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Current planetary rover localization techniques are lacking in autonomy and accuracy. An au-

tonomous method of globally localizing a rover is proposed by matching features extracted

from a 3D orbital elevation map and rover-based 3D lidar scans. Localization can be further

improved by including odometry measurements as well as orientation measurements from an

inclinometer and sun sensor. The methodology was tested with real data from a Mars-Moon

analogue site on Devon Island, Nunavut. By tying 23 real scans together with simulated odom-

etry over a 10km traverse, the algorithm was able to localize with varying degrees of accuracy.

Output uncertainties were large due to large input uncertainties, but these could be reduced in

future experimentation by minimizing the use of simulated input data. It was concluded that

the architecture could be used to accurately and autonomously localize a rover over long-range

traverses.
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Chapter 1

Introduction

1.1 Motivation

With the signing of the Global Exploration Strategy (CSA et al., 2007), fourteen of the world’s

leading space agencies made a long-term commitment to the exploration of the solar system.

The motivation for this strengthened international cooperation ranged from understanding how

to establish a sustainable human presence on the Moon, to inspiring the next generation of

scientists and engineers here on Earth. A wealth of newly-gathered scientific data would refine

age-old questions on the origins of life and the Earth’s history; questions whose answers are

scattered, like pieces of a puzzle, in the geologies and atmospheres of other celestial bodies.

Since Yuri Gagarin’s historic space voyage, humans have played an important role in the

act of exploring space. However, there is an immense cost and risk associated with preserving

fragile human life in such extreme environments. For this reason, future space missions will be

increasingly supported and led by robots. Indeed, robotic achievements in space have existed

for some time, as with the Sputnik satellite of 1957 (Dickson, 2001) or the Lunokhod rovers of

the early 1970’s (Chaikin, 2004).

A recent milestone in space robotics was the Pathfinder mission of 1997, which delivered

the Sojourner rover to Mars (Matijevic, 1998). The success of the planet’s first mobile visitor

1



CHAPTER 1. INTRODUCTION 2

proved that robots could become a feasible and cost-effective alternative to manned planetary

exploration. Since then, and with the help of enabling technologies, there has been a boom

in space robotics: the Mars Exploration Rovers (Bresina et al., 2005), the Hayabusa asteroid

sample-return spacecraft (Yano et al., 2006), the Phoenix Mars lander (Desai et al., 2008), and

the planned Mars Science Laboratory (MSL) (Crisp et al., 2008) and ExoMars rover (Vago et

al., 2008) are just some examples. While great leaps in rover technology have been made since

the Lunokhods first roamed the Moon, these advances pale in comparison to the challenges

ahead. One such challenge studied in this thesis deals with the ability for a rover to deter-

mine its position and orientation on the surface of a celestial body. This process is known as

localization.

Present-day rovers are only able to make short-range traverses due to limitations in their

mechanical abilities and autonomy. For example, the amount of solar energy available to the

Mars Exploration Rovers (MER) restricts the number of operations they can perform on a given

day (Leger et al., 2005; Biesiadecki et al., 2005). Their lack of autonomy is also very costly

considering the twenty-minute communication delay between Mars and Earth (Norris et al.,

2005). As a result, the MERs have journeyed only about 10km in four years (Li, Arvidson,

et al., 2007). Even the next generation MSL is planned to drive a mere 6-10km in two years

(Palluconi et al., 2003; Volpe, 2003).

It is therefore unsurprising that localization techniques developed to this day are unsuitable

for long-range missions on the order of hundreds of kilometres and up. However, as technology

improves and demand on a rover’s performance increases, rovers will be expected to traverse

much greater distances over their lifetimes. For this reason, they will require an accurate and

autonomous long-range localization system. The absence of such a system could unknowingly

send a rover off its planned path, never to reach its intended destination and unable to accurately

label the locations of its scientific finds. This thesis proposes a solution to the problem of long-

range localization.



CHAPTER 1. INTRODUCTION 3

1.2 Objectives

The objectives of this research are:

1. To develop an algorithm to autonomously localize a rover over long ranges with con-

sistent accuracy by matching 3D maps of terrain from ground-based lidar and orbiting

satellites.

2. To validate the methodology with a realistic dataset by quantitatively demonstrating the

algorithm’s ability to consistently localize.

The sections to follow describe and evaluate a novel, long-range localization algorithm devel-

oped to satisfy these objectives.



Chapter 2

Literature Review

Past work on rover localization has evolved from manual image comparison to today’s more

automated image processing techniques. This section gives an overview of the various tools

available to solve the problem and how these have been used in past applications.

2.1 Sensors

Two basic sensors found on nearly all mobile robot systems are the wheel odometer and the in-

clinometer. Wheel odometers measure changes in position and heading based on wheel move-

ment. Inclinometers measure the direction of the gravity vector, which allows for pitch and

roll angles to be determined. Sun, Moon or star sensors can measure heading by comparing

measurements of a celestial object’s actual position in the sky with its expected position based

on orbital models (Furgale et al., 2009). These can also be used to determine position to a

relatively high degree of uncertainty (Kuroda et al., 2004).

Vision sensors such as stereo cameras and lidar play an equally important role in localiza-

tion. Stereo cameras produce pairs of images, from which depth can be extracted by detecting

and matching features between images. Errors in wheel odometry can then be corrected by

tracking these image features over time to estimate changes in pose. Another popular vision

sensor is time-of-flight lidar (Light Detection and Ranging). This instrument rapidly fires a
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CHAPTER 2. LITERATURE REVIEW 5

laser and measures the time for reflections to return, which allows the range of distant objects

to be determined very accurately.

Stereo cameras and lidar were evaluated by Se et al. (2004). An advantage of lidar is that

it does not require much pre-processing of data, which is not true when extracting depth from

a stereo pair of images. Lidar can also work in zero-lighting conditions, operate over a long

range of 1-2km, and produce A very accurate, sub-metre representation of the terrain. Its most

significant disadvantages are high power draw and a bulky size.

2.2 Positioning with Satellites

The satellite-based Global Positioning System (GPS) has been used to great success on Earth

and would be the ideal solution to the localization problem. However, a minimum of four

satellites would be required and even this would only provide partial, time-dependent coverage.

The cost of constructing this network of satellites around a new planet or moon would at present

be unreasonable.

A seemingly more cost-effective approach would be to use ground-based GPS as proposed

by LeMaster & Rock (2003). These pseudo-satellites, or pseudolites, could be placed at strate-

gic surface locations and function alone or in cooperation with orbital GPS satellites. Tests

showed better than 5cm position error, but were accomplished at ranges of only 30 to 50m. It

was claimed that kilometre ranges could be achieved with more powerful pseudolites.

Localization over long distances (i.e. hundreds of kilometres) would require a large array of

pseudolites covering the desired exploration path. Furthermore, line of sight would be required

between rover and pseudolite. Therefore, the rover would either be restricted to flat land or

the pseudolites would need to be deployed with greater difficulty on hills and mountain peaks.

This approach could not realistically satisfy long-range localization requirements, and would

be better suited for applications in site-planning or rover operation at a permanent base.

Radio positioning was used with the MERs, which were equipped with a radio system to
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communicate with Earth and orbiting satellites. By comparing a direct-to-Earth signal with a

signal relayed through an orbiting satellite (Guinn, 2001), the position of the rovers could be

estimated with an accuracy of about 50m (Li et al., 2004). However, to achieve this degree of

accuracy, estimates required multiple satellite passes and line of sight with the Earth. There-

fore, if this technique were used as the primary localization system, the operating time of the

rover would be severely limited.

2.3 Dead-Reckoning Techniques

Dead-reckoning is the determination of pose based on previous pose measurements. The

simplest but most error-prone form of rover localization is wheel odometry, a type of dead-

reckoning. Wheel odometry is extremely vulnerable to sensor noise and mechanical distur-

bances such as wheel slippage and azimuthal angle drift. For example, during the MER mis-

sion, the Opportunity rover’s wheel odometry once underestimated a 19m, three day traverse

by over 8% (Li et al., 2005).

Visual motion compensation techniques such as visual odometry (VO) and bundle adjust-

ment (BA) can be used to correct these large errors. VO (Olson et al., 2003) tracks features

across pairs of images to measure changes in pose. Features are typically extracted using im-

age processing techniques such as Scale Invariant Feature Transforms (SIFT) (Lowe, 1999;

Barfoot, 2005) or Speeded Up Robust Features (SURF) (Bay et al., 2006). Other techniques

also exist such as modeling rocks as ellipsoids (Li, Di, & Howard, 2007) and matching them

between images. VO is fully automated and operates in real time, although the additional pro-

cessing required can slow the traverse considerably. BA (Li et al., 2002) is the batch alignment

of features between images taken from different perspectives to again determine relative mo-

tion. Unlike VO, this method requires a high degree of human intervention but is also more

accurate (Li et al., 2006). Because VO and BA require a great deal of processing time, the

MERs have reserved these techniques for scenarios with a high risk of wheel slippage such as
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steep slopes, or when a more accurate rover position was needed in general.

A significant drawback to these dead-reckoning techniques is the unbounded growth of er-

ror they produce. Each estimated pose will have some error associated with it. Since each

estimate depends on the previous, error may continue to grow without bound. Olson et al.

(2003) reduced this error growth to linear rates by including absolute measurements of ori-

entation in the VO algorithm. In field experiments, Konolige et al. (2007) showed a similar

VO algorithm to yield less than 0.1% error over a 9km traverse in rough-terrain. Despite such

encouraging results, dependence on computationally-taxing visual correction techniques can

significantly slow traverses. Furthermore, these dead-reckoning techniques still suffer from

unbounded error growth.

2.4 Global Map-Matching Techniques

To determine pose with no dependence on distance traversed, globally consistent imagery, the

global map, can be matched with local rover imagery, the local map. Here, imagery implies

either a 2D image or a 3D Digital Elevation Model (DEM). The techniques most relevant to

this research generally follow the procedure of feature detection, description and matching. In

this process, features are first extracted from the global and local maps. They are then matched

to find global-local correspondences. Once correspondences are known, the features can be

aligned. In doing so, the pose of the rover with respect to the global frame can be determined.

A number of reviews of matching techniques were consulted to sort through the numerous

algorithms developed for these purposes. Mian et al. (2005) and Planitz et al. (2005) evalu-

ated the ability of algorithms to automatically find correspondences between 3D point models.

Planitz et al. (2005) also developed a general framework for the common steps involved in

these algorithms. Mikolajczyk & Schmid (2005) examined the performance of various fea-

ture descriptors in 2D image applications. These reviews served as a top-level reference in

determining which feature matching algorithm, or combination of algorithms would be most
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suitable in overcoming the challenges faced in this thesis. The results are presented in the

subsections to follow.

2.4.1 Overview

A feature-based approach is expected to reduce the time needed to match maps when compared

to global surface alignment techniques such as Iterative Closest Point (ICP) (Z. Zhang, 1994),

which consider the entire surface in the alignment and do not guarantee to converge to a global

optimum. A feature-based approach could also be more flexible and allow for the use of higher

resolution 2D images from orbit. However, the use of 2D images would present the extra

challenge of matching image-based features to features extracted from 3D lidar point clouds.

For this reason, it may be simpler to use 3D matching techniques such as spin-images

(Johnson, 1997), harmonic shape images (D. Zhang & Hebert, 1999), point fingerprints (Sun

et al., 2003), or local shape descriptors (Taati et al., 2007). These approaches compare feature

descriptors between local and global maps to search for matches. For example, spin-image de-

scriptors are 2D histograms representing the distances of nearby points from the tangent plane

and normal vector at a chosen interest point. Upon comparison of two features’ descriptors, a

correspondence is made between the two features if their descriptors are sufficiently similar.

However, this procedure is more difficult to implement when the area around the feature is

only partially available as is the case with the rover-based local map, which is scattered with

occlusions. Furthermore, these occlusions will always be found near peaks, the most prominent

features in the terrain. It therefore becomes difficult to match features that are fully describable

from the global map’s viewpoint, but only partially from the local map’s. An example is shown

in Figure 2.1.

A different approach that avoids this problem is to consider features’ positions with respect

to each other. These groups of features, or feature constellations, effectively act as the de-

scriptor. The algorithm used to seek out correspondences in this fashion is the Data-Aligned

Rigidity-Constrained Exhaustive Search (DARCES) (Chen et al., 1999). The greatest advan-
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(a) (b)

Figure 2.1: Contour maps of field data showing the difficulty in producing similar descriptors
with occluded maps. Elevation increases with lighter shading. Circles indicate the descriptor
interest region. (a) Global map with a complete set of evenly spaced data points. (b) Partially
occluded, unevenly spaced lidar map. Lidar located off the map in the upper left direction.

tage of DARCES is that it does not require descriptors to be generated, which are not easily

obtained from the rover-based, occlusion-ridden local map.

2.4.2 Past Work

Some early Earth-based attempts at 3D feature extraction and matching compared peaks be-

tween rover-based laser range data and a high quality global map (Hayashi & Dean, 1989).

However, simulations yielded poor results because of problems in accommodating the dif-

ference in resolutions between scene and model. Another approach gathered random range

measurements and matched them to a DEM, but the method required that the orientation and

altitude of the rover be known from onboard equipment (Yacoob & Davis, 1992).

Bakambu et al. (2006) examined the problem of matching two lidar scans. Different fea-

ture matchers were evaluated and combined to improve computing efficiency. Interest points on

the global and local maps were selected according to curvature change (Bae & Lichti, 2004).

Correspondences between images were then found using the spin-image or point fingerprint

feature descriptors. Finally, DARCES selected the best correspondences and computed the
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rigid transformation between the two images. This enhanced algorithm was successfully tested

over model resolutions of 0.2, 0.5 and 1.0m. The poorer the model resolution, the more pro-

cessing time was required. Instances of the computation failing to properly align images were

attributed to an insufficient number of interest-points being selected.

Descent imagery provides a series of images at different resolutions during lander descent

(Li et al., 2000). The main challenge is to accurately transform a string of descent images to

the same orientation. The technique, while achieving a localization accuracy of 1m, is limited

to an area within a couple kilometers of the landing zone and requires manual selection of tie

points in the descent images.

The problem of matching global aerial maps to local rover maps has been investigated in

several papers. A common solution is to compare the skyline from a rover-based image to a

topographic reference map (Stein & Medioni, 1995), (Cozman & Krotkov, 1997). However,

this generally requires a mountainous horizon and results in poor accuracy on the order of

a hundred metres. High resolution imagery from aerobots (Behar et al., 2005) could offer an

alternative to coarse orbital imagery, albeit a more problem-prone and expensive one that would

clearly not be applicable in environments such as the Moon, where there is no atmosphere.

Vandapel et al. (2006) localized a lidar-equipped rover in heavily vegetated environments

with the spin-image technique. To test the method, a helicopter was flown at a height of 400m to

create a global map using a lidar with a range resolution of 1cm and positional accuracy of 10 to

30cm. Vandapel outlines the following key points to improve performance in matching. Proper

selection of the height and width of the spin-image interest surfaces is crucial. Dead-reckoning

should be used as a constraint during localization. Interpolation can be used to accommodate

differences in resolution. Interest points should be efficiently selected, for example by filtering

out those lying in uninteresting, flat areas.

Attempts to match orbital images to rover-based images are not yet fully autonomous. Li,

Di, Hwangbo, et al. (2007) processed stereo imagery from the Mars Reconnaissance Orbiter’s

HiRISE camera into 3D elevation maps. This global map was then compared to the MER’s
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stereo camera imagery, and was shown to match closely. In future work, they expect to integrate

HiRISE imagery directly into the established bundle adjustment process.

Orbital maps vary in quality and coverage. There has been skepticism (Li et al., 2000) in

using orbital maps since their resolutions can be poor. However, new high resolution satellite

imaging systems entering into operation such as HiRISE are helping to alleviate these concerns

(Li, Di, Hwangbo, et al., 2007). Table 2.1 summarizes the most current information for various

orbital data sources.

Table 2.1: Summary of coverage and resolutions for various satellite datasets. Sources: For
LOLA and LROC see Chin et al. (2007). For MOLA2 see Smith et al. (2001). For HiRISE see
Johnston et al. (2005); McEwen et al. (2002). For Devon Island see http://www.geobase.ca.
For Typical Earth see Grodecki & Dial (2001).

Target Instrument Description Coverage Horiz. Res. Vert. Res.

Moon LOLA Laser altimeter Total 50-100m 10cm

LROC Camera >10% 50cm NA

Mars MOLA2 Laser altimeter Total 100m 1m

HiRISE Camera 2% <1m <1m 1

Typical Earth IKONOS Camera On-demand 1-4m <10m 1

Devon Island NA NA Partial 12-23m 1m

2.5 Literature Review Summary

The literature review has shown that autonomous, long-range rover localization of a planetary

rover is still an open and relevant problem. This thesis proposes a solution that matches a low

resolution, orbital elevation map to high resolution, rover-based lidar maps. The greatest ben-

efit of this approach is the referencing of all local measurements back to a globally consistent

orbital map. This will limit the growth of localization error during a rover’s traverse.

1Vertical accuracy of elevation model created from stereo pair of images.
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Methodology

3.1 Overview

The goal is to determine the rover’s poses with respect to the global map’s frame, F−→o. The

rover pose at the `th scan site is defined as a transformation, T`o := {t`o,S`o}, from F−→o to the

rover’s local frame F−→`, where t`o and S`o are respectively the translation and rotation from F−→o

to F−→`. An overview of the procedure is presented in Figure 3.1 and summarized as follows:

(a) Feature Detection: Features are detected from the global and local maps.

(b) Feature Matching: Correspondences are found between global and local features with

DARCES (Chen et al., 1999). Another useful output of DARCES is a preliminary es-

timate of the rover poses. Optimally, local orientation measurements act as filters to

increase the chances of finding a good match and improve the efficiency of the DARCES

algorithm.

(c) Pose Refinement: Initialized with DARCES pose estimates and knowing correspon-

dences between global and local features, the RANSAC-MOGA algorithm refines the

rover’s poses. Odometry and orientation measurements can be introduced into RANSAC-

MOGA to further refine the alignment. Odometry can also allow poses to be estimated in

12
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frames for which DARCES has no solution (i.e. when too few feature correspondences

are found between global and local maps).

The sections to follow discuss each architecture component in further detail.

(a) Feature 

Detection:

Dilation Global 

Features
Correspon

-dences

Odometry

Measurements

Orientation

Measurements

Pose 

Estimates
Refined

Poses

(b) Feature 

Matching:

DARCES

(c) Pose 

Refinement:
RANSAC-MOGA

Local Maps

Global Map

Local 

Features

Figure 3.1: Overall architecture.

3.2 Feature Detection

This section discusses feature detection, which is represented as box (a) in the overall architec-

ture diagram of Figure 3.1.

The two fundamental inputs to this step are (i) a low resolution, global DEM taken from an

orbiting satellite, and (ii) one or more high resolution, local maps from rover-based lidar scans.

The global map is defined as having a resolution of Lglobal. The challenge is to maximize the

number of common features that are detectable in both maps. A given feature might only be

detectable in one map due to the deficiencies in the other map. For example, an occlusion in

the local map might hide a feature detected in the global map. Conversely, some small terrain

features in the high resolution local map would not be distinguishable in the low resolution

global map.

Generally, the most prominent features common to both maps are elevated peaks. These

peaks are typically visible in the local map, so long as they are unoccluded and within range.

Peaks are detected using a local maxima detector based on morphological dilation1, a technique

1Code can be found on Matlab Central repository as ‘localMaximum.m’ by Yonathan Nativ.
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Feature Detection

(a) Grid Local 

Maps

(b) Dilation
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(c) Final 
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Figure 3.2: Feature detection architecture.

adopted from image processing (van den Boomgaard, R. and van Balen, R., 1992; Haralick &

Shapiro, 1992).

Starting from box (a) in Figure 3.2, the lidar scan must be gridded. The local maps are

first rotated using pitch and roll measurements from an inclinometer or equivalent device. This

ensures the +z-direction of the global and local maps coincide. The local map grid is sub-

sampled to the global map resolution, Lglobal. Sub-sampling the local map ensures the scale of

detected global and local features are the same. Nearest-neighbour interpolation was used since

it tended to reduce the number of poor, false peaks detected. Features may now be detected

using morphological dilation.

Morphological dilation (see box (b) in Figure 3.2) replaces lower grid values with neigh-

bouring higher grid values. Applied to an elevation map, this will effectively blur out low

elevations. The extent of the blurring depends on the size and shape of the window used. Fig-

ure 3.3(a) gives an example of a single dilation operation for a square window. The operation

replaces the centre point’s value with the highest value within the bounds of the window. Once

dilation is completed for all points on the grid, the blurred map is compared to the original

map. Cells with no change in value are interpreted as local maxima. Figure 3.3(b) gives an

example for a small map.

The dilation window is chosen to be a pixelated circle as shown in Figure 3.4. This is done

to make the coverage of the window as even as possible in all directions. The radius of this cir-

cle limits the size of the detected features, as well as the distance between features. Therefore,
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(b)

Figure 3.3: Morphological dilation used to detect peaks. Numbers represent elevation values.
(a) Dilation example at a single cell for a 3x3 square window. (b) Result of local maxima
detection using dilation with a 3x3 square window. Cells marked in gray are interpreted as
local maxima because their values did not change after dilation.

Ddetect = n × Lglobal

Figure 3.4: Pixelated circle with n = 5 cell radius in gray and minimum feature distance,
Ddetect, shown. This is the dilation window used in the feature detection process.
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the minimum distance between features, Ddetect, depends on the global map resolution:

Ddetect := n× Lglobal (3.1)

where n is the circle’s cell radius. The same window is applied to global and local maps.

Detected local features must now undergo some final processing (see box (c) in Figure

3.2). To ensure each detected local feature corresponds to a measured point in the lidar scan,

the nearest measured point is selected as the feature’s position. If for a given feature there are

no measured points within a distance of the global map resolution, then the point is rejected.

A final restriction for both global and local features is that no two features can be within a

distance Ddetect of each other. If two features are within this distance, the least elevated is

dropped since the most elevated is more likely to be a peak.

The process of feature detection has been described. Features can now be extracted from

the global and local maps. Examples from sample data are presented in Figures 3.5 and 3.6.

(a) Detected global features. (b) Scan points for A08 and detected local features.

Figure 3.5: Feature detection example. UTM zone is 16X.
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Figure 3.6: Local features overlayed onto panoramic images taken from scan A08. Note the
detected hill peaks are not always on the skyline, since a peak can occur anywhere in 3D data.
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3.3 Feature Matching

This section discusses feature matching, which is represented as box (b) in the overall archi-

tecture diagram of Figure 3.1.

3.3.1 Overview

Global features have been detected from the orbital DEM and local features from rover-based

lidar scans, as explained in Section 3.2. The goal is to find a matching global feature for every

local feature. These correspondences can then be used to calculate transformation estimates

between local and global frames. It should be made clear that this entire block in the algorithm

runs on local features for a single lidar scan at a time. If there is more than one scan, the block

is looped for each scan. The outputs are then consolidated and passed to the next block of the

algorithm.

DARCES Feature Matching

(a) Hypothesis 

Search

(b) Hypothesis 

Evaluation

Local Map

Global

Features

Local

Features
Hypotheses

Orientation

Measurements

Pose 

Estimates

Correspon

-dences

Figure 3.7: Feature matching architecture. DARCES processes scans individually.

The feature-matching methodology is based on the Data-Aligned Rigidity-Constrained

Exhaustive Search (DARCES) algorithm (Chen et al., 1999) and is depicted in Figure 3.7.

DARCES searches for similarities in features’ relative positions. This can be thought of as

a search for similar constellations of features between the global and local map. DARCES is

chosen over a descriptor-based method because reliable descriptors are difficult to extract given
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the numerous and large occlusions in the lidar map 2. Furthermore, occlusions are much more

likely to occur in the vicinity of hill-peak features, where one side of the peak is usually hidden

from the lidar as previously shown in Figure 2.1.

3.3.2 Hypothesis Search

This section relates to box (a) in Figure 3.7. Given a single scan’s local features and all global

features as inputs, the first step in DARCES is to generate an initial set of hypotheses. A

hypothesis is defined as a group of possible correspondences between three unique local fea-

tures, called control points, and three unique global features. These three correspondences are

needed to produce a 3D transformation estimate between the global and local frames. This

transformation is then used to evaluate hypotheses and select the best one.

It will now be explained how to conduct searches for correspondences. Sets of three control

points are randomly chosen from a single scan’s set of local features. Depending on the number

of local features detected in a given frame, a maximum of NDARCES sets of control points

are tested because of the possibility that a local feature will have no correspondence. When

searching for hypotheses with a single control point set, the three control points are arbitrarily

labeled as primary, secondary and auxiliary. The primary control point is initially assumed as

having a correspondence with every global feature.

In the noise-free case, for a primary control point correspondence to be valid, the following

three constraints must be satisfied:

1. There is a global feature a distance dps from the global feature assumed to correspond

with the primary control point. This would give a potential correspondence with the

secondary control point.

2. There is a global feature, different from the last, a distance dpa from the global feature

assumed to correspond with the primary control point. This would give a potential cor-

2In fact, a descriptor-based method was initially attempted but yielded poor results.
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respondence with the auxiliary control point.

3. There is a distance dsa between the global features respectively assumed to correspond

with the secondary and auxiliary control points.

This amounts to sphere searches as shown in Figure 3.8.

dps

Lp

Ls

G1

G2

G3

G4

Figure 3.8: DARCES hypothesis search example for a secondary-point correspondence with-
out noise. The primary and secondary control points are respectively Lp and Ls. The primary-
point correspondence under examination is for global feature G1. The sphere then has a centre
that coincides withG1 and a radius of dps. Only global featureG3 qualifies as a secondary-point
correspondence since it lies on the surface of the sphere.

In the noise-corrupted case, a search is conducted in the same way, but corresponding

points would lie within the shell of a sphere of thickness 2t, as shown in Figure 3.9. The shell’s

half-thickness, t, will depend on uncertainties in the positions of global and local features. Its

derivation is provided in Appendix B. The result is

t ≈ 3
√

2

((
σrGxy

)2

+
(
σrLxy

)2
)1/2

(3.2)

where σrGxy
and σrLxy

are respectively one standard deviation of the uncertainties of the x

and y position components for global and local features. Note the independence from position

measurements. This is due to the simplifying assumption that the distance between two features

will be much greater than the features’ difference in elevation.
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dps

Lp

Ls

G1

G2

G3

G4
t

t

Figure 3.9: DARCES hypothesis search example for a secondary-point correspondence with
noise. The primary and secondary control points are respectively Lp and Ls. The primary-point
correspondence under examination is for global feature G1. The sphere then has a centre that
coincides with G1, a radius of dps and a shell thickness 2t. Global features G2 and G3 qualify
as a secondary-point correspondence since they lie within the search sphere’s shell.

Since a hypothesis contains correspondences between three global and three local features,

a transformation from the global to the local frame can be calculated. For hypothesis i, the

transformation from F−→o to F−→`, Ti
`o :=

{
ti`o,S

i
`o

}
, is obtained using a least-squares point

alignment algorithm that minimizes the distance between the three corresponding global and

local features (Arun et al., 1987). These hypothesized transformations serve as an initial esti-

mate of the rover pose, and are used to evaluate hypotheses in future stages of the algorithm.

It has been shown how to create an initial set of hypotheses, and how to compute a transfor-

mation for each hypothesis. The next step is to evaluate the hypotheses and determine which,

if any, are valid.

3.3.3 Hypothesis Evaluation

The input hypotheses are now evaluated (box (b) from Figure 3.7) with the transformation esti-

mate that each hypothesis provides. The best hypothesis can then be used to output the optimal

correspondences between global and local features, and an initial estimate of the transforma-

tion from global to local frame. Figure 3.10 gives an overview.
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Figure 3.10: Overview of hypothesis evaluation and selection.

Preliminary Filtering

This section relates to box (a) from Figure 3.10. Hypotheses are passed through a preliminary

filtering stage to improve the efficiency and robustness of DARCES. A hypotheses is evaluated

by comparing its transformation estimate, as described in Section 3.3.2, to a transformation

measurement. If an estimate does not agree with the measurement within uncertainties, then

the hypothesis is considered invalid and is discarded.

Four filters are used in this step:

1. z-deviation: From the hypothesized x, y translations, tx and ty, a DEM z-position mea-

surement is obtained, ρz (tx, ty). This measurement is then compared to the hypothesized

z-position, tz. To pass this stage of the filter, the difference between measurement and

hypothesis must remain below the threshold Ezdev:

|ρz − tz| ≤ Ezdev. (3.3)

2. Map boundary: After transforming all local reference points to the global frame using

the hypothesized transformations, a condition is imposed that all reference points must

remain within the bounds of the map. Failing to do so, the hypothesis is discarded.

3-4. Roll and pitch: The measured rotation matrix from the global to the local frame, C, is

compared to the hypothesized rotation matrix from the global to the local frame, S, by
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decomposing both into their z − y − x Euler angles:

C := Rz(γmeas)Ry(βmeas)Rx(αmeas), (3.4)

S := Rz(γhyp)Ry(βhyp)Rx(αhyp) (3.5)

where α, β, γ are respectively roll, pitch and heading angles. The differences between

measured and hypothesized roll and pitch angles are then obtained and verified against

their respective thresholds, Eα, Eβ . The filter conditions are

|αmeas − αhyp| ≤ Eα, (3.6)

|βmeas − βhyp| ≤ Eβ. (3.7)

(3.8)

A heading filter is applied in the “Selection and Final Processing” (box (c) from Figure

3.10) step for reasons discussed later.

Hypotheses have now passed through preliminary filtering.

Evaluation

This section relates to box (b) from Figure 3.10. The remaining filtered hypotheses must now

be evaluated using their calculated transformations from the global frame to the local frame

as discussed in Section 3.3.3. The local map also plays a key role in this evaluation, but must

first be decimated by removing points in highly dense regions of the map. This will increase

efficiency and spread scan points more evenly over the map. After decimation, the distance

between any two points in the decimated scan should not exceed the global map resolution,

Lglobal. These modified local map points are called the reference points.

To evaluate the quality of a hypothesis, these reference points are transformed to the global

frame using the hypothesis transformation and compared to the global map, as shown in Figure

3.11. Hypotheses are then scored based on the sum of absolute z-errors between the trans-

formed reference points and their interpolated points on the global map. The map boundary
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constraint, previously discussed in Section 3.3.3, ensures that this metric can be calculated

from each hypothesis in a consistent manner.

Figure 3.11: Scan A08 reference points transformed to the global frame using a sample hy-
pothesis transformation. UTM zone is 16X.

To ensure a hypothesis is indeed valid, its score must be significantly better than other top-

scoring hypotheses. In this circumstance, a good score is a low one. Therefore, hypotheses that

are low-score outliers are considered valid. These low-error hypotheses are detected based on a

data point’s distance from the lower quartile boundary of the set of all hypothesis scores. This

is similar to the technique used in spin-image matching (Johnson, 1997). A valid hypothesis is

defined as one that scores lower than the threshold Evalid:

Evalid := Q1 (S)− 3

2
× IQR (S) (3.9)

where S is the entire filtered dataset, Q1 the lower quartile, and IQR the interquartile range.
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This only holds if the data is approximately normally distributed. Since the data tended to

be asymmetric, all data scoring greater than the mode score is ignored. This is justified since

only low-error scores are of interest. Therefore, only the distribution left of the mode, Sleft, is

used as shown in Figure 3.12. The mode is determined using a kernel density estimator (Botev,

2007) to estimate the probability density of S.
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Figure 3.12: (a) Distribution, S, of scores for scan A08 preliminary-filtered hypotheses. (b)
Symmetric distribution, Ssym after ignoring hypotheses right of the mode.

The distribution to the left of the mode, Sleft, is mirrored to the right in order to create a new

symmetric distribution, Ssym. This has the effect of shifting the lower quartile boundary to the

median of Sleft, Q1 (Ssym) = median (Sleft). Consequently, the interquartile range becomes

IQR (Ssym) = 2 × [mode (S)−median (Sleft)]. Modifying Equation (3.9), valid hypotheses

are then required to score below

Evalid = median (Sleft)− 3× [mode (S)−median (Sleft)] (3.10)

= 7×median (Sleft)− 3×mode (S) . (3.11)

It is now possible to determine which of the filtered hypotheses have a sufficiently low error-

score to be considered valid.
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Figure 3.13: Valid hypothesis thresholds for the method by Johnson (1997) (dashed) and the
modified method used in this thesis (dotted). These are overlayed on the distribution of scores
for scan A08 filtered hypotheses.

Selection and Final Processing

This section relates to box (c) from Figure 3.10. Hypotheses have been filtered and evaluated

as valid. Before the best hypothesis is selected, the remaining hypotheses are passed through a

heading filter. The measured rotation matrix from the global to the local frame, C, is compared

to the hypothesized rotation matrix from the global to the local frame, S, by decomposing both

into their Euler angles as in Equations (3.4) and (3.5). The heading error can then be verified

against its threshold, Eγ:

|γmeas − γhyp| ≤ Eγ. (3.12)

A heading filter is used only after the evaluation process because the heading filter tends to

eliminate so many hypotheses that the shape of the distribution of fitness scores is destroyed.

This distribution is key to the selection of a valid hypothesis, as discussed in Section 3.3.3.

Once this final filtering stage is complete, and if there are any hypotheses remaining, the
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hypothesis with the lowest error-score is selected as the best. Some final steps are taken to pro-

duce the two desired outputs. The initial pose estimate output is the transformation associated

with the selected hypothesis, which will be refined in the next section. A full set of correspon-

dences for all local features is obtained by first using this same pose estimate to transform local

features into the global frame. The correspondence for each local feature is then to the nearest

global feature.

3.3.4 Feature Matching Example

Given as input orientation measurements, all global features, a local map and its detected local

features, it has been shown how to output a pose estimate and correspondences between local

and global features. Figure 3.14 demonstrates the hypothesized locations of the rover after

each stage of the feature matching algorithm, as well as the feature correspondences obtained

from the best-scoring hypothesis.
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(a) 190,000 unfiltered (b) 43,000 preliminary filtered

(c) 17 valid (d) Zoomed-in view of best-scoring hypothesis

Figure 3.14: Decrease in the number of hypotheses at major stages in the algorithm for scan
A08. In (d), local features are transformed to the global frame using the transformation from
the best-scoring hypothesis. Elevation colourbar applies to all plots. UTM zone is 16X.



CHAPTER 3. METHODOLOGY 29

3.4 Pose Refinement

This section discusses pose refinement, which is represented as box (c) in the overall architec-

ture diagram of Figure 3.1.

In a long-range traverse, the rover regularly stops to scan the surrounding terrain with its

lidar. After some processing, a number of local features are detected from these local scans. Or-

bital data is processed in a similar manner to produce a set of global features. Correspondences

between local and global features and initial estimates of rover pose are then found using

DARCES. These correspondences are fed into the pose refinement stage along with odometry

and orientation measurements.

The Multi-frame Odometry-compensated Global Alignment (MOGA) algorithm, devel-

oped in this thesis, refines poses by simultaneously minimizing the errors between measure-

ments and estimates in each frame. RANSAC is run before the final, full MOGA alignment

to discard poor feature correspondences. The sections to follow describe the pose refinement

architecture in detail.

RANSAC-MOGA Pose Refinement

(a) RANSAC:

Get feature inliers for 

each local frame

(b) MOGA:

Full alignment

Feature

Inliers

Refined 

Poses
Correspondences

Pose Estimates 

and Orientation 

Measurements

Odometry

Measurements

Figure 3.15: Pose refinement architecture.
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3.4.1 Multi-frame Odometry-compensated Global Alignment (MOGA)

The main goal is to estimate the transformations from the global frame, F−→o, to each of the M

local frames, F−→`. This M -frame alignment problem is depicted in Figure 3.16.
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Figure 3.16: The M -frame alignment problem. Inputs: global and local features positions
with correspondences, odometry measurements, orientation measurements. Outputs: transfor-
mation estimates from global to local frames, feature landmark positions in the global frame.

Input measurements are assumed to be corrupted with white, zero-mean, Gaussian noise.

There are four types of measurement:

• In the global frame, F−→o, there are N measured feature positions, rfj
o , with 3× 3 covari-

ance matrix, Rfj
o . These are the features detected in the orbital map.

• In each local frame, F−→`, there are N` ≤ N measured feature positions, where r
f`,k
o` is the

position of a feature k in F−→`. The 3×3 covariance matrix for one of these measurements
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is Rf`,k
o`

. These are the features detected in the lidar scans. Corresponding global features

have been found for each local feature.

• Between local frames there are odometry measurements of rotations, Co`+1o`
, and trans-

lation, ρo`+1o`
o` , between adjacent local frames F−→` and F−→`+1. The combined 6×6 covari-

ance matrix is Qo`+1o`
o`

. These would come from visual odometry, for example.

• For each local frame, F−→`, there is also an orientation measurement, Co`o, from F−→o

to F−→` with 3 × 3 covariance matrix Ro`o
o`

. These would come from a sun sensor and

inclinometer, for example.

There are 2M + N design parameters that must be estimated. These can be divided into

three types:

• Estimated rotations, So`o, from the global frame F−→o to each of the M local frames F−→`.

• Estimated translations, to`o
o , from the global frame F−→o to each of theM local frames F−→`,

and expressed in the F−→o.

• Estimated feature positions, p
lj
o , expressed in F−→o for the N unique features input into

MOGA. These estimated features, also called feature landmarks, will not only improve

the estimate of feature positions, but also the transformation estimates between frames.

There are four types of error between estimated and measured quantities that will be mini-

mized by optimizing the design parameters:

• Jfj
, between estimated landmark feature positions and measured global feature positions.

• Jf`,k
, between estimated landmark feature positions and measured local feature positions.

• Jo`+1o`
, between estimated and odometry-measured transformations from F−→` to F−→`+1.

• Jo`o, between estimated and measured frame rotations from F−→o to F−→`.
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To allow all design parameters to be optimized simultaneously, each of these error terms

must be expressed as a function of a common design parameter column, z. The details of this

column will be discussed in the next section. The overall objective function, J(z), is then the

sum of all these error terms, giving

J(z) :=
N∑
j

Jfj
(z) +

M∑
`

N∑̀
k

Jf`,k
(z) +

M−1∑
`

Jo`+1o`
(z) +

M∑
`

Jo`o(z). (3.13)

It is important to note that the local frame sum,
∑M

`

∑N`

k Jf`,k
(z), is over all features visible

in a specific frame, `. There may be features in frame ` = 1 that are not visible in frame ` = 2

and vice versa due to topographic occlusions and range limitations.

The optimal design parameter column, z∗, is sought by minimizing the objective function

through unconstrained optimization. Therefore,

z∗ = argminzJ(z). (3.14)

An iterative Gauss-Newton algorithm (Björck, 1996) is used to solve this nonlinear least-

squares problem. The sections to follow discuss the details of each error term, how they can be

combined, and how to obtain an optimal solution.

3.4.2 Local Feature Terms, Jf`,k

A local feature’s error contribution term, Jf`,k
, is simply the squared difference between a

feature’s position measurement in F−→`, r
f`,k
o` , and its corresponding estimated position in F−→o,

p
lω(`,k)
o , transformed to F−→` with estimated translation and rotation to`o

o and So`o. This produces

Jf`,k
:=

1

2

(
r
f`,k
o` − So`o

(
p
lω(`,k)
o − to`o

o

))T
Rfj

−1

o`

(
r
f`,k
o` − So`o

(
p
lω(`,k)
o − to`o

o

))
. (3.15)

For purposes of iteratively minimizing these error contribution terms with the Gauss-Newton

algorithm, a function quadratic in the design parameters is desired. It is therefore necessary

to make quadratic approximations to the design parameters. This is done by perturbing each

design parameter slightly at each iteration and solving for the perturbations that move the
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objective function closer to the minimum. This perturbation is straightforward for the landmark

position and translation parameters:

to`o
o`

:= t̄
o`o
o`

+ δto`o
o`
, (3.16)

p
lω(`,k)
o =: p̄

lω(`,k)
o + δp

lω(`,k)
o (3.17)

where t̄
o`o
o`

and p̄
lω(`,k)
o are the nominal translation and landmark position estimates, and δto`o

o`

and δp
lω(`,k)
o are the changes to these estimates. Rotations are slightly more involved because

rotation matrices cannot be summed, but must be multiplied in order. Thus, a multiplicative

perturbation of the rotation is chosen of the form

So`o := δSo`oS̄o`o (3.18)

where S̄o`o is the nominal rotation estimate and δSo`o is a small perturbation rotation. It is also

necessary that this small rotation be expressed as a vector so it can be incorporated into the

solution column, z. This can be done with the infinitesimal rotation vector, δθo`o:

δSo`o ≈ 1− δθ×o`o
(3.19)

where δθo`o is a 3 × 1 vector whose magnitude is the angle of the small rotation, and whose

direction is the axis of rotation. A good introduction to this small angle parametrization is

given by Hughes (1986). The skew symmetric operator is

u× :=


0 −u3 u2

u3 0 −u1

−u2 u1 0

 . (3.20)

The approximate perturbation for rotations is thus

So`o ≈
(
1− δθ×o`o

)
S̄o`o. (3.21)

The desired rotation vector, δθo`o, can be isolated knowing that the cross product is anticom-

mutative, i.e. u×v = −v×u. Substituting Equations (3.16), (3.17) and (3.21) into the objective
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function of Equation (3.15), using this anticommutative property and expressing the resulting

objective function for clarity as Jf`,k
=: 1

2
eTf`,k

Rf`,k
−1

o`
ef`,k

gives

ef`,k
:≈ r

f`,k
o` − S̄o`o

(
p̄
lω(`,k)
o − t̄

o`o
o

)
(3.22)

−
((

S̄o`o

(
p̄
lω(`,k)
o − t̄

o`o
o

))×
δθo`o + S̄o`o

(
δp

lω(`,k)
o − δto`o

o

))
.

Note that an approximation has been made by dropping terms with higher order perturbations.

From the above equation, it is seen that the inter-frame terms contain updates for all involved

design parameters. These perturbed quantities make up the z column, which can now be ex-

pressed as

z :=


δplo

δto

δθ

 (3.23)

where δplo represents the column of all N landmark position perturbations in F−→o, and δto and

δθ are respectively the columns of all M translation and M rotation perturbations from F−→o to

F−→`. The error contribution term can then be written in the desired form as ef`,k
= bf`,k

−Af`,k
z,

where

bf`,k
:= r

f`,k
o` − S̄o`o

(
p̄
lω(`,k)
o − t̄

o`o
o

)
, (3.24)

Af`,k
:=

[
Df`,k

Ef`,k
Ff`,k

]
, (3.25)

Df`,k
:=

[
0 · · ·

ω(`,k)thterm︷︸︸︷
S̄o`o · · ·0︸ ︷︷ ︸

N landmarks

]
, (3.26)

Ef`,k
:=

[
0 · · ·

`thterm︷ ︸︸ ︷
−S̄o`o · · ·0︸ ︷︷ ︸
M frames

]
, (3.27)

Ff`,k
:=

[
0 · · ·

`thterm︷ ︸︸ ︷(
S̄o`o

(
p̄
lω(`,k)
o − t̄

o`o
o

))×
· · ·0︸ ︷︷ ︸

M frames

]
. (3.28)
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3.4.3 Global Feature Terms, Jfj

The Jfj
error term is derived in the same way, but with the simplification that the landmarks

and measured features both belong to the same frame, F−→o. This means there is no inter-

frame rotation or translation. For a single feature, Fj , the objective function contribution with

perturbations included is

Jfj
:=

1

2

(
p̄ljo + δpljo − rfj

o

)T
R
f−1

j
o

(
p̄ljo + δpljo − rfj

o

)
. (3.29)

The error contribution in the desired form is efj
= bfj

−Afj
z, where

bfj
:= p̄ljo − rfj

o , (3.30)

Afj
:=

[
Dfj

03×3M 03×3M

]
, (3.31)

Dfj
:=

[
0 · · ·

jthterm︷︸︸︷
−1 · · ·0︸ ︷︷ ︸

N landmarks

]
. (3.32)

3.4.4 Odometry Terms, Jo`+1o`

The objective is to minimize the error, Jo`+1o`
, between a measurement and a design parameter

estimate of the transformation between two local frames, F−→`, and F−→`+1. As shown in Figure

3.17, two paths must be compared: one going directly from map ` to map ` + 1 using an

odometry measurement, and one passing through the global map using design parameters.

The error contributions of interest are the translational, δρo`+1o`
o` , and rotational, δψo`+1o`

,

differences between these two paths. In order to obtain an overall scalar error, Jo`+1o`
, the two

3× 1 columns are combined using a 6× 6 covariance matrix, Qo`+1o`
o`

, as weighting:

Jo`+1o`
:=

1

2

 δρ
o`+1o`
o`

δψo`+1o`


T

Qo`+1o`
−1

o`

 δρ
o`+1o`
o`

δψo`+1o`

 . (3.33)

The derivations of the rotation and translation terms follow.
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F
~

`

Global Map O

Local Map ` Local Map ` + 1

F
~

`+1

F
~

o

O

{ρo`+1o`
o` ,Co`+1o`

,Qo`+1o`
o`

}

{to`+1o
o ,So`+1o}{to`o

o ,So`o}

O` O`+1
· · · · · ·· · · · · · Odometry Measurement Path

Design Parameter Path

Figure 3.17: Two different transformation paths from map ` to `+ 1 in the three frame model.

Rotation

The goal is to have the difference between the measured and estimated rotations be as small as

possible. Thus

δCo`+1o`
:= Co`+1o`

STo`+1o`
(3.34)

should approach identity, where So`+1o`
:= So`+1oS

T
o`o

is the path through the orbital map. The

rotation So`o can be separated into a small rotation, (1− δθ×o`o
), multiplied by a large one, S̄o`o.

Over an iteration, the latter would correspond to the most current estimate for this rotation. The

same may be said for So`+1o. Also, δCo`+1o`
may be assumed to be small, so

δCo`+1o`
≈ 1− δψ×o`+1o`

(3.35)

where δψo`+1o`
must be isolated. Using these properties,

1− δψ×o`+1o`
≈ Co`+1o`

(1− δθ×o`o
)S̄o`oS̄

T
o`+1o

(1 + δθ×o`+1o
). (3.36)

Defining S̄o`+1o`
:= S̄o`+1oS̄

T
o`o

and strategically introducing 1 = S̄
T
o`+1o`

S̄o`+1o`
gives

1− δψ×o`+1o`
≈ Co`+1o`

S̄
T
o`+1o`

S̄o`+1o`
(1− δθ×o`o

)S̄
T
o`+1o`

(1 + δθ×o`+1o
). (3.37)
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It is again assumed that the difference between measured and estimated rotations is small, so

1− δφ×o`+1o`
≈ Co`+1o`

S̄
T
o`+1o`

. (3.38)

Substituting this, expanding, and neglecting all higher order terms in small angles to be zero

gives

δψ×o`+1o`
≈ δφ×o`+1o`

+ S̄o`+1o`
δθ×o`o

S̄
T
o`+1o`

− δθ×o`+1o
. (3.39)

Using the identity Cz×CT ≡ (Cz)×, for a rotation matrix, C, and knowing that the cross

operator is linear,

δψ×o`+1o`
≈
(
δφo`+1o`

+ S̄o`+1o`
δθo`o − δθo`+1o

)×
. (3.40)

Equating the cross-operated terms gives an equation of the desired form:

δψo`+1o`
≈ δφo`+1o`

−
(
δθo`+1o − S̄o`+1o`

δθo`o

)
. (3.41)

Translation

The difference between measured and estimated translations is expected to be small, so

δρo`+1o`
o`

:= ρo`+1o`
o`

− So`o (to`+1o
o − to`o

o ) . (3.42)

Perturbing the design parameters gives

δρo`+1o`
o`

= ρo`+1o`
o`

− (1− δθ×o`o
)S̄o`o (δto`+1o

o + t̄
o`+1o
o − δto`o

o − t̄
o`o
o ) . (3.43)

Expanding the equation above and ignoring higher order terms in small perturbations produces

δρo`+1o`
o`

= ρo`+1o`
o`

− S̄o`o (t̄
o`+1o
o − t̄

o`o
o ) (3.44)

−
(
S̄o`o (δto`+1o

o − δto`o
o ) +

(
S̄o`o (t̄

o`+1o
o − t̄

o`o
o )
)×
δθo`o

)
.
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Overall Odometry Error

Substituting the results from the previous two sections into the objective function of Equation

3.33 and defining Jo`+1o`
=: 1

2
eTo`+1o`

Qo`+1o`
−1

o`
eo`+1o`

, the odometry error as a function of the

full design parameter column, z, is eo`+1o`
=: bo`+1o`

−Ao`+1o`
z, where

bo`+1o`
:=

 ρo`+1o`
o` − S̄o`o (t̄

o`+1o
o − t̄

o`o
o )

δφo`+1o`

 , (3.45)

Ao`+1o`
:=

[
06×N Eo`+1o`

Fo`+1o`

]
(3.46)

Eo`+1o`
:=

 0 · · ·
`thterm︷ ︸︸ ︷
−S̄o`o

`+1thterm︷︸︸︷
S̄o`o · · ·0

03×M

 , (3.47)

Fo`+1o`
:=

 0 · · ·
(
S̄o`o (t̄

o`+1o
o − t̄

o`o
o )
)×

0 · · · 0

0 · · · −S̄o`+1oS̄
T
o`o︸ ︷︷ ︸

`thterm

1︸︷︷︸
`+1thterm

· · · 0


6×M

. (3.48)

The δφo`+1o`
parameter can be obtained by converting Co`+1o`

So`oS
T
o`+1o

into axis-angle repre-

sentation, as explained in Appendix C.

3.4.5 Measured Orientation Terms, Jo`o

Estimates can further be constrained if inclinometer and/or sun sensor orientation measure-

ments are available. These measurements are added to the overall objective function in a simi-

lar way to Section 3.4.4. The error contribution is

Jo`o :=
1

2
eTo`o

Ro`o
−1

o`
eo`o. (3.49)

Assuming the error between the measured orientation and estimated orientation from F−→o to

F−→` is small, then

δCo`o := Co`oS
T
o`o
, (3.50)

1− δψ×o`o
≈ Co`oS

T
o`o
. (3.51)
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Approximating the estimated rotation into a small rotation and a nominal rotation gives

1− δψ×o`o
≈ Co`oS̄

T
o`o

(
1 + δθ×o`o

)
. (3.52)

The measured orientation multiplied by the transpose of the nominal orientation is also small,

therefore

Co`oS
T
o`o
≈:

(
1− δφ×o`o

)
, (3.53)

1− δψ×o`o
≈

(
1− δφ×o`o

) (
1 + δθ×o`o

)
. (3.54)

Expanding and dropping higher order terms,

δψ×o`o
≈ δφ×o`o

− δθ×o`o
. (3.55)

The cross operator is a linear operator, therefore

δψo`o = δφo`o − δθo`o. (3.56)

The error term can then be written in the desired form as eo`o := bo`o −Ao`oz, where

bo`o := δφo`o, (3.57)

Ao`o :=

[
03×N 03×M Fo`o

]
, (3.58)

Fo`o :=
[
0 · · ·

`thterm︷︸︸︷
1 · · ·0︸ ︷︷ ︸

M frames

]
. (3.59)

The δφo`o parameter can be obtained by converting Co`oS̄
T
o`o

into axis-angle form, as explained

in Appendix C.

3.4.6 Combining Terms and Optimization

These objective function error terms must be combined in such a way that the overall mini-

mization problem can be easily expressed. The overall objective function becomes

J =
N∑
j

(
1

2
eTfj

Rfj
−1

o efj

)
+

M∑
`

N∑̀
k

(
1

2
eTf`,k

Rf`,k
−1

o`
ef`,k

)
(3.60)

+
M−1∑
`=1

(
1

2
eTo`+1o`

Q
o`+1o

−1
`

o` eo`+1o`

)
+

M∑
`=1

(
1

2
eTo`o

Ro`o
−1

o`
eo`o

)
.
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It is desired to take a step, z∗, to the minimum of the current local quadratic approximation of

J . Thus z∗ is chosen so that ∂JT

∂z
= 0. Taking the derivative of Equation 3.60 with respect to

z, and setting the result equal to zero gives

0 =
N∑
j

(
AT
fj
Rfj

−1

o bfj
−AT

fj
Rfj

−1

o Afj
z∗
)

+
M∑
`

N∑̀
k

(
AT
f`,k

Rf`,k
−1

o`
bf`,k

−AT
f`,k

Rf`,k
−1

o`
Af`,k

z∗
)

(3.61)

+
M−1∑
`

(
AT
o`+1o`

Q
o`+1o

−1
`

o` bo`+1o`
−AT

o`+1o`
Q
o`+1o

−1
`

o` Ao`+1o`
z∗
)

+
M∑
`

(
AT
o`o

Ro`o
−1

o`
bo`o −AT

o`o
Ro`o

−1

o`
Ao`oz

∗
)
.

By factoring out z∗ and rearranging, the equation can now be rewritten in the form

Bz∗ = y (3.62)

where

B :=
N∑
j

(
AT
fj
Rfj

−1

o Afj

)
+

M∑
`

N∑̀
k

(
AT
f`,k

Rf`,k
−1

o`
Af`,k

)
(3.63)

+
M−1∑
`

(
AT
o`+1o`

Q
o`+1o

−1
`

o` Ao`+1o`

)
+

M∑
`

(
AT
o`o

Ro`o
−1

o`
Ao`o

)
,

y :=
N∑
j

(
AT
fj
Rfj

−1

o bfj

)
+

M∑
`

N∑̀
k

(
AT
f`,k

Rf`,k
−1

o`
bf`,k

)
(3.64)

+
M−1∑
`

(
AT
o`+1o`

Q
o`+1o

−1
`

o` bo`+1o`

)
+

M∑
`

(
AT
o`o

Ro`o
−1

o`
bo`o

)
.

This is just a linear system of equations that has a unique solution iff det B 6= 0. If all local

frames are tied together with odometry, this singularity can be avoided with a minimum of

three unique, non-collinear features spread anywhere in the entire chain of frames. Without

odometry, at least three unique, non-collinear features would be required for each local frame.

Also of interest is that B represents the inverse covariance matrix of the estimated parame-

ters. Therefore, the variances of the estimates may be approximated from the diagonal of B−1.

This is a conservative approximation since the off-diagonal covariance terms are being ignored.



CHAPTER 3. METHODOLOGY 41

Using the Gauss-Newton algorithm, the solution obtained represents a step to the minimum

of the local quadratic approximation, which over a number of iterations will lead to the local

minimum of the objective function.

3.4.7 RANSAC

This section relates to box (a) from Figure 3.15. The RANSAC (Random Sample Consensus)

algorithm (Fischler & Bolles, 1981) is used to reject poor feature correspondences before a

full alignment with MOGA. A poor correspondence is defined as one where the position er-

ror between the global-local feature pair does not obey assumed Gaussian uncertainties. This

is expressed mathematically in a future section. RANSAC operates only on individual local

frames. The first step in RANSAC is to select NRANSAC sets of three randomly-chosen, unique

local features. These are then input into MOGA and evaluated to find the best feature corre-

spondences. The procedure is outlined in Figure 3.18 and detailed in the sections to follow.

RANSAC

Correspon

-dences

(a) Select 

NRANSAC Minimum 

Feature Sets

(b) MOGA:

Min. Feature 

Set Alignment

(c) Select Best

Feature Inliers

NRANSAC Min.

Feature Sets

Estimated

Transformation

for each Set

Feature 

Inliers

Pose Estimate 

and Orientation 

Measurement

Figure 3.18: RANSAC architecture with odometry measurements for a single local frame.

Selecting Minimum Feature Sets

This section relates to box (a) from Figure 3.18. In three dimensions, at least three unique,

non-collinear features are needed to achieve invertibility of B from Equation (3.63). Choosing

three unique features is straightforward, but checking for collinearity is more difficult.

RANSAC repeatedly inputs minimum sets of three features into MOGA. Therefore, it is

likely that the three features could become near-collinear at some point in the alignment pro-

cess. In this manner, it is difficult to choose three features that will never become collinear.
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MOGA will thus check that the smallest angle of a group of features never falls below a

threshold angle, Ecollinear. If the angle does fall below this threshold, MOGA fails gracefully

and communicates to RANSAC that the features have reached near-collinearity. RANSAC can

then proceed to select another set of features.

MOGA for Minimum Feature Sets

This section relates to box (b) from Figure 3.18. The choice of a minimum input of three

features allows MOGA to process very quickly, thereby allowing for a thorough search of

the best feature correspondences. However, the reason to apply RANSAC on individual local

frames is not for efficiency gains.

If odometry were provided, it might be possible for MOGA to tie local frames together

and run on all local frames at once. However, this is not implemented since, with only three

features, it is expected that potentially large odometry errors would skew the alignment. There-

fore, the MOGA block within RANSAC is run on one local frame at a time.

Selecting The Best Feature Inliers

This section relates to box (c) from Figure 3.18. A valid correspondence between a local and

global feature is called an inlier. If a given minimum feature set is composed of three inliers,

the resulting estimated transformation from MOGA would correctly align other inlier local-

global feature pairs. The goal of RANSAC is to find the feature set that produces the most

inlier correspondences. These inliers can then be used in a full MOGA run (i.e. box (b) in

Figure 3.15). The mathematical definition of an inlier must be developed.

Consider a local feature and its corresponding global feature with respective positions

pL := [xL yL zL]T and pG := [xG yG zG]T . These features are separated by a distance dGL:

dGL :=
(
(xL − xG)2 + (yL − yG)2 + (zL − zG)2) 1

2 . (3.65)

In order for this correspondence to be labeled an inlier, dGL must be less than some error
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threshold Einlier:

dGL ≤ Einlier (3.66)

where Einlier should relate to the uncertainty in the distance between the two features, σdGL
:

Einlier := 3σdGL
. (3.67)

Note that σ is used to represent one standard deviation of uncertainty for the variable in ques-

tion. With theEinlier threshold set at three standard deviations, 99% of inlier dGL measurements

should fall within this threshold and therefore be correctly detected as inliers. It is assumed that

other sources of uncertainty are negligible and dGL measurements are normally distributed.

Equation (3.67) must be written in terms of the uncertainty in feature positions. By propa-

gation of uncertainty and assuming zero covariance,

(σdGL
)2 d2

GL =
(
(σxG

)2 + (σxL
)2) (xL − xG)2

+
(
(σyG

)2 + (σyL
)2) (yL − yG)2 (3.68)

+
(
(σzG

)2 + (σzL
)2) (zL − zG)2

where σdGL
can be computed since all other variables are known quantities.

3.4.8 MOGA Example

An example is provided in Figure 3.19 to show results after running MOGA, as well as

RANSAC’s outlier rejection capabilities.

3.5 Methodology Summary

An architecture has been presented to localize a rover over long ranges. The inputs are an

orbital map, 3D lidar maps, odometry data, and orientation data. Correspondences between

features detected in the orbital and lidar maps, and an initial estimates of the rover pose are
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determined with DARCES. These quantities, along with odometry and orientation measure-

ments, are then run through RANSAC-MOGA to refine the rover’s poses. With a sufficient

number of features, this methodology allows for global localization of the rover.

Figure 3.19: Scan A08 features after RANSAC-MOGA. Several outliers were detected and ig-
nored. Estimated feature-landmark positions are also shown. Local features were transformed
to the global frame using final MOGA-refined estimates. UTM zone is 16X.
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Experimental Setup

4.1 Global and Local Maps

Field data was collected from Devon Island, Nunavut just North of the Haughton Crater at

75◦22’N and 89◦41’W. The low-lying terrain and lack of vegetation at this location make it

a unique Mars-Moon analogue site. Two critical pieces of information needed for global lo-

calization are the local and global maps. The global maps were obtained from GeoBase1, a

repository of DEMs covering all of Canada. The DEM was produced from a stereo image pair

collected from orbiting satellite. The segment of the map used for testing was an approximately

10km×10km box as seen in Figure 4.3. Further details on the map resolution and accuracy are

presented in Appendix A.

The local maps were constructed from 360◦ lidar scans with an Optech ILRIS3D-ER lidar

mounted on a pan-tilt unit as seen in Figure 4.1(a). The lidar had a maximum range of about

2km in Extended Range mode. Its beam divergence was 0.00974◦, which resulted in a range

accuracy of 7mm at a range of 100m. The resolution of the scan was set to 0.06◦ in the

horizontal and 0.045◦ in the vertical. A sample scan is shown in Figure 4.2.

1Geobase is located online at http://www.geobase.ca

45
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(a) Lidar mounted on pan-tilt unit and tripod. (b) Cart with odometry and heading sensors.

Figure 4.1: Field equipment used to collect Devon Island datasets.

Figure 4.2: Sample scan (A08) overlayed on a section of the orbital DEM. Both maps have
been transformed to the same frame of reference using GPS ground-truth. The origins of the
lidar scan and of the plot coincide.
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4.2 Field Traverses

To simulate a rover’s traverse, a cart was outfitted with a suite of rover engineering sensors and

collected odometry measurements as it was pushed along a planned path. The cart is shown in

Figure 4.1(b). Stops were made along the traverse every 500m to take a 360◦ lidar scan of the

terrain.

Two datasets were collected. Dataset A was gathered over a 10km traverse to test the full

capabilities of the algorithm. Dataset B was smaller and located about 8km away from Dataset

A. It was used to verify the adaptability of the algorithm. The datasets are shown in Figures

4.3 and 4.4.

Figure 4.3: Elevation map showing GPS locations of all lidar scans in UTM zone 16X.
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Figure 4.4: Dataset A and B lidar scan positions (GPS) overlayed on orbital images of terrain.
Both images are oriented such that the upward direction is approximately North.

4.3 Ground-Truth

Ground-truth x-y position measurements, ρx,t and ρy,t, were obtained from a consumer-grade

handheld GPS. It had positional uncertainty with a standard deviation of σρx,t = σρy,t = 5m.

Ground-truth for the z-position was obtained from the global DEM which had an uncertainty

with a standard deviation of σρz,t = 12m. See Appendix A for more detail on DEM accuracies.

Orientation ground-truth for roll and pitch were effectively measured with a two perpen-

dicular bubble levels built into the base of the lidar. Because the lidar was levelled with the

bubble levels before each scan, ground-truth roll and pitch were respectively αt = βt = 0◦ and

had an estimated uncertainty with a standard deviation of σαt = σβt = 3◦.

Determining ground-truth for heading, γt, was more involved and required knowledge of

the position of a second, target reference point. This target setup is shown in Figure 4.5. Before

each scan, the target was placed in the lidar’s field of view about 100m away such that it did not

occlude any important features in the distance. The GPS position of the target was recorded.

Since the GPS position of the lidar was also known, it sufficed to determine the position of
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the target in the lidar’s reference frame to calculate the lidar’s heading with respect to the

global map’s reference frame. To obtain this last piece of information, a simple algorithm was

created to manually pinpoint the target in the lidar scan. In this manner, the lidar’s ground-truth

heading could be obtained. This ground-truth heading measurement was estimated to have an

uncertainty with a standard deviation of σγt = 3◦. For more details on this procedure, refer to

Furgale et al. (2009).

Figure 4.5: Target used to obtain heading ground-truth measurements.

4.4 Odometry Measurements

The cart was equipped with wheel odometry and stereo cameras, which together could produce

visually-corrected odometry. These odometry measurements could be used as an additional

input to the localization algorithm developed in this thesis in order to refine the alignment

between global and local maps. Unfortunately, the processed odometry data was not available

in the time-frame of this thesis. However, knowing ground-truth position and orientation at

each scan stop, the odometry could be simulated with the assumption that odometry error grew

as a function of the distance traversed.
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Odometry measurements are simulated using ground-truth transformations between scans

and adding error by sampling from a zero-mean normal distribution with covariance matrix,

Q. In creating Q, the translational standard deviations in uncertainty are chosen to increase

as a proportion, cρ, of their respective traversal distance components, ρx, ρy, ρz. Rotational

standard deviations in uncertainty grow as a function of the overall radial distance traversed,

ρ :=
√
ρ2
x + ρ2

y + ρ2
z, and at a rate of cθ radians per metre. The resulting 6 × 6 covariance

matrix is therefore

Q = diag
{

(cρρx)
2 , (cρρy)

2 , (cρρz)
2 , (cθρ)2 , (cθρ)2 , (cθρ)2} (4.1)

where the diagonal variables from top left to bottom right are respectively the x, y, z measure-

ment variances of distance traversed and the x, y, z measurement variances of angle displaced.

4.5 Orientation Measurements

Orientation measurements could also be input into the localization algorithm developed in this

thesis to improve performance. In a realistic scenario, roll and pitch measurements would be

obtained from an inclinometer and heading measurements from a sun sensor or equivalent.

However, an inclinometer was not available at the time of experimentation and although the

cart was equipped with a sun sensor, the data had not yet been processed for use in this thesis.

Therefore, it was necessary to simulate these sensor orientation measurements using ground-

truth measurements.

It should be clear that comparing orientation estimates output from the algorithm to ground-

truth orientation measurements is merely observing the changes the algorithm made to the

ground-truth. However, some useful observations can still be made, such as the effect of these

orientation measurements when used as filters in the feature-matching algorithm. This is fur-

ther discussed in the sections to follow.



Chapter 5

Results

5.1 Overview

Three configurations of the architecture were tested:

1. Single-frame alignment with no heading measurements.

2. Single-frame alignment with heading measurements.

3. Multiple-frame alignment with heading measurements.

The single-frame case only aligned features from a single lidar scan to the global map and

assumed no odometry measurements were available. The multiple-frame scenario included

simulated odometry measurements to refine the alignment between lidar scans, and to obtain

transformation estimates for frames with no DARCES solution. The benefits of inputting head-

ing measurements were also examined.

Results were obtained for Datasets A and B. Dataset A was tested on all three architecture

configurations mentioned previously. Dataset B was only run on the single-frame cases, since

it was only needed to verify that the architecture worked in different regions. The algorithm

was coded in Matlab R2007a and run a system with an Intel Core2 2GHz CPU and 2GB RAM.

51
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Performance of the algorithm is often presented as ρx, ρy, ρz translation and θx, θy, θz axis-

angle rotation errors with respect to ground-truth. These axis-angle rotation errors are also

respectively referred to as pitch, roll and heading errors.

A summary of the chosen input parameters is presented in Table 5.1. Justification for the

selection of these values is explained in the sections to follow.

Table 5.1: Summary of input parameters. All uncertainties correspond to one standard devia-
tion.

Parameter Value Description

Lglobal 12m Global map resolution.

n 5 cells Dilation window radius.

Ddetect 60m Minimum distance between detected features.

σrGxy
14m Global map x-y uncertainty.

σrGz
12m Global map z uncertainty.

σrLxy
5m Local map x-y uncertainty.

σrLz
5m Local map z uncertainty.

t 60m Half-thickness of hypothesis search sphere shell.

NDARCES 500 Maximum number of control point iterations in DARCES.

Ezdev 100m z-deviation filter threshold.

Eα, Eβ, Eγ 9◦ Orientation filter thresholds.

cρ 5% Odometry position error growth rate.

cθ 5
◦

km
Odometry orientation error growth rate.

NRANSAC 500 Maximum number of RANSAC iterations.

Rorient

(
3◦ π

180

)2
1 Orientation measurement covariance matrix.

Einlier 45m Feature inlier threshold for RANSAC.

Ecollinear 1◦ Collinearity threshold.

EMOGA 10−16 MOGA convergence threshold.

η 0.9 Update reduction factor for MOGA line search.
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5.2 Feature Detection

The global map covered an area of about 10km×10km on Devon Island, Nunavut. It was

located in the UTM 16X zone and bounded by 75.40◦N, 75.50◦N, 90.00◦W and 89.70◦W.

Some minor operations were performed on the raw DEM resolution and accuracy to make

them compatible with the algorithm (see Appendix A).

The DEM’s x and y resolutions were not equal. In order to make use of the extra in-

formation provided by the smaller resolution, the global map was interpolated at the smaller

resolution to form a uniform grid. Therefore, the global map resolution was Lglobal = 12m.

The dilation window used to extract features from global and local maps was a pixelated

circle with a radius of n = 5 global map cells. Therefore, as discussed in Section 3.2, the

minimum distance allowed between features was Ddetect = n× Lglobal = 60m.

With these parameters, 537 global map features were detected in approximately 5 seconds.

A typical local frame detection cycle finished in about 25 seconds. Feature detection in local

frames was slower mostly due to the final processing steps that improved the chances that a

detected feature would be a peak in the local topology.

The distribution of features for each local frame is shown in Figure 5.1. Fewer local features

were detected when the lidar was located in a canyon setting such as the first and last few frames

of Dataset A. In a canyon, the lidar was surrounded by nearby hills, which occluded long-range

terrain features. Even a detected peak may have been a poor representation of the true peak,

which was likely to be occluded at close range. A low number of features in a frame tended to

make it more difficult to find a DARCES solution.
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Figure 5.1: Number of features detected in each frame for Dataset A and B.

5.3 Feature Matching

The essential parameter in the search for correspondence hypotheses was the half-thickness of

the search sphere’s shell, t. As derived in Equation (3.2), the half-thickness depended on the

uncertainties in global and local features.

The uncertainties in global feature positions were assumed equal to the uncertainties in the

orbital DEM measurements: σrGxy
= 14m and σrGz

= 12m. These DEM uncertainties are

derived in Appendix A. To simplify the local feature error model, the local features’ position

uncertainties were set to σrLxy
= 5m and σrLz

= 5m based on a conservative estimate of

the lidar’s accuracy in scanning the position of a topological peak. Therefore, as derived in
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Figure 5.2: Orientation errors for all unfiltered hypotheses from a trial run on scan A08.

Appendix B, a reasonable value for the half thickness of the search sphere’s shell is t ≈ 60m.

Each DARCES trial was limited to run over a maximum of NDARCES = 500 control points.

A number of filters were used to improve computing time and refine the initial set of hypotheses

in search of valid hypotheses. The maximum z-deviation threshold was set to Ezdev = 100m.

The orientation filters were designed such that errors between measured and hypothesized an-

gles remained three standard deviations below measurement uncertainty. The thresholds were

therefore Eα = 9◦, Eβ = 9◦, Eγ = 9◦.

Computing time was approximately one minute per local frame with these settings. Figure

5.2 shows the orientation errors used in filtering the hypotheses. It is interesting to note the

distributions of the three orientation errors. Hypotheses tended to favour orientations parallel

to the global map x-y plane because of the low-lying nature of the terrain. For example, roll

errors tended to be either near-zero (upright) or 180◦ (upsidedown). Hypotheses producing an

upsidedown orientation could therefore easily be filtered. The impact of these filters on the

number of hypotheses is significant and can be seen in Figure 5.3.
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Figure 5.3: Average number of hypotheses over random sample of control points from Dataset
A. Shown for three stages of RANSAC. Unfiltered: Hypotheses initially generated. Filter 1:
Hypotheses remaining after roll, pitch, z-deviation and map boundary filters. Filter 2: Hy-
potheses remaining after heading filter.

5.4 Pose Refinement

As explained in Section 4.4, odometry measurements were simulated using ground-truth trans-

formations between scans and adding error by sampling from a zero-mean normal distribution

with covariance matrix, Q. Chosen based on typical visual odometry performance, the simu-

lated odometry’s translational and rotational error growth rates were respectively cρ = 5% of

component-wise distance traversed, and cθ = 5
◦

km
of radial distance traversed.

Orientation measurement covariance matrices were estimated from instrumentation uncer-

tainties, Rorient =
(
3◦ π

180

)2
1.

RANSAC was run for NRANSAC = 500 iterations. If there was an insufficient number

of features to reach NRANSAC iterations, then all possible feature combinations were tested

with the realization that the results may not have been as reliable. In the search for inliers, the

maximum position error allowed between a pair of corresponding features wasEinlier. This was

calculated from Equation (3.67) using position measurement values and their uncertainties. A

typical value for the inlier threshold was Einlier ≈ 45m.
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Global and local features in MOGA were checked for collinearity since this was a par-

ticularly likely scenario when fitting the minimum three points in RANSAC. If at any time

the smallest angle between the three features was less than Ecollinear = 1◦, the points were

considered collinear, forcing RANSAC to attempt a new set of features.

Transformation estimates were obtained from DARCES, which served as initial guesses for

MOGA. However, if a particular frame did not have a DARCES solution, its transformation

was estimated using odometry to the next-closest DARCES-solved frame along the path.

MOGA was considered to have converged when the difference between the previous and

current objective function errors, ∆J := Ji−1−Ji, was less than the thresholdEMOGA = 10−16.

A line search was done on the design parameter updates, z, to ensure the objective function

decreased after each iteration. If the initial update produced an increase in the objective, ∆J >

0, then z was repeatedly reduced by a factor of η = 0.9 until a decrease, ∆J < 0, was obtained.

With these settings, a full RANSAC-MOGA run on Dataset A took about 5 minutes to

complete. A full, 23-frame MOGA run on Dataset A converged in about 10 seconds. Figure

5.4 shows a sample convergence plot for a multi-frame trial over all frames in Dataset A.
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Figure 5.4: Convergence plots for a multi-frame trial run on all frames of Dataset A.
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5.5 Single-Frame Localization No Heading

In the single-frame no-heading trials, inclinometer information was available along with local

and global maps. Heading data from the sun sensor was not used. Localization was only exe-

cuted on individual frames. There was no information sharing between frames. This scenario

was tested over 30 trials for each of Datasets A and B. In each trial, all inputs were the same

except the control point sets in DARCES and the minimum feature sets in RANSAC, which

were randomly selected.

5.5.1 Dataset A, Single No Heading

Performance was encouraging, since most trials showed error well below 100m position and

5◦ heading error as shown in Figure 5.5. The number of trials of frames having one or more

estimates falling outside their calculated uncertainties was of slight concern as seen in the error

plots of Figures 5.6 and 5.7. Furthermore, calculated uncertainties in the estimates seemed

larger than they perhaps should have been. This was possibly due to overestimation of input

measurement uncertainties.

These trials clearly suffered from the lack of heading information. In particular, frame

A20 demonstrated the risk in localizing over such a large initial search space. The estimated

position and heading for this particular frame had an error of about 2km and 180◦ respectively.

A heading filter could have easily caught this poor hypothesis, as will be shown in future

sections.
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Figure 5.5: Dataset A, no heading input. Translation and rotation errors for all 30 trials. Frame
A20 was omitted for clarity since it produced estimates with large errors (e.g. position error on
the order of kilometres). The absence of data for a given frame indicates that DARCES could
not find a solution for that frame in any of the 30 trials. Orientation errors, θx and θy, only
represent corrections made to their ground-truth measurements, since this same ground-truth
was used as an input to the algorithm.
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Figure 5.6: Dataset A, no heading input. Errors for the worst of all 30 trials (i.e. trials with
the worst radial translation error for a given frame). Frame A20 was omitted for clarity since
it produced estimates with large errors (e.g. position error on the order of kilometres). The
absence of data for a given frame indicates that DARCES could not find a solution for that
frame in any of the 30 trials. Uncertainty is shown (solid line) for three standard deviations of
combined transformation estimate and ground-truth uncertainty. Orientation errors, θx and θy,
only represent corrections made to their ground-truth measurements, since this same ground-
truth was used as an input to the algorithm.
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Figure 5.7: Dataset A, no heading input. Errors for the best of all 30 trials (i.e. trials with
the best radial translation error for a given frame). Frame A20 was omitted for clarity since
it produced estimates with large errors (e.g. position error on the order of kilometres). The
absence of data for a given frame indicates that DARCES could not find a solution for that
frame in any of the 30 trials. Uncertainty is shown (solid line) for three standard deviations of
combined transformation estimate and ground-truth uncertainty. Orientation errors, θx and θy,
only represent corrections made to their ground-truth measurements, since this same ground-
truth was used as an input to the algorithm.
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5.5.2 Dataset B, Single No Heading

Dataset B gave results similar to Dataset A for the single-frame no heading configuration. A

solution was obtained for frame B02 only 6 out of 30 times. This was a good reminder of

the random nature of DARCES, and was justification for running as many control point sets

through DARCES as possible. The otherwise good results presented in Figures 5.8, 5.9 and

5.10 helped verify that the algorithm was robust to different environments, since the exact same

input parameters were used for tests on both Datasets A and B, and Dataset B was geographi-

cally separated from Dataset A.
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Figure 5.8: Dataset B, no heading input. Translation and rotation errors for all 30 trials. Ori-
entation errors, θx and θy, only represent corrections made to their ground-truth measurements,
since this same ground-truth was used as an input to the algorithm.
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Figure 5.9: Dataset B, no heading input. Errors for the worst of all 30 trials (i.e. trials
with the worst radial translation error for a given frame). Uncertainty is shown (solid line) for
three standard deviations of combined transformation estimate (i.e. B−1 from Section 3.4.6)
and ground-truth uncertainty. Orientation errors, θx and θy, only represent corrections made
to their ground-truth measurements, since this same ground-truth was used as an input to the
algorithm.
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Figure 5.10: Dataset B, no heading input. Errors for the best of all 30 trials (i.e. trials
with the best radial translation error for a given frame). Uncertainty is shown (solid line) for
three standard deviations of combined transformation estimate (i.e. B−1 from Section 3.4.6)
and ground-truth uncertainty. Orientation errors, θx and θy, only represent corrections made
to their ground-truth measurements, since this same ground-truth was used as an input to the
algorithm.
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5.6 Single-Frame Localization With Heading

In this configuration, heading measurements (i.e. simulated sun sensor measurements) were

available as an input to the algorithm. Localization was still performed only on individual

frames. Results were obtained for 30 trials over each of Datasets A and B. In each trial, all

inputs were the same except the control point sets in DARCES and the minimum feature sets

in RANSAC, which were randomly selected. The exact same control points were used in these

trials as were used in the single-frame no heading case.

5.6.1 Dataset A, Single With Heading

The benefits of the input heading measurements can be seen immediately. As expected, the

poor solutions obtained from the previous section in frames A09 and A20 were detected by

the heading filter and discarded as shown in Figure 5.11. Accuracies of the estimates were

otherwise largely the same as in the single-frame no heading case. The same estimates fell

outside uncertainty, as seen in Figures 5.12 and 5.13.
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Figure 5.11: Dataset A, with heading input. Translation and rotation errors for all 30 trials. All
three orientation errors only represent corrections made to their ground-truth measurements,
since this same ground-truth was used as an input to the algorithm.
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Figure 5.12: Dataset A, with heading input. Errors for the worst of all 30 trials (i.e. trials with
the worst radial translation error for a given frame). Uncertainty is shown (solid line) for three
standard deviations of combined transformation estimate (i.e. B−1 from Section 3.4.6) and
ground-truth uncertainty. All three orientation errors only represent corrections made to their
ground-truth measurements, since this same ground-truth was used as an input to the algorithm.
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Figure 5.13: Dataset A, with heading input. Errors for the best of all 30 trials (i.e. trials with
the best radial translation error for a given frame). Uncertainty is shown (solid line) for three
standard deviations of combined transformation estimate (i.e. B−1 from Section 3.4.6) and
ground-truth uncertainty. All three orientation errors only represent corrections made to their
ground-truth measurements, since this same ground-truth was used as an input to the algorithm.
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5.6.2 Dataset B, Single With Heading

As with Dataset A, the heading information allowed some poor solutions to be detected early

and eliminated, as seen in Figure 5.14. The poorest estimates were again observed to fall

outside their estimated uncertainties, as shown in Figures 5.15 and 5.16. Otherwise, results

were similarly positive. This helped again prove the ability of the algorithm to function in

different terrains.
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Figure 5.14: Dataset B, with heading input. Translation and rotation errors for all 30 trials. All
three orientation errors only represent corrections made to their ground-truth measurements,
since this same ground-truth was used as an input to the algorithm.
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Figure 5.15: Dataset B, with heading input. Errors for the worst of all 30 trials (i.e. trials with
the worst radial translation error for a given frame). Uncertainty is shown (solid line) for three
standard deviations of combined transformation estimate (i.e. B−1 from Section 3.4.6) and
ground-truth uncertainty. All three orientation errors only represent corrections made to their
ground-truth measurements, since this same ground-truth was used as an input to the algorithm.
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Figure 5.16: Dataset B, with heading input. Errors for the best of all 30 trials (i.e. trials with
the best radial translation error for a given frame). Uncertainty is shown (solid line) for three
standard deviations of combined transformation estimate (i.e. B−1 from Section 3.4.6) and
ground-truth uncertainty. All three orientation errors only represent corrections made to their
ground-truth measurements, since this same ground-truth was used as an input to the algorithm.
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5.7 Multiple-Frame Localization With Heading

In this configuration, odometry and heading measurements were assumed available. Results

were obtained for Dataset A over 30 trials in which the simulated odometry was different for

each trial. The exact same DARCES correspondences were used as in the single-frame with

heading case. A trial finished in about 30 minutes from feature detection to pose refinement.

In this final configuration, estimates for frames with no DARCES solution could now be

obtained, as shown in Figure 5.17. Furthermore, more estimates now fell within the calculated

uncertainties, as seen in Figure 5.18 and 5.19. However, the ρz uncertainties showed growing

uncertainties towards the end of the traverse. This was likely a result of the dependence of

the final three frames on odometry alone. However, it was unexpected that the growth in

uncertainty would propagate to nearby frames such as A19 with DARCES solutions
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Figure 5.17: Dataset A, multi-frame trials. Translation and rotation errors for all 30 trials. All
three orientation errors only represent corrections made to their ground-truth measurements,
since this same ground-truth was used as an input to the algorithm.
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Figure 5.18: Dataset A, multi-frame trials. Errors for the worst of all 30 trials (i.e. trial with
the worst mean radial translation error). Uncertainty is shown (solid line) for three standard
deviations of combined transformation estimate (i.e. B−1 from Section 3.4.6) and ground-truth
uncertainty. All three orientation errors only represent corrections made to their ground-truth
measurements, since this same ground-truth was used as an input to the algorithm.



CHAPTER 5. RESULTS 75

0 5 10 15 20
−100

0

100

ρ x E
rr

or
 (

m
)

Frame

0 5 10 15 20
−50

0

50

ρ y E
rr

or
 (

m
)

Frame

0 5 10 15 20
−100

0

100

ρ z E
rr

or
 (

m
)

Frame

0 5 10 15 20
−20

0

20

θ x E
rr

or
 (

de
g)

Frame

0 5 10 15 20
−20

0

20

θ y E
rr

or
 (

de
g)

Frame

0 5 10 15 20
−20

0

20

θ z E
rr

or
 (

de
g)

Frame

Figure 5.19: Dataset A, multi-frame trials. Errors for the best of all 30 trials (i.e. trial with
the best mean radial translation error). Uncertainty is shown (solid line) for three standard
deviations of combined transformation estimate (i.e. B−1 from Section 3.4.6) and ground-truth
uncertainty. All three orientation errors only represent corrections made to their ground-truth
measurements, since this same ground-truth was used as an input to the algorithm.
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5.8 Results Summary

The results of the three algorithm configurations are compared in this section. Figure 5.20

presents the overall differences in position and heading error, while Figures 5.21 and 5.22

examine this from a frame-by-frame perspective.
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Figure 5.20: Cumulative plots of position and heading error. To properly compare the three
scenarios, the multi-frame line was calculated only using frames which had a DARCES solu-
tion (i.e. not using frames which depended on pure odometry). Frame A20 for the single-frame
no heading case had very large error and was omitted for clarity.

A significant improvement in position error is seen in the multi-frame trials. This is a result

of the addition of the odometry measurements, which provide additional information on the

desired estimates. Another advantage in the multi-frame case is the use of common features

between frames. The same feature may be visible in various frames from different perspectives.
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This provides further information for the optimization.

However, there is no guarantee that estimates will always be improved with the incor-

poration of odometry. For example, position error tended to double in Frame A12 for the

multi-frame case. The inclusion of odometry will only provide better estimates on average.
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Figure 5.21: The mean radial position errors of translation estimates over all trials. This is
shown for each of the three architecture configurations over all Dataset A frames. Note that
some frames for the single-frame configurations produced no solution. The bar end for frame
A20 for the single-frame no heading configuration extends beyond the plot limits, and is not
shown for clarity.
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Similarly, when heading data is available, the algorithm becomes much more robust to

solutions with poor heading estimates. For example, solutions from A09 and A20 were rejected

in the feature matching stage. These would have been discarded in the final DARCES heading

filter, since their heading estimates did not fall within uncertainty of heading measurements.
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Figure 5.22: The mean absolute heading errors of orientation estimates over all trials. This
is shown for each of the three architecture configurations over all Dataset A frames. Note that
some frames for the single-frame configurations produced no solution. The bar ends for frames
A09 and A20 for the single-frame no heading configuration extend beyond the plot limits, and
are not shown for clarity.
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Another observation can be drawn from Figure 5.23. There seems to be a weak negative

correlation between pose error and the number of feature correspondences input into MOGA.

This suggests that the effects of the random error in feature position measurements can be

corrected to some degree by having a larger set of well-corresponding features. This may be

done by improving the feature detection algorithm and/or using a higher resolution global map.
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Figure 5.23: Relationship between pose errors and the number of feature correspondences
selected by RANSAC. Results are for all dataset A trials of frames in the single-frame with
heading configuration.

An important conclusion drawn from the multi-frame configuration was that the algorithm

could maintain accurate localization estimates with no dependence on distance traversed. As

shown in Figures 5.24 and 5.25, even having the benefit of ground-truth for frame A01, the
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accumulation of odometry error eventually grew to an unacceptable level. However, the archi-

tecture developed in this thesis was clearly able to correct odometry over this 10km traverse

without the use of ground-truth to localize in the first frame.
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Figure 5.24: Odometry estimates compared to multi-frame MOGA-corrected estimates for
a sample trial from Dataset A. Odometry was given ground-truth position and orientation for
frame A01.
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run on Dataset A. Odometry was given ground-truth position and orientation for frame A01.
Connecting lines do not indicate the intermediate path, but merely serve as a visual aid.



Chapter 6

Conclusion

This research has produced a number of novel contributions. A global localization technique

was developed that matches rover-based lidar scans to an orbital elevation map using DARCES

feature constellations. MOGA, a multiple-frame, least-squares alignment technique was de-

signed that uses feature position, orientation and odometry measurements to refine pose esti-

mates. The architecture was also validated with a realistic Mars/Moon analogue dataset from

Devon Island, Nunavut.

A number of algorithm configurations were tested. The inclusion of heading measurement

inputs was shown to greatly reduce the chances of selecting a poor solution. Sun sensors

are therefore a valuable localization tool. Odometry information was also found to be very

useful. Odometry measurements enabled the algorithm to refine its pose estimates, and to

obtain estimates for frames that would otherwise have had no solution.

With the ideas presented in this thesis, a rover would have the ability to traverse over long-

ranges with consistent and low localization error.
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Future Work

There are many areas for improvement in future work. The most important item is to more rig-

orously estimate uncertainties on input parameters and eliminate the use of simulated odometry

data. A better model should be developed for lidar uncertainty that takes into account range-

dependent errors, such as beam divergence. The estimates on input measurement uncertainties

could also be improved by using devices better suited to measuring quantities of interest, such

as orientation. In future experimentation, pitch and roll measurements should be acquired with

an inclinometer and heading measurements from a sun sensor.

Ground-truth data should also be completely separate from all measurement inputs. In

the current implementation, ground-truth with added noise was used to simulate odometry

and orientation measurements. As an example of the consequences, the algorithm’s output

orientation estimates can then only be interpreted as the algorithm’s adjustment to ground-truth

orientation. A dataset of visual odometry and sun sensor heading measurements was collected

in the field, but was not processed in time. Once processed, these will replace all simulated

measurements and allow for improved analysis of all output pose estimates.

In terms of improving the architecture, there are many interesting avenues to investigate. A

better feature detector could be used to more accurately predict the positions of features, such

as a curvature-based detector. The main challenge would be in dealing with the occlusions in
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the lidar maps. It would also be interesting to quantitatively understand the effect of orbital

map resolution on feature detection and localization accuracy.

In the feature matching stage, DARCES could be enhanced by using more than three con-

trol points in the initial hypothesis search. As Chen et al. (1999) explains, this would improve

efficiency of the initial search which tends to be the bottleneck of DARCES. After many itera-

tions of DARCES there was often several valid hypotheses remaining, where the one with the

lowest error-score was chosen as the best hypothesis. However, it was not always the case that

the lowest scoring hypothesis corresponded to the best solution. A better approach might be to

first find the centroid position of the largest cluster of valid hypotheses using k-means cluster-

ing (Bishop, 2006). Assuming the hypotheses in this cluster are distributed evenly around the

true position, the best hypothesis is then the one positioned closest to the centroid.

Odometry information could be used by DARCES for further gains in efficiency and ac-

curacy. The translational odometry data could serve as another filter on position between two

frames. If carefully implemented, this would greatly reduce the initial hypothesis search space.

Odometry would also allow features to be shared between frames. This would be extremely

useful for frames with low numbers of features. For example, a frame with only two features

would not normally have a DARCES solution. If odometry were available, a third feature could

be used from a nearby frame to satisfy the conditions for a solution.

The greatest test of this algorithm would be to integrate it into a fully autonomous rover

system. For the rover to successfully localize, it must collect a rich set of global and local

features with many valid correspondences. Therefore, the question arises of how to select

good scan sites. MOGA benefits greatly from long-range scanning capabilities since position

errors of features become less significant when features are well spread out. For this reason,

the lidar should not scan in canyons where nearby hills could occlude distant terrain features.

The suggestions made in this section would help to improve the robustness and accuracy of

the developed algorithm. With additional work, it is believed this methodology could be used

in a practical, long-range rover localization system.
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Appendix A

DEM Properties

The global map’s DEM resolutions and positional accuracies are given in units of latitude and

longitude. These map parameters must to be converted to linear quantities since a UTM grid

is used in the algorithm. In the following derivations, the horizontal datum used is the North

American Datum 1983 with the ellipsoid of the Geodetic Reference System 1980.

A.1 DEM resolution

A.1.1 Latitude, Longitude

The Earth can be approximated by a sphere of radius equal to the equatorial radius, Re =

6, 378, 137m. The DEM’s resolutions are small, therefore the x resolution is approximated by

Lx :≈ Reλlat (A.1)

where λlat is latitude resolution in radians. Longitude resolution would change as a function of

latitude since the size of the Earth’s longitudonal circles change with latitude. Therefore, the y

resolution is

Ly :≈ Reλlon cos(Λ) (A.2)
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where Λ is latitude. At the DEM’s mean latitude of Λ :≈ 75.4◦, latitude and longitude resolu-

tions are respectively, λlat := 0.5 and λlon := 1.5 degree seconds. Knowing a degree second is

1/3600 of a degree, this gives Lx ≈ 23m and Ly ≈ 12m.

A.1.2 Altitude

The altitude resolution of the DEM is given as a linear quantity and therefore needs no con-

version. The z resolution of the global map is Lz := 1m. The altitude datum is the Mean Sea

Level / Canadian Vertical Geodetic Datum of 1928.

A.2 DEM Positional Accuracy

A.2.1 Horizontal

The DEM planimetric accuracy are given in units of Circular Map Accuracy Standard (CMAS):

CMAS := 2.1460σc (A.3)

where σc is the standard circular error given by

σc :=
1√
2

√(
σrGx

)2
+
(
σrGy

)2

(A.4)

where σrGx
and σrGy

are respectively the standard deviations in x and y global map measure-

ments. These are assumed to be equal. Therefore, given that CMAS = 30m, the horizontal

positional accuracy of the DEM is σrGx
= σrGy

= 13.979m.

A.2.2 Vertical

The vertical accuracy is given in units of Linear Map Accuracy Standard (LMAS):

LMAS := 1.6449σrGz
(A.5)

Therefore, given that LMAS = 20m, the vertical positional accuracy of the DEM is σrGz
=

12.159m.



Appendix B

Search Sphere Shell Thickness Derivation

Consider Figure B.1, in which global features G1 and G2 are hypothesized to correspond re-

spectively with local feature control points L1 and L2. The two global features are separated

d
G

d
L

L1

L2

G1

G2

Figure B.1: Comparing distances between global features G1, G2 and local features L1, L2.

by a radial distance dG and the two local features by dL where

d2
G := d2

Gx
+ d2

Gy
+ d2

Gz
, (B.1)

d2
L := d2

Lx
+ d2

Ly
+ d2

Lz
(B.2)
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and where these distance components are given by the differences in feature positions:

dGx :=
∣∣rG1x − rG2x

∣∣ , dGy :=
∣∣rG1y − rG2y

∣∣ , dGz := |rG1z − rG2z | , (B.3)

dLx := |rL1x − rL2x| , dLy :=
∣∣rL1y − rL2y

∣∣ , dLz := |rL1z − rL2z | .

The absolute values are necessary to properly define these as distances. If the correspondences

were correct and all measurements noiseless, dG and dL would be equal. However, noise would

produce an error EGL:

EGL := dG − dL. (B.4)

In order for these hypothesized correspondences to pass to the next stage of DARCES, the

magnitude of EGL should not exceed the half-thickness of the search sphere’s shell:

|EGL| ≤ t. (B.5)

The shell half-thickness, t, is chosen such that

t := 3σEGL
(B.6)

where σ will be used to denote one standard deviation of the uncertainty for the variable in

question. With the shell half-thickness set at three standard deviations, 99% of valid corre-

spondence position errors, EGL, should fall within this threshold and therefore be correctly

detected as a hypothesis. It is assumed that other sources of uncertainty are negligible and EGL

measurements are normally distributed.

Equation (B.6) must now be decomposed into the known global and local feature posi-

tion uncertainties. In the following derivation, propagation of uncertainties is used with the

assumption that zero covariance exists between measurements. The uncertainty in EGL is

(σEGL
)2 = (σdG

)2 +
(
σ2
dL

)
(B.7)

where σdL
and σdG

are given by

(σdG
)2 =

1

d2
G

((
dGxσdGx

)2
+
(
dGyσdGy

)2

+
(
dGzσdGz

)2)
, (B.8)

(σdL
)2 =

1

d2
L

((
dLxσdLx

)2
+
(
dLyσdLy

)2

+
(
dLzσdLz

)2)
. (B.9)
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The uncertainties of the Cartesian components of distance are related to the uncertainties in

position. If the positional uncertainty of every global feature is equal,

σrGx
:= σrG1x

= σrG1x
, (B.10)

σrGy
:= σrG1y

= σrG1y
, (B.11)

σrGz
:= σrG1z

= σrG1z
(B.12)

and the positional uncertainty of every local feature is equal,

σrLx
:= σrL1x

= σrL1x
, (B.13)

σrLy
:= σrL1y

= σrL1y
, (B.14)

σrLz
:= σrL1z

= σrL1z
(B.15)

then

(
σdGx

)2
= 2

(
σrGx

)2
,
(
σdGy

)2

= 2
(
σrGy

)2

,
(
σdGz

)2
= 2

(
σrGz

)2
, (B.16)(

σdLx

)2
= 2

(
σrLx

)2
,
(
σdLy

)2

= 2
(
σrLy

)2

,
(
σdLz

)2
= 2

(
σrLz

)2
.

These equations can be greatly simplified by assuming that features are well spaced (dG, dL

are large) and/or the terrain is low-lying (dGz , dLz are small):

dGz � dG, (B.17)

dLz � dL. (B.18)

Therefore,

d2
G ≈ d2

Gx
+ d2

Gy
, (B.19)

d2
L ≈ d2

Lx
+ d2

Ly
(B.20)

and

(σdG
)2 ≈ 1

d2
G

((
dGxσdGx

)2
+
(
dGyσdGy

)2
)
, (B.21)

(σdL
)2 ≈ 1

d2
L

((
dLxσdLx

)2
+
(
dLyσdLy

)2
)
. (B.22)
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If planimetric uncertainties are equal,

σrGxy
:= σrGx

= σrGy
, (B.23)

σrLxy
:= σrLx

= σrLy
(B.24)

then

σdG
=
√

2σrGxy
, (B.25)

σdL
=
√

2σrLxy
. (B.26)

Substituting back into Equation (B.7):

(σEGL
)2 ≈ 2

(
σrGxy

)2

+ 2
(
σrLxy

)2

. (B.27)

Therefore, the half-thickness of the search sphere’s shell is

t ≈ 3
√

2

((
σrGxy

)2

+
(
σrLxy

)2
)1/2

. (B.28)



Appendix C

Axis-Angle Conversion

Given a rotation matrix, C, it is desired to convert it to an equivalent rotation about an axis

â := [a1 a2 a3]
T over an angle ω. These are given by

ω := arccos

(
trace(C)− 1

2

)
, (C.1)

a1 :=
C23 −C32

2 sin(ω)
, (C.2)

a2 :=
C31 −C13

2 sin(ω)
, (C.3)

a3 :=
C12 −C21

2 sin(ω)
. (C.4)

Therefore, the axis-angle vector representation of C is a := ωâ. Hughes (1986) discusses this

procedure in greater detail.
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