A 1.16/3.0

Under the Radar [18] [18] N/A N/A N/A N/A N/A N/A N/A 2.05/6.7

MC-RANSAC [28] Ours 3.43/11.2 3.72/12.9 3.27/10.9 3.41/10.7 3.07/9.8 3.12/9.9 3.21/11.0 3.31/10.9

HERO (Ours) Ours 1.86/5.9 1.85/6.2 1.93/6.5 1.96/6.8 1.80/6.1 2.43/7.1 2.08/7.1 1.99/6.5

Table A.2: An evaluation on 8 sequences from the Oxford Dataset. This experiment required
a new train/validation/test split. 16-13-42 was used for validation. Performance is reported as
translational drift (%) / rotational drift (deg/100m) using the common KITTI odometry metric.
*Uses loop closures.

Method Evaluation Sequences Mean

10-11-46 10-12-32 16-11-53 16-13-09 17-13-26 18-14-14 18-14-46 18-15-20

Hong RO [71] [71] 2.16/0.6 2.32/0.7 2.49/0.7 2.62/0.7 2.27/0.6 2.29/0.7 2.12/0.6 2.25/0.7 2.32/0.7

Hong SLAM* [71] [71] 1.96/0.7 1.98/0.6 1.81/0.6 1.48/0.5 1.71/0.5 2.22/0.7 1.68/0.5 1.77/0.6 1.83/0.6

CFEAR [3] [3] 1.65/0.48 1.64/0.48 1.99/0.53 1.86/0.52 1.66/0.48 1.71/0.49 1.79/0.5 1.75/0.51 1.76/0.50

HERO (Ours) Ours 2.14/0.71 1.77/0.62 2.01/0.61 1.75/0.59 2.04/0.73 1.83/0.61 1.97/0.65 2.20/0.77 1.96/0.66
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(a) 11-12-26 (b) 11-14-02 (c) 14-12-05

(d) 15-13-06 (e) 16-11-53 (f) 17-11-46

Figure A.1: These results illustrate the performance of HERO during each of the test sequences.
See Figure 6.4 for HERO’s performance on 10-14-02.
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Supplementary Results for VTR3
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Table B.1: SE(2) Metric Localization RMSE Results (Reference Sequence: 2020-11-26)

Lidar-to-Lidar

lateral (m) longitudinal (m) heading (deg)

2020-12-04 0.060 0.059 0.035

2021-01-26 0.023 0.026 0.040

2021-02-09 0.030 0.031 0.041

2021-03-09 0.021 0.028 0.035

2021-06-29 0.025 0.056 0.050

2021-09-08 0.030 0.036 0.048

2021-10-05 0.028 0.038 0.041

2021-10-26 0.032 0.042 0.041

2021-11-06 0.030 0.032 0.039

2021-11-28 0.025 0.041 0.035

mean 0.031 0.039 0.040

Radar-to-Radar

lateral (m) longitudinal (m) heading (deg)

2020-12-04 0.072 0.082 0.211

2021-01-26 0.048 0.055 0.227

2021-02-09 0.053 0.051 0.235

2021-03-09 0.051 0.053 0.233

2021-06-29 0.069 0.095 0.246

2021-09-08 0.067 0.110 0.269

2021-10-05 0.069 0.109 0.288

2021-10-26 0.060 0.119 0.283

2021-11-06 0.062 0.155 0.256

2021-11-28 0.058 0.190 0.436

mean 0.061 0.102 0.268

Radar-to-Lidar

lateral (m) longitudinal (m) heading (deg)

2020-12-04 0.074 0.135 0.135

2021-01-26 0.095 0.128 0.183

2021-02-09 0.061 0.125 0.135

2021-03-09 0.057 0.123 0.135

2021-06-29 0.069 0.122 0.139

2021-09-08 0.063 0.108 0.161

2021-10-05 0.061 0.074 0.147

2021-10-26 0.052 0.064 0.183

2021-11-06 0.051 0.057 0.183

2021-11-28 0.053 0.068 0.310

mean 0.064 0.100 0.171
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Table B.2: SE(2) Odometry Results

Radar

Translation (%) Rotation (deg/100m)

2020-12-04 1.92 0.53

2021-01-26 2.27 0.66

2021-02-09 1.94 0.59

2021-03-09 2.00 0.59

2020-04-22 2.56 0.63

2021-06-29-18 1.86 0.56

2021-06-29-20 1.94 0.59

2021-09-08 1.88 0.57

2021-09-09 1.98 0.60

2021-10-05 2.87 0.78

2021-10-26 1.89 0.53

2021-11-06 1.24 0.34

2021-11-28 1.24 0.38

mean 2.02 0.58

Table B.3: SE(3) Odometry Results

Lidar

Translation (%) Rotation (deg/100m)

2020-12-04 0.49 0.14

2021-01-26 0.51 0.16

2021-02-09 0.49 0.14

2021-03-09 0.57 0.17

2020-04-22 0.49 0.15

2021-06-29-18 0.58 0.17

2021-06-29-20 0.62 0.18

2021-09-08 0.57 0.17

2021-09-09 0.63 0.19

2021-10-05 0.59 0.17

2021-10-26 0.48 0.14

2021-11-06 0.50 0.15

2021-11-28 0.46 0.14

mean 0.54 0.16

Table B.4: SE(3) Metric Localization RMSE ResultsReference Sequence: 2020-11-26

Lidar-to-Lidar

lateral (m) longitudinal (m) vertical (m) roll (deg) pitch (deg) heading (deg)

2020-12-04 0.060 0.059 0.100 0.021 0.037 0.034

2021-01-26 0.023 0.026 0.080 0.030 0.042 0.040

2021-02-09 0.030 0.031 0.030 0.025 0.045 0.041

2021-03-09 0.021 0.028 0.034 0.024 0.045 0.034

2021-06-29 0.025 0.056 0.046 0.028 0.048 0.050

2021-09-08 0.030 0.036 0.054 0.025 0.046 0.047

2021-10-05 0.028 0.038 0.049 0.025 0.045 0.041

2021-10-26 0.032 0.042 0.037 0.024 0.043 0.040

2021-11-06 0.030 0.032 0.052 0.025 0.041 0.040

2021-11-28 0.025 0.041 0.067 0.025 0.044 0.034

mean 0.031 0.039 0.055 0.025 0.043 0.040
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Appendix C

Supplementary Results for

STEAM-RIO

STEAM-RIO was submitted to be part of the 2024 Radar in Robotics competition. In order to

achieve competitive results, we increased the length of the sliding window from two scans to four.

We also switched from a Cauchy loss to a Huber loss with a more restrictive threshold to filter out

outliers. We increased the weight given to gyroscope measurements by decreasing their associated

measurement covariance. We also incorporated a version of keyframing where new radar frames were

not added to the sliding local map unless the vehicle travelled at least one metre. Putting together

all of these changes, we arrive at our competition submission, STEAM-RIO++ which yields a 34%

improvement in translational drift over STEAM-RIO. In the competition, we placed third, where the

2nd place submission was CFEAR with 0.61% drift [2]. Notably, CFEAR did not use an IMU, and

their approach is computationally very efficient. In order to achieve their highest-level competition

peformance, they greatly increased the length of their sliding window and employed a coarse-to-

fine registration approach. The first-place entry CFEAR++ achieved 0.51% translation error[91].

CFEAR++ is based on CFEAR, however the authors also used an IMU as well as a semantic

segmentation model to remove distracting features in order to improve performance. Our approach

is competitive with the state of the art while being capable of supporting additional asynchronous

measurement factors such as wheel encoder measurements. CFEAR employs a point-to-line loss and

including such a loss in our framework is an area of future work. It has been shown in the context

of lidar that point-to-plane losses tend to outperform point-to-point, and so it is conceivable that

this might also hold for radar.
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Table C.1: Boreas Odometry Supplementary Results (102km / 4.3h): translational drift (%) /
rotational drift (deg/100m).

Boreas STEAM-RO STEAM-RIO STEAM-RIO++

2020-12-04 1.43 / 0.41 0.93 / 0.26 0.76 / 0.20

2021-01-26 1.10 / 0.33 0.61 / 0.18 0.50 / 0.24

2021-02-09 1.27 / 0.38 0.63 / 0.20 0.40 / 0.13

2021-03-09 1.24 / 0.35 0.71 / 0.19 0.58 / 0.17

2020-04-22 1.48 / 0.41 0.99 / 0.27 0.67 / 0.18

2021-06-29-18 1.55 / 0.46 1.04 / 0.29 0.66 / 0.19

2021-06-29-20 1.70 / 0.48 0.96 / 0.26 0.75 / 0.20

2021-09-08 2.01 / 0.59 1.22 / 0.35 0.74 / 0.21

2021-09-09 2.16 / 0.64 1.19 / 0.33 0.56 / 0.15

2021-10-05 2.27 / 0.63 1.01 / 0.28 0.58 / 0.16

2021-10-26 1.88 / 0.53 0.97 / 0.27 0.63 / 0.18

2021-11-06 1.86 / 0.54 1.07 / 0.29 0.74 / 0.21

2021-11-28 1.95 / 0.57 1.04 / 0.29 0.56 / 0.16

AVG 1.68 / 0.49 0.95 / 0.27 0.62 / 0.18

∆T 115ms 139ms 153ms
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Appendix D

Preintegration Using a Schur

Complement

The method of preintegration presented in section 8.2.1 is mathematically equivalent to marginalizing

out the unwanted states from the full Bayesian posterior. Marginalization can also be performed

using a Schur complement. We will use the Schur complement to efficiently marginalize out unwanted

states from our continuous-time formulation. By exploiting sparsity, this can be performed in O(K)

time, which is the same time complexity as the classic approach presented in section 8.2.1.

We consider the factor graph shown in Figure 8.1, which could potentially be a result of our

continuous-time state estimation with binary motion prior factors, unary measurement factors, and

a unary prior factor on the initial state x0. Equivalently, the Gauss-Newton system of equations

associated with Figure 8.1 can be written in the following form:

(
A−TQ−1A+CTR−1C

)
︸ ︷︷ ︸

L

x̂ = A−TQ−1x̌+CTR−1y︸ ︷︷ ︸
r

, (D.1)

where L is block-tridiagonal,

L =




L0,0 L0,1:3

LT
0,1:3 L1:3,1:3 L1:3,4

LT
1:3,4 L4,4 L4,5:7

LT
4,5:7 L5:7,5:7 L5:7,8

LT
5:7,8 L8,8



=




∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗




. (D.2)

Here, we consider the case where we would like to marginalize the full posterior such that we only
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retain states {x0,x4,x8}. After marginalizing out the unwanted states, our system becomes

Lsmallx̂small = rsmall, (D.3)

where by the Schur complement,

Lsmall =




L0,0

L4,4

L8,8


−




L0,1:3

LT
1:3,4 L4,5:7

LT
5:7,8




[
L1:3,1:3

L5:7,5:7

]−1 [
LT
0,1:3 L1:3,4

LT
4,5:7 L5:7,8

]

=




∗
∗
∗


−




∗
∗ ∗

∗


×




∗ ∗
∗ ∗ ∗
∗ ∗

∗ ∗
∗ ∗ ∗
∗ ∗




−1


∗

∗
∗

∗




.

Lsmall can be computed efficiently by exploiting the primary and secondary sparsity. Note that

[
L1:3,1:3

L5:7,5:7

]−1 [
LT
0,1:3 L1:3,4

LT
4,5:7 L5:7,8

]
=

[
L1:3,1:3 \ LT

0,1:3 L1:3,1:3 \ L1:3,4

L5:7,5:7 \ LT
4,5:7 L5:7,5:7 \ L5:7,8

]
,

(D.4)

where each entry similar to L1:3,1:3 \ L1:3,4 is shorthand for solving L1:3,1:3ℓ = L1:3,4 for ℓ. Each

of these terms can be solved in linear time thanks to L1:3,1:3 and L5:7,5:7 being block-tridiagonal.

Thus, Lsmall can be constructed in linear time, the same time complexity as the classic approach.

Furthermore, it can be shown that the resulting matrix Lsmall is block-tridiagonal. In summary,

Schur complement preintegration is a generalization of classic preintegration that can handle both

binary motion prior factors and unary measurement factors while retaining the same linear time

complexity as classic preintegration.



Appendix E

Analytical Gradients for Training

the Singer Prior

Following the method presented by Wong et al. [153] for training the parameters of the Singer prior,

we found it necessary to derive the analytical gradients of our objective with respect to the desired

parameters. Since these gradients were not provided in [153], we provide them here instead for the

convenience of the reader. Starting with the objective from (8.15), the discrete-time covariance Qk

of the Singer prior can be written as the product of two factors where

Qk =




σ2

σ2

σ2




︸ ︷︷ ︸
Qσ2

Q(∆tk,α). (E.1)

The components of Q(∆tk,α) are provided by Wong et al. [153] and are repeated here,

Q(∆tk,α) =




Q11 Q12 Q13

QT
12 Q22 Q23

QT
13 QT

23 Q33


 , (E.2)

where

Q11 =
1

2
α−5

(
1− e−2α∆tk + 2α∆tk +

2

3
α3∆t3k − 2α2∆t2k − 4α∆tke

−α∆tk
)
, (E.3a)

Q12 =
1

2
α−4

(
e−2α∆tk + 1− 2e−α∆tk + 2α∆tke

−α∆tk − 2α∆tk +α2∆t2k

)
, (E.3b)

Q13 =
1

2
α−3

(
1− e−2α∆tk − 2α∆tke

−α∆tk
)
, (E.3c)

Q22 =
1

2
α−3

(
4e−α∆tk − 3 · 1− e−2α∆tk + 2α∆tk

)
, (E.3d)

Q23 =
1

2
α−2

(
e−2α∆tk + 1− 2e−α∆tk

)
, (E.3e)

Q33 =
1

2
α−1

(
1− e−2α∆tk

)
. (E.3f)
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The motion error is given by

ek = xk −Φ(tk, tk−1)xk−1, (E.4)

where

Φ(tk, tk−1) =




1 ∆tk1 (α∆tk − 1+ exp(−α∆tk))α
−2

0 1 (1− exp(−α∆tk))α
−1

0 0 exp(−α∆tk)


 (E.5)

is the state transition function. σ2 and α are both diagonal matrices, whose size depends on the

dimension of the state. For example, for a 6D state, σ2 = diag(σ2
1 , σ

2
2 , σ

2
3 , σ

2
4 , σ

2
5 , σ

2
6). The gradients

of the objective with respect to the components of σ2 and α are then

∂Jt
∂αi

=
1

2

∑

k

{
2eTkQ

−1
k

∂ek
∂αi
− eTkQ

−1
k

∂Qk

∂αi
Q−1

k ek + tr

(
Q−1

k

∂Qk

∂αi

)}
, (E.6a)

∂Jt
∂σ2

i

=
3K

2σ2
i

− 1

2

∑

k

1

σ4
i

eTkQ(∆tk,α)−1 ∂Qσ2

∂σ2
i

ek, (E.6b)

for each αi and σ
2
i , respectively, where J =

∑T
t=1 Jt. The partial derivatives of Q(∆tk,α) and ek

with respect to αi are then given by

∂Q11

∂αi
=

[
−2∆t3k

3α3
i

+
∆t2k(2e

−αi∆tk + 3)

α4
i

+
5(e−2αi∆tk − 1)

2α6
i

+
∆tk(e

−2αi∆tk + 8e−αi∆tk − 4)

α5
i

]
δii,

(E.7a)

∂Q12

∂αi
=

[
−∆t2k(e

−αi∆tk + 1)

α3
i

+
∆tk(3− e−2αi∆tk − 2e−αi∆tk)

α4
i

+
4e−αi∆tk − 2e−2αi∆tk − 2

α5
i

]
δii,

(E.7b)

∂Q13

∂αi
=

[
∆t2ke

−αi∆tk

α2
i

+
3(e−2αi∆tk − 1)

2α4
i

+
∆tk(e

−2αi∆tk + 2e−αi∆tk)

α3
i

]
δii,

∂Q22

∂αi
=

[
3e−2αi∆tk − 12e−αi∆tk + 9

2α4
i

+
∆tk(e

−2αi∆tk − 2e−αi∆tk − 2)

α3
i

]
δii, (E.7c)

∂Q23

∂αi
=

[
2e−αi∆tk − e−2αi∆tk − 1

α3
i

+
∆tk(e

−αi∆tk − e−2αi∆tk)

α2
i

]
δii, (E.7d)

∂Q33

∂αi
=

[
e−2αi∆tk − 1

2α2
i

+
∆tke

−2αi∆tk

αi

]
δii, (E.7e)

∂ek
∂αi

=−




(
2(1−e−αi∆tk )

α3
i

− ∆tk(e
−αi∆tk+1)
α2

i

)
δii(

e−αi∆tk−1
α2

i
+ ∆tke

−αi∆tk

αi

)
δii

(
−∆tke−αi∆tk

)
δii



[
0 0 1

]
xk, (E.7f)

where δii is the Kronecker delta. We can use these gradients to learn the parameters of the Singer

prior using gradient descent. In order to speed up training, we can solve for the optimal value of σ2
i

at each iteration of gradient descent:

σ2⋆

i =
1

3KT

∑

t

∑

k

eTk,tQ(∆tk,t,α)−1 ∂Qσ2

∂σ2
i

ek,t. (E.8)
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Note that Qk is numerically unstable for α < 1.0. In this case, we use a Taylor series expansion

about α = 0 as an approximation. The Jacobian ∂Qk

∂αi
is also numerically unstable for α < 4.0. In

this case, we can approximate the components of this matrix with either a Laurent series or Taylor

series as α→ 0.

The previous gradients work well for learning the parameters of a Gaussian process in simulation

where the ground truth measurements of the state are noiseless. In reality, our source of ground

truth will have some measurement covariance that may be estimated or taken from the datasheet

of the sensor being used. In this case, computing the gradients of the objective with respect to the

components of σ2 and α is slightly more involved. We follow the approach presented by Wong et

al. [153]. Now, our objective function looks at the entire trajectory at once,

J = − ln p(y|σ,α) =
1

2
eTQ−1e+

1

2
ln |Q|+ n

2
ln 2π, (E.9)

where e is a stacked version of all the individual error terms from each timestep ek, and

Q =




Σ0,0 Σ0,1

ΣT
1,0 Σ1,1 Σ1,2

ΣT
1,2

. . .
. . .

. . . ΣK,K



, (E.10)

where

Σk,k ≈ Rk +Φ(tk, tk−1)Rk−1Φ(tk, tk−1)
T +Qk, (E.11a)

Σk,k+1 ≈ −RkΦ(tk+1, tk)
T , (E.11b)

and Rk is the measurement covariance associated with local variable xk. The gradient of the

objective function J with respect to GP parameter θ is

∂J

∂θ
= −1

2
eTQ−1 ∂Q

∂θ
Q−1e+ eTQ−1 ∂e

∂θ
+

1

2
tr

(
Q−1 ∂Q

∂θ

)
(E.12)

where each of the Jacobians is evaluated using the current value of θ. We can compute the trace

in O(K) time by first computing only the block-tridiagonal components of Q−1. Since Q is itself

block-tridiagonal, we can compute the blocks of the inverse that we need in O(K) time [16]. Then,

we can compute the trace of the matrix product in O(K) time by only computing the elements along

the diagonal of the matrix product. Q−1e can also be evaluated in O(K) time by solving Qx = e

for x using a sparse Cholesky solver. Using the gradient in (E.12) for each parameter, we can learn

the parameters of the Gaussian process by minimizing the negative log likelihood using gradient

descent.



Appendix F

IMU-as-Input Lidar-Inertial

Baseline Jacobians

Perturbations to the state variables are defined as Civ = Civ exp(δϕ
∧), rvii = r̄vii + Civδr, v

vi
i =

v̄vi
i +Civδv, b = b̄+ δb. The Jacobians of the point-to-plane error function (8.29) with respect to

perturbations to the state variables are provided here,

∂ej
∂δx

=
[

∂ej

∂rvi
i (τj)

∂ej

∂δCiv(τj)

]
×




∂rvi
i (τj)
∂rℓ

∂rℓ
∂δx +

∂rvi
i (τj)

∂rℓ+1

∂rℓ+1

∂δx
∂δCiv(τj)

∂δCℓ

∂δCℓ

∂δx +
∂δCiv(τj)
∂δCℓ+1

∂δCℓ+1

∂δx


 , (F.1)

where

∂ej
∂rvii (τj)

= −nT
j ,

∂ej
∂δCiv(τj)

= nT
j

(
Civ(τj)(Cvsqj + rsvv )∧

)
, (F.2a)

∂rvii (τj)

∂rℓ
= (1− α)1, ∂rvii (τj)

∂rℓ+1
= α1, (F.2b)

∂δCiv(τj)

∂δCℓ
= 1−A(α,ϕ),

∂δCiv(τj)

∂δCℓ+1
= A(α,ϕ), (F.2c)

where A(α,ϕ) = αJr(αϕ)Jr(ϕ)
−1, ϕ = ln(CT

ℓ Cℓ+1)
∨, and
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∂δCℓ

∂δCi
= ∆C

T

iℓ, where ∆Ciℓ =

ℓ−1∏

k=i

exp (∆tk(ω̃k − bω(tk))
∧) , (F.3a)

∂δCℓ

∂δbω(ti)
= −

ℓ−1∑

k=i

∆C
T

k+1,ℓJr(ϕk)∆tk, where ϕk = ∆tk(ω̃k − bω(tk)), (F.3b)

∂vℓ

∂δvi
= Ci, (F.3c)

∂vℓ

∂δCi
= −

ℓ−1∑

k=i

Ck(ãk − ba(tk))
∧∆C

T

ik∆tk, (F.3d)

∂vℓ

∂δbω(ti)
= −

ℓ−1∑

k=i

Ck(ãk − ba(tk))
∧ ∂δCk

∂δbω(ti)
∆tk, (F.3e)

∂vℓ

∂δba(ti)
= −

ℓ−1∑

k=i

Ck∆tk, (F.3f)

∂rℓ
∂δvi

= Ci∆tij , (F.3g)

∂rℓ
∂δCi

=

ℓ−1∑

k=i

[
∂vk

∂δCi
∆tk −

1

2
Ck(ãk − ba(tk))

∧∆C
T

ik∆t
2
k

]
, (F.3h)

∂rℓ
∂δbω(ti)

=

ℓ−1∑

k=i

[
∂vk

∂δbω(ti)
∆tk −

1

2
Ck(ãk − ba(tk))

∧ ∂δCk

∂δbω(ti)
∆t2k

]
, (F.3i)

∂rℓ
∂δba(ti)

=

ℓ−1∑

k=i

[
∂vk

∂δba(ti)
∆tk −

1

2
Ck∆t

2
k

]
. (F.3j)



Appendix G

Interpolation Jacobians

We build continuous-time measurement factors by making use of the posterior Gaussian process

interpolation formula. In order to do this, we need to compute the Jacobians of the perturbation

to the interpolated state δx(τ) with respect to the state perturbations at the bracketing estimation

times δxk, δxk+1. Perturbations to the state at estimation times are defined as

Tk = exp(ϵ∧k )Top,k, (G.1a)

ϖk = ϖop,k + ηk. (G.1b)

In order to compute the interpolation Jacobians, we first need to linearize some expressions

contained in (3.31). When we evaluate the local Markovian variable at the endpoints of the local

GP, we get the following results,

γ̂k(tk) =

[
0

ϖ̂k

]
, (G.2a)

γ̂k(tk+1) =




ln
(
T̂k+1T̂

−1
k

)∨

J
(
ln
(
T̂k+1T̂

−1
k

)∨)−1

ϖ̂k+1


 . (G.2b)

Next, we linearize

ln
(
Tk+1T

−1
k

)∨ ≈ ln
(
Top,k+1T

−1
op,k

)∨
+J −1

op,k+1,k(ϵk+1 − T op,k+1,kϵk), (G.3)

where we have assumed that ϵk+1 − T op,k+1,kϵk is small and we have defined

T op,k+1,k = T op,k+1T −1
op,k, (G.4a)

J op,k+1,k = J
(
ln(T op,k+1T −1

op,k)
∨
)
, (G.4b)

and T op,k = Ad(Top,k). We also make the following linearization

J
(
ln
(
T̂k+1T̂

−1
k

)∨)−1

≈ J −1
op,k+1,k −

1

2

(
J −1

op,k+1,k(ϵk+1 − T op,k+1,kϵk)
)⋏

, (G.5)
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where we have again assumed that ϵk+1−T op,k+1,kϵk is small and we have approximated the inverse

left Jacobian with J −1(x) ≈ 1 − 1
2x

⋏. The interpolated local variables between estimation times

tk, tk+1 are defined as

ξk(τ) = Λ1(τ)γ̂k(tk) +Ψ1(τ)γ̂k(tk+1), (G.6a)

ξ̇k(τ) = Λ2(τ)γ̂k(tk) +Ψ2(τ)γ̂k(tk+1). (G.6b)

The general formula for obtaining the interpolation Jacobians for perturbations to the pose and

body-centric velocity is as follows:

∂δT(τ)

∂x
= J op,τ,k

∂ξk(τ)

∂x
+ T op,τ,k

∂ϵk
∂x

, (G.7a)

∂δϖ(τ)

∂x
= J op,τ,k

∂ξ̇k(τ)

∂x
− 1

2
ξ̇⋏op,τ

∂ξk(τ)

∂x
, (G.7b)

where the Jacobians of the local variable ξk(τ) with respect to state perturbations at the bracketing

times are given by

∂ξk(τ)

∂ϵk+1
= Ψ11J −1

op,k+1,k +
1

2
Ψ12ϖ

⋏
op,k+1J

−1
op,k+1,k, (G.8a)

∂ξk(τ)

∂ϵk
= −

(
∂ξk(τ)

∂ϵk+1

)
T op,k+1,k, (G.8b)

∂ξk(τ)

∂ηk
= Λ12, (G.8c)

∂ξk(τ)

∂ηk+1
= Ψ12J −1

op,k+1,k. (G.8d)

The Jacobians of ξ̇k(τ) have the same form except that we use the second row of the interpolation

matrices, Ψ21 instead of Ψ11, for example.
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