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Stereo visual odometry (VO) is a common technique for estimating a camera’s motion;

features are tracked across frames and the pose change is subsequently inferred. This

position estimation method can play a particularly important role in environments

in which the global positioning system (GPS) is not available (e.g., Mars rovers).

Recently, some authors have noticed a bias in VO position estimates that grows with

distance travelled; this can cause the resulting position estimate to become highly

inaccurate. In this thesis, two effects are identified at play in stereo VO bias: first,

the inherent bias in the maximum-likelihood estimation framework, and second, the

disparity threshold used to discard far-away and erroneous stereo observations. In

order to estimate the bias, the sigma-point method (with modification) combined with

the concept of bootstrap bias estimation is proposed. Based on simulations, the novel

sigma-point method achieves similar accuracy to Monte Carlo experiments, but at a

fraction of the computational cost. The approach is validated through simulations.
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Notation

a: Symbols in this font are real scalars.

a : Symbols in this font are real column vectors.

A : Symbols in this font are real matrices.

∼ N (a,B) : Normally distributed with mean a and covariance B.

E[·] : The expectation operator.

(·)k : The value of a quantity at time step k.

(·)j : The value of a quantity associated with landmark j.

(·)i : The value of a quantity at iteration i.

(·)t : The true value of a quantity.

(̂·) : The estimate of a quantity.

(̄·) : The nominal value of a quantity.

(·)× : The cross-product operator which produces a 3× 3 skew-symmetrix matrix

from a 3× 1 vector.

(·)�: A SE(3) operator which produces a 4× 4 matrix from a 6× 1 vector.

(·)�: A homogeneous point operator converting a 4× 1 vector to a 4× 6 matrix.

1 : The identity matrix.

0 : The zero matrix.

tr(·): The trace of a matrix.
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Chapter 1

Introduction

Regardless of how basic or advanced a mobile robot is, whether its goal is to track

a pre-defined trajectory or to traverse a terrain to reach a certain destination, it

should be equipped with appropriate technologies in order to be able to navigate in

its environment. Mobile robot navigation has been a popular research topic with

applications in different areas from underground to space. The problem of navigation

has been studied in the past using simple formulas and recently by proposing more

complicated techniques. Dead reckoning in navigation is the process of estimating

the vehicle’s current position using the past known position and information about a

vehicle’s course and speed over a period of time. Wheel odometry is a simple technique

of dead reckoning that uses encoder readings to calculate the number of wheel turns.

Using knowledge about wheel diameters, this enables the distance travelled to be

estimated. In wheel odometry, the noise sources are basically errors in the estimate

of wheel diameters and slippage caused by fast turning or slippery ground. Wheel

odometry measurements were used in the recent Mars Exploration Rover (MER)

mission; however, they were unreliable due to the errors that wheel slip had caused

[67]. Overall, for long distances the error terms add up incrementally which leads to a

1
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poor estimate of the vehicle’s position. Vision-based positioning is a more complicated

technique for mobile robot navigation that relies on optical sensors. Visual odometry

(VO) is the process of estimating the position and orientation of a vehicle using images

captured by a camera attached to it. VO is a more advanced odometry technique

which does not require dealing with slippage error, thus providing more accurate

estimates. It is worthwhile to mention that the term VO has been introduced by

Nister [79] in 2004; however, the origin of the visual odometry concept goes back to

Moravec [77] (1980) and was later improved by Matthies and Shafer [70] in 1986.

In a visual odometry system, the vehicle’s motion is estimated using two successive

pairs of stereo images with no prior knowledge of the scene. Since the Mars Rover

landing in 2004, the NASA Mars exploration program team have decided to use visual

odometry to update the position estimate obtained by wheel odometry whenever they

encountered slippery environments. The results showed improved position estimation

of the Mars Exploration Rover vehicles [18]. Visual odometry plays a particularly

important role in environments in which the global positioning system (GPS) is not

available. Therefore, VO is a key technique for the navigation system of underwater

vehicles [13], space rovers [48, 67], and underground robots in mining applications

[39].

Although stereo visual odometry is a well-established technique, research is on-

going to improve its performance. Recently, some authors investigating VO have no-

ticed a bias in the estimate that grows as the vehicle travels, resulting in an erroneous

estimate. Dubbelman and Groen [29] point out the existence of bias in stereo-based

motion estimation. They identify the distribution of landmarks and incorrect mod-

elling of uncertainties in landmark positions as two sources of bias; they are able to

partially compensate for bias through calibration methods.

Tardif et al. [92] mention the bias in stereo visual odometry systems and attempt
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to produce a robust navigation system by reducing the bias using an inertial naviga-

tion filter; they do not estimate the bias itself. Similarly, Lambert et al. [61] limit the

error growth in the VO estimate by integrating a sun sensor and an inclinometer for

attitude correction, but do not actually estimate bias. However, Lambert [62] does

mention that errors in visual odometry are biased and suggests that the disparity

threshold plays a role in the bias. Dubbelman et al. [30] propose a method to model

and compensate for bias using projective geometry; they mention that the camera

model used in their research is an approximation and identify this approximation as

the source of bias. They use trajectory calibration to estimate parameters of a bias

model and use it to compensate for bias. Rehder et al. [85] also propose a solution for

bias estimation based on brute-force Monte Carlo simulation, which could be com-

putationally expensive for large numbers of samples. They study this problem in a

one-dimensional space by estimating the bias existing in the norm of a vector that

describes the translation of the camera in one time step. Their experimental results

demonstrate that the actual motion is underestimated by VO, but is corrected by

their bias estimation technique. Our research is related to these works, but we have

found that first, even if the camera model is correct, there is an inherent bias in the

maximum-likelihood framework used to estimate motion in VO, and, second, that

the disparity threshold commonly used to throw away poor stereo observations also

plays an important role in determining the bias.

Bias estimation is well studied in the statistics literature. Bias has different types

such as selection bias [20] and the bias of an estimator. The bias of an estimator is

defined as the difference between the expected value of the estimator and the true

value of the unknown parameter to be estimated by the estimator [25]. In statistical

sciences, the bootstrap technique is used to quantify uncertainty of the estimates

including the bias of an estimator [50, 19]. The bootstrap method was originally
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proposed by Efron [31] and developed by Efron and Gong [34], Efron and Tibshirani

[35], Diaconis and Efron [28], and in the monograph [32]. The bootstrap methodology

is not used in its original form in this thesis; however, the idea behind it will be

borrowed to create a method to estimate bias in VO problems.

The main objective of this thesis is to propose a novel approach that can esti-

mate and correct bias in VO in a computationally inexpensive manner without losing

accuracy. In particular, we will not employ any other sensors except for a stereo

camera in our approach and thus the only input to our algorithm would be a set of

stereo images. In order to reduce the computational cost of the bias correction proce-

dure, we will establish our technique based on an estimation method referred to as the

sigma-point method in the literature. The method is based on deterministic sampling

of a probability distribution. Through this approach, the deterministic samples are

transformed by a nonlinear function and the results are used to estimate the statistics

associated with the transformed distribution. The sigma-point method is also called

the unscented transform and has applications in nonlinear filtering and control sys-

tems used for integrated navigation systems [33], spacecraft attitude estimation [22],

and underwater navigation [98]. Specifically, we will perform modifications on the

sigma-point method to account for the effect of the disparity threshold. In addition,

we will present another approach to estimate bias in VO problems based on the bias

estimation method proposed by Box [14] in 1971. Box presents a general expression

for estimating bias in nonlinear least squares problems. In this thesis, we aim to

rederive this expression for the VO setup and utilize it for bias estimation of VO path

estimates.

This thesis is structured as follows. Chapter 2 outlines the visual odometry

pipeline and shows that our bias estimation and correction algorithm can be added to

the end of the pipeline as a new block. It also details the system setup including the
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configuration of the landmarks and the camera pose. Furthermore, it describes the

stereo camera model in detail and defines the disparity threshold. Chapter 3 covers

the steps to produce noisy measurements and the bundle adjustment algorithm for

state estimation used in the thesis. Bundle adjustment utilizes the Gauss-Newton

algorithm in order to estimate the system state consisting of position of the land-

marks and the camera pose. Chapter 4 utilizes a set of symmetric and asymmetric

landmark configurations in 3D space to identify VO bias in certain directions. This

chapter outlines bias estimation machinery and its modification to account for the

effect of the disparity threshold in the stereo-triangulation problem. Simulation re-

sults are provided to demonstrate how bias is changed with respect to the variation

of parameters such as the disparity threshold, the standard deviation of the system

noise, and the position of the landmarks. Chapter 5 begins the study of bias esti-

mation in VO problems by making the simplifying assumption of knowing ground

truth. We first consider this assumption to show that bias exists in estimated results

even if ground truth is used in position estimation algorithms. This assumption is

then removed, and the bootstrap idea is adapted to compute bias estimates based

on the measurements and the state estimate. It covers the mathematical formulation

for bias correction and provides detailed demonstration of simulation results before

and after compensating for bias. Chapter 6 concludes this thesis by summarizing the

contributions of our research and discussing areas that could be studied as future

work.



Chapter 2

Three-dimensional Scene

Reconstruction

2.1 Vision Formation

To understand the advantage of capturing two images of an object from different

viewpoints, we refer to the human visual system. The reason that we have two eyes is

that this setup provides us with two images of a scene from two distinct view positions

at the same time. This gives us information about the objects in three-dimensional

space. In order to mimic the human visual system machine vision, we utilize cameras

that capture two images of a 3D point concurrently from two different viewpoints.

The camera that produces the image pairs is known as the stereo camera [23]. A setup

of a stereo camera attached to a mobile robot is portrayed in Figure 2.1. In machine

visual systems, the depth information is recovered using the stereo-pair images and

the known camera poses (translations and orientations) through triangulation. The

triangulation process results in the estimation of a point’s 3D location [91].

6
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Stereo Camera

Figure 2.1: RO6 robot in ASRL facilities with an attached stereo camera. Photo
credit: UTIAS/ASRL [2].

2.2 Visual Odometry Pipeline

Visual Odometry is the use of consecutive captured stereo images to estimate the

change in pose of a camera that is used to determine the distance travelled [79]. VO

is widely used in the robotics field for the navigation of rovers. An example of VO

application is its use on the Mars Exploration Rovers [67]. The captured images are

processed to extract the desired information. The architecture of the required image

processing in addition to the motion estimation steps is depicted in Figure 2.2.

The standard stereo VO pipeline is briefly described as background review. The

stereo images are the inputs to the system. An example is shown in Figure 2.3. Then

the steps described in Figure 2.2 are applied to these images.
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Left 
 image 

Right 
image 

Image 
rectification 

Image 
rectification 

Feature 
detection 

Feature 
detection 

Stereo 
matching 

Feature 
tracking 

Previous 
frame  

Pose 
estimate 

Motion 
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Outlier 
rejection 
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correction 

Figure 2.2: Standard stereo visual odometry pipeline with a new block added at the
end for bias correction.

Figure 2.3: Left: left image captured at a Mars analogue site in Devon Island by a
stereo camera, right: right image of the stereo pair [41]. Photo credit: ASRL/UTIAS
[2].

2.2.1 Image Rectification

The first step in the VO pipeline is the image rectification process. After rectifying

stereo image pairs, epipolar lines become parallel to the axes of image coordinate

frames. Therefore, landmarks are projected onto the same row of the left and right

images [47, 4, 36, 40, 84, 94]. This is a desirable feature since it leads to simplified fea-

ture matching algorithms. At this step, the effect of lens distortion is also eliminated

to refine the quality of the images [23].
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2.2.2 Feature Detection

Then the images are prepared for the next step of the VO pipeline, which is feature

detection. The image features that are detected by feature detectors [86] are also

known as keypoints. Different techniques exist for detecting keypoints such as the

corner detector method [46, 27, 8, 56, 83], the SURF detector mechanism by Bay et

al. [7], the Scale Invariant Feature Transform (SIFT) algorithm by Lowe [66], and

the FAST (Features from Accelerated Segment Test) feature detector approach by

Rosten and Drummond [87, 88]. As an example, the SURF detector technique is

employed to detect image features in left and right stereo images and the result is

illustrated in Figure 2.4.

 

 

Figure 2.4: The SURF detector is utilized for feature detection in a pair of stereo
images. The detected points are shown with green circles in left (left) and right (right)
images. The detector provides a set of highly distinctive features that are invariant
to image scale and rotation. Furthermore, this approach is faster than the previous
feature detectors and has application in camera calibration and object recognition
fields [7].
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2.2.3 Stereo Matching

From the previous step, image features are detected in left and right stereo images.

Using Stereo Matching, we find every pair of image features corresponding to a unique

landmark. A feature in the left image is matched with the feature in the right image if

both represent the same landmark. There are different image matching approaches in

the literature including Area-based Matching and Feature-based Matching algorithms.

In the Area-based Matching technique a reference image patch is selected from the

left (or right) image and the corresponding one is searched in the right (or left) image

using test patches. The test patch in the right (or left) image that has the most

correlation with the reference patch is then called the matched patch. This approach

is considered in the category of dense image matching algorithms since it finds the

correspondences of all the image pixels [52] and has 3D scanning applications.

However, sometimes searching for corresponding points of all the image pixels

is not required. The process of matching images could be faster and more efficient

when only a number of selected distinct features are matched in stereo images. This

approach is referred to as the sparse image matching algorithm since it provides sparse

correspondence of points. The method is used in the standard VO pipeline for the

purpose of motion estimation and is known as the Feature-based Matching algorithm.

A detailed overview providing a comparison of different image matching techniques

is given by Brown et al. [17] and Babbar et al. [10].

For the purpose of matching features, a feature can be selected in the left or right

image and a search process for finding the corresponding point may be performed by

testing either all the pixels in the other image (2D space search) or only a certain set

of pixels located on the corresponding epipolar line (1D space search). The former

approach is taken by Howard [51] and Konolige et al. [58] and the latter approach is
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used by Mei et al. [73] and Nister et al. [80].

After completing the feature matching algorithm, the left and right images are

overlaid on top of each other and the coordinates of the matched features are con-

nected. The distance between the matched points is the disparity measurement for

those matched features. The disparity lines are drawn in Figure 2.5. Disparity mea-

surements are smaller for the keypoint observations of landmarks that are located

farther from the camera.

Figure 2.5: The detected features in the left and right images are shown in red and
green respectively. The yellow lines show the disparity measurements for the matched
features.

It is observed that the disparity value is smaller for the keypoint observations of

the landmarks that are located farther from the stereo camera in the 3D environment.

2.2.4 Feature Tracking and Outlier Rejection

The next step in the VO pipeline is to perform another feature matching. This time,

however, features are detected and matched between two consecutive stereo image
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pairs that are captured by the mobile vehicle at a previous time and the current time.

In Section 2.2.3, the search area to find the matched features could be confined to

epipolar lines. In this section, the epipolar lines corresponding to images captured at

different time frames are not collinear with each other; thus, for feature tracking, the

search area is not defined by epipolar lines. To define a search window containing the

corresponding feature some information about the vehicle’s motion may be obtained

by other sensors or using wheel odometry [18] or by assuming that the vehicle moves

with a constant velocity [24]. As illustrated in Figure 2.6 (left), we then compute the

disparity measurements for pairs of matched features associated with images from

two consecutive stereo frames. In addition, it is assumed that the camera moves in

such a way that a set of common features is observed in consecutive stereo images.

Suppose q1 is a point on the first image and q2 is a point on the second image.

Denote the projection of q2 onto the first image based on a transformation matrix by

q′
2. Then, q1 and q2 are considered as inliers if the measured distance between q1

and q′
2 falls within a certain threshold. Erroneous matches that are not considered as

inliers are referred to as outliers. The effect of only one outlier can cause a significant

error in the next step which is the rover motion estimation. For this, a technique

is sought to improve the output of the feature tracking algorithm by removing the

outliers and keeping the inliers.

A general parameter estimation approach which is used for the purpose of outlier

removal is called the Random Sample Consensus (RANSAC) coined by Fischler and

Bolles [37]. The algorithm starts with a set of samples which are randomly chosen

from the measurements. Then a model is fitted to these samples and the number of

other points that are in consensus with this model estimate is recorded. The process

is repeated for several iterations and the model estimate with the maximal number

of satisfying measurements is selected as the best model. At the end, the best model
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can be used to specify which measurements are counted as outliers. The RANSAC

approach is highly robust and a more comprehensive description of the method is

presented by Hartley and Zisserman [47].

The M-estimator SAmple Consensus (MSAC) algorithm which is a variant of the

RANSAC algorithm is applied to the tracked features in Figure 2.6 (left) and the

output is portrayed in Figure 2.6 (right). The method may remove all the outliers

at the cost of eliminating several inliers. However, excluding some of inliers is not

troublesome as long as a sufficiently large number of them are present. The RANSAC

method is used in the VO literature by Maimone et al. [67] and Konolige et al. [58].

In addition, Mei et al. [73] utilizes the RANSAC algorithm to present a localisation

and mapping system.

Figure 2.6: The process of feature tracking including outliers (left) and after removing
outliers (right) using the GeometricTransformEstimator function fromMATLAB. The
detected features in the image captured at a previous time are in red and the ones
related to the next time step are in green. The yellow lines show the disparity of the
matched features taken at two consecutive time steps.

2.2.5 Motion Estimation

The next step after the process of outlier removal is to estimate the rover motion using

the feature tracks in the two frames. The rover motion is composed of translation and
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orientation of the rover (also called rover pose) from one frame to another. Further-

more, the feature tracks could be employed to estimate the 3D locations of the points;

however, these landmark position estimates will not be used in the VO problem. A

well-known method for estimating the rover motion is Bundle Adjustment introduced

by Brown [15]. In the Bundle Adjustment problem the 3D reconstruction is refined

based on an optimality criterion to generate motion and structure estimates. The

approach utilizes a minimization technique such as nonlinear least-squares in order

to minimize the error between the predicted image points and the observed image

points that are corrupted with noise. Bundle Adjustment is a maximum likelihood

estimator when the noise is zero-mean Gaussian.

Among the minimization methods for solving nonlinear least-squares problems

are the Levenberg-Marquardt method [65, 68, 78] and the Gauss-Newton algorithm

[12, 38, 81]. The Bundle Adjustment method with the Gauss-Newton algorithm is

used in this thesis and Chapter 3 describes in detail the technique.

2.2.6 Bias Correction

In the standard VO pipeline (refer to Figure 2.2), we capture two images, detect

features, stereo match features, temporally track features, reject outlier feature tracks,

and finally estimate motion.

Recently, it is reported in some works that when motion estimates are computed

for a sufficient number of runs, the average over these runs deviates from ground

truth. This error is termed bias in VO and is a recent topic of study. In this thesis,

we investigate the bias problem and propose to add a new block to the VO pipeline to

handle bias estimation and correction. A comprehensive study of bias along with our

novel approach to estimate it and use it to improve estimation accuracy is described
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in Chapters 4, 5, and 6.

2.3 System Setup

A simplified setup is used in this thesis that is composed of a stereo camera and a

collection of 3D points (landmarks) located in the camera’s field of view. The elements

that describe the motion of the camera in 3D space will be introduced in Subsection

2.3.1. Furthermore, a mathematical model of the camera that will be used to obtain

the image coordinates of landmarks is covered in detail in Subsection 2.3.2.

2.3.1 Setup Components

This subsection mainly describes the components used in the system setup that will

determine the position of landmarks and the pose of the camera in 3D space. A

stereo camera is attached to the front of the rover whose position and orientation are

to be estimated. The setup is shown in Figure 2.7; a stereo camera observes some

landmarks at time k′, moves, then reobserves the landmarks at time k. Thus the

basic frame-to-frame VO is performed in this thesis versus the other alternative of

multi-frame VO in which camera moves multiple times capturing features at each

frame and then matches and tracks features in all the frames.

y

z

xy

z

x

Figure 2.7: Location of landmarks and camera poses in 3D space.

Before outlining our system model we provide a brief review of the special Eu-

clidean group SE(3) which describes the rigid body motion of an object. As illustrated

in the scheme of Figure 2.8, a reference frame is fixed in space and the moving frame
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which is attached to the object rotates and translates in 3D space (for more details,

see [11]). The transformation of the moving frame is then expressed by the 4 × 4

homogeneous transformation matrix, T, as follows:

SE(3) =

⎧⎪⎨⎪⎩T|T =

⎡⎢⎣ C d

0 1

⎤⎥⎦ , C ∈ SO(3), d ∈ R
3

⎫⎪⎬⎪⎭ , (2.1)

where SO(3) is called the rotation group on R
3 [11]. Moreover, we know the inverse

of the transformation matrix, T, exists since the rotation matrix, C, is invertible.

x 

z 

y 

Reference Frame 

Moving Frame 

Figure 2.8: Displacements of an object in 3D space with respect to a reference frame.

Our system model is characterized by system parameters that provide information

about the position of a landmark and the camera pose consisting of translation and

rotation. Let

εj :=

⎡⎢⎢⎢⎢⎣
x

y

z

⎤⎥⎥⎥⎥⎦
j

. (2.2)

Then the 4 × 1 homogeneous point representing the 3D position of landmark j in

homogeneous coordinates [57] is defined as
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pj :=

⎡⎢⎣ εj

1

⎤⎥⎦ . (2.3)

The pose of the camera at time k can be interpreted using a 4 × 4 transformation

matrix, Tk, or a 6 × 1 camera pose vector, πk. We use both Tk and πk to present

the camera pose in the following chapters. Depending on which quantity is obtained

from equations and which quantity is desired, we can convert one to the other. To

this end, we describe the elements forming Tk and πk.

Interpreted in the base frame, the translation of the current (time k) camera frame

from the base frame is described by a 3×1 translation vector denoted rk. The rotation

of the current camera frame (time k) about a unit-length axis ak := (ax, ay, az)k with

an angle φk can be expressed using the 3× 1 camera rotation vector φk [49] defined

as

φk := φk ak, ak ∈ R
3. (2.4)

The cross-product operation (·)× [26] in SO(3) that transforms a 3 × 1 vector to a

3× 3 matrix is defined by

w× :=

⎡⎢⎢⎢⎢⎣
w1

w2

w3

⎤⎥⎥⎥⎥⎦
×

:=

⎡⎢⎢⎢⎢⎣
0 −w3 w2

w3 0 −w1

−w2 w1 0

⎤⎥⎥⎥⎥⎦ . (2.5)

Using Rodrigues’ rotation formula [74], the 3× 3 camera rotation matrix represented

as Ck can be stated as

Ck := e−φk
×

(2.6)

=

∞∑
n=0

(−1)n 1

n!
(φk

×)n

= cos φk1 + (1− cos φk)akak
T − sinφkak

×.
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Define Sk as

Sk :=

∫ 1

0

(Ck)
αdα (2.7)

=

∞∑
n=0

(−1)n 1

(n+ 1)!
(φk

×)n

=
sinφk

φk
1 +

(
1− sin φk

φk

)
akak

T − 1− cosφk

φk
ak

×,

and let ρk, which is a 3× 1 vector, be the solution to the equation

Skρk = −Ck rk. (2.8)

These elements form a 4× 4 transformation matrix which determines the pose of the

camera at time k in the base frame (initial frame) as follows:

Tk :=

⎡⎢⎣ Ck −Ck rk

0T 1

⎤⎥⎦ =

⎡⎢⎣ Ck Skρk

0T 1

⎤⎥⎦ , Tk ∈ R
4×4 (2.9)

For more details on the construction of the transformation matrix T using the rotation

and translation quantities, refer to [74]. The camera pose is also stated in a 6 × 1

vector denoted by πk as follows:

πk =

⎡⎢⎣ ρk

φk

⎤⎥⎦ , πk ∈ R
6 (2.10)

Define the SE(3) operator (·)� that transforms a 6× 1 vector to a 4× 4 matrix by

w� =

⎡⎢⎣u

v

⎤⎥⎦
�

:=

⎡⎢⎣v× −u

0T 0

⎤⎥⎦ . (2.11)

where u and v are 3× 1 vectors. The relationship between Tk and πk is given by

Tk = e−π
�
k . (2.12)
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To prove (2.12) we start from the right hand side of the equation:

e−π
�
k = e

−
[ ρk
φk

]�
(2.13)

= e
−
[
φk

× −ρk
0T 0

]

=

∞∑
n=0

1

n!

(
−

[
φk

× −ρk
0T 0

])n

= 1−
[
φk

× −ρk
0T 0

]
+

1

2

[
φk

× −ρk
0T 0

] [
φk

× −ρk
0T 0

]
+ · · ·

Then we sum the above terms and use (2.6) and (2.7) to obtain⎡⎢⎣1− φk
× + 1

2
(φk

×)2 − · · · (1− 1
2
φk

× + · · · )ρk

0T 1

⎤⎥⎦ =

⎡⎢⎣Ck Skρk

0T 1

⎤⎥⎦ . (2.14)

The right hand side of (2.14) is the transformation matrix Tk. Furthermore, we can

define the state vector, xk, at time k, which determines the camera pose and the

position of J landmarks at the current time:

xk =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

πk

ε1
...

εJ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, πk ∈ R

6, xk ∈ R
(6+3J) (2.15)

where εj and πk are given in (2.2) and (2.10), respectively. The quantities intro-

duced in this subsection will be used in the subsequent chapters to formulate the bias

estimation algorithm in VO problems.

2.3.2 Stereo Camera Model

The nonlinear measurement function in the setup (i.e., the stereo camera model) with

its corresponding parameters is portrayed in Figure 2.9.
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Right Image 

Left Image 

Camera Frame 
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b
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vr
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Figure 2.9: One landmark is projected into the left and right images of a stereo
camera. The stereo camera model parameters are also shown above.

The stereo camera model, f(·), is used to compute the 4 × 1 image coordinates,

yjk, of each landmark at time k. The position of landmark j in the current camera

frame is given by

gjk :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

g1

g2

g3

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
jk

= Tkpj . (2.16)

The model is presented by the following equation

yjk :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ul

vl

ur

vr

⎤⎥⎥⎥⎥⎥⎥⎥⎦
jk

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

fu
g3
(g1 +

b
2
)

fv
g3
g2

fu
g3
(g1 − b

2
)

fv
g3
g2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
jk

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

cu

cv

cu

cv

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

fu = su f

fv = sv f
, (2.17)

where {su, sv} are the horizontal and vertical pixel conversions in pixels/metre, f and
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b are the focal length and the camera baseline in metres, and (cu, cv) is the center of

the image plane in pixels. Equivalently, the camera model denoted by f(·) is expressed
as follows:

f(gjk) = M
1

g3,jk
gjk, (2.18)

where M is the camera matrix and contains all the parameters associated with the

camera such as focal length, image center, and baseline

M :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

fu 0 cu fu
b
2

0 fv cv 0

fu 0 cu −fu b
2

0 fv cv 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (2.19)

Using (2.16) and (2.17), the inverse of the camera model, f−1(·), is given by

f−1(yjk) = gjk =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

g1

g2

g3

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
g1 =

ul+ur−2cu
2fu

g3,

g2 =
vl−cv
fv

g3,

g3 =
fub

ul−ur
, ul �= ur.

(2.20)

2.3.3 Disparity Threshold

The distance between the horizontal pixel coordinates of the matched points of a

stereo image pair is referred to as the horizontal disparity (or simply disparity1).

1The term disparity is a common term used in the stereo matching algorithms in the three-
dimensional data reconstruction literature. In the algorithms, measurements with disparities less
than a threshold value are usually erroneous measurements and are discarded from the set of obser-
vations.
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Using the above parameters the disparity, d, of a landmark observation is defined as

d = ul − ur. (2.21)

As depicted in Figure 2.9, ul > ur (i.e. the disparity is positive) for a landmark

located in front of the camera. Furthermore, the disparity becomes small for far-

away landmarks. A disparity threshold, dth, is considered in our analysis to truncate

undesired measurements. It is assumed that the camera is not capable of accurately

capturing far landmarks or landmarks behind it. Hence, the measurements that

have disparities less than dth are truncated (i.e., discarded).Typically a small positive

constant is used for dth.

It is shown in subsequent chapters that applying the disparity threshold to mea-

surements is one source of bias in position estimation problems. The more samples

are truncated in our problem, the larger the bias is observed in the result.
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State Estimation Algorithm

3.1 Background

3.1.1 Least Squares Problems

In least squares problems, an objective function is obtained by the sum of some

squared terms that determine the discrepancies between measurements and predic-

tions. These terms are referred to as residuals al and are given by

al(α̂) = βl −ψl(α̂), for l = 1...L (3.1)

where βl are measurements and ψl(α̂) are predictions. Then, the al(α̂)’s which are

functions from R
n to R

m (Lm ≥ n) define the least squares objective function Q(α̂)

as follows [81]:

Q(α̂) =
1

2

L∑
l=1

‖al(α̂)‖2 (3.2)

where ‖ · ‖ represents the Euclidean norm. In least squares problems, the objective

function Q(α̂) is minimized to solve for the parameter vector α̂. A least squares

23
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problem is categorized as linear or nonlinear based respectively on the linearity or

nonlinearity of residual functions al = (al,1, al,2, ..., al,m)
T .

3.1.2 Newton’s Method

While there is a wide variety of methods to optimize an objective function, we focus

here on iterative algorithms. These algorithms use an initial guess as their starting

point denoted by α̂(0) and seek to improve it in each iteration until they converge

to an optimal point represented as α̂�. The current estimate α̂(i) and the improved

estimate α̂(i+ 1) are linked by

α̂(i+ 1) = α̂(i) + δα̂(i), (3.3)

where δα̂(i) is the improvement term. There are different methodologies for obtaining

an improved estimate in each iteration. Using (3.1) and (3.2), define the gradient

∇Q(α̂) and the Hessian HQ(α̂) as follows [81]:

∇Q(α̂) =
L∑
l=1

Hal(α̂)
T al(α̂), (3.4)

HQ(α̂) =
L∑
l=1

Hal(α̂)
T Hal(α̂) +

L∑
l=1

m∑
i=1

al,i(α̂)Hal,i(α̂), (3.5)

where ∇ is the gradient operator and Hal is the Jacobian of al. In Newton’s method,

δα̂(i) is obtained from

−HQ(i)δα̂(i) = ∇Q(i), (3.6)

supposing that the objective function Q(α̂) is twice differentiable and its Hessian

HQ(α̂) is Lipschitz continuous. It can be shown [81] that for a starting point α̂(0)

sufficiently close to α̂�, the iterative algorithm converges quadratically to α̂�.
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3.1.3 Gauss-Newton Method

In some least squares problems, the first term in (3.5) dominates the second term when

either the residuals al(α̂) or the residual Hessians Hal,i(α̂) are relatively small. This

will make problems analytically and computationally efficient; however, to ignore the

second term in (3.5) which is difficult to compute, α̂ may need to be sufficiently close

to the optimal solution α̂� [81]. The Gauss-Newton method which is a modification

to Newton’s method is a solution to nonlinear least squares problems and is based on

approximating (3.5) as follows:

HQ(α̂) ≈
L∑
l=1

Hal(α̂)
T Hal(α̂), (3.7)

When
∑L

l=1 Hal(α̂)
T Hal(α̂) is a close approximation to HQ(α̂), the rate of con-

vergence for the Gauss-Newton algorithm becomes the same as that for Newton’s

algorithm (i.e. the number of iterations until convergence is the same for both algo-

rithms). Furthermore, the Gauss-Newton method is computationally less expensive

than Newton’s method in each iteration [81, 82, 95]. Therefore, the Gauss-Newton

algorithm performs faster than the Newton’s method. As a drawback of Newton’s

algorithms, δα̂ may not always be a descent direction, since the Hessian matrix

HQ(α̂) may not always be positive definite whereas, in the Gauss-Newton method,

this condition will be omitted through the approximation of the Hessian matrix with

the positive semidefinite expression (3.7). For more details on the advantages of the

Gauss-Newton method over the Newton’s method read the Numerical Optimization

textbook by Nocedal and Wright [81].

Using Taylor’s theorem, the Gauss-Newton algorithm can be performed by lin-

earizing each residual al(α̂) in (3.1) around a nominal vector ᾱ. The linear approxi-

mation of al(α̂) using a first-order Taylor series expansion is given by
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al(ᾱ+ δα̂) = βl −ψl(ᾱ+ δα̂)

≈ βl −ψl(ᾱ)−Hψl
(ᾱ)T δα̂, (3.8)

where Hψl
is the Jacobian of ψl.The nonlinear least squares problem is converted to

a linear least squares problem by substituting the linearized residuals in (3.2). The

objective function is approximated as:

Q(ᾱ+ δα̂) =
1

2

m∑
l=1

‖al(ᾱ+ δα̂)‖2

≈ 1

2

m∑
l=1

‖(βl −ψl(ᾱ)−Hψl
(ᾱ)T δα̂)‖2. (3.9)

In order to compute the minimizer of the objective function (3.9), we use the initial

minimizer α̂(0) such that:

−
(

L∑
l=1

Hal(α̂(0))
T Hal(α̂(0))

)
δα̂(0) =

L∑
l=1

Hal(α̂(0))
T (yl − fl(α̂(0))) . (3.10)

then updating by α̂(1) = α̂(0)+δα̂(0) gives a new initial point. We keep iterating and

updating this step until the desired result obtained, that is, ‖δα̂(i)− δα̂(i− 1)‖ ≤ ε

for some small positive value of given ε. This process will guarantee [44, 82] that the

Gauss-Newton iteration converges locally to α̂�.

3.2 Bundle Adjustment for Mobile Robot State

Estimation

Bundle Adjustment (BA) is an estimation problem which utilizes image projections

of 3D points to reconstruct some 3D scene and to estimate motion parameters such

as camera poses. BA which is formulated as a nonlinear least squares problem was
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first used in photogrammetry and has been recently applied to a number of computer

vision problems [93, 16, 43, 97]. BA is flexible in choosing the type of camera, land-

marks and error models [93]. In Bundle Adjustment, a cost function which is the

sum of quadratic error terms is minimized to achieve an optimal array of parameter

(landmarks positions and camera poses) estimates. The numerical optimization of

the cost function can be performed using different algorithms including the iterative

Gauss-Newton algorithm that will be used in this thesis.

It was mentioned in Chapter 2 that the landmark positions in 3D are interpreted

in homogeneous coordinates. In the Gauss-Newton algorithm a system of linear equa-

tions are solved to find the optimal solution which minimizes the cost function. During

this iterative process, problems may arise with the convergence of the algorithm if the

far points are stated in Euclidean coordinates as they tend to infinity. Nonetheless,

the homogeneous points can easily represent points at infinity and therefore they are

beneficial to the Gauss-Newton algorithm [49]. In order to interpret these homoge-

neous points in the camera frame, a transformation matrix is defined that combines

the rotation and translation information associated with the camera frame at each

time step.

In the frame-to-frame BA problem, it is supposed that the camera pose is known

at a previous time k′ and the goal is to estimate the camera pose at the current time

k with respect to the previous camera frame. Therefore, the transformation matrix

T̂k is an estimate which describes the change in the orientation and translation of the

camera with respect to the previous camera frame (see Figure 2.8). In this problem,

the homogeneous form of the position estimate of landmark j interpreted in the

previous camera frame is described by p̂j. The position estimate of landmark j can

be interpreted in the current camera frame using the transformation matrix T̂k.

Define x̂k and x̂jk
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x̂k :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

π̂k

ε̂1
...

ε̂J

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, x̂jk :=

⎡⎢⎣ π̂k

ε̂j

⎤⎥⎦ , (3.11)

where π̂k is the estimate of the 6×1 camera pose vector at time k with respect to the

previous camera frame and ε̂j is the estimate of the 3 × 1 position vector associated

with landmark j interpreted in the previous camera frame. The homogeneous form

of the landmark position in the current camera frame is obtained by gjk as follows:

gjk(x̂jk) = T̂k p̂j , gjk ∈ R
4. (3.12)

Expressions (2.3) to (2.10) show the dependence of T̂k on π̂k and the dependence of

p̂j on ε̂j . Therefore, gjk in (3.12) depends on x̂jk using (3.11).

The function hjk(·) determines the predicted image coordinates of landmark j

captured by the camera at the current time k. Using (3.12) and the camera model

f(·) from (2.18), we have the following expression

hjk(x̂jk) = f(T̂k p̂j). (3.13)

The function hjk′(·) determines the predicted image coordinates of landmark j cap-

tured by the camera at a previous time k′ using the camera model f(·), which is

described in (2.18), as follows:

hjk′(x̂jk′) = f(p̂j), (3.14)

where

x̂jk′ :=

⎡⎢⎣ π̂k′

ε̂j

⎤⎥⎦ , π̂k′ = 06×1. (3.15)



Chapter 3. State Estimation Algorithm 29

3.2.1 Simulation Setup

This step covers the process of producing noisy measurements for simulation analysis

only. In real VO experiments, acquired images are processed and the measurements

for motion estimation are obtained from the output of the outlier rejection block in

the VO pipeline described in Chapter 2.

Define the true values of the position vector associated with landmark j and the

transformation matrix at time k by pj,t and Tk,t, respectively. Let yjk,t = f(Tk,t pj,t)

denote the noise-free pixel coordinates of landmark j at time k. To simulate real

measurements, noise with a zero-mean Gaussian distribution njk is added to yjk,t.

This results in the corresponding noisy measurements, yjk composed of four pixel

coordinates from left and right images, and is given by

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ul

vl

ur

vr

⎤⎥⎥⎥⎥⎥⎥⎥⎦
jk

= yjk = yjk,t + njk. (3.16)

The covariance of the zero-mean Gaussian noise vector njk is given by

Rjk :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

σ2
ul

0
σ2
vl

σ2
ur

0 σ2
vr

⎤⎥⎥⎥⎥⎥⎥⎥⎦
jk

. (3.17)

The parameter σ2
ul

is the variance of the noise added to the horizontal coordinate of

the left image and a similar definition holds for each of the other image coordinates.



Chapter 3. State Estimation Algorithm 30

In addition, measurements are generated at a previous time k′ using yjk′,t = f(pj,t)

yjk′ = yjk′,t + njk′. (3.18)

It is worthwhile to point out that no matter whether the measurements are ob-

tained from real processed data captured by the stereo camera or generated artificially

from equation (3.16), it will be referred to as yjk,meas and yjk′,meas (associated with

landmark j at time k and time k′).

The noisy measurements generated in this subsection will be used to form the

residual terms of the objective function of our estimation problem.

3.2.2 Minimization Problem

The Bundle Adjustment method which is based on the Gauss-Newton algorithm is

used to estimate the location of the landmarks and the camera poses. The Gauss-

Newton algorithm is applied to minimize the objective function Qba which is con-

structed by the set of reprojection error vectors labelled {ejk, ejk′} and to solve for

the optimal state vector x̂�
k that includes information about the position of land-

marks and the camera pose. Minimizing the objective function provides us with the

maximum likelihood estimate for the new camera pose and landmark positions.

To construct the objective function of the system, the error terms are formed. The

reprojection error terms represent the difference between the predicted image coordi-

nates of landmarks (obtained using the camera model) and the actual measurements.

In VO experiments, these are the real images of the scene captured by the stereo cam-

era moving in a terrain. In simulations these are the noisy measurements generated

by our simulator. The definition of the set of error terms at previous and current
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times for landmark j is given by

ejk(x̂jk) := yjk − hjk′ (x̂jk) , (3.19)

ejk′(x̂jk′) := yjk′ − hjk′ (x̂jk′) . (3.20)

The error terms are used to create the system objective function in the BA problem

denoted by Qba:

Qba(x̂k) :=
1

2

∑
j

(
ejk(x̂jk)

TR−1
jk ejk(x̂jk) + ejk′(x̂jk′)

TR−1
jk′ejk′(x̂jk′)

)
, (3.21)

where k and k′ are fixed. A nonlinear least squares problem is now formulated by the

objective function Qba(x̂k). In this problem, we seek to find x̂�
k that minimizes the

objective function.

3.2.3 Gauss-Newton Method

The Gauss-Newton algorithm is an iterative algorithm that uses a set of initial guesses

to solve the problem in the first iteration. Then the initial guesses get updated to be

used in the next iteration and the algorithm is iterated until convergence. According

to Subsection 3.1.3, the nonlinear error terms in (3.21) are to be substituted by

their linear approximations and the problem will be solved as a linear least squares

problem. To linearize the error terms around a nominal state vector, x̄, we first

explain the perturbation from the nominal state, δx̂, in the following.

Perturbations

Suppose the nominal state vector x̄jk is perturbed to
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x̂jk := x̄jk + δx̂jk = x̄jk +

⎡⎢⎣δπ̂k

δε̂j

⎤⎥⎦ . (3.22)

The state vector perturbation δx̂jk can be described by {δT̂k, δp̂j} that determine

the perturbations associated with the transformation matrix T̂k and the landmark

position vector p̂j . For the SO(3) operators (·)× and (·)× refer to (2.17) and (2.11)

(Chapter 2). The perturbation of T̂k is approximated by considering up to the first-

derivative term in the Taylor series expansion of the corresponding exponential func-

tion around zero [74]:

T̂k := δT̂kT̄k = e−δπ̂�
k T̄k

≈ (
1− δπ̂�

k

)
T̄k. (3.23)

The perturbation of p̂j is given by

p̂j := p̄j + δp̂j = p̄j + Gjk′ δx̂jk′. (3.24)

where

Gjk′ :=

[
04×6 P

]
, and P :=

⎡⎢⎣ 13×3

01×3

⎤⎥⎦ (3.25)

is a projection matrix to transform 3 × 1 landmark perturbation vectors to 4 × 1

homogeneous vectors.

Linearization

This system contains two nonlinearities that will be linearized in the development

of the estimation algorithm. The first is the transformation of landmarks into the

camera frame at current time k (i.e. when camera moves to the next frame in the
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frame-to-frame VO system). The transformation function gjk(x̂jk) is

gjk(x̂jk) = T̂k p̂j . (3.26)

The Gauss-Newton algorithm is based on linearized expressions that are perturbed

around nominal values shown by (̄·). Moreover, the perturbation quantities are spec-

ified by δ(·) in the following computations. Define the homogeneous point operator

(·)� that transform a 4× 1 vector to a 4× 6 matrix by:

z� =

⎡⎢⎣ζ
η

⎤⎥⎦
�

:=

⎡⎢⎣η1 ζ×

0T 0T

⎤⎥⎦ , (3.27)

where ζ is a 3× 1 vector and η is a scalar. It can be shown that for any 6× 1 vector

w,

w�z ≡ −z�w. (3.28)

Suppose that x̄jk is perturbed to x̂jk by δx̂jk. The nominal variables satisfy

ḡjk(x̄jk) := T̄kp̄j . (3.29)

We can now perform the linearization of gjk(x̂jk) around x̄jk:

gjk(x̄jk + δx̂jk) ≈
(
1− δπ̂�

k

)
T̄k (p̄j + P δε̂j)

≈ T̄kp̄j − δπ̂�
k T̄kp̄j + T̄kP δε̂j − δπ̂�

k T̄kP δε̂j

≈ T̄kp̄j − δπ̂�
k T̄kp̄j + T̄kP δε̂j

≈ T̄kp̄j + (T̄kp̄j)
�δπ̂k + T̄kP δε̂j

= ḡjk + Gjk δx̂jk, (3.30)
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where the second order terms have been dropped and

Gjk :=

[(
T̄kp̄j

)�
T̄kP

]
. (3.31)

In the next step, the camera model used to convert the landmark coordinates to

the image coordinates is linearized. For this, we compose the camera model f(·) from
(2.18) with the nonlinear transformation function gjk as follows:

hjk(x̂jk) = (f ◦ gjk)(x̂jk) = f(gjk(x̂jk)). (3.32)

The nominal variables satisfy

h̄jk(x̄jk) := f(ḡjk) (3.33)

To linearize the nonlinear function hjk(x̂jk) around x̄jk, the transformation function

gjk(x̂jk) from (3.30) is plugged into the camera model f(·) using chain rule for the

first derivatives (see (3.32)):

hjk(x̄jk + δx̂jk) = f
(
gjk(x̄jk + δx̂jk)

)
≈ f(ḡjk + Gjkδx̂jk︸ ︷︷ ︸

δgjk

)

≈ f(ḡjk) + Fjk δgjk

≈ h̄jk + Hjk δx̂jk, (3.34)

where we define the following:

Hjk := FjkGjk, Fjk :=
∂f
∂g

∣∣∣∣
ḡjk

= M

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
ḡ3

0 − ḡ1
(ḡ3)2

0

0 1
ḡ3
− ḡ2

(ḡ3)2
0

0 0 0 0

0 0 − ḡ4
(ḡ3)2

1
ḡ3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
jk

. (3.35)
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At this step we compute the quantities associated with the previous time frame k′.

The nonlinear function hjk′ is

hjk′(x̂jk′) = f(p̂j), (3.36)

and the nominal variables satisfy

h̄jk′ := f(p̄j). (3.37)

It is assumed that in the frame-to-frame VO the previous frame is fixed at time k′,

thus, no perturbations exist regarding the camera transformation. This means that

only the perturbations of the location of landmarks illustrated in (3.24) are accounted

in the computations. Suppose ε̄j is perturbed to ε̂j by δε̂j. Now we linearize hjk′(ε̂j)

around ε̄j:

hjk′(x̄jk′ + δx̂jk′) = f
(
p̄j + P δε̂j

)
≈ f(p̄j) + Fjk′Pδε̂j

= f(p̄j) + Fjk′Gjk′δx̂jk′

= h̄jk′ + Hjk′ δx̂jk′, (3.38)

and the quantities used in above computations are defined as:

Hjk′ := Fjk′Gjk′, Fjk′ :=
∂f
∂p

∣∣∣∣
p̄j

= M

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
p̄3

0 − p̄1
(p̄3)2

0

0 1
p̄3
− p̄2

(p̄3)2
0

0 0 0 0

0 0 − p̄4
(p̄3)2

1
p̄3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
j

. (3.39)

Thus, the nonlinear measurement function is expressed as the function h(·) and the
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Jacobian matrix including the first derivatives is referred to as H(·).

After linearizing hjk′ and hjk, the linear approximations of the error terms de-

scribed in (3.19) and (3.20) are given by

ejk(x̂jk) ≈ yjk − h̄jk −Hjk δx̂jk := ējk −Hjk δx̂jk, (3.40)

ejk′(x̂jk′) ≈ yjk′ − h̄jk′ −Hjk′ δx̂jk′ := ējk′ −Hjk′ δx̂jk′. (3.41)

The nominal full state x̄k is perturbed to x̂k by the overall state perturbation δx̂k

given by

δx̂k =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

δπ̂k

δε̂1
...

δε̂J

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (3.42)

To write the objective function Qba (see (3.21)) in terms of δx̂k, we need to use

projection matrices Pjk and Pjk′ that obtain δx̂jk and δx̂jk′ components from δx̂k.

The projection matrices are obtained by

δx̂jk := Pjk δx̂k, δx̂jk′ := Pjk′ δx̂k, (3.43)

where δx̂jk and δε̂j are described in (3.22). Define the following quantities

Q̄ba :=
1

2

∑
j

(
ēTjkR

−1
jk ējk + ēTjk′R

−1
jk′ ējk′

)
, (3.44)

qba := −
∑
j

(
PT
jkH

T
jkR

−1
jk ējk + PT

jk′H
T
jk′R

−1
jk′ ējk′

)
, (3.45)

Qba :=
∑
j

(
PT
jkH

T
jkR

−1
jk HjkPjk + PT

jk′H
T
jk′R

−1
jk′Hjk′Pjk′

)
. (3.46)

The linear approximations of error terms given by (3.40) and (3.41) are substituted
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into the expression of the objective function Qba. The final expression is written in

terms of δx̂k using (3.42) to (3.46) as follows:

Qba(x̄k + δx̂k) :=
1

2

∑
j

(
ejk(x̂jk)

TR−1
jk ejk(x̂jk) + ejk′(x̂jk′)

TR−1
jk′ejk′(x̂jk′)

)
≈ 1

2

∑
j

(
(ējk −Hjk Pjk δx̂k)

TR−1
jk (ējk −Hjk Pjk δx̂k) +

(ējk′ −Hjk′ Pjk′ δx̂k)
TR−1

jk′(ējk′ −Hjk′ Pjk′ δx̂k)

)
≈ Q̄ba + qT

ba δx̂k +
1

2
δx̂T

k Qba δx̂k. (3.47)

After elaborating on the steps to construct the objective function Qba(x̄k + δx̂k), we

now take its derivative using (3.47) in order to minimize the function with respect to

δx̂k:
∂TQba(x̄k + δx̂k)

∂ δx̂k

= qba + Qba δx̂k. (3.48)

We continue by setting (3.48) to zero and finding the solution of the following linear

system that is the optimal perturbation, δx̂�
k, of the system:

−Qbaδx̂
�
k = qba. (3.49)

3.2.4 Iteration Scheme

The Gauss-Newton algorithm is an iterative algorithm for which we define the iter-

ation number by the notation (i). An iterative algorithm starts by a set of initial

guesses and iterates using some update equations until convergence.

Initial Guess

In the first iteration, the algorithm is fed by some initial guess for the nominal state

{T̄k, p̄j}(1). The initial guess for the nominal camera pose at time k is selected the
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same as the camera frame at time k′

T̄k(1) = 14×4, (3.50)

where 14×4 is a 4 × 4 identity matrix. We know that f(p̂j) gives a set of noise-free

measurements corresponding to landmark j captured by the camera at time k′. To

initiate the position of landmark j in the first iteration, the observation vector yjk′,meas

is plugged into f−1(·) as follows:

p̄j(1) = f−1(yjk′meas). (3.51)

Iteration

In the i-th iteration, the optimal perturbation δx̂�
k(i) is obtained by

−Qba(i)δx̂
�
k(i) = qba(i), (3.52)

where Qba(i) and qba(i) are obtained by (3.46) and (3.45) evaluated at x̄k(i) and using

the measurement vectors yjk′,meas and yjk,meas. Note that the measurement vectors

remain the same in all iterations. In iteration i, the optimal transformation pertur-

bation, δT̂�
k(i), and the optimal perturbation of landmark position, δp̂�

j (i), which are

obtained form the optimal perturbation of the full state, δx̂�
k(i), are given by

δT̂�
k(i) :=

⎡⎢⎣ Ck(δφ̂
�

k) Sk(δφ̂
�

k) δρ̂
�
k

0T 1

⎤⎥⎦ (i),

δp̂�
j(i) := Pδε̂�j(i), ∀j = 1 . . . J, (3.53)

where the optimal perturbations δρ̂�
k(i), δφ̂

�

k(i), and δε̂�j(i) are extracted from δx̂�(i).

The matrices Ck and Sk were introduced in Chapter 2 in the expressions (2.6) and

(2.7) and P is a projection matrix presented previously in (3.25). For more information
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on the procedure of creating {δT̂k, δp̂j} using perturbation in translation and rotation

of the camera, δρ̂ and δφ̂k, and the perturbation in the landmark position, δε̂j, refer

to Barfoot et al. [5].

The optimal perturbations of iteration i, {δT̂�

k, δp̂
�
j}(i), are used to update the

nominal state of iteration i, {T̄k, p̄j}(i), and produce the nominal state of the next

iteration as follows:

T̄k(i+ 1) = T̂k(i)

= δT̂�
k(i)T̄k(i), (3.54)

p̄j(i+ 1) = p̂j(i)

= δp̂�
j (i) + p̄j(i). (3.55)

T̄k(i+ 1) and p̄j(i+ 1) are used as the start point of the next iteration.

Convergence

The algorithm is iterated by equations (3.54) and (3.55) until the following stopping

criterion is met

|(δx̂�
k(i)− δx̂�

k(i− 1))T (δx̂�
k(i)− δx̂�

k(i− 1))| < 10−6. (3.56)

The increase or decrease of the threshold value could impact the performance of the

estimation algorithm. We used 10−6 as the threshold value in our algorithm. Once

the stopping criterion is met, the last updated state is our desired state estimate,

{T̂k, p̂j}.

3.2.5 Summary

This subsection presents our nonlinear estimator, which is based on the Gauss-Newton

method, as a function. This function obtains measurements, ymeas, as input and pro-
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duces the state estimate, x̂k, as output. In the VO estimation problem, we are only

interested in the camera pose estimates. Therefore, we only indicate the transforma-

tion matrix T̂k or equivalently the camera pose vector π̂k as the output of the VO

system. The nonlinear estimator is denoted by hvo

π̂k = hvo(ymeas), (3.57)

where all the landmarks that are observed by the stereo camera at time k′ and time

k are combined into a measurement vector as follows:

ymeas :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1k′

...

yJk′

y1k

...

yJk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
meas

(3.58)

Now that the algorithm of our estimator is described completely, we will state, in the

next chapters, the issue regarding the presence of bias in the stereo VO problems and

propose a novel technique to remove bias from the path estimates of a rover.



Chapter 4

Bias Estimation Machinery

This chapter begins with a general definition of bias in statistics and explains the bias

terminology in the robotics field, specially in visual odometry problems. Section 4.2

demonstrates bias using two simplified symmetric and asymmetric cases. This is the

first step in identifying bias for the VO problems in this thesis. Bias estimation ma-

chinery is described in Section 4.3. Different methods of estimating bias including the

Monte Carlo method, the sigma-point technique, and the Box method are introduced

in this section. In Section 4.4, the generation of truncated Gaussian statistics for use

in the bias estimation algorithm is described, which accounts for rejected observations

based on the disparity threshold. Bias estimation for stereo-triangulation associated

with the position estimation of a single landmark is covered in Section 4.5.

4.1 Bias Terminology

In the statistics literature, an unknown parameter θt associated with a probability

distribution can be estimated based on observations arising from the probability dis-

tribution, and modelled as a random vector γ. This is performed by an estimator

41
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hest(γ). In the case that the expected value of the estimator equals the true value of

the parameter θt we have unbiasedness, otherwise there is a systematic error or bias

b that is defined as follows:

b = E[hest(γ)]− θt, (4.1)

where the expectation is performed with respect to the probability distribution pa-

rameterized by θt [64]. In the visual odometry problems, the motion of a mobile

robot is estimated using a nonlinear estimation algorithm (Bundle Adjustment). The

expected value of the state estimates may deviate from ground truth due to the non-

linearities in the model. This deviation from ground truth is called bias and is present

for specific configurations of landmarks and the camera pose in the VO setup.

4.2 Bias Identification using Symmetric and Asym-

metric Cases

To systematically identify bias in VO path estimates, we designed two simplified

setups with different configurations of landmarks. In both setups the camera moves

forward in the direction of z−axis (along horizontal) towards the landmarks. In two

consecutive time frames, five landmarks are observed from two different viewpoints

at time k′ and time k. As the robot moves, the same configuration of landmarks

with respect to the camera poses is preserved for each pair of consecutive frames.

The z−axis of the camera frame is aligned with the traversed path and the y−axis
points to the ground where the origin of the camera frame is located above the

ground. As already pointed out above, we consider two setups to demonstrate that

bias appears in the estimates when we change the configuration of landmarks. The
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first setup describes a symmetric configuration in which four landmarks are located

at corners of a hypothetical rectangle on a plane perpendicular to z−axis positioned
at some positive z (symmetric with respect to x− and y− axes), and one landmark

is located on the z−axis closer to the camera frame than the plane of four landmarks

(to facilitate bundle adjustment). This configuration of landmarks with respect to

the camera frames provides a symmetric pattern in image space; thus, it is referred

to as the symmetric configuration. In the asymmetric configuration (in image space)

the plane of landmarks is tilted in a way that the pair of top landmarks become

farther than the bottom ones with respect to the camera frame. The asymmetric

case is representative of many real-world situations; for example, a planetary rover

traversing a surface typically has far-away landmarks in the top of its images and

close ones in the bottom. The symmetric and asymmetric configurations are shown

in Figures 4.1 and 4.2. The x−, y−, and z− axes of the camera frame are shown in

green, blue, and red in the figures (the frame at previous time is faded).
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Figure 4.1: A symmetric configuration of landmarks in 3D space along with the
camera frame at the previous time and current time (camera moves one metre in the
z−axis direction.)

It is verified by Monte Carlo simulations that the asymmetric configuration re-
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Figure 4.2: An asymmetric configuration of landmarks in 3D space along with the
camera frame at the previous time and current time (camera moves one metre in the
z−axis direction.)

sults in biased camera path estimates, whereas the symmetric configuration produces

unbiased estimates. The most frequent types of image noise can be represented by

the Gaussian distribution. Therefore, to compare the results obtained for symmetric

and asymmetric cases, we generated a large number of different noisy measurement

samples by adding Gaussian noise to the noise-free landmark observations (in image

space). Then, we passed these noisy measurement samples through the nonlinear

estimator in the VO problem, hvo(·) (see Subsection 3.2.5), to produce camera path

estimates. Note that for illustration we have compounded the 1-metre results (ob-

tained for one pair of time frames) 500 times to show what the effect of the bias would

be over a realistic distance. Figure 4.3 shows the mean of these path estimates. The

simulation result shows that there is a significant bias in the direction of y−axis in the

asymmetric case, which grows in a superlinear manner as the camera travels. Hence,

certain configurations of landmarks could give rise to bias in estimates. Monte Carlo

simulation is computationally extremely expensive, therefore we seek a more efficient

method of estimating bias. The algorithms of estimating bias using the Monte Carlo
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Figure 4.3: Path estimates for symmetric and asymmetric cases based on brute-force
Monte Carlo simulations for the purpose of bias identification.

method and other methods are described in more detail in Section 4.3.

4.3 Bias Estimation Machinery

In this section, we describe an approach to quantify bias in a generic nonlinear esti-

mation problem. To this end, we consider the estimator as a black box and analyse

its output when we vary the noise on its input measurements.

We assume that we have an estimator, hest(·), that takes measurements, ymeas,

with covariance matrix, R, as input and returns a state estimate, x̂, as output:

x̂ = hest(ymeas). (4.2)

The following expression describes bias assuming that we know the true state, xt:

b = E[x̂]− xt. (4.3)
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To start the process of quantifying bias we generate noise-free measurements, yt, using

our nonlinear measurement function (e.g., our camera model from (2.18)), f(·), and
the state, xt:

yt = f(xt). (4.4)

A brute-force method of estimating the bias is to use Monte Carlo simulation where

we vary the noise on the measurements; to do so, we draw a large number, N , of

random samples from zero-mean Gaussian distribution,

yi ← yt + ni, ni ∼ N (0,R), 1 ≤ i ≤ N. (4.5)

We then run the estimator for each measurement sample and average the results to

compute the bias. Clearly, the Monte Carlo approach will be computationally expen-

sive since a large number of samples is needed. For instance, the number of samples

for the simulation shown in Figure 4.3 was N = 20000. Accordingly, we propose

a second sampling approach based on the sigma-point method [54]. The so-called

sigma-point approach is a proven method that is widely used in nonlinear filtering

(such as sigma-point Kalman filters) [53, 55, 63, 72, 75, 76]. As an example, the

sigma-point method is utilized by Coogle et al. [21] to reduce bias during measure-

ment conversion from sine-space coordinates to Cartesian coordinates in a long-range

radar problem. The sigma-point method is computationally efficient since it utilizes

a discrete sampling distribution with the same first and second moments as the orig-

inal distribution. The samples from this discrete distribution are called sigma-points

and will be transformed by the nonlinear estimator. The sigma-points are chosen to

lie on the principal component of the covariance matrix, R, in addition to one point
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that represents the mean of the distribution [89]. To do so, we first compute Sch, the

Cholesky factor of the measurement noise covariance matrix, R:

Sch ST
ch = R, Sch = [s1 · · · sL]. (4.6)

Moreover, the minimal number of sigma-points that maintain information associated

with the sampling distribution is M = 2L+1 where L is the length of the observation

vector yt. Prior to determining the sigma-points, we define the weighting factors ωi:

ωi =

⎧⎪⎨⎪⎩
λ

L+λ
if i = 1

1
[2(L+λ)]

otherwise
i = 1 . . .M, (4.7)

where λ = α2(L+κ)−L, κ is normally 0, and α ∈ (0.1, 1) is a sigma-point spreading

parameter [69]. The set of sigma-points, which is symmetric, is given by:

y1 = yt

yl+1 = yt +
1√
2ωl+1

sl

yl+L+1 = yt − 1√
2ωl+L+1

sl

l = 1 . . . L. (4.8)

Regardless of the sampling approach, we then pass all the samples through the non-

linear estimator,

x̂i = hest(yi), (4.9)

and combine them to compute the bias as follows:

b ≈
I∑

i=1

ωi x̂i − xt, (4.10)

where I = N and ωi =
1
N

in the Monte Carlo approach and I = M and ωi are given
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in (4.7) for the sigma-point approach.

Box [14] provides a third method that is analytical rather than sample-based. In

the method proposed by Box, the expected bias in estimates achieved by maximum

likelihood is calculated quantitatively using Taylor series expansion up to second

order [14]. In the pose optimization step of VO, we seek to minimize a negative-log-

likelihood criterion:

Q =
1

2
(y− f(x̂))TR−1(y− f(x̂)), (4.11)

where x̂ is the state estimate and y satisfies the measurement model (4.5). Define W

by

W := HTR−1H, (4.12)

where H is the Jacobian of f(·) (evaluated at xt). Then Box shows that the bias is

given by

E[x̂]− xt ≈ −1
2

W−1HTR−1
P∑
i=1

1i tr(HiW−1), (4.13)

where P is the dimension of our state vector, 1i is the ith column of the identity

matrix, and Hi is the Hessian of the ith row of f(·) (evaluated at xt) [14]. Further

details on how to use (4.13) is covered in Section 5.1.1 for VO problems.

4.4 Truncated Gaussian Statistics for Bias Estima-

tion

A disparity threshold is used in our setup to assure the validity of the stereo ob-

servations. A truncation is applied based on the disparity threshold in a way that
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measurements with too small or negative disparity threshold (corresponding to the

landmarks located too far from the camera or behind it) are discarded from the set

of noisy measurements that are produced based on a Gaussian distribution. This

has the effect of modifying the original noise distribution. Therefore, we attempt to

refit a new Gaussian to the measurement samples from Monte Carlo simulations that

are filtered by the disparity threshold (i.e. samples that are valid). This is clarified

through an example of imposing truncation on a large number of samples using a

disparity threshold of 4 pixels and the result is depicted in Figure 4.4. It is observed

that during this process, many samples are truncated and so they will not be appro-

priate for use in our estimation algorithm. We also note that, in this example, the

original noise properties were uncorrelated between the left/right images, but after

applying the disparity threshold they are now correlated.

Figure 4.4: A disparity threshold is used to ensure stereo observations are valid (i.e.,
not too far away and not behind the camera). With Gaussian noise added to the noise-
free landmark observations, it is viewed that many of the noisy measurements (10000
sample used) fall on the ‘bad’ (red) side of the disparity threshold; this has the effect of
altering the effective noise properties of the camera. In the bias estimation algorithm,
we refit a new Gaussian based on the samples that pass (green) the disparity threshold.
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We now propose two different flavours of the sigma-point and Box methods that

take into account the effect of sample truncation imposed by the disparity threshold.

As shown in Figure 4.4, a new Gaussian is refitted to the valid observations. Hence-

forth, we use subscript ‘trun’ for the quantities that are computed using the set of

measurements that are filtered with the truncation operation. In order to use the

truncated Gaussian in the estimation algorithm we compute its mean, ymc
m,trun, and

covariance, Rmc
trun, by

ymc
m,trun =

1

Ntrun

Ntrun∑
i=1

ymc
i,trun, (4.14)

Rmc
trun =

1

Ntrun

Ntrun∑
i=1

(Δymc
i,trun) (Δymc

i,trun)
T , (4.15)

where Ntrun is the number of Monte Carlo samples remaining after truncation and

Δymc
i,trun = ymc

i,trun − ymc
m,trun.

The modified sigma-point method which is referred to as the truncated sigma-

point method replaces R by Rmc
trun in (4.6) and substitutes yt by ymc

m,trun in (4.8). The

parameter λ in the sigma-point approach is tuned to guarantee that all the generated

sigma-points pass the disparity threshold test. Then, we repeat all the steps described

in Section 4.3 to estimate the bias. The modified version of Box method which is called

the truncated Box method replaces the covariance matrix, R, by Rmc
trun and evaluates

the Jacobian and Hessian matrices at x̂mc
m,trun = f−1(ymc

m,trun) instead of the true state,

xt, where f−1 is the inverse the of camera model described in (2.20). In the results,

we will denote these modified methods with subscript ‘trun’ to indicate that they use

the truncated Gaussian statistics to account for the disparity threshold. To be clear,

although we make use of the samples generated by Monte Carlo to produce a Gaussian

distribution that reflects the effect of the disparity threshold, the Monte Carlo samples
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are not passed through the nonlinear estimator in the modified sigma-point or Box

methods; they are only used to generate modified measurement statistics.

4.5 Bias Estimation for Stereo-Triangulation

Before developing the bias estimation algorithm for VO problems, we first discuss how

to estimate bias in a simpler problem. In this section, we investigate the basic problem

of estimating bias in the position of one landmark using one stereo observation. In

this problem, the stereo camera is stationary; therefore, (2.16) simplifies to gj = pj .

In addition, we assume that we know the true position of the landmark,

pt =

⎡⎢⎣εt
1

⎤⎥⎦ , (4.16)

where εt = (xt, yt, zt) presents the true position of the landmark in 3D space. The

noise-free observation of the landmark using camera model f(·) (refer to (2.17)) is

given by

yt = f(pt). (4.17)

We next provide details on how each of the three bias estimation techniques discussed

in Section 4.3 can be used in this scenario.

To estimate bias using the Monte Carlo method, we use (4.5) to generate a set

of noisy measurements, yi, i = 1 . . .M . Also, the covariance matrix, R, is obtained

using (3.17). For simplicity, we assume σul
= σvl = σur = σvr = σ, where σ is the

standard deviation of noise added to each component of the vector yt in image space.

As presented in Figure 4.4, we then truncate (i.e., discard) the measurements
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with disparities less than the disparity threshold. Next, we pass each non-truncated

measurement, yi, through the inverse of the camera model, f−1(·) from (2.20), to

obtain its corresponding 3× 1 landmark position, εi, as follows:

p̂i =

⎡⎢⎣ε̂i
1

⎤⎥⎦ = f−1(yi). (4.18)

Using (4.10), the bias in the position of the landmark based on Monte Carlo simula-

tions is given by

b = E[ε̂]− εt

≈
I∑

i=1

ωi ε̂i − εt, (4.19)

where I = Ntrun (see Subsection 4.4) and ωi =
1

Ntrun
for the Monte Carlo method.

For the sigma-point method, we use sigma-points, yi, given in (4.8). If the trun-

cated sigma-point method is used for bias estimation, the truncated Gaussian statis-

tics are utilized to generate sigma-points as described in Subsection 4.4. Afterwards,

we pass each sigma-point, which is ensured to have a disparity larger than the dispar-

ity threshold by tuning λ, through f−1(·) to obtain its corresponding 3× 1 landmark

position, ε̂i. The bias is then computed from (4.19), where I = M , the number of

sigma-points, and the ωi are calculated using (4.7).

For the method of Box, define the Jacobian and the Hessian evaluated at pt

denoted by F and F :

F :=
∂f
∂p

∣∣∣∣
pt

, F :=
∂2fi

∂p∂pT

∣∣∣∣
pt

, (4.20)

where i is an index over the rows of f(·). The projection matrix P, which was used
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in Chapter 3 to render the landmark position in a 3 × 1 vector form, ε = (x, y, z),

defined in (3.25) is utilized to produce the Jacobian and the Hessian evaluated at εt

H := F P, H := PTF P, (4.21)

Next, W is computed using (4.12) and finally all the above matrices along with the

covariance matrix, R, from (4.5) are substituted into (4.13) and the bias, b = E[ε̂]−εt,
is calculated. If the truncated Box method is used, the matrices in (4.20) are all

evaluated at p̂mc
m,trun = f−1(ymc

m,trun) and Rmc
trun is used for bias estimation.

4.5.1 Simulation Results for Bias Estimation

In this section, to see the effect of increasing the nonlinearity of the problem, we

consider one landmark at the location (1,−5, z) in the fixed camera frame where z

varies (see Figure 4.5 for the structure of the setup).

Figure 4.6 illustrates the bias estimated by five different methods: the Monte

Carlo method, the sigma-point method (two versions), and the Box method (two

versions). It is interesting to observe that all the methods are quite similar until the

disparity threshold starts to remove a large number of samples and then only the

truncated sigma-point method (with the truncated Gaussian statistics) performs as

well as Monte Carlo (considered to be our ground truth). Based on the bottom plot

in Figure 4.6, the difference between the bias estimated by the truncated sigma-point

and Monte-Carlo is only 3.7× 10−4 metres when z = 22 metres. Although the trun-

cated Box method performs better than the Box method, it cannot track ground truth

the same way that the truncated sigma-point does (when the same samples become

truncated using the disparity threshold). It is worth noting that the estimated bias
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Figure 4.5: A stereo camera is fixed at (0,0,0). One landmark is located at (1,−5, z)
with respect to the camera frame and its z coordinate varies in the position estimation
problem.
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Figure 4.6: Bias estimation (by
component only) obtained by five
methods as a function of land-
mark position, z (other landmark
position coordinates are fixed at
(x, y) = (1,−5) in metres) (top);
the percentage of samples re-
moved by the truncation proce-
dure (middle); and the differ-
ence between by obtained based
on the Monte Carlo method (our
groundtruth) and the truncated
sigma-point method (bottom).
The measurement noise standard
deviation is σ = 0.25 pixels and
the disparity threshold is dth = 5
pixels.
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is larger for the landmarks that are located farther from the camera.

Figures 4.7 and 4.8 show the effects of varying the noise, σ, and the disparity

threshold, dth. Once more, only the truncated sigma-point method performs well in

tracking the Monte Carlo method. The other methods estimate bias in the wrong

direction. It is seen from Figure 4.7 that increasing noise results in the growth of the

estimated bias. The estimated bias increases 0.22 metres when the noise standard

deviation varies from 0.1 pixels to 0.7 pixels.

Additionally, we can observe in Figure 4.8 that the estimated bias increases by 0.09

metres as the disparity threshold increases from 4 pixels to 5.5 pixels. All the methods

except for the truncated sigma-point fail to track ground truth in this scenario when

the sample truncation begins.

Discussion on Simulation Results

From the simulation results, it can be inferred that without imposing necessary mod-

ifications on the sigma-point method, the method is not successful in estimating

bias in the position estimation problem. Without modification, the sigma-points are

generated based on pt and R. The method does not incorporate the effect of the

disparity threshold in sampling and thus some of the sigma-points may not pass the

disparity threshold test. Whether we truncate bad sigma-points or keep them to be

passed through the estimator, these deterministic points are not able to appropriately

represent the truncated sampling distribution and it will not estimate bias correctly.

Approximating the sampling distribution in a correct way (refitting a Gaussian to the

remaining samples) is, in fact, the reason the truncated sigma-point method succeeds

in the simulations.

The Box method is an analytical technique that employs the Taylor series expan-
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Figure 4.7: Bias estimation (by
component only) obtained by five
methods as a function of mea-
surement noise standard devia-
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all samples in the truncation pro-
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sigma-point method (bottom). In
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disparity threshold is dth = 5
pixels.
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Figure 4.8: Bias estimation (by
component only) obtained by five
methods as a function of dispar-
ity threshold, dth (top); the per-
centage of removed samples over
all samples in the truncation pro-
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ence between by obtained based
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viation is σ = 0.25 pixels.
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sion up to second order. Approximating the nonlinear function with its second-order

Taylor expansion may be one of the reasons that causes this method to fail. As a

result, the bias estimation model cannot represent the modified distribution correctly.

In our analysis, we do not develop the Box method to use higher order approxima-

tions; however, we think that doing so might improve its performance. In addition,

the Box method approximates bias dependency on the noise up to the quadratic term.

This might also be an inappropriate assumption that makes the method to fail. The

idea of the truncated Box method is to alter the covariance matrix and the operating

point used in the linearization process of the original Box method. Although the

modifications improve estimation, the result still does not track ground truth well.



Chapter 5

Visual Odometry Bias Estimation

This chapter is devoted to the bias estimation techniques used for the frame-to-

frame VO problem. In Section 5.1, we describe the analytical framework of the bias

estimation methods, including the Monte Carlo method, the sigma-point approach,

and the Box technique, in two phases.

The first phase, which is described in Subsection 5.1.1, considers the assumption

of knowing ground truth in the process of estimating bias and produces bias corrected

estimates. In the second phase discussed in Subsection 5.1.2, we eliminate the as-

sumption of knowing the true state and propose the bias estimation techniques which

will be applicable to real-world VO problems. We conclude this chapter by Section

5.2 in which we provide the simulation results for bias estimation and show the bias

corrected path estimates using different methods.

58
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5.1 Analytical Framework

5.1.1 VO Bias Estimation using Ground Truth

Mathematical Formulation for the Monte Carlo and the Sigma-point Meth-

ods in the VO Framework

In this section, we apply our bias estimation techniques to the frame-to-frame VO

problem outlined in Chapter 3, assuming that ground truth is available. We consider

a simple frame-to-frame scenario where a camera observes some landmarks at time

k′, moves, and then reobserves the same landmarks at time k; our job is to estimate

how the camera moved (and, optionally, the positions of the landmarks).

To produce sigma-points for our problem, we use J landmarks. Each landmark j

has an interpretation in image coordinates at time k′, yjk′,t, and time k, yjk,t given

by

yjk,t = f(Tk,tpj,t), yjk′,t = f(pj,t), (5.1)

where Tk,t and pj,t are the true state variables. We stack all these noise-free measure-

ments into one vector as follows:

yt :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1k′

...

yJk′

y1k

...

yJk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
t

. (5.2)

Then we use this constructed yt and equations (4.5) to (4.7) to generate required

samples (Monte Carlo samples or sigma-points), yi, as inputs to the nonlinear VO
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estimation algorithm, hvo (refer to (3.57)), to produce corresponding estimates {π̂k}i
as follows:

{π̂k}i = hvo(yi). (5.3)

We obtain each estimate of the transformation matrix, {T̂k}i, from the corresponding

camera pose estimate, {π̂k}i, using the expressions (2.4) to (2.10) in Chapter 2. The

estimates {T̂k}i are used to compute the following weighted sum

T̂′
k,m =

I∑
i=1

ωi {T̂k}i, (5.4)

where I is the number of Monte Carlo samples or sigma-points and the ωi were

introduced previously in Subsection 4.3. The weighted sum in (5.4) will result in a

4×4 matrix, denoted by T̂′
k,m, that is not in SE(3). To recover the required properties

to make (5.4) an element of SE(3), we first partition the result as follows:

T̂′
k,m :=

⎡⎢⎣ C′ d

0T 1

⎤⎥⎦
4×4

, (5.5)

where C′ is a 3× 3 matrix and d is a 3× 1 vector. Then, we define a mean estimate

to be an element of SE(3) denoted by T̂k,m as follows:

T̂k,m :=

⎡⎢⎣ C d

0T 1

⎤⎥⎦
4×4

, (5.6)

where C is a 3× 3 rotation matrix that satisfies

CTC = 13×3, (5.7)

and is given by

C := C′(C′TC′)−
1
2 . (5.8)
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We claim that C defined as in (5.8) is a rotation matrix. To achieve this, it is sufficient

to demonstrate that detC = 1 and C−1 = CT . It is obvious that detC = 1, we only

show the second part. For a symmetric invertible matrix A, (AT )−1/2 = (A−1/2)T ,

from which it follows that

CTC =
(
(C′TC′)−

1
2

)T

C′TC′(C′TC′)−
1
2

=
(
(C′TC′)−

1
2

)T

(C′TC′)
1
2

= (C′TC′)−
1
2 (C′TC′)

1
2

= I.

Note that when we obtain {T̂k}i from {π̂k}i (computed by (5.3)), we must similarly

verify that each {T̂k}i is constructed from a rotation matrix that satisfies (5.7) and has

a similar format as described in (5.6). Thus, {T̂k}i are also elements of SE(3). In gen-

eral, bias is defined as the difference between the mean value of a parameter estimate

and the true value of the parameter. Using the identity ‖Â−At‖ = ‖At‖‖Â A−1
t −1‖,

bias can also be presented by Â A−1
t . Knowing that Tk,t is an invertible matrix (refer

to Subsection 2.3.1), the bias in the pose estimate is given by

T̂k,bias ≈ T̂k,mT−1
k,t , (5.9)

This is the counterpart to (4.10) for estimating the bias in the T̂k matrix. We then

convert this 4 × 4 transformation matrix, T̂k,bias, to a 6 × 1 camera pose vector,

π̂k,bias, that contains information concerning translation and rotation of the camera

using (2.4) to (2.10). This facilitates easier plotting of the six degrees of freedom in

the pose bias. If we break π̂k,bias down into its components we have
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π̂k,bias =

⎡⎢⎣ ρ̂

φ̂

⎤⎥⎦
k,bias

, ρ̂k,bias =

⎡⎢⎢⎢⎢⎣
ρ̂x

ρ̂y

ρ̂z

⎤⎥⎥⎥⎥⎦
k,bias

. (5.10)

The estimated bias obtained by (5.9) is used to correct for bias in the VO estimates.

We now remove the estimated bias from the original VO estimate T̂k (= hvo(ymeas))

to provide a modified version of the estimate denoted by T̂k,mod

T̂k,mod = (T̂k,bias)
−1T̂k. (5.11)

While this approach does a reasonable job of estimating bias, it requires knowledge

of the ground truth trajectory, and therefore is not suitable for online use. To prove

that the bias is greatly reduced in the modified estimate, T̂k,mod, we compute bias

for T̂k,mod. Assume we obtain a sufficiently large number of estimates, {T̂k}i′. We

produce the corresponding modified estimates, {T̂k,mod}i′ , using (5.9) and (5.11). The

bias in T̂k,mod is given by

=

I′∑
i′=1

ωi′{T̂k,mod}i′T−1
k,t

=

I′∑
i′=1

ωi′{(T̂k,bias)
−1T̂k}i′T−1

k,t

=

I′∑
i′=1

ωi′{(T̂k,mT−1
k,t)

−1T̂k}i′T−1
k,t

≈
I′∑

i′=1

ωi′{(
I∑

i=1

ωi {T̂k}iT−1
k,t)

−1T̂k}i′T−1
k,t

≈ (
I∑

i=1

ωi {T̂k}iT−1
k,t)

−1
I′∑

i′=1

ωi′{T̂k}i′T−1
k,t

≈ I4×4 (5.12)
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where 14×4 is an identity matrix and the result shows the average of modified es-

timates contains no bias. Note that in the real VO problems only one estimate is

produced and corrected at one time step; therefore, we must look at the outcome of

the bias correction algorithm applied to a long distance of travel. We assume that

measurement noise standard deviation remains the same at each time step and land-

marks are randomly distributed on the ground. We show by simulations (refer to

5.2.2) that the effect of bias correction algorithm becomes apparent after traversing a

long path which is computed by compounding the estimates that are bias-corrected

at each time step. The methods described in this section will be utilized in Section

5.2 for bias estimation simulations.

Mathematical Formulation for Box’s Method in the VO Framework

In Chapter 4 we introduced Box’s expression for quantifying bias in a generic nonlin-

ear estimation problem (see Subsection 4.3). The expression was used for a stereo-

triangulation problem in Subsection 4.5. In this subsection, using [6] we show the

derivation procedure to produce an expression of bias estimate for the VO problem

by Box’s method. The expression will be used for simulations described in Section

5.1.2. We assume that δξ̂ is defined as the difference between our estimate, x̂, and

the true state, xt, for a specific realization of the sensor noise, n. Then the following

expectation over all realizations of sensor noise is our bias estimate,

E[x̂]− xt = E[x̂− xt] = E[ δξ̂ ]. (5.13)

We rederive the bias expression proposed by Box [14] for the VO problem. Our

measurement model is such that

yjk = hjk(xt) + njk,
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where njk ∼ N (0,Rjk) is zero-mean additive Gaussian sensor noise introduced in

(3.17) and hjk(·) is defined in (3.32). For simplicity, we stack all the sensor noise

variables into a column, n, such that njk = Pnjk n and Pnjk is the projection matrix

defined as:

Pnjk :=

[
04×4 · · · 04×4 · · · 04×4 04×4 · · · 14×4 · · · 04×4

]
(5.14)

1 · · · j · · · J 1 · · · j · · · J

In the Box’s bias estimation method, a second-order Taylor expansion of hjk and a

first-order expansion of Hjk will be utilized. Thus, we have the following linearized

expressions:

hjk(x̂jk) = hjk(xjk,t + δξ̂jk) ≈ hjk(xjk,t) + Hjk(xjk,t)Pnjk δξ̂

+
1

2

∑
i

1i δξ̂
T

Pn
T
jkHijk(xjk,t)Pnjk δξ̂, (5.15)

Hjk(x̂jk) = Hjk(xjk,t + δξ̂jk) ≈ Hjk(xjk,t) +
∑
i

1i Pn
T
jk δξ̂

THijk(xjk,t), (5.16)

where δξ̂jk = Pnjkδξ̂. Note that we can also state the same equations for the previous

time step k′ as above. Now we need to find an estimate, x̂, that minimizes the

objective function given by (3.21). Therefore the optimality criterion gives

∂TQ(xt)

∂xt

∣∣∣∣
x̂

= 0,

or equivalently ∑
j

l∈{k′,k}

Pn
T
jlHjl(x̂)TR−1

jl (yjl − hjl(x̂)) = 0,

or
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∑
j

l∈{k′,k}

Pn
T
jl

(
Hjl(xt) +

∑
i

1i δξ̂
T
Pn

T
jlHijl(xt)

)T

R−1
jl ×

(
yjl − hjl(xt)︸ ︷︷ ︸

njl

−Hjl(xt)Pnjl δξ̂ − 1

2

∑
i

1i δξ̂
T
Pn

T
jlHijl(xt)Pnjl δξ̂

)
≈ 0,

after substituting (5.15) and (5.16). We will assume that δξ̂ depends on n up to the

quadratic term:

δξ̂ = A(xt) n + b(n), (5.17)

where A is an unknown coefficient matrix and b(n) is an unknown vector that is a

quadratic function of n. Substituting (5.17) we have that∑
j

l∈{k′,k}

Pn
T
jl

(
Hjl(xt) +

∑
i

1i (A(xt) n + b(n))T Pn
T
jlHijl(xt)

)T

R−1
jl ×

(
Pnjl n−Hjl(xt)Pnjl (A(xt) n + b(n))

− 1

2

∑
i

1i (A(xt) n + b(n))T Pn
T
jlHijl(xt)Pnjl (A(xt) n + b(n))

)
≈ 0.

Multiplying out and keeping terms up to quadratic in n we have∑
j

l∈{k′,k}

Pn
T
jlHjl(xt)

TR−1
jl

(
Pnjl −Hjl(xt)PnjlA(xt)

)
n

︸ ︷︷ ︸
L n (linear in n)

−
∑
j

l∈{k′,k}

Pn
T
jlHjl(xt)

TR−1
jl

(
Hjl(xt)Pnjlb(n) +

1

2

∑
i

1i

(
PnjlA(xt)n

)T Hijl(xt)PnjlA(xt)n︸ ︷︷ ︸
scalar

)
︸ ︷︷ ︸

q1(n) (quadratic in n)

+
∑
i,j

l∈{k′,k}

Pn
T
jlHijl(xt)

TPnjlA(xt) n 1T
i R−1

jl

(
Pnjl −Hjl(xt)PnjlA(xt)

)
n︸ ︷︷ ︸

scalar︸ ︷︷ ︸
q2(n) (quadratic in n)

≈ 0.

In order to set the above expression identically zero (up to second order in n),
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L n + q1(n) + q2(n) = 0,

it then follows that L = 0, since considering the case of the opposing sign of n gives

−L n + q1(−n) + q2(−n) = 0,

using the fact that q1(−n) = q1(n) and q2(−n) = q2(n) due to the quadratic nature

of these terms, it then follows that L n = 0 and since n can take on any value, the

desired result is obtained, that is, L = 0. We now have

A(xt) = W(xt)
−1

∑
j

l∈{k′,k}

Pn
T
jlHjl(xt)

TR−1
jl Pnjl,

where

W(xt) :=
∑
j

l∈{k′,k}

Pn
T
jlHjl(xt)

TR−1
jl Hjl(xt)Pnjl.

Choosing this value for A(xt) and taking the expectation (over all values of n) we are

left with
E [q1(n)] + E [q2(n)] = 0.

Fortunately, it turns out that E [q2(n)] = 0. To see this, we need two identities:

A(xt)RA(xt)
T ≡ W(xt)

−1

A(xt)RPn
T
jk ≡ W(xt)

−1Pn
T
jkHjk(xt)

where Rjk = Pnjk R Pn
T
jk. We then have
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E [q2(n)] = E

⎡⎢⎢⎣ ∑
i,j

l∈{k′,k}

Pn
T
jlHijl(xt)

TPnjlA(xt) n 1T
i R−1

jl

(
Pnjl −Hjl(xt)PnjlA(xt)

)
n

⎤⎥⎥⎦
=

∑
i,j

l∈{k′,k}

Pn
T
jlHijl(xt)

TPnjlA(xt) E
[
n nT

]︸ ︷︷ ︸
R

(
Pn

T
jl − A(xt)

TPn
T
jlHjl(xt)

T
)

R−1
jl 1i

=
∑
i,j

l∈{k′,k}

Pn
T
jlHijl(xt)

T (Pnjl A(xt)RPn
T
jl︸ ︷︷ ︸

W(xt)−1Pn
T
jlHjl(xt)

−Pnjl A(xt)RA(xt)
T︸ ︷︷ ︸

W(xt)−1

Pn
T
jlHjl(xt)

T )R−1
jl 1i

= 0,

where we have made use of the above identities. As a result, the remaining term of

(5.1.1) is zero, that is,

E [q1(n)] = 0, (5.18)

or equivalently

E[b(n)] = K
∑
j

l∈{k′,k}

Pn
T
jlHjl(xt)

TR−1
jl

∑
i

1iE
[

nT A(xt)
TPn

T
jlHijl(xt)Pnjl A(xt) n

]

= K
∑
j

l∈{k′,k}

Pn
T
jlHjl(xt)

TR−1
jl

∑
i

1iE
[
tr

(
Pn

T
jlHijl(xt)Pnjl A(xt) n nT A(xt)

T
)]

= K
∑
j

l∈{k′,k}

Pn
T
jlHjl(xt)

TR−1
jl

∑
i

1i tr
(
Pn

T
jlHijl(xt)Pnjl A(xt) E

[
n nT

]︸ ︷︷ ︸
R

A(xt)
T

︸ ︷︷ ︸
W(xt)−1

)

= K
∑
j

l∈{k′,k}

Pn
T
jlHjl(xt)

TR−1
jl

∑
i

1i tr
(
Pn

T
jlHijl(xt)PPnjl W(xt)

−1
)
,

where tr(·) indicates the trace of a matrix and K = −W(xt)−1

2
. Employing again (5.17),

we observe that
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E[δξ̂] = A(xt) E[n]︸︷︷︸
0

+E[b(n)],

Finally, the bias estimation expression is given by

E[δξ̂] ≈ K
∑
j

l∈{k′,k}

Pn
T
jlHjl(xt)

TR−1
jl

∑
i

1i tr
(
Pn

T
jlHijl(xt)Pnjl W(xt)

−1
)
. (5.19)

For the truncated Box method, we utilize truncated Gaussian statistics in (4.14) and

(4.15) and our nonlinear estimator hvo(·) defined in (3.57) to produce the appropriate

operating point for evaluation of above matrices. Instead of using the true state, xt,

the matrices in (5.19) are evaluated at x̂mc
m,trun given by

x̂mc
m,trun = hvo(ymc

m,trun), (5.20)

where ymc
m,trun is obtained from (4.14). Moreover, the covariance matrix R used in the

expression (5.19) is substituted by Rmc
trun calculated from (4.15).

The first six elements of the bias estimate vector, E[δξ̂], in (5.19) form the 6× 1

vector π̂k,bias which describes the bias estimate in the camera pose. We obtain the

transformation matrix corresponding to π̂k,bias using (2.4) to (2.10) and denote it by

T̂k,bias. Using (5.11), the bias is removed from the estimate T̂k to produce T̂k,mod.

This method will be utilized in 5.2.1 for the bias estimation simulations.

5.1.2 VO Bias Estimation Without Ground Truth Knowl-

edge

In real-world VO problems, the assumption of knowing ground truth in our bias es-

timation algorithm is highly restrictive and unrealistic. In this section, we propose

a bias estimation method using only measurements. In statistics, the bootstrap tech-

nique is used to estimate statistical properties of a model [19] based only on random
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samples. This technique was first introduced by Efron [31] and developed by Efron

and Gong [34], Efron and Tibshirani [35], Diaconis and Efron [28], and the monograph

of Efron [32]. The method has been used in regression analysis for calculating bias

and the standard error in estimates. For instance, Kothari and Shanken [59] employ

the bootstrapping procedures to the regression analysis associated with the expected

market returns and their determinants.

Roughly speaking, this method uses the random samples to produce an estimate θ̂

of an unknown parameter θt. In addition, the random samples are used to construct

an empirical distribution, from which more random samples, called bootstrap samples,

are drawn. These bootstrap samples are used to estimate statistical properties of θ̂.

For example, they can be used to produce an estimate of θt, called the bootstrap

estimate and denoted by θbs. If we draw another random sample and repeat the

above process, we can generate another bootstrap estimate. After a sufficient number

of bootstrap estimates are produced, we can take the average of these bootstrap

estimates, θbs
m , and use it to define the bootstrap estimate of bias for the parameter

θt as [19, 50]

b̂ ≈ θbs
m − θ̂ (5.21)

The main result of the bootstrap is that when we obtain θbs
m by taking the average

of a large number of bootstrap estimates, θbs, we expect the values θbs
m − θ̂ and

E[θ̂] − θt to be nearly the same since the bootstrap distribution of θbs − θ̂ should

approximate the sampling distribution of θ̂− θt sufficiently well. Note that θ̂ is fixed

in the expression θbs−θ̂ and only θbs varies as we generate bootstrap estimates. While

we cannot resample in VO problems as in the usual bootstrap application, we borrow

the bootstrap idea of subtracting the estimate from the average of many sample



Chapter 5. Visual Odometry Bias Estimation 70

estimates to estimate bias. For example in the truncated sigma-point method, we use

sigma-points obtained by truncated Monte Carlo statistics instead of using bootstrap

samples drawn from an empirical distribution derived from a random sample. We

now describe in detail our approach.

Mathematical Formulation for the Monte Carlo and Sigma-point Methods

in the VO Framework

Suppose that we have obtained a set of actual measurements, ymeas, from the stereo

camera. We use our motion estimation algorithm defined in (3.57) to determine the

estimate, {T̂k, p̂j}. In order to draw more Monte Carlo samples or sigma-points, we

replace ground truth, yt, by the actual measurements, ymeas, and use expressions (4.5)

to (4.7). We denote these samples by y∗
i . Henceforth, the notation (∗) demonstrates

a quantity is generated based on the actual measurements and thus the assumption

of knowing ground truth is eliminated from the analysis.

The process of producing Monte Carlo samples or sigma-points based on the actual

measurements is analogous to the resampling step in the bootstrap. The samples y∗
i

are passed through our estimator, hvo(·), and this results in a set of estimates, {T̂∗
k}i,

that are used to form the following weighted sum:

T̂′∗
k,m =

I∑
i=1

ωi {T̂∗
k}i (5.22)

To make T̂′∗
k,m an element of SE(3) we use (5.6) to produce T̂∗

k,m. Finally, we utilize

the bootstrap idea in estimating bias that is illustrated in (5.21) to calculate the bias

estimate, T̂∗
k,bias, in our VO problem as follows:

T̂∗
k,bias ≈ T̂∗

k,mT̂−1
k . (5.23)
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Note that ground truth knowledge is not required for estimating bias by (5.23),

whereas the expression (5.9) depends on the knowledge of the true pose, Tk,t. After

calculating the bias estimate from (5.23), we will modify the original estimates in the

way that the compounded modified estimate provides a corrected path estimate in

our problem. The original state estimate, T̂k, is modified by the estimated bias as

follows:

T̂∗
k,mod = (T̂∗

k,bias)
−1T̂k. (5.24)

In 5.2.2, we show that for a sufficiently long distance of travel bias is greatly reduced

in the compounded camera path obtained by these modified estimates.

Mathematical Formulation for Box’s Method in the VO Framework

To compute bias without using ground truth, we still use the same expression de-

scribed in (5.19); however, the matrices are not evaluated at xt. Denote the Monte

carlo samples which are generated using the actual measurements and passed the

disparity threshold test by {y∗,mc
trun }i.

Then, we pass the average of these samples that is represented by y∗,mc
m,trun through

the nonlinear estimator to obtain x̂∗,mc
m,trun

x̂∗,mc
m,trun = hvo(y

∗,mc
m,trun). (5.25)

Thus, to eliminate the use of ground truth in estimating bias, the matrices in

the bias estimate expression, E[δξ̂
∗
], are evaluated at x̂∗,mc

m,trun. Finally, T̂∗
k,bias will be

obtained from E[δξ̂
∗
]. The bias is removed from the estimate to produce T̂∗

k,mod using

(5.24). In 5.2.2, we utilize this method in simulations to estimate bias.
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5.2 Simulations

5.2.1 Simulation Results for Change of Bias by Varying Sys-

tem Parameters

Given that the truncated sigma-point bias estimation was the only algorithm that

performed well compared to the brute-force Monte Carlo approach on the single-

landmark position estimation problem of Section 4.5, we only use this method for the

following simulations.

We performed our simulations for the asymmetric landmark distribution case

shown in Figure 4.2 and observed the change in the bias estimate by varying (i)

distance of landmarks from camera (Figure 5.1.a), (ii) the standard deviation of the

measurement noise (Figure 5.1.b), and (iii) the disparity threshold (Figure 5.1.c). Es-

timated biases in the direction of x−, y−, and z− axes that are referred to as ρ̂x,bias,

ρ̂y,bias, and ρ̂z,bias and the norm of the orientation vector, ||φ̂bias|| are shown.

These plots show that there is a small, but measurable bias in both translation

(ρ̂y,bias and ρ̂z,bias) and rotation for the VO problem and this bias increases with land-

mark distance, measurement noise covariance, and disparity threshold. For instance,

in the case that the position of the closest landmark to the camera and the disparity

threshold were fixed at 10 m and 4 pixels respectively, we increased the standard

deviation from 0.25 pixels to 0.75 pixels. The results from Figure 5.1.b show that

ρ̂y,bias increased from 2× 10−4 m to 2× 10−3 m, and ρ̂z,bias increased from 4× 10−3 m

to 3× 10−2 m. Also, ||φ̂bias|| increased from 3× 10−5 rad (= 0.002 o) to 2× 10−4 rad

(= 0.01o).

We used the asymmetric configuration of landmarks shown in Figure 4.2 and

estimated the camera path by the Monte Carlo approach and the truncated sigma-
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Figure 5.1: (a) Translation bias in the x−, y−, and z− axes direction, and the norm
of the orientation bias versus the position of the closest landmark to the camera are
shown. The standard deviation and the disparity threshold are fixed at 0.25 pixels
and 4 pixels respectively. (b) Translation bias in the x−, y−, and z− axes direction,
and the norm of the orientation bias versus the standard deviation are indicated.
The position of the closest landmark to the camera and the disparity threshold are
fixed at 10 metres and 4 pixels respectively. (c) Translation bias in the x−, y−,
and z− axes direction, and the norm of the orientation bias versus the disparity
threshold are indicated. The position of the closest landmark to the camera and the
standard deviation are fixed at 10 metres and 0.25 pixels respectively. Simulations
are performed for one time step based on the truncated sigma-point method.
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Figure 5.2: The compound
translation of the camera in
the y−axis direction versus dis-
tance of travel for the sigma-
point method (using the trun-
cated Gaussian) and brute-
force Monte Carlo simulations
(top panel) and the difference
between them (bottom panel).
These plots describe average
VO performance and no bias
correction has been performed
on the paths.

point method (using ground truth knowledge). Figure 5.2 indicates that our proposed

method based on sigma-points with the truncated Gaussian performs well against the

brute-force Monte Carlo approach, but for only a fraction of the computational cost

(i.e., tens of samples instead of tens of thousands of samples). Note that the frame-

to-frame bias is compounded for 500 m of travel to generate the resulting camera

paths described in Figure 5.2. No bias correction has been performed on these paths.

5.2.2 Effect of the Bias Correction Algorithm on the Simu-

lation Results

In this section, simulation results for two cases are demonstrated. The first case

describes an asymmetric configuration of landmarks (in image space) and the error

terms corresponding to the estimated camera pose before and after bias correction are
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illustrated and compared. In addition, the effect of changing parameters including the

position of landmarks from the camera, the measurement noise standard deviation,

and the disparity threshold on these error terms is shown. The second case covers

a scenario that reflects more closely the real-world VO problems since it describes

a structure in which the camera is tilted from horizontal and observes landmarks

that are randomly located on the ground. Finally, the result of our bias correction

algorithm using different methods (the sigma-point method (two versions) and Box’s

method (two versions)) is indicated for a 100-metre distance of travel.

Simulations for a Simplified Asymmetric Configuration

In this section, we show the outcome of our estimator before and after applying the

bias correction algorithm. For the following simulations we utilize the asymmetric

structure of the setup that is depicted in Figure 4.2. The simulations are performed

for 70 time steps and illustrates that a 70-metre path is traversed by the robot.

The estimated pose of the camera attached to the robot is then computed. At time

step k, the compounded estimate, T̂(k), is obtained by multiplying all the estimated

transformation matrices up to and including the one corresponding to the time step

k (k = 1 . . .K) as follows:

T̂(k) = T̂k × . . .× T̂1 k = 1 . . .K. (5.26)

To show the simulation results, we first compute the error terms. To do this, we

require to achieve the compounded true transformation matrix Tk
t for k = 1 . . .K as

follows:

T(k)
t = Tk,t × . . .× T1,t k = 1 . . .K. (5.27)
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Before applying our bias correction algorithm, the difference between the estimated

transformation matrix, T̂(k), and our ground truth, T(k)
t , is denoted by T(k)

error and

computed from the following expression

T(k)
error = T̂(k)(T(k)

t )−1 (5.28)

After applying our bias correction algorithm, the compounded modified estimates are

given by

T̂∗,(k)
mod = T̂∗

k,mod × . . .× T̂∗
1,mod k = 1 . . .K, (5.29)

where T̂∗
k,mod are introduced in Section 5.1.2. The discrepancy between our modified

estimate, T̂∗,(k)
mod , and the true value, T(k)

t , is called T̃(k)
error which is given by

T̃(k)
error = T̂∗,(k)

mod (T(k)
t )−1. (5.30)

Now we convert the transformation matrices T(k)
error and T̃(k)

error to the camera pose

estimate vectors π
(k)
error and π̃

(k)
error using expressions (2.9) to (2.15). Then we decompose

π
(k)
error to the translation and orientation components associated with the x−, y−, and

z− axes as follows:

π(k)
error =

⎡⎢⎣ ρ

φ

⎤⎥⎦
(k)

error

, ρerror =

⎡⎢⎢⎢⎢⎣
ρx

ρy

ρz

⎤⎥⎥⎥⎥⎦
(k)

error

, φerror =

⎡⎢⎢⎢⎢⎣
φx

φy

φz

⎤⎥⎥⎥⎥⎦
(k)

error

. (5.31)

Similarly, π̃k
error can be decomposed to its components. To better observe the improve-

ment of the results after applying the bias correction algorithm we will superimpose

the error terms before and after correction for bias on a single plot. A simulation
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is performed to provide error terms in two cases when we vary the position of the

landmarks with respect to the camera. We do this by moving the configuration

of landmarks in a way that the position of the closest landmark is set to (0, 0, z)

(z ∈ {13m, 15m}) and the standard deviation of noise is fixed at 0.25 pixels (Figure

5.3). Another simulation is based on varying measurement noise standard deviation

from 0.1 pixels to 0.25 pixels when the closest landmark is fixed at (0, 0, 15m) (Figure

5.4). The last simulation is performed to demonstrate the effect of varying the dis-

parity threshold on error terms. The value of the disparity threshold is altered from

3 pixels to 4 pixels while other parameters are fixed (Figure 5.5). The simulations are

conducted for 700 runs of experiments that only differ in their measurements (differ-

ent realizations of noise are added to the same true state). Figures 5.3 to 5.5 show

the average and standard deviation of the translation and orientation error terms

corresponding to these 700 runs.

In Figure 5.3, the solid curves show the mean of 700 error terms and the dotted

curves indicate the standard deviation. Two cases are compared and the results are

shown above. The black curve shows the error terms when the closest landmark to the

camera is located 13 metres away on the z−axis and the configuration of other four

landmarks could be found in Figure 4.2. The blue curve shows the corresponding error

terms after bias correction. The red curve shows the error terms when the landmarks

are moved farther from the camera in the way that the closest landmark is located

at 15 metres away on the z−axis. The magenta curve shows the corresponding error

terms after bias correction.

In Figure 5.4, the solid curves show the mean of 700 error terms and the dotted

curves indicate the standard deviation. Two cases are compared and the results are

shown above. The black curve shows the error terms when the standard deviation of

noise is 0.1 pixels and the closest landmark to the camera is located 15 metres away
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Figure 5.3: Left: Translation error terms in the direction of x− (top), y− (middle),
and z− (bottom) axes; right: orientation error terms in the direction of x− (top),
y− (middle), and z− (bottom) axes. The standard deviation of noisy measurements
is 0.25 pixels and the disparity threshold is 4 pixels in the simulations. The solid
curves show the mean of 700 error terms and the dotted curves indicate the standard
deviation of these terms.

on the z−axis and the configuration of other four landmarks could be found in Figure

4.2. The blue curve shows the corresponding error terms after bias correction. The

red curve shows the error when the configuration of landmarks is fixed and we increase

the standard deviation to 0.25 pixels. The magenta curve shows the corresponding

error after bias correction.

In Figure 5.5, the solid curves show the mean of 700 error terms and the dotted

curves indicate the standard deviation. Two cases are compared and the results are

shown above. The black curve shows the error terms when the disparity threshold is

3 pixels, the standard deviation is 0.25 pixels, and the closest landmark to the camera
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Figure 5.4: Left: Translation error terms in the direction of x− (top), y− (middle),
and z− (bottom) axes; right: orientation error terms in the direction of x− (top), y−
(middle), and z− (bottom) axes. The solid curves show the mean of 700 error terms
and the dotted curves indicate the standard deviation of these terms.

is located 15 (bottom) metres away on the z−axis and the configuration of other four

landmarks could be found in Figure 4.2. The blue curve shows the corresponding

error terms after bias correction. The red curve shows the error terms when the

configuration of landmarks and the measurement standard deviation are fixed and

we only increase the value of the disparity threshold to 4 pixels. The magenta curve

shows the corresponding error terms after bias correction.

Based on these Figures, we observe bias in the orientation of camera about the

x−axis while there is no bias in the translation of the camera in the x−axis. For

instance, in Figure 5.4 bias observed in the orientation of camera after it travels 70

metres is 0.01 radians when the noise standard deviation is 0.25 pixels. In addition,
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Figure 5.5: Left: Translation error terms in the direction of x− (top), y− (middle),
and z− (bottom) axes; right: orientation error terms in the direction of x− (top), y−
(middle), and z− (bottom) axes. The solid curves show the mean of 700 error terms
and the dotted curves indicate the standard deviation of these terms.

these figures show bias in the translation of camera in the direction of the y−axis
while no bias is observed in the orientation about y−axis. Figure 5.4 shows 0.26

metres translation bias for 70-metre distance of travel and 0.25 pixels noise standard

deviation. In all of these figures, bias is observed in the translation in the z−axis
direction but no bias is observed in the orientation of camera about z−axis. For

example, Figure 5.4 shows 2.18 metres translation bias when the camera travels 70

metres and the noise standard deviation is 0.25 pixels.

Overall, when bias is observed in either translation or orientation of the camera, it

is increased when landmarks are located farther with respect to the camera (refer to

Figure 5.3), the standard deviation of the measurement noise is larger (refer to Figure
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5.4), or the disparity threshold has a greater value (refer to Figure 5.5). Furthermore,

the modified estimates lead to the smaller error terms compared to the ones before

applying bias correction.

Simulations for a Case Similar to the Real-world VO problem

In another set of simulations, in order to demonstrate the effectiveness of our bias

correction method, we investigate a scenario that represents the real-world VO prob-

lem. In this analysis, a robot moves forward along a straight line with a stereo camera

attached to it but tilted down 15o from the horizontal, and observes a set of randomly

located landmarks on the ground. The distribution of landmarks in our simulations is

shown in Figure 5.6 for an area of 150m× 40m. The area is expanded in the z−axis
direction when the robot travels a longer distance.

In the frame-to-frame motion estimation process, the camera captures a number

of landmarks in its field of view; it moves one metre in the next frame and captures

landmarks that are in its new field of view. The set of common landmarks captured

in these two sequential frames are marked. They are used in our VO estimation

algorithm for estimating motion (see Figure 5.7).

In the process of investigating bias, we first illustrate the identified bias using the

average of 700 camera pose estimates in a distance of 500 metres in Figure 5.8. The

mean of path estimates deviates about five metres downward from ground truth for

σ = 0.25 pixels and becomes larger for a noisier setup.

Further analysis is performed to study the behaviour of bias when the angle the

camera is tilted from horizontal (z-axis in Figure 5.9) and disparity threshold (Figure

5.10) are changed. The result demonstrates that bias is larger for a smaller camera

tilt from horizontal. When the camera is tilted with a smaller angle from horizontal,

there are more far observed landmarks in its field of view. Consequently, an increase
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Figure 5.6: Configuration of landmarks that are randomly located on the ground.
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Figure 5.7: A stereo camera is tilted 15o down from horizontal and moves above the
ground capturing landmarks that are in its field of view. The camera views a set
of landmarks, then it translates to the next frame and captures landmarks that it
observes. At each time step, the common landmarks of the two sequential frames are
found and referred to as observed landmarks. The observed landmarks in five time
steps are indicated in green and the landmarks shown in magenta are not observed.
In this picture, the stereo camera travels five metres without changing its orientation.

in the number of far landmarks observed by the camera will result in a larger bias.

This is indicated in Figure 5.9 where the camera is tilted 15o in one case and 25o in

another case. The results show an increase of 0.03 metres in bias when the camera

angle varies from 25o to 15o.

Figure 5.10 shows that the bias is larger for a bigger disparity threshold. Once

we increase the disparity threshold, we truncate the measurement distribution more.

Therefore, the nonlinearity of the system is increased and it causes a larger bias in

the result. To demonstrate this, we performed simulations with disparity threshold
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Figure 5.8: The camera travels 500 metres forward (refer to Figure 5.7). The ground-
truth path is indicated in black. The travelled path of the camera is estimated and
indicated in magenta and the mean of these runs are shown in blue. The mean of the
estimates deviates downward from our ground truth.

of 3 pixels and 4 pixels and the output of the estimation algorithm in each case is

shown. The results show that when the disparity threshold increases from 3 pixels to

4 pixels, bias is increased by 0.15 metres after 100 metres of travel.

In Figure 5.11 different methods of bias correction are implemented to correct

for the biased VO estimates. The camera is 15o tilted down with respect to the

horizontal and travels 100 metres (see Figure 5.7). It is observed from Figure 5.11

that the truncated Box method fails in correcting for bias since the method does

not perform well when the disparity threshold discards measurements. However, the

results demonstrate that our proposed method, the truncated sigma-point method,

provides an improved estimate. The outputs of two versions of the truncated sigma-

point method are considered in this simulation. The first version is the truncated
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respect to which the camera is tilted is shown. No bias correction has been performed
on the paths.

0 10 20 30 40 50 60 70 80 90 100

−0.1

0

0.1

0.2

0.3

0.4

z (m)

y 
(m

)

 

 

Est
mean

 (d
th

=4 pixels)

Est
mean

(d
th

=6 pixels)

GT

Figure 5.10: The disparity threshold (dth) is set to 4 pixels and 6 pixels in two cases
and the mean of estimates is illustrated for each case. The result shows a larger
downward bias when dth is larger. y- and z- axes of the initial frame with respect to
which the camera is tilted and its estimated path is computed is depicted above. No
bias correction has been performed on the paths.

sigma-point method based on ground truth, indicated by the subscript ‘trun-GT’

(bias is estimated using (5.9) and the biased estimates are corrected for bias using

(5.11)). The mean of the corrected estimates is close to ground truth with a good

approximation.

The second version is the truncated sigma-point method based on the bootstrap

approach, indicated by the subscript ‘trun’ (bias estimation is performed using (5.23)

and the estimates are corrected for bias using (5.24)). Figure 5.11 shows a 95% bias
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Figure 5.11: The mean of the estimated paths for a camera that travels 100 metres
in the z-axis direction (refer to Figure 5.7) is shown where different methods of bias
correction are applied. The truncated sigma-point bias correction technique has suc-
cessfully removed bias from the estimates. The results associated with the truncated
Box method describe that this method fails due to the existence of the disparity
threshold.
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Figure 5.12: The mean curves of the estimated paths for a camera that travels 300
metres in the z-axis direction (refer to Figure 5.7) are shown before and after bias
correction. The truncated sigma-point bias correction technique has successfully re-
moved bias from the estimates. The uncertainty bars associated with each curve are
also indicated above.
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reduction result after implementing this bias correction method. The average of 700

path estimates are shown for a longer distance of travel in Figure 5.12; however, only

the truncated sigma-point method based on the bootstrap is used to correct for bias.

Additionally, the uncertainty bars are indicated to demonstrate the spread of the

estimates. It is observed that bias is greatly reduced in the average of the estimates

after applying the bias correction algorithm.

It was pointed out previously that in real-world VO problems we only have access

to one set of measurements at each time step. Therefore, we are not able to compute

the average of a number of modified estimates to observe bias correction. We conduct

a simulation to show how our bias correction performs when it is applied to the biased

estimated path of the camera in a distance of 300 metres. The simulation is performed

for 700 experiments (only two experiments are shown in Figure 5.13) that only differ in

the realizations of the noise added to produce input measurements for the estimation

algorithm. According to the results indicated in Figure 5.13, it is observed that the

bias correction based on the truncated sigma-point approach successfully removes a

large amount of bias from the estimates in a distance of 300 metres. Additionally, we

computed the number of improved estimates at each time step to demonstrate that

the percentage of estimates on which our correction algorithm provides improvement

increases as the camera travels a longer distance (refer to Figure 5.14). Based on this

result, we can predict that for a sufficiently long distance of travel, all the modified

estimates to which our bias correction algorithm is applied will eventually have some

improvements over the original estimates.

The truncated sigma-point method estimates bias with high accuracy and tracks

the results obtained by brute-force Monte Carlo simulations. (refer to (5.2)). The

benefit of the sigma-point method is that it greatly reduces the computational cost of

applying our bias estimation algorithm. While the Monte Carlo simulations require a
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Figure 5.13: The estimated path of the camera that travels 300 metres in the direction
of z−axis is shown for two independent experiments (refer to Figure 5.7 to see the
configuration of landmarks and the camera). Different realizations of noise are added
to generate the input measurements of each experiment. The truncated sigma-point
method is used for bias correction along the path.
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Figure 5.14: A simulation is performed for 700 experiments of pose estimation, two of
which are shown in Figure 5.13, and the number of improved experiments (improved
estimates) is indicated as a percentage of total experiments.

large number of noisy samples, the sigma-point method only requires 2N +1 selected

sigma-points where N ∝ J and J is the number of observed landmarks in each time

step. Although this method is not still fast enough for online implementation, it is

a good starting point for estimating bias using only stereo images. The sigma-point

method could be easily parallelized and run on a GPU since each sample simply runs
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its own copy of the overall estimator.

In this section, we simulated a scenario in which the camera’s angle from horizontal

remains constant as the robot moves forward. We observed bias in the camera pose

estimate even though the orientation of the camera did not change. We determined

by simulations that the estimate was biased due to the asymmetric configuration of

landmarks with respect to the camera. The purpose of this section was to show bias in

the estimate and propose methods to correct it. The scenario we described in Figure

5.6 was a simple example similar to the real-world VO problems and it showed bias

in the camera pose estimate. We observed that the bias correction algorithms worked

well for this scenario. More complicated scenarios could be modelled that resemble

the real-world VO problems better by involving the camera orientation changes as the

robot travels. Changes in the camera orientation including left or right turns and also

upwards or downwards tilt of the camera from the horizontal, could be examined. For

example, in a scenario that a robot climbs a hill, we should first model the gradient

of the hill. Then, the pose change of the camera when the robot climbs the hill is

considered as ground truth and the bias correction algorithms can be applied. We did

not provide these examples since modelling of ground truth for different scenarios and

running bias correction algorithms for them requires extensive computations and is

beyond the scope of this thesis. We believe that the examples provided were sufficient

to demonstrate that we achieved the objective of the thesis which is identifying bias

and removing it from the estimates using the bias correction algorithms.



Chapter 6

Summary

6.1 Thesis Contributions

In this thesis, we first demonstrated the existence of bias in the visual odometry

problem using brute-force Monte Carlo simulations. We then discussed three tech-

niques for estimating bias in VO: Monte Carlo sampling, the sigma-point method,

and Box’s [14] analytical technique. A number of challenges were revealed during

this study. Firstly, we identified that applying a disparity threshold to measurements

in stereo problems causes further complications to bias estimation, but that this can

be overcome by adjusting the Gaussian measurements statistics in a pre-processing

step to account for the disparity threshold truncation process. We compared the var-

ious bias estimation methods on a one-landmark stereo triangulation problem as well

as a frame-to-frame VO problem. Secondly, eliminating the assumption of knowing

ground truth in our analysis was not straightforward since we intended to estimate

bias while relying on the original estimate that was itself biased. We employed the

idea of the bootstrap [19, 50] in statistics to handle this challenge.

Finally, we combined all these ingredients to propose a novel methodology referred

89
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to as the truncated sigma-point bias correction algorithm that uses only stereo camera

images of landmarks to estimate and correct bias. This approach is highly flexible in

that it considers the position estimation algorithm as a black box. Any other position

estimation algorithm could be easily used along with our bias correction approach.

Therefore, the effect of any extra nonlinearity added to the position estimation setup

will be reflected and included in this bias correction algorithm. We demonstrated

that this novel method for bias correction effectively reduced 95% of bias based on

simulation results for a scenario that closely approximate a real-world VO problem.

6.2 Future Work

The main intent of this study was to estimate bias by evaluating the sample estimates

transformed by the nonlinear position estimation algorithm. To this end, we utilized

biased sample estimates in our approach without attempting to extract bias and

model it in terms of the system’s parameters.

Our presented technique performed well compared to the brute-force Monte Carlo

method, but using a small fraction of the computational cost. To be precise, while the

Monte Carlo simulations require more than 10000 noisy samples (in some cases up to

40000 samples), the sigma-point method only requires 2L+ 1 selected sigma-points

where L = 8J is the length of the observation vector and J is the number of observed

landmarks in each time step. In our simulations for a case similar to the real-world

VO problem, J ∈ {13, · · · , 25}. Thus, the bundle adjustment algorithm, the most

time-consuming part of our state estimation problem, runs 2L+ 1 ∈ {209, · · · , 401}
times. Based on these numbers, our method runs 25 to 48 times faster than using

Monte-Carlo method. Still, our method may be too slow for online implementations,

but serves as a good proof-of-concept starting point. Future research could put an
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emphasis on speeding up computation by parallelization.

Another future work effort may be to conduct more simulations to assess various

scenarios that approximate the real-world problems. In this contribution, bias was

estimated and corrected in the camera pose estimates for the cases in which the robot

travels from one point to another one without changing its orientation.

Lastly, the proposed algorithm should be applied on real data sets to experimen-

tally determine what improvement this offers on real stereo image sequences. Real

data sets are in the format of stereo images and should be processed based on the

steps in the VO pipeline described in Chapter 2. Such data will be different from the

idealized simulation data analyzed in this thesis. Pre-processing adapting the data is

needed to obtain measurements in a form suitable for motion estimation.
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