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Recent studies have demonstrated that images constructed from lidar reflectance informa-

tion exhibit superior robustness to lighting changes. However, due to the scanning nature

of the lidar and assumptions made in previous implementations, data acquired during

continuous vehicle motion suffer from geometric motion distortion and can subsequently

result in poor metric visual odometry (VO) estimates, even over short distances (e.g.,

5-10 m). The first part of this thesis revisits the measurement timing assumption made

in previous systems, and proposes a frame-to-frame VO estimation framework based on a

pose-interpolation scheme that explicitly accounts for the exact acquisition time of each

intrinsic, geometric feature measurement. The second part of this thesis investigates a

novel method of lidar calibration that can be applied without consideration of the internal

structure of the sensor. Both methods are validated using experimental data collected

from a planetary analogue environment with a real scanning laser rangefinder.
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Notation

a : Symbols in this font are real scalars.

a : Symbols in this font are real column vectors.

A : Symbols in this font are real matrices.

E[·] : The expectation operator.

∼ N (a,B): Normally distributed with mean a and covariance B.

F−→a : A reference frame in three dimensions.

(̄·) : Symbols with an overbar are nominal values of a quantity.

(·)× : The cross-product operator that produces a skew-symmetric matrix

from a 3× 1 column.

1 : The identity matrix.

0 : The zero matrix.

pc,b
a : A vector from point b to point c (denoted by the superscript) and

expressed in F−→a (denoted by the subscript).

pc,ba : The vector pc,b
a expressed in homogeneous coordinates.

Cab : The 3 × 3 rotation matrix that transforms vectors from F−→b to F−→a:

pc,b
a = Cabp

c,b
b .

Tab : The 4× 4 transformation matrix that transforms homogeneous points

from F−→b to F−→a: p
c,a
a = Tabp

c,b
b .
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Chapter 1

Introduction

Due to their compact size, solid construction, and relatively low barrier to entry, stereo

cameras have become a popular sensor of choice for applications ranging from underwater

vehicles to micro aerial vehicles and everything in between. The Mars Exploration Rover

(MER) is the first space rover to implement such a system for low-level driving autonomy,

with limited computing power, that can run either obstacle detection or visual odometry

(VO) but not both at the same time. The onboard vision system was deemed instrumental

in enabling over 6 kilometres of travel for each of the rovers (Matthies et al., 2007).

Since cameras are passive sensors, nearly all existing vision-based techniques rely on

the assumption of consistent ambient lighting conditions. This, however, is not the case

for the majority of unstructured, three-dimensional environments, such as most outdoor

applications, where images taken even a few hours apart can appear drastically different

as lighting conditions change. A specific instance of visual odometry failure onboard

MER, noted in Matthies et al. (2007), occurred when the rover’s shadow dominated the

stereo camera’s view.

With greater onboard capability, such as with the new radioisotope thermoelectric

generators (RTGs) on Mars Science Laboratory (MSL) providing constant power during

all seasons and through the day and night, it is desirable to have robust autonomous

1



Chapter 1. Introduction 2

capabilities that allow a rover to drive in the dark, thereby doubling its daily travel

range to maximize scientific return. In the case of lunar missions, with permanently

shadowed craters, having such a capability is a prerequisite before a mission can even

enter the planning stage.

Unlike stereo cameras, light detection and ranging (lidar) sensors are active sensors

that use one-axis or two-axis scanning lasers to generate 2D or 3D information about

the surrounding environment. Earlier work on appearance-based lidar navigation by

McManus et al. (2011) demonstrated that images constructed from lidar reflectance in-

formation exhibit superior robustness to lighting changes in outdoor environments in

comparison to traditional passive camera imagery. Moreover, for visual navigation meth-

ods originally developed using stereo vision, such as visual odometry (VO) and visual

teach and repeat (VT&R), scanning lidar can serve as a direct replacement for the passive

sensor. This results in systems that retain the efficiency of the sparse, appearance-based

techniques while overcoming the dependence on adequate/consistent lighting conditions

required by traditional cameras.

However, due to the scanning nature of the lidar and assumptions made in previous

implementations, data acquired during continuous vehicle motion suffer from geometric

motion distortion and can subsequently result in poor metric VO estimates, even over

short distances (e.g., 5-10 m).

A high-level literature review is presented in Chapter 2 to serve as background in-

formation for the entire thesis, followed by a detailed “Related Works” section in each

technical component in Chapter 4 and Chapter 5. In order to systematically study the

effect of the motion distortion, a 3D lidar simulator is created to replicate the scanning

pattern of an existing lidar sensor. This simulator enables generation of datasets both

with and without motion distortion in a controlled environment, as well as manipulation

of traverse trajectory to amplify this effect. This work is documented in Chapter 3.

Chapter 4 of this thesis revisits the measurement timing assumption made in previous
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systems, and proposes a frame-to-frame VO estimation framework based on a novel pose

interpolation scheme that explicitly accounts for the exact acquisition time of each feature

measurement. The proposed technique is demonstrated using data generated from the

aforementioned lidar simulator as well as 500 m of experimental traverse data.

In addition to accounting for exact measurement timing in the estimation framework,

accurate pose estimation also relies on high-quality sensor measurements. Due to man-

ufacturing tolerance, every sensor (camera or lidar) needs to be individually calibrated.

Feature-based techniques using simple calibration targets (e.g., a checkerboard pattern)

have become the dominant approach to camera sensor calibration. Existing lidar cali-

bration methods require a controlled environment (e.g., a space of known dimension) or

specific configurations of supporting hardware (e.g., coupled with GPS/IMU). Chapter 5

of this thesis presents a calibration procedure for a two-axis scanning lidar using only an

inexpensive checkerboard calibration target. In addition, the proposed method general-

izes a two-axis scanning lidar as an idealized spherical camera with additive measurement

distortions. Conceptually, this is not unlike normal camera calibration in which an arbi-

trary camera is modelled as an idealized projective (pinhole) camera with tangential and

radial distortions.

In Chapter 6, both motion compensation and sensor calibration are tested individu-

ally and then together using over 10 km of experimental traverse data collected from a

planetary analogue environment to demonstrate the performance improvement each of

these components contribute toward VO estimates. Finally, the results and contributions

of this thesis are summarized in Chapter 7.



Chapter 2

Background Literature Review

This chapter presents a high-level review of the related technology and literature to serve

as background information for the rest of the thesis. Detailed literature reviews are

carried out in Chapter 4 and Chapter 5 as part of the technical components.

2.1 Dark Navigation Technology Overview

Stereo vision with LED strobe lighting was first considered by NASA Ames (Husmann

and Pedersen, 2008). They found that due to the inverse-square illumination drop off

with distance, in a single frame, the parts of the image of nearby terrain had a tendency

to oversaturate, while the ones of objects far away are under exposed. They concluded

that realistic continuous locomotion would require specialized camera hardware with a

logarithmic response to get high-dynamic-range (HDR) in a single image, along with high

peak power (1 kW) lighting, to obtain 10 m look-ahead with 90◦ field of view (FOV).

Flash lidar technology delivers instantaneous range and intensity images. The com-

mercially available SwissRanger SR3000 and a prototype from Ball Aerospace were tested

by Pedersen et al. (2008). The SR3000 is deemed usable for detecting rocks only 5.5 m

away and is subject to motion blur. The Ball sensor is a time-of-flight system that can

measure targets several kilometres away, but suffers from a limited 8◦ FOV.

4



Chapter 2. Background Literature Review 5

Advanced Scientific Concepts’ flash lidar has been flight tested during the final Space

Shuttle missions (STS-127, STS-133), and subsequently used on-board the SpaceX Dragon

spacecraft for state estimation during automated docking with the International Space

Station. The sensor is currently capable of 128x128 pixels resolution at 5 Hz and a max-

imum range of 60 metres (45◦ FOV) to 1.1 km (3◦ FOV). Stettner (2010) noted that

imaging arrays up to 512x512 pixels are also under development.

Rankin et al. (2007) detected negative obstacles (e.g., ditches, holes, and other de-

pressions) using intensity images from a thermal video camera. This study was carried

out based on the assumption that at night the interiors of negative obstacles generally

remain warmer than the surrounding terrain throughout the night. While this study ob-

tained good experimental results, the thermal signature assumption does not necessarily

hold up in extraterrestrial environments.

2.2 Lidar Intensity Imaging

Lidar technology has been widely adopted for surveying, both as airborne instruments

for capturing topographic information of the Earth surfaces (Brock et al., 2002), and for

ground surveying stations digitizing detailed 3D scenes locally (Nagihara et al., 2004). In

recent years, emphasis has shifted to incorporating both range and intensity information

for the above applications. Examples of lidar generated images can be seen in Figures 2.1

and 2.2.

Hofle and Pfeifer (2007) described how the intensity readings theoretically depend

on surface reflectance, ρ (which, in turn, depends on whether the object is wet or dry),

atmospheric attenuation, a [dB/km], the local incidence angle, α, and the range to the

target, R [m] according to the following relationship:

I ∝ ρ

R2
10−2R·a/10000 cosα · C
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Figure 2.1: Airborne lidar configuration (Wan and Zhang, 2006) and resulting lidar
intensity image (Hofle and Pfeifer, 2007)
.

Note that C represents other sensor parameters (e.g., aperture diameter, system losses),

which are assumed to be constant.

Actual lidar data, however, show relatively low dependence on the local incidence

angle (Kaasalainen et al., 2005). For a non-Lambertian surface (e.g., smooth or glossy

man-made surfaces, or wet surfaces), weaker return reflections are expected as the local

angle of incidence increases. Natural surfaces, such as volcanic units, behave as Lam-

bertian reflectors within the range of adopted incidence angles (Mazzarini et al., 2006).

By definition, a Lambertian surface will return the same signal strength irrespective of

the incidence angle. The returned light is then filtered to reject light with frequencies

different from the original emitted beam, thus giving the intensity measurement an ex-

cellent ability to handle environmental ambient light change, as seen in Figure 2.2, where

the intensity image is unaffected by the large amount of shadows observed in the normal

passive image.

Lidar intensity images are inherently noisier than their passive counterparts due to

the nature of the imaging mechanism. According to Fowler (2000), the noise appears

discretely in the intensity image, and does not appear as clustered groups. Wan and

Zhang (2006) proposed a noise removal technique based on the orientation gradient of
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Figure 2.2: Outdoor image comparison. The post-processed lidar intensity information
resulted in a shadow-free image (left). The passive image (right) was heavily influenced
by environmental lighting condition, seen here with large amount of shadow (Burton and
Wood, 2010).

the distance information, and qualitatively demonstrated improvements in the signal to

noise ratio (SNR).

2.3 2D Keypoint Matching

Algorithms for viewpoint-invariant keypoint detection and matching were originally de-

veloped for object recognition by machine vision researchers. The algorithms’ powerful

abilities to find the correspondence between two images of a generic scene or object have

propelled their adoption in other computer vision applications, such as camera calibra-

tion, 3D reconstruction, and image registration. Many existing visual-based navigational

techniques rely on image feature detection and tracking to calculate egomotion as well

as to detect loop closure (i.e., when returning to a place viewed before).

Lowe (1999)’s scale-invariant feature transform (SIFT) detector and descriptor, com-

puted from local gradient histograms, has been shown to work well in robotic applica-

tions, both in structured indoor environments (Se et al., 2002, 2005) and unstructured

outdoor terrain (Barfoot, 2005). To minimize computation slow down, Barfoot (2005)
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delegated SIFT feature extraction to a custom FPGA hardware while parallelizing fea-

ture matching onboard the host PC. A GPU implementation of SIFT by Sinha et al.

(2006) achieved a ten-fold speed-up in feature extraction in comparison to the original

CPU implementation.

The speeded up robust features (SURF) algorithm was developed by Bay et al. (2006)

to address the computational requirements of SIFT. This algorithm takes advantage of a

fast approximation of second-order Gaussian derivatives evaluated using integral images.

Versions of GPU-accelerated SURF are also available as closed-source binaries (Terriberry

et al., 2008) and open-source code (Furgale et al., 2009).

Calonder et al. (2010) developed an even more efficient feature point description using

compact signature, which exploits the sparsity of the signature produced by a randomized

tree structure known as Generic Trees (Lepetit and Fua, 2006). Konolige et al. (2010)

demonstrated the application of this algorithm as a method for re-localization and online

place recognition (PR) inside a visual simultaneous localization and mapping (VSLAM)

engine.

2.4 Visual SLAM Using Passive Cameras

Most appearance-based navigation techniques can trace their roots to the visual odometry

(VO) work by Matthies and Shafer (1987). VO estimates vehicle pose changes using

sequential camera images. Generally, the ego motion estimates from VO pipeline are

used to form the initial conditions for more complex navigation techniques, such as visual

teach and repeat (VT&R) by Furgale and Barfoot (2010) and VSLAM by Konolige et al.

(2010).

Current state-of-the-art VSLAM systems consist of a core SLAM engine running in

an incremental mode and a place recognition (PR) system to detect large-scale loop

closures. The VSLAM system by Konolige et al. (2010) employs a VO engine using
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FAST features, which continuously matches the current frame against the last keyframe,

until a given distance has been traversed or the match becomes too weak. This algorithm

produces a stream of keyframes at a spaced distance, and forms the backbone of their

constraint graph. The PR engine opportunistically finds other views that match the

current keyframe and previous views, and creates additional constraints when matches

are found. Similar in architecture, Sibley et al. (2009) uses sliding window relative bundle

adjustment technique to estimate the relative pose changes between keyframes.

While some are more robust than others, most existing VSLAM methods suffer from

the same failure mode, with VO and/or PR no longer capable of performing reliably

under significant changes in ambient lighting. A notable exception is Milford and Wyeth

(2012)’s SeqSLAM. Instead of calculating the single location most likely given a current

image, their approach calculates the best candidate matching location within every local

navigation sequence. Under the assumption that the perspective and the speed of the

camera is similar on repeated journeys through each part of a route, SeqSLAM’s PR

engine was able to successfully match footages taken at different time of the day, as well

in different seasons.

2.5 Lidar-based Implementation

In the robotic literature, the intensity information from lidar sensors are generally dis-

carded, with most algorithms working only with range data. While such approaches

have achieved some success with 2D planar lidar scanners in structured indoor environ-

ments, the greatly increased data produced by 3D lidar scanners requires significantly

more efficient methods of processing and matching.

An intuitive and common approach to lidar-based motion estimation is through the

alignment of lidar scans using the iterative closest point (ICP) algorithm (Chen and

Medioni, 1991; Besl and McKay, 1992). It requires an immense amount of computation
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power and becomes infeasible in large environments.

Magnusson et al. (2009) developed a compact representation of 3D point clouds that

is discriminative enough to detect loop closures. Their approach uses surface shape

histograms to create a condensed representation of 3D point cloud that is invariant to

rotation. During exploration, histograms from current scans are compared against all

previous histogram signatures to detect loop closure. Their field test covers 1.24 km of

rover traverse.

Neira et al. (1999) combined both range and intensity data from a one-axis scan-

ner using an extended Kalman filter (EKF) to localize against a known indoor planar

map. Guivant et al. (2000) noted the distinctiveness of reflective marks in the intensity

information, and used it to simplify outdoor data association of their SLAM algorithm.

May et al. (2009) recently developed an indoor 3D SLAM system using keypoint

features extracted from flash lidar intensity images. The study demonstrated their key-

point descriptor-based system is far more efficient than ICP-based SLAM using the same

dataset. Unfortunately, this particular implementation can not be directly adapted to a

large, unstructured outdoor environment, due to the sensor’s short maximum range (7m)

and high sensitivity to environmental noise.

To date, the most relevant work to this thesis in appearance-based lidar navigation

was carried out by McManus et al. (2011). Using a survey-grade 3D lidar sensor, they

acquired lidar intensity images outdoors over a 24 hour period, and determined the

stability of SURF keypoints extracted from intensity images to be vastly superior than

their counterparts from passive cameras. McManus et al. (2011) further validated their

approach by implementing a visual odometry algorithm on a sequence of lidar intensity

images. Note that since the ILRIS lidar sensor used was not designed for high framerate

acquisition, the VO experiment was restricted to stop-scan-go at each frame. In follow-

up studies (McManus et al., 2012, 2013), a high framerate lidar was used to carry out

continuous navigation based on VO. While the relative frame-to-frame VO estimates was
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sufficiently accurate for lidar-based VT&R, the cumulative metric estimate in a global

frame drifted quickly beyond 5-10 m of travel (McManus et al., 2012). In comparison,

state-of-art stereo-vision-based VO systems largely retain global metric accuracy over

multi-kilometre traverses (Lambert et al., 2012); there is clearly room for improvement

in lidar-based VO. This thesis will attempt to improve the metric accuracy of lidar-based

VO by compensating for motion distortion and also improve lidar intrinsic geometric

calibration.



Chapter 3

Lidar Simulation

3.1 3D Lidar Simulator

Earlier work on appearance-based lidar navigation by McManus et al. (2011) revealed

promising results: As shown in Figure 3.1(a), VO estimation performance comparable to

that of established stereo-vision based methods was obtained using stop-scan-go acquisi-

tion method, and the lidar-based approach was shown to be significantly more robust to

ambient light changes.

0 20 40 60 80 100
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x [m]

y
 [

m
]

 

 

Ilris VO

Stereo VO

GPS (Fixed RTK)

GPS (Float RTK/SPS)

Start End

(a) VO estimation results, showing comparable lidar-based and
camera-based VO estimates (McManus et al., 2011)

ILIRS Lidar

DGPS

Stereo Camera

(b) Rover configuration

Figure 3.1: ILRIS lidar-based stop-scan-go VO system

It is, however, more desirable for a rover to traverse continuously, and this is the case

for existing passive camera-based navigation techniques. Unlike charge-coupled device

12
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(CCD) camera sensor, which captures a complete image frame at a single instant of

time, scanning lidar acquires one pixel at a time, which leads to motion distortion when

an entire image of scan data are incorrectly assumed to have been acquired at a single

instant in time during VO processing.
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(a) VO estimation without motion compensation, show-
ing estimation from the lidar data degrade quickly fol-
lowing a curved path (McManus et al., 2013)

Autonosys Lidar

DGPS

Stereo Camera

(b) Rover configuration

Figure 3.2: Autonosys lidar-based VO system

Preliminary VO results using lidar scans collected during a continuous traverse are

deemed sub-optimal in comparison to stereo VO, as shown in Figure 3.2(a). Close in-

spection of the dataset revealed the presence of significant motion distortion, such as the

skewed checkerboard pattern shown in Figure 3.3.

In order to systematically study the effect of the motion distortion, a 3D lidar sim-

ulator that fully replicates the scanning pattern and performance of the existing sensor

was created using open-source computer game engine Panda3D. The flexible design of

the simulator allows creation of benchmark datasets with precisely controlled transla-

tional and/or rotational vehicle trajectories, as well as complete customization of the

environment.

The default environment shown in Figure 3.4 consists of ground and back planes

covered with a natural texture. The texture is needed for reliable appearance-based

feature extraction and matching, and the planar environment allows direct visualization
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Nodding

Mirror

Polygonal 
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(8000 RPM)

Laser 

Range�nder
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F→p

F→k

F→l

Image k

Image K

Scan Direction

Image K+1
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Figure 3.3: Simplified illustration of the Autonosys lidar’s two-axis scanning mechanism
(O’Neill et al., 2007) (left) and geometric motion distortion effect as seen in intensity
images (right). Note that in the intensity images, the rover was turning left during
both scans. Different skewing effects of the rectangular checkerboard were caused by the
nodding behaviour of this lidar. The raw intensity information provided by the lidar is a
function of the emitted beam energy, range, target reflectance, and its surface orientation
with respect to the lidar. See McManus et al. (2011) for details on how our intensity
images are assembled.

Figure 3.4: Default lidar simulator environment.

of the motion distortion effect due to its simple geometry.

Using a curved trajectory, we recreated similar skewing distortion that was previously

observed in the Autonosys intensity images. A checkerboard, displayed in Figure 3.5, is

added to the scene to improve visual clarity of the motion distortion.
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Figure 3.5: Example of simulated intensity data with distortion.

3.2 Analysis of Simulated Datasets

Using the lidar simulator, a total of 7 datasets were generated with a variety of linear

and rotational trajectories. The analysis of two representative datasets using the frame-

to-frame VO state estimator developed by McManus et al. (2013) are highlighted in this

section.

3.2.1 Dataset 1 - Translational Motion

Dataset 1 consists of pure translational motion. In it, the rover followed a linear trajectory

with a constant velocity of 1 m/s along the x-axis, essentially driving straight into the

scene. The VO estimation result from this dataset is shown in Figure 3.6, along with the

the results from the control case where the image data contains no motion distortion.
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-0.2

0
0.2
0.4
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Figure 3.6: First 5 seconds of linear traverse. The ground truth is shown in blue, the
estimate from the dataset with motion distortion in green, and the estimate from the
dataset without motion distortion in red.
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A predominant saw-tooth shaped estimation error is observed in z-axis direction,

as shown in Figure 3.6. This behaviour is a direct result of the nodding vertical scan,

and can be explained by inspecting the scans of a planar wall, as shown in Figure 3.7.

As the vehicle moves forward towards the wall, the physical distance changes inversely

proportional with time. Hence, during a downward scan, the bottom of image is warped

closer toward rover than the top of the image. This effect reverses in the next frame as

the lidar changes its vertical scanning direction.

Figure 3.7: 3D reprojected lidar scans - downward (left) and upward (right) scans. Note
that the amount of motion distortion has been been exaggerated here for visual clarity.
These two scans are generated using 5 m/s as vehicle velocity as oppose to the 1 m/s in
Dataset 1.

This motion distortion effect, however, is not accounted for in the VO algorithm, as

the entire frame is assumed to be taken at the same instant of time. Therefore, to the

estimator, a slanted wall would imply a translation and rotation of the camera position.

It can be visualized by superimposing the frames, shown in Figure 3.8 in a simplified side

view (xz- plane).

The root cause of the saw-tooth error is that the scanning lidar measurement collected

during continuous motion violates the measurement timing assumption that each image is

a static capture of a single instant of time. The simulated control dataset based on stop-

scan-go method does not suffer from this problem, as a time-lapse (scanning capture) of a

static scene is same as a single snapshot of the environment when the observer (camera)
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Actual Rover Path VO Estimate

Figure 3.8: Simplified side view of superimposed lidar scans, demonstrating the cause of
saw-tooth estimation result

is also static.

3.2.2 Dataset 2 - Translational and Rotational Motion

The rover is given a planar sinusoidal trajectory, along with an analytical heading pointed

in the direction of motion. This trajectory introduces additional rotational motion dis-

tortion due to the heading changes.

As shown in Figure 3.9(a), the previously observed saw-tooth error pattern returned

here in the height (z-axis) and camera tilt (axis angle about y-axis) estimates. Also note

the cyclic error in the heading estimate is caused essentially by a phase delay between

actual trajectory and estimation result. These comparisons demonstrate that vehicle

motion distortion in lidar image stacks is indeed a major challenge to existing estimation

framework used by vision-based method as it violates the assumption that all pixels in

each image arrive simultaneously. As such, we need to rethink our estimation strategy.
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Figure 3.9: VO estimates from simulated lidar dataset 2 with translational and rotational
motion. The ground truth is shown in blue, the estimate from dataset with motion
distortion in green, and the estimate from dataset without motion distortion in red.
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Motion Compensated Lidar VO

The extent of motion distortion is related to the vehicle’s velocity and scan rate. Off-

the-shelf, one-axis lidar scanners typically take milliseconds to produce a scan line (e.g.,

as little as 2 ms on SICK LMS 111), and at a speed of 1 m/s, the vehicle would only

have moved few millimeters during a scan. Relatively trivial in magnitude, the motion

distortion effect is generally not accounted for when working with a one-axis scanner. In

comparison, a two-axis scanner takes significantly longer to produce a full scan; depending

on the lidar, it can take anywhere from 100 ms to minutes. Hence, the effect of motion

distortion is no longer inconsequential. For our experiment, we have selected Autonoys’

LVC0702 two-axis scanning lidar over the well-known Velodyne HDL-64E for its higher

(and adjustable) vertical scan resolution. At its 2 Hz scan setting, the lidar produced

intensity images that still allow for reliable SURF feature extraction and matching with

a nominal rover speed of 0.5 m/s as demonstrated by McManus et al. (2012).

To achieve accurate VO estimates despite lidar motion distortion, this chapter pro-

poses an algorithm that explicitly compensates for motion distortion by accounting for the

exact measurement time of each lidar return, and still remains computationally tractable

using a novel pose-interpolation scheme. While many other pose-interpolation schemes

have been proposed in the past, to our knowledge this is the first one that cleanly han-

dles rotations, and at the same time allows for derivation of analytical Jacobians that

19
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are used during a bundle adjustment nonlinear optimization, resulting in a more efficient

algorithm than comparable systems using numerical Jacobians (Forssén and Ringaby,

2010).

4.1 Related Works

The intensity information is often available on laser rangefinders, though its quality differs

greatly depending on the model. Neira et al. (1999) combined both range and intensity

data from a one-axis scanner using an EKF to localize against a known indoor planar

map. Guivant et al. (2000) noted the distinctiveness of reflective marks in the intensity

information, and used it to simplify outdoor data association. A notable use of inten-

sity information came out of the DARPA Urban Grand Challenge; the Stanford racing

team successfully used the intensity information from a Velodyne lidar to localize against

an intensity-based occupancy grid map (Levinson, 2011), providing the vehicle higher

localization accuracy than what was obtainable from GPS. Similar technology enabled

Google’s self-driving car to complete over 300,000 km of autonomous traverse (Thrun

and Urmson, 2011). It is worth noting that the Google system tightly couples intensity-

data-based localization with an inertially-aided GPS, and requires a preprocessed map

of the environment, neither of which are available for space rovers.

As for lidar motion distortion, thus far there have been three primary approaches to

mitigate its impact on estimation accuracy:

1. Reducing acquisition time per scan: given the same platform velocity, spending less

time on each scan results in less motion distortion. Most lidars have a fixed data

acquisition rate, so this approach typically involves a trade-off between scan rate

and scan resolution.

2. Dewarping the point cloud directly using an external motion estimate such as from

an inertial measurement unit (IMU).
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3. Dewarping the point cloud iteratively by calculating a motion estimate using the it-

erative closest point (ICP) method and motion-distorted scan, then updating/dewarping

the scan using the motion estimate. The process repeats until the motion estimate

converges. To speed up the algorithm, Bosse and Zlot (2009) preprocessed the

dense point cloud into more sparse voxelized version, while Moosmann and Stiller

(2011) used sub-sampled surface normals for scan matching.

We approach this problem a bit differently. Instead of viewing the entire scan as

a unit of acquisition and attempting to correct for motion distortion by dewarping the

scan, we view each lidar time-of-flight measurement as our base unit of acquisition. This

change of perspective effectively turns a motion-distorted scan (say containing 100,000

points) as viewed from a single pose into 100,000 accurate lidar measurements taken from

100,000 slightly different poses. The large number of poses is non-ideal; each pose in 3D

space has six degrees of freedom (DOF). As the number of poses increases, the solution

quickly becomes computationally intractable.

Assuming that the platform travels with reasonably constant linear/angular velocity

between two consecutive lidar scans, which is approximately true for mobile ground

robots if the time between scans is short (in our case 0.5 seconds), it is then possible to

represent the large number of poses by interpolating between only two poses.

SLERP (Shoemake, 1985) is a quaternion interpolation scheme commonly used in

computer graphic animation. Faced with similar motion distortion effects in complemen-

tary metal-oxide-semiconductor (CMOS) camera sensors and the need to represent large

numbers of poses, Forssén and Ringaby (2010) applied SLERP to interpolate poses in

their work. Since there exists no simple way to incorporate SLERP analytically into the

optimization process, Forssén and Ringaby (2010) resorted to using numerical Jacobians

for nonlinear optimization.

Another alternative is to parameterize rotations using Euler angles, which are subject

to singularities. Moreover, interpolating Euler angles can lead to strange results (Grassia,
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1998). As such we set out to find a simple ‘linear’ interpolation scheme that not only

handles rotations cleanly, but also allows for derivation of analytical Jacobians that can

be used during the optimization process. Our scheme will be presented in detail in

Section 4.2.2.

4.2 Methodology

Raw lidar data

(UDP Packets)

ROS driver

Image stack

creation

SURF scale

invariant features

Feature

detection

Frame-to-frame

feature tracking

Data 

association

RANSAC using 

three-point model

generation

Outlier

detection

Frame-to-frame

maximum-likelihood

solution

Nonlinear

optimization

Rover pose

estimate

Figure 4.1: Major processing blocks of our VO algorithm.

The data flow in our VO algorithm is similar to its stereo-vision counterpart, and is

nearly identical to the system presented in McManus et al. (2011). We no longer use stereo

geometry to extract 3D information as this is directly available in the lidar data. In brief,

we extract and match sparse SURF features in consecutive pairs of lidar intensity images,

introduce the associated range images to obtain 3D feature locations, run RANdom

SAmple Consensus (RANSAC) to reject outliers, and then perform a bundle adjustment

nonlinear optimization to determine pose change from frame to frame. We record exact

timestamps for every laser return, which enables pose interpolation inside the frame-

to-frame maximum-likelihood solution. Moreover, with motion distortion, we find it

necessary to relax the RANSAC matching threshold to avoid throwing away valid feature

matches that are temporally far apart. At the same time, this change does allow more

outliers to pass RANSAC. We handle these remaining outliers using a Geman-McClure

M-estimator during iterative nonlinear optimization. A typical set of post-RANSAC

feature tracks is shown in Figure 4.2. Although it is not applied in this thesis, it is worth

nothing that Anderson and Barfoot (2013) further improved the matching quality more

recently by introducing an iterative outer-loop around the RANSAC matching process,
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(a) A downward scan
matched to an upward scan.

(b) An upward scan matched
to a downward scan.

(c) Repeating pattern in (a).

Figure 4.2: Sample post-RANSAC feature tracks from four consecutive frames (three
pairs). The outliers that made it past RANSAC but exceeded M-estimator threshold are
shown in yellow. Note the feature tracks’ lengths change between consecutive frame-to-
frame matching pairs, as a result of the nodding behaviour of the scanning mechanism.

and dewarping feature locations using motion estimate from the previous iteration. For

this thesis, the most significant change in VO pipeline occurs inside the formulation of

the maximum-likelihood solution, to which we will devote the remainder of this section.

4.2.1 VO Problem Setup

Our VO algorithm is essentially a frame-to-frame bundle adjustment technique that solves

for the following incremental variables:

r
k+1,k
k : translation of camera pose k + 1 relative to pose k, expressed in frame k,

Ck+1,k : rotation matrix of camera pose k + 1 (from pose k to pose k + 1),

p
j,k
k : position of landmark j relative to pose k, expressed in frame k,

where j = 1 . . . J . After calculating the incremental transforms, we can compose them

to obtain metric pose estimates with respect to the initial coordinate frame. Thus from

here, we will focus on solving for the incremental variables.

Let a bearing, tilt, and range measurement be defined as y := [α β r]T , then the

measurement error term is given by
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ejl(r
l,k
k ,Cl,k,p

j,k
k ) := yjl − f

(

Cl,k(p
j,k
k − r

l,k
k )

)

, ∀(j, l)

where yjl is the measurement taken at time tl ∈ [tk, tk+1], l = 1 . . . L), and f(·) is a

nonlinear camera model (5.1). We seek to find the values of Ck+1,k, r
k+1,k
k , and p

j,k
k to

minimize the following objective function:

J(x) :=
1

2

∑

j,l

ejl(r
l,k
k ,Cl,k,p

j,k
k )TR−1

jl ejl(r
l,k
k ,Cl,k,p

j,k
k ), (4.1)

where x is the full state that we wish to estimate (pose and landmarks) and Rjl is the

symmetric, positive-definite covariance matrix associated with the (j, l)-th measurement.

The usual approach to this problem is to apply the Gauss-Newton method (Gauss, 1809).

The added challenge here lies in the fact that our state variables are at times tk while our

measurements are at times tl, which do not line up. Our approach will be to ‘linearly’

interpolate poses between the tk times.

4.2.2 Rotation Interpolation

Background on Rotations

We recall Euler’s theorem, which says that every rotation may be expressed using a single

axis-angle pair. It turns out, we can write a rotation matrix using the exponential map,

C(φ) = e−φa×

= e−φ
×

,

where φ is the angle, a is the unit-length axis, φ := φ a, and

v× :=









0 −v3 v2

v3 0 −v1
−v2 v1 0









,

is the skew-symmetric operator used to form the cross product of some vector, v.
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It is known for the matrix exponential that

eAeB = eA+B ⇔ AB = BA

which is not in general true for rotations, but we will show that it is approximately true

in our situation. In the case that AB 6= BA, we can use the Baker-Campbell-Hausdorff

formula (BCH),

log
(
eAeB

)
= A+B+

1

2
[A,B] +

1

12
[A, [A,B]]− 1

12
[B, [A,B]] + · · · ,

where we have only shown the first few terms of this infinite series, and

[A,B] = AB−BA,

is the Lie bracket of A and B. The third and higher terms in the BCH formula go to

zero when the Lie Bracket is zero. If we keep only terms linear in A, the BCH formula

simplifies to

log
(
eAeB

)
≈ B+

∞∑

n=0

Bn

n!

[
B,

[
B, . . .

[
B,

︸ ︷︷ ︸

n

A
]
. . .

]]
,

where

B0 = 1, B1 = −
1

2
, B2 =

1

6
, B3 = 0, B4 = −

1

30
, B5 = 0, . . .

are the Bernoulli numbers. In the case of two rotation matrices,

C(φa) = e−φ
×

a , C(φb) = e−φ
×

b ,

we have for the Lie bracket that

[
−φ×

a ,−φ×

b

]
= φ×

a φ
×

b − φ×

b φ
×

a =
(
φ×

a φb

)
×

.
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To make the Lie bracket zero, we need to have φ×

a φb = 0. In other words, the two

rotations must share an axis of rotation. Now, suppose we have a rotation matrix, C(φ),

given by

C(φ) := e−φ
× ≡ cosφ1+ (1− cosφ)aaT − sinφa× ≡

∞∑

n=0

(−1)n 1

n!

(
φ×

)n
,

and then define

S(φ) :=
sinφ

φ
1+

(

1− sinφ

φ

)

aaT − 1− cosφ

φ
a× ≡

∞∑

n=0

(−1)n 1

(n+ 1)!

(
φ×

)n
.

This matrix shows up in a variety of places related to rotations. It can be shown that

S(φ)−1 ≡ φ

2
cot

φ

2
1+

(

1− φ

2
cot

φ

2

)

aaT +
φ

2
a× ≡

∞∑

n=0

(−1)nBn

n!

(
φ×

)n
. (4.2)

If we define the perturbation,

C(φ) = C(δφ)C(φ̄),

then it turns out that

φ ≈ φ̄+ S(φ̄)−1 δφ, (4.3)

correct to first order in δφ. We can see this by noting

C(φ) = e−φ
×

= e−δφ×

e−φ̄
×

= C(δφ)C(φ̄),

and then applying the BCH formula (keeping only terms linear in δφ). Thus

e−φ
× ≈ e−φ̄

×
+
∑

∞

n=0
Bn
n! ((−φ̄

×)
n
(−δφ))

×

= e−(φ̄+S(φ̄)−1 δφ)
×

,

which is the desired result.
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Scheme Definition

Without loss of generality, suppose that tk ≤ tl ≤ tk+1 for a particular l. Our job in this

section is to define exact expressions for the pose at time tl, given the poses at times tk

and tk+1. The main challenge here is dealing with the rotations, so we begin with that.

We seek an interpolation scheme, I,

I : SO(3)× R 7→ SO(3)

so that

Cl,k = I(Ck+1,k, tl).

We define the interpolation variable, αl ∈ [0, 1], as

αl :=
tl − tk

tk+1 − tk
. (4.4)

We then define our interpolation of rotation variables to be

Cl,k := Ck+1,k

αl

= e−αlφ
×

k+1,k . (4.5)

It is easy to see that

αl = 0 ⇒ Cl,k = 1, αl = 1 ⇒ Cl,k = Ck+1,k,

as desired. We are effectively just scaling the angle of rotation by αl and leaving the

axis untouched. This is not the only way we could define the interpolation, but it is a

notationally simple one that avoids singularities1. Also, this expression produces a valid

1Still, it will probably fail to produce a sensible answer when Ck+1,k is too large. Also, this expression
could encounter numerical instability if either exponent gets too small; in this case, we use limα→0 C

α =
1.
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rotation matrix for all αl. We can see this by forming

Cl,kCl,k
T

= Ck+1,k

αl

Ck+1,k

αT
l

=
(

e−αlφ
×

k+1,k

)(

e−αlφ
×

k+1,k

)T

= e−αlφ
×

k+1,keαlφ
×

k+1,k = e−αlφ
×

k+1,k
+αlφ

×

k+1,k = 1,

which does not require any approximation.

Trivially, we interpolate the translation variable according to

r
l,k
k := αl r

k+1,k
k , (4.6)

so that αl = 0 implies rl,kk = 0 and αl = 1 implies rl,kk = r
k+1,k
k .

Interpretation

Another way to justify this interpolation scheme is to think of both Ck+1,0 and Ck,0 as

being rotations compounded with Cl,0 according to

Ck+1,0 = e−φ
×

k+1,lCl,0, Ck,0 = e−φ
×

k,lCl,0

and subject to an interpolation constraint,

αlφk+1,l + (1− αl)φk,l = 0.

Here we are directly carrying out the interpolation on the 3× 1 parameterization of the

rotations. Note, however, that this means that φk+1,l and φk,l must be parallel and hence

[
φk+1,l,φk,l

]
= 0.

We then note that

Ck+1,k = Ck+1,0C
T
k,0 = e−φ

×

k+1,l Cl,0C
T
l,0

︸ ︷︷ ︸

1

eφ
×

k,l = e−φ
×

k+1,leφ
×

k,l =: e−φ
×

k+1,k .
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Using the BCH formula, we have that

φk+1,k = φk+1,l − φk,l,

with no approximation since
[
φk+1,l,φk,l

]
= 0. We thus have two equations in two

unknowns, which together imply that

φk+1,l = (1− αl)φk+1,k, φk,l = −αlφk+1,k.

Rearranging for Cl,k we see that

Cl,k = Cl,0C
T
k,0 = eφ

×

k,l = e−αlφ
×

k+1,k =
(

e−φ
×

k+1,k

)αl

= Ck+1,k

αl

,

which is identical to the scheme we defined above. This section was provided merely

for interpretation. The next section will explore what happens to our interpolation

expressions when we perturb the pose variables.

4.2.3 General Form of Rotation Perturbation

To perturb a rotation variable, let it be a combination of a large nominal rotation, C̄,

and a small perturbation, δC = e−δφ×

:

C = δCC̄.

Then we have that

C = δCC̄ = e−δφ×

C̄ ≈
(
1− δφ×

)
C̄,

where we have used that δφ is small to make the usual infinitesimal rotation approxima-

tion. The question we ask in this section is how to perturb Cα, where α ∈ [0, 1] is some

interpolation variable.
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Suppose for the moment that α is actually an integer rather than a floating point

number. Then

Cα = CC · · ·C
︸ ︷︷ ︸

α

= e−δφ×

C̄e−δφ×

C̄ · · · e−δφ×

C̄
︸ ︷︷ ︸

α

.

Repeatedly using the identity that

e−(C̄δφ)
×

≡ C̄e−δφ×

C̄
T
,

we have

Cα = e−δφ×

e−(C̄ δφ)
×

· · · e−(C̄
α−1

δφ)
×

C̄
α

≈
(
1− δφ×

) (

1−
(
C̄ δφ

)
×

)

· · ·
(

1−
(

C̄
α−1

δφ
)
×

)

C̄
α

≈
(
1− α (Φ δφ)×

)
C̄

α
, (4.7)

where

αΦ :=
α−1∑

m=0

C̄
m
.

We now expand C̄ using the matrix exponential so that

C̄
m
=

(

e−φ̄
×
)m

=
∞∑

n=0

1

n!

(

−φ̄×

)n

mn.

Under this assumption we have that

αΦ =
α−1∑

m=0

C̄
m
=

α−1∑

m=0

∞∑

n=0

1

n!

(

−φ̄×

)n

mn =
∞∑

n=0

1

n!

(

−φ̄×

)n
α−1∑

m=0

mn

=
∞∑

n=0

1

n!

(

−φ̄×

)n Bn+1(α)− Bn+1(0)

n+ 1
︸ ︷︷ ︸

Faulhaber’s formula

,
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where the Bn(·) are the Bernouilli polynomials. The first few terms of Φ are

Φ = 1− α− 1

2
φ̄

×

+
(α− 1)(2α− 1)

12
φ̄

×

φ̄
× − α(α− 1)2

24
φ̄

×

φ̄
×

φ̄
×

+ · · · ,

and higher-order terms will become progressively smaller if φ̄ is small. A good question

is whether this formula applies when α is not an integer but rather lies in [0, 1].

To look at this another way, we write out Cα in two different forms (see section 4.2.2

for some background math):

Cα =
(

e−δφ×

C̄
)α

=
(

e−δφ×

e−φ̄
×
)α

≈
(

e−(φ̄+S(φ̄)−1 δφ)
×
)α

= e−(αφ̄+αS(φ̄)−1 δφ)
×

,

Cα = e−δψ×

C̄
α

= e−δψ×

e−αφ̄
× ≈ e−(αφ̄+S(αφ̄)−1 δψ)

×

.

We equate the two exponents to have

δψ ≈ αS(αφ̄)S(φ̄)−1 δφ.

Substituting the expression for S(·) and its inverse (see section 4.2.2) we have

δψ = α

(

1− α
1

2
φ̄

×

+ α21

6
φ̄

×

φ̄
× − α3 1

24
φ̄

×

φ̄
×

φ̄
×

+ · · ·
)

(

1+
1

2
φ̄

×

+
1

12
φ̄

×

φ̄
×

+ 0 φ̄
×

φ̄
×

φ̄
×

+ · · ·
)

δφ

= α

(

1− α− 1

2
φ̄

×

+
(α− 1)(2α− 1)

12
φ̄

×

φ̄
× − α(α− 1)2

24
φ̄

×

φ̄
×

φ̄
×

+ · · ·
)

δφ

= αΦ δφ.

Thus we are justified in using Φ even when α ∈ [0, 1]. We can also plug in the full
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expressions for S(αφ̄) and S(φ̄)−1 to show that:

Φ ≡ β1+ (1− β) āāT − γā×

β :=
1

2α

(

(1− cos(αφ̄)) + sin(αφ̄) cot
φ̄

2

)

γ :=
1

2α

(

(1− cos(αφ̄)) cot
φ̄

2
− sin(αφ̄)

)

where φ̄ = |φ̄| and ā = φ̄/φ̄. To summarize, we will use (4.7) to perturb interpolated

rotation matrices; we also now have that Φ ≡ S(αφ̄)S(φ̄)−1, which can be expressed in

closed form.

4.2.4 Perturbing Interpolated Poses

Based on the previous section, the perturbations that we will use are

Ck+1,k = eδφ
×

k+1,kC̄k+1,k, (4.8)

r
k+1,k
k = r̄

k+1,k
k + δrk+1,k

k , (4.9)

and Cl,k ≈
(

1− αl

(
Φl δφk+1,k

)
×

)

C̄l,k, (4.10)

r
l,k
k = r̄

l,k
k + αlδr

k+1,k
k , (4.11)

p
j,k
k = p̄

j,k
k + δpj,k

k , (4.12)

C̄l,k := C̄k+1,k
αl , (4.13)

r̄
l,k
k := αlr̄

k+1,k
k , (4.14)

Φl := S
(
αlφ̄k+1,k

)
S
(
φ̄k+1,k

)
−1
, (4.15)

S (φ) :=
sinφ

φ
1+

(

1− sinφ

φ

)

aaT − 1− cosφ

φ
a×, (4.16)

φ̄k+1,k can be determined from C̄k+1,k exactly and should not be near a singularity so

long as the rotation is not large. In the next section we will use these perturbations to

linearize our error terms. After solving for the incremental quantities at each iteration
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of Gauss-Newton, we will update the mean quantities according to the following update

rules:

C̄k+1,k ← e−δφ×

k+1,kC̄k+1,k,

r̄
k+1,k
k ← r̄

k+1,k
k + δrk+1,k

k ,

p̄
j,k
k ← p̄

j,k
k + δpj,k

k .

4.2.5 Linearized Error Terms

The last step is to use our perturbed pose expressions to come up with the linearized

error terms. Consider just the first nonlinearity before the camera model:

p
j,l
l := Cl,k

(

p
j,k
k − r

l,k
k

)

.

Inserting (5.18), (4.11), and (4.12) and dropping products of small terms we have

p
j,l
l ≈

(

1− αl

(
Φl δφk+1,k

)
×

)

C̄l,k

(

p̄
j,k
k + δpj,k

k − r̄
l,k
k − αlδr

k+1,k
k

)

≈ C̄l,k

(

p̄
j,k
k − r̄

l,k
k

)

︸ ︷︷ ︸

p̄
j,l

l

+

[

−αlC̄l,k αlp̄
j,l×

l Φl C̄l,k

]

︸ ︷︷ ︸

=:Djl









δrk+1,k
k

δφk+1,k

δpj,k
k









︸ ︷︷ ︸

=:δxjl

= p̄
j,l
l +Djl δxjl.

Inserting this into the full error expression we have

ejl(x̄jl + δxjl) ≈ yjl − f
(

p̄
j,l
l +Djl δxjl

)

≈ yjl − f
(

p̄
j,l
l

)

︸ ︷︷ ︸

=:ējl

−FjlDjl
︸ ︷︷ ︸

=:−Ejl

δxj,l

= ējl + Ejl δxjl,
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where

Fjk :=
∂f

∂p

∣
∣
∣
∣
p̄
j,l

l

.

We can then insert this approximation into the objective function in (4.1), causing it to

become quadratic in x, and proceed in the usual Gauss-Newton fashion, being sure to

update our rotation variables properly at each iteration. The advantage of our technique

is that we have been able to compute the Jacobian of our interpolated variables in closed

form.

4.3 VO Algorithm Test

Testing of the algorithm was conducted in two stages:

1. Using data produced by the lidar simulator, described in Chapter 3, which forms

a controlled environment and provides 6 DOF groundtruth information.

2. Using real lidar data collected from a planetary analogue site in complete darkness,

demonstrating the lighting-invariant aspect of the system, as well as its actual

performance in an outdoor unstructured 3D environment. Groundtruth is provided

by DGPS.

At each stage we will compare the VO estimates with and without motion compensation

against the groundtruth.
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4.3.1 System Testing using Lidar Simulator

The purpose of testing with simulated data was to validate the algorithm as much as

possible in a controlled environment. We configured the lidar simulator using parameters

from a real scanning laser rangefinder (see details in Section 4.3.2). This included giving

it the identical scan resolution of 480 × 360 pixels and the scanning frequency of 2 Hz,

as well as the exact same scanning pattern caused by the nodding mirror inside the real

sensor (see Figure 3.3).

During the simulation, the rover was given a sinusoidal trajectory with amplitude 0.25

meters in the xy-plane. Yaw heading angle was tangential to the xy planar trajectory.
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Figure 4.3: VO estimates using simulated lidar data. The estimated rover track with
motion compensation is smoother and accumulates error at a much lower rate.

As shown in Figure 4.3, the VO estimate without motion compensation struggled to

match with the groundtruth; a distinctive sawtooth-shaped estimate is clearly visible in

the xz-plane as a result of motion distortion. On the other hand, the VO algorithm with

motion compensation produced a smooth estimate that closely follows the groundtruth.

Figure 4.4 provides 6 DOF error plots to further demonstrate the contrast in quality

between the two estimators. Note the small sinusoidal error in yaw angle even with
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Figure 4.4: Simulated lidar VO estimation errors in all 6 DOF. Note that during esti-
mation, attitude was represented using a rotation matrix, which is decomposed into roll,
pitch, and yaw here for comparison against groundtruth.

motion compensation, indicating that the interpolation-based motion compensation is

not sufficient to completely capture a nonlinear sinusoidal motion, which is expected.

4.3.2 Hardware Description

Our field experiment was carried out using a ROC6 skid-steered rover, an Autonosys

LVC0702 lidar sensor, and a differential GPS for groundtruth positioning. The configu-

ration is shown in Figure 4.5(a).

The Autonosys lidar employs a unique two-axis scanning system (see Figure 3.3).

While the horizontal scanning direction is consistent, a nodding-mirror-based vertical

scanning mechanism switches scanning direction after each scan to avoid the need for

quick return. As a result, the motion distortion in adjacent scans has completely opposite

distortion effects, as shown in Figure 3.3. With a field of view (FOV) similar to traditional

stereo cameras, this lidar is also referred to as a lidar video camera by the manufacturer,

capable of producing 480×360 pixel lidar scans at 2 Hz. The lidar sensor has a horizontal

FOV of 90 degrees, and vertical FOV of 30 degrees. In order to maximize valid lidar
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(a) Hardware configuration.
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(b) GPS tracks of two traverse segments used for
VO testing and their associated collection times.

Figure 4.5: Appearance-based lidar VO experiment setup (left) and traverse path
groundtruth (right).

returns, the sensor was aimed 15 degrees down, giving it an effective vertical FOV from

−30 to 0 degrees.

Since it was dangerous and nearly impossible for a human operator to pilot the robot in

complete darkness, all the data used in this section were collected autonomously; during

the daytime, the path was driven once manually, and repeated at night autonomously at

a nominal speed of 0.5 m/s using VT&R (McManus et al., 2012). The data used in this

thesis were logged as a byproduct of this unrelated test. The traversed path is shown in

Figure 4.5(b). Note that while the raw sensor data logged during the VT&R experiment

were uncalibrated, we performed sensor calibration at a later time, as documented in

Chapter 5, and applied the calibrated sensor model during this experiment.

Segment 1 is 225 meters in length, and contains mostly a long smooth traverse and

gradual turns. There is one direction switch in the latter half of the traverse. Segment

2 is 300 meters in length, and contains many sharp turns and more elevation changes.

There is also a three-point turn in the middle of this traverse.
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4.3.3 Field Testing Results

As shown in Figure 4.6, the VO estimator with motion compensation performed better

qualitatively in both traverse segments than the estimator that does not address motion

distortion. Closer inspection of the Euclidean error plots (see Figure 5.3) reveals that

the motion-compensated case has much lower error in segment 2 than in segment 1. The

Euclidean-error-to-distance-travelled ratio remains under 5% on segment 2 as compared

to 7% on segment 1, despite the fact that segment 2 was anecdotally a more challenging

traverse. From the VO estimate result of segment 1, we can see that while the incremental

heading estimate appears to be accurate, there was a gradual accumulation of heading

error. As the attitude estimate drifted, the error grew superlinearly, similarly to stereo-

camera-based VO results reported by Lambert et al. (2012). The direction switches

and heading changes in segment 2 incidentally had a net effect of partially cancelling

estimation error in different parts of the traverse, therefore resulting in a better VO

estimate.
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Figure 4.6: VO estimates of the two traverse segments in Figure 4.5(b). The estimator
without motion compensation severely underestimates both rotational and translational
changes.
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Figure 4.7: Euclidean estimation error vs. traverse distance plots, showing the cumulative
pose error grows significantly slower with motion compensation.
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Figure 4.8: Close-ups of segment 2. In the estimates without motion compensation, the
sawtooth-shaped error previously observed during simulation is clearly visible at this
scale.

As for the reason behind why VO without motion compensation performed much

worse in segment 2, we can explain it by zooming in on short stretches of traverse, shown

in Figure 4.8. The estimate exhibited a choppy sawtooth shape due to motion distortion,

and as a whole underestimated both rotational and translational motion. In contrast, the



Chapter 4. Motion Compensated Lidar VO 40

estimate with motion compensation was smooth and closely followed the groundtruth.

This agrees with our earlier observation made using simulated lidar data.

Another source of error is the assumption of constant velocity between poses previ-

ously introduced by our pose-interpolation scheme. Since our formulation only estimates

one pose placed at the center of each scan, it is insufficient at times to fully capture the

motion of the rover in a rough terrain (e.g., when driving over a rock). This error can be

mitigated by reducing the temporal spacing between poses (similar to higher sampling

rate in analogue to digital conversion).

Currently, the system is not able to correct orientation error accumulated over time as

the estimates produced by VO are incremental in nature. Lambert et al. (2012) demon-

strated with stereo-based VO that by continuously incorporating absolute orientation

measurements from an inclinometer and a sun sensor, highly accurate metric VO can

be expected over multi-kilometer traverses during the daytime. Given the lidar-based

VO’s ability to operate in complete darkness, a natural extension of this work is to fuse

absolute orientation measurements available at night using a star tracker (Enright et al.,

2012). More recently, Gammell et al. (2013) tested this specific sensor fusion combination

using a slower SICK scanning lidar.

4.4 Conclusion

In this chapter, we have presented an improved appearance-based lidar navigation system

that exhibits the computational efficiency of sparse visual techniques, typically associated

with stereo cameras, while overcoming the lighting dependence of traditional cameras.

The contributions of this work include:

1. A novel pose-interpolation strategy based on the exponential map that allows for

derivation of analytical Jacobians used during a bundle adjustment nonlinear op-

timization.
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2. A VO algorithm based on #1 that compensates for motion distortion in lidar scans

acquired during continuous vehicle motion.

3. Testing of #2 using a simulated lidar dataset and over 500 meters of experimental

data collected from a planetary analogue environment with a real scanning laser

rangefinder in complete darkness.

Our results demonstrate clear improvement in the VO estimate by compensating for

the motion distortion effect. We obtained 5-7% linear error growth in hundred-meter-

scale traverses during our field experiment using only lidar data and no other sensor

information. This work can be further improved by carrying out global minimization

over a small set of scans and/or introducing additional attitude sensors, such as an incli-

nometer or star tracker into the system. Furthermore, it maybe feasible to move beyond

linear interpolation, as a spline-based interpolation approach may better approximate

the nonlinear motion of the robot (Furgale et al., 2012; Tong et al., 2012).

Finally, any estimation problem in which there is a large collection of sensor data with

distinct measurement times can be solved using far fewer poses/variables by interpolating

poses. With new sensors producing measurements at higher and higher rates, and the fact

that it may not always be possible to trigger/synchronize different sensors, the proposed

interpolation scheme and its associated derivation could be useful for a general set of

problems.



Chapter 5

Lidar Calibration

Camera and lidar sensors are fundamental components for today’s advanced robotic

systems. For example, numerous cameras are used in NASA’s Mars Exploration Rover

(Maki et al., 2003) and Mars Science Laboratory (Maki et al., 2012) missions to enable

safe rover descent, autonomous driving, and science data collection. Similarly on Earth-

bound systems, such as Google’s self-driving car, lidar sensors are used for mapping,

localization, and detecting other nearby hazards/vehicles (Thrun and Urmson, 2011).

Whether the output of these sensors is the final data product or is used for closed-loop

control, data accuracy is important. Since each sensor is different due to manufacturing

tolerance, and can change over time (e.g., at different operating temperatures), a flexible

calibration procedure that is also accessible to the end user can be critical to the success

of the overall system.

The introduction of Bouguet’s camera calibration toolbox for Matlab (Bouguet, 2004),

and its subsequent C implementation in OpenCV (Bradski, 2009) drastically reduced the

learning curve associated with camera calibration. Based on a flexible calibration tech-

nique pioneered by Zhang (2000), these packages allow anyone to quickly obtain the

intrinsic (sensor internal parameters) and extrinsic (relative pose between sensors) cali-

bration for most passive camera sensor configurations using only a checkerboard pattern

42
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as the calibration target.

The same level of maturity does not currently exist in lidar calibration. While a num-

ber of packages for computing six-degree-of-freedom extrinsic calibration between camera

and lidar sensors have been made available (Geiger et al., 2012; Unnikrishnan and Hebert,

2005), they assume the intrinsic calibration has been done through other means. Finding

a mathematical model that accurately describes the physical behaviour of the sensor is

still non-trivial. The dominant approach to lidar calibration requires knowledge of the

internal structure of a particular sensor in order to produce equations with parameters

that describe the internal beam path. A least-squares problem is then formulated to

find optimal values of these parameters using a calibration dataset. For passive cameras,

the dominant system identification paradigm is more flexible and generic. An arbitrary

camera/lens configuration is modelled as a pinhole camera with tangential and radial dis-

tortion. The intrinsic calibration process then characterizes the extent of lens distortion

using only a few parameters.

Given the success of the black-box approach to camera calibration, we are interested

in seeing whether a similar approach can be applied to lidar calibration. To test this idea,

we modelled a real two-axis scanning lidar using a spherical camera model with additive

distortion, and developed the necessary equations to solve for the distortion map using

least-squares optimization. An experimental calibration dataset was gathered using a

standard checkerboard pattern printed on a planar surface. The preliminary result of the

intrinsic calibration is very promising; the nominal landmark re-projection error on the

calibration dataset is reduced from over 25 mm without calibration to less than 5.5 mm

with calibration. All this was accomplished without explicit consideration of the internal

structure of the sensor. We believe the generality of our approach will allow it to be used

by a variety of two-axis scanning lidars.
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5.1 Related Works

Due to its success in the DARPA Urban Challenge, the Velodyne HDL-64 is perhaps the

most popular commercial two-axis scanning lidar in use today. While the manufacturer

provides intrinsic calibration with each sensor, many teams still found it beneficial to

re-do calibration in-house to improve measurement accuracy. The Stanford racing team,

for example, was able to solve for both the intrinsic and extrinsic parameters of the lidar

using driving data acquired in an outdoor environment. This particular formulation also

depended on local pose data from an integrated GPS/IMU system on-board their vehicle

(Levinson, 2011). Atanacio-Jiménez et al. (2011) find the intrinsic parameters of the

sensor through the use of a known geometric target (e.g., a squash court). While both

methods produced good lidar calibration results, the use of additional hardware or a

very specific environment made them less flexible than traditional pattern-based camera

calibration methods.

Working with a tilting Hokuyo UTM-30LX sensor, the calibration technique devel-

oped by Pradeep et al. (2010) for Willow Garage’s PR2 robot modelled the two-axis

scanner as a kinematic chain with a one-axis scanner at the end, which is mathemati-

cally identical to writing out the lidar model based on the sensor’s physical construction.

Similar to this work, the proposed calibration approach also uses a checkerboard pat-

tern in conjunction with lidar intensity imagery to solve the pose-related aspects of the

problem using bundle adjustment.

Inter-lidar geometric and temporal calibration has recently been investigated by Shee-

han et al. (2011). Their two-axis scanning lidar is created from three SICK LMS-151

planar lidars and a spinning plate. When spun on top of the plate, the SICK lidars shared

a common field-of-view (FOV). This allowed them to form a cost function that captured

the quality of an aggregated point cloud using data from all three sensors. Although this

approach does not require external localization or a specific calibration environment, it

is not applicable to two-axis scanners with a single laser beam.
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Figure 5.1: Simplified illustration of the Autonosys LV0702 lidar’s two-axis scanning
mechanism O’Neill et al. (2007). The raw range measurement reported by the laser
rangefinder, r′, consists of two internal lengths, r0,1 and r1,2, and the actual range to the
target, r.

In terms of the scanning mechanism, a tilting-mirror-based scanning lidar developed

by Ryde and Hu (2008) perhaps has the most in common with our sensor. The sensor is

calibrated by scanning a flat ceiling, visualizing the point cloud and manually adjusting

the intrinsic parameters to make the scan planar.

To the best of our knowledge, all existing lidar geometric calibration methods, whether

modelling the sensor as a kinematic chain or ray-casting for a mirror-based scanner,

assume knowledge of the internal sensor structure. Our method does not make this

assumption, making it more feasible for end users who have no access to such information.

5.2 Methodology

The lidar sensor that we want to calibrate is an Autonosys LVC0702 scanning lidar;

it employs a unique two-axis scanning system (see Figure 5.1). While the horizontal

scanning direction is consistent, a nodding mirror is used to alternate the vertical scan

direction, avoiding the need for a quick return. The sensor is capable of producing 500,000
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points per second, with a maximum frame rate of 10 Hz, a horizontal FOV of 90 degrees,

and a vertical FOV of up to 45 degrees. For our work, we acquire scans with a resolution

of 480× 360 pixels at 2 Hz.

Our method does not require this particular mirror assembly, or even knowledge of the

scanning mechanism. As a result, we believe the method can be directly applied to a num-

ber of two-axis scanning lidars, such as the mirror-based Optech ILRIS-3D scanner, Nip-

pon Signal’s FX8 MEMS-mirror scanner, or the popular ‘do-it-yourself’ SICK/Hokuyo

planar lidar on a pan-and-tilt unit.

To fully demonstrate the generality of our method, let us first consider the problem

with using the dominant parametric approach. To write out the inverse sensor model

(a.k.a, the ray casting model), we need to know the pose of the laser rangefinder, F−→l (as

defined in Figure 5.1), the polygonal mirror position and rotational axis as represented by

F−→p, the size of the polygonal mirror, the nodding mirror position and rotational axis as

represented by F−→k, and the offset, if any, between the nodding mirror’s reflective surface

and its rotational axis. Additionally, we need to consider the offsets in the angular

encoders’ outputs due to mounting tolerances. To perform a complete calibration, all

of these parameters would need to be estimated. In practice, to keep the number of

variables to a manageable amount, some carefully chosen assumptions are generally made

(Pradeep et al., 2010). For example, assuming an orthogonal relationship between the

laser rangefinder and the polygonal mirror’s rotational axis would drastically reduce the

complexity of the resulting mathematical model. This formulation requires intimate

knowledge of the hardware, which is not always available to the end user. Moreover, the

resulting model is sensor-specific.

An alternative to solving for the sensor’s full parametric model is to map the difference

between its actual and ideal behaviour. We will refer to this difference as a distortion,

borrowing the term from the computer vision approach to passive camera calibration.

The non-ideal behaviour of a real lens is said to have radial and tangential distortions in
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comparison to the simplified pinhole camera model.

A similar method of distortion mapping, known as volumetric error correction, is

used in the precision machining community. During the calibration process, data from

an unbiased instrument, such as an external laser interferometer is compared against

data from encoders mounted on the CNC machine. The difference is then used as a

feed-forward correction during the actual machining operation (Donmez et al., 1986),

resulting in significant improvement in tool position accuracy.

5.2.1 Sensor Model

We will start our formulation by defining the ideal sensor model and a grid-based model

for distortion mapping.

Ideal sensor model

Drawing from the similarity of the bearing and tilt encoder angles to azimuth and eleva-

tion in the spherical coordinate frame, we can write out the ideal inverse sensor model

using the spherical-to-Euclidean coordinate conversion formula. In this case, the fixed

sensor frame orientation is defined as follows: x-axis parallel to the rotational axis of

the hexagonal mirror (toward the front of the sensor), y-axis to the port side (left side

when viewed from behind) of the sensor, which constrains the z-axis to point to the top

of the sensor. Note the position of this frame is not strictly defined at this point. Let a

bearing, tilt, and range measurement be defined as y := [α β r]T and the Euclidean point

be defined as x := [x y z]T . The mapping from measurement to Euclidean coordinates

is given by

x = f−1(y) =









r cosα cos β

r sinα

r cosα sin β









. (5.1)
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From the above inverse model, we can write the ideal sensor model:

y = f(x) =









arctan
(
y,
√
x2 + z2

)

arctan (z, x)
√

x2 + y2 + z2









. (5.2)

The physical construction of our sensor is different from the ideal model, and we will

use an additive distortion model to handle this difference, where variables with (·)′ rep-

resent real measurements, and variables without (·)′ represent ideal measurements. Our

distortion model is

α′ := α + δα(α′, β′, r′) + nα, (5.3)

β′ := β + δβ(α′, β′, r′) + nβ, (5.4)

r′ := r + δr(α′, β′, r′) + nr, (5.5)

where δi(·, ·, ·) is a distortion function, and ni is a zero-mean Gaussian measurement

noise. These are combined to give us the following stacked distortion equation:

y′ := y+D(y′) + n n ∼ N (0,R) , (5.6)

where R is the covariance of the measurement noise.

Distortion model

The distortion model, D(·), captures the difference between the actual sensor behaviour

and the ideal sensor model. In other words, for every raw sensor measurement, y′, we

want the ability to reconstruct its corresponding measurement, y, in the idealized sensor

space, and vice versa. Since y′ is three-dimensional, we naturally may be led to the

use of a grid-based mapping using trilinear interpolation. However, if we strategically
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place the origin of the ideal sensor frame where the laser beam nominally intersects

with the nodding mirror, located at F−→k in Figure 5.1, at a zero-degree bearing and a

zero-degree tilt, then the range component, r′, will have trivial impact on ideal bearing

and tilt readings. As such, it may be feasible to capture the distortion using only the

values of the two encoders as inputs, and hence only bilinear interpolation is required.

Avoiding the need to deal with distortion as a function of raw range, r′, is also a necessary

compromise dictated by the size of the checkerboard pattern and the pixel resolution of

the lidar; given the fixed angular resolutions in each scan, it is not possible to reliably

extract checkerboard corner features beyond a certain range.

Accordingly, we rewrite the distortion function as

D(α′, β′) = Φ(α′, β′)c , (5.7)

where Φ(·, ·) is a predetermined set of basis functions, and c are coefficients. In this

work, we choose to use a grid-based bilinear interpolation for our basis functions.

Bilinear interpolation

We begin using a familiar example: terrain mapping. One way to capture a continuous

landscape is by sampling it at regular intervals. This effectively carries out a grid-

based (along the x- and y-axes) discretization with elevation sampling, v, at each vertex.

From the discretized samples, we can then look up the interpolated elevation, vx,y, at

an arbitrary location using its neighbouring samples, (v0,0, v1,0, v0,1, v1,1), as shown in

Figure 5.2. Procedurally, we first compute interpolation constants based on the location

of the point relative to its neighbours:

λx =
x− x0

x1 − x0

, λy =
y − y0
y1 − y0

. (5.8)

By definition, interpolation requires x0 ≤ x ≤ x1 and y0 ≤ y ≤ y1, which implies that
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vx,y
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vx,1

Figure 5.2: Bilinear interpolation: conceptually, to compute the interpolated value at
(x,y), we first interpolate along x-axis to obtain vx,0 and vx,1, and then interpolate a
second time along y-axis to obtain vx,y.

0 ≤ λx ≤ 1 and 0 ≤ λy ≤ 1. We interpolate along the x- and then y-axis to obtain vx,y:

vx,y =

[

1− λy λy

]






1− λx λx 0 0

0 0 1− λx λx

















v0,0

v1,0

v0,1

v1,1












. (5.9)

The matrix-notation in (5.9) is for a 1 × 1 grid with four samples. To generalize the

interpolation math for higher-resolution grids, let us consider a sizeM×N grid containing

(M +1)(N +1) samples. We assume the samples are arranged as a column vector in the

following order:

v =

[

v0,0 v1,0 · · · vM−1,0 vM,0 · · · v0,N · · · vM,N

]T

. (5.10)

An arbitrary location would then have four neighbour samples, denoted by vh,i, vh+1,i,

vh,i+1, vh+1,i+1. Indices h = 0 . . .M and i = 0 . . . N , where xh ≤ x ≤ xh+1 and yi ≤ y ≤
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yi+1. Using these generalized parameters, we update (5.8) as

λx =
x− xh

xh+1 − xh

, λy =
y − yi

yi+1 − yi
. (5.11)

We recognize that a given interpolation process actively involves only 4 samples in v,

v =

[

· · · vh,i vh+1,i · · · vh,i+1 vh+1,i+1 · · ·
]T

. (5.12)

A projection matrix, P, is then used to pick out the four necessary rows of v, resulting

in a generalized bilinear interpolation equation for arbitrary grid size:

vx,y =

[

1− λy λy

]






1− λx λx 0 0

0 0 1− λx λx




P

︸ ︷︷ ︸

Λ(x,y)

v. (5.13)

To store additional information (say temperature and humidity maps), we simply

repeat the above step three times:









v1x,y

v2x,y

v3x,y









=









Λ(x, y) 0 0

0 Λ(x, y) 0

0 0 Λ(x, y)









︸ ︷︷ ︸

Φ(x,y)









v1

v2

v3









︸ ︷︷ ︸

c

. (5.14)

Instead of storing elevations, temperatures, and humidities along an xy-grid, we use

this technique to capture the measurement distortions in bearing, tilt, and range as

a function of raw bearing, α′, and raw tilt, β′, measurements. Note that while this

generalized math makes no assumption of uniform grid spacing, we choose to work with

square grid and uniform spacing in our application.
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5.2.2 Bundle Adjustment Formulation

Problem setup

Our calibration algorithm is a batch bundle adjustment technique that solves for the

following variables:

Tkm : 4×4 transformation matrix that represents the relative pose change from checker-

board pose m to camera pose k,

c : distortion mapping coefficients,

where k = 1 . . . K is the time (frame) index. The position of the j-th checkerboard corner

relative to checkerboard pose m, expressed in frame m, pj,mm , is a known quantity that

we measure directly from the physical checkerboard, where j = 1 . . . J is the landmark

(checkerboard corner) index.

These variables are combined with (5.2), (5.6), and (5.14) to produce the following

measurement error term:

ejk (Tkm, c) := y′

jk − f
(
Tkmp

j,m
m

)
−Φ(α′

jk, β
′

jk)c, ∀(j, k). (5.15)

where y′

jk is the measured quantity and f(·) is the nonlinear ideal sensor model defined

in (5.2).

Note the potential interaction between the camera pose, Tkm, and the distortion

coefficients, c. For instance, all camera poses may be overestimated by a few degrees

in pitch, only to be compensated by the same amount of tilt distortion in the reverse

direction. Left as is, the system has no unique solution. To address this problem,

we introduce a weak prior on the distortion parameters, which results in the following

additional error term:

ep (c) := c. (5.16)
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We seek to find the values of Tkm and c to minimize the following objective function:

J(x) :=
1

2

∑

j,k

ejk (Tkm, c)
T
R−1

jk ejk (Tkm, c) +
1

2
ep (c)

T
Q−1ep (c) , (5.17)

where x is the full state that we wish to estimate (poses and calibration), Rjk is the

symmetric, positive-definite covariance matrix associated with the (j, k)-th measurement,

and Q is a diagonal matrix controlling the strength of the prior term. In practice, only

weak priors on the bearing and tilt vertex coefficients are necessary. We then solve this

optimization problem by applying the Gauss-Newton method (Gauss, 1809).

Linearization strategy

In this section, we will present a linearization strategy taken directly from existing state

estimation machinery. The complete derivation can be found in Furgale (2011). In order

to linearize our error terms, we perturb the pose variables according to

Tkm = e−δψ⊞
kmT̄km, (5.18)

where we use the definition,






u

v






⊞

:=






v× −u

0T 0




 , (5.19)

and (·)× is the skew-symmetric operator given by









u1

u2

u3









×

:=









0 −u3 u2

u3 0 −u1

−u2 u1 0









. (5.20)

It can be shown that for a small pose perturbation, δψ, the linearization can be further

simplified to

Tkm ≈
(
1− δψ⊞

km

)
T̄km, (5.21)

where 1 is a 4× 4 identity matrix.
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After solving for the incremental quantities at each iteration of Gauss-Newton, we

will update the mean quantities according to the following update rules:

T̄km ← e−δψ⊞
kmT̄km (5.22)

c̄ ← c̄+ δc. (5.23)

Linearized error terms

The last step is to use our perturbed pose expressions to come up with the linearized

error terms. Consider just the first nonlinearity before the ideal sensor model:

p
j,k
k := Tkmp

j,m
m .

Substituting (5.21), we obtain

p
j,k
k ≈

(
1− δψ⊞

km

)
T̄kmp

j,m
m

= T̄kmp
j,m
m − δψ⊞

kmT̄kmp
j,m
m

= T̄kmp
j,m
m +

(
T̄kmp

j,m
m

)⊟
δψkm

= p̄j,kk +
[(
T̄kmp

j,m
m

)⊟
0
]

︸ ︷︷ ︸

=:Hjk






δψkm

δc






︸ ︷︷ ︸

=:δxjk

, (5.24)

where we define the operator,






s

t






⊟

:=






t1 s×

0T 0T




 , (5.25)

which exhibits the useful relationship,

δψ⊞Tp = −(Tp)⊟δψ. (5.26)
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Inserting (5.24) into the full measurement error expression in (5.15), we have

ejk (x̄jk + δxjk) ≈ y′

jk − f
(

p̄
j,k
k +Hjkδxjk

)

−Φ
(
α′

jk, β
′

jk

)
(c+ δc)

≈ y′

jk − f
(

p̄
j,k
k

)

−Φ
(
α′

jk, β
′

jk

)
c

︸ ︷︷ ︸

ejk(x̄jk)

−FjkHjkδxjk −
[
0 Φ

(
α′

jk, β
′

jk

)]

︸ ︷︷ ︸

=:Ejk

δxjk

= ejk (x̄jk)− [FjkHjk +Ejk]
︸ ︷︷ ︸

=:−Gjk

δxjk

= ejk (x̄jk) +Gjkδxjk (5.27)

where

Fjk :=
∂f

∂p

∣
∣
∣
∣
p̄
j,k

k

.

The prior error term is linear, and has a trivial linearized form when perturbed:

ep (c̄+ δc) := ep (c̄) + δc. (5.28)

We can then insert the linearized approximation (5.27) and (5.28) into the objective

function in (5.17), causing it to become quadratic in δx, and proceed in the usual Gauss-

Newton fashion, being sure to update our transformation matrix variables using the

procedure in (5.22) at each iteration.

5.2.3 Measurement Correction

Once the values of the distortion mapping coefficients, c, are determined, we simply

manipulate (5.6) and (5.7) to obtain the corrected measurement according to

y = y′ −Φ(α′, β′)c. (5.29)
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5.3 Experiment

5.3.1 Calibration Dataset

Our calibration data were collected using a single checkerboard target measuring 0.8

m in width and 0.6 m in height. The complete dataset contains scans taken at 55

unique target poses, shown in Figure 5.4, with 15-20 scans at each pose to account for

noise in the lidar data. Sample intensity images are provided in Figure 5.3(a). Next,

we extracted grid corners from the images using the Harris corner detector supplied

by the camera calibration toolbox for Matlab (Bouguet, 2004), shown in Figure 5.3(b).

Figure 5.3(c) demonstrates our verification process, in which we overlap the extracted

corners’ Euclidean positions on top of the original lidar point cloud.

(a) Sample lidar intensity
images
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Figure 5.3: Stages of calibration dataset post-processing: (a) Lidar intensity images with
enhanced contrast through linear range correction (McManus et al., 2012). (b) Corners
extracted from a intensity image using Harris corner detector. Note the labelled index
number next to each corner. This sequence of corner extraction was consistent over all
images, thus providing the necessary data association for bundle adjustment. (c) Based
on the sub-pixel coordinates of corners extracted in (b), we interpolated the lidar mea-
surements from nearby pixels to obtain the full bearing, tilt, and range measurements
of the extracted corners. Here we re-projected the corner measurements into Euclidean
space using (5.1), and plotted them over the original lidar point cloud for visual verifi-
cation.
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Figure 5.4: Our calibration dataset contains 55 unique checkerboard poses. The poses
shown here are simultaneously estimated with distortion parameters using bundle ad-
justment, since our calibration technique does not use external localization information.

5.3.2 Calibration Results

The following procedure is used for evaluating measurement accuracy. After applying

the distortion correction per (5.29), we find the optimal alignment between the extracted

corner’s Euclidean re-projection and the known position of the checkerboard corners using

singular value decomposition. The idea here is that a bias-and-noise-free sensor should

produce measurements that align perfectly with the groundtruth. We will measure any

deviation in alignment by computing the Euclidean distance between each measured

corner and its groundtruth position, and then find the mean of this error for each scan

and at each checkerboard pose.

We started the calibration process at the minimum resolution for distortion mapping,

which uses a 1× 1 interpolation grid for each measurement dimension (bearing, tilt, and

range) or 12 coefficients in total (size of c). Surprisingly, at this grid resolution we still

obtained significant improvement in measurement accuracy.

Figure 5.5 shows the nominal alignment error before and after calibration for each

of our 982 scans. Each ‘step’ in the graph represents a single checkerboard pose, and

small fluctuations within the ‘step’ are caused by sensor noise and error in corner ex-
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Figure 5.5: There was a large improvement in accuracy after calibration, even with the
lowest possible resolution of distortion map.
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Figure 5.6: We incrementally increased grid resolution from 1 × 1 to 6 × 6. While the
measurement error continues to decrease, there is a clear trend that higher resolution
models offer diminishing returns in accuracy improvement.
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(a) Azimuth correction (b) Elevation correction

(c) Range correction

Figure 5.7: Measurement distortion correction computed at 3×3 grid resolution. Note the
range correction grid is largely flat with a constant height at 0.22 m. This is a reasonable
value to account for the internal beam paths, r0,1 and r1,2, shown in Figure 5.1.

traction. The consistent error magnitude in scans taken from the same pose indicates

there are no significant outliers in our dataset. Notice that across all the poses we have

achieved significant improvement in accuracy; the calibration reduces the average sensor

measurement error from over 25 mm to 5.59 mm.

Next we incrementally increased the distortion mapping resolution from using only

1 grid segment in each dimension, up to 6. The results are displayed in Figure 5.6. As
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the number of distortion parameters is increased, we note a diminishing return in the

reduction of measurement error. At grid resolution N , we need three N × N grids or

3(N +1)2 coefficients in our state vector, c. In addition to the fact that higher resolution

is more prone to over-fitting, the (N + 1)2 increase in state size coupled with the cubic

complexity of solving bundle adjustment made it unappealing for us to use a very high

resolution. We found the 3× 3 grid resolution to be a reasonable compromise, and have

been using it as the standard calibration model for our lidar-based navigation work.

Computationally, the Matlab implementation we executed on a 2010 Macbook Pro with

Intel i7 CPU at 2.66 Ghz and 4 GB of memory converged in 14.5 seconds at the 3 × 3

grid distortion. The resulting distortion correction grids are shown in Figure 5.7.

5.4 Conclusion

In this chapter, we have presented a geometric lidar calibration method that closely

resembles traditional camera calibration. It offers the following advantages:

1. Leveraging lidar intensity images allowed for the use a planar calibration target,

which is more flexible than existing lidar calibration methods that require either

external localization or a more specialized calibration environment.

2. By not formulating the sensor model around a specific scanning mechanism, we

have arrived at a generalized calibration method that is directly applicable to a

number of two-axis scanning lidars.

We have demonstrated the calibration method experimentally on a complex two-axis

scanning lidar, reducing the sensor measurement error from over 25 mm to less than 5.5

mm. In the next chapter, we will compare state estimation results with and without

applying the calibration to quantify its impact in a long range VO system.
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Extended Experimental Results

The hardware configuration of this field experiment can be found in Section 4.3.2. Unlike

the preliminary analysis for validating the motion compensation math (Section 4.3.3),

the goal of this chapter is to analyze how well the overall lidar-based VO performs over

an extended period. For this, we are going to use all available traverse data collected

during the VT&R experiment (McManus et al., 2012). It includes 11 rover traverses over

a complete diurnal cycle; with up to 1.1 km in each traverse. The combined traverse

track is over 10 km in range and has drastic change in light conditions (i.e., sun stare to

full darkness).

Figure 6.1: Panoramic view of the planetary analogue test site in Sudbury, Ontario,
Canada. Located inside a gravel pit, the site was chosen for its lack of vegetation and
three-dimensional character. Our field robot can be seen traversing the site here in the
daytime, although our test data were gathered during the day and at night over 25 hours.

61
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Courtesy of Google Earth - 46°25’22”N 80°50’58” W

Figure 6.2: GPS track of a typical 1.1-km traverse performed during VT&R experiment
(McManus et al., 2012).

To evaluate the impact of motion compensation and calibration on overall estimation

quality, we systematically applied one of them at a time and then together. The VO

estimates from of a typical traverse is shown in Figure 6.3, followed by the error plot in

Figure 6.4. There are two things worth noting in these figures, and they are especially

apparent in the error plot:

1. Applying the calibrated sensor model resulted in better VO estimate if motion

compensation is also used, but calibration without motion compensation actually

resulted in slightly worse estimate. Without going into detailed analysis on this

phenomenon, we suspect this occurred due to the pitch estimate bias introduced by

sensor measurement error (due to higher density of measurements near the bottom

of the scan) and the estimate bias introduced by motion distortion have a partial

cancelling effect on each other.

2. In terms of absolute Euclidean error, at the end of the 1.1-km traverse, the esti-

mators without motion compensation actually did better than ones with motion

compensation. Though this is purely coincidental and is not a reflection of better

estimation quality. It does beg the question that perhaps comparing absolute error

over very long range is not the best metric for our incremental VO system.
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Figure 6.3: VO estimates of the 1.1- km traverse shown in Figure 6.2. While all 4 cases
of VO estimates followed the GPS groundtruth to a certain degree at the beginning, the
two variants without motion compensation quickly drifted off due to accumulation of
errors in attitude estimates.
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Figure 6.4: VO estimates error of the 1.1-km traverse. While the result agrees with the
preliminary analysis in Section 4.3.3 that motion compensation is helpful, it is somewhat
surprising that applying calibration without motion compensation actually resulted in
worse estimates.
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(b) No calibration, with compensation.
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(c) With calibration, no compensation.
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(d) With calibration, with compensation.

Figure 6.5: Aggregated VO results for all permutations. Shown in black, each error plots
if fitted with a 4th degree polynomial curve. These nominal curves are plotted together
in Figure 6.6.

Since VO estimates are incremental in nature, it is more representative of the system

performance to compare VO estimate before the attitude estimates become too drifted.

As such, traverses are further divided into shorter segments at each rover direction switch.

The aggregated estimation errors of all segments for each case are shown in Figure 6.5,

with their nominal estimation errors plotted together in Figure 6.6.

Overall, of the four permutations, the estimator with motion compensation and cali-
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bration performed the best; it accumulates estimation error at less than half of the rate

in comparison to the original estimator that does not account for motion distortion and

sensor calibration. While the approximate 10 percent error-growth is less than what

state-of-art stereo-camera-based VO is capable of, it clearly demonstrates that computa-

tionally efficient lidar-based VO can indeed be improved using the motion compensation

and calibration methods proposed in this thesis, and sets a upper bound that can be im-

proved upon using techniques such as multi-frames bundle-adjustment, and sensor fusion

with IMU and/or star tracker.

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

Traversed Distance [m]

E
u

c
lid

e
a

n
 E

rr
o

r 
[m

]

 

 
No Cal, No Comp

No Cal, With Comp

With Cal, No Comp

With Cal and Comp

Figure 6.6: Nominal VO estimation errors. Once again, the estimator with calibration
but no motion compensation performed the worst, and the one with both calibration and
compensation performed the best.
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Summary

Due to the scanning nature of the lidar and assumptions made in previous implemen-

tations, data acquired during continuous vehicle motion suffer from geometric motion

distortion and can subsequently result in poor metric VO estimates, even over short

distances (e.g., 5-10 m).

To fully understand the impact of motion distortion in lidar-based VO, a 3D lidar

simulator was created to replicate the scanning pattern of an existing lidar sensor. This

simulator enabled generation of datasets both with and without motion distortion. Sub-

sequent analysis of VO estimates computed using simulated lidar data demonstrated a

clear need to address the motion distortion problem, and identified the root cause of

the systematic estimation error to be, in previous systems, true acquisition time of each

measurement was not exactly accounted for when working with scanning lidars.

The measurement timing assumption made in previous systems was revised, followed

by the development of a frame-to-frame VO estimation framework based on a pose in-

terpolation scheme that explicitly accounts for the exact acquisition time of each feature

measurement. This proposed method was preliminarily validated using simulated lidar

data and 500 m of experimental traverse data collected from a planetary analogue envi-

ronment. This work has been peer reviewed and published in Dong and Barfoot (2012).

66



Chapter 7. Summary 67

A second problem that was addressed is the need to calibrate the sensor to obtain

accurate lidar measurements. The proposed method generalizes a two-axis scanning lidar

as an idealized spherical camera with additive measurement distortions. It also leverages

lidar intensity imagery to enable calibration using only an inexpensive checkerboard

calibration target. The resulting calibration method can be readily applied to a variety

of two-axis scanning lidars. This improved lidar calibration method and its associated

experimental results has been peer reviewed and published in Dong et al. (2013).

Finally, an extended lidar-based VO performance analysis was carried out using 4

variants of state estimators covering all permutations involving with/without calibra-

tion and with/without motion compensation. The results clearly demonstrated the VO

estimator with motion compensation and sensor calibration performed the best, and

achieved an error-growth-rate of less than half of that original state estimator without

motion compensation and proper sensor calibration.

In is worth noting that while the improved estimation framework and sensor calibra-

tion resulted in large improvement in lidar-based VO performance, the nearly 10 percent

error-growth rate is far worse than the state of the art camera-based VO systems, where

2-3 percent error-growth rate has been achieved. A number of approaches should be

considered to further improve lidar-based VO performance, specifically:

1. Moving beyond frame-to-frame VO to multi-frame bundle-adjustment. This should

lead to more robust RANSAC and better pose estimates.

2. Incorporating additional sensor data, such as the absolute orientation measure-

ments provided by an inclinometer and/or a star tracker. The added measurements

will constrain the heading estimate drift and result in better absolute pose estimate

over long distance.

3. Adding loop closure information using place recognition, and solving the pose esti-

mation problem using a full SLAM solution.
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