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2017

This thesis presents an infrastructure-free mapping and localization framework for rail

vehicles using only a lidar sensor. The method was designed to handle modern under-

ground tunnels: narrow, parallel, and relatively smooth concrete walls. A sliding-window

algorithm was developed to estimate the train’s motion, using a Rényi’s Quadratic En-

tropy (RQE)-based point-cloud alignment system.

The method was tested with datasets gathered on a subway train travelling at high

speeds, with 75 km of data across 14 runs, simulating 500 km of localization. The system

was capable of mapping with an average error of less than 0.6% by distance. It was

capable of continuously localizing, relative to the map, to within 10 cm in stations and

at crossovers, and 2.3 m in pathological sections of tunnel. This work has the potential

to improve train localization in a tunnel, which can be used to increase capacity and for

automation purposes.
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3.2 Rényi’s Quadratic Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Comparison of Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

iv



3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Methodology 30

4.1 Common Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Scan Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.2 Trajectory Smoothing . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Map Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Dataset Collection 40

5.1 Tunnel Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4 Evaluation Method and Ground Truth . . . . . . . . . . . . . . . . . . . 44

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Experimental Results 48

6.1 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7 Discussion and Future Work 58

8 Conclusion 62

Bibliography 64

v



List of Tables

5.1 October 26th, 2014 Dataset Information . . . . . . . . . . . . . . . . . . 46

5.2 November 30th, 2014 Dataset Information . . . . . . . . . . . . . . . . . 46

6.1 Localization results for the short range sensor datasets . . . . . . . . . . 52

6.2 Localization results for the long range sensor datasets . . . . . . . . . . . 53

6.3 Localization results using the short range datasets for mapping . . . . . . 54

6.4 Localization results using the long range datasets for mapping . . . . . . 55

vi



List of Figures

1.1 Image of a lidar sensor mounted on the front of a subway train . . . . . . 2

1.2 Image of a typical underground tunnel connecting two subway stations. . 3

2.1 Example of an existing train localization system . . . . . . . . . . . . . . 8

2.2 SeqSLAM image matching diagram . . . . . . . . . . . . . . . . . . . . . 13

2.3 Sensor trade-off study table . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Scan matching methods at a glance . . . . . . . . . . . . . . . . . . . . . 19

3.2 Point-to-point ICP example . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Point-to-line ICP example . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 RQE scan matching example . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Leica total station used for ground truth . . . . . . . . . . . . . . . . . . 26

3.6 Comparison of scan matching methods without wall removal . . . . . . . 27

3.7 Comparison of scan matching methods with wall removal . . . . . . . . . 28

4.1 System overview diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Results of wall removal using RANSAC on a typical scan . . . . . . . . . 32

4.3 Data remaining in all scans for run 3 after wall removal . . . . . . . . . . 33

4.4 Data remaining in all scans for run 7 after wall removal . . . . . . . . . . 34

4.5 Visual representation of the sliding-window filter . . . . . . . . . . . . . . 35

4.6 Visual representation of the relative localization algorithm . . . . . . . . 37

5.1 Map of the subway tunnel on which datasets were collected . . . . . . . . 41

5.2 Examples of the tunnel environments shown using sections of the generated

maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Sensor head used to collect the datasets in the subway tunnel . . . . . . 44

5.4 Sensor mounting location and orientation . . . . . . . . . . . . . . . . . . 45

5.5 Image of a signal post used as a reference marker . . . . . . . . . . . . . 47

vii



6.1 Box plots demonstrating the accuracy of all long range maps from the

mapping phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 Box plots demonstrating the accuracy of all short range maps from the

mapping phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.3 Trajectory and errors from mapping using the run 7 dataset . . . . . . . 50

6.4 Trajectory and errors from mapping using the run 3 dataset . . . . . . . 51

6.5 Histogram of the results for the short range datasets . . . . . . . . . . . . 53

6.6 Histogram of the results for the long range datasets . . . . . . . . . . . . 54

6.7 Histogram of the results using the long range datasets for mapping . . . 55

6.8 Histogram of the results using the short range datasets for mapping . . . 56

6.9 Histogram of the of the localization errors for all runs against all maps . 56

viii



Notation

a : Symbols in this font are real scalars.
a : Symbols in this font are real column vectors.
A : Symbols in this font are real matrices.

∼ N (a,B) : Gaussian distributed with mean vector a and covariance
matrix B.

1 : The identity matrix.
0 : The zero matrix.
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Chapter 1

Introduction

1.1 Infrastructure-free Localization

Knowing the location of rail vehicles, such as trains, trams, and subways, is critical

to rail-system management, since trains are confined to travel along their railway and

have long braking distances. This means that without advanced warning of upcoming

obstacles, such as a stopped train, train safety cannot be guaranteed (Bonnett, 2005). To

date, all train safety systems rely on track-side infrastructure to determine the location

of trains on the railways in that system. This infrastructures is expensive to install,

and can be very difficult and costly to maintain. Due to the high costs, track-side

infrastructure is interspersed along the railway; the spacing can vary from 10s of metres

for modern Radio-frequency identification-based (RFID) systems to 10s of kilometres for

conventional commercial transnational railway systems.

All train control systems currently implemented, with the exception of the RFID-

based autonomous systems, are categorized as fixed-block systems. A block is a defined

region of the railway that can only be occupied by a single train. In a fixed-block system,

a block is the region between the track-side train detection infrastructure. This system

relies on dead-reckoning between track-side infrastructure locations to track the train’s

1



Chapter 1. Introduction 2

Figure 1.1: A SICK LMS 291 2D lidar unit installed on the front of a subway train for

dataset collection. The sensor is positioned such that it is facing away from the train

and the 2D scanning plane is parallel to the ground.

position, which is not accurate enough to be used in railway safety systems. A preferred

alternative is a moving-block system, in which the block is a virtual region that encloses

each train in the system, with the size being determined by the speed of the train. The

moving-block system allows trains to operate closer together resulting in higher capacities

and improved efficiency. However, this method requires continuous updates regarding the

position and velocity of every train in the system.

The goal of train localization is to know the precise location of trains to ensure that

adequate separation is maintained between them and to provide track determination.

Track determination consists of identifying on which track a train is travelling when

there are two or more parallel tracks or when passing over a switch, a fork, or merger of

railways. Thus, the positioning requirement for a train is relative to nearby infrastructure,

which can be accomplished using a locally consistent map. Inspired by recent advances in

localization systems for high-speed robotics applications (Zlot and Bosse, 2014; Marshall

et al., 2008), this thesis presents a proof of concept for the use of a 2D lidar sensor as

the sole sensor for estimating the position and velocity of a train. Figure 1.1 shows the
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experiment setup used to collect datasets for algorithm development and validation, it

includes a lidar unit mounted on the front of a train in an underground tunnel. The use

of lidar was chosen because of the nature of the underground railway environment (i.e.,

dark tunnels) precludes the use of other common sensors, such as cameras and satellite-

based system (e.g., Global Positioning System (GPS)). An example of a challenging

environment is represented in the image in Figure 1.2, which was captured from a subway

train travelling at high speed in a tunnel connecting two stations during dataset collection.

Figure 1.2: Picture of an underground tunnel connecting two subway stations. It high-

lights some of the pathological conditions for localization that need to be addressed (e.g.,

low light, smooth wall surfaces and motion blur).

Train position estimation can be viewed as a 1D localization problem as the train is

constrained to move on its tracks. This is a simplification of the classic 2D localization

problem; however, the speed of the train and the nature of the modern tunnel environment

introduce aspects that challenge classical localization techniques.

1.2 Contributions

This thesis introduces an infrastructure-free localization system for railway vehicles ca-

pable of a high degree of positioning accuracy to fulfil all localization requirements for

rail safety and train operation. Specifically, the novel contributions are as follows:
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1. Infrastructure-free mapping algorithm for use in tunnel environments at high speed;

2. Infrastructure-free localization algorithm for high-speed rail vehicles in tunnels; and

3. Experimental validation of both algorithms on a subway train in a real tunnel.

1.3 High-level Overview

The remainder of this thesis is divided into the following chapters. Chapter 2 begins with

an overview of train localization in general, progresses into a more detailed review of the

sensor sets, and mapping and localization techniques used in robotics, and concludes with

a sensor selection trade study that proposes a 2D lidar sensor as the focus for this work.

Chapter 3 explores and compares three scan matching techniques used for aligning point

clouds obtained from a lidar sensor. Chapter 4 introduces the methodology developed

to implement a lidar-based mapping and localization system for use in rail-based tunnel

applications. The datasets used in this thesis, as well as the methods used to collect

them, are presented and discussed in Chapter 5. Chapter 6 presents and discusses the

results of experiments conducted to the test the accuracy of the proposed localization

and mapping methods using the collected datasets. The final two chapters, Chapters 7

and 8, provide a general discussion of the implementation of the proposed methodology

on trains for localization and concluding notes.



Chapter 2

Concept Development

This thesis proposes an algorithm that can localize a train travelling along a previously

mapped section of railway tunnel. In order to accomplish this, a literature review was

completed, which covers several sensing modalities and localization methods. The pri-

mary focus is lidar-based systems, which is based on the sensor selection trade study

located at the end of this chapter. The literature review covers signalling and localiza-

tion techniques, and current autonomous train localization techniques.

2.1 Literature Review

2.1.1 Train Localization

The main purpose of train localization is to ensure that trains do not collide (Bonnett,

2005). Since trains have large breaking distances and run on fixed tracks, it is important

that trains receive advanced warning about stopped or slow-moving trains in front of

them. In the 1860s the first method for detecting a train on a track was developed. The

system used an arrangement of electromagnets to determine if a train was occupying a

particular portion of track. This was the foundation of the fixed-block train-signalling

system, where a track is divided into fixed sections called blocks. In this system each

5
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block has infrastructure for determining whether a train is situated in the block and

informing trains whether or not an upcoming block is occupied with sufficient warning to

ensure the train will not enter an occupied block. Although many technological advances

have been made in this area, since this fixed-block system is present to some extent in all

railways systems used today (Bonnett, 2005).

The drawback with current fixed-block systems is that the method used to estimate

a train’s location is a form of dead reckoning for which the associated error grows un-

bounded within the block. Research to improve localization accuracy includes the use

of one or more of the following sensors: eddy current sensors (Hensel et al., 2011)

(Boehringer, 2003), Doppler radar (Acharya et al., 2011), Inertial Measurement Unit

(IMU), and optical imaging (Shenton, 2008). However, all of these sensors in combina-

tion or alone need to be paired with GPS (Beugin and Marais, 2012) (Bohringer and

Geistler, 2006) or track-side markings of various design (Acharya et al., 2011) to reset

otherwise unbounded error growth in position estimation. Further detail on these sensors,

is provided in the sensor selection section, Section 2.2.

These localization systems represent incremental improvements on existing systems

and cannot be used for long durations in safety-critical applications, such as collision

avoidance and train automation (Hasberg et al., 2012). Moreover, these systems cannot

be deployed without infrastructure (or guaranteed GPS availability) and do not capitalize

on the recent advances in robotics and autonomous vehicles (i.e., the ability to process

large amounts of data from information rich sensors).

Proposed state-of-the-art systems employ what is known as a moving-block system

(Shafia et al., 2012). A moving-block system can estimate a train’s position and create

a block around the train allowing the minimum space between trains to be based on the

stopping distance of the train instead of the distance between track-side infrastructure.

When GPS signalling is not available modern systems rely on, individually or in com-

bination, tachometer (Ernest et al., 2004), IMU (Heirich et al., 2013a), Doppler radar
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or eddy current sensors to determine the train’s velocity in order to estimate the train’s

position (Lauer and Stein, 2013) between track-side location markers. See Figure 2.1 for

an example of such systems on a train.

The only use of lidar for train localization is related to topological landmark detection,

explored by Albrecht et al. (2013). In this case, the lidar sensor is used to identify large

structures and environment changes (e.g., exiting a tunnel or entering a station), based

on a topological map of these features. This information is then used to verify the

localization estimates of other sensors and reset dead-reckoning errors.

2.1.1.1 Sensor fusion

Most proposed self-localizing train positioning systems use multiple sensors to determine

a train’s velocity, from which the distances travelled can be integrated. The sensors used

are commonly a version of an IMU or accelerometer and gyroscope, and tachometer/axle

encoder, with recent research focusing on Doppler radar and eddy current sensors for

more accurate velocity data: Acharya et al. (2011); Heirich et al. (2013a); Bohringer

and Geistler (2006); Mazl and Přeučil (2003); Lauer and Stein (2015). The prevailing

trend in localization algorithm is to use either a flavour of Kalman filter or particle filter

to estimate pose change between sensor samples (Acharya et al., 2011) (Heirich et al.,

2012a). However, this method is not reliable on its own due to the inherent unbounded

error growth in distance estimation from velocity integration (Heirich et al., 2012a).

2.1.1.2 Error zeroing

Error zeroing is required periodically to correct the unbounded error growth in the po-

sition estimate created using sensor fusion (discussed above). In practice this done by

periodically telling the train where it is so that localization estimate are relative to the

last updated position. Two position updating methods used are: GPS and track-side

markers (Acharya et al., 2011).
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GPS (or Global Navigation Satellite System (GNSS)) is widely available and relatively

inexpensive to implement; however, trains often travel in areas where limited to no

satellite reception is available. This has led to the development of systems that can

tolerate GPS blackouts using dead reckoning and track-side markers (Acharya et al.,

2011).

Figure 2.1: Example of a train with both RFID track markers and GNSS for localization,

as well as Doppler radar for velocity data. (Manz et al., 2011)

Track-side markers may be passive, active mechanical or electrical devices that inform

the train about its current location. The most common marker type is an RFID-like

device also known as a balise (Acharya et al., 2011). A balise is a stationary device on the

track that provides location information when a train passes over it. Each balise on the

track is surveyed and programmed to know its location on the track. Thus, trains localize

using dead reckoning relative to the last balise over which they have passed. However, the

use of track-side markers is expensive to install and maintain, and offers no additional

information (Javed et al., 2013) about the track or the environment surrounding the

track.

2.1.1.3 Topological localization

A third method for error zeroing, which is discussed in literature but has not yet been

implemented in any commercial system, is based on topological mapping. Topological
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mapping takes advantage of the known and fixed layout of the railway system. This

method uses either IMU-like sensors or eddy current sensors.

The IMU-based method (Heirich et al., 2013a) relies on lateral (perpendicular to the

track) acceleration and yaw acceleration to determine the rate of curvature of the current

section of track. Presented with an accurate track model, the algorithm can determine

when the train has entered and exited a turn, and whether that turn was due to a bend in

the track or the train switching to a different track (Heirich et al., 2012a). If the common

breaking and acceleration points are included in the topological map representation this

can provide additional positioning information using longitudinal acceleration.

Another area of interest is adopting a probabilistic approach to localization, based on

successes in robotics (Thrun et al., 2001, 2005), and applying it to rail systems. However,

the application of these methods for train localization, such as the work by Heirich

et al. (2012b), use a topological map and are only used for coarse localization and track

determination at switches. The eddy current based topological mapping (Hensel and

Hasberg, 2010) creates a map containing the sequence of every switch and joint in the rail

system (Geistler and Bohringer, 2004). The algorithm proposed in Hensel and Hasberg

(2009) uses a probabilistic approach to determine when a track feature has been passed

and what feature it corresponds to on the topological map. The drawback to this system

is that the detection and identification of a feature is only completed once the train is

meters, sometimes 10s of meters, past a given feature. Another method for velocity and

location determination is presented by Heirich et al. (2013b), where the data from a

vertically mounted accelerometer is used for vibrations analysis. Heirich et al. (2013b)

claim that unique locations and speeds also cause unique vibrations in the train, which

can be detected and categorized for future reference. This method is proposed as an

addition to other localization systems and not as a standalone system.

Visual techniques are also explored by Wohlfeil (2011) and Corsino Espino et al.

(2013). These visual techniques are methods of track determination and are based on
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finding switches and determining which track the train is on after passing the switch.

2.1.2 Mapping and Localization

Localization from a known map is the primary objective of the proposed algorithm. This

literature review does not focus on Simultaneous Localization And Mapping (SLAM)

algorithms because the nature of the application for the algorithm does not require that

both mapping and localization occur simultaneously. Most SLAM algorithms rely on

a combination of loop closure and estimating pose change between scans using dead

reckoning. When a loop closure is detected, the algorithm batch processes many poses

to spread any accumulated error throughout the trajectory to minimize local error.

2.1.2.1 Submaps and keypoints

For the purpose of this literature review, scan matching is the process of matching a pair

of laser range data scans, or point clouds. In robotics, scan matching usually involves

matching orientation, as well as location, to resolve for the 6 Degrees of Freedom (DOF)

the robot has while moving in its environment (Nüchter et al., 2010). This topic is covered

at great length: Nüchter et al. (2013) and Hahnel et al. (2003). The primary method

of matching scans is based on the Iterative Closest Point (ICP) algorithm (Nüchter

et al., 2006), which rotates and translates one point cloud relative to another in order to

minimize the difference between the two and to determine if there is a transformation that

creates a match between the two point clouds. Another method employed is that of 3D

occupancy grids usually represented in an Octree form (Nüchter et al., 2007). Another

focus of scan matching, which is more relevant to the proposed problem, is dividing

the map data into small pieces to enable fast and locally accurate scan matching. The

two methods reviewed to accomplish this are creating submaps (Zlot and Bosse, 2009)

(Marshall et al., 2008) and identifying keypoints in the scan data (Zlot and Bosse, 2009).

Local submaps can be used to in situations where accurate local positioning is re-
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quired and only global consistency is required. The collection of submaps can avoid

the compounded errors accumulated while mapping the entire route and to reduce the

amount of data contained on an individual map (Marshall et al., 2008). The maps are

overlapped such that when the vehicle is transitioning between maps, all of its sensor

data lies on both maps, which eliminates the need for loop closure detection (Marshall

et al., 2008).

Keypoints are used to group data points that create a significant feature in a map, or

a given scan, and create a descriptor for that feature. Feature selection and description

of map data is usually done off-line to reduce the processing cost of finding a matching

feature from on-line data.

Underground mining applications share similarities to the mapping and localization

problems of a train in a tunnel. Zlot and Bosse (2014) used an IMU and a velocity

prior for initial pose estimation for a window of scans and then refined the localization

estimates by using a sliding-window filter that optimizes the point cloud generated by

the lidar sensors. Although they were able to map 17 km of underground mining tunnel,

their study was limited to addressing mapping and did not address the accuracy of the

map. Mining vehicle localization was addressed by Marshall et al. (2008). Their system

used lidar and wheel odometry as inputs to a sigma-point Kalman filter in order to

estimate the vehicle’s pose and velocity relative to locally consistent successive submaps.

While similar to the train tunnel problem, there are several key differences. First, the

unstructured tunnel environment in a mine is much more conducive to scan matching

than the smooth concrete walls found in a modern underground tunnel. Second, they

use wheel odometry as an initial motion estimate between lidar scans.

2.1.2.2 Lidar-only Mapping and Localization

The body of work on lidar-only mapping and localization often relies on feature extraction

and ICP for its scan matching: Lingemann et al. (2004); Zlot and Bosse (2009); Zhang
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and Singh (2014); Tong et al. (2014). However, the proposed system operates in an

environment where there is often not enough data to find features on a per scan basis.

Zlot and Bosse (2009) conducted field tests using a car travelling up to 90 km/h and solve

a simultaneous localization and mapping (SLAM) problem. However, they do not address

the relative localization problem. Lidar intensity data was used by Tong et al. (2014) to

form images from 3D scans, which were then processed using visual odometry. However,

this requires an expensive and complicated sensor package to form the necessary dense

3D point cloud.

Methods that do not use feature extraction techniques also exist, as explored by Nüchter

et al. (2006) and Bosse (2004). However, these methods were not designed to work in

the pathological environment that modern subway trains travel: smooth, parallel-walled

tunnels.

2.1.2.3 Sequence matching

Sequence matching (Milford and Wyeth, 2012) involves matching sets of data from mul-

tiple sequential scans. This method makes the localization much more robust because

it is looking for the best matching set of data as opposed to matching individual scans.

This technique is beneficial in that speed can be derived from the relationship between

the sensor data and the stored data, as seen in Figure 2.2. Although sequence matching

is generally used with visual data, Milford (2013) provides examples of extreme image

downsampling, which offers the possibility of replacing light intensity with distance in-

formation and creating an image matrix that is of size 1×N (where N is a given number

of range data points). This is the same dimension as the data from a 2D lidar sensor.

2.1.2.4 Effects of vehicle speed

It has been noted that scan matching with lidar data decreases in precision as speed

increases (Zlot and Bosse, 2009). One reason for the increased error is the assumption
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Figure 2.2: SeqSLAM scan matching steps through possible velocities to find best match

for the current sequence of images (Milford and Wyeth, 2012) (darker blue squares indi-

cate a strong match).

that a sweep of a 2D or 3D laser range finder occurs instantaneously and from a single

location. Motion distortion occurs in individual lidar scans because all data points in

a scan (a sweep across the sensor’s field of view consisting of 10s to 1000s or more of

individual range measurements) are taken at different times, and therefore, from different

places because the sensor is moving. One solution is to stop the robot while scanning

for greater accuracy (Tong et al., 2011) (Merali et al., 2012). Another proposed solution

is to increase the sensor’s scan rate and speed up localization algorithms (Lingemann

et al., 2004). However, this does not solve the issue of motion distortion, it only increases

the speed at which the vehicle can operate before its localization algorithm is severely

affected. In the case of a high speed train, a single scan could take place over the distance

of a meter, which can significantly distort a scan output in relation to a scan of the same

area taken while stopped or at a much lower speed. A continuous time algorithm can

be used to account for motion distortion in the lidar sensor data cause by variation

in speeds. This method tracks the timestamps for individual range measurements and

accounts for the distance travelled in the time between measurements (Sheehan et al.,
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2013). However, this method requires well-calibrated timestamps, otherwise artificial

motion distortion may occur due to timing errors (Elseberg et al., 2013).

2.1.3 Other Selected Topics

2.1.3.1 Localizing along a constrained trajectory

Hasberg et al. (2012) have proposed a probabilistic SLAM technique for vehicles on a

constrained 1D curving path, using 3rd order splines to create a probabilistic curve map

(PCM) and employing an Extended Kalman Filter (EKF) for state estimation. This is a

dead-reckoning-based algorithm, which requires a GPS signal to cope with the unbounded

growing position error of the inertial navigation system. Constraining the vehicle to a

1D spline allows for the derivation of vehicle kinematic models to also be performed

in 1D. The limitation of the 3rd order spline representation is that it is not an exact

approximation of the railway path, which means it is not consistent with the real world

track. To improve the path errors, the spline support points are revised every time the

train passes; however, approximated paths can never achieve a perfect match to the real

world path.

2.1.3.2 Dust modelling

Airborne particles such as dust, smoke, fog or precipitation can affect lidar data. Goodin

et al. (2013) describes a method for modelling this interference by characterizing the

optical depth of dust clouds. The optical depth is a dimensionless characteristic based

on the density and size of the dust cloud. This characterization is important for under-

standing and accounting for the effect of airborne disturbances when using a lidar sensor

outdoors.
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2.2 Sensor Selection

The requirements listed in the introduction were used to complete a trade-off study listing

possible sensors to be used in the proposed system and their merits, see Figure 2.3. The

sensors examined are: GPS, WIFI (signal strength mapping), radar, Sonar (Ultrasonic),

1D, 2D and 3D lidar, and Mono and Stereo Cameras. Whether considered individually

or in various groups, an IMU was included in the sensor combination since it was initially

thought that an IMU would be necessary in all cases. The result of the study was to

select a 2D lidar range scanner with the option of including a GPS input if necessary for

outdoor localization. The trade-off study was completed at the outset of the project to

refine the scope of the literature review.

The following is a summary of the outcome of the trade-off study. WIFI signal map-

ping was rejected because of varying signal properties in tunnels with variations in ambi-

ent conditions and a lack of external information (to the train) to implement additional

features (i.e. obstruction detection). Radar was eliminated because distance estimation

from Doppler radar velocity has unbounded error growth, localization from raw radar

data is prohibitively computationally expensive, and it is not a proven technology at

high speeds (Jose et al., 2010) (Widmann et al., 2000). Sonar was discounted because

the sensor’s scan rates are too slow: the range is limited and the sensor’s readings lack

detail for scan matching. Mono and Stereo camera were not selected because of light-

ing variation concerns (i.e., full dark in a tunnel and varying lighting outdoors). In the

end, a 2D lidar was selected because initial research indicated it could meet the design

requirements, while 3D lidar was deemed too expensive and 1D lidar can be modelled

from 2D lidar data by selecting one or more individual scan angles and discarding the

rest. GPS data was tentatively selected for use in the system, as there was concern that

some outdoor environments (i.e., on a bridge or in a flat field) may not offer sufficient

variable terrain or surfaces against which 2D lidar can localize.

The sensor set and configuration is shown in Figure 1.1. This is an image of the sensor
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package mounted on the front of a subway train. A more detailed layout of the sensor

mounting package is given in Figure 5.4. Although an IMU was considered to be essential

for an end use product and a GPS unit may be required for outdoor localization, this

thesis focuses on the sole use of a 2D lidar sensor. This was done to as proof-of-concept

to show that such a system can be implemented without an IMU.
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Figure 2.3: Completed trade-off study used to compare proposed sensors.



Chapter 3

Scan Matching

This chapter introduces and compares the scan matching methods that were evaluated for

use in the mapping and localization algorithm developed in this thesis. Scan matching is

used to align two, or more, point clouds in order to determine the motion of the sensor,

in this case a 2D lidar, between scans. This provides two opportunities: estimating

the motion of the platform to which the sensor was attached and reconstructing the

environment that the sensor traversed though. Both of these functions are used in this

thesis. Localization is achieved by estimating the motion of the sensor through the

environment when compared to a map of that environment created by combining many

previously gathered scans.

Two variants of Iterative Closest Point (ICP) were selected for comparison as well as

a third entropy-based scan matching method, Rényi’s Quadratic Entropy (RQE). These

scan matching methods were selected for comparison because the ICP methods represent

two classic scan matching techniques and the RQE method is a relatively new method

that offers the possibility of greater accuracy and a smoother objective function.

The selected scan matching techniques are given two point clouds: a reading (moving)

point cloud P = {p1, . . . ,pM}, containing a set of M points, pi =
[
xi yi

]T
, and a refer-

ence (fixed) point cloud Q = {q1, . . . ,qN}, containing a set of N points, qj =
[
xj yj

]T
.

18
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The objective is to determine the distance the sensor travelled between acquiring the

two point clouds. Figure 3.1 demonstrates conceptually how an error term for each scan

matching method is generated. Each scan matching method is explained and then com-

pared using a dataset collected from an operating subway train to evaluate effectiveness

for this application.

Point-to-Point Point-to-Line RQE

Figure 3.1: General comparison of three scan matching methods. P2P ICP’s error term is

based on the distance between each point in the reading, P , scan and its nearest neighbour

in the reference scan, Q. P2L ICP’s error term is based on the distance between each

point in the reading, P , scan and a line drawn between its two nearest neighbours in the

reference scan, Q. RQE’s error term is based on the distances between each point in the

reading, P , scan and every point in the reference scan, Q. Due to the constraints of a

railed vehicle, only the error parallel to the direction of travel is considered.

3.1 Iterative Closest Point

This section introduces the two variations of ICP scan matching, Point-to-point (P2P)

and Point-to-line (P2L), used during the development of the localization and mapping

algorithm. ICP is the most commonly used point-cloud alignment technique because it

is fast and well understood. ICP finds matches between each point in the moving point

cloud to its nearest neighbour in the fixed point cloud. The algorithm them computes an

error term based on the distances between the matched point and determines a transform

for the moving point cloud that minimizes that error. These steps are then repeated until
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the point matches stop changing or other stopping criteria are met. The general form

of ICP assumes that paired points between scans are related to the same point on the

same surface of the physical object scanned to generate the point clouds. The multitude

of variants that have been proposed for ICP attempt to deal with this assumption by

trying to infer information about the underlying surfaces of the scanned environment.

This often involves interpolating between the points in the fixed scan to generate points

on the estimated underlying surface. This is done to provide points to the ICP algorithm

that more closely align with location where the points in the reading scan were generated

from the scanned surface.

3.1.1 Point-to-point ICP

This is the original and most basic form of ICP. No pre-processing of the fixed scan is

done and no interpolated points are generated or used. The P2P ICP error metric is

based on work by Besl and McKay (1992):

ep =
N∑
k=1

‖pk − qk‖2 (3.1)

where p is a point from the moving lidar scan and q is a point from the fixed lidar scan.

The subscript k represents paired points based on a nearest neighbour search.

As eluded to in Figure 3.1, the error metric is modified slightly to account for the

constrained 1D motion of the trains, only the component along the track of the error

is used. Figure 3.2 shows an example of two simulated scans aligned using P2P ICP.

Simulated scans were used to provide ground truth; however, the scans are based on

actual scans obtained from a field experiment involving a 2D lidar sensor mounted on a

train travelling in a subway. The figure compares the accuracy and shape of the objective

function with and without the wall parallel to the direction of travel. Given that the

motion of travel is in the positive x direction (left to right), the need for parallel wall
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removal to eliminate matches based on scanning pattern becomes fairly evident. The full

discussion for wall removal from scans is provided in the next chapter.
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Figure 3.2: Examples of simulated data being aligned using P2P ICP. The offset between

the two scans is -0.2 m. The plot on the left shows the optimal alignment of the two scans

with the wall data included in the scans. The middle plot does the same but excludes

the walls. The right plots are the objective function values for the two alignments.

3.1.2 Point-to-line ICP

The P2L ICP error metric is based on work by Chen and Medioni (1991):

el =
N∑
k=1

‖(pk − qk) · nk‖2 (3.2)

where pk is a point from the moving lidar scan and qk is a point from the fixed lidar

scan. The subscript k represents paired points based on a nearest neighbour search and

nk is the normal of the line segment approximating the scanned surface near qk. This

line segment can be calculated in many ways, the most common being a line between the

two nearest points in Q to pk.

This is equivalent to finding the point at the intersection of the line associated with

qk and its perpendicular extended from pk. This was modified for the given rail-based

application such that a line parallel to the direction of travel is extended to intersect with
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the line associated with qk. This was thought to better account for the constrained 1D

motion of the train. This is graphically represented in Figure 3.1.

Figure 3.3 shows an example of two simulated scans aligned using P2L ICP. These are

the same two scans used in Figure 3.2. P2L ICP is often used to improve the accuracy of

scan matching over P2P; however in this case P2P outperforms P2L and this holds true

in the larger example used to compare the three scan matching methods. This method

does however perform the best without the walls removed, as expected, due to the fact

that the flat nature of the wall surface is modelled by this method.

Figure 3.3: Examples of simulated data being aligned using P2L ICP. The offset between

the two scans is -0.2 m. The plot on the left shows the optimal alignment of the two scans

with the wall data included in the scans. The middle plot does the same but excludes

the walls. The right plots are the objective function values for the two alignments.

3.2 Rényi’s Quadratic Entropy

Rényi’s Quadratic Entropy is an entropy-based RQE method as developed by Sheehan

et al. (2011); Maddern et al. (2012). In general, RQE computes the distance between

each point in a point cloud and every other point in the point cloud, those distances are

weighted using a zero mean Gaussian and the results are summed together.

When using RQE to optimally align two point clouds, the Kernelised Rényi Distance

(KRD) function is used to assign a measure of entropy to the two point clouds. The
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entropy value varies depending on the alignment of the two point clouds and reaches

a minimum when they are optimally aligned. Due to the 1D motion constraint, Q is

constrained to translation in 1D and x is defined as the alignment offset between the

origins of P and Q.

The derivation of the KRD function from RQE is based on the work of Sheehan et al.

(2013). The general form of RQE calculates the entropy of all points in a single point

cloud, X of size N , as follows,

HRQE [X] = − log

(
1

N2

N∑
i=1

N∑
j=1

G
(
xi − xj,Σi + Σj + 2σ21

))
. (3.3)

Using the general entropy form, Sheehan et al. (2013) derive the following error term, or

KRD function, for matching two point clouds:

er = −
N∑
i=1

M∑
j=1

exp

(
(p̂i − qj)

T (p̂i − qj)

4σ2

)
. (3.4)

This is modified from their cost function to fit with 1D train framework,

e(x, P,Q) = −
M∑
i

N∑
j

exp (g(x)) , (3.5)

where

g(x) =
−dij(x)Tdij(x)

4σ2
. (3.6)

The vector distance between the points in the two offset point clouds is defined as:

dij(x) = pi − qj + bx, (3.7)

where b =
[
1 0

]T
enforces the 1D motion constraint. The isotropic variance, σ2, is

composed of the noise in the lidar measurements as well as the uncertainty in the dis-

tribution of lidar measurements, in the scanned environment. The appropriate value for
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σ was determined experimentally and can be used as a tuning parameter to change the

convergence of (3.5). A very small σ value results in ICP-like behaviour with a jagged

objective function containing many local minima. A large σ value favours aligning the

centroid of the two point clouds and results in a flat objective function.

Entropy is lowest in (3.5) when P and Q are well aligned. This means the optimal

offset between the two scans can be expressed as

x∗ = arg min
x
e(x, P,Q). (3.8)

Minimizing (3.8) is done using the gradient-descent method,

xop ←[ xop − δ
∂e

∂x

∣∣∣∣
xop

, δ > 0, (3.9)

which uses the derivative of (3.5),

∂e

∂x

∣∣∣∣
xop

= −
M∑
i

N∑
j

exp (gop)
∂g

∂x

∣∣∣∣
xop

, (3.10)

where

∂g

∂x

∣∣∣∣
xop

= −bTdij(xop)

2σ2
. (3.11)

The operating point, xop, is updated until ∆xop falls below a predetermined threshold

and the minimum is found.

Figure 3.4 shows an example of two simulated scans aligned using RQE. These are

the same two scans used to demonstrate both ICP scan matching methods. This method

appears to be the most accurate of the selected methods.
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Figure 3.4: Examples of simulated data being aligned using RQE. The offset between the

two scans is -0.2 m. The plot on the left shows the optimal alignment of the two scans

with the wall data included in the scans. The middle plot does the same but excludes

the walls. The right plots are the objective function values for the two alignments.

3.3 Comparison of Methods

The improved performance found using RQE is due to the fact that a lidar sensor only

collects a finite number of sample points along the surfaces in its environment and the

sample distribution is uneven. These effects are not accounted for in the generic ICP

point-matching algorithm and are only partially accounted for in the P2L ICP algorithm.

In order to allow for a better comparison of the presented scan matching methods,

a dataset was collected that included very accurate and high frequency ground truth.

This was done using the Leica TDRA6000 robotic total station shown in Figure 3.5. The

Leica total station uses a 1D lidar sensor mounted on an automated pan-tilt unit, which is

capable of tracking a special prism, as highlighted in Figure 3.5. The prism was mounted

on the sensor head, that was mounted on the train, providing position ground truth at

10 Hz accurate to a few millimetres. The Leica total station relies on maintaining line of

sight with the prism and was limited to about 450 m in the tunnel environment.

A comparison of the three scan matching methods was done by estimating the distance

travelled between scans and then feeding that estimate into a basic Kalman Filter to

propagate the solution through areas that generate empty point clouds (due to nothing



Chapter 3. Scan Matching 26

A

B

Figure 3.5: The Leica total station (A) is seen on the right side of the image. It is

mounted on a station platform such that it maximizes the distance over which the train

stays within line-of-sight. Highlighted is the prism (B) that is mounted on the train,

this prism is used by the total station to track and measure the position of train as it is

moving down the tunnel.

within sensor range or due to parallel wall removal) and to help eliminate some of the

noise and error associated with the scans and the scan matching results.

Figure 3.6 shows the trajectory estimated by each of the scan matching methods as

well as the ground truth. It can be seen that the P2L method encounters an error from

which it cannot recover. The P2P method performs the best in this test; however, it has

an error rate near 10%.
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Figure 3.6: Comparison of the three scan matching techniques using the ground truth

dataset. The scans have not been preprocessed. Top: Estimated trajectory of the train

for each technique as well as the ground truth. Bottom: Estimated error at times that

the ground truth was available.

Figure 3.7 shows the trajectory estimated by the three scan matching method when

the walls parallel to the direction of travel were removed. This was found to be necessary,

especially in areas where the environment was primarily made up of tunnel walls as these

walls provide no information that can be used to determine motion along the railway. It

can be seen that without the walls, the absolute error and error rate drops significantly

for all three methods. RQE has the lowest error, which is very near zero for the section

of tunnel tested.
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Figure 3.7: Comparison of the three scan matching techniques using the ground truth

dataset. The scans have been preprocessed to remove the walls. Top: Estimated tra-

jectory of the train for each technique as well as the ground truth. Bottom: Estimated

error at times that the ground truth was available.

3.4 Summary

In this chapter, three methods of scan matching were presented and compared using

both simulated data and a dataset gathered from a typical environment in which the

algorithm will be used. In all cases P2P ICP performed the worst of the three methods.

P2P ICP performed the best initially on the comparison dataset achieving an error rate of

10%. However, the RQE method performed best, and best overall, when the parallel walls

were removed, achieving an error rate that did not exceed 1% in the comparison example.

Additionally, RQE provides a smooth objective function to be minimized because there
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are no changing correspondences in the scan matching algorithm as there are in the two

ICP methods. This last point was critical in the development of the sliding window filter

presented in the next chapter. Thus RQE was chosen as the scan matching method to

be used in this thesis.



Chapter 4

Methodology

This chapter describes the mapping-and-localization framework, which uses the scan

matching concepts presented in the previous chapter. A diagram of the process is shown

in Figure 4.1. The system is composed of two phases: mapping and localization. Mapping

occurs off-line, before the system is in service, and localization is used on-line to report

the train’s location relative to the generated map. Both phases begin by pre-processing

Ransac
Pre-Processing

Sliding-Window
Filter

Map
Construction

Phase 1: Map the Tunnel

Phase 2: Localize Relative to the Map

Lidar
Scans Map

Pre-Processed Lidar Scans

Odometry
Estimate

Relative
Position
Velocity
Estimate

Window to
Map Matching

Map

Ransac
Pre-Processing

Sliding-Window
Filter

Lidar
Scans

Pre-Processed Lidar Scans

Odometry
Estimate

Figure 4.1: System overview showing the flow of data in the localization algorithm. Both

phases pre-process incoming lidar scans then calculate the odometry from sequential

scans. The Mapping phase generates a map from the odometry, while the localization

phase aligns recent scans to a local sub-region of the map. This shows the relationship

between the mapping and localization phases. The mapping phase will occur once for

a given railway and the localization phase will be used on all subsequent runs on that

railway.

30
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the raw lidar data. In both phases, a sliding-window filter is used to find an optimal

constant acceleration for a small window of pre-processed scans. In the mapping phase,

the estimated positions of the scans are used to register the scans in a global reference

frame to create a point cloud, which will serve as the map. In the localization phase, the

estimated positions are used to create a point cloud for the window, which is matched to

the map to correct the estimated position of the scans relative to the map.

4.1 Common Processes

The first two processes in each phase are identical and are explained in the following

section. First, the data is preprocessed, converting the raw lidar data into a usable form

and filtering the data to remove uninformative portions. Second, the distance travelled

between scans is estimated for use in mapping and localization.

4.1.1 Scan Pre-processing

As described previously, this work focuses on a railway tunnel environment which consists

primarily of long flat walls relatively parallel to the rails. During algorithm development,

it was noticed that the scan matching techniques that were being explored had difficulty

aligning scans. This was because most data in many scans consisted of smooth walls

that are parallel to the railway tracks, or to the direction of motion of the train. These

parallel walls cause the lidar scans in many sections of the tunnel to appear identical,

whether the train is moving or stationary. Thus, it was necessary to remove the data

points associated with the walls parallel to the direction of travel, in order to highlight

the other surfaces scanned in the tunnels, which actually provide information about the

train’s motion.

Figures 3.2, 3.3 and 3.4 from the previous chapter show how the objective function

of all three scan matching methods become much steeper and more centred on the true



Chapter 4. Methodology 32

Figure 4.2: This figure shows a nearly featureless tunnel which demonstrated the need

to remove the data associated with the walls. Removing the wall data ensures that the

scan matching techniques do not superimpose the two scans, as this would suggest that

the train did not move between scans.

offset between scans when the parallel walls are removed. RANSAC (Fischler and Bolles,

1981; Zuliani, 2008) is used to identify wall segments within each scan and remove the

data points associated with walls. RANSAC was used because it is very fast and robust

when used to find lines of points in point clouds. The criteria for classifying a line of

points as a wall to be removed was that it needed to be within 7 degrees of parallel to the

motion of travel and had to be at least 2 m long. Figure 4.2 shows a scan from a section

of tunnel that returns data associated with walls parallel to the direction of travel. The

only non-wall data are the points associated with hand rails from a ladder leading from

the track. Sparse data such as this are needed in order to localize; therefore the wall

data are removed in order to avoid drowning out the useful data (i.e., the data associated

with the handrails, protrusions from the walls, or other infrastructure in the tunnels).

Figures 4.3 and 4.4 show the results of pre-processing on a short range and a long

range dataset and highlights that minimal useful information is available in the tunnel

sections of the railway. The parallel walls are also shown as the grey lines in the point-
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Figure 4.3: The data contained in all the scans for Run 3 are shown after RANSAC

processing. Only a small percentage of the 181 data points generated by the sensor are

useful, as most return the maximum range value or observe walls parallel to the direction

of travel. The highlighted sections of the figure represent sections of the railway that are

not tunnel; they are either stations or crossovers. The magnified portion of data shows

that there is minimal useful data in tunnel sections and that data gaps frequently occur.

cloud maps shown in Figure 5.2.

4.1.2 Trajectory Smoothing

The sliding-window filter, which provides the odometry estimates, is required for two

reasons. First, it provides a smooth velocity profile, eliminating most of the chatter

caused by fast scan rates and noise in the scan data. Second, it is used to bridge data

gaps arising when the train is passing an area in which the lidar sensor perceives only

parallel walls, resulting in empty point clouds after pre-processing.

The size of the window is not fixed in the system due to the nature of the tunnel

environment in which the system operates. If the window contained a fixed number

of scans, it would be possible to have a window containing no data, as they were all
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removed from the scans during pre-processing. Conversely, large windows in stations

would result in an excessive amount of data, which would unnecessarily slow the speed of

computation. A heuristic was found by selecting the window size based on the number of

data points contained within the window, after pre-processing. Another requirement is

that the first and last scans in a window contain data. The lower bound for the size of a

window is a fixed number of scans in each set. The upper bound is based on a minimum

number of data points each set must contain. The second criteria is required because

many scans can have little or no data remaining after the RANSAC filter is applied, thus

the window will contain as many scans as necessary to include the required minimum

number of data points. This ensures that there are both sufficient scans and data in the

window to produce an accurate acceleration estimate.

Figure 4.4: The data contained in all the scans for Run 7 are shown after RANSAC

processing. Only a small percentage of the 181 data points generated by the sensor are

useful. However, there is more data with the longer range sensor setting used in this

run than with the previous figure that used the shorter range setting. The highlighted

sections of the figure represent sections of the railway that are not tunnel; they are either

stations or crossovers. The magnified portion of data shows how little data remain in

tunnel sections and how often data gaps occur.
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Figure 4.5: Components of the sliding window. The triangles represent individual sequen-

tial scans from the localization phase. The sliding window contains scans with known

offsets and velocities, the static set, and unknown offsets and velocities, the active set.

The static set of scans is combined into a single point cloud, P whereas each scan in the

active set remain as individual point clouds, Q1, . . . , QW . The train motion between the

scans in the active set is constrained by a constant acceleration, a. Because the sliding

window can contain many scans only some of the calculated values from the active set are

kept; those that are discarded will be calculated again in future iterations as the window

slides forward. The last (rightmost) scan of the static set provides initial velocity, v0, for

the active set.

The optimization of the sliding window for a constant acceleration over the window

is a simplified version of continuous-time trajectory estimation Furgale et al. (2015);

Anderson et al. (2015). This work similarly assumes a constant acceleration model to

space scans along a trajectory. The sliding window smooths the trajectory by limiting

any discrete changes in velocity, which is valid for the system as the train has a large

mass and accelerates slowly.

The configuration of the sliding window is shown in Figure 4.5. The scans in the

window are divided in two groups, the active set, scans Q1, . . . , QW , and the static set,

which are combined into a single point cloud P . The offsets between scans in the active

set and the last scan in the static set are defined as

xk0(a) = v0 ∆tk0 +
1

2
a∆t2k0, (4.1)

where v0 is the initial velocity, a is the acceleration value for the window and ∆tk0 is the

time between the kth active scan and the last scan in the static set. The offset between
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scans in the active set is defined as

xkl(a) = v0∆tkl +
1

2
a(∆t2l0 −∆t2k0), (4.2)

where ∆tkl is the time between the kth and lth active scans.

The entropy of the window is calculated by the summation of the entropy of each

pair of point clouds in the window,

f(a, P,Q1, . . . , QW ) =
W∑
k=1

e(xk0(a), P,Qk) +
W−1∑
k=1

W∑
l=k+1

e(xkl(a), Qk, Ql), (4.3)

and the optimal acceleration,

a∗ = arg min
a
f(a, P,Q1, . . . , QW ), (4.4)

is found by minimizing that entropy.

The gradient descent method, described above, is used to find a∗, this time operating

about aop. The derivative of f is found using the chain rule with the derivative of e,

above, and ∂x
∂a

giving,

∂f

∂a

∣∣∣∣
aop

=
W∑
k=1

1

2
∆t2k0

∂e

∂xk0

∣∣∣∣
xk0(aop)

+
W−1∑
k=1

W∑
l=k+1

1

2
(∆t2l0 −∆t2k0)

∂e

∂xkl

∣∣∣∣
xkl(aop)

, (4.5)

which is used to update aop until the minimum is found.

4.2 Map Generation

The mapping phase generates a static map of the railway environment based on an initial

pass of the train mounted lidar system through the railway tunnel environment. This

phase is intended to be done off-line to create an accurate and dense point-cloud survey

of the tunnel system that will be used for localization.
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Using the output from odometry, the position of each scan relative to the first scan

can be calculated. The global map is registered by selecting a subset of equally spaced

scans, based on their position relative to the first scan, to ensure that the map point

cloud is not overly dense. It was empirically found that a spacing of 0.5 m between scan

was a good trade off between an overly dense map and loosing information. This means

that tunnel mapping can occur at the maximum speed of the train as the sensor scans

at 75 Hz and the maximum speed of the test train is 70 km/h (or 0.26 m/scan).

4.3 Localization

Localization to the map is done by matching the current window of scans created during

the odometry step (which can now be combined into a single point cloud, Q) to a local

submap, P , extracted from the map, detailed in Figure 4.6. The local submap is created

by selecting all data points in the map that are in an area the size of Q. Extra data points

from the map are added on either end to ensure the area represented by the window is

wholly contained within the local submap. The location of this region on the map is

given by the known relative position of the scans in the static set.

Figure 4.6: Relative localization, illustrating how the sliding window and local submaps

are aligned. The triangles represent individual scans from a mapping phase (top) and a

localization phase (bottom). The optimal alignment, x∗, of the window point cloud, Q, is

determined relative to the local submap, P , using (3.8). The local submap is generated

based on the initial position and the size of the window with additional scans included

on either end to allow for misalignment.
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The relative position of the window with respect to the map is obtained using (3.8).

The optimal offset x∗, of the current window, Q, is applied to the individual scan offsets,

which are kept from the odometry step to account for any discrepancies in the odometry

between the mapping and localization phases. This ensures that the location of each

scan is known relative to the origin of the map.

Due to the large number of data points in both Q and P , it was computationally

expensive to compute x∗. Therefore, both point clouds were randomly downsampled

by 50% to reduce the computation time by 75%. In order to decrease the number of

iterations to converge and avoid converging to a local minimum two techniques were

employed. First, a global search was performed in an area of ± 1.5 m from the estimated

position in the local submap with 0.2 m for a best match to find the global minimum.

Then, a technique called the golden search method was employed to find the minimum

in the area found in the previous step. It is a version of the Fibonacci search devised by

Kiefer (1953). The golden search method is one of the fastest ways to find an extremum

of unimodal function, although it only requires that the function is unimodal between

the two bounds it is given to search. The golden search method iteratively bisects the

area between its search bounds using the golden ratio ϕ = 1+
√
5

2
, determines which

section contains the extremum and repeats the process until the search bounds shrink to

a predefined size.

4.4 Summary

In this chapter, the methodology for pre-processing scans, map generation and train lo-

calization are presented. Both the mapping and localization phases are based on the

odometry method developed using a sliding window filter that assumed a constant accel-

eration over the length of the window of point clouds. The idea of removing point-cloud

data associated with surfaces parallel to the direction of travel was fundamental to the



Chapter 4. Methodology 39

success of this algorithm. Removing the parallel walls from the data greatly increased

both the accuracy and the processing speed of the algorithm. The sliding-window filter

provides a smooth velocity profile for the estimated trajectory of the train and contributed

significantly to the high degree of accuracy reported in Chapter 6.



Chapter 5

Dataset Collection

The experiment environment consisted of a subway train travelling in an underground

tunnel. The subway line is a 5.3 km long railway that is relatively straight and completely

underground. Multiple datasets were collected, with varying maximum train speed, rang-

ing from 15 to 70 km/h. The layout of the test environment is provided at the top of

Figure 5.1.

5.1 Tunnel Environment

The subway line in which the datasets were collected consists of three types of railway

environments. Images of these environments are provided in Figure 5.1. Further, maps

of these environments (generated by the algorithm) are presented in Figure 5.2.

The most common railway environment type is the single-track tunnel. These are the

straight, narrow, and nearly empty sections that connect stations. Occasionally there are

handrails or electrical boxes in the tunnel but they are infrequent, small, and repeated

at semi-regular intervals. This is the section of the railway that is most difficult for

localization.

40
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Figure 5.1: Tunnel map of the subway line showing the layout of the test railway as well as typical pictures of the three types of

tunnel environments. Both datasets were collected on the same subway line; however, one of the start/end points were different

between the two field trials. This difference is shown on the two track layouts for the two field trials. The train travelled forward

on the bottom track and backward on the top track and the transfers at the end of each run were used to get back to the

start/end points. Green markers denote the first or last marker seen by the train, purple markers were seen by traverses in both

directions, red and blue markers are on the top and bottom tracks respectively. Greyed-out reference markers and sections of

track were not traversed during these experiments.
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Figure 5.2: Mapping result. The point cloud generated during the mapping phase for Run 3 with enlarged sections of interest.

Black data points represent the data after pre-processing and the light grey data points were associated with walls and removed

from the data. Examples of the three tunnel environments (station - orange, tunnel - magenta, crossover - cyan) are identified on

the map and enlarged below. Each highlighted point cloud consists of hundreds of individual scans and the apparent crispness

of the resulting map demonstrates the effectiveness of the odometry estimates. Also identified are the reference markers in each

highlighted point cloud and some examples of handrails in the tunnel environment.
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The second-most common environment is the station platform. These are charac-

terized by many irregularities such as pillars, stairwells, and large open spaces. Station

platforms are often preceded by larger, often irregular tunnel sections, making them easy

to identify and providing many perpendicular surfaces that allow for precise localiza-

tion. Stations also offer many perpendicular surfaces and non-wall structures and are

traversed at low speeds, making them ideal for localization. However, stations are also

the largest source of dynamic noise relative to the pre-generated maps due to pedestrians

and relatively frequent construction.

Finally, the third railway environment is the crossover. This is an area usually just

outside a station platform where trains can switch between the two parallel tracks. In

the experiments, the trains only turned significantly while using crossovers at the end of

each run.

5.2 Experimental Setup

A sensor head, see Figure 5.3, was mounted on one end of the train. It included the

lidar sensor, an IMU and a web camera. The lidar sensor head was mounted on the train

such that the 2D lidar was facing away from the train, pointed straight forward, so that

the scanning plane was parallel to the ground, see Figure 5.4. The SICK LMS291 sensor

used to gather the dataset had a scan rate of 75 Hz, an angular resolution of 1 degree

adjustable range and accuracy settings. The two common settings are 8.1 m range with

millimetre accuracy and 81 m range with centimetre accuracy.

The IMU data was collected in case it would be needed in the empty sections of

tunnel between station but was not required and therefore not used in this work. The

web camera was not used as an input to the algorithms but as a visual aid during

algorithm development, testing and demonstration. It was also used to help find the

reference markers discussed later in this chapter.
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Figure 5.3: Experimental setup used to gather data in the subway tunnel. The sensor

rig consisted of the SICK LMS291 lidar sensor, a microstrain IMU and a webcam.

5.3 Datasets

Table 5.1 describes the six runs from the first dataset and Table 5.2 describes the eight

runs from the second dataset. Both datasets were collected on the same subway line;

however, the paths followed in the two experiments were not identical, as shown in

Figure 5.1. The first dataset was collected using the shorter range and more accurate

setting of the lidar sensor with the thought that the higher accuracy would provide more

detail about the wall surface than additional information gained farther down the narrow

tunnel with low accuracy. The second dataset was collected using the longer range setting

for comparison.

5.4 Evaluation Method and Ground Truth

Obtaining ground truth for underground datasets was difficult due to large environments

with breaks in line-of-sight and the absence of GPS signal. In order to properly evaluate

the accuracy of the generated maps and the relative localization, the surveyed positions of

reference markers in the subway system are used as ground truth. The distance between
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Figure 5.4: Right : Picture of the train used for the experimental work. The 2D lidar

in seen in the middle of the picture attached to the front handrail of the train. Left :

Overhead view of the sensor installation with respect to the train.

reference markers was obtain from signalling drawings, which specified the location of

the reference markers based on physical surveys that have been performed in the subway

tunnels. The reference markers are the locations of signal posts used to signal whether

it is safe to enter the next section of track or if it is occupied by another train. They

define the boundaries of the fixed blocks in the signalling system. A picture of a reference

marker is labelled in the image of a tunnel environment in Figure 5.1 and they are also

labelled in the generated maps in Figure 5.2.

A reference marker location is manually assigned to a scan in which it appears, each

reference marker is assigned to one scan per run. The manual detection was completed

by simultaneously viewing the stream of lidar scans and camera images from the USB

webcam that was also mounted on the sensor head. The images helped identify when a

signal post was approaching because the signals are red or green lights that are clearly

visible. The location within the scan where the signal post was located was also recorded

to minimized the error due to the manual marking of ground truth. The global accuracy

of the reference markers is subject to many errors (manual identification, surveying, etc.)
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Table 5.1: October 26th, 2014 Dataset Information

Run #
Travel

Direction
# of Reference

Markers
Max Speed

[km/h]
Duration [s]

1 Backward 31a 70 509
2 Forward 33 70 610
3 Backward 32 70 564
4 Forward 33 15 1864
5 Backward 32 35 746
6 Forward 33 35 943

aDuring Run 1, the first reference marker was not captured due to data logging issues.

Table 5.2: November 30th, 2014 Dataset Information

Run #
Travel

Direction
# of Reference

Markers
Max Speed

[km/h]
Duration [s]

7 Backward 31 70 525
8 Forward 32 70 652
9 Backward 29a 35 742
10 Forward 32 35 917
11 N/A b

12 Backward 31 35 722
13 Forward 32 70 637
14 Backward 31 70 520
15 Forward 32 70 606

aDuring Run 9, the last two reference markers were not captured due to sensor issues.
bDuring Run 11, the train did not leave the station due to other tests, this run is not analyzed.

and could be on the order of metres but only affects the mapping accuracy. The indexed

scans were compared manually to ensure the identical physical locations were selected for

a specific reference marker in all runs in order to minimize relative error between runs.

Thus, the relative accuracy of the reference markers is within centimetres for relative

localization.
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Figure 5.5: Image of a signal post used as a reference marker. The location of these

reference markers were provided and could be used as ground truth for localization and

mapping. Image credit: Kevin Hadley

5.5 Summary

In this Chapter, the experimental setup used to collect datasets for algorithm develop-

ment and testing is described. A total of 14 datasets were collected along two parallel

tracks of underground tunnel that are 5.3 km long with varying maximum train speed,

ranging from 15 to 70 km/h. The allows for the creation of 14 maps and 98 unique combi-

nations of possible runs for localization. The tunnel environments and experimental setup

used to gather the datasets is also explained. This section also describes the method used

to obtain ground truth data for evaluating the results obtained in the following chapter.



Chapter 6

Experimental Results

The performance of the system was evaluated for both mapping and localization accuracy.

The two phases are evaluated separately due the nature of their errors. The mapping

phase uses dead-reckoning to generate a locally consistent map, therefore the errors are

reported as cumulative error as well as percentage based on the segment lengths between

reference markers. The localization phase provides position estimates relative to the map,

thus the relative error at the reference markers are reported.

6.1 Mapping

Trajectory estimates were calculated for each of the runs listed in Tables 5.1 and 5.2.

Figure 6.3 shows the result of the odometry estimation used to create the map for Run

7 and Figure 6.4 shows the same for Run 3. The estimated train trajectory is plotted

along with the reference markers as well as the errors at each reference marker. This

error data were collected for each run and used to create the plots in Figures 6.2 and 6.1.

Error percentages are calculated based on the segment lengths between reference

markers and the error calculated at the reference marker at the end of the segment.

This allows for the comparison of mapping error based on the tunnel environment of

the segment to highlight potential strengths and weaknesses. Subdividing each run also

48
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Figure 6.1: Mapping results for Runs 7 to 15 separated by train directions, maximum

speeds and tunnel environments. Errors are reported with respect to the reference mark-

ers.

Figure 6.2: Mapping results for Runs 1 to 6 separated by train directions, maximum

speeds and tunnel environments. Errors are reported with respect to the reference mark-

ers.

provides many data points per run increasing the significance of the resulting trends and

it also removes some of the averaging out effect of random noise. The error metric used

for comparison will be the percent error:

%e =
e

l
, (6.1)

where e is the error for a segment and l is the segment length. The overall performance

of the mapping phase can be seen in the left box plots. The average error is around

-0.6% in both directions, which means the maps are a bit short. This bias towards a

short map is due to small segments of surfaces, which are near parallel to the direction of

travel, that are below the threshold for removal during pre-precessing. These segments,
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Figure 6.3: Mapping result presenting estimated trajectory. Top: Estimated trajectory

of the train during the mapping phase for Run 7. The reference markers are shown at

their surveyed locations as the time the train passed them. Bottom: Estimated error at

each reference marker. This shows the accuracy of the mapping phase with respect to

the location of the known reference markers in the tunnel. It is clear that the error grows

unbounded with distance, but at the low rate of approximately 0.2% by distance.

especially when close to the lidar (more data points and closer together), cause a bias for

underestimating the distance travelled between scans. The middle box plots show the

similarity in accuracy over a wide range of speeds. The apparent increase in variance with

speed is caused by the increase in uneven number of runs for each maximum speed. The

right box plots in the figures show the station environment has the largest error, which

is caused by two issues. First, the train stopped or slowed significantly at every station
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Figure 6.4: Mapping result presenting estimated trajectory. Top: Estimated trajectory

of the train during the mapping phase for Run 3. The reference markers are shown at

their surveyed locations as the time the train passed them. Bottom: Estimated error at

each reference marker. This shows the accuracy of the mapping phase with respect to

the location of the known reference markers in the tunnel. It is clear that the error grows

unbounded with distance, but at the low rate of approximately -0.6% by distance.

resulting in larger accelerations than at other portions of the railway. This contrasts

the constant-acceleration assumptions used in the odometry algorithm. Second, this

environment has many small near-parallel surfaces that lead to a negative odometry bias

as explained previously.

Figure 5.2 demonstrates the quality of the generated maps and confirms the accuracy

of the odometry used to generate the maps. The entire map for Run 3 is shown for scale
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and subsections of the map are enlarged to highlight the crispness of the map in each

tunnel environment.

6.2 Localization

In order to maximize the utility of the datasets collected, maps were constructed from

each run and then each run was localized against all possible maps. This made it possible

to test the system over 98 unique combinations (49 forwards and 49 backwards) for a

total of over 500 km. Tables 6.1 and 6.2 summarize the results obtained from these tests

localizing short range data to short range maps and likewise for the long range data. The

maximum and median error values, in centimetres, are calculated at the ground truth

locations on the track. These errors are based on the delta in the estimated locations

of the reference markers between the mapping and localizations phases. The estimated

locations of the reference markers are based on positions assigned to the scans identified

as containing them. In both the mapping and localization phases, scan positions are

recorded relative to the fist scan in the map dataset.

Table 6.1: Localization results for the short range sensor datasets.

Backward Runs - Errors in centimetres

Map 1 Map 3 Map 5

Run # max med max med max med

1 4.6 1.4 5.6 2.0 6.1 1.6
3 6.8 1.4 4.2 1.3 29.0 1.4
5 10.1 2.3 29.0 1.8 3.8 1.8

Forward Runs - Errors in centimetres

Map 2 Map 4 Map 6

Run # max med max med max med

2 8.2 1.6 32.2 3.5 48.6 2.5
4 17.7 3.7 7.3 2.3 19.1 2.9
6 48.2 2.9 16.3 2.7 7.5 1.8
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Table 6.2: Localization results for the long range sensor datasets.

Backward Runs - Errors in centimetres

Map 7 Map 9 Map 12 Map 14

Run # max med max med max med max med

7 8.8 1.8 11.0 5.0 11.6 2.1 11.8 3.9
9 15.0 5.6 8.1 2.5 14.5 3.6 12.9 3.6
12 17.7 4.3 13.9 5.0 7.5 1.7 14.7 3.1
14 15.2 4.5 11.0 2.8 15.3 3.8 8.0 1.2

Forward Runs - Errors in centimetres

Map 8 Map 10 Map 13 Map 15

Run # max med max med max med max med

8 5.7 1.5 81.8 3.9 12.5 4.8 19.9 6.1
10 15.1 4.2 82.9 1.1 10.6 3.1 77.9 4.1
13 15.5 3.8 84.0 4.5 6.6 1.6 16.9 4.2
15 25.2 4.8 16.7 5.3 16.9 5.0 74.4 1.5

The maximum and median errors are presented to show the error spread for each run.

As expected, localizing using the same data that was used to create the map results in

very small errors, which can be seem on the diagonals of Tables 6.1 and 6.2. Figures 6.5

and 6.6 are a histogram of the errors uses to create these tables (note the logarithmic

scale on the y-axis). The histograms show that most of the errors are centred near

zero with the exception of a few outliers. The outliers near ± 70 cm are cause by an

Figure 6.5: Localization results. Histogram of the relative errors used in Table 6.1. Note

the logarithmic scale on the y-axis.
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Figure 6.6: Localization results. Histogram of the relative errors used in Table 6.2. Note

the logarithmic scale on the y-axis.

association error of the handle rails in the tunnel, as the left and right hand rails of the

escape ladders are about 70 cm apart.

Table 6.3: Long range sensor localization results using the short range datasets for map-

ping.

Backward Runs - Errors in centimetres

Map 1 Map 3 Map 5

Run # max med max med max med

7 43.6 5.4 33.8 4.5 33.2 4.9
9 46.3 4.9 41.8 4.6 33.1 4.1
12 41.4 3.7 45.4 3.6 80.0 4.0
14 46.0 5.0 36.4 4.8 32.2 4.8

Forward Runs - Errors in centimetres

Map 2 Map 4 Map 6

Run # max med max med max med

8 37.7 6.0 39.3 7.9 40.2 6.6
10 34.4 5.4 47.8 8.5 42.8 5.1
13 29.2 5.6 40.3 8.9 30.6 7.8
15 19.9 4.1 43.6 6.4 39.6 4.8

Tables 6.3 and 6.4 summarize the results of localization using one sensor mode to

generate a map and the other to localize against those maps. The results of mixing the

two maximum range modes of the lidar sensor can be seen to increase both the maximum

and median errors for localization. The worst performance occurs when the long range
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Table 6.4: Short range sensor localization results using the long range datasets for map-

ping.

Backward Runs - Errors in centimetres

Map 7 Map 9 Map 12 Map 14

Run # max med max med max med max med

1 44.3 7.6 195.4 8.3 42.5 6.0 47.6 6.8
3 230.4 9.6 46.2 7.1 44.1 6.4 46.2 7.7
5 48.9 8.7 47.9 7.1 220.0 7.2 52.8 8.0

Forward Runs - Errors in centimetres

Map 8 Map 10 Map 13 Map 15

Run # max med max med max med max med

2 37.5 6.1 43.4 6.5 35.5 7.6 38.9 5.9
4 42.8 9.6 43.9 11.3 43.8 10.7 44.9 8.7
6 44.1 9.3 35.9 10.9 33.0 9.1 33.9 8.2

setting data are used to generate the map and the short range setting data are used for

localization. The long range setting data increases map density and possibly includes of

parts of the tunnel which are not observed when using the short range setting. This is a

possible cause of the increased error in localization, because the short ranged data used

for localization contains less data compared to the more data rich map.

This histograms in Figures 6.7 and 6.8 show the results used to create Tables 6.3

and 6.4 respectively. These figures show that the error is again centred about zero.

Figure 6.7: Localization results. Histogram of the relative errors used in Table 6.3. Note

the logarithmic scale on the y-axis.
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Figure 6.8: Localization results. Histogram of the relative errors used in Table 6.4. Note

the logarithmic scale on the y-axis.

There now appears to be more of a bimodal distribution in the error, but the extent of

this partially a visual effect of the logarithmic scale on the y-axis. The very low frequency

of outliers is also highlighted by these figures.

The relatively large maximum errors seen in the above tables are the result of con-

vergence to the incorrect local minimum of the RQE cost function, which happens from

time to time. This is often the result of the pattern of handrails seen in the tunnel map in

Figure 5.2 and the small differences in odometry between the mapping and localization

phases that lead to initial position estimates near a local minima. This is demonstrated

by Figure 6.9, which is a histogram of all the errors used to create Tables 6.1 to 6.4.

Here the majority of the large errors are located around ± 70 cm, which is the distance

between a set of handrails. The histogram also shows that over 90% of the errors are less

than 5 cm.

Figure 6.9: Localization results. Histogram of the relative errors used in from all local-

ization runs. Note the logarithmic scale on the y-axis.
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6.3 Summary

In this chapter, the performance of the proposed mapping and localization system are

evaluated using the datasets and ground truth collected, as described in the previous

chapter. The mapping and localization algorithms are evaluated separately because the

first generates a globally consistent map of the environment, while the second provides

localization relative to the previously generated map. The results demonstrate that

the mapping accuracy is between 0.2 and 0.6 % error by distance and the localization

accuracy is within ± 10 cm in stations in over 90 % of the tunnel with a relatively normal

distribution over a range of ± 10 cm and outliers of up to 80 cm in most cases and 2.3 m

in the case when the short range sensor setting was used for localization and the long

range for generating the map.



Chapter 7

Discussion and Future Work

After the first datasets were collected it became apparent that wall roughness in the

tunnels was not reliable for localization as initially predicted. Thus, it was concluded

that using the short range setting of the SICK LMS 291 for higher accuracy was not

ideal in the tunnel environment. Instead, other objects and infrastructure in the tunnel

needed to be used for localization. However, when the long-range setting of the lidar

sensor was used to detect non parallel wall aspects of the tunnel, as far in front of the

sensor as possible to minimize the drop outs, the localization error did not significantly

decrease.

Although the train in the experiments does not technically qualify as a ‘high-speed’

train, which is defined as a train capable of travelling over roughly 200 km/h, from a

robotics perspective, this is a high-speed application. Initially, there was concern about

the effects of motion distortion on the lidar scans, as each data point is registered to a

scan at different times while the sensor is moving. However, it was found that motion

distortion did not significantly impact the system for two reasons. First, motion distortion

does not affect the identification of near-parallel walls in the pre-processing stage. This is

due to the fact that the perceived angle of these walls is not affected by motion distortion

because they are nearly parallel to the direction of travel. Second, the odometry algorithm

58
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uses consecutive scans gathered over a short period of time that are affected by similar

amounts of motion distortion due to the limited acceleration of the train. Initial testing

shows that the system performs well up to 70 km/h. Modern trains can travel over

400 km/h, speeds that are generally associated with severe motion distortion for sensors

like a 2D lidar. However, at those high speeds motion compensation would not likely

be required. The remaining data after pre-processing only occupies a small field of the

sensor’s scan range, generally only a few degrees of the field of view, meaning the impacts

of motion distortion are limited. As a result, the system is considered robust to the effects

of motion distortion.

Prior to implementing the system, it will need to be tested for robustness against

noise and dynamic environments. Although underground tunnels rarely change, station

platforms and any outdoor environments in a railway system will contribute to sensor

noise and create a dynamic environment. Sensor configuration and location-specific algo-

rithm settings can be employed to avoid or ignore some sources of noise and environment

change. However, weather, dust, and construction cannot be avoided and may affect

localization. Small amounts of sensor noise should not affect the system as the sliding-

window filter uses many scans that presumably would not be affected by the same sensor

noise. Also, the RQE-based scan matching was not significantly affected by isolated data

points or groups of points that occur in isolation only in one scan. The sliding-window

portion of the system would only be affected by rapid dynamic changes, as the sliding

windows are temporally short. The optimization of the sliding window for a constant

acceleration over the window is a simplified version of continuous-time trajectory estima-

tion Furgale et al. (2015); Anderson et al. (2015). Further improvements may be realized

by exploring a more complex continuous-time trajectory estimation implementation.

This system operates on prior knowledge about starting conditions such as location,

speed, and in the case of localization, the railway to be traversed. The initial velocity

is easily recovered from the odometry algorithm. However, the system cannot solve the
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kidnapped-robot problem (i.e., determine which railway it is on and where along the

railway it is located without any prior knowledge). Solving this problem would involve

attempting to match the current scan to all locations in approximately 0.5 m increments

across the entire network of maps, which is computationally prohibitive in the system’s

current form.

The proposed method currently finds and removes parallel walls but does nothing else

with this information. Information about the walls could be used to increase localization

accuracy or speed. For example, the presence or absence of walls on each side, their

distance from the sensor and the width of the tunnel would provide a low dimensional

source of data that could be easily incorporated into the localization phase, or to solve the

kidnapped-robot problem. The RQE point-cloud alignment tuning parameter σ, from

Equation 3.6, is currently determined empirically and remains fixed. However, σ should

be based on the uncertainty of the location of a data point as well as the underlying surface

from which it was sampled. Thus, σ could be made a function of several parameters;

however, ideally it would be weighted by the data point’s range from the sensor because

the distance between sampled points increases as range increases and generally the noise

increases as well.

The algorithms presented in this thesis were implemented in Matlab and run several

times slower than real time. It is possible to optimize the RQE-based objective function

using Improved Fast Gauss Transforms (IFGT) to reduce the problem from a quadratic

computation cost to a linear computation cost, as presented by Sheehan et al. (2013).

Another solution would be to down-sample the window and local submap point clouds

to reduce the data overlap in the point clouds prior to matching them. Developing a

linear point density filter is a logical next step towards implementing this algorithm,

as the generated maps consist almost exclusively of straight lines which contain many

overlapping data points. With a properly implemented density filter, additional scans

could be used to generate the map, which would avoid missing small details in the map.
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The mapping algorithm currently uses a subsets of scans that are spaced every 0.5 m,

based on lidar odometry, and disregards all scans in between. This method was selected

because it was empirically found to be an acceptable balance between map density and

data loss. However, a linear density filter could provide significant improvements both

in terms of eliminating redundant data points in the map and including information

currently lost by the scan down sampling. Finally, the use of a graphics processor unit

(GPU) for RQE function evaluations should be investigated, as it may significantly reduce

computation times.



Chapter 8

Conclusion

In this thesis, a framework for estimating the position and velocity of a rail-based vehicle

in a tunnel is presented. The framework consists of two phases, a mapping phase and

a localization phase. The presented algorithms were tested on 75 km of data gathered

across 14 runs in a 5.3 km section of underground subway tunnel. By combining an

RQE-based point-cloud alignment algorithm with a sliding-window filter for odometry,

it has been shown that it is possible to robustly achieve low relative localization and

absolute mapping errors. The subway tunnel can be mapped with less than 0.6% error

over the total length of the generated maps. The algorithm is capable of continuously

localizing, relative to the generated map, to within 10 cm in stations and at crossovers,

and 2.3 m in pathological sections of tunnel. The algorithms developed and the results

they generated using the first six “short range” datasets have been peer reviewed and

published in (Daoust et al., 2016).

The challenging tunnel environment and high-speed nature of underground railway

travel led to two key findings. First, using RANSAC to find and remove tunnel walls that

are near-parallel to the direction of travel of the train highlights the data that changes

from scan to scan and removes the data that is not informative. This point was necessary

in order for the algorithm to function correctly. Second, the odometry algorithm robustly

62
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deals with the noise and data gap issues that arise when a significant portion of data

from lidar scan has been removed.

The identification and removal of planar surfaces that are near parallel to the motion

of travel from geometry-based localization data is an important take-away from this

thesis. This concept can be used to help downsample large datasets and highlight data

that provides greater accuracy for localization algorithms while decreasing computational

cost of processing the datasets.

In summary, the novel contributions of this thesis are as follow. First, the development

of an infrastructure-free mapping algorithm for use in tunnel environments at high speed.

Second, the development of an infrastructure-free localization algorithm for high-speed

rail vehicles in tunnels. Third, Experimental validation of both algorithms on a subway

train in a real tunnel with over 98 km of data.
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