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Mars represents one of the most important targets for space exploration in the next

10 to 30 years, particularly because of evidence of liquid water in the planet’s past.

Current environmental conditions dictate that any existing water reserves will be in

the form of ice; finding and sampling these ice deposits would further the study of the

planet’s climate history, further the search for evidence of life, and facilitate in-situ

resource utilization during future manned exploration missions. This thesis presents a

suite of algorithms to help enable a robotic ice-prospecting mission to Mars. Starting

from visual odometry—the estimation of a rover’s motion using a stereo camera as the

primary sensor—we develop the following extensions: (i) a coupled surface/subsurface

modelling system that provides novel data products to scientists working remotely, (ii)

an autonomous retrotraverse system that allows a rover to return to previously visited

places along a route for sampling, or to return a sample to an ascent vehicle, and (iii) the

extension of the appearance-based visual odometry pipeline to an actively illuminated

light detection and ranging sensor that provides data similar to a stereo camera but

is not reliant on consistent ambient lighting, thereby enabling appearance-based vision

techniques to be used in environments that are not conducive to passive cameras, such

as underground mines or permanently shadowed craters on the moon. All algorithms

are evaluated on real data collected using our field robot at the University of Toronto

Institute for Aerospace Studies, or at a planetary analogue site on Devon Island, in the

Canadian High Arctic.

ii



Dedication

To all my beautiful ladies1.

1
To my mother for years of unquestioning love and support; my sisters, Sarah and Samantha, for being pretty much the best, coolest

sisters ever; my niece, Agnes, may you never learn that your love of orange juice was the reason you needed dental surgery at such a young
age; my friend, Maria, for warmth and strength when they were needed; my BFF, Joanna, for the years of poverty and discomfort we shared
and all the things we learned together; my teammate, Claire, for her fearlessness in the face of perilous danger; and my love, Kristina, for
our life together and the great adventure ahead.

iii



Acknowledgements

Field robotics is collaborative work, and this thesis would not have been possible without

the help and support of many people and organizations.

The mission concept and surface/subsurface modelling work would not have been

possible without all of the following: geomorphological and general scientific guidance

from Tim Haltigin, Kevin Williams, Michael Daly, and Gordon Osinski; hardware support

and technical advice regarding ground-penetrating radar from Peter Annan and Dave

Redmond at Sensors&Software; technical assistance and 3D models from the folks at

MDA Space Missions including Piotr Jasiobedzki, Stephen Se, Ho-Kong Ng and Nadeem

Ghafoor; logistical support for our field testing from members of the Mars Institute, all

staff at the Haughton-Mars Project Research Station, and community members from

Grise Fiord, Pond Inlet, and Resolute Bay, Nunavut who acted as guides and who were,

I am sure, prepared to defend our robot from marauding polar bears.

I have been lucky to have excellent mathematical tutors at the Institute for Aerospace

Studies including James Richard Forbes who contributed to the work in Chapter 3; Chi

Hay Tong who knows how to take the ball and run with it; John Enright who introduced

me to all things celestial; and Tim Barfoot, who taught me everything else.

I would also like to acknowledge the help of many of the members of the Autonomous

Space Robotics Lab, specifically Chi Hay Tong for his work on the GPU SURF imple-

mentation, his general scepticism, and his donation of many whiteboard hours; Pat Carle

for good times with lasers; Braden Stenning for his field testing support, field scotch, col-

laboration on robot middleware, help with software architecture, and tolerance for the

limitations of stereo vision; Colin McManus for his collaboration on the work in Chapter 6

and letting me get some sleep during the epic dataset collection; Andrew Lambert and

Hang Dong for collaborative work and rides to Downsview Station; Rehman Merali for

help assembling PC-1, the pushcart rover; and Keith Leung for being an understanding

desk neighbour.

iv



Contents

1 Introduction 1

2 Stereo Visual Odometry 5

2.1 Image Distortion Correction and Rectification . . . . . . . . . . . . . . . 7

2.2 Keypoint Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Stereo Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Keypoint Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Outlier Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Nonlinear Numerical Solution . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 State Parameterization for Visual Odometry 15

3.1 A Brief Sketch of Batch Nonlinear Least-Squares . . . . . . . . . . . . . 16

3.2 Linearizing Expressions Involving Rotation Matrices . . . . . . . . . . . 19

3.3 Linearizing Expressions Involving Transformation Matrices . . . . . . . . 24

3.4 Linearizing Expressions Involving Homogeneous Points . . . . . . . . . . 31

3.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.1 Stereo Camera Transformation Matrix Example . . . . . . . . . . 36

3.5.2 Rotation Matrix Priors . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Coupled Surface/Subsurface Modelling 45

4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Integrated Surface/Subsurface Modelling . . . . . . . . . . . . . . . . . . 48

4.2.1 Two-Dimensional Topographic Correction and Surface Profile . . 49

4.2.2 Three-Dimensional Surface/Subsurface Modelling . . . . . . . . . 49

v



4.3 Field Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.1 Visual Odometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.2 Coupled Surface/Subsurface Models . . . . . . . . . . . . . . . . . 57

4.5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Autonomous Retrotraverse 61

5.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.1 A Generic Localization Module . . . . . . . . . . . . . . . . . . . 68

5.2.2 Route Teaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.3 Route Repeating . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.4 Parameter Choices . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.5 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Field Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.1 Route Following . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.2 Route with Large Three-Dimensional Motion and Extreme Light-

ing Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4.1 Convergence Properties . . . . . . . . . . . . . . . . . . . . . . . 87

5.4.2 Lighting Dependence . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.3 Localization Performance during Path Following . . . . . . . . . 89

5.4.4 Keypoint and Feature Usage . . . . . . . . . . . . . . . . . . . . 91

5.4.5 Teach Pass Failures . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4.6 Repeat Pass Failures . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Towards Appearance-Based Methods for Lidar Sensors 101

6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2 Lighting Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2.1 Experiment Description . . . . . . . . . . . . . . . . . . . . . . . 106

6.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3 Visual Odometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

vi



6.3.1 Measurement and Error Terms from Lidar Data . . . . . . . . . . 109

6.3.2 Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 Summary and Future Work 115

7.1 Summary of Contributions and Publications . . . . . . . . . . . . . . . . 115

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2.1 Autonomous Retrotraverse . . . . . . . . . . . . . . . . . . . . . . 118

7.2.2 Appearance-Based Lidar . . . . . . . . . . . . . . . . . . . . . . . 119

A Catalogue of Route-Following Experiments 121

B List of Acronyms 127

Bibliography 128

vii



Notation

a : Symbols in this font are real scalars.

a : Symbols in this font are real column vectors.

A : Symbols in this font are real matrices.

a : Symbols in this font are quantities represented in homogeneous coordi-

nates.

∼ N (a,B) : Normally distributed with mean a and covariance B.
E[·] : The expectation operator.

F−→a : A reference frame in three dimensions.

(·)× : The cross-product operator that produces a skew-symmetric matrix

from a 3× 1 column.

1 : The identity matrix.

0 : The zero matrix.

pc,b
a : A vector from point b to point c (denoted by the superscript) and

expressed in F−→a (denoted by the subscript).

pc,b
a : The vector pc,b

a expressed in homogeneous coordinates.

Ca,b : The 3 × 3 rotation matrix that transforms vectors from F−→b to F−→a:

pc,b
a = Ca,bpc,b

b .

Ta,b : The 4× 4 transformation matrix that transforms homogeneous points

from F−→b to F−→a: pc,a
a = Ta,bp

c,b
b .

viii



Chapter 1

Introduction

Mars represents one of the most important targets for the international space exploration

community in the near- to mid-term (i.e., 10-30 years). The planet is of particular

scientific importance and interest because of the widespread evidence for the presence of

water in its geological past (Carr, 1996; Masson et al., 2001). Environmental conditions

on Mars today are such that any water reserves will be in the form of ice, either in the

polar caps or as ground ice at lower latitudes (Carr, 1996). The detection and analysis of

ground ice on Mars is an important pursuit for two reasons. First, study of the content

and characteristics of water on Mars is important basic science with relevance in fields

such as climate history and astrobiology. Second, sites found with significant deposits of

ground ice may be useful for future human exploration missions due to the possibility of

in-situ resource utilization.

Polygonal terrain—a network of interconnected trough-like depressions in the ground—

is a landform commonly found throughout the polar regions of both Earth (Lachenbruch,

1962; Mackay and Burn, 2002; Fortier and Allard, 2004) and Mars (Mangold, 2005; Levy

et al., 2009). In terrestrial environments, these surface features are formed by thermal

forcing of frozen terrain under seasonal freezing and thawing, and are often indicative

of subsurface wedges of water ice (Lachenbruch, 1962); on Mars, it is believed that such

thermal forcing may also be responsible for the creation of polygonal surface features

(Levy et al., 2009; Mellon et al., 2008). The Phoenix Lander mission (Smith et al., 2008)

has confirmed the presence of a frozen substrate in the Martian polygonal terrain shown

in Figure 1.1, but the nature of any underlying massive ice deposits has not yet been

determined. It is therefore very important to develop techniques to find and sample

subsurface ground ice on Mars.

1
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(a) (b)

Figure 1.1: Polygonal terrain is a common periglacial landform often indicative of subsurface ice

deposits, seen here (a) at our test site on Devon Island, in the Canadian High Arctic (courtesy

Mars Institute/Haughton-Mars Project), and (b) from the Phoenix Lander on Mars (courtesy

NASA/JPL-Caltech/University of Arizona/Texas A&M University).

This thesis will show how Visual Odometry (VO)—a method of estimating the motion

of a vehicle using a stereo camera as the primary sensor—can be utilized and extended to

enable specific elements of robotic ice prospecting on Mars. The work will be presented

within the context of a mission concept to carry out such ice prospecting using a rover-

mounted sensor suite consisting of a light detection and ranging (lidar) sensor, stereo

camera, and Ground-Penetrating Radar (GPR)1. Hence, we will begin by introducing

our mission concept and follow by outlining the specific contributions of this thesis.

Figure 1.2 depicts the top-level steps in our concept. The processes below the dashed

line would take place on Earth, while those above would take place on Mars. The labels

on the arrows indicate the data products that would be sent back and forth via Earth-

Mars communications. According to this mission architecture, we first select a landing

site based on orbital imagery (which can reveal the presence of polygonal terrain). We

then land and build a large-scale 3D model of the surrounding terrain using a lidar. We

use this lidar scan to (i) select candidate polygon troughs for closer examination using a

stereo camera and GPR and (ii) plan a rover path to deliver these instruments to these

1The mission concept provides a high-level motivation for the work presented in this thesis, but it
is important to note that the algorithms presented here are not specific to polygonal terrain and we do
not attempt to advance the current scientific understanding of polygonal terrain; our main objective is
to develop and test extensions to the VO pipeline and each algorithm presented has the potential for
wider use in robotic applications.
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Figure 1.2: Operational steps and data products transferred to/from Earth.

troughs. The rover then drives this planned path collecting stereo imagery and GPR

data. The process of collecting a lidar scan, collecting GPR and stereo data along a

path, and returning the data to Earth may be iterated any number of times. The data

collected along the path are used by the science team to select troughs for subsurface

sampling. The rover then returns to these sites, samples ground ice, analyzes the samples’

composition, and returns the data to Earth. The specific contributions of this thesis use

the VO pipeline to address operational considerations in steps 4, 5, and 6 of this mission

concept.

In step 3, the rover must autonomously follow a specific path to collect stereo imagery

and GPR data. Accurate path following requires the rover to maintain an accurate

position estimate over the length of the path. During the recent Mars Exploration Rover

(MER) mission, the rovers utilized wheel odometry measurements to estimate position

changes on nominal terrain. However, the MERs have frequently encountered steep

slopes and sandy terrain, resulting in large amounts of wheel slip, thereby rendering the

odometry measurements unreliable (Maimone et al., 2007). For these high-slip situations,

they employ VO over short distances. With some improvements (Johnson et al., 2008),

the upcoming Mars Science Laboratory rover will also make use of VO. Chapter 2

describes our VO algorithm, which is used as an enabling technology throughout the rest

of this thesis, and Chapter 3 details some of the mathematics used in our VO algorithm.

In step 4, raw data products produced from the stereo imagery and GPR traces are

delivered to a science team that will choose a set of sampling locations. The ability to

measure surface properties and visualize how they are related to the subsurface GPR

data is of critical importance during a geophysical survey. Properties such as eleva-
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tion differences and grain size (e.g., sand versus boulders) are particularly important

attributes that are always recorded and studied in detail during any field campaign on

Earth, typically by a geologist taking measurements using tape measures and the Global

Positioning System (GPS). In addition to being time-consuming and relatively crude in

terms of accuracy, these manual methods will not be possible on future rover missions

due to lack of availability of both geologists and GPS on Mars. In Chapter 4, we use the

raw sensor data together with the motion estimate from VO to automate the GPR data

collection process and produce novel data products that allow scientists to visualize the

relationship between surface features and subsurface structure.

In step 5, the rover must return to a set of specific sampling locations along the

outbound traverse. Because the goal in this step is to return to the exact physical

locations specified by the science team (the retrotraverse problem), it is clear that simply

using a dead-reckoning method like VO is not sufficient to retrace the rover’s path.

Dead-reckoning methods, such as wheel odometry or VO, will not solve this problem as

localization error will continue to accumulate during retrotraverse. Continuous absolute

localization (such as GPS) would offer a good solution to the retrotraverse problem by

ensuring that localization errors are bounded at every point. However, such a system

is not currently available on Mars. The teach-and-repeat navigation system described

in Chapter 5 uses VO as an enabling technology within a mapping and localization

system that allows the rover to retrace its route without requiring an external absolute

localization system or accruing further localization error as it retraces its path.

In Chapter 5 the major system failures in teach-and-repeat navigation are attributed

to changing scene appearance caused by changes in ambient lighting. All camera-based

localization and mapping systems are reliant on ambient lighting in this way and hence

susceptible to such failures. In Chapter 6, we explore the possibility of using an actively-

illuminated lidar sensor within our appearance-based VO framework. Lighting-invariant

VO using an actively illuminated sensor has the possibility to enable navigation into

permanently shadowed craters on the Moon as well as teach-and-repeat navigation robust

to lighting changes. Finally Chapter 7 summarizes the contributions of this thesis and

discusses future work and challenges ahead.



Chapter 2

Stereo Visual Odometry

The core contributions presented in this thesis are based on stereo VO—the estimation

of a rover’s position and orientation using a stereo camera as the primary sensor. This

chapter will review related work and describe each of the major processing blocks in the

sparse stereo VO pipeline.

The use of a stereo pair of cameras (as opposed to a single monocular camera) greatly

simplifies the motion estimation problem because the known transformation between the

cameras allows the metric structure of the scene to be estimated using a single stereo

image pair1. The scale of the motion cannot be recovered solely from monocular sequences

(Hartley and Zisserman, 2004; Davison and Murray, 2002; Nistér, 2004; Strasdat et al.,

2010b) so metric odometry using a monocular camera is only possible using some other

measurement of scale, such as an inertial measurement unit (Strelow and Singh, 2004;

Jones and Soatto, 2011) or wheel odometry.

Early work estimating motion from image sequences may be divided into two cat-

egories: (i) optical flow algorithms (dense algorithms) and (ii) interest point tracking

algorithms (sparse algorithms) (Aggarwal and Nandhakumar, 1988). While there is some

recent work recovering motion (or structure and motion) using optical flow (Corke et al.,

2004; Benoit and Ferrie, 2007), the techniques are not widely used in unstructured envi-

ronments due to the difficulty of jointly estimating the dense scene structure and camera

motion without finding explicit correspondences or making assumptions about the na-

ture of the scene. The Efficient Second-order Minimization (ESM) algorithm used for

tracking planar patches (Mei et al., 2008), estimating motion (Comport et al., 2010), or

1The term structure in this section refers to the underlying three-dimensional geometry of the scene.
This usage is common in computer vision (e.g., Hartley and Zisserman (2004)).

5
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Figure 2.1: The basic sparse stereo VO pipeline includes image distortion correction and rectifi-

cation, keypoint detection, stereo matching, keypoint tracking, outlier rejection, and a numerical

solution for pose.

aligning images (Lovegrove and Davison, 2010), seems to be a promising way forward,

but owing to its computational cost it is not yet suitable for real-time VO (unless it is

used as the front end to a sparse localization and mapping system (Mei et al., 2010)).

Even systems with the ultimate goal of producing a dense scene reconstruction often use

sparse methods to generate the motion estimate because of the lower computational cost

(Se and Jasiobedzki, 2008; Newcombe and Davison, 2010).

Sparse methods extract a sparse set of interest points, or keypoints, from each in-

coming image and track these points through the image sequence. There are numerous

computational savings derived from the application of sparse methods mainly thanks

to years of research from the photogrammetry and computer vision communities. The

basic sketch of VO from sparse keypoint tracks was detailed by Moravec in his PhD

thesis (Moravec, 1980)2. His work included all of the major processing blocks still used

for VO today: image capture, image distortion correction, keypoint detection, stereo

matching3, keypoint tracking, outlier rejection, and a nonlinear numerical solution for

pose. Moravec’s work was further developed by Matthies (Matthies and Shafer, 1987;

Matthies, 1989) to become the VO implementation deployed on NASA’s MERs (Mai-

mone et al., 2006, 2007). The basic outline of the sparse stereo VO pipeline is depicted

in Figure 2.1. The remainder of this chapter is a brief overview of the key steps in this

pipeline.

2Moravec’s thesis is worth a read. As well as a lot of interesting work it is full of amusing anecdotes
and great illustrations. Moravec was a pioneer.

3Although in his case, he was matching between nine images taken as a single camera slid along a
track.
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Raw 

De-warped 
and rectified 

Left Right 

Figure 2.2: Images captured from a stereo camera are corrected for lens distortion and rectified

so that they appear to have been captured by a pair of linear cameras with parallel optical axes

and aligned image planes. In this idealized configuration, objects observed in one image will

appear on the same row in the other image. To illustrate this, transparent horizontal lines have

been overlaid on the raw and rectified images shown above.

2.1 Image Distortion Correction and Rectification

Image distortion correction and rectification is processed as one step in the pipeline but

it is really performing two separate tasks: (i) distortion correction, which attempts to

remove any lens distortion so that an individual image appears to have come from an

idealized pinhole camera (also known as a linear camera) (Hartley and Zisserman, 2004,

p. 189), and (ii) rectification, the alignment of the two images of a stereo pair so that a

point in space projects onto the same row of each image (Hartley and Zisserman, 2004,

p. 302). The transformed images after distortion correction and rectification appear to

have come from an idealized stereo camera consisting of two linear cameras with parallel

optical axes and aligned image planes as shown in Figure 2.2. The mathematical model

of such an idealized camera is specified in Section 3.5.1. The two operations are usually

combined into a single undistortion map for each camera and pixels in the output image

are filled in by looking up the mapping pixel in the input image.
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Figure 2.3: This figure shows the strongest SURF keypoints extracted from the left and right

images of a stereo pair. SURF is a multiscale keypoint detector and the size of the circle

corresponds to the size of the keypoint in the image. SURF also distinguishes between light

blobs on dark backgrounds (blue) and dark blobs on light backgrounds (red).

2.2 Keypoint Detection

After distortion correction and rectification, the rectified images are passed to an inter-

est point detection algorithm that finds regions of interest in the image. Interest point

detection is an active research area and there are many algorithms from which to choose.

The most common choice for VO is the FAST detector (Rosten and Drummond, 2006),

which is used by many implementations (Eade and Drummond, 2007; Klein and Murray,

2007; Howard, 2008; Mei et al., 2010; Konolige et al., 2010) because of its high speed and

low computational cost. We have chosen our own implementation of the Speeded-Up

Robust Features (SURF) algorithm (Bay et al., 2008), which runs on a Graphics Pro-

cessing Unit (GPU)4. The SURF algorithm finds circular regions of interest of different

sizes in a monochrome image, as shown in Figure 2.3. The “Speeded-Up” prefix in the

algorithm title is a reference to the Scale Invariant Feature Transform (SIFT) algorithm

(Lowe, 2004); many of the operations in the SURF algorithm are fast approximations to

those used in the SIFT algorithm.

At this step, we also use the SURF algorithm to produce a 64-dimensional description

vector, d ∈ R64, that encodes local appearance information in a window around each

keypoint. Description vectors are normalized so that dTd = 1, and the similarity of two

keypoints with descriptors da and db is calculated to be sab = dT
a db. Pairs of keypoints

with a higher similarity score are more likely to be views of the same landmark, and we

4Our implementation—Speeded Up Speeded Up Robust Features—has been released as an open-
source package and is available at http://asrl.utias.utoronto.ca/code/gpusurf

http://asrl.utias.utoronto.ca/code/gpusurf
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use the similarity scores for data association throughout the rest of the pipeline5.

Other VO implementations also use description vectors for data association (Konolige

et al., 2010), but the simplest and most common approach is to use the brightness values

in a small patch around the keypoint center to describe the keypoint (Nistér et al., 2006;

Howard, 2008; Mei et al., 2010). To compare keypoints from different images, two patches

may be compared using the sum of absolute differences between the brightness values

(Howard, 2008), normalized correlation (Nistér et al., 2006), or the ESM algorithm to

find the best warp that aligns two patches (Mei et al., 2010).

In most published VO implementations, a keypoint measurement is modelled as the

sum of the true measurement, y, and zero mean, independent Gaussian noise, δy, with
covariance R:

y = y + δy, δy ∼ N (0,R) (2.1)

Very few publications are explicit about the values they choose for R (Maimone et al.

(2007) is a notable exception), but with a single-scale keypoint detector6 (such as FAST)

and no other sensors used, it may be reasonable to assume R = 1 (the noise is Gaussian,

isotropic, and equal for every keypoint). As we use SURF, a multiscale detection scheme,

it is not appropriate to choose the same uncertainty for every keypoint. However, we

use something equally simple, assigning R = σ21, where σ = 2v pixels and v is the

octave in which the keypoint was detected. Keypoints found in octave 0 were detected

in the full-sized image. For each subsequent octave, the image is downsampled by half7.

Anecdotally, we found that using this simple assignment of uncertainty improved our VO

estimates over R = 1, but further study is necessary to clearly show what the correct

uncertainty assignment should be for a particular detector.

2.3 Stereo Matching

Next, interest points are matched between images in a stereo pair. Because the images

are rectified, the search for a keypoint’s stereo match may proceed across a single row in

5We assume that keypoint measurements are generated by point landmarks. Given a keypoint and
descriptor in one image, the data association step decides which keypoint in a second image corresponds
to a view of the same landmark (or if there is no such keypoint in the second view). This happens during
stereo matching and keypoint tracking.

6In this context, single scale means that each interest point corresponds to a region of approximately
the same size in the image.

7SURF accomplishes this without actually downsampling the images, but the result is the same.
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Figure 2.4: This figure shows the stereo keypoints extracted from two temporally consecutive

stereo images. Horizontal lines connect the left and right image locations associated as a single

stereo keypoint. Longer lines correspond to keypoint observations of landmarks closer to the

camera (they have a larger disparity value). A single stereo pair is not sufficient to reject

inconsistent stereo measurements and so these sets of measurements often contain outliers,

seen most prominently here as large-disparity measurements in the sky.

the other image. As such, some implementations forgo keypoint detection in the second

image and use dense stereo processing to find stereo matches (Howard, 2008; Konolige

and Agrawal, 2008). Like Nistér et al. (2006) and Mei et al. (2010), we detect keypoints

in both images and then search for correspondences between keypoints along rows.

To interact with our GPU implementation of the SURF algorithm, we also imple-

mented our stereo matching algorithm on the GPU. Because SURF is a multiscale

keypoint detector that produces subpixel measurements, it is very unlikely that corre-

sponding keypoints will have precisely the same floating-point row value. Therefore,

stereo matches are restricted to be between keypoints within the same octave and the al-

lowable vertical distance (in pixels) between two keypoints is proportional to the keypoint

uncertainty. Any keypoints that successfully find a stereo correspondence are packaged

into stereo keypoints8. Results of our stereo matching algorithm are shown in Figure 2.4.

2.4 Keypoint Tracking

After building sets of stereo measurements from each stereo image (as shown in Fig-

ure 2.4), temporally consecutive stereo images are searched for keypoint correspondences.

We accomplish this by viewing the older image (or some collection of older images in

8The exact form of stereo keypoints we use is described in detail in Section 3.5.1 and so we defer our
description until then.
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(a) Initial keypoint tracks. (b) Keypoint tracks after outlier rejection.

Figure 2.5: A set of landmarks (derived from previous VO timesteps) is projected into the

image. For each landmark, the keypoint with the highest descriptor similarity score in a small

window around the projection is chosen as a potential correspondence. This set of keypoint

tracks is subject to outlier rejection using RANSAC. After outlier rejection, all remaining tracks

support a single motion hypothesis.

Chapter 5) as a map consisting of point landmarks, pi,m
m , i = 1 . . .M , expressed in some

map frame, F−→m, with associated descriptors, di. To make keypoint data associations

at time k, a coarse motion estimate is used to predict the observation locations of the

landmarks in the current image. The coarse motion estimate can be derived from other

onboard sensors (Cheng et al., 2006), a constant velocity assumption (Davison et al.,

2007), whole-image processing techniques (Mei et al., 2010), or by the naive assumption

that the rover does not move between images. The tracking algorithm then searches in

a window around the predicted landmark location for the keypoint in the current im-

age with the strongest descriptor similarity. Figure 2.5(a) shows the result of tracking

between the two stereo keypoint sets shown in Figure 2.4.

Keypoint tracks coming out of this stage of the pipeline are based only on appearance

(encoded in the descriptors) and proximity (matching within a window); there is no

guarantee that this set of tracks describes a consistent motion estimate. One of the

underlying assumptions in VO is that the scene is rigid, so any violation of this assumption

(e.g., a scene with dynamic objects) will result in feature tracks that do not describe the

rover’s motion. However, even with a rigid scene, such as the one shown in Figure 2.5,

the initial set of keypoint tracks is polluted by outliers. Chli and Davison (2009) try to

combine the tracking, outlier rejection, and motion estimation into a single algorithm
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called Active Matching. The results are promising but it is not able to run at frame

rate, or with the number of keypoint tracks usually used in stereo VO implementations.

Hence, most VO implementations use some form of dedicated outlier rejection after

feature tracking.

2.5 Outlier Rejection

As Figure 2.5(a) clearly depicts, keypoint tracks invariably contain mismatches. It is

important to find and remove these mismatches before numerical optimization. Many

approaches to outlier detection have been developed in the computer vision community,

mostly to address the problem of estimating the fundamental matrix relating a pair of

images. In essence, this is a statistical model-fitting task; an algorithm must find a model

to explain the data, then return the model and all data points that agree with it.

This problem may be solved using RANSAC (Fischler and Bolles, 1981), an algorithm

that repeatedly (i) generates a model from a randomly selected minimal set of data, and

(ii) scores the model by counting the number of data points with error below a fixed

threshold. Many improvements to the original RANSAC algorithm have been proposed.

For example, MLESAC (Torr and Zisserman, 2000), scores models using a squared-

error cost function, and MAPSAC (Torr, 2002) includes a step to choose the best model

class. Motion estimation using a calibrated stereo rig is a significantly simpler task than

fundamental matrix estimation because there is no ambiguity as to which model class

to choose. The intrinsic camera parameters are obtained through calibration, and the

known baseline between the cameras resolves any scale ambiguities. As such, many VO

implementations adopt the original RANSAC algorithm (Maimone et al., 2007; Konolige

et al., 2007; Mei et al., 2010).

We use a fast alternative to RANSAC developed by Nistér (2005) called preemptive

RANSAC. Preemptive RANSAC garners speedups over the traditional RANSAC algo-

rithm by generating all hypotheses at once, and then incrementally narrowing the set

of plausible hypotheses by iterating the following steps: (i) score a small batch of data

points through every remaining hypothesis, (ii) sort the hypotheses by score, and (iii)

discard a handful of the least likely hypotheses. This nested loop inversion greatly re-

duces the amount of computation required, as most hypotheses are discarded before all

data points have been processed. After outlier rejection, the remaining feature tracks are

consistent with a single motion estimate hypothesis (Figure 2.5).
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2.6 Nonlinear Numerical Solution

After the outlier rejection step, the remaining feature tracks should be nearly outlier-

free. The goal of the nonlinear numerical solution is to find the state variables—a set of

variables encoding (i) the change in position and orientation of the camera between images

and (ii) the positions of the three-dimensional landmarks in the scene—that best explain

the landmark measurements (keypoint tracks) that remain after outlier rejection. The

stereo observation model for point landmarks (discussed in detail later, in Section 3.5.1) is

nonlinear and hence the most common method of pose solution is nonlinear least-squares

estimation. This section provides an overview of related work. Specifics of the solution

methods used in this thesis are presented in Chapter 3.

In his pioneering work, Hans Moravec’s motion estimation program retained a world

model of three-dimensional landmarks. To solve for the rover’s pose, corresponding key-

points were triangulated and the two point clouds were aligned using a scalar-weighted,

nonlinear least-squares approach (Moravec, 1980). Matthies and Shafer (1987) put this

approach on firm probabilistic footing through more sophisticated handling of the un-

certainties involved—using linearized covariance propagation from uncertainty in image

space to uncertainty in triangulated points, and using matrix-weighted nonlinear least-

squares to align point clouds resulting from each pair of consecutive images.

There have been other notable pure stereo VO publications including Nistér et al.

(2006) and Konolige et al. (2007), both of which introduce Sparse Bundle Adjustment

(SBA) (Brown, 1958) as the pose solution method. SBA is an iterative Gauss-Newton

minimization algorithm that exploits the specific sparsity pattern in the update step

equations to greatly reduce the computational cost of each iteration9. SBA enables

fast and accurate solutions for motion and structure—the landmark positions produc-

ing the keypoint measurements. In a way, through the introduction of SBA, VO be-

came Simultaneous Localization and Mapping (SLAM). This connection was articulated

clearly by Sibley et al. (2008), who also showed how the matrix sparsity patterns change

when a motion model and prior information—staples of the SLAM community (Bailey

and Durrant-Whyte, 2006; Durrant-Whyte and Bailey, 2006)—are introduced. Although

there is still SLAM research into large-scale localization and mapping using Kalman-,

Information-, Particle-Filter forms (Thrun et al., 2001; Barfoot, 2005; Cadena and Neira,

9For an excellent introduction to SBA, please see Hartley and Zisserman (2004, p. 597). For a further
reading and references, see Triggs et al. (2000).
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2010), many researchers have adopted the SBA approach (Strasdat et al., 2010a; Kono-

lige et al., 2010; Sibley et al., 2010), especially for SLAM using cameras as the primary

sensor.

Table 2.1: A summary of the input image size and solution method used for VO in different

chapters of this thesis.

Chapter Image Size Solution Method

Chapter 4 1280× 960 A solution for motion similar to that described in Mai-

mone et al. (2007) but using the linearization strategies

described in Chapter 3. A complete derivation of the es-

timator is given in Furgale et al. (2010).

Chapter 5 640× 480 A solution for position with respect to a static map, for-

mulated differently for each mode required by the au-

tonomous retrotraverse algorithm (Section 5.2.1).

Chapter 6 512× 384 A solution for motion and structure based on the sliding

window SBA (Konolige et al., 2007), but using the state

parameterizations developed in Chapter 3.

We have used a number of different solution methods over the years, all based on

batch nonlinear least squares. Chapter 3 outlines our basic solution method and some of

the strategies we have used to parameterize landmarks and robot poses. Our goal for the

work in this thesis was never to push the metric accuracy of VO to the limit (as it was

in other collaborations (Lambert et al., 2011)), so the solution methods have generally

been simple. Table 2.1 lists the image sizes and solution methods used in this thesis.

2.7 Summary

In this chapter we have provided a brief overview of the sparse stereo VO pipeline.

While there are no direct contributions to the underlying VO pipeline emanating from

this thesis work, the algorithm described here is used as the key enabling technology for

contributions in the application of VO (i) to support rover based science (Chapter 4), (ii)

to enable long-range autonomous navigation in unstructured, three-dimensional terrain

(Chapter 5), and (iii) to perform appearance-based motion estimation using a lidar sensor,

thereby making VO robust to lighting changes (Chapter 6).



Chapter 3

State Parameterization for Visual

Odometry

This chapter will discuss the choice of parameterization for state variables common to

estimation problems in robotics. In the VO algorithm described in Chapter 2, our goal

is to estimate the motion of a vehicle in three-dimensional space using a set of sparse

stereo keypoints tracked through an image sequence. To perform this estimation, we must

choose a set of parameters to represent the position and orientation of the vehicle, as well

as the positions of the landmarks in the scene. The most common solution methods used

for VO are based on batch nonlinear least squares—an iterative numerical optimization

technique that requires successive linearization of the individual error terms in the cost

function.

The purpose of this chapter is to derive linearization strategies for several state-

parameter classes of interest in robotics and, for each derivation, to provide some notation

and algebraic tools for manipulating expressions involving these linearized quantities. We

provide derivations for the following state-parameter classes:

1. rotation matrices: 3× 3 matrices that represent elements of the group SO(3),

2. transformation matrices: 4×4 matrices that represent elements of the group SE(3)

and can be used to represent coordinate frame transformations compactly, and

3. homogeneous points: unit-length 4 × 1 columns that represent Euclidean points

encoded in homogeneous coordinates.

While many of the identities derived below may be found scattered throughout other

15
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textbooks and papers, the contribution of this chapter is to collect the results together

in one place, and show how they may be derived using a first-principles Taylor-series

expansion approach. This avoids having to resort to Lie algebras, matrix exponentials,

tensors, and other tools that can be very useful, but are unnecessary if our goal is simply

to linearize error terms for nonlinear optimization.

We begin with a brief sketch of the Gauss-Newton solution to the nonlinear least-

squares problem, and then derive linearization strategies for rotation matrices, transfor-

mation matrices, and homogeneous points. To demonstrate the utility of our approach,

we provide two examples that are used in later chapters: (i) an example of lineariz-

ing a stereo camera error term, and (ii) an example of forming and linearizing a prior

information term on a 3× 3 rotation matrix.

3.1 A Brief Sketch of Batch Nonlinear Least-Squares

Many state estimation tasks in robotics reduce to the problem of finding the state pa-

rameter vector, x, that minimizes a scalar squared-error function, J(·), of the form

J(x) := 1

2

N�

n=1

en(x)TWnen(x), (3.1)

where en(·) is one of N individual error terms weighted by the matrix Wn. For stereo

VO, the error terms are based on an observation model of the form,

zn = gn(x) + vn, (3.2)

where zn is an individual observation, gn(x) is the (possibly nonlinear) observation

model—our model of how some subset of state parameters produced the observation—

and vn is a random variable representing observation noise. When we assume that vn is

independent, zero-mean, and Gaussian,

vn ∼ N (0,Rn), E[vmvn] = 0, (3.3)

setting

en(x)� �� �
error

:= zn����
observation

− gn(x)� �� �
predicted
observation

and Wn := E
�
eneTn

�−1
= R−1

n (3.4)
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makes

x� = argmin
x

(J (x)) (3.5)

equivalent to the maximum-likelihood estimate of the state given the measurements

(Jazwinski, 1970, p. 156). Defining

e(x) :=





e1(x)
...

eN(x)



 , R := diag {R1, . . . ,RN} , (3.6)

we may express (3.1) in matrix form,

J(x) = 1

2
e(x)TR−1e(x). (3.7)

If e(·) is a linear function of x, J(·) is exactly quadratic in x and we may find its min-

imum by setting ∂J(x)
∂x

T
to zero and solving the resulting system of equations. When

e(·) is a nonlinear function, the minimum of J(·) must be found iteratively, using a non-

linear optimization technique (Nocedal and Wright, 2006). In robotics, gradient-based

optimization techniques, such as Gauss-Newton or Conjugate Gradient, are commonly

used. In this thesis, we have used Gauss-Newton and so a basic sketch of the algorithm

is provided here.

Starting with an initial guess for the state, x—arrived at using a lower-fidelity linear

method or through a solution using only a portion of the data available—we make the

approximation that

x = x + δx, (3.8)

for some small update step, δx. We then substitute (3.8) into (3.7) and use a first-order

Taylor-series approximation to linearize e(·) about x. The result approximates J(·) as

quadratic in δx,

J(x + δx) = 1

2
e(x + δx)TR−1e(x + δx) (3.9a)

≈ 1

2

�
e(x) + ∂e(x)

∂x

����
x
δx
�T

R−1

�
e(x) + ∂e(x)

∂x

����
x
δx
�
, (3.9b)

which we write as

J(δx) = 1

2
e(δx)TR−1e(δx), (3.10)

where

e := e(x), E :=
∂e(x)
∂x

����
x
, e(δx) := e + Eδx. (3.11)
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Now we may find the minimum of (3.10),

δx� = argmin
δx

(J (δx)) , (3.12)

by expanding ∂J(δx)
∂δx

T
,

∂J(δx)
∂δx

T

=

�
∂J(δx)
∂e(δx)

∂e(δx)
∂δx

�T

(3.13a)

=
∂e(δx)
∂δx

T ∂J(δx)
∂e(δx)

T

(3.13b)

= ETR−1e(δx) (3.13c)

= ETR−1 (e + Eδx) , (3.13d)

setting it to zero, and solving the resulting linear system of equations for δx�,

ETR−1 (e + Eδx�) = 0 (3.14a)

ETR−1Eδx� = −ETR−1e (3.14b)

δx� = −
�
ETR−1E

�−1 ETR−1e. (3.14c)

Generally you would not compute the inverse in (3.14c), but rather solve the linear system

in (3.14b)1. The optimal update is then applied to our current guess,

x ← x + δx�, (3.15)

to result in a new (hopefully better) estimate of the state parameters. This process

is iterated until J(x) converges to a minimum2. The resulting state estimate, x�, has

covariance (Bell and Cathey, 1993)

P :=
�
ETR−1E

�−1
, (3.16)

which we may think of as

x = x� + δx, δx ∼ N (0,P) . (3.17)

One assumption we made in the derivation above was that there were no constraints

on the values that x could assume. This presents challenges for many practical estimation

1Often the specific sparsity of the system of equations is exploited to speed up this step as in Hartley
and Zisserman (2004, Appendix 6). For general sparse solution techniques, please see Davis (2006).

2This is the barest sketch of batch nonlinear optimization. For more details on this and other related
algorithms, please see Nocedal and Wright (2006) and the excellent Appendix 6 of Hartley and Zisserman
(2004).
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problems in robotics where a particular choice of parameters to represent a state vari-

able may have singularities or constraints. For example, the set of rotations constitutes a

non-commutative group, called SO(3). Regardless of the choice of representation (e.g., ro-

tation matrix, unit-length quaternion, Euler angles), a rotation has exactly three degrees

of freedom. All rotational representations involving exactly three parameters have sin-

gularities (Stuelpnagel, 1964) and all representations having more than three parameters

have constraints. The question of how best to parameterize and handle rotations in state

estimation is by no means new. There are many rotational parameterizations available,

each with its unique advantages and disadvantages (Shuster, 1993). In spacecraft atti-

tude and robotics estimation, the 4 × 1 unit-length quaternion (a.k.a., Euler-Rodrigues

symmetric parameters), the standard 3 × 3 rotation matrix, and Euler angles are all

common (Crassidis et al., 2007).

In this chapter, we derive linearization strategies for a number of common state-

parameter classes: (i) 3×3 rotation matrices that represent elements of the group SO(3),

(ii) 4 × 4 transformation matrices that represent elements of the group SE(3) and can

be used to represent coordinate frame transformations compactly, and (iii) unit-length

4×1 columns that represent Euclidean points encoded in homogeneous coordinates. The

linearization strategies presented have a number of nice properties: they are minimal, in

the sense that the update parameterization has the same number of degrees of freedom

as the underlying state variable, they are constraint sensitive in that the equation used to

update the state variable preserves constraints on the state, and they are unconstrained

in that, as long as the update parameters are small, there are no restrictions on the values

they may take. Because of these properties, the approaches can be used in unconstrained

optimization.

3.2 Linearizing Expressions Involving Rotation Ma-

trices

In this section we derive a method for linearizing expressions involving rotation matrices3.

Our approach is a simple first-principles Taylor approximation. To begin, we require the

establishment of two identities. Euler’s theorem allows us to write a rotation matrix, C,

3The contents of this section were derived in collaboration with James R. Forbes and Timothy D.
Barfoot and originally appeared in Barfoot et al. (2011a).
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in terms of a rotation about a unit-length axis, a, through an angle, ϕ (Hughes, 1986),

C(a,ϕ) = cosϕ 1 + (1− cosϕ)aaT − sinϕ a×, (3.18)

where 1 is the identity matrix. We may now take the partial derivative of C(a,ϕ) with
respect to the angle, ϕ:

∂C(a,ϕ)
∂ϕ

= − sinϕ 1 + sinϕ aaT − cosϕ a× (3.19a)

= sinϕ
�
−1 + aaT

�
� �� �

a×a×

− cosϕ a× (3.19b)

= − cosϕ a× − (1− cosϕ) a×a����
0

aT + sinϕ a×a× (3.19c)

= −a× �
cosϕ 1 + (1− cosϕ)aaT − sinϕ a×�
� �� �

C(a,ϕ)

(3.19d)

Thus, our first key identity is

∂C(a,ϕ)
∂ϕ

≡ −a×C(a,ϕ), (3.20)

where 



x

y

z





×

:=





0 −z y

z 0 −x

−y x 0



 (3.21)

defines the usual 3 × 3 skew-symmetric matrix, which may be used to implement the

cross product for 3×1 columns (Hughes, 1986). An immediate application of this is that

for any principal-axis rotation, Cψ(θ), about principal axis ψ and through angle θ, we

have
∂Cψ(θ)

∂θ
= −1×

ψCψ(θ), (3.22)

where 1ψ is column ψ of the 3× 3 identity matrix. Let us now consider an α-β-γ Euler

sequence (with α �= β and β �= γ),

C(θ) := Cγ(θ3)Cβ(θ2)Cα(θ1), (3.23)

where θ := [θ1 θ2 θ3]
T . Furthermore, select an arbitrary constant 3 × 1 column, v.

Applying (3.22), we have

∂ (C(θ)v)
∂θ3

= −1×γ Cγ(θ3)Cβ(θ2)Cα(θ1)v = (C(θ)v)× 1γ , (3.24a)

∂ (C(θ)v)
∂θ2

= −Cγ(θ3)1×β Cβ(θ2)Cα(θ1)v = (C(θ)v)× Cγ(θ3)1β , (3.24b)

∂ (C(θ)v)
∂θ1

= −Cγ(θ3)Cβ(θ2)1×αCα(θ1)v = (C(θ)v)× Cγ(θ3)Cβ(θ2)1α, (3.24c)
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where we have made use of the two general identities,

r×s ≡ −s×r, (3.25a)

(Cs)× ≡ Cs×CT , (3.25b)

for any 3× 1 columns r, s and any 3× 3 rotation matrix, C (Hughes, 1986). Combining

the results in (3.24) we have

∂ (C(θ)v)
∂θ

=
�
∂(C(θ)v)

∂θ1

∂(C(θ)v)
∂θ2

∂(C(θ)v)
∂θ3

�

= (C(θ)v)×
�
Cγ(θ3)Cβ(θ2)1α Cγ(θ3)1β 1γ

�

� �� �
S(θ)

, (3.26)

and thus our second key identity is

∂ (C(θ)v)
∂θ

≡
�

C(θ)v
�×

S(θ), (3.27)

which we note is true regardless of the choice of Euler sequence. The matrix, S(θ), is the
usual matrix relating angular velocity to Euler-angle rates (Hughes, 1986).

Having established identities (3.20) and (3.27), we now return to first principles and

consider carefully how to linearize a rotation. If we have a function, f(x), of some variable,

x, then perturbing x slightly from its nominal value, x, by an amount δx will result in

a change in the function. We can express this in terms of a Taylor-series expansion of f
about x:

f(x + δx) = f(x) + ∂f(x)
∂x

����
x
δx + (higher order terms) (3.28)

This presupposes that δx is not constrained in any way. The trouble with carrying out

the same process with rotations is that most of the representations involve constraints

and thus are not easily perturbed (without enforcing the constraint). The notable excep-

tions are the three-parameter representations, the most common of which are the Euler

angle sequences. These contain exactly three parameters and thus each can be varied

independently. For this reason, we choose to use Euler angles in our perturbation of

functions involving rotations.

Consider perturbing C(θ)v with respect to Euler angles θ, where v is an arbitrary

constant 3 × 1 column. Letting θ :=
�
θ̄1 θ̄2 θ̄3

�T
and δθ :=

�
δθ1 δθ2 δθ3

�T
, then
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applying a first-order Taylor-series approximation we have

C(θ + δθ)v ≈ C(θ)v +
∂ (C(θ)v)

∂θ

����
θ

δθ (3.29a)

= C(θ)v +
�
(C(θ)v)× S(θ)

���
θ
δθ (3.29b)

= C(θ)v +
�
C(θ)v

�× S(θ) δθ (3.29c)

= C(θ)v −
�
S(θ) δθ

�× �
C(θ)v

�
(3.29d)

=
�

1 −
�
S(θ) δθ

�×� C(θ)v, (3.29e)

where we have used (3.27) to get to the second line. Observing that v is arbitrary, we

can drop it from both sides and write

C(θ + δθ) ≈
�

1 −
�
S(θ) δθ

�×�

� �� �
infinitesimal rot.

C(θ), (3.30)

which we see is the product of an infinitesimal rotation matrix (Hughes, 1986) and the

unperturbed rotation matrix, C(θ). It is worth noting that we did not assume the

perturbation is of this multiplicative form, but rather showed that it is a consequence of

the linearization procedure. Notationally, it is simpler to write

C(θ + δθ) ≈
�
1 − δφ×� C(θ), (3.31)

with

δφ := S(θ) δθ. (3.32)

Equation (3.31) is revealing as it tells us how to perturb a rotation matrix when it

appears inside any function. This may be done either in terms of perturbations to the

Euler angles, δθ, or directly through the rotation vector, δφ.

Rotation matrices fundamentally have three degrees of freedom but are represented

by nine parameters. There are therefore six constraints, which may be written as a single

matrix orthogonality constraint: CCT = 1. Suppose this constraint holds for C(θ). Then

for the perturbed rotation matrix according to (3.31) we have

C(θ + δθ)C(θ + δθ)T =
��

1 − δφ×� C(θ)
� ��

1 − δφ×� C(θ)
�T

= 1 − δφ×δφ×, (3.33)

which we see is correct to first order in δφ. For this reason, this approach to linearization

may be thought of as constraint-sensitive.
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Working in the other direction, suppose we have a perturbation in the form of a

rotation vector, δφ, and we wish to apply this to a prior value of the rotation, C(θ). In

terms of Euler angles, we would like to carry out the update

θ = θ + S(θ)−1 δφ. (3.34)

However, we would prefer not to use the Euler angles, because S(θ)−1 does not exist

precisely at the associated singularities. Instead, we would like to simply store and

update the rotation as a rotation matrix. The updated rotation matrix, corresponding

to the updated Euler angle sequence above, is given by

C(θ) = C
�
θ + S(θ)−1 δφ

�
(3.35a)

≈
�

1 −
�
S(θ)S(θ)−1

� �� �
1

δφ
�×�C(θ) (3.35b)

≈
�
1 − δφ×�C(θ), (3.35c)

where we have used (3.31), our linearized rotation matrix expression. We then make the

observation that setting θ = 0 in this last expression reveals

C(δφ) = C
�

0 + S(0)−1

� �� �
1

δφ
�

(3.36a)

≈
�
1 − δφ×�C(0)����

1

(3.36b)

≈
�
1 − δφ×� . (3.36c)

Using δφ as an Euler angle sequence to construct a rotation matrix, C(δφ), is somewhat

unsettling (since δφ are not Euler angles), but in the neighbourhood of θ = 0, δφ ≈ δθ,

so this is reasonable. In fact, any Euler sequence could be used to compute C(δφ), as

they all result in the same linearized expression. Substituting (3.36c) into (3.35c), we

arrive at an expression for our rotation matrix update,

C(θ) = C(δφ)C(θ), (3.37)

where we have dropped the approximation symbol due to the fact that the rotation

matrix constraint, C(θ)C(θ)T = 1, is satisfied. This update approach allows us to store

and update the rotation as a rotation matrix, thereby avoiding singularities and the need

to restore the constraint afterwards (i.e., constraint restoration is built in).



Chapter 3. State Parameterization for Visual Odometry 24

The relationship between the rotation vector, δφ, and the Euler angle perturbation,

δθ, expressed in (3.32) is algebraically equivalent to the well-known relationship between

rotational velocity, ω, and Euler angle rates (Hughes, 1986):

ω = S(θ)θ̇ (3.38)

In essence, may think of (3.32) as (3.38) multiplied through by an infinitesimal time

increment, dt, such that δφ = ωdt and δθ = θ̇dt. This insight allows us to perturb a

rotation matrix when it appears in any function by using (3.31) in terms of a rotation

vector, δφ, or by using the well-known S(θ) matrix formulae to relate small changes in

any minimal rotation parameterization, δθ, to small changes in δφ. An extensive list

of formulae for S(θ) covering many popular rotation parameterizations is available in

Hughes (1986), Table 2.3 on pages 30 and 31.

The results from this section are fundamental to our approach to estimating rotation

matrices that show up commonly in estimation problems in robotics. We use these results

below (i) to derive similar expressions for 4 × 4 transformation matrices in Section 3.3,

and (ii) in the example of applying a probabilistic prior term to a rotation matrix in

Section 3.5.2.

3.3 Linearizing Expressions Involving Transformation

Matrices

In this section we derive a similar linearized perturbation expression for 4 × 4 transfor-

mation matrices and develop notation and identities useful for manipulating expressions

containing these quantities. Some of the identities in this section may be found in Mur-

ray et al. (1994) where they are derived using Lie algebras and applied to problems

concerning the dynamics of robotic manipulators. However, they provide no handling of

points at infinity and so further notation and concepts are borrowed from Hartley and

Zisserman (2004), and Faugeras and Luong (2001). Here we present the material in the

context of state estimation and in notation consistent with Section 3.2. We begin by

introducing homogeneous coordinates and transformation matrices as a compact method

of representing coordinate-frame transformations.

The projective space, P3, is the set of equivalence classes of vectors in R4 − {0},
under the equivalence relationship v ≡ sv, for a nonzero scalar, s, and a 4× 1 column, v
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(Hartley and Zisserman, 2004; Faugeras and Luong, 2001). Informally, P3 can be thought

of as the set of lines through the origin of R4; each element of P3 is an infinite subset of

R4, and given any point in R4 − {0}, it maps to a specific element in P3.

Given the coordinates of a point in three-dimensional Euclidean space, v =:
�
x y z

�T
∈

R3, any vector v =:
�
v1 v2 v3 v4

�T
∈ P3 which satisfies v = s

�
vT 1

�T
, for some real,

nonzero scalar, s, is considered the homogeneous representation4 of v. Hence, we define

a pair of functions for moving between homogeneous (bold italic symbol) and nonhomo-

geneous (bold symbol) coordinates,

v = h(v) :=





x

y

z

1




, v = h(v) := 1

v4





v1

v2

v3



 . (3.39)

Both v and v encode the coordinates of the same point expressed in some coordinate

frame. When v4 = 0, the conversion back to R3 is not possible, as the corresponding

point in R3 is infinitely far away from the coordinate frame origin. However, there

is no singularity when keeping these points in homogeneous coordinates. The Jacobian

matrices for h(·) and h(·) (needed later when linearizing error terms for batch estimation)

are

∂h(v)
∂v

=

�
1

0T

�
, (3.40a)

∂h(v)
∂v

=
1

v4

�
1 −h(v)

�
. (3.40b)

4 According to Kline (1972), what we now know as homogeneous coordinates were first proposed by
Augustus Ferdinand Möbius in his work entitled Der barycentrische Calcul, published in 1827. Möbius

parameterized a point on a plane, p =
�
x y

�T
, by considering a fixed triangle within the plane and

determining the masses, m1, m2 and m3, that must be placed at the triangle vertices to make p the

triangle’s center of gravity. Using this system, the coordinates p :=
�
m1 m2 m3

�T
are not unique

as scaling the three masses equally does not change the point location. When the equation of a curve
is written in this coordinate system, it becomes homogeneous in m1, m2 and m3—every term in the

equation has the same degree. Take for example the equation of a circle centered at
�
a b

�T
with

radius r:
(x− a)2 + (y − b)2 = r2

Written in homogeneous coordinates with x = m1/m3 and y = m2/m3, the equation becomes

(m1 −m3a)
2 + (m2 −m3b)

2 = m2
3r

2,

where every term is now quadratic in the homogeneous coordinates. Similarly, the equation of a parabola,
y = x2, becomes m2m3 = m2

1.
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In homogeneous coordinates, coordinate-frame transformations may be applied to points

using a 4× 4 transformation matrix, T ,

T1,0 =

�
C1,0 ρ0,1

1

0T 1

�
, pj,1

1 = T1,0p
j,0
0 , T−1

1,0 =

�
CT

1,0 −CT
1,0ρ

0,1
1

0T 1

�
, pj1

1 = T−1
0,1 p

j,0
0 ,

(3.41)

where pj,0
0 encodes the coordinates of a vector from the origin of F−→0 to a point j (rep-

resented by the superscript j, 0), and expressed in F−→0 (represented by the subscript 0),

C1,0 is the rotation matrix that takes vectors from F−→0 to F−→1, and T1,0 is the transfor-

mation matrix that takes points from F−→0 to F−→1. The full complement of subscripts and

superscripts is provided in (3.41) for reference. For ease of notation, in the remainder

of section we will drop all subscripts and superscripts. Following an approach similar to

the one used in Section 3.2, we define a column of parameters,

x :=

�
ρ

θ

�
, (3.42)

and write the transformation matrix, T , as

T (x) =

�
C(θ) ρ

0T 1

�
. (3.43)

Using the machinery developed in Section 3.2, we perturb x about the nominal value,

x :=

�
ρ

θ

�
, (3.44)

by a perturbation

δx :=

�
δρ

δθ

�
, (3.45)

to get

T (x + δx) ≈
�
(1 − (S(θ)δθ)×)C(θ) ρ+ δρ

0T 1

�
, (3.46)

which we rearrange into the form of a multiplicative update,

T (x + δx) ≈
�

1 − (S(θ)δθ)× δρ+ (S(θ)δθ)×ρ
0T 1

��
C(θ) ρ

0T 1

�

� �� �
T (x)

. (3.47)
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This expression may be simplified by substituting in δφ = S(θ)δθ and defining

δ� := δρ+ δφ×ρ, (3.48)

to get

T (x + δx) ≈
�
(1 − δφ×) δ�

0T 1

�
T (x), (3.49a)

=

�
1 −

�
δφ× −δ�

0T 0

��
T (x). (3.49b)

We further simplify the notation by defining the terms

T := T (x), δt :=

�
δ�

δφ

�
, (3.50)

and the operator (·)�, �
r
s

��

:=

�
s× −r
0T 0

�
, (3.51)

for 3× 1 columns r and s. This allows us to write

T (x + δx) ≈
�
1 − δt�

�
T , (3.52)

which may be compared to our rotation matrix result, (3.31). A similar derivation gives

T (x + δx)−1 ≈ T
−1 �1 + δt�

�
. (3.53)

Working in the other direction, suppose we have a perturbation in the form of δt, and
we wish to apply this to a prior value of the transformation, T (x). Rearranging (3.48)

to get

δρ = δ�+ ρ×δφ, (3.54)

we may write the update to x as

x = x +

�
1 ρ×

0 S(θ)−1

��
δ�

δφ

�
. (3.55)

However, we have again run into the situation that we would prefer not to use the Euler

angles, because S(θ)−1 does not exist precisely at the associated singularities. Instead,

we would like to simply store and update the transformation as a transformation matrix.
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Substituting our rotation matrix result, (3.37), into (3.49a), results in an equation for

the transformation matrix update step,

T (x) =

�
C(δφ) δ�

0T 1

�
T (x), (3.56a)

= T (δt)T (x), (3.56b)

where we have dropped the approximation symbol due to the fact that the rotation

matrix constraint, C(θ)C(θ)T = 1, is satisfied and the resulting expression on the right-

hand side is a valid transformation matrix. This update approach allows us to store and

update the transformation as a transformation matrix, thereby avoiding singularities and

the need to restore the constraint afterwards.

When dealing with infinitesimal transformation matrices, the (·)� operator takes on

a role similar to that played by the skew-symmetric operator, (·)×, when dealing with

infinitesimal rotation matrices. Now we examine how the perturbation, δt, affects the

transformation of a point, p, represented in homogeneous coordinates by p,

p :=

�
u
s

�
, Tp =

�
Cu + sρ

s

�
, (3.57)

where s is a nonzero scalar and u = sp, so that p = h(p). Applying the perturbation,

(3.52), gives us

Tp ≈
�
1 − δt�

�
Tp (3.58a)

= Tp− δt�Tp, (3.58b)

with

−δt�Tp =

�
sδ�− δφ×(Cu + sρ)

0

�
(3.59a)

=

�
sδ�+ (Cu + sρ)×δφ

0

�
(3.59b)

=

�
s1 (Cu + sρ)×

0T 0T

�

� �� �
=:(Tp)�

�
δ�

δφ

�

� �� �
δt

, (3.59c)

where we have defined the operator, (·)�, to be
�

s
t

��

=

�
t1 s×

0T 0T

�
, (3.60)
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for any 3× 1 column s and scalar t. This demonstrates a useful identity,

− c�v ≡ v�c, (3.61)

for any 4×1 column v and 6×1 column c. Using this identity we may write a first-order

approximation of how a perturbation, δt, produces small changes in the transformed

point:

Tp ≈ (1 − δt�)Tp (3.62a)

= Tp+ (Tp)�δt (3.62b)

Similar results hold for perturbations involving T−1:

T
−1
p ≈ T

−1
(1 + δt�)p (3.63a)

= T
−1
p− T

−1
p�δt (3.63b)

Finally, we derive some other useful identities for manipulating expressions involving

transformation matrices. First we see that we can push a transformation matrix onto

the other side of a perturbation:

T δt� =

�
C ρ

0T 1

��
δφ× −δ�

0T 0

�
(3.64a)

=

�
Cδφ× −Cδ�

0T 0

�
(3.64b)

=

�
Cδφ× −Cδ�

0T 0

�
T−1T� �� �

1

(3.64c)

=

�
Cδφ× −Cδ�

0T 0

��
CT −CTρ

0T 1

�
T (3.64d)

=

�
Cδφ×CT −Cδφ×CTρ− Cδ�

0T 0

�
T (3.64e)

=

�
(Cδφ)× −(Cδφ)×ρ− Cδ�

0T 0

�
T (3.64f)

=

�
(Cδφ)× ρ×Cδφ− Cδ�

0T 0

�
T (3.64g)

=

��
C −ρ×C
0 C

�

� �� �
=:T�

�
δ�

δφ

���

T (3.64h)
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=
�
T �δt

��
T (3.64i)

Stating this result, we have the identity

T c� ≡
�
T �c

��
T , (3.65)

which holds for any transformation matrix T and 6 × 1 column c. This identity may

alternately be written as

T c�T−1 ≡
�
T �c

��
, (3.66)

for comparison with the identity, Cs×CT ≡ (Cs)×, which is valid for any rotation matrix

C and 3× 1 column s.
The operator, (·)�, defined as

�
C ρ

0T 1

��

:=

�
C −ρ×C
0 C

�
. (3.67)

produces an invertible matrix with the property

T−� :=
�
T ��−1

=
�
T−1

��
. (3.68)

This allows us to write (3.65) as

δt�T ≡ T
�
T−�δt

��
. (3.69)

In a bit of manipulation similar to (3.64), we can derive another useful identity:

Tp� =

�
C ρ

0T 1

��
u
s

��

(3.70a)

=

�
C ρ

0T 1

��
s1 u×

0T 0T

�
(3.70b)

=

�
sC Cu×

0T 0T

�
(3.70c)

=

�
sC (Cu)× C
0T 0T

�
(3.70d)

=

�
s1 (Cu)× + sρ×

0T 0T

��
C −ρ×C
0 C

�
(3.70e)

=

�
s1 (Cu + sρ)×

0T 0T

��
C −ρ×C
0 C

�
(3.70f)
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=

�
Cu + sρ

s

�� �
C −ρ×C
0 C

�
(3.70g)

= (Tp)� T � (3.70h)

This identity,

Tp� ≡ (Tp)� T �, (3.71)

may also be written as

Tp�T−� ≡ (Tp)� , (3.72)

which is again similar to Cs×CT ≡ (Cs)× and T c�T−1 ≡ (T c)�.

The results derived in this section are used to derive the estimators used in Sections 5

and 6. We provide a worked example of how to linearize a stereo camera error term in

Section 3.5.1.

3.4 Linearizing Expressions Involving Homogeneous

Points

One of the main benefits of using transformation matrices to represent coordinate-frame

transformations is that it allows us to use homogeneous coordinates to represent points.

When estimating a distant point location in Euclidean coordinates, a Gauss-Newton

estimator will often attempt to push the Euclidean point out towards infinity. This

causes numerical issues in the linear system of equations, (3.14b), and can cause the

estimator to diverge. Homogeneous coordinates have the benefit of representing both

near and distant landmarks with no singularities or scaling issues (Triggs et al., 2000).

Equation, (3.62b), gives some great intuition about this. If we define the components of

p to be p =:
�
uT s

�T
, we may restate (3.62b) as

Tp ≈ Tp+ (Tp)�δt (3.73a)

=

�
Cu + sρ

s

�
+

�
s1 (Cu + sρ)×

0T 0T

��
δ�

δφ

�
. (3.73b)
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As the Euclidean point, p, represented in homogeneous coordinates, p, moves away from

the coordinate frame origin, s approaches zero. In the limit, we have

lim
s→0

�
Tp+ (Tp)�δt

�
≈ lim

s→0

��
Cu + sρ

s

�
+

�
s1 (Cu + sρ)×

0T 0T

��
δ�

δφ

��
(3.74a)

=

�
Cu
0

�
+

�
(Cu)×

0T

�
δφ. (3.74b)

This is a mathematical statement of what we suspect by intuition—distant landmarks

only provide information about a camera’s orientation, δφ, not its position; the homo-

geneous representation automatically encapsulates the different information that can be

discerned from near and distant points.

Therefore, when estimating landmark locations, we would like to use a parameteriza-

tion for landmarks that allows s → 0. This is also advocated by Triggs et al. (2000). How-

ever, a landmark stored in homogeneous coordinates has four parameters representing

three fundamental degrees of freedom. Unlike the rotation matrix case, the homogeneous

representation is not subject to a constraint. Rather, it has an extra degree of freedom.

For example, when estimating motion using the error term derived in Section 3.5.1, mul-

tiplying the homogeneous coordinates by a nonzero scalar will result in no change in

the objective function. Unconstrained degrees of freedom like this are disastrous for the

Gauss-Newton algorithm as they result in an infinite number of possible solutions to the

update-step equation, (3.14b), which can cause an implementation of the algorithm to

fail.

Hartley and Zisserman (2004) provide a possible solution based on a minimal param-

eterization of the unit sphere in R4. They let ϑ be a 3× 1 column of point parameters.

Using ϕ := �ϑ� and a := ϑ/ϕ, they define a map from the parameters, ϑ, onto a

homogeneous point5

p(ϑ) :=

�
sin ϕ

2 a
cos ϕ

2

�
. (3.75)

5This representation has no singularity at ϑ = 0 as lim
ϕ→0

1
ϕ sin

�ϕ
2

�
= 1

2 . Grassia (1998) provides a

method of computing this term that is accurate to machine precision. Let � be the smallest increment
represented by your floating point type, then

1

ϕ
sin

�ϕ
2

�
=

�
1
2 + ϕ2

48 if ϕ ≤ 4
√
�,

1
ϕ sin

�ϕ
2

�
otherwise.
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Essentially they are trading the degree of freedom inherent in the homogeneous repre-

sentation for the constraint p(ϑ)Tp(ϑ) = 1. This constraint has a hidden benefit in that

it keeps the entries of p finite as p approaches infinity (Triggs et al., 2000). This param-

eterization may still represent all points, but it has a singularity in that every ϑ with

�ϑ� = 2π maps to the same point,
�
0 0 0 −1

�T
. This is similar to parameterizing a

rotation using Euler angles; it is minimal but has a singularity.

Our goal here is similar to the previous sections: we would like to derive a linearization

method for homogeneous points that allows us to store points in homogeneous coordinates

as unit-length 4 × 1 columns, but with some minimal (3 × 1) linearized perturbation

that, after solution, may be turned into an update step that preserves the unit-length

constraint. This goal leads us to a generalization of the linearization strategy used in the

sections above.

Given a state variable, x, that has constraints that must be satisfied, we may follow

this general strategy for linearization:

1. Choose an update equation, which we will write x ← x ⊕ δx, where ⊕ represents

some (possibly nonlinear) update equation with the following properties:

• it is minimal: the update parameter column, δx, is a D × 1 column where D

corresponds to the number of underlying degrees of freedom in the state, x,

• it is constraint sensitive: after the update is applied, the new value of x still

satisfies any constraints, and

• it is unconstrained: there are no restrictions on the values δx can take and

when it is small, it is far away from any singularities in the update equation.

2. Linearize the update equation about the operating point δx = 0. This will usually
result in greatly simplified, closed-form Jacobian matrices.

3. Wherever x appears in an error term, substitute in the linearized update equation.

Continue to linearize the expression using Taylor-series expansions of nonlinear

functions.

4. Use the linearized error terms in the Gauss-Newton algorithm, solving for the op-

timal update step, δx�. Because the update equation does not impose constraints

on δx, there is no need to enforce constraints in the optimization algorithm.



Chapter 3. State Parameterization for Visual Odometry 34

5. Update the state, x, using δx� in the full nonlinear update equation chosen in Step 1.

Because the update equation was chosen to be constraint-sensitive, the new value

of x should still satisfy any constraints.

The difficult part of this general strategy for linearization is Step 1, finding a suitable up-

date equation that satisfies our three conditions. In the case of homogeneous coordinates,

quaternion algebra gives us precisely the tools we need in this regard6.

In what is to follow, a quaternion will be a 4× 1 column that may be written as

q :=

�
�

η

�
, (3.76)

where � is a 3×1 and η is a scalar. The quaternion left-hand compound operator, +, and

the right-hand compound operator, ⊕, will be defined as

q+ :=

�
η1 − �× �

−�T η

�
and q⊕ :=

�
η1 + �× �

−�T η

�
. (3.77)

Under these definitions, the multiplication of quaternions, q and r, which is typically

written as q ⊗ r (Shuster, 1993), may be written equivalently as either

q+r or r⊕q, (3.78)

which are both products of a 4× 4 matrix with a 4× 1 column. The conjugate operator

for quaternions, −1, will be defined by

q−1 :=

�
−�

η

�
. (3.79)

The set of quaternions forms a non-commutative group under both the + and⊕ operations

(Shuster, 1993). The identity element of this group, ι :=
�
0 0 0 1

�T
, is such that

ι+ = ι⊕ = 1, (3.80)

where 1 is the 4 × 4 identity matrix. None of the preceding definitions require the

quaternions to be of unit length. However, given two unit-length quaternions, q and r,

qTq = 1, rT r = 1, (3.81)

6We use the notational conventions of Barfoot et al. (2011b). Please see that reference for a review
of quaternion algebra, relevant identities, and historical perspective.
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both the + and ⊕ operators preserve the unit length:

�
q+r

�T �
q+r

�
= 1,

�
q⊕r

�T �
q⊕r

�
= 1 (3.82)

Consequently, we may use (3.77) and (3.75) to define a minimal, constraint-sensitive,

update equation for homogeneous points,

p ← p(ϑ)+p, (3.83)

where p is the 4×1, unit-length homogeneous point being updated, and ϑ is a 3×1 column

of update parameters. Next we linearize the update equation around the operating point

ϑ = 0,

p(ϑ)+p = p(ϑ+ δϑ)
+
p (3.84a)

= p(0 + δϑ)+p (3.84b)

≈
�
p(0) + ∂p(ϑ)

∂ϑ

����
ϑ=0

δϑ

�+

p. (3.84c)

Here we make the substitutions,

p(0) =





0

0

0

1




= ι, V :=

∂p(ϑ)

∂ϑ

����
ϑ=0

=





1
2 0 0

0 1
2 0

0 0 1
2

0 0 0




, (3.85)

to get

p(ϑ)+p ≈ (ι+ V δϑ)+p (3.86a)

= p⊕ (ι+ V δϑ) (3.86b)

= p+ p⊕V δϑ, (3.86c)

three equivalent forms of the linearized update equation. Now, to linearize an error term

involving a homogeneous point, p, we may substitute in any of the linearized forms on

the right-hand side of (3.86). When Gauss-Newton returns the optimal update step, δϑ�,

we may update the current value of the point, p using (3.83). The updated value will still

be of unit length. This is the parameterization used for points in Chapter 6, and so we

present a full derivation of the linearized error term for a stereo camera model observing

homogeneous points in the examples section below.
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Figure 3.1: The stereo camera model for an idealized pair of cameras with equal focal lengths,

parallel optical axes, and aligned image planes.

3.5 Examples

In this section we develop two worked examples using the linearization strategies out-

lined in this chapter. Section 3.5.1 uses the linearized transformation matrix expressions

derived in Section 3.3 to develop a linearized error term for a stereo camera model, and

Section 3.5.2 shows how to handle prior information terms on rotation matrices.

3.5.1 Stereo Camera Transformation Matrix Example

This section develops an example using our linearized transformation matrix expression

to construct a linearized error term for a stereo camera for use in the Gauss-Newton algo-

rithm. Before using stereo images for estimation, it is common to correct the images for

lens distortion and rectify them so that they appear to have come from an idealized pair

of cameras with equal focal lengths, parallel optical axes, and aligned image planes. This

idealized camera model is shown in Figure 3.1. More details of this preprocessing step

and sample images are given in Chapter 2. In this section we assume this preprocessing

step has been used, and derive the observation model and linearized error term for an

idealized stereo camera observing a point landmark.

Without loss of generality we will assume that the origin of the camera frame, F−→c,

is placed at the left camera’s center. The z-axis points out of the lens, and the x- and
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y-axes are aligned with horizontal and vertical pixels, respectively. The idealized stereo

camera model has the following parameters:

cu, cv : The horizontal and vertical coordinates of the camera’s principal point

in pixels (from the top left of the image)

fu, fv : The horizontal and vertical focal length in pixels (these values corre-

spond to the physical focal length, f , (mm) divided by the number of

pixels per mm in either the horizontal (fu) or vertical (fv) direction

(Hartley and Zisserman, 2004, p. 156))

b : The camera baseline: the distance between the two centers of projection

in meters

Let p =
�
x y z

�T
be the position of a landmark expressed in F−→c. The nonlinear

stereo observation model, g(·), projects p into the rectified images of the stereo camera:

y = g (p) := 1

z





fu 0 cu 0

0 fv cv 0

0 0 0 bfu





�
p
1

�
(3.87)

Under this model, the projection, y, is expressed in disparity coordinates (Demirdjian

and Darrell, 2002). A landmark projection y has components,

y =:





u

v

d



 , (3.88)

where u and v are respectively the horizontal and vertical pixel coordinates in the left

image, and d is the disparity—the difference between the left and right horizontal pixel

locations. These equations become linear when expressed in homogeneous coordinates7,

y =





fu 0 cu 0

0 fv cv 0

0 0 0 bfu

0 0 1 0





� �� �
=: M

p, (3.89)

7Recall from Section 3.3 that we are using bold italic symbols to represent columns in homogeneous
coordinates and plain bold symbols for quantities not in homogeneous coordinates. In this case, p and
p represent the same quantities, as do y and y, with (3.39) giving us p = h(p) and y = h(y).
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Figure 3.2: An example of a stereo camera measurement of a point landmark. In the idealized

stereo camera model, u� ≥ ur and v� = vr.

and the nonlinear form is recovered using (3.39) to get

y = h (Mp) , (3.90)

where M is the invertible stereo projection matrix. Because M is invertible, we also have

p = M−1y, (3.91)

which may be used to triangulate points seen in a stereo image. If stereo measurements

are made separately in the left and right images, we may define a linear transformation,

U, from disparity coordinates, to the predicted left and right pixel measurements,





u�

v�

ur

vr




=





1 0 0

0 1 0

1 0 −1

0 1 0





� �� �
=:U





u

v

d



 , (3.92)

where u� and v� are respectively the horizontal and vertical pixel coordinates of the

measurement in the left image and ur and vr are the right-image coordinates, as shown
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in Figure 3.2. To get back to disparity coordinates, we use the linear transformation





u

v

d



 =





1 0 0 0

0 1
2 0 1

2

1 0 −1 0





� �� �
=:D





u�

v�

ur

vr




. (3.93)

Using this camera model, a typical error term for a stereo camera observing land-

mark j at time k would be

ek,j := yk,j − h(MTck,mp
j,m
m ), (3.94)

where F−→ck is the camera frame at time k, F−→m is some map frame, pj,m
m is the homogeneous

representation of landmark j expressed in the map frame, yk,j is the 3 × 1 observation

expressed in disparity coordinates, and Tck,m is the transformation matrix that represents

the pose of the camera at time k (i.e., it transforms points from the map frame, to the

camera frame at time k). The system described in Chapter 5 only produces an estimate

of Tck,m, but the follow-on work in Chapter 6 also estimates the landmark locations. For

completeness we will derive the full linearized error term with respect to both the pose

variables and the landmark variables. For clarity, we will drop all subscripts.

Let δt represent a 6×1 perturbation of T about its nominal value, T , and let δϑ rep-

resent a 3×1 perturbation to p about the nominal value, p. Applying both perturbations

gives us

e = y − h(MTp), (3.95a)

≈ y − h
�
M

�
1 − δt�

�
T (ι+ V δϑ)+p

�
, (3.95b)

where we have used (3.52) to perturb T , and (3.86) to perturb p. Multiplying through,

we drop the products of small terms (consistent with a first-order approximation):

e ≈ y − h
�
MTp−Mδt�Tp+MT (V δϑ)+p

�
(3.96)

At this point, we may apply some of the identities from this chapter to get

e ≈ y − h
�
MTp+M

�
Tp

��
δt +MTp⊕V δϑ

�
(3.97)

where we have applied (3.61) and (3.78). Finally, letting

H :=
∂h(v)
∂v

����
v=MTp

(3.98)
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from (3.40b), the linearized error term becomes

e ≈ y − h
�
MTp

�
− HM

�
Tp

��
δt − HMTp⊕V δϑ. (3.99)

Defining

e := y − h
�
MTp

�
, E :=

�
−HM

�
Tp

�� −HMTp⊕V
�
, δx :=

�
δt
δϑ

�
, (3.100)

we may rewrite (3.99) as

e(δt, δϑ) = e + Eδx, (3.101)

which is of the form required by Gauss-Newton in (3.11). Returning to our initial prob-

lem, (3.94), one iteration of the Gauss-Newton algorithm would proceed as follows:

1. Begin with initial pose estimates, T ck,m, k = 1 . . . K, and an estimate of the position

of each point, pj,m
m , j = 1 . . .M .

2. For each stereo keypoint measurement, compute ek,j and Ek,j from yk,j, T ck,m,

and pj,m
m . If an individual pose is held fixed in the optimization, discard the term

associated with δtck,m.

3. Build and solve equation (3.14b) for δt�ck,m and δϑ�
j , the optimal updates to the

initial estimates.

4. Update each T ck,m using δt�ck,m according to the procedure in (3.56).

5. Update each pj,m
m using δϑ�

j according to the procedure in (3.83).

6. Check for convergence. If not converged, return to step 2.

The linearized error term derived in this section is used to solve for rover poses in Chap-

ter 5, and to solve for rover poses and landmark locations in Chapter 6. The update steps

are singularity free and the landmark parameterization handles both near and distant

landmarks.

3.5.2 Rotation Matrix Priors

In this section we derive a method for applying a probabilistic prior to a rotation matrix

using the results from Section 3.2. If the uncertainty is small, we may approximate a

Gaussian prior on the value of a rotation matrix, C, in the form,

δϕ ∼ N
�

0, P̂
�
, C =

�
1 − δϕ×� Ĉ, (3.102)
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where Ĉ is the mean rotation matrix, and δϕ is a rotation vector representing uncertainty

about the mean. The questions we address in this example are (i) given a guess for C,

how can we compute an error term—a 3×1 column that represents the “distance” that C
is from the mean rotation, Ĉ— and (ii) how does this error change with respect to small

changes in C under the linearization strategy derived in Section 3.2? We answer these

questions in order, first deriving the error term, and then linearizing the error term.

The Error Term

Given a guess for C, we would like to form an error term based on our prior belief from

(3.102). To understand our error term derivation for rotation matrices, it is useful to

understand the method of applying a prior to a typical state variable (i.e., not a rotation).

So, given a state variable x, a Gaussian prior belief may be written as

δx ∼ N (0, P̂), x = x̂ + δx, (3.103)

where x̂ is the mean and δx represents our uncertainty about the mean. Given a guess

for x, we may form a prior error term by defining

e(x) := δx = x − x̂, (3.104)

which gives us

E [e(x)] = E [δx] = 0, E
�
e(x)e(x)T

�
= E

�
δxδxT

�
= P̂. (3.105)

This error term becomes part of our maximum-likelihood cost function as

Jprior(x) :=
1

2
e(x)T P̂−1e(x). (3.106)

Following a similar strategy for rotation state variables, we define e(C) := δϕ. Substi-

tuting this into (3.102) we get

�
1 − e(C)×

�
Ĉ ≈ C (3.107a)

�
1 − e(C)×

�
= CĈT . (3.107b)

Assuming that CĈT is small8, it may be approximated by a rotation vector ψ as,

CĈT ≈
�
1 −ψ×� . (3.108)

8Indeed, all of the linear approximations that we are using to handle rotation matrices require the
quantities to be small.
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Substituting (3.108) into (3.107b) gives us

�
1 − e(C)×

�
≈

�
1 −ψ×� , (3.109)

which implies

e(C) = ψ. (3.110)

Unlike the standard case derived in (3.103)–(3.106), the computation of the error, ψ, is

a nonlinear operation that takes a rotation matrix (that we hope is near identity) and

computes a 3× 1 column. The choice of how to perform this conversion determines the

form of the error, and subsequently the form of the linearized error term derived below.

We choose to use the inverse of our rotation-matrix update equation. In this update

equation, (3.37), we use a rotation vector to build a rotation matrix by using the entries

of the vector as Euler angles. As we showed in Section 3.2, this approximation holds (to

first order) as long as the rotation vector is small. The inverse of this process, which we

will write as ψ ← CĈT , involves extracting a 3× 1 column of Euler angles, ψ, from the

rotation matrix CĈT . This is a nonlinear operation that must be linearized in order to

use this error term in Gauss-Newton.

The Linearized Error Term

To produce the error term, (3.110), we have used the inverse of our rotation-matrix

update equation, which extracts Euler angles, ψ, from the rotation matrix, CĈT . For a

Gauss-Newton iteration, we start with a guess, C, and make the approximation, (3.31),

that

C ≈
�
1 − δφ×�C, (3.111)

for some small update step, δφ. Substituting this into our error function, (3.110), we

would like to derive an expression, linear in δφ, that describes how small changes in δφ

become small changes in e(·). In the notation of Section 3.1, this would be:

e
��

1 − δφ×�C
�
≈ e

�
C
�
+ Eδφ (3.112)

In fact, we know the answer to this question from (3.34), which describes how a per-

turbation in the form of a rotation vector results in small changes in the Euler angles

representing a rotation (to first order). From (3.34), we have

e(δφ) = ψ + S
�
ψ
�−1

δφ, (3.113)
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where ψ ← CĈT . Hence, the linearized error term in our objective function becomes

Jprior(δφ) :=
1

2
e(δφ)T P̂−1e(δφ), (3.114)

which is of the form required by Gauss-Newton in (3.11). A prior error term of this form

is used to smooth out the localization estimates in Section 5.2.3.

3.6 Conclusion

This chapter has presented a first-principles approach to linearizing expressions involving

rotations represented by 3×3 rotation matrices, coordinate-frame transformations repre-

sented by 4×4 transformation matrices, and Euclidean points represented as unit-length

4 × 1 columns. The linearization approach was demonstrated through two examples:

(i) linearizing a stereo-camera-model error term, and (ii) forming and linearizing a prior

information term on a rotation matrix. Without listing contributions stemming from the

collaborative work in Barfoot et al. (2011b), we believe the contributions of this chapter

are:

1. A first-principles derivation of the multiplicative constraint-sensitive perturbations

of a 4× 4 transformation matrix and a unit-length 4× 1 homogeneous point given

by (3.52) and (3.86) respectively. These may be used to linearize any expression

involving a transformation matrix, or homogeneous point.

2. Expressions for updating transformation matrices and unit-length homogeneous

points with a constraint-sensitive perturbation are provided in (3.56), and (3.83)

respectively. These updates avoid the need to restore constraints afterwards.

3. Development of a number of identities for manipulating expressions involving lin-

earized transformation matrices. These identities are given in (3.61), (3.65), (3.66),

(3.69), (3.71), and (3.72).

4. Demonstration of linearizing a stereo-camera-model error term involving a trans-

formation matrix and homogeneous point landmark. The resulting linearized error

term, given by (3.99) is used for the VO estimates in subsequent chapters.

5. Demonstration of how to build and linearize an error term representing a Gaussian

prior on a rotation matrix. The linearized error term is given in (3.114).
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In all cases, the parameterizations we propose are minimal, in the sense that the update

parameterization has the same number of degrees of freedom as the underlying state

variable, they are constraint sensitive in that the equation used to update the state

variable preserves constraints on the state, and they are unconstrained in that, as long

as the update parameters are small, there are no restrictions on the values they may

take. This allows us to use unconstrained optimization methods without fear of hitting

singularities in our underlying representations.



Chapter 4

Coupled Surface/Subsurface

Modelling

The use of GPR together with a stereo camera on planetary exploration rover has been

proposed several times (Barfoot et al., 2003; Vago et al., 2006; Fong et al., 2008). Used

together, surface and subsurface imaging will aid in the search for subsurface ice deposits

and evidence of life. On such a mission, cameras would be used for site selection and

survey, a GPR would be used to characterize the subsurface structure, and taken together,

the surface and subsurface data would be used to select locations for drilling.

Despite this interest, there are still several open issues regarding the use of GPR on

a rover platform:

1. Rovers must be able to deliver information about the surface (topography, substrate

particle size distribution, and/or the presence of any existing outcrops) that enables

the operator to give local geological context to the subsurface data. Surface and

subsurface information must be coupled so that the science team can visualize the

spatial relationship between surface features identified in images and subsurface

features seen in GPR data.

2. For a more complete interpretation of GPR data, the radargram (a two-dimensional

subsurface profile) should be corrected for topography (e.g., Busby and Merritt

(1999); Lunt and Bridge (2004); Cassidy (2009); Annan (2009)). As planetary

exploration rovers have no access to a GPS equivalent, topographic profiles must

be generated using other on-board sensors.

3. A flight-ready GPR antenna must satisfy size, mass and power consumption con-

45
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straints and the integration must minimize interference from the rover’s metal chas-

sis.

The contribution of this chapter is to address items 1 and 2 by using stereo imagery to

enhance GPR data. Specifically, we propose an architecture that enables the automated

construction of coupled surface/subsurface models using the specific sensors planned

for deployment on near-term robotic exploration missions. Stereo cameras have been

deployed on the Mars Exploration Rovers (Maki et al., 2003) and are planned for both

the Mars Science Laboratory (Malin et al., 2005) and the ExoMars Mission (Vago et al.,

2006). The modelling pipeline uses the VO algorithm described in Chapter 2 to fully

automate the GPR data collection procedure and produce two novel data products: (i)

a two-dimensional, topography-corrected GPR radargram with the surface topography

plotted above, and (ii) a three-dimensional, photo-realistic surface model coupled with a

ribbon of GPR data. Each result is derived from only the on-board sensors of the rover,

as would be required in a planetary exploration setting.

On Earth, producing a site survey using GPR on rough terrain involves several steps:

1. The GPR antenna is dragged along a transect to collect many vertical GPR traces.

2. The position of the GPR at each trace is determined using traditional surveying

techniques or the Differential Global Positioning System (DGPS) integrated directly

with the GPR.

3. GPR processing software is used to correct the horizontal spacing and vertical

offset of the GPR traces along the transect using the position information from the

previous step.

4. The corrected traces are concatenated into a raster image called a radargram.

Our approach automates this process by using VO in the place of GPS, thereby enabling

the technology to be used in a planetary exploration context.

These techniques have been tested using data gathered at two sites near the Haughton-

Mars Project Research Station (HMP-RS) on Devon Island, Nunavut, Canada (Lee et al.,

2007). The sites exhibit polygonally-patterned ground, a periglacial landform often in-

dicative of subsurface ice deposits (as discussed in Chapter 1). Stereo images were cap-

tured during GPR transects and our integrated surface/subsurface modelling techniques

were applied to the resulting data.
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The rest of this chapter is organized as follows. Related work regarding the develop-

ment of GPR for planetary exploration is discussed in Section 4.1. Our integrated sur-

face/subsurface modelling technique is described in Section 4.2. We describe our method

of two-dimensional radargram correction in Section 4.2.1 and our three-dimensional sur-

face/subsurface modelling technique in Section 4.2.2. Sections 4.3 and 4.4 outline our

field tests on Devon Island and the associated results. Our conclusions are provided in

Section 4.5.

4.1 Related Work

Perhaps the most common geophysical tool used in terrestrial geological investigations,

GPR relies on differences in subsurface materials’ dielectric permittivity to image the

layering of different materials beneath the sensor. The GPR transmitter emits a high-

energy electromagnetic pulse into the ground at frequencies generally in the range of

10-1000 MHz (Degenhardt and Giardino, 2003). When the signal encounters an interface

between layers of differing permittivity, part of the energy is reflected back towards

the surface while the remainder is refracted onwards. The reflection/refraction process

continues until the signal has attenuated completely or the user-defined time window—the

amount of time that the GPR receiver is programmed to search for a return signal—has

elapsed (Moorman et al., 2003). Based on the two-way travel time of each reflected pulse,

a trace is produced illustrating a series of reflector intensities located beneath the unit.

Within the trace, the amplitude of the reflection is proportional to the relative difference

in permittivity between adjacent materials (Arcone et al., 1995). When the GPR survey

is conducted along a surface transect, individual traces can be combined to produce a

radargram, a two-dimensional profile showing continuous subsurface reflective layers.

The imaging of the subsurface of Mars has to date been performed by orbital sounding

radars—the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS)

on Mars Express (Picardi et al., 2005), and the Shallow Subsurface Radar (SHARAD)

on Mars Reconnaissance Orbiter (Seu et al., 2007). These instruments have revealed

subsurface information to kilometers and hundreds of meters depths, respectively, at

resolutions that reveal large-scale features such as buried impact craters, 250 kilometers

across (Picardi et al., 2005). Although the scans returned by SHARAD have an order of

magnitude better depth resolution than those collected by MARSIS (Seu et al., 2007), it

is still too coarse to pinpoint sampling locations for surface-rover drilling operations. As
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such, GPR deployed on a surface rover is a logical complement to the currently-available

orbital data.

The application of GPR to frozen terrain was pioneered by Annan and Davis (1976)

(cf. Ross et al. (2005)) and is becoming increasingly widespread. Given its established

utility in some of Earth’s most extreme environments such as Antarctica (Arcone et al.,

2002) and the Canadian Arctic (dePascale et al., 2008), rover-based GPR has thus been

proposed for development on a variety of planetary missions (Vago et al., 2006). While

previous studies have focused primarily on hardware development and testing (Grant

et al., 2003; Kim et al., 2006; Leuschen et al., 2002), understanding the physics of dielec-

tric signal loss in Mars-type substrates (Pettinelli et al., 2007), and possible applications

to Mars analogue environments (Arcone et al., 2002; Degenhardt and Giardino, 2003;

Williams et al., 2005), little effort has been directed towards the integration of sub-

surface data with surface-based distance estimates (Barfoot et al., 2003). Because the

interpretation of GPR data relies heavily on knowledge of the survey’s spatial orientation

and relation to surface features, it is important that any autonomous GPR study have

such a capability. Previous advances automating GPR data acquisition have used DGPS

(Rial et al., 2005; Fong et al., 2008), a laser theodolite (Lehmann and Green, 1999), or

proprioception (Freese et al., 2007)1 to track the pose of the GPR during data collection.

To the best of our knowledge, this work is the first to use VO-derived motion estimates

to align GPR data.

4.2 Integrated Surface/Subsurface Modelling

This section will describe our integrated surface/subsurface modelling system. Data flow

through the main processing blocks of our system can be seen in Figure 4.1. An attentive

reader will notice that the top part of Figure 4.1 is simply the VO pipeline described in

Chapter 2. Our modelling system uses the motion estimate derived from VO, the raw

stereo images, the GPR data, and some calibration information to produce two novel data

products that may be used for scientific study: a two-dimensional topography-corrected

radargram, and a three-dimensional coupled surface/subsurface model.

1Freese et al. (2007) used joint angle encoders to track the pose of a GPR attached to the end of a
robotic manipulator.



Chapter 4. Coupled Surface/Subsurface Modelling 49

Left  
camera 

Image  
de-warp  and 
rectification 

Stereo 
matching 

Right  
camera 

Image  
de-warp  and 
rectification Nonlinear 

numerical 
solution Keypoint 

detection  

Keypoint 
detection        

Keypoint 
tracking 

Pose 
estimate 

Outlier 
rejection 

Terrain modeling!

Visual Odometry!

Stereo 
 disparity map 

Voxel 
mapping 

Surface/ 
GPR mesh  
generation 

Texture 
mapping 

Coupled 
surface/

subsurface 
model 

GPR Gain 
correction 

Figure 4.1: An overview of the major processing blocks of our system. A VO pipeline (top)

processes stereo image pairs to solve for the pose of the camera at every image. The pose esti-

mate is used by the terrain modelling pipeline (bottom) to create a three-dimensional coupled

surface/subsurface model.

4.2.1 Two-Dimensional Topographic Correction and Surface Pro-

file

When the GPR transect of interest lies along sloping or undulating terrain, it is typical

to perform a topographic survey using standard survey instruments such as DGPS (Lunt

and Bridge, 2004) or an engineer’s level (Busby and Merritt, 1999). The motion estimate

from VO can be used for the same purpose. The height of the antenna at each trace is

interpolated from the motion estimate and this is used to apply a topographic correction

to the transect.

Additionally, given only the sparse feature points used to produce the motion estimate,

we can plot the points that fall near to the path of the antenna and fit a spline that

describes the surface. The surface spline improves on the topographic correction as it is

able to capture narrow features over which the antenna slides. This extra data allows

the user to account for the random clutter field that surface roughness produces in the

GPR data (Daniels, 2004). A sample surface profile is shown in Figure 4.2.

4.2.2 Three-Dimensional Surface/Subsurface Modelling

Surface Mesh Generation

Our three-dimensional, photo-realistic terrain models are generated by passing our mo-

tion estimate into the Instant Scene Modeler (ISM) developed at MDA Space Missions

(Barfoot et al., 2006; Se and Jasiobedzki, 2008). At time k we use the sum-of-absolute-
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Figure 4.2: Fitting a spline to the surface points (reconstructed from the stereo images) along

the GPR antenna’s path produces a high-resolution surface profile. This captures narrow terrain

features that may not be present in the motion estimate (due to the antenna’s size having a

smoothing effect) and provides further information about surface roughness along the transect.

differences, correlation-based, dense-stereo algorithm to generate a set of Mk scene points

expressed in the camera frame, F−→ck :

�
pi,ck
ck

�� i = 1 . . .Mk

�
(4.1)

The motion estimate from VO provides the transformation, Tm,ck , which takes points

from the camera frame at time k to some fixed mapping frame, F−→m:

pi,m
m = Tm,ckp

i,ck
ck

(4.2)

Aligning dense point clouds from multiple views fills in holes in the data and provides

us with the rich volumetric information we need to create a surface mesh. Dense-stereo

methods are often used for terrain assessment (Lacroix et al., 2001; Biesiadecki and Mai-

mone, 2006) and so the point clouds may be available onboard at no extra computational

cost. However, using every point obtained from stereo processing in the terrain model is

not efficient. There are many redundant measurements and, due to incorrect matches,

occlusions, or lack of texture, the data may contain noise and missing regions. A tri-

angular mesh representation reduces the amount of data when multiple point sets are

combined and thus also reduces the amount of bandwidth needed to send the result-

ing models offboard (e.g., to Earth). Creating a surface mesh fills up small holes and

eliminates outliers, resulting in smoother and more realistic reconstructions.

To generate triangular meshes from the merged point set, we employ a voxel-based

method (Roth and Wibowoo, 1997), which accumulates three-dimensional points with
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Figure 4.3: The photo-realism of the surface model is achieved by mapping the original colour

input images on to the surface mesh. Texture coordinates (u, v) for each triangle in the terrain

model are found using (3.90) to project the triangle’s vertices into the colour images captured

by the rover.

their associated normals. The points are accumulated into voxels at each frame. Outliers

are filtered out using their local orientation and by selecting the threshold of range mea-

surements required per voxel for a valid mesh vertex. It takes a few seconds to construct

the triangular mesh, which is dependent on the data size and the voxel resolution.

The photo-realistic appearance of the reconstructed scene is created by texture map-

ping the triangular mesh using the same stereo images used for motion estimation.

Texture-mapped surfaces are more visually appealing and easier to interpret as they

provide additional surface details. The vertices of each triangle in the mesh are pro-

jected into the images using (3.90) as shown in Figure 4.3. As each triangle may be

observed in multiple images, one image must be selected to provide the texture for each

triangle. The algorithm selects the smallest set of images that will cover all of the trian-

gles. This decreases the amount of bandwidth required to transmit the models, reduces

the appearance of texture discontinuities between adjacent triangles, and makes the scene

easier to load and view.

Scenes produced by ISM are exported as Virtual Reality Modelling Language (VRML)

files and may be viewed in any VRML viewer. The meshes are exported in metric scale

based on the motion estimate and the points derived from stereo processing. As such,

the resulting three-dimensional model provides a rich record of the site and may be used

for measurement of visible surface features (Osinski et al., 2010).
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GPR Mesh Generation

After estimating the rover’s motion and building a terrain model, we couple the subsurface

data to the surface model. The data from the traces along a rover traverse are associated

with the rover’s motion estimate through common time-stamps. With this information,

we can build a 3D model of the GPR data.

To display the subsurface data with the surface model, we build a mesh for the GPR

data. In a static configuration, we define the left camera frame (discussed in Section 3.5.1)

as F−→c and the frame attached to the GPR antenna as F−→a. Calibration of the rover

determines Tc,a, the static transformation between F−→a and F−→c. The depth of each trace,

d, is calculated from the measured signal return time and the estimated velocity of the

radar pulse through the subsurface (Hinkel et al., 2001). The electromagnetic wave

velocity typical for ice-rich substrates in permafrost is approximately 120 m/µs (Fortier

and Allard, 2004). The mesh created in Section 4.2.2 is represented in frame F−→m and so

we create the GPR mesh in the same frame. For each time k in the motion estimate, we

create two vertices,

vk,0 = Tm,ckTc,a





0

0

0

1




, vk,1 = Tm,ckTc,a





0

0

−d

1




, (4.3)

representing the antenna position (vk,0) and the position at the bottom of the trace

(vk,1). For each time 2 ≤ k ≤ M , the polygon, {vk−1,0,vk−1,1,vk,1,vk,0}, is added to

the mesh. The geometry of this polygon construction is shown in Figure 4.4. Using the

VO-derived motion estimate to build both the surface model and the subsurface mesh

results in a coupled model by construction; all points in both meshes are expressed in

the same coordinate frame, F−→m.

Texture coordinates are assigned to the vertices based on the time-stamp association

between the rover poses and the traces in the GPR radargram. Texture mapping the

GPR data onto this mesh goes one step beyond standard topographic correction. Be-

cause the full six-degree-of-freedom pose of the rover is used to generate the mesh, the

texture-mapped traces are corrected for tilt, topography and wheel slip. Future work

could involve using the samples from collocated scans to perform automated dense GPR

reconstruction as in Lehmann and Green (1999).
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Figure 4.4: The subsurface model is built by reconstructing the trajectory of the GPR antenna

over the length of the traverse. From the six-degree-of-freedom motion estimate, the calibration

transformation, Tc,a, and the scan depth, d, we construct a three-dimensional polygonal mesh,

which is texture-mapped with a radargram of the input GPR data. The resulting model goes

beyond a typical topographic correction as the traces are corrected for wheel slip, tilt, and

topography.

4.3 Field Testing

The experiments described in this chapter were conducted on Devon Island in the Cana-

dian High Arctic, as part of the Haughton-Mars Project (Lee et al., 2007). The HMP-RS

is situated just outside the northwest area of the Haughton impact crater, which is lo-

cated at 75◦22� N latitude and 89◦41� W longitude. Haughton presents unique qualities

for planetary analogue studies because it offers an unusually wide variety of geological

features and microbiological attributes of strong planetary analogue value or potential

(Cabrol et al., 2010). Haughton is also in a polar desert environment, which presents

real challenges to field exploration that are analogous in fundamental ways to those ex-

pected in planetary exploration. This site has been used for rover testing in the past

(Wettergreen et al., 2002, 2005; Fong et al., 2007, 2008).

Our experiments were conducted approximately 10 kilometers northeast of HMP-RS

near Lake Orbiter. This site was selected based on ongoing research into the polygonal

terrain it hosts. Image sequences from the stereo camera and GPR data were logged at

two sites:
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Figure 4.5: Locations and transects on Devon Island, Nunavut, Canada used for field testing

our integrated surface/subsurface modelling technique.

1. The Lake Orbiter Transects: Five straight-line transects were taken at the Lake

Orbiter site (Figure 4.5(a)). Each transect is approximately 60 meters long.

2. The Mock Rover Transect: One approximately 357 meter transect at a site that

had not been previously studied (Figure 4.5(b)).

The two sites selected for investigation are comprised primarily of poorly sorted angular

clasts2 ranging from centimeters to tens of centimeters in size. The polygonal shapes

measure a few meters to tens of meters between subsequent troughs, with individual

troughs averaging approximately 1–2 meters in width and tens of centimeters in depth.

In our experiments, a rover was simulated using the push-cart shown in Figure 4.6.

The push-cart was equipped with a stereo camera, a GPR, an on-board computer, and

two independent GPS systems (one Real-Time Kinematic) used for ground-truth posi-

tioning. Although this was not an actuated rover, our focus in this work is on problems of

estimation, and thus it was entirely sufficient as a means to gather data. The GPR (and

cart) we used was a Sensors&Software Noggin 250 MHz system (Barfoot et al., 2003).

Efforts were made to minimize the effect of the rover body on the GPR data quality

(e.g., using plastic parts where possible). The stereo camera was a Point Gray Research

Bumblebee XB3 with a 24 cm baseline and 70◦ field of view, mounted approximately 1

meter above the surface pointing downward by approximately 20◦. Each image of the

stereo pair was captured at 1280× 960 pixel resolution.

2Pointy, broken-up bits of rock.
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Figure 4.6: The data collection platform used in this study was PC-1, a pushcart rover out-

fitted with the rover engineering sensors needed to develop and evaluate our coupled sur-

face/subsurface modelling pipeline. This figure shows (left) PC-1 positioned on a polygon

trough at our test site at Lake Orbiter on Devon Island, Nunavut and (right) the coordinate

frames needed in this chapter.

4.4 Results

Here we present the results of our coupled surface/subsurface modelling pipeline. We first

evaluate the VO algorithm against DGPS, and then present the data products produced

by our pipeline.

4.4.1 Visual Odometry

The VO algorithm described in Chapter 2 was used to process all data collected at the

Lake Orbiter site. We used a real-time kinematic GPS unit as groundtruth for our motion

estimate. The GPS frame is depicted in Figure 4.6. The x-axis is aligned with lines of

longitude (east positive), the y-axis is aligned with the lines of latitude (north positive)

and the z-axis points up. The inclinometers were used to determine the initial pitch

and roll of the rover. However, as the data were collected near the north magnetic pole,

we were unable to use a compass to determine the initial heading of the vehicle. We

determine the initial heading through a least-squares fit of the estimated track to the

GPS for a small number of poses at the start of the traverse. These poses are then

discarded and are not used when evaluating the linear position error. This is similar to

the method used by Nistér et al. (2004).

The results are shown in Table 4.1, which lists the distance travelled and errors for

all datasets collected. On the short Lake Orbiter transects (50 to 60 meters), position
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Figure 4.7: Track plots of the GPS and VO estimate on the 357 meter Mock Rover Transect.

Linear position error at the end of this traverse was 5.8 meters, or 1.6% of distance travelled.

Table 4.1: VO motion estimate results from the mock rover transect and several short polygon

transects. The transect names correspond to the labels in Figure 4.5. The additional N or S

indicates that the transect was collected with the rover travelling North or South.

Transect Length (m) Linear Error (m) % Error Images

Mock Rover 357.30 5.83 1.63% 4818

poly-1A-S 54.23 2.87 5.29% 333

poly-1B-N 59.63 0.68 1.14% 316

poly-1B-S 60.06 1.24 2.06% 317

poly-1C-N 60.67 1.98 3.26% 327

poly-2A-N 51.49 1.04 2.01% 270

poly-2A-S 50.16 0.25 0.51% 263

poly-2B-N 49.47 1.16 2.34% 260

poly-2B-S 49.05 0.96 1.96% 258
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Figure 4.8: Views of the key data product in this chapter: a coupled surface/subsurface model

built from stereo imagery and a GPR. The texture-mapped triangle mesh of the surface is

displayed above the ribbon of GPR data. The model may be rendered from any viewpoint

using off-the-shelf computer components and OpenGL. The inset figures show possible views

of one of the polygon troughs along the transect. The coupled model provides situational

awareness, allowing operators to explore the interaction of surface topography and subsurface

structure even though they are working remotely.

errors were no greater than 5.3% of distance travelled. The results of the estimation on

the Mock Rover Transect are plotted in Figure 4.7. The estimate accumulated 1.63%

position error over this 357.3 meter traverse.

4.4.2 Coupled Surface/Subsurface Models

The complete coupled surface/subsurface model of the Mock Rover Transect is shown in

Figure 4.8. The texture-mapped triangle mesh of the surface is displayed above the ribbon

of GPR data. The model may be inspected using a Virtual Reality Modelling Language

viewer and rendered from any viewpoint using off-the-shelf computer components and

OpenGL.

Figure 4.9 shows the entire corrected GPR radargram produced from data collected at

the Mock Rover site. As is evident, the application of topographic corrections provides a

more realistic representation of subsurface structure with respect to variations in surface

elevation than would an uncorrected model.

GPR is particularly useful for identifying subsurface ice because of the vast differences
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Figure 4.9: The complete corrected GPR radargram of the Mock Rover site (above), produced

using the process described in Section 4.2.1. The surface profile derived from stereo processing

is plotted in solid/yellow. The bottom plots compare the difference between the corrected and

uncorrected radargram for a portion of the data near a large polygon trough. The corrected

radargram shows that the base of the seasonally-thawed active layer (dashed/red) is nearly flat

and that a dip in the surface topography corresponds to a subsurface feature, shown here by a

hyperbolic reflection pattern (double-line/orange). As is evident, the topographic correction and

surface profile provide further context to aid in the interpretation of the subsurface structure.

in dielectric properties displayed by ice, sediment, water, and air (Milsom, 2003). In ice-

rich sediments, it is quite easy to detect the base of the seasonally thawed active layer

(Moorman et al., 2003; dePascale et al., 2008), because of the immediate increase in

permittivity that occurs due to freezing at the top of the permafrost (Scott et al., 1990).

In Figure 4.9, a noticeable continuous reflector virtually mirroring the surface topography

is located approximately 1 meter beneath the surface along the transect length. This

depth corresponds well with the permafrost table located by augering at the highlighted

section on Figure 4.9, and thus the reflection is interpreted as the base of the active layer.

In addition to detecting the frozen/unfrozen unconformity within the ground, a

boundary between a discrete ground ice body and its enclosing sediments should pro-

duce a strong distinguishable reflector because of a sharp decrease in permittivity at the

sediment/ice interface (Moorman and Michel, 2000). However, although ice wedges are

discrete ice bodies, properly imaging their structure using GPR in not straightforward.

As noted by Hinkel et al. (2001, p. 187), ice wedges “produce exceedingly complex,
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high amplitude hyperbolic reflections” due to the conical shape of the emitted GPR

pulse. As a result, while ice wedges themselves are roughly triangular in shape—wider at

the top and progressively narrowing with depth—their appearance on a radargram more

resembles an inverted hyperbola (e.g. Hinkel et al. (2001); Fortier and Allard (2004)).

Figure 4.9 illustrates an example of a hyperbolic subsurface reflection detected within

the radargram. At this and other locations along the transect, the hyperbolic reflectors

are found immediately beneath the troughs as indicated by small V-shaped depressions

in the stereo camera surface profile. Because polygon troughs are the most obvious

surface expression of ice wedge locations (Mackay, 1999), the successful coupling of our

surface/subsurface model is further supported.

4.5 Conclusion and Future Work

We have presented a coupled surface/subsurface modelling method that uses only a

rover-mounted stereo camera and GPR. Specifically, we believe the contributions of this

chapter are:

1. Demonstration and field testing of a method to completely automate the GPR data

collection process by using stereo VO to derive an estimate of the motion of the

GPR antenna over the course of a transect. This method uses only onboard sensors

slated to fly on future rover missions, making it suitable for a planetary exploration

setting.

2. Demonstration and field testing of a method to use the raw data from a stereo

camera and GPR along with the VO motion estimate to produce two novel data

products:

(a) a topography-corrected radargram plotted with a two-dimensional profile of

the surface along the transect (Section 4.2.1), and

(b) a photo-realistic three-dimensional surface/subsurface model (Section 4.2.2).

These techniques allow operators to work remotely, surveying the data as if they were

on site. The data products allow subsurface structure to be examined in the context of

the surface structure, a key scientific technique used by field geologists to identify sites

worthy of further study.
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Before a GPR is deployed on a flight platform, the significant issue of GPR/rover

integration must be addressed (Barfoot et al., 2003). The proximity of the rover to the

GPR will produce signal corruption due to the reflections from the metal chassis and

electromagnetic signals generated by the actuators. Attempts to shield the antenna from

these effects will increase the mass of the payload and may also produce interference

at the receiving antenna (Annan, 2009). In short, this is a major issue that must be

addressed before rover-based GPR data collection is deployed in space.



Chapter 5

Autonomous Retrotraverse

This chapter describes a complete system for long-range, autonomous operation of a

mobile robot in outdoor, unstructured environments. This is achieved using only a

stereo camera for sensing and a teach-and-repeat operational strategy. During a learning

phase—the teach pass—the rover is piloted over the desired route (either manually or us-

ing some external autonomous system), while the mapping system builds a manifold map

composed of overlapping local submaps. The topologically-connected submaps are then

used for localization during the autonomous traversal phase—the repeat pass. Because

our goal was to travel back and forth over long distances where no loops in the path are

present, we chose not to formulate the problem as SLAM. Rather, the hybrid topologi-

cal/metric formulation alleviates the requirement for an accurate global reconstruction,

while avoiding the unbounded error growth of purely relative motion estimation. Similar

systems have been proposed for rovers navigating indoors (Goedeme et al., 2005), in mines

(Marshall et al., 2008), or outdoors in planar environments (Royer et al., 2007; Šegvić

et al., 2009), but this is the first system shown to work over multi-kilometer autonomous

traverses in highly three-dimensional, outdoor, unstructured environments, without the

use of GPS.

Our visual teach-and-repeat system is appropriate to many scenarios requiring rover

autonomy where GPS is not available. We envision such a system being used to support

Mars-sample-return (Figure 5.1), or automated convoying of equipment between lunar

landing sites and habitats. Hence we have tested our system at a Mars/Moon analogue

site on Devon Island in the Canadian High Arctic. For completeness, we have also per-

formed tests in an urban setting, over grass, over challenging three-dimensional terrain,

and through extreme lighting changes (indoor to outdoor). This chapter reports results

61
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Figure 5.1: We envision our teach-and-repeat navigation framework being used to support Mars-

sample-return mission operations (left image credit: NASA/JPL). After sample acquisition, the

rover would retrace its route, returning to the lander in a single command cycle. The image on

the right shows our rover driving back along its outbound track in a planetary analogue setting

on Devon Island, Canada.

for over 32 kilometers of evaluation of our algorithm with 99.6% of the distance travelled

autonomously, all without the use of GPS.

5.1 Related Works

In an early paper on vision-based map building, Brooks (1985) outlined some basic

principles for robotic mapping:

• The world is inherently three-dimensional. Localization and mapping should reflect

this.

• Uncertainty in sensing will lead to maps that are globally inconsistent. However,

to enable robot autonomy, maps only need to be locally consistent.

To deal with this, he proposed a map composed of an abstract graph of free-space prim-

itives. Similar in concept, Howard et al. (2006) designed and implemented a multi-agent

system that represented the robot’s map as a manifold embedded in a higher-dimensional

space. Manifold mapping changes the way a map represents the world. A map becomes

topological in the sense that it defines a sequence of connected spaces, but the spaces

in the map may have a many-to-one correspondence with the world. This topology is

represented by dividing the map into a graph of submaps (Bosse et al., 2004; Howard
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et al., 2006; Marshall et al., 2008; Eade and Drummond, 2008), or using a continuous

relative representation (Sibley et al., 2009; Mei et al., 2009). Incremental errors that

would cause inconsistencies in a purely metric map disappear within the manifold repre-

sentation. As a result, loop-closing decisions may be delayed (Howard et al., 2006) and

loops may be closed in constant time, regardless of the size of the map (Sibley et al.,

2009). Manifold mapping removes the constraint that maps be globally consistent, but in

order to be useful for localization, the neighbourhood around the robot must still appear

locally Euclidean.

To see where this local-Euclidean constraint expresses itself in the SLAM problem we

examine the structure of the basic SLAM equations. The SLAM problem is formulated

probabilistically as the task of estimating the joint posterior density of the map, m, and

vehicle state at time k, xk, given all previous measurements, z0:k, control inputs, u0:k,

and prior knowledge, x0 (Durrant-Whyte and Bailey, 2006):

p(xk,m|z0:k, u0:k, x0) (5.1)

Most solutions to this problem involve computing p(zk|xk,m), the likelihood of the mea-

surement vector, zk, given the current state and map estimates. The likelihood is then

expressed using an observation model, g(·), such that

zk = g(xk,m) + vk, (5.2)

where vk is observation noise. The properties of (5.2) determine the form of the con-

straint. Most navigation sensors discern something about the geometry in the robot’s

local neighbourhood and, for a map to be useful, the neighbourhood must appear Eu-

clidean to the sensor suite; any deviation must be small enough to hide in vk. This is

the motivation behind the adaptive optimization scheme in Sibley et al. (2009), and the

choice of submap size in Marshall et al. (2008). If this constraint is satisfied, the map is

still useful for localization, even if the global reconstruction is inaccurate.

Visual teach-and-repeat navigation systems have been built on this very concept,

combining topologically-connected keyframes with a controller that attempts to drive the

robot to the same viewpoints along the path. Our review of teach-and-repeat systems will

focus on camera-based systems. Marshall et al. (2008) and Newman et al. (2002) both

used planar laser-ranging devices to build teach-and-repeat systems in indoor corridors.

The systems are well suited to these environments (an underground mine in the former,

and an office building in the latter), but in outdoor, unstructured environments, there is



Chapter 5. Autonomous Retrotraverse 64

no guarantee that any walls will be within the range of a laser sensor. Cameras, on the

other hand, are not dependent on scene topography. They require only ambient light and

scene texture to return useful images. Wide field-of-view and omnidirectional cameras

capture the large-scale geometry and appearance of a scene, which is generally unique to

a particular viewpoint and somewhat robust to small-scale changes in the scene. In this

way cameras are well suited to recognize places previously visited.

Early work in visual teach-and-repeat navigation recognized the key benefit of such

a system: an accurate global reconstruction is not needed for a robot to retrace its

path (Baumgartner and Skaar, 1994; Brooks, 1985). Systems implementing teach and

repeat span the continuum of map-based approaches, as categorized by Bonin-Font et al.

(2008). Different systems frame the problem as purely metric (Baumgartner and Skaar,

1994; Royer et al., 2007), combined topological/metric (Šegvić et al., 2009; Goedemé

et al., 2007), or purely topological (i.e., only track the position along the path) (Zhang

and Kleeman, 2009; Matsumoto et al., 1996). Our system can be described as topo-

logical/metric. Localization is performed in three-dimensional space, path tracking is

performed in a local planar projected space, and route management is topological.

Appearance-based systems compare large portions of the input image with prototype

images captured during the teach pass. These algorithms derive from the work of Mat-

sumoto et al. (1996). They developed a system for autonomous navigation within corri-

dors. During the route-learning phase, an ordered sequence of images was captured using

a monocular camera. During route repeating, progress along the sequence is tracked. A

template from the center of each new image is correlated with the two nearest images

along the route. The steering angle is determined from the correlation peak offset, and

the current image index is incremented when the next image returns a higher correlation

score than the previous. Jones et al. (1997) extend this basic framework and introduce

a second camera to more accurately track the position along the route, while Payá et al.

(2007) try to make the process more efficient using principle component analysis. The

most impressive demonstration of appearance-based path following was developed by

Zhang and Kleeman (2009). They report over 18 km of tests using an omnidirectional

imaging system. Position along the route and steering angle determination are similar to

Matsumoto et al. (1996), but significant image preprocessing is performed to make the

system robust to changing lighting conditions. All of the appearance-based techniques

rely on the assumption of planar camera motion. They are therefore not suitable for

outdoor unstructured environments.
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Another group of algorithms uses image features for mapping and navigation, but

relies on the planarity of the camera’s motion to reduce the complexity of the problem.

Ohno et al. (1996) use a monocular camera and a bearing-only, two-dimensional local-

ization when navigating between prototype images. Tang and Yuta (2001) develop a

similar system for a robot with an omnidirectional camera. They use colour informa-

tion to describe line features and planar localization based on the bearing of the line

correspondences. The algorithm described by Bekris et al. (2006) and Argyros et al.

(2005) tracks point features between omnidirectional images. Instead of triangulating

the features, they only use the bearing of the measurements and develop a control law

to drive the robot between viewpoints. Jun et al. (2000) describe an algorithm that

uses range measurements from a stereo camera to detect obstacles, which are projected

down to a plane and used for localization while repeating the route. Blanc et al. (2005)

developed a system that followed indoor visual routes. As the camera was facing the ceil-

ing, the system could solve three-degree-of-freedom homographies using features tracked

between exemplar images and images taken from the robot’s current position. Courbon

et al. (2008) extended this work to use an omnidirectional camera. Chen and Birchfield

(2006) developed a homing system that uses a KLT point tracker on images captured

from a forward-facing monocular camera system. Stored points from the training run

are matched with points on the repeat run and all matched points contribute to a sim-

ple visual servoing scheme. Goedemé et al. (2005) improve the process of extracting

line features by making every part of the algorithm invariant to changes in illumination

and viewpoint (assuming the camera is restricted to moving in the plane). They also

move to use point features detected using SIFT (Lowe, 2004). During the map-building

phase, features are triangulated between views and their three-dimensional coordinates

are stored in the map. Three-dimensional localization against the map is performed by

observing features and estimating the essential matrix of the camera. Owing to the intro-

duction of local metric 3D information derived from point features, this algorithm, and

the similar one described by Booij et al. (2007), could be adapted to work with nonplanar

camera motion.

Developing a teach-and-repeat system for outdoor, unstructured environments re-

quires the handling of nonplanar camera motions. Using point image features for local-

ization removes the planarity constraint and enables localization in three dimensions as

required by our system. There has been some previous work in this area using forward-

facing monocular cameras. The work of Royer et al. (2007) represents one approach
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to this task. During the mapping phase, point features detected in a monocular image

sequence are tracked between images, and data from the entire route is subject to a

large, multi-level estimation routine to find the feature positions and the robot poses.

The poses become a reference path and the features are used as a map. To repeat the

route, features in the current image are associated with features in the map and used to

estimate the rover’s position. In contrast to this global reconstruction approach, Šegvić

et al. (2009) develop a system that performs many local reconstructions during the map-

ping phase, using two-view geometry to triangulate feature points seen in a monocular

image sequence. During the repeat traverse, the rover’s three-dimensional pose is esti-

mated using the triangulated features. Interestingly, the three-dimensional pose is only

used to localize the robot topologically; the steering angle is derived from a simple visual

servoing rule similar to that used by Chen and Birchfield (2006). These algorithms are

most similar to the one we propose. However, we use a stereo camera as the main sensor.

A stereo camera provides metric structure within each stereo pair of images, simpli-

fying the reconstruction considerably. A very simple teach-and-repeat mode was built

into the stereo navigation system described by Konolige et al. (2009). During a map-

ping phase, the rover’s path is estimated using VO (Konolige et al., 2007). To repeat the

route, they estimate the rover’s position at the start of the route by matching the current

view with the first image in the learning sequence. Then the route is repeated without

relocalizing against the map. While this method worked for the short paths in question

(generally less than 200 meters), longer routes would require localization corrections to

maintain global consistency.

We show that it is possible to use stereo vision alone to retrace a long route with

nonplanar camera motion in an outdoor, unstructured environment. Our work is based

on the VO pipeline described in Chapter 2, but we transform the basic pipeline into a

complete mapping and localization system and demonstrate that our algorithm can be

used to drive multi-kilometer autonomous routes in a single command cycle.

5.2 System Overview

This section will present a detailed description of our visual teach-and-repeat system.

The major processing blocks of our system are depicted in Figure 5.2.

The coordinate frames used in our system are depicted in Figure 5.3. The map frame

F−→m is the frame in which all three-dimensional estimation occurs. We define F−→ck to be
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Figure 5.2: An overview of the major processing blocks in our system.
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Figure 5.3: Coordinate frames under consideration.

a coordinate frame attached to the left camera of a stereo pair at time k. The attitude of

the camera at this time may be described by Cm,ck , the rotation matrix that transforms

vectors from F−→ck to F−→m. Similarly, we define the camera’s position as ρck,m
m , a vector

from the origin of F−→m to the origin of F−→ck (denoted by the superscript), and expressed in

F−→m (denoted by the subscript). These may be combined into the transformation matrix,

Tm,ck . Using similar notation, we define a rotation, Cvk,ck , and translation, ρck,vk
vk

, that

may be combined to form the transformation, Tvk,ck , between the camera frame, F−→ck ,

and vehicle frame, F−→vk . This transformation is assumed to be static but it could be

time-varying. Finally, a projection frame, F−→p, is defined for each submap. All quantities

of interest (the path, landmarks, and the vehicle’s current localization) may be projected

into the xy-plane of F−→p for a two-dimensional view of the current state, as required by

our path-tracking controller.
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Figure 5.4: An overview of our generic localization module.

5.2.1 A Generic Localization Module

Throughout this work, we use a generic localization module based on the stereo VO

algorithm described in Chapter 2. The outline is shown in Figure 5.4. Stereo keypoints

are tracked against a feature database, the tracks are subject to outlier detection, and

the inlying tracks are used to solve for the current pose of the camera. By substituting

different blocks for the feature database and numerical solution, we are able to build all

of the different operating modes used for teach-and-repeat navigation: map building, VO,

submap selection, and localization. We will refer back to this section as we specify the

details used in these operating modes. Here we present the specific requirements of each

block.

A feature database represents a map against which the robot can localize. To this

end, it supplies information about the set of features available for this task:

N : The number of features in the database

pi,m
m : The homogeneous coordinates of feature i with respect to and expressed in F−→m

di : The SURF descriptor associated with feature i

Data association is performed by looking for nearest neighbours in descriptor space.

Using this notation and that of Chapter 2, the output of the first block in Figure 5.4 is a

list of candidate feature tracks, each associating a feature i in the database to a feature

j from the most recent stereo pair.

The candidate tracks are passed to the outlier detection block. We have imple-

mented preemptive RANSAC (Nistér, 2005), as it will on average produce the best set

of inliers given a fixed computational budget. Treating the feature database and the

incoming stereo keypoints as three-dimensional point clouds (using (3.91) to triangulate

each feature), we use the three-point quaternion method of Horn (1987) as our hypothesis
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Figure 5.5: An overview of the mapping process.

generator. Preemptive RANSAC generates a set of inlying feature tracks and a coarse

estimate of the camera’s pose in F−→m.

Finally, the inlying feature tracks are passed to a pose solution method. The pose

solution has access to the disparity coordinates of each incoming keypoint, the feature

database, the pose estimate supplied by RANSAC, and the camera’s pose from the last

timestep. Using this data it produces an estimate of the camera’s pose in F−→m,

Tck,m :=

�
Cck,m ρm,ck

ck

0T 1

�
. (5.3)

Each solution method is iterative, based on Gauss-Newton minimization, but each oper-

ating mode uses a different mathematical formulation based on the requirements of the

operating mode. The specific objective function used for each mode is described below.

5.2.2 Route Teaching

The basic process for route teaching involves driving the path once while logging stereo

images, and then post-processing the image sequence into a series of overlapping submaps.

The post-processing task is shown in Figure 5.5. At the front, a mapping loop incremen-

tally builds the map and estimates the position of the rover within it. Periodically, the

map is split, and the raw data is further processed into the format used in the repeat

pass.

Teach Pass Localization and Mapping

The mapping loop seems to be solving the SLAM problem. However, the different re-

quirements of this system dictate different design choices. Each submap must be locally

consistent and transformations between adjacent submaps must be reasonable. Outside

of these constraints, the overall global consistency of the map sequence should not impact
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algorithm performance. Because of this, the system does not work toward global consis-

tency. Figure 5.6 shows an example of a five-kilometer map sequence compared to GPS

together with the robot’s view of the map from either end. Although the reconstruction

of the complete path is very inaccurate, locally it is sufficient to enable route following.
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Figure 5.6: The visual reconstruction of a five-kilometer rover traverse plotted against GPS

(Top). Although the reconstruction is wildly inaccurate at this scale, locally it is good enough

to enable retracing of the route. The bottom images show views from either end of the path, with

the reference path plotted as a series of chevrons. To the rover, the map is locally Euclidean.

Submaps are constructed using a specialization of the generic localization module

from Section 5.2.1. The system is initialized with the first keypoint list, {y0,j, d0,j}. The
map frame F−→m is defined to be the same as F−→c0 . All of the keypoints are triangulated

using (3.91) and placed in the map. In each subsequent frame, incoming keypoints are

tracked against the working database and subjected to outlier detection. Let us use n to

index the inlying feature tracks. Each track associates feature i in the map, to keypoint



Chapter 5. Autonomous Retrotraverse 71

j. To estimate Tck,m, we define the error term, en:

en := yj,k − h(MTck,mp
i,m
m ), (5.4)

Letting Nk be the number of feature tracks at time k, we define our objective function,

Jk, to be

Jk :=
1

2

Nk�

n=1

eTnWnen, (5.5)

where Wn is a weighting matrix based on the inverse of the estimated measurement

covariance of yk,j. We linearize (5.5) using the method described in Section 3.5.1 and

minimize Jk using the Gauss-Newton method. Note that in this case we are only solving

for Tck,m and not for any of the landmark positions so the term in (3.99) corresponding

to the landmark parameters (the δp term) is not used.

When the percentage of features tracked drops below a threshold, τf , the pose, Tck,m,

is added to the reference path, and all of the keypoints are added to the map. Using a

threshold avoids generating bloated maps while the robot is sitting still, and automat-

ically adjusts the number of features in the map based on the difficulty of the terrain.

Using the pose estimated in the previous step, triangulated keypoints are placed into the

map in a common frame, F−→m:

pi,m
m = T−1

ck,m
g(yj,k) (5.6a)

= T−1
ck,m

pi,ck
ck

(5.6b)

The prototype feature in our system is based on the triangulated position and SURF

descriptor of the first view only. Incoming keypoints that are not successfully tracked are

added to the map as seen. Keypoints that are successfully tracked are already present in

the map and so the new observations are discarded. Although there is enough information

here to estimate the camera’s pose and the feature positions—either on the entire map

(Royer et al., 2007), or on some sliding window of poses (Konolige et al., 2007; Sibley et al.,

2008)—our system has no requirement to build a globally consistent map. Furthermore,

our results show that this implementation works for the kind of local, metric localization

needed in the repeat pass. While future work may involve some evaluation of the benefits

of better reconstruction techniques, local bundle adjustment is not necessary to build a

working system.

As poses and features are added to the map, the length of the current reference path

is tracked. When the length exceeds a threshold, τl, the submap is packaged for the
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repeat pass and saved to disk. By changing this parameter, our system scales smoothly

between a complete global reconstruction (Royer et al., 2007) and view-sequenced route

representations that match against single images along the path (Šegvić et al., 2009). We

experimented with different values for τl early on in the development of the algorithm

and found that higher values (larger submaps) increased the algorithm’s robustness to

localization dropouts. However, this robustness came at the cost of increasing computa-

tional complexity as larger submaps contained more features. Eventually, we settled on

the value τl = 5 meters; this was as high as we could set this value and still operate at

the framerate necessary to drive the robot at a reasonable speed to conduct long-range

experiments.

The map-building step may fail if it is unable to succeed in tracking a minimum num-

ber of sparse feature points from the map to the latest image. We have seen this happen

if the rover has moved too much between images, with image motion blur experienced

in low-light conditions, and in areas with highly repetitive texture. The algorithm tries

to deal with single-frame failures by storing the failed image and attempting to track

features from the next image. If this fails, the algorithm has no way to associate the

current images (and all future images) with the images that have come before. To deal

with this, it sets a flag that the end of the current submap is broken, purges the existing

map and starts a new map as if it was processing the first image of a sequence. The

broken map flag is used as a signal to the repeat pass that the algorithm should stop and

look for the next section of the map. This will be described further below.

Teach Pass Map Packaging

When a split in the map is triggered, the current set of reference poses and features

are packaged for use in the repeat pass. First, the poses are subsampled to satisfy a

minimum-spacing constraint, τs. This smoothes the path and puts it in a format suitable

for our path tracker. All experiments in this chapter use τs = 0.5 m. Note that this step

only subsamples the poses used as the reference path; all features remain in the map

unless they were only observed in one stereo pair. The frame-to-frame tracking process

used to build the map is the best possible condition for tracking features; pose changes

between images are small and the lighting is consistent. If a feature was unable to be

tracked in the teach pass, it is unlikely to be seen in the repeat pass.

The subsampled reference poses give the path of the camera in F−→m, but our path
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tracker controls the position of the vehicle, not the camera. We compute the vehicle

position using the transformation between the camera and the vehicle frames Tck,vk . The

reference path of the vehicle, ρvk,m
m , and its attitude, Cm,vk are given by

�
Cm,vk ρvk,m

m

0T 1

�
:= T−1

ck,m
Tck,vk . (5.7)

The projection from three dimensions to two is defined by fitting a plane to the feature

points in the current submap. The subsampled features have each passed the consistency

test of outlier detection and so they represent a reasonable, sparse reconstruction of the

local area. For each feature i, at position pi,m
m in the submap, we find di, the minimum

distance between the feature and one of the vehicle reference poses:

di := min
k

��ρvk,m
m − pi,m

m

�� (5.8)

From this distance, we compute a weight, wi, used in the plane fitting:

wi =






1
di+σp

if di ≤ τd

0 otherwise
(5.9)

This weighting term is designed to ensure that the plane fit captures the local ground

plane directly along the path that the rover has already traversed. The threshold, τd,

ensures that features outside of the vehicle corridor are not used for the plane fit and σp

controls the roll-off of weights as features approach the edge of the vehicle corridor. For

all experiments in this chapter, we use σd = 0.01, and τd = 1.5. We parameterize the

plane by a unit vector, n, and offset, b, such that any point x on the plane satisfies

nTx + b = 0 . (5.10)

From this equation, we define a weighted least-squares problem to solve for n and b by

minimizing Jp,

Jp =
1

2

M�

i=1

wi(nTpi,m
m + b)2 − 1

2
λ
�
nTn − 1

�
, (5.11)

where M is the number of features in the submap and λ is a Lagrange multiplier that

ensures n is a unit vector. Solving for the minimum of this equation results in the

eigenvalue problem



M�

i=1

wi

�
pi,m
m

� �
pi,m
m

�T − 1

W

�
M�

i=1

wipi,m
m

��
M�

i=1

wipi,m
m

�T




� �� �
=: A

n� = −λn� , (5.12)
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Figure 5.7: Side view of a submap showing the camera frames, F−→ck , the vehicle frames, F−→vk ,

the sparse feature points, and the ground plane fit to the features.

where

W :=
M�

i=1

wi , (5.13)

and n�, the unit vector that minimizes Jp, is the eigenvector of A corresponding to its

minimum eigenvalue. Figure 5.7 illustrates this process, showing the camera and vehicle

poses, the weighted sparse feature points, and the resulting plane fit.

The unit vector n� is the normal of the xy-plane of the projection frame, F−→p, ex-

pressed in F−→m. We now calculate the rotation, Cm,p, that transforms vectors from F−→p

to F−→m. Using the shorthand ca := cos(a) and sb := sin(b), the rotation Cm,p may be

parameterized by Euler angles, (α, β, γ), such that

Cm,p =





cαcβ sαcβ −sβ

cαsβsγ − sαcγ −sαsβsγ + cαcγ cβsγ

cαsβcγ + sαcγ −sαsβcγ − cαsγ cβcγ



 . (5.14)

We know that n� expressed in F−→p is
�
0 0 1

�T
which leads to the following constraint:

n� = Cm,p





0

0

1



 =





−sβ

cβsγ

cβcγ



 (5.15)

Defining the components of n� =:
�
n1 n2 n3

�T
, we can solve for β and γ:

β = arcsin(−n1) (5.16)

γ = arctan(cβn2/cβn3) (5.17)

The last Euler angle, α, is ambiguous (the plane normal is only a two-degree-of-freedom

constraint) so we introduce a final constraint that the x-axis of F−→v0 lies in the xz-plane
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of F−→p. Using Cm,p and the vehicle path from (5.7), we can transform the reference path

to the projection frame:

ρvk,v0
m = ρvk,m

m + Cc0,v0ρ
c0,v0
v0 (5.18)

ρvk,v0
p = CT

m,pρ
vk,v0
m (5.19)

Cvk,p = Cvk,mCm,p (5.20)

Finally, we compute a scalar difficulty score for the submap. During the repeat pass,

the difficulty level is used to choose the robot’s repeat speed to use on a given map. We

compute a measure of curvature of the reference path as it captures two common forms

of path difficulty: (i) tight turns, and (ii) rough terrain. To this end, we compute the

incremental attitude changes of the camera, δCk:

δCk = Cck−1,mCT
ck,m

(5.21)

This attitude change is decomposed into a unit-length axis of rotation, ak, and an angle

of rotation, φk. The difficulty, h, is then computed as the root-mean-square attitude

change,

h =

���� 1

K

K�

k=1

φ2
k , (5.22)

where K is the number of reference poses.

When building reference trajectories with a fixed length and a fixed spacing of ref-

erence poses, K is very consistent across submaps. Furthermore, over these very short

distances, the relative pose estimates are very accurate. Because of this, the values of

h from (5.22) are comparable between submaps. The dependence of driving speed on

terrain difficulty must be tuned for each vehicle/application combination. Table 5.1 lists

the speed schedule used for all experiments in this chapter.

At this point, the submap is saved to disk with the following information:

• a vehicle reference path with L poses (indexed by �), {ρ�,p
p }, expressed in F−→p,

calculated from (5.7), (5.18), and (5.19)

• a rotation Cp,m that defines the projection to a local ground plane, calculated from

(5.16), (5.17), and (5.14)

• a set of M features (indexed by i), {pi,m
m , di}, expressed in F−→m
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Table 5.1: The driving-speed schedule for a deployment of this algorithm would have to be

tuned for each vehicle/application combination. This table lists the driving speed used as a

function of the difficulty (RMS attitude change).

Difficulty range (deg) Speed (m/s)

h < 1.0 1.00

1.0 ≤ h < 2.0 0.75

3.5 ≤ h < 8.5 0.50

8.5 ≤ h 0.35

• a scalar difficulty score, h, computed from (5.22)

• flags that indicate if the beginning or end of the map is broken

This satisfies the requirements needed to be used as a feature database in the generic

localization module described in Section 5.2.1.

Each submap is between 500 kilobytes and 2 megabytes depending on the number

of features tracked (which is scene dependent). This size includes extra data that are

used solely for algorithm evaluation and not to repeat the route. Averaged over all

teach passes, this amounts to 348 megabytes per kilometer. The teach pass processes an

image approximately every 0.2 meters, 5000 images per kilometer. An appearance-based

approach using the rectified stereo images would occupy 2.9 gigabytes per kilometer and

saving all of the keypoints and descriptors would take up 1.3 gigabytes per kilometer

(assuming 500 stereo keypoints per frame). By aggregating data, our system offers an

order-of-magnitude savings in storage over a pure appearance-based approach and reduces

the computational complexity of retrotraverse.

After saving the submap to disk, older poses and features are removed from the

database in memory. We build the submaps to overlap by 50% as this ensures data

overlap during transitions (Marshall et al., 2008). Poses are removed from the reference

path until it is half of the length saved to disk. Any feature not seen by the remaining

poses is then removed from the feature database. After this step, the mapping loop

continues, processing new keypoint lists, localizing against the feature database, and

adding features to the map, until another split is triggered or the image sequence ends.

Figure 5.8 shows a short section of a map database, the ground plane of each submap,

and the reference path. When the teach pass is complete, a database of maps is available

for use in the repeat pass.
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Figure 5.8: A view of six overlapping submaps with the reference path plotted above.

5.2.3 Route Repeating

During the repeat pass, the robot uses the database of submaps to repeat the route. The

system we have implemented can start at any place along the path, and repeat the route

in either direction, provided the camera is facing the same direction it was facing during

the teach pass. Neither direction switching during path following nor local obstacle

detection have been implemented, although both should be possible (Marshall et al.,

2008). This section will describe the route following algorithm in detail: localization,

route management, and failure handling.

Repeat Pass Localization

Three specializations of the generic localization module are used during the repeat pass:

submap selection, localization, and VO.

Submap selection is performed at the start of a route or when the robot is lost. One

of the submaps built in the teach pass is loaded into memory and used as a feature

database. Features are tracked and subjected to outlier detection. If there are enough

inlying feature tracks (9 for all experiments in this chapter), the objective function used

in the route-teaching phase (5.5) is used to solve for the pose of the camera. If this

process is successful, the rover begins to repeat the route, interleaving localization and

VO as the route is retraced.

The interleaving of localization and VO during the repeat pass is one of the key

strategies that makes this system robust to minor lighting changes, scene changes, and
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occlusions. Our first iteration of this project used a formulation similar to Royer et al.

(2007) or Šegvić et al. (2009)—all estimation of the robot’s position was based on local-

ization against the map and no form of dead-reckoning was used. This worked well on

pavement, and in urban environments, but when we tested our system in grass and rough

terrain, the system failed too easily under changing lighting conditions. Realizing that

our localization module was based on VO (a purely relative motion estimation method),

we implemented a system that would switch back and forth between VO and localiza-

tion. VO is accurate enough to keep the rover near the path through difficult areas, and

periodic localization maintains the global (topological) accuracy that allows long routes

to be repeated. This is similar to the method used by Zhang and Kleeman (2009) who

use wheel odometry in between their global corrections. We process VO every frame,

but given our current hardware, there are not enough computational resources to also

perform localization every frame. Hence, we introduce an integer parameter G and only

attempt localization when mod(k,G) = 0 (every Gth frame). In these experiments we

have used G = 3. We use the same frame-to-frame VO method as used in Chapter 4.

Localization is similar to submap selection, but our prior knowledge of the rover’s

position (from VO) allows us to improve on the position estimate. Using only the process

described for submap selection, our system would periodically localize only using distant

features. In these cases, the orientation was estimated quite well, but the position of the

rover would experience huge jumps. Similar behaviour is described by Diosi et al. (2007).

To account for this, a prior information term is added to the error term used to estimate

the pose. Let Jvis be the error term from (5.5). We add prior information error terms for

the position, Jpos, and attitude, Jatt, so that the error term we minimize, J , is

J = Jvis + Jpos + Jatt . (5.23)

Let ρ̂ck,m
m and Ĉck,m be the position and attitude estimated by VO, and let ρck,m

m and

Cck,m be the position and attitude we are estimating. In this notation,

Jpos :=
1

2
(ρ̂ck,m

m − ρck,m
m )T Wpos (ρ̂

ck,m
m − ρck,m

m ) . (5.24)

The form of Jatt is derived in Section 3.5.2, where Ĉck,m is our prior mean:

Jatt :=
1

2
e
�
δφck,m

�T Watte
�
δφck,m

�
(5.25)

The weighting matrices were chosen to be

Wpos :=
1

σ2
pos

1, Watt :=
1

σ2
att

1 , (5.26)
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where 1 is the identity matrix. All experiments in this work use σpos = 1.0 and σatt = 0.1,

which results in a very weak prior. Finally, (5.23) is linearized and solved using the

Gauss-Newton method.

The output of the localization block is an estimate of the camera’s position, ρck,m
m ,

and attitude, Cck,m. Equations (5.7), (5.18), and (5.19) are then used to produce ρvk,p
p ,

the position of the vehicle in the projection frame. The attitude of the vehicle in the

projection frame, Cp,vk is computed using (5.20), then decomposed into a yaw-pitch-roll

Euler-angle sequence. The yaw value of this sequence is the vehicle’s heading in the

projection frame, θk. Defining the components, ρvk,p
p =:

�
xk yk zk

�T
, we can express

the two-dimensional robot pose, �k:

�k =





xk

yk

θk



 (5.27)

This planar pose of the robot and the projected reference path are passed to a unicycle-

model version of the planar path-tracking algorithm adapted from Marshall et al. (2008).

Repeat Pass Route Management

The localization module feeds into a route management system that triggers map hand-

offs, schedules the robot’s speed based on the path difficulty, and monitors the route-

following system for errors. The route manager tracks the closest point on the current

reference path. When the vehicle reaches the middle of a reference path, a map handoff

is triggered. This involves the following steps:

1. Loading the next submap from disk

2. Updating the feature database used for localization

3. Updating the reference path used by the path tracker

4. Updating the transformation from F−→m to F−→p

5. Setting the robot’s speed based on the submap difficulty

Repeat Pass Failure Handling

Route-following failures are detected by monitoring the distance travelled since the last

successful localization. When this distance reaches a threshold, τg, the rover stops and the
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system attempts to recover from the failure. To recover, the system signals the operator

that there has been a failure, then searches nearby (topologically) submaps using the

submap selection mode to perform wide-baseline matching. If this reinitialization is

successful, the rover continues the route. During the search phase, an operator may also

reposition the rover on the path (using images from the teach pass images to identify

the correct position). Any failures or repositioning of the rover will be noted in our

experiments below.

When the algorithm encounters a break in the map as described in Section 5.2.2,

the system drives to the end of the current submap, stops, loads the next submap into

memory and attempts to localize. If this is successful, the algorithm restarts the rover

and continues repeating the route. If this fails, the rover will signal the operator for

intervention. The algorithm will then start searching nearby maps (topologically) until

submap selection is successful. The operator can then choose to reposition the rover or

command it to continue using VO.

5.2.4 Parameter Choices

As in many robotics applications, there are a number of parameters that must be tuned

for each deployment. The parameters of our teach-and-repeat system were tuned dur-

ing algorithm development and then fixed for the experiments reported in this chapter.

Throughout the algorithm description above we have tried to elaborate on the intuition

behind each of our parameter choices. For clarity, we summarize the main algorithm

parameters in Table 5.2 and Table 5.3, along with a description of their functions and

some notes about the intuition used to select the parameter value.

5.2.5 Hardware

The experiments described in this chapter were performed using the six-wheeled articu-

lated rover shown in Figure 5.9. Motor control on the rover was performed by a pair of

microcontrollers. Vehicle-level motion commands and path tracking were handled by a

single embedded PC with a 1.2 GHz Pentium 4 processor and 1 GB of Random Access

Memory (RAM). The base was powered by three lithium-ion battery packs, but in order

to perform the long-range experiments in this chapter, the on-board power supply was

augmented with a Honda 1000 W generator, which supplied power to the base and all of

the onboard computers. The computer running the localization and route management
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Table 5.2: A list of the major parameters of our teach-and-repeat algorithm, a description of

their functions, and the intuition behind the choice of value. Page (1/2).

Parameter Value Description

τf 45% (Section 5.2.2) The current set of features is added to the

map when the percentage of features tracked from the previous

frame drops below τf . Using this threshold avoids generating

bloated maps when the robot is sitting still and automatically

adjusts the number of features per map based on the difficulty

of feature tracking on specific terrain.

τl 5 meters (Section 5.2.2) The length of the reference path for each

submap. Larger values increase the computational complex-

ity of searching the map for feature correspondences. Smaller

values make the system more prone to failure in the face of lo-

calization errors. This was the largest value that our computer

could process in real time.

τs 0.5 meters (Section 5.2.2) The spacing of poses in the reference path. This

controls the fidelity of the path used by the path tracker and

the fidelity of the difficulty metric (5.22).

τd 1.5 meters (Section 5.2.2) Controls the width of the vehicle corridor used

to build the local ground plane for each submap in (5.9). This

was tuned for the width of the vehicle.

was a MacBook Pro with a 2.4 GHz Intel Core 2 Duo processor, 4 GB of RAM, and

an NVIDIA GeForce 8600M GT graphics card capable of supporting Compute Unified

Device Architecture (CUDA) 1.1. The stereo camera was a Point Grey Research Bum-

blebee XB3 with a 24 cm baseline and 70◦ field of view, mounted approximately 1 meter

above the surface pointing downward by approximately 20◦. Each image of the stereo

pair was captured at 640× 480 pixel resolution. When possible, we used a pair of Thales

DG-16 RTK-GPS units for ground-truth evaluation. These units are rated at 0.4 meter

circular error probable (50% of the data should be within a circular area of this radius

around the true value). Unfortunately, our radio link was not robust to occlusions; for

long routes and near buildings, it was not possible to receive the real-time corrections

and only regular GPS was available. The rover was able to track a path while driving
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Table 5.3: A list of the major parameters of our teach-and-repeat algorithm, a description of

their functions, and the intuition behind the choice of value. Page (2/2).

Parameter Value Description

σp 0.01 (Section 5.2.2) Controls the weighting roll-off as features ap-

proach the edge of the vehicle corridor in the plane fit (5.9).

Larger values weight features near the edge of the corridor

more. This parameter must be tuned for the expected clutter

of the environment.

G 3 (Section 5.2.3) During the repeat pass, localization is processed

every G frames (VO is processed every frame). This value

would be 1 if possible, causing localization every frame. Higher

values reduce the computational complexity of the algorithm.

{σpos, σatt} {1.0, 0.1} (Section 5.2.3) These terms determine how much to rely on

the prior pose estimate (from VO) during localization (5.26).

The values chosen result in a weak prior that only significantly

changes the solution when localization against the map is un-

certain (e.g., when localizing with a small number of distant

features.)

τg 50 meters (Section 5.2.3) The distance to travel without successful local-

ization before stopping, signalling the operator, and searching

nearby submaps in an attempt to relocalize. This is based on

the estimated accuracy of our VO implementation.

forwards or backwards. This allowed us to repeat routes in either direction by keeping

the camera facing the same direction as it was during route learning.

5.3 Field Testing

We conducted a number of field trials to test the capabilities of the full teach-and-repeat

system and characterize the performance of the localization system. This section will

summarize the results of our route-following tests. Our preliminary tests were performed

at the University of Toronto Institute for Aerospace Studies (UTIAS). Because of the

applicability of our algorithm to planetary exploration, we conducted trials at the HMP-
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Figure 5.9: The six-wheeled rover platform used in these experiments was outfitted with a

stereo camera, an onboard PC to run the teach-and-repeat algorithm, an embedded PC to

process path tracking, an RTK-GPS for benchmarking localization performance, and a 1000 W

gas generator to provide power during multiple-kilometer traverses.

RS on Devon Island in the Canadian High Arctic (Lee et al., 2007). The HMP-RS is

located within a polar desert, which offers an unusually wide variety of geological features

of strong planetary-analogue value. Because of this, it has been used for rover testing in

the past (Wettergreen et al., 2002, 2005; Fong et al., 2007, 2008). Additionally, the lack

of vegetation, low angle of the sun in the sky, and wide range of terrain types make it an

ideal site for testing of vision-based algorithms for planetary exploration (Barfoot et al.,

2010d).

5.3.1 Route Following
Our teach-and-repeat system has been tested on 27 routes and over 32 kilometers of

autonomous driving. Results reported in this chapter are for the algorithm described in

Section 5.2. Earlier route-following results during the algorithm’s development are not

included. All tests described here were performed using the same code and parameters.

Individual teach passes are named according to the convention shown in Figure 5.10.

Experiments performed at UTIAS are marked with a u and those from Devon Island are

marked with a d. We used two methods to teach routes. The h tag indicates that the rover

was piloted by a human and the a tag indicates that the rover was driving autonomously.

The autonomous teach passes were recorded during trials of a terrain assessment and

path-planning algorithm. When the terrain assessment algorithm signalled that its run

was complete, the route was taught from logged images, and the rover autonomously

returned along its path. Some routes were taught with the camera facing forwards and
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dh-07-20-3152 

             Length of route (m) 

||   |   |  -Day 

||   |   ----Month 

|------------Teach method: human (h), autonomous (a) 

-------------Location: Devon Island (d), UTIAS (u) 

Figure 5.10: The naming convention used for teach passes.

others with the camera facing backwards (as required by other concurrently-running

experiments). However, during route repeating, the rover drove forward or backward

as necessary to keep the camera pointed in the same direction as it was during route

learning. Complete statistics for all teach and repeat passes are given in Appendix A,

but the overall results will be summarized here.

Learned routes ranged in length from 47 meters to nearly 5 kilometers. Out of the

27 teach passes, 21 of them successfully built maps without failure. The teach pass

failures will be discussed in greater detail in Section 5.4.5. The difficulty of the routes

was assessed using an inclinometer to measure the vehicle-frame pitch and roll, and GPS

to measure the relative elevation change. During the most extreme routes, the rover

experienced up to 118.5 meters of elevation change, as well as pitch and roll deviation

from vertical of up to 28◦ and 22◦, respectively.

The 27 teach passes were used to perform 60 repeat passes. Only four of the routes

required manual interventions. Four repeat passes were not completed to the end. The

repeat pass failures will be discussed in greater detail in Section 5.4.6. The longest au-

tonomous repeat pass was 3.2 kilometers (dh-07-23-4963). There were two autonomous

runs of approximately two kilometers (dh-07-20-2120) and ten autonomous runs ap-

proximately one kilometer long (uh-05-20-1152, uh-05-21-1170, and dh-07-22-1091).

Out of the 32.919 kilometers travelled, only 0.128 kilometers were piloted manually. This

is an autonomy rate of 99.6%. In all cases where the rover needed an intervention, it

stopped along the path and signalled the operator.

5.3.2 Route with Large Three-Dimensional Motion and Ex-

treme Lighting Changes

To test the operational limits of our algorithm, we built a route at UTIAS where the rover

experienced large three-dimensional motion and extreme lighting changes. Figure 5.11

shows an overhead view of the route, the vehicle-frame pitch and roll (as measured by
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an inclinometer), and some representative views from the left camera. The rover started

inside our indoor test facility on a raised platform. It descended a slope, climbed two hills,

ascended a ramp, and then drove through a narrow corridor leading outdoors. There,

it traversed an obstacle course, crossed a road, and finished the route by parking in our

laboratory. The platform experienced pitch and roll up to 27◦ and moved from an indoor,

low-light environment to outdoors.

We taught this route twice, once during development of the obstacles (uh-07-22-0120),

and once after they were complete (uh-07-23-0120). The routes were repeated 7 and 5

times, respectively. Every repeat pass was successful, despite the three-dimensional mo-

tion of the camera. Figure 5.12 shows the teach pass corridor (the track of the teach pass

laterally extended ±2 meters for illustration) with the tracks of the seven repeat passes

overlaid. Sections where the algorithm experienced localization dropouts are highlighted

in blue (shaded). Steep hills in the indoor section caused localization and VO failures

due to significant motion blur. At the end of the route, computers and chairs were moved

around, changing the appearance of the scene significantly. The experiment highlights

the interplay of localization and VO. Where VO fails, localization corrects the error and

keeps the rover on the correct path. Where localization fails, VO is accurate enough to

carry the rover through to a place it recognizes.

Table 5.4: Difficulty metrics for the teach passes where the rover experienced the most extreme

three-dimensional camera motion.

Elevation Min Max Min Max
Tag change (m) roll (deg) roll (deg) pitch (deg) pitch (deg)

uh-05-20-1152 4.9 −18.4 8.2 −12.0 6.3

uh-05-21-1170 4.9 −17.8 11.9 −14.6 10.3

uh-05-22-0120 3.6 −14.7 11.7 −21.5 27.2

uh-07-23-0120 4.9 −13.3 12.1 −18.5 26.5

dh-07-20-2120 69.2 −22.0 15.9 −28.3 16.9

dh-07-23-4963 118.5 −12.8 13.6 −15.5 12.0

dh-07-30-0347 2.1 −12.2 13.1 −12.1 10.8

dh-07-31-0192 1.1 −9.8 10.9 −17.9 19.1

This experiment was performed before our field trials on Devon Island to prove that

the teach-and-repeat system would work on three-dimensional terrain. During our field



Chapter 5. Autonomous Retrotraverse 86

!"#$%&

!'()'&

*+""&,&

*+""&-& )(.$&

')(/!+0#/&+/!+1%2#3'!+1%&

#4!'(5"%&5#3)!%&

')(/!+0#/&#3'!+1%2+/!+1%&

%/1&

,6&.&

0 50 100 150 200 250 300 350 400 450 500
!40

!30

!20

!10

0

10

20

30

time (s)

a
n

g
le

 (
d

e
g

re
e

s
)

 

 

Roll

Pitch

!"#$%& '(""&)& '(""&*& +,-$& #.!/,0"%&0#1+!%&

!"#$%&

'(""&)&

'(""&*&

#+!,-."%&

.#/0!%&

#+!,-."%&

.#/0!%&

Figure 5.11: Top to bottom: An overhead view of the route built to test nonplanar camera

motion and extreme lighting changes (uh-07-22-0120, uh-07-23-0120), the pitch and roll of

the rover during the teach pass of route uh-07-22-0120, and short image sequences (left camera)

from one repeat run of the route. The path, plotted as chevrons, confirms that localization is

indeed performed in three-dimensions.
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Figure 5.12: The seven repeat passes of route uh-07-22-0120 with the reference path from the

teach pass extended laterally ±2 meters. Localization dropouts, highlighted in blue (shaded),

occurred mainly due to scene changes and motion blur.

trials we tested the algorithm over many three-dimensional routes (see the list of the

most extreme routes in Table 5.4). In all cases, three-dimensional motion of the camera

was not a limiting factor for route following.

5.4 Evaluation

In this section we offer some evaluation of our algorithm to try to describe why it works,

and what its strengths and shortcomings are. We examine the convergence properties of

the localization algorithm and the properties of the algorithm under changing lighting

conditions. We compare the estimated lateral path-tracking error to that measured by

GPS, and look at which features are used for localization. Finally, we examine the failure

modes experienced by the algorithm.

5.4.1 Convergence Properties

To test the convergence properties of the localization algorithm, we taught a single map

on characteristic terrain (from the Devon Island experiments) using a camera on a tripod.

After processing the teach pass, the camera was placed in a nominal position in the middle

of the map, set to process localization, and perturbed from this nominal position until

the localization failed. Perturbations were introduced four ways: as lateral displacements

from the path center (0.1 meter increments), and along vehicle-frame yaw, pitch, and roll

axes (5◦ increments). At each increment, 200 localizations were processed.

Figure 5.13 shows the mean inlying feature count for lateral and angular deviations.

The curves end when the localization algorithm fails. This experiment shows that the

feature count decreases rapidly from the camera’s nominal placement. Any curve of this
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Figure 5.13: Average feature count of the localization algorithm (black, solid line with 1σ

bounds) as the camera was displaced laterally from the path, or rotated in place. Each data

point is averaged over 200 trials. Angular perturbations were made along the vehicle-frame

yaw, pitch, and roll axes. The blue dotted curve shows the percentage of the image covered by

the features in the map. While the feature count is correlated to coverage, changes in viewpoint

also reduce the ability of the system to associate features.
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Figure 5.14: Results of testing the localization algorithm performance under changing lighting.

Due to time constraints during our field campaign, we were only able to perform a single trial.

However, the result here fits very well with the results of our path-following experiments; the

SURF feature matching is not robust to extreme lighting changes.
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type will be scene-dependent and we believe that the slower drop in feature count with

positive lateral displacement may be due to prominent rocks to the right of the path. The

experiment shows that localization is possible with up to ±1 meter lateral displacement

from the path, and over ±20◦ angular deviation in all of yaw, pitch, and roll.

5.4.2 Lighting Dependence

We also designed an experiment to show the properties of our algorithm under changing

lighting. The SURF feature description algorithm accounts for contrast changes by nor-

malizing the description vector. However, in our experience, descriptor-based matching is

very difficult under extreme lighting changes. To illustrate this, we taught a short route

and set up a camera to capture an image and perform localization every 30 seconds. The

inlying feature count is plotted against time passed in Figure 5.14.

Ten hours after the teach pass, the localization module fails to find enough inlying

features. This confirms the lighting dependence that we have seen in our experiments.

Strong lighting with a low angle of incidence is particularly problematic in this regard.

Similarly, routes taught on overcast days and repeated on sunny days (or the other way

around) cause problems. On overcast days, SURF’s blob detector finds points based

mainly on surface albedo, whereas during periods of strong lighting, shadowing creates

areas of intensified image contrast based on scene structure. Different sets of point

features are returned in each case.

5.4.3 Localization Performance during Path Following

This section will characterize the performance of our localization system during path

following. Although the reconstruction of the route may not be globally consistent, each

small section of the path should have a small reconstruction error. Because of this, we

may compare the lateral path-tracking error estimated by the localization algorithm to

that measured by GPS. Our GPS unit required line-of-site between the base station and

the rover to send the real-time corrections and so we do not have RTK-GPS data for

all routes. Figure 5.15 shows the lateral path-tracking error estimated by localization

and measured by GPS over a 450-meter-long segment of route da-07-29-0486. This

segment of the route had RTK-GPS for both the teach pass and the repeat pass. A blue

background highlights the portions of the repeat pass where localization has failed.
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Figure 5.15: Top to bottom: lateral path-tracking error during a repeat pass as estimated by

the localization algorithm and measured by RTK-GPS, the difference between these curves,

and the track of the rover during this segment. The blue background highlights areas where

the localization step failed. When localization is successful, the pose estimate agrees well with

GPS.
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These figures show two important characteristics of our algorithm. First, when local-

ization is successful, the estimated lateral path-tracking error has good agreement with

the same quantity measured by GPS. When localized, none of the differences are larger

than 0.2 meters, agreement well within what we can discern with this GPS. Second, it

shows that, when the algorithm is unable to globally localize, the estimate may diverge

and then reconverge when localization is recovered. This is shown on Figure 5.15 at

around 360 meters travelled where the localization drops out for nearly 15 meters. The

speed of divergence is a function of the accuracy of our VO algorithm. We have seen

the algorithm recover from lateral path-tracking errors of 1.5 meters and localization

dropouts of up to 40 meters. In each case, successful localization pulls the estimate back

toward global consistency and allows our algorithm to faithfully repeat long routes.

5.4.4 Keypoint and Feature Usage

This section tries to shed some light on which keypoints and features are used by the

algorithm to perform localization. To this end, we used data collected during the nine

repeat passes of route uh-05-26-0202. This route was taught midday when it was

overcast and the first seven repeats were performed on a sunny day, every hour starting

at 7:45 am. After the sixth repeat, cloud cover moved in and the additional runs were

performed on a different day. The large number of repeats and varying lighting conditions

make this route a good candidate for an examination of feature usage.

Figure 5.16(a) shows a histogram of track length (number of observations) for the

132, 781 features stored in the map. The figure shows that maps are predominantly

populated by features seen in only two images. From there, the track length decreases

quite steeply but there are still a small number of features seen many more times. The

long tail of this curve has been truncated. The longest track length was 102 frames.

During the repeat pass, we logged which features were used for localization. Fig-

ure 5.16(b) shows the relationship of the track length during the teach pass to feature

use during the repeat pass. Plotting the mean over all samples shows a strong linear rela-

tionship with slope 1. This confirms what intuition would suggest: that unique features

seen for a long time during route learning are easily found during route repeating.

To determine which features contribute most to localization, we plotted the feature

observations in image space. Figure 5.17(a) shows a clustering of features around the top

of the image. When compared to a typical image from this route shown in Figure 5.17(b),
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Figure 5.16: Histogram of feature track length for the 132, 781 features tracked in the teach

pass (a). The mean observation count during route repeating for each track length is shown in

(b). Feature track length during route learning correlates strongly with the observation count

during route repeating.

(a) (b)

Figure 5.17: A plot of (a) the image locations of 240, 534 feature observations from 9 repeat

passes and (b) a typical image from this sequence. The features used for localization cluster in

a band at the horizon.
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Table 5.5: List of teach passes with failures.

Tag Length (m) Maps Features per map Failures

ua-06-04-0097 96.8 35 1581 3

ua-06-06-0186 185.8 65 1975 1

dh-07-20-2120 2120.0 740 3680 1

da-07-20-0464 464.0 166 1662 1

da-07-21-0453 453.5 161 1960 1

dh-07-23-4963 4962.5 1732 3993 5

it clearly shows that the majority of features used during the repeat pass are distant

from the camera—horizon features. Horizon features are good for correcting for rover

orientation but, as stereo-based range accuracy decreases with distance from the camera,

they are not great for estimating the rover position. In this sense, our algorithm works

a lot like VO with globally consistent orientation updates. This also suggests a way

forward for future work; it may be possible to reduce the submap size by only using

features that have been tracked for multiple frames. This would reduce the computational

complexity of finding feature correspondences in the map, and enable localization to be

performed more often. However, using only distant features would most likely require

more accurate feature position and covariance estimates, suggesting the use of a multi-

frame reconstruction method during the teach pass. Alternately, the two-stage estimation

algorithm described by Kaess et al. (2009) could be used to decouple the orientation and

position estimation problems.

5.4.5 Teach Pass Failures

All of the teach pass failures listed in Table 5.5 were due to large displacement of the

camera between images. Sometimes a processing backup would cause our data-logging

system to drop images. This was not a problem on many types of terrain, especially where

there were strong horizon features or large objects out of the ground plane. However, on

flat, repetitive terrain such as that seen in a long section of uh-07-23-4963, even short

dropouts caused teaching failures. This is illustrated in Figure 5.18, which shows a pair

of consecutive images from this route that caused a failure.

Three out of the five routes with teach-pass failures required no operator intervention.
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Figure 5.18: All teach pass failures were the result of large inter-image spacing due to data

logging dropouts. This figure shows two consecutive images from uh-07-23-4963 that caused

a failure.

The rover simply drove to the end of the broken map, loaded the next map, relocalized,

and continued. This exploited the topological knowledge of temporally adjacent maps.

5.4.6 Repeat Pass Failures

Table 5.6 lists all of the repeat pass failures and incomplete routes. Repeat pass failures

had two distinct causes. The first was integration with an autonomous terrain assessment

and path-planning algorithm, and the second was changing scene appearance.

The route learning algorithm described in this chapter had no problem learning an

image sequence with direction switches, but paths that doubled back on themselves were

not amenable to our path tracking algorithm. Early on in development, we decided not

to implement direction switches. However, the autonomous terrain assessment and path-

planning algorithm used to build some of the routes sometimes backed up along its own

path to get out of a cul-de-sac. When faced with a knot in the path, the path tracker

would command the robot to perform a wide U-turn, ending up 180◦ to the desired

orientation on the path. To deal with this, we developed a preprocessing step that

used the motion estimate from the terrain assessment run to automatically identify path

knots, and remove the images making up those knots from the sequence. We developed

this preprocessing step during some tests at the beginning of June, 2009 (ua-06-04-*

and ua-06-06-*). Failures during this time informed this development process and the

knot-removal step worked without fail after that.

Other failures during repeat passes were due to the changing appearance of the

scene, mostly because of changing lighting conditions. We encountered several situa-
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Table 5.6: List of repeat passes with failures. Column C is the percentage of the total route

completed, column A is the percentage of the distance travelled autonomously, and column I is

the number of operator interventions.

Teach Teach pass Repeat pass Globally
pass tag start time start time C A I localized

uh-05-21-1170 12:16:02 20:26:28 100.0% 92.0% 1 49.6%

08:03:44 100.0% 98.4% 3 45.0%

ua-06-04-0097 14:48:50 15:10:59 87.4% 95.5% 2 93.4%

ua-06-06-0186 13:11:57 13:55:08 100.0% 98.4% 1 81.5%

dh-07-23-4963 08:50:49 08:49:24 64.9% 100.0% 0 96.3%

15:07:49 32.8% 100.0% 0 76.2%

dh-07-30-0187 14:35:09 18:37:18 78.4% 100.0% 0 9.9%

tions where a route required manual interventions (uh-05-21-1170) or failed to complete

(dh-07-30-0187) at one time of day but was autonomously repeated successfully when

the lighting changed. These results agree well with the lighting test in Section 5.4.2.

Route uh-05-21-1170, taught at midday in direct sunlight, was repeated six times and

only had trouble late in the evening or early in the morning. Route dh-07-30-0187 was

in an area made up entirely of fist-sized rocks. The complex shadows created by these

rocks were difficult for our algorithm under time changes. Figure 5.19 shows an image

from the teach pass of this route along with images from the failed and successful repeat

passes.

Flat areas with repetitive texture were particularly difficult under changing lighting

conditions. The section of route uh-07-23-4963 already shown in Figure 5.18 was taught

when it was partly cloudy with some periods of strong direct sunlight and both repeat

passes were attempted when it was overcast. The first repeat pass was attempted forward

along the route while the second was attempted backward. Both failed at either end of

the same stretch of terrain. Figure 5.20 shows an image from the rover where it stopped

on the first repeat pass and a corresponding image from the teach pass. It is clear from
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(a) An image from the start

of the teach pass

(b) An image from the

failed repeat pass started

four hours later

(c) An image from the suc-

cessful repeat pass started

the next morning.

Figure 5.19: Images from the start of route dh-07-30-0187 that show the scene changes due

to lighting.

(a) An image from the teach pass (b) The stopping position of the robot on

the first repeat pass

Figure 5.20: Images from the teach and repeat passes of route uh-07-23-4963. The rover

was unable to localize for 50 meters even though it was clearly on the path for most of the

way. Repetitive texture, different lighting, lack of horizon features, and lack of unique three-

dimensional objects in the scene were the major causes of localization dropouts.
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the image that the rover was no more than 0.5 meters laterally displaced from the path

after 50 meters without localization. Although the viewpoint was nearly the same, the

scene exhibited repetitive texture, different lighting, a lack of horizon features, and a

lack of unique three-dimensional objects; together, this caused the localization system

to fail. At this point, we would have repositioned the rover on to the path or piloted

it through this section manually but it started to rain. After an hour, we decided the

rain would not let up so we secured a tarp over the rover and piloted it home manually.

As stated earlier, the second repeat pass came from the other direction. This time, the

rover stopped at the teach pass failure shown in Figure 5.18 and was unable to relocalize.

We commanded the robot to continue using VO, but it was unable to localize anywhere

along the path. We were unable to find time in our test schedule to test the route under

weather conditions similar to the teach pass.

5.5 Discussion

Through our extensive field testing and evaluation of this algorithm, we have learned

a number of lessons that apply generally to the field of camera-based localization and

mapping. First and foremost, we have shown that long-range autonomous navigation

in unstructured, three-dimensional terrain is possible using a stereo camera as the only

sensor, and using the SURF algorithm to detect and describe visual landmarks. Recent

work has shown that it is possible to perform more accurate mapping using SBA (Sibley

et al., 2009; Konolige et al., 2007) and optimization over large-scale loops in the trajectory

(Newman et al., 2009; Konolige and Agrawal, 2008). However, mapping accuracy did not

limit the performance of our algorithm and we feel these advances, while desirable, are

not necessary to build a robust long-range navigation system. We see this as an advantage

of the hybrid topological/metric formulation over SLAM: the performance of our system

does not degrade when the large-scale global reconstruction is inaccurate, whereas this

may make a SLAM map unusable (Howard et al., 2006). The rest of this section will

outline the major lessons learned throughout this project.

The limitations of the feature detection and description pipeline: The SURF

algorithm had a lot of trouble dealing with lighting changes. This was particularly evident

on terrain with three-dimensional structure (the rocks in Figure 5.19 or on grass) and less

of an issue in urban environments (on concrete and near buildings). Although the SURF
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descriptor is normalized to provide some invariance to the effects of lighting, the detector

will return different sets of points when shadowing produces areas of high contrast in the

image. It is possible that performance could be improved somewhat by preprocessing the

images (e.g., the patch normalization in Zhang and Kleeman (2009)) but strong shadows

on three-dimensional terrain would continue to cause problems. We have shown this

for the SURF algorithm but the results hold for any image-space blob detector. To deal

with lighting in the current framework, it would be possible to learn a route several times

under different lighting conditions, then dynamically select the “best” map sequence for

route repeating (based on matching score or time of day). However, this does not address

the main problem that the current feature detection and description paradigm does not

deal well with lighting changes in camera imagery.

The utility of dead-reckoning: Interleaving VO and localization was one of the keys

to making this algorithm work in practice. VO carries the algorithm through areas with

moderate appearance changes and localization keeps the estimate consistent over long

distances and corrects for VO failures. While we found VO to be very effective, some form

of dead-reckoning not based on the camera could be very useful. A planetary exploration

rover with power and computational constraints could use wheel odometry between stereo

images in low-slip environments. The combination of local submaps and wheel odometry

was already used by Marshall et al. (2008) for navigation in underground mines. We

also advocate the use of an Inertial Measurement Unit (IMU). As described by Corke

et al. (2007), cameras and IMUs are complementary sensors. The use of an IMU in this

work might have eliminated teach-pass failures and compensated for VO failures due to

motion blur.

The importance of map update: The performance of our system degrades as the en-

vironment surrounding a route changes over time. Solutions to this problem—sometimes

called persistent mapping (Milford and Wyeth, 2009) or lifelong learning (Konolige and

Bowman, 2009)—must be developed before robots can be broadly deployed in service

roles. While our system could be patched to remap while the path is being followed, this

would not address the underlying structure of the problem, which includes difficult issues

such as (i) differentiating static, and dynamic scene elements, (ii) periodic environmental

changes (e.g., daily lighting changes or seasonal changes), or (iii) joining disparate maps

in the event of a loop closure. We envision the next iteration of our system becoming
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much like the one described by Konolige and Bowman (2009), mapping and localizing

continuously online while retaining the ability to retrace a known path at any time.

The utility of loop detection: While it was not the focus of this work, the ability to

handle loops and networks of paths would increase the number of possible applications of

the algorithm. Loop-detection in visual SLAM is an active research area (see the recent

review by Williams et al. (2009)) and the incorporation of a fast, accurate loop-detection

technique (such as FAB-MAP (Cummins and Newman, 2008)) along with further geo-

metric consistency checking Eade and Drummond (2008) would provide two immediate

benefits. First, the signal from a dedicated loop detection algorithm could totally replace

the submap selection component of our system. Reliable automatic submap selection

would make our algorithm more robust to path-tracking errors or VO failures. Second,

this would allow the system to build a graph of connected route segments. The graph

representation could be used to plan routes between places on the map (Stenning and

Barfoot, 2011). Within the current framework, it should be possible to stack submaps at

intersections (one submap per branch). However, navigating on a graph of routes would

be more elegantly handled using a continuous relative representation (Sibley et al., 2009;

Mei et al., 2009).

5.6 Conclusion

We have presented a complete algorithm for performing long-range rover navigation using

a stereo camera as the only sensor. Our system produces a combined topological/metric

map consisting of a sequence of small overlapping submaps. As the rover progresses

along a path, the nearest submap is swapped into memory. The rover interleaves VO and

localization, using VO to carry the algorithm through areas with moderate appearance

changes and using localization to ensure the rover ends up in the same physical place at

the end of a long path. We have tested our algorithm in an urban setting, over extreme

terrain, through indoor-to-outdoor lighting changes, and in a planetary analogue setting

in the High Arctic that offered many types of vegetation-free terrain. Of the 32.919

kilometers travelled, 99.6% was traversed autonomously, and in all situations requiring

an intervention, the rover stopped and signalled the operator.

Specifically, we believe the contributions of this chapter are:

1. Extension of the VO pipeline to be a complete mapping and localization system
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specifically designed to enable long-range autonomous rover navigation using only

a stereo camera, as would be required in a planetary exploration context.

2. Demonstration of the system’s performance through 32 kilometers of autonomous

operation. To the best of our knowledge, this is the first teach-and-repeat navi-

gation system shown to work over multi-kilometer autonomous traverses in highly

three-dimensional, outdoor, unstructured environments, without the use of GPS.

3. Evaluation of our system in the following areas:

(a) sensitivity to path following errors Section 5.4.1,

(b) sensitivity to lighting changes in Section 5.4.2,

(c) performance of the localization algorithm during route repeating in Section 5.4.3

(d) an evaluation of which image features are most useful for route repeating in

Section 5.4.4, and

(e) a summary of the major causes of failure of the algorithm in Sections 5.4.5

and 5.4.6.

One shortcoming of the system described in this chapter was its sensitivity to changes

in ambient lighting. In the next chapter, we propose one possible solution: the extension

of the VO pipeline to actively illuminated lidar sensors that do not require the presence

or consistency of ambient light.



Chapter 6

Towards Appearance-Based

Methods for Lidar Sensors

Although cameras have emerged as the dominant sensor modality for localization and

mapping in three-dimensional, unstructured terrain, all camera-based systems are inher-

ently reliant on the presence of ambient light. This poses a serious problem if we want to

use these systems in outdoor environments that lack adequate and consistent light, such

as permanently shadowed craters of the Moon. It could also be a problem if we desire to

recognize previously visited places under different lighting conditions. As we showed in

section 5.4.2, even changes in ambient lighting over the course of a single day can result in

recognition failures. There have been some attempts to develop robust odometry systems

that are invariant to lighting, such as downward-looking optical odometers (Dille et al.,

2009; Wettergreen et al., 2010), and while the results are promising, we would like to

develop a system that leverages the years of research into camera-based VO; this would

not only provide motion estimation in the dark, but it would enable the use of other

appearance-based algorithms such as the applications developed in Chapters 4 and 5.

In this chapter, we explore the possibility of extending the sparse VO pipeline to an

actively illuminated sensor, in an effort to reduce or eliminate the dependence on external

lighting. Our aim is to take the lessons learned from the success of camera-based systems

and apply the same methods to systems that use laser-based sensors, such as the lidar

depicted in Figure 6.1. The key insight is that, in addition to range data, lidar sensors

also provide intensity information, allowing one to construct an intensity image that looks

very similar to a standard greyscale camera image.

101
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Figure 6.1: Our field robot with a Bumblebee XB3 stereo camera, a Thales DG-16 Differential

GPS unit and an Optech Ilris 3D lidar sensor, which is a three-dimensional surveying lidar that

has a vertical and horizontal field of view of 40◦.

Recognizing that laser intensity images1 provide a greyscale image of a scene is not

a new idea. Kretschmer et al. (2004) point out that in surveying, the intensity images

are often used by the surveyor to obtain a photo-realistic impression of the scanned area.

In fact, most commercial surveyors use various reflective markers in the scene to act

as tie points between different scan positions (Dold and Brenner, 2006). In an effort to

automate this scan registration process, Bohm and Becker (2007) developed a marker-free

method for point cloud registration that uses point correspondences from the intensity

images to estimate the rigid body transformations between point clouds. SIFT features

were extracted from the intensity images and RANSAC was used for outlier detection.

In order to dampen the areas of low and very high reflectance, histogram equalization

was used on all of the raw intensity images (Bohm and Becker, 2007).

In the mobile robotics literature, few have actually incorporated intensity information

from a laser sensor for motion estimation. Neira et al. (1999) developed a sensor fusion

technique in planar environments using their variant of the Extended Kalman Filter,

called the SPfilter, which incorporated both range and intensity data to localize against

a known map. Guivant et al. (2000) described a SLAM system that used the intensity

1Also referred to as reflectance images.
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data from their lidar to identify reflective markers on landmarks in the environment,

which simplified the data association problem.

The most relevant research to date comes from May et al. (2009), who developed 3D

mapping and egomotion estimation techniques using a Swiss Ranger Time-of-Flight (ToF)

camera, which measures distances based on the phase-shift principle. The Swiss Ranger

uses an array of 24 LEDs to simultaneously illuminate a scene, offering the advantage of

higher framerates than are possible with scanning lidar. However, ToF cameras often have

a limited field of view, short maximum range, and are very sensitive to environmental

noise (May et al., 2009).

Using intensity images generated from their ToF camera, May et al. employed two

appearance-based methods for motion estimation: a KLT-tracker and frame-to-frame

VO using SIFT features. Their results indicated that the SIFT approach yielded more

accurate motion estimates than the KLT approach, but less accurate than their iterative-

closest-point method, which used a network-based global relaxation algorithm (Borrmann

et al., 2008).

Although May et al. (2009) demonstrated that frame-to-frame VO might be possible

with a ToF camera, the largest environment in which they tested was a 20m long indoor

hallway, with no groundtruth. Thus, a number of important questions still remain. In

particular, we set out to answer the following questions:

1. How stable are descriptive features in lidar intensity images under changes in am-

bient light?

2. Can we perform VO using a scanning lidar in a stop-scan-go methodology with

comparable results to stereo VO?

In this chapter, we show that it is indeed possible to use the intensity images from a

lidar sensor and apply appearance-based techniques that have been traditionally used

with camera imagery.

This chapter is organized as follows. In Section 6.1 we describe the lidar sensor used

in this study and discuss the image formation and image processing methods required to

convert raw lidar intensity data into greyscale intensity images. In Section 6.2, we explore

the stability of a representative keypoint detection and description algorithm on both

camera images and lidar intensity images collected over a 24 hour period outdoors. In

Section 6.3 we validate our approach by implementing VO based on SBA on a sequence
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of lidar intensity images. The VO results are compared to stereo VO and DGPS. In

Section 6.4 we present a discussion of our findings, with particular emphasis on the

limitations and the current obstacles encountered with lidar sensors. The experiments

described in this chapter were included as part of McManus et al. (2011)

6.1 Preliminaries

The lidar sensor used in this study was an Optech Ilris 3D, which has a maximum

horizontal and vertical field of view of 40 degrees. The Ilris is a ToF lidar that can

acquire 2,500 points/second and offers a large dynamic scanning range from 3 meters to

over 1 kilometer, with subcentimeter accuracy up to 100 meters (for our experiments,

we restricted the maximum range to 500 meters). Since it is a surveying sensor, the Ilris

was not designed for high framerate data acquisition and consequently, we had to run

our robot in a stop-scan-go fashion for the localization experiment. Having said this,

there are currently several options available for high framerate 3D lidar sensors, such as

the LVC0702 lidar from Autonosys2, and the techniques described in this chapter are

applicable to these sensors as well. In addition to the lidar, we also used a Point Grey

Research Bumblebee XB3 stereo camera for our VO experiment, in order to provide a

comparison with our lidar VO. For groundtruth, we used a Thales DG-16 Differential

GPS unit.

To form images from the raw lidar data, we need to develop a camera model. As

this lidar provides equally spaced samples in azimuth and elevation, we were able to use

the raw data directly in a spherical camera model (see Figure 6.2(a) for an example of a

raw lidar intensity image). Once the raw intensity image is formed, image processing is

required to equalize the areas of high and low reflectance. Taking a similar approach as

Bohm and Becker (2007), we use adaptive histogram equalization and then smooth the

image with a Gaussian low-pass filter. The processed image is shown in Figure 6.2(b).

The justification for this image processing is described in the next section, since our

decision was based on the results from our light sensitivity analysis.

As in other chapters, we used our GPU implementation of the SURF (Bay et al.,

2008) algorithm3 to find keypoints in every camera and lidar intensity image. The SURF

algorithm returns a strength value for every keypoint. The strength value encodes the

2http://www.autonosys.com/lidar.htm
3http://asrl.utias.utoronto.ca/code/gpusurf

http://www.autonosys.com/lidar.htm
http://asrl.utias.utoronto.ca/code/gpusurf
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(a) Raw lidar intensity image. The metal

dome in the background is the most promi-

nent object in the image, since its reflec-

tivity is much higher than the surrounding

environment.

(b) Processed lidar intensity image, after

applying adaptive histogram equalization

and a Gaussian low-pass filter. The adap-

tive histogram equalization dampens the

areas of high and low reflectance, bringing

into focus many rich features in the fore-

ground.

Figure 6.2: Illustrating the image processing required to transform the raw intensity image into

a textured greyscale image. All images are 640x640.

intensity of the detector’s response at the keypoint location and scale. Keypoints cor-

responding to regions with high-contrast boundaries have higher strength values than

those with low-contrast boundaries, and the high-contrast keypoints tend to be detected

more reliably in the presence of noise in the image. Figure 6.3 shows an example of the

strongest 100 SURF keypoints detected in a camera/lidar intensity image.

6.2 Lighting Sensitivity Analysis

In this section, we describe an experiment to analyze the stability of sparse appearance-

based methods for lidar intensity images and compare them to camera intensity images,

under a variety of lighting conditions. We begin with a description of the experiment

and conclude with our results.
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(a) Camera intensity image with the 100

strongest keypoints plotted. Obviously, in

the case of the camera images, the number

of keypoint matches drops off significantly

as the time of day changes.

(b) Processed lidar intensity image, with

the 100 strongest keypoints plotted. Al-

though the intensity images did change as

the ambient light changed, the imagery

was relatively stable over a 24h period.

Figure 6.3: Camera and lidar intensity images of the same scene, taken at the same time of day

with sample SURF keypoints shown. Blue circles represent light-on-dark blobs and red circles

represent dark-on-light blobs.

6.2.1 Experiment Description

This experiment was conducted outdoors over a 24 hour period and consisted of taking

camera images and lidar scans at half-hour intervals of an outdoor scene. Since the

purpose of this experiment was to analyze the impact that lighting changes had on

lidar/camera intensity images, the sensors were mounted on a tripod that remained

stationary for the entire experiment. To quantify the stability of the keypoint detection

over the 24 hours, we used an adaptive threshold to find the 500 strongest SURF keypoints

in every image in the dataset. For both the camera and the lidar, keypoint matching

using position, scale, and descriptor similarity was performed between all possible pairs

of images. Given Ni,j matches between image i and image j, the similarity score, Si,j, is

Si,j :=
Ni,j

Nmax
, (6.1)

where Nmax is the maximum number of possible matches (500 in this case).
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Table 6.1: Mean similarity scores for camera/lidar intensity images with different image pro-

cessing methods.

Image Processing Camera Lidar

(i) None 0.092±0.150 0.329±0.101

(ii) Histogram Eq. 0.069±0.135 0.443±0.127

(iii) Gaussian Filter 0.094±0.151 0.375±0.110

(iv) Histogram Eq. + Gaussian Filter 0.073±0.150 0.502±0.161

6.2.2 Results

We have created similarity matrices composed of the similarity scores between all pairs of

images. Figure 6.4 shows the similarity matrices for the camera and lidar over the entire

24 hour period, where the light values represent a greater number of matches and the dark

values represent fewer matches. We compared camera and lidar similarity matrices for

four different image processing options: (i) no image processing, (ii) adaptive histogram

equalization, (iii) Gaussian low-pass filter, and (iv) adaptive histogram equalization and

a Gaussian low-pass filter (only the best two similarity matrices are included as figures).

Of the four options, we determined that applying adaptive histogram equalization and a

Gaussian low-pass filter was the best for the lidar intensity images, while applying just the

Gaussian low-pass filter provided a slight improvement with the camera images. Table

6.1 shows the mean similarity scores and standard deviation for all image processing

options.

As expected, for the camera, the number of keypoint matches between daytime and

nighttime images drops off significantly (in fact, goes to zero), which produces the dark

boxes in the similarity matrix. The structure within the camera’s similarity matrix il-

lustrates its sensitivity to ambient light and clearly demonstrates why methods such as

visual teach and repeat show a decrease in performance under changing lighting condi-

tions. The similarity score ranged from as low as zero to as high as 0.810 with a mean

score of 0.094±0.151.

In the case of the lidar intensity images, we found that the similarity score does

drop off from day to night, indicating a potential sensitivity to ambient light. In fact,

the similarity scores exhibited a larger deviation than expected, ranging from as low

as 0.250 to as high as 0.738 throughout the entire 24 hour period (the mean score was
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0.502±0.161). However, even for the most drastic changes in ambient light (i.e., from

light to dark), we were still able to find at least 125 keypoint matches, which is more

than sufficient for motion estimation.
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(a) Camera intensity image similarity matrix.

The similarity score ranged from 0.0–0.810

(i.e., 0–405 keypoint matches) with a mean

score of 0.094±0.151. The similarity matrix

exhibits sharp transitions at sunrise and sun-

set.
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(b) Lidar intensity image similarity matrix.

The similarity score ranged from 0.250–0.738

(i.e., 125–369 keypoint matches) with a mean

score of 0.502±0.161. The lowest similarity

scores occur between scans separated by ap-

proximately 12 hours.

Figure 6.4: Similarity matrices over a 24 hour period. The similarity score is Si,j := Ni,j/Nmax,

where Ni,j is the number of matches between image i and image j and Nmax is the maximum

number of possible matches, which was 500 in our experiment.

6.3 Visual Odometry

The VO pipeline was the enabling technology for the results presented in Chapters 4

and 5, and hence it represents an excellent algorithm to validate our appearance-based

lidar technique. We use an implementation of the sliding window VO algorithm described

in Konolige et al. (2007) to produce two motion estimates: one from stereo camera data,

and the other from lidar scans. Processing the lidar data only requires differences in

two areas: (i) keypoint formation, and (ii) error terms and associated Jacobians. The

rest of the code blocks—keypoint tracking, outlier rejection using RANSAC, and SBA—
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Figure 6.5: The image stack generated from a single lidar scan. SURF keypoints are found

in image space at subpixel locations and bilinear interpolation is used to find the azimuth,

elevation, and range of the keypoint. Linearized error propagation from image space to az-

imuth/elevation/range is then used to determine the uncertainty of the measurement.

are identical to the traditional camera-based approach as described in Chapter 2. We

therefore restrict ourselves to describing the measurement formation and error terms.

6.3.1 Measurement and Error Terms from Lidar Data

The output of image formation is a stack of images, I—intensity (I�), azimuth (Iθ),

elevation (Iφ), and range (Ir)—derived from the raw lidar output and shown in Figure 6.5.

The stack may be evaluated at any integer row, r, and column, c, as, Irc, a 4×1 column,

Irc := I(r, c) =
�
�rc θrc φrc rrc

�T
, (6.2)

where �rc, θrc, φrc, and rrc are the scalar intensity, azimuth, elevation, and range stored

at this location in the image stack. Although intensity and range are correlated, we make

the simplifying assumption that the elements of each image are independent, identically-

distributed samples such that

Irc = Irc + δIrc, δIrc ∼ N (0,R) , (6.3a)

R := diag
�
σ2
� , σ

2
θ , σ

2
φ, σ

2
r

�
, (6.3b)

where Irc is the true value, δIrc is zero-mean Gaussian noise, and R is based on the

sensor datasheet4.

At each timestep, k, keypoint detection returns a list of image locations, yk,j =�
u v

�T
, with associated covariances, Yk,j, where u, and v are generally not integers.

4http://www.optech.ca/i3dtechoverview-Ilris.htm

http://www.optech.ca/i3dtechoverview-Ilris.htm
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We use bilinear interpolation of I to produce an azimuth/elevation/range measurement,

zk,j. The uncertainty, Qk,j, associated with zk,j, is produced by propagation of R and

Yk,j through the interpolation equations.

The standard error term used in VO systems is reprojection error—the difference

between the observed keypoint location and the predicted keypoint location given the

current state estimate. We use a similar error term based on the spherical camera model

used to form the intensity images. As in Section 5.2.2 the output of the outlier rejection

step is a set of feature tracks indexed by n = 1 . . . N . Using this notation, track n

indicates that keypoint j at time k is an observation of landmark i. The error term, en,
is

en := zk,j − g
�
Tck,mp

i,m
m

�
, (6.4)

where pi,m
m is a column of state variables for landmark i expressed in the map frame, F−→m,

the transformation matrix, Tck,m, takes points from F−→m to the camera frame at time k,

F−→ck , and g(·) is our spherical camera model.

6.3.2 Experimental Data

The data for this experiment was collected at the University of Toronto Institute for

Aerospace studies. The Ilris lidar, a Point Grey Research Bumblebee XB3 stereo camera,

and a Thales DG-16 Differential GPS unit were mounted on our large field robot in the

configuration shown in Figure 6.1. The lidar scans, stereo images, and DGPS points were

collected every 0.5 meters over a traverse of approximately 200 meters. As previously

mentioned, the Ilris is not a high framerate 3D lidar, so we were limited to this stop-

and-scan methodology. The dataset took approximately 13 hours to collect, allowing for

a wide range of lighting conditions.

6.3.3 Results

Figure 6.6 shows a two-dimensional view of our VO localization results with DGPS for

groundtruth. For this dataset, stereo VO outperformed our lidar VO, achieving a total

RMS path error of 1.6% of the distance travelled, while the lidar VO achieved a total

RMS path error of 2.9% of distance travelled. We believe the stereo motion estimate was

more accurate due to longer temporal feature track lengths. The shorter track lengths in

the lidar sequence may be due to the sensor’s spatial under-sampling (see the Discussion
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Figure 6.6: Two-dimensional view of localization results with DGPS for groundtruth. Due to

external interference, our DGPS switched in and out of its fixed Real Time Kinematic (RTK)

mode and into its less accurate float RTK and Standard Positioning Service (SPS) mode, causing

noticeable jumps in the data. These have been illustrated with a different colour.

section below), but an investigation of how to track features accurately through intensity

images should be a topic of future work.

Figure 6.7 shows the number of inlying keypoint matches for both the lidar and the

stereo camera over the entire traverse. For most of the traverse, both lidar and stereo

achieved a similar number of matches. However, after sunset, we see a significant decrease

in matches for stereo, while the number of matches found with lidar remains unchanged.

Thus, on average, we were actually able to detect a greater number of inlying keypoint

matches using lidar.
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Figure 6.7: Number of inlying keypoints versus frame number.
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Figure 6.8: Zoomed-in view of the dome in one of the lidar intensity images taken from the light

sensitivity experiment. The arching light and dark bands on the surface of the dome create

what known as a Moire pattern. A camera image of the same segment of the dome is shown

for comparison.

6.4 Discussion

Although we have demonstrated that lidar sensors can be used for appearance-based

vision methods, there are a number of unique challenges and limitations that need to be

addressed. The most obvious and prominent limitation with a lidar sensor is aliasing,

which results from spatial under-sampling of the scene. Figure 6.8 shows an enlarged

view of one of the lidar intensity images taken from our 24 hour experiment, where we

see spatial aliasing in the form of a Moire pattern (Oster and Nishijima, 1963). As a

preliminary treatment of aliasing, we employed a simple Gaussian low-pass filter; how-

ever, this was not sufficient to completely eliminate the visual distortion. Clearly more

appropriate anti-aliasing algorithms need to be investigated.

Another challenge with scanning lidar is that, in complex environments, small changes

in sensor orientation can result in large range deviations since we only measure point

samples in the scene; objects that have a high angle of incidence with respect to the laser

beam or thin objects such as a sign post, can display large range deviations. Figure 6.9

shows a pixel-wise standard-deviation range image, which was computed by taking all of

the range images we gathered from our light sensitivity experiment and computing the

standard deviation of the range values. As can be seen, objects such as the power line,

the top of the dome, and the chain link fence represent regions were the range can deviate
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Figure 6.9: Standard deviation range image, where black represents the largest deviation. For

visual clarity, we applied adaptive histogram equalization to the raw standard deviation image.

Note that objects in the distance, such as the top of the dome, the trees and the fence, exhibit

the largest range deviations, which are caused by small perturbations in the orientation of the

lidar.

significantly. Since we use bilinear interpolation to compute keypoint measurements, if

one of the neighbouring range values used in our interpolation deviates significantly from

the others, it results in a biased range reading. For this reason, we rejected any keypoint

measurements where the difference between the maximum and minimum range value was

beyond a certain threshold, which occurs mostly at structure boundaries.

6.5 Conclusion

This chapter has demonstrated how active laser-based sensors, such as a lidar, can be

used for appearance-based motion estimation techniques. Like a camera, a lidar sensor

can produce intensity images, allowing the use of sparse keypoint detectors.

Specifically, we believe the contributions of this chapter are:

1. An evaluation of the stability of SURF keypoints in lidar intensity images and

traditional camera images of an outdoor scene over a 24 hour period presented

in Section 6.2. We demonstrate that lidar sensors do in fact exhibit a sensitivity

to changes in ambient light. However, even in the worst case of trying to match

keypoints from a daytime scan to a nighttime scan, we were still able to match 25%

of the keypoints.
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2. An explanation of how to build keypoint measurements from a lidar image stack in

Section 6.3.1. The keypoints are suitable for use in the sparse VO pipeline.

3. The extension of the sparse VO pipeline from Chapter 2 to lidar intensity images.

To the best of our knowledge, this is the first use of a scanning lidar sensor in the

sparse VO pipeline.

4. An evaluation of lidar VO and a comparison with stereo VO over a 200 meter

traverse using DGPS for groundtruth in Section 6.3.

This work marks an important step towards enabling appearance-based vision techniques

in environments that are not conducive to passive cameras and presents new possibilities

for a number of light-dependent autonomous navigation methods, such as the teach-and-

repeat navigation algorithm described in Chapter 5.

There is still a great deal of work that needs to be done to fully realize the potential

of active laser sensors. In our experiments, we were limited to driving the robot in a

stop-scan-go fashion because we did not have access to a high framerate lidar sensor.

We anticipate that using the techniques described in this chapter with a sensor that

is scanning continuously while the rover is in motion would result in significant image

distortion. While such distortion would almost certainly result in degraded motion esti-

mates, it is possible that it would not inhibit the use of such a sensor for teach-and-repeat

navigation; as shown in Chapter 5, teach-and-repeat navigation does not require accurate

motion estimates.



Chapter 7

Summary and Future Work

This chapter presents a short summary of the contributions emanating from this thesis,

together with references to papers published describing this research. We then conclude

by suggesting promising directions for future work.

7.1 Summary of Contributions and Publications

The mission concept to find and sample ground ice on Mars and our field campaigns to

Devon Island have resulted in a number of overview publications. They include high-level

descriptions of the work presented in this thesis along with work done by collaborators

toward the same mission concept. Barfoot et al. (2010a) and Barfoot et al. (2010c) de-

scribe our 2008 field campaign and our work on the coupled surface/subsurface modelling

pipeline within the context of the mission concept. Barfoot et al. (2010b) and Barfoot

et al. (2011a) give an overview of our 2009 field tests. These papers discuss results using

VO to collect GPR data and then using visual teach and repeat to return to the lander.

Barfoot et al. (2010d) evaluates Devon Island as a worthwhile site for rover testing, and

provides a high-level summary of all known rover tests at the site.

Results from the first part of Chapter 3 have appeared in Barfoot et al. (2011b), and

in the complete estimator derivation in Furgale et al. (2010). In brief, the contributions

of Chapter 3 are:

1. A first-principles derivation of the multiplicative constraint-sensitive perturbations

of a a 4×4 transformation matrix and a unit-length 4×1 homogeneous point given

by (3.52) and (3.86) respectively. These may be used to linearize any expression

involving a transformation matrix, or homogeneous point.
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2. Expressions for updating transformation matrices and unit-length homogeneous

points with a constraint-sensitive perturbation are provided in (3.56), and (3.83)

respectively. These updates avoid the need to restore constraints afterwards.

3. Development of a number of identities for manipulating expressions involving lin-

earized transformation matrices. These identities are given in (3.61), (3.65), (3.66),

(3.69), (3.71), and (3.72).

4. Demonstration of linearizing a stereo-camera-model error term involving a trans-

formation matrix and homogeneous point landmark. The resulting linearized error

term, given by (3.99) is used for the VO estimates in subsequent chapters.

5. Demonstration of how to build and linearize an error term representing a Gaussian

prior on a rotation matrix. The linearized error term is given in (3.114).

The VO algorithm described in Chapter 2 has been used for collaborations with

colleagues in the Autonomous Space Robotics Laboratory in a number of ways. Carle

et al. (2010) use VO to constrain relative transformations between lidar scans which are

matched to digital elevation maps in order to provide global localization for planetary

exploration rovers in the absence of GPS. Lambert et al. (2011) extend the pipeline from

Chapter 2 by including a sun sensor and inclinometer directly in the pose solution. Taken

together, these added sensors provide global attitude corrections that greatly increase

the accuracy of VO over long distances. Portions of the data and code produced while

developing this VO algorithm have been released. “Speeded Up Speeded Up Robust

Features” is an open source, GPU implementation of the SURF algorithm available at

http://asrl.utias.utoronto.ca/code/gpusurf. Data collected from our field trials on

Devon Island suitable for rover testing have been packaged for ease of use and are available

at http://asrl.utias.utoronto.ca/datasets/devon-island-rover-navigation/.

The work from Chapter 4 on coupled surface/subsurface modelling appeared in Fur-

gale et al. (2009) and Furgale et al. (2010). The contributions of Chapter 4 are:

1. Demonstration and field testing of a method to completely automate the GPR data

collection process by using stereo VO to derive an estimate of the motion of the

GPR antenna over the course of a transect. This method uses only onboard sensors

slated to fly on future rover missions, making it suitable for a planetary exploration

setting.

http://asrl.utias.utoronto.ca/code/gpusurf
http://asrl.utias.utoronto.ca/datasets/devon-island-rover-navigation/


Chapter 7. Summary and Future Work 117

2. Demonstration and field testing of a method to use the raw data from a stereo

camera and GPR along with the VO motion estimate to produce two novel data

products:

(a) a topography-corrected radargram plotted with a two-dimensional profile of

the surface along the transect (Section 4.2.1), and

(b) a photo-realistic three-dimensional surface/subsurface model (Section 4.2.2).

The results in Chapter 5 appeared as two conference publications at ICRA 2010

(Furgale and Barfoot, 2010c,b). Furgale and Barfoot (2010c) won the Kuka Service

Robotics Best Paper Award at that conference. The complete description of the algorithm

and field tests was published in Furgale and Barfoot (2010a). The contributions of

Chapter 5 are:

1. Extension of the VO pipeline to be a complete mapping and localization system

specifically designed to enable long-range autonomous rover navigation using only

a stereo camera, as would be required in a planetary exploration context.

2. Demonstration of the system’s performance through 32 kilometers of autonomous

operation. To the best of our knowledge, this is the first teach-and-repeat navi-

gation system shown to work over multi-kilometer autonomous traverses in highly

three-dimensional, outdoor, unstructured environments, without the use of GPS.

3. Extensive evaluation of system performance.

The work on appearance-based lidar in ongoing and the results in Chapter 6 appeared

as part of McManus et al. (2011). The contributions of Chapter 6 are:

1. Evaluation of the stability of SURF keypoints in lidar intensity images and tra-

ditional camera images of an outdoor scene over a 24 hour period presented in

Section 6.2.

2. Explanation of how to build keypoint measurements from a lidar image stack in

Section 6.3.1. The keypoints are suitable for use in the sparse VO pipeline.

3. Extension of the sparse VO pipeline from Chapter 2 to lidar intensity images. To

the best of our knowledge, this is the first use of a scanning lidar sensor in the

sparse VO pipeline.



Chapter 7. Summary and Future Work 118

4. Evaluation of lidar VO and a comparison with stereo VO over a 200 meter traverse

using DGPS for groundtruth in Section 6.3.

7.2 Future Work

Based on the work in this thesis, there are many future directions to pursue, primarily

following from the results in Chapters 5 and 6.

7.2.1 Autonomous Retrotraverse

The teach-and-repeat navigation system described in Chapter 5 was only capable of

representing routes that were simple linear chains with no branches. The extension of

this system to arbitrary graphs of routes raises a number of interesting possibilities for

research.

Planning on a network of reusable paths: Acknowledging that globally consistent

maps are not needed for robust autonomous rover operations, we may seek to build a

complete exploration system1 based on a network of reusable paths. This poses many

challenges such as how to define goals, represent obstacles, and plan paths within a world

representation that has no single privileged coordinate frame (work already started by

Stenning and Barfoot (2011)).

Lifelong localization and mapping: The current state of the art in localization and

mapping has shown it is possible to build maps of vast scale. However, maintaining

appearance-based maps over time as environments change remains an unsolved problem.

World segmentation: As exploration algorithms enable robots to remain autonomous

over long periods, it may be possible for autonomous systems to aggregate the large

datasets collected over time with the goal of automatically segmenting the world into

discrete spaces (such as rooms), and segmenting the contents of the world into classes of

objects, by revisiting places and clustering similarities and differences.

1An exploration system combines the related tasks of localization, mapping, and planning together
into a single framework.
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Semantic labelling: After clustering and segmenting the world into spaces and object

classes, maps may be extended to include a semantic layer that seeks to capture high-

level concepts about the world that can then be used by reasoning systems to accomplish

complex goals.

7.2.2 Appearance-Based Lidar

The extension of the sparse VO pipeline to scanning lidar described in Chapter 6 is very

preliminary and there are still many extensions to be realized.

Lighting-invariant teach and repeat: We show in Chapter 6 that it is possible to

perform appearance-based VO using a scanning lidar, so the extension to teach-and-

repeat navigation should be straightforward. This should result in a system that is much

more robust to changes in ambient lighting—the main cause of failures of the camera-

based system from Chapter 5. It should also allow rovers to operate autonomously in

the dark, which would enable exploration of challenging locations such as permanently

shadowed craters on the Moon.

Advances in joint range/intensity image processing: Because the image stack

produced in Chapter 6 is dense—there is a range value for every intensity value—there

should be some advances possible in joint range/intensity image processing. This could

include joint range/intensity feature detection, dense estimation of scene structure and

surface albedo, and the generation of landmark descriptors that encode both appearance

and geometric information, and hence are more recognizable under changes in viewpoint.

Motion compensation for continuously scanning lidar in motion: Porting the

work from Chapter 6 to a scanning lidar that collects data while the platform is in

continuous motion will involve some challenges. One of the assumptions of the image-

stack abstraction is that all pixels were captured at the same instant in time. This is not

the case when a rover is collecting laser data while in continuous motion. Preliminary

study shows that this produces significant image distortion which results in poor metric

motion estimates. Designing an estimator that can deal with the continuous motion of

the scanner should be possible but it will require careful timestamping of data and may

involve some form of interpolation or continuous-time parametric state representation.
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Full dark celestial navigation: It has already been shown that fusing visual motion

estimation with a sun sensor and inclinometer can greatly increase the accuracy of motion

estimation over long distances (Lambert et al., 2011). An actively illuminated sensor that

is able to operate in the dark enables the possibility of fusing visual motion estimation

with a star tracker and inclinometer. As star trackers measure the bearing of multiple

celestial objects at once, the attitude estimates should be even more accurate than those

using a sun sensor. However, this work will involve difficulties such as the need for careful

timestamp synchronization and the problem of motion blur destroying the visibility of

faint stars.



Appendix A

Catalogue of Route-Following

Experiments

This appendix includes the complete listing of our route following experiments. Table A.1

lists each teach pass with some basic information such as the length of the route, the

number of features per map and the number of failures encountered teaching the route.

Table A.2 lists some difficulty metrics for each teach pass: the elevation change reported

by GPS, and the roll and pitch variation measured by an inclinometer mounted on the

sensor head. The repeat passes are listed in Tables A.3, A.4 and A.5. For each repeat pass

we report the start time of both the teach and repeat passes (relevant for lighting effects),

the percentage of the route completed, the percentage of run completed autonomously,

the number of operator interventions, and the percentage of time the algorithm was

globally localized.
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Table A.1: List of teach passes.

Tag Length (m) Maps Features per map Failures

ua-05-17-0726 725.6 253 2937 0

uh-05-20-1152 1151.7 405 3484 0

uh-05-21-1170 1169.7 410 3424 0

uh-05-22-0120 120.0 42 5218 0

uh-07-23-0120 119.7 43 5323 0

uh-05-26-0202 201.8 71 3714 0

ua-06-04-0086 85.6 30 1924 0

ua-06-04-0048 47.7 17 1857 0

ua-06-04-0097 96.8 35 1581 3

ua-06-04-0091 91.1 31 1924 0

ua-06-06-0081 81.5 28 1718 0

ua-06-06-0184 184.4 65 1563 0

ua-06-06-0186 185.8 65 1975 1

ua-06-06-0167 166.9 60 1540 0

dh-07-20-2120 2120.0 740 3680 1

da-07-20-0464 464.0 166 1662 1

da-07-21-0453 453.5 161 1960 1

dh-07-22-1091 1090.9 382 5110 0

dh-07-23-4963 4962.5 1732 3993 5

da-07-23-0557 557.3 200 2126 0

da-07-24-0425 424.6 151 2225 0

da-07-29-0487 486.9 172 2318 0

da-07-29-0486 486.2 176 2415 0

dh-07-30-0347 347.3 124 3147 0

dh-07-30-0187 187.5 66 3322 0

dh-07-30-0153 152.8 54 3145 0

dh-07-31-0192 191.8 68 5431 0
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Table A.2: List of teach passes with difficulty metrics.

Elevation Min Max Min Max
Tag change (m) roll (deg) roll (deg) pitch (deg) pitch (deg)

ua-05-17-0726 7.1 −7.8 12.2 −6.4 5.6

uh-05-20-1152 4.9 −18.4 8.2 −12.0 6.3

uh-05-21-1170 4.9 −17.8 11.9 −14.6 10.3

uh-05-22-0120 3.6 −14.7 11.7 −21.5 27.2

uh-07-23-0120 4.9 −13.3 12.1 −18.5 26.5

uh-05-26-0202 3.7 −5.5 3.5 −8.4 2.4

ua-06-04-0086 1.6 −8.0 2.9 −5.1 1.6

ua-06-04-0048 1.0 −6.7 5.5 −5.1 6.1

ua-06-04-0097 1.3 −6.6 3.3 −7.3 1.9

ua-06-04-0091 1.1 −5.8 3.1 −5.7 4.3

ua-06-06-0081 0.9 −9.4 4.0 −5.9 2.3

ua-06-06-0184 1.3 −7.9 3.7 −5.7 2.3

ua-06-06-0186 1.5 −10.4 4.9 −6.8 7.4

ua-06-06-0167 3.1 −8.8 3.1 −4.0 2.4

dh-07-20-2120 69.2 −22.0 15.9 −28.3 16.9

da-07-20-0464 8.7 −12.0 4.5 −9.7 6.9

da-07-21-0453 9.4 −13.0 4.3 −10.0 11.6

dh-07-22-1091 32.4 −7.4 10.0 −11.0 11.2

dh-07-23-4963 118.5 −12.8 13.6 −15.5 12.0

da-07-23-0557 36.7 −8.7 12.0 −11.7 13.4

da-07-24-0425 7.4 −6.7 5.9 −7.4 18.3

da-07-29-0487 9.1 −9.0 4.1 −13.0 7.5

da-07-29-0486 9.1 −6.6 3.4 −11.0 6.8

dh-07-30-0347 2.1 −12.2 13.1 −12.1 10.8

dh-07-30-0187 1.5 −6.1 8.5 −12.3 7.7

dh-07-30-0153 1.5 −6.9 5.9 −10.6 3.6

dh-07-31-0192 1.1 −9.8 10.9 −17.9 19.1
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Table A.3: List of repeat passes (1/3). Column C is the percentage of the total route completed,

column A is the percentage of the distance travelled autonomously, and column I is the number

of operator interventions.

Teach Teach pass Repeat pass Globally
pass tag start time start time C A I localized

ua-05-17-0726 12:27:12 14:27:02 100.0% 100.0% 0 41.1%

12:50:02 100.0% 100.0% 0 91.8%

uh-05-20-1152 12:04:45 09:25:48 100.0% 100.0% 0 88.8%

uh-05-21-1170 12:16:02 20:26:28 100.0% 92.0% 1 49.6%

12:54:14 100.0% 100.0% 0 99.2%

15:28:08 100.0% 100.0% 0 97.4%

16:14:01 100.0% 100.0% 0 99.1%

08:03:44 100.0% 98.4% 3 45.0%

09:04:15 100.0% 100.0% 0 76.3%

uh-05-22-0120 18:13:22 10:23:40 100.0% 100.0% 0 96.8%

10:56:05 100.0% 100.0% 0 94.1%

11:18:14 100.0% 100.0% 0 96.0%

11:41:32 100.0% 100.0% 0 91.7%

11:59:30 100.0% 100.0% 0 95.8%

13:04:15 100.0% 100.0% 0 89.1%

11:17:39 100.0% 100.0% 0 90.8%

uh-07-23-0120 16:53:43 18:39:23 100.0% 100.0% 0 93.6%

19:00:53 100.0% 100.0% 0 97.3%

19:12:07 100.0% 100.0% 0 95.8%

19:22:49 100.0% 100.0% 0 97.8%

19:33:36 100.0% 100.0% 0 95.5%
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Table A.4: List of repeat passes (2/3). Column C is the percentage of the total route completed,

column A is the percentage of the distance travelled autonomously, and column I is the number

of operator interventions.

Teach Teach pass Repeat pass Globally
pass tag start time start time C A I localized

uh-05-26-0202 11:14:39 07:44:53 100.0% 100.0% 0 95.9%

08:53:08 100.0% 100.0% 0 95.5%

09:41:09 100.0% 100.0% 0 88.7%

10:41:07 100.0% 100.0% 0 87.5%

11:39:57 100.0% 100.0% 0 95.0%

12:38:06 100.0% 100.0% 0 94.7%

13:34:20 100.0% 100.0% 0 98.8%

14:38:29 100.0% 100.0% 0 86.0%

14:58:39 100.0% 100.0% 0 88.8%

ua-06-04-0086 12:57:06 13:12:38 100.0% 100.0% 0 99.4%

ua-06-04-0048 14:41:09 14:51:15 100.0% 100.0% 0 97.2%

ua-06-04-0097 14:48:50 15:10:59 87.4% 95.5% 2 93.4%

ua-06-04-0091 16:26:46 16:37:13 100.0% 100.0% 0 84.5%

ua-06-06-0081 10:01:59 10:08:55 100.0% 100.0% 0 100.0%

ua-06-06-0184 10:25:07 11:35:48 100.0% 100.0% 0 99.7%

ua-06-06-0186 13:11:57 13:55:08 100.0% 98.4% 1 81.5%

ua-06-06-0167 21:09:38 21:45:16 100.0% 100.0% 0 100.0%

dh-07-20-2120 10:18:18 09:45:12 100.0% 100.0% 0 97.4%

11:05:46 100.0% 100.0% 0 89.9%

da-07-20-0464 16:09:42 16:46:56 100.0% 100.0% 0 94.4%
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Table A.5: List of repeat passes (3/3). Column C is the percentage of the total route completed,

column A is the percentage of the distance travelled autonomously, and column I is the number

of operator interventions.

Teach Teach pass Repeat pass Globally
pass tag start time start time C A I localized

da-07-21-0453 17:26:10 18:07:05 100.0% 100.0% 0 98.4%

dh-07-22-1091 08:55:08 10:35:23 100.0% 100.0% 0 99.5%

11:14:58 100.0% 100.0% 0 100.0%

12:00:56 100.0% 100.0% 0 99.2%

13:40:39 100.0% 100.0% 0 99.9%

14:13:58 100.0% 100.0% 0 97.5%

dh-07-23-4963 08:50:49 08:49:24 64.9% 100.0% 0 96.3%

15:07:49 32.8% 100.0% 0 76.2%

da-07-23-0557 17:19:32 18:21:22 100.0% 100.0% 0 99.2%

da-07-24-0425 16:24:23 17:20:45 100.0% 100.0% 0 98.4%

da-07-29-0487 11:41:31 15:28:45 100.0% 100.0% 0 96.7%

da-07-29-0486 16:04:04 15:28:45 100.0% 100.0% 0 96.7%

17:00:29 100.0% 100.0% 0 96.0%

dh-07-30-0347 12:03:40 12:49:47 100.0% 100.0% 0 89.5%

dh-07-30-0187 14:35:09 18:37:18 78.4% 100.0% 0 9.9%

10:02:35 100.0% 100.0% 0 75.7%

dh-07-30-0153 16:33:18 16:59:04 100.0% 100.0% 0 93.9%

dh-07-31-0192 11:40:01 12:27:23 100.0% 100.0% 0 100.0%

12:50:01 100.0% 100.0% 0 92.7%



Appendix B

List of Acronyms

CUDA NVIDIA’s Compute Unified Device Architecture

http://www.nvidia.com/object/cuda_home_new.html

DGPS Differential Global Positioning System

ESM Efficient Second-order Minimization (Malis and Benhimane, 2005)

GPR Ground-Penetrating Radar

GPS Global Positioning System

GPU Graphics Processing Unit

HMP-RS Haughton-Mars Project Research Station

IMU Inertial Measurement Unit

ISM Instant Scene Modeler

lidar light detection and ranging

MARSIS Mars Advanced Radar for Subsurface and Ionosphere Sounding

MER Mars Exploration Rover

RAM Random Access Memory

RANSAC random sample consensus (Fischler and Bolles, 1981)

RTK-GPS Real-Time Kinematic Global Positioning System
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SBA Sparse Bundle Adjustment

SHARAD Shallow Subsurface Radar

SIFT Scale Invariant Feature Transform (Lowe, 2004)

SLAM Simultaneous Localization and Mapping

SURF Speeded-Up Robust Features (Bay et al., 2008)

ToF Time-of-Flight

VO Visual Odometry

VRML Virtual Reality Modelling Language
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