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Navigating uncontrolled dynamic environments is a major challenge in robotics. Success

requires solving many different technical problems and path planning is a key component

of most autonomous solutions. Path planning is the task of finding a path through the

environment that allows a robot to reach its desired position. This path must avoid obstacles

and be executable by the robot while often also reducing a specified cost (e.g., path length).

The difficulty of meeting these requirements reliably and quickly in continuous state spaces

has made path planning an active area of research in robotics.

Two popular path planning approaches are informed graph-based search and anytime

sampling-based planning. Informed graph-based searches, such as A*, are efficient but use a

priori approximations of the problem domain. If these approximations are chosen incorrectly,

then the algorithms may be unable to find a (suitable) solution or take a prohibitively long

time to do so. Anytime sampling-based planners, such as RRT*, continuously improve their

approximations of the problem domain but perform inefficient searches. These searches simul-

taneously search the entire problem domain and can become prohibitively expensive in large or

high-dimensional planning problems, such as when planning for high-DOF manipulation arms.

This thesis demonstrates how planning in continuous planning problems can be improved

by unifying the informed graph-based search and anytime sampling-based planning approaches.

It investigates various ways to use heuristics to focus and order the search of almost-surely

asymptotically optimal sampling-based planners. The theoretical and experimental advantages

of this informed anytime sampling-based search are demonstrated through the planning

algorithms, Informed RRT*, Batch Informed Trees (BIT*), and Sorted RRT* (SORRT*).
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Notation

General Notation

a : Lower-case variables in this font are scalars.

X : Upper-case variables in this font are sets or spaces. (e.g., the search

space of the planning algorithm).

a : Lower-case variables in this font are column vectors.

A : Upper-case variables in this font are matrices.

Specific Symbols

∅ : The empty set.

1 : The identity matrix.

1p : The p-th column of the identity matrix.

i : The number of iterations performed by a planning algorithm.

n : The dimension of the search space.

q : The number of samples generated by a planning algorithm.

ζn : The Lebesgue measure of an n-dimensional unit ball.

Q : An ordered queue.

V : A set of vertices in a graph embedded in the search space, V ⊆ X.

E : A set of edges in a graph, E ⊆ (V × V ).

T : A graph without simple cycles (i.e., a tree) defined by a sets of vertices

and edges, T = (V,E).

xiii



Specific Functions & Operators

P (·) : The probability of an event.

E [·] : The expectation operator.

Γ (·) : The gamma function, an extension of the factorial function to real

numbers (Euler, 1738).

‖·‖p : The Lp norm of a vector.

|·| : The cardinality of a set or a graph.

λ (·) : The Lebesgue measure of a set (e.g., the volume).

x ∼ U (X) : A sample, x, randomly generated from a uniform distribution over a

set, X.

X
+←− {x} : A compact representation of the set compounding operation, X ←

X ∪ {x}, used in algorithms.

X
−←− {x} : A compact representation of the set compounding operation, X ←

X \ {x}, used in algorithms.

Cost Functions

ĉ (x,y) : An admissible estimate of the incremental cost to reach a state, y ∈ X,

from another state, x ∈ X. Bounds the optimal cost from below.

c (x,y) : The optimal incremental cost to reach a state, y ∈ X, from another

state, x ∈ X.

ĝ (x) : An admissible estimate of the cost to come to a state, x ∈ X, from

the start. Bounds the optimal cost from below.

g (x) : The optimal cost to come to a state, x ∈ X, from the start.

gT (x) : The cost to come to a state, x ∈ X, from the start through the current

tree, T . If a state is not in the tree, its cost-to-come is taken to be

infinity. Bounds the optimal cost from above.

ĥ (x) : An admissible estimate of the cost to go to the goal from a state,

x ∈ X. Bounds the optimal cost from below.

h (x) : The optimal cost to go to the goal from a state, x ∈ X.

f̂ (x) : An admissible estimate of the cost of a path from the start to the goal

constrained to pass through a state, x ∈ X. Bounds the optimal cost

from below.

f (x) : The optimal cost of a path from the start to the goal constrained to

pass through a state, x ∈ X.
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Chapter 1

Introduction

Recent technical advancements have lead to autonomous robotic solutions to a variety of

problems, including household cleaning (Fig. 1.1a; Hammill and Hendricks, 2014), warehouse

automation (Fig. 1.1b; Wohlsen, 2014), and aspects of extraterrestrial exploration (Fig. 1.2; Bo-

stock et al., 2014). Current research is attempting to extend these successes to more challenging

tasks, including transportation (Fig. 1.3a; LaFrance, 2015) and last-mile logistics (Fig. 1.3b;

Wingfield, 2015). These tasks pose significant new problems for robotics as they require ex-

tended periods of operation in dynamic and uncontrolled environments. Autonomous solutions

will require solving a number of difficult subproblems, including the path-planning problem.

Path planning is the task of finding a sequence of poses (i.e., a path) that allows a robot

to move between specified positions (i.e., from a start to a goal). This path must not only

avoid obstacles (i.e., be collision-free) but also represent motions the robot can perform (i.e.,

be feasible). Multiple such valid paths exist in many planning problems and it is common

to seek the path that minimizes a chosen cost function (i.e., the optimal path). A common

optimization objective is the minimization of path length.

(a) (b)

Figure 1.1: An iRobot Roomba vacuum, (a), and the Amazon Robotics mobile warehouse platform,
(b). Photographs courtesy of iRobot (2015) and Kelly (2014), respectively.
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The difficulty of a planning problem depends on the number of robot positions (i.e., states)

that could possibly belong to a solution (i.e., the size of the search space). This search space

is often theoretically continuous as most robots can be infinitesimally repositioned. It is often

also unbounded (e.g., planning outdoors, Fig. 1.3c) and/or high dimensional (e.g., planning

for manipulation, Fig. 1.3d).

Most planning algorithms attempt to simplify this search. Common simplifications include

considering only a subset of the problem (i.e., a local search) and/or reducing the possible

robot poses (e.g., graph-based and sampling-based approximations). These simplifications

improve real-world performance but reduce the formal properties of the algorithm. Chapter 2

uses these simplifications to classify and evaluate existing planning techniques, focusing on the

performance of graph-based and sampling-based approximations in continuous search domains.

Graph-based approximations allow for the use of informed graph-based searches, such as

A* (Hart et al., 1968). These algorithms not only find the optimal solution in the chosen

representation (i.e., they are resolution optimal) but also have formal guarantees on the

efficiency of their search. A* is the optimally efficient search of a given graph (Hart et al.,

1968) for any heuristic.

This efficient search allows graph-based algorithms to be successful on many continuous

planning problems despite the difficulty of approximating a problem a priori. Low resolution

approximations can be searched quickly but result in lower quality continuous solutions (if

they contain one). High resolution approximations yield high-quality continuous solutions

(a)

(b)

(c)

Figure 1.2: Prototypes of three generations of Mars rovers: Sojourner, (a), a Mars Exploration
Rover, (b), and the Mars Science Laboratory, (c). Photograph courtesy of NASA JPL, 2012.
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(Bertsekas, 1975) but create complex graphs that can be prohibitively expensive to search.

These problems are only amplified by the exponential growth of graph size with state

dimension, the curse of dimensionality (Bellman, 1954, 1957).

Sampling-based approximations allow planners to increase resolution incrementally until

a (suitable) solution is found (i.e., they are anytime) and avoid the computational cost

of unnecessary approximations. These algorithms, such as Probabilistic Roadmaps (PRM;

Kavraki et al., 1996), Rapidly exploring Random Trees (RRT; LaValle and Kuffner Jr.,

2001), and RRT* (Karaman and Frazzoli, 2011) have probabilistic performance guarantees.

With an infinite number of samples, they have a unity probability of finding a solution if

one exists (i.e., they are probabilistically complete) and PRM and RRT* can have a unity

probability of asymptotically converging to the optimal solution, if one exists (i.e., they may

be almost-surely asymptotically optimal).

This incremental representation allows sampling-based planners to be successful on many

continuous planning problems despite the inefficiency of their search. Incremental planners

(a) (b)

(c) (d)

Figure 1.3: The Google Self-Driving Car, (a), Amazon Prime Air delivery drone, (b), the University
of Toronto ASRL Husky, (c), a wheeled robot outfitted for extended, long-range traverses (Berczi
et al., 2013; Gammell et al., 2013a,b), and the CMU Personal Robotics Lab’s HERB, (d), a mobile
14-DOF manipulation platform (Srinivasa et al., 2012). Photographs (a) and (b) courtesy of Google
(2015) and Amazon (2015), respectively.
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generally search the entire problem domain simultaneously (i.e., they are space filling) and

waste computational effort searching regions of the problem that are never used to find a

solution. This results in algorithms that almost-surely converge asymptotically to the optimal

solution by asymptotically finding optimal paths to every state in the problem domain. This

unordered and unfocused search is prohibitively expensive in many real problems, such as

planning for manipulation or in unbounded environments.

This thesis studies how anytime almost-surely asymptotically optimal planners can be

unified with informed graph-based searches to improve performance on single-query continuous

planning problems. At a high level, it makes the following novel contributions:

1. Investigates the necessary conditions for incremental RRT*-style planners to improve

a solution, defining the omniscient set, informed sets, and the precision and recall of

informed sampling and provides an upper bound on the probability of these planners

improving a solution at any iteration (Chapter 3).

2. Develops techniques to focus the search for improvements in problems seeking to

minimize path length, in the process developing bounds on the expected convergence

rate of RRT* algorithms, proving that the original RRT* has sublinear convergence, and

developing an algorithm that can have linear convergence, Informed RRT* (Chapter 4).

3. Unifies graph-search and sampling-based techniques to develop Batch Informed Trees

(BIT*), a sampling-based algorithm that searches a continuous planning problem in

order of potential solution quality (as in A*) while maintaining anytime representations

and almost-sure asymptotic optimality (as in RRT*) and the related extension, Sorted

RRT* (SORRT*) (Chapter 5).

All the algorithms developed in this thesis are available publicly in the Open Motion Planning

Library (OMPL; Şucan et al., 2012).

Chapter 3 investigates necessary conditions for anytime almost-surely asymptotically op-

timal planners, such as RRT*, to improve a solution. It shows that after an initial number of

samples it is necessary to sample a state that belongs to a theoretically better solution. While

exact knowledge of these necessary samples requires solving the problem, this omniscient

set can be approximated with an informed set using heuristics (Fig. 1.4). The accuracy of an

informed set will depend on how completely and tightly it estimates the omniscient set (i.e.,

its recall and precision). If an informed set completely contains the omniscient set (i.e., 100%

recall) it is admissible. The probability of sampling an admissible informed set is an upper

bound on the probability of improving a solution with the tightness of the bound depending

on the set’s precision. An efficient method to directly sample admissible informed sets defined

by the L2 norm is presented for problems seeking to minimize path length.

Chapter 4 develops Informed RRT* as a demonstration of using direct informed sampling

for problems seeking to minimize path length. The algorithm maintains RRT*’s proba-

bilistic completeness and almost-sure asymptotic optimality while focusing the search for
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Path heuristic

Boundary heuristic

L2 heuristic

Omniscient set

(a) (b) (c)

Figure 1.4: An illustration of how the set of states that can improve the current solution (the
omniscient set) shrinks as better solutions are found. Common search domains used when minimizing
path length are labelled by their (implicit) heuristic. Boundary heuristics (a priori limits on the
state space) commonly contain the entire omniscient set (i.e., high recall) but may include many
erroneous states as the omniscient set shrinks with solution improvement (i.e., low precision). Path
heuristics (searches limited to the neighbourhood of the current solution) commonly have few
erroneous states (i.e., high precision) but do not include the optimum if it belongs to a different
homotopy class (i.e., low recall). The L2 heuristic always contains the entire omniscient set (i.e.,
100% recall) and shrinks along with the omniscient set as a function of the current solution (i.e.,
high precision). It is exactly equal to the omniscient set in the absence of obstacles (i.e., 100%
recall and precision). The search domain without any heuristic (i.e., the zero heuristic) is infinite for
unbounded problems and equivalent to the state-space limits for problems with inherent boundaries.

improvements to the L2 informed set. Analysis shows that while RRT* always has sublin-

ear convergence to the optimum, Informed RRT* converges linearly (i.e., faster) for some

problems. The practical implications of this improved convergence is demonstrated on both

abstract problems and experiments for the CMU Personal Robotic Lab’s Home Exploring

Robot Butler (HERB; Srinivasa et al., 2012), a 14 degree-of-freedom (DOF) mobile manipula-

tion platform. These experiments show that Informed RRT* outperforms existing techniques

as state dimension increases, especially in problems with large planning domains.

These experiments also highlight the limitations of only using heuristics to focus the

search for improvements. Searching in the order given by a sequence of samples causes

RRT-based algorithms to consider many different paths simultaneously and often results in

circuitous initial solutions. These solutions define large informed sets and for many planning

problems provide little opportunity to focus the search. In comparison, informed graph-based

searches such as A* are able to use heuristics to focus their entire search. Considering states

in the order of their potential solution quality allows these algorithms to avoid unnecessary

search effort and quickly find high-quality solutions.

Chapter 5 combines sampling-based planners and graph-search techniques to develop BIT*

as an informed anytime sampling-based search (Fig. 1.5). BIT* approximates a search space

with an edge-implicit random geometric graph (RGG; Penrose, 2003) defined by batches

of samples. The accuracy of this RGG improves incrementally as new samples are added

and provides an anytime approximation of the continuous planning problem. This changing
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The search expands outwards
from the minimum solution
propsed by a heuristic.

The search stops when a solution
is found or the batch of samples
has been completely searched.

A batch of new samples is
then added and the search is
restarted.

This process repeats indefinitely,
focusing both the approximation
and search of the domain.

(a) (b) (c) (d)

Figure 1.5: A simple example of the ordered sampling-based search performed by BIT*. The start
and goal states are shown as green and red, respectively, while the current solution is highlighted in
magenta. The informed set is shown as a black dashed line, while the progress of the current batch
is illustrated as a grey dashed line. Fig. (a) shows the growing search of the first batch of samples,
and (b) shows the first search ending when a solution is found. By ordering the search an initial
solution is found without considering states that are outside the resulting informed set. Fig. (c)
shows the search continuing after pruning the representation and increasing its accuracy with a new
batch of samples while (d) shows this second search ending when an improved solution is found.

approximation is searched efficiently in order of potential solution quality by using incremental

graph-search techniques that reuse information, such as Lifelong Planning A* (LPA*; Koenig

et al., 2004). The result is a sampling-based planner that searches in order of potential

solution quality while almost-surely converging asymptotically to the optimal solution in an

anytime manner.

In addition to being a unification of graph-based and sampling-based approaches (Fig. 2.2),

BIT* can be viewed as a generalization of existing almost-surely asymptotically optimal

planners. With a batch size of one sample it is equivalent to a version of Informed RRT* and

with a single batch of samples it is equivalent to a version of Fast Marching Tree (FMT*;

Janson et al., 2015b). It can also be extended to modify existing algorithms, as illustrated

with SORRT*, an ordered version of Informed RRT*.

The benefits of performing an ordered search on an anytime approximation are demon-

strated on both abstract problems and experiments for HERB. The results show that BIT*

finds better solutions faster than existing almost-surely asymptotically optimal planners and

also RRT, especially in high dimensions. The only tested planner that found solutions faster

than BIT* was RRT-Connect (Kuffner Jr. and LaValle, 2000), a bidirectional version of RRT

that is not almost-surely asymptotically optimal.

Chapters 3 and 4 consist of ideas first published as Gammell et al. (2014b) at the 2014

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). This work

has been combined with supporting technical reports (Gammell and Barfoot, 2014; Gammell

et al., 2014c) and expanded in preparation for submission as a journal paper (Gammell
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et al., 2017b). Chapter 5 consists of ideas first presented as Gammell et al. (2014a) at the

Information-based Grasp and Manipulation Planning Workshop at the 2014 Robotics: Science

and Systems Conference (RSS). This work was published as Gammell et al. (2015) at the

2015 IEEE International Conference on Robotics and Automation (ICRA) and has been

expanded in preparation for submission as a journal paper (Gammell et al., 2017a).



Chapter 2

Background

or: The difficulty of finding good solutions fast

This chapter reviews planning algorithms as they relate to robotics and feasible and optimal

planning problems in continuous state spaces (Section 2.1). Feasible problems seek a path

through a search space that connects a start to a goal while avoiding obstacles and obeying the

differential constraints of the robot. Optimal problems seek the feasible path that minimizes

a chosen cost function (e.g., path length). By definition, solving an optimal planning problem

requires solving the underlying feasible problem.

Planning problems in robotics are often in search spaces that are continuous and/or

without strict boundaries. In order to reduce search complexity many algorithms use simplified

approximations of the search space (Fig. 2.2). This facilitates solving problems in real time

but negatively affects the formal guarantees of the algorithms. Popular approximations

include graph-based (Section 2.2) and sampling-based (Section 2.3) discretizations.

Another method to reduce search complexity is to restrict the search space artificially.

These local search algorithms find good solutions quickly in many practical applications;

however, they provide no global guarantees and will not be discussed in detail in this thesis.

Examples include Covariant Hamiltonian Optimization for Motion Planning (CHOMP; Ratliff

et al., 2009; Zucker et al., 2013), Stochastic Trajectory Optimization for Motion Planning

(STOMP; Kalakrishnan et al., 2011), and constrained trajectory optimization (Schulman

et al., 2013).

This thesis specifically focuses on planning algorithms with global optimality guarantees.

It combines informed graph searches, such as A* (Hart et al., 1968), with sampling-based

planners, such as RRT* (Karaman and Frazzoli, 2011), to develop informed asymptotically

optimal searches with anytime performance for continuous planning problems. While this

work ultimately unifies the two approaches, it is presented as extensions to sampling-based

planning (Section 2.4).

8
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(a) (b) (c)

xstart xgoal

Xobs

σ∗

σ′

σ′

σ′

X

Xfree

σ′

Figure 2.1: An illustration of a simple planning problem, (a), defined by a search space, X, a
start, xstart, a goal, xgoal, and obstacles, Xobs ⊂ X. Solutions must pass solely through the set
of states not in collision with an obstacle, Xfree := cl (X \Xobs). For this problem there exists an
uncountable number of feasible solutions, σ′, (b), but only one optimal solution with respect to
path length, σ∗, (c).

2.1 Planning Problems

Formal definitions of the feasible and optimal planning problems (Fig. 2.1) are given in

Definitions 2.1 and 2.2. These definitions are expressed in the state space of a robot but

can be posed in other representations including configuration space (Lozano-Pérez, 1983).

The goal of these problems may be a single goal state (e.g., a pose for a mobile robot) or

any state in a goal region (e.g., the set of joint angles that give a redundant manipulator a

desired end-effector position).

Definition 2.1 (The feasible planning problem). Let X ⊆ Rn be the n-dimensional state

space of the planning problem, Xobs ⊂ X be the states in collision with obstacles, and

Xfree = cl (X \Xobs) be the resulting set of permissible states, where cl (·) represents the

closure of a set. Let xstart ∈ Xfree be the initial state and Xgoal ⊂ Xfree be the set of desired

goal states. Let σ : [0, 1]→ Xfree be a map to a sequence of states through collision-free space

that can be executed by the robot (i.e., a collision-free, feasible path) and Σ be the set of all

such nontrivial paths.

The feasible planning problem is then formally defined as the search for any path from

this set, σ′ ∈ Σ, that connects xstart to xgoal ∈ Xgoal,

σ′ ∈ {σ ∈ Σ | σ (0) = xstart, σ (1) ∈ Xgoal} .

Definition 2.2 (The optimal planning problem). Let X ⊆ Rn be the state space of the

planning problem, Xobs ⊂ X be the states in collision with obstacles, and Xfree = cl (X \Xobs)

be the resulting set of permissible states, where cl (·) represents the closure of a set. Let

xstart ∈ Xfree be the initial state and Xgoal ⊂ Xfree be the set of desired goal states. Let σ :
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[0, 1]→ Xfree be a map to a sequence of states through collision-free space that can be executed

by the robot (i.e., a collision-free, feasible path) and Σ be the set of all such nontrivial paths.

The optimal planning problem is then formally defined as the search for a path, σ∗ ∈ Σ,

that minimizes a given cost function, c : Σ→ R≥0, while connecting xstart to xgoal ∈ Xgoal,

σ∗ = arg min
σ∈Σ

{c (σ) | σ (0) = xstart, σ (1) ∈ Xgoal} ,

where R≥0 is the set of non-negative real numbers.

Some robotic systems require solving multiple planning problems in a single search envi-

ronment (i.e., different xstart and/or Xgoal with constant X and Xobs). Algorithms can reduce

the total search effort in these multiquery planning scenarios by using the same information

to solve multiple problems. This reusable information is often calculated with a general

search of the problem domain that is performed before solving individual planning problems.

There is no benefit to preprocessing problem domains if each planning problem is posed

in a different search environment. Algorithms can reduce the total search effort in these

single-query planning scenarios by attempting to solve each problem as efficiently as possible.

This thesis focuses on planning algorithms for single-query scenarios.

2.2 Graph-based Searches

A common way to simplify continuous planning problems is to approximate the search space

as a graph of discrete states (i.e., vertices) connected by edges. Many cost functions in

robotics (e.g., path length) satisfy Bellman’s principle of optimality (Bellman, 1954, 1957)

and the resulting discrete problem can be solved with dynamic programming (Bellman, 1954;

Larson, 1967) or graph-search techniques (Fig. 2.2).

Formal guarantees of these algorithms in relation to the original continuous feasible or

optimal planning problem will depend on the chosen a priori discretization. If an algorithm

is guaranteed to find a solution to a given problem at the chosen resolution, if one exists, it

is described as resolution complete. If it is guaranteed to find the optimal solution at the

chosen resolution, if one exists, it is described as resolution optimal. By definition, resolution

optimality implies resolution completeness.

Dynamic programming techniques solve optimal planning problems by iteratively calcu-

lating vertex costs. The Floyd-Warshall algorithm (Floyd, 1962; Ingerman, 1962; Roy, 1959;

Warshall, 1962) calculates costs between every pair of vertices in a graph. This information

can be used to find resolution-optimal solutions efficiently in multiquery planning scenarios

that consist of problems with many different starts and goals. The Bellman-Ford-Moore

algorithm (Bellman, 1958; Ford Jr., 1956; Moore, 1957) calculates the costs from a single state

to every other vertex in a graph. This information can be used to find resolution-optimal
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(a) (b) (c)

(d) (e) (f)

xstart xgoal S G

S G S G

S G

xstart xgoal

Figure 2.3: An illustration of Dijkstra’s algorithm (Dijkstra, 1959). The continuous problem, (a),
is approximated by a discrete set of states, (b). This discretization is searched outwards from the
start in order of increasing cost-to-come, (c) and (d). The search terminates when no unexpanded
vertices have a cost-to-come less than the goal, (e). The resulting solution is resolution optimal, (f).

solutions efficiently in multiquery planning scenarios that consist of multiple problems with a

common start but different goals.

Both of these techniques search the entire graph and find resolution-optimal paths between

many different vertices. This may be cost effective in multiquery planning scenarios but is

inefficient in single-query scenarios that only require one path. Searching the entire graph is

often unnecessary in these situations as the resolution-optimal solution is found as soon as

(i) a solution is found, and (ii) all possibly better solutions are shown to be infeasible.

These conditions can be met simultaneously by considering potential solutions in order

of cost. Such an ordered search assures that solutions are found only after all possibly better

paths have been considered. This avoids unnecessarily searching the entire graph and can allow

algorithms to find the resolution-optimal solution efficiently in single-query planning scenarios.

Dijkstra’s algorithm (Dijkstra, 1959) searches a graph in order of increasing vertex cost

(Fig. 2.3). This finds resolution-optimal paths to vertices in order of the cost to come to them

from the start. By stopping the search once a solution is found, this finds the resolution-

optimal solution by only considering vertices with lower costs-to-come than the goal.
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(a) (b) (c)

(d) (e) (f)

xstart xgoal S G

S G S G

S G

xstart xgoal

Figure 2.4: An illustration of the A* algorithm (Hart et al., 1968). The continuous problem, (a),
is approximated by a discrete set of states, (b). This discretization is searched outwards from the
start in order of increasing solution cost as estimated by an admissible heuristic, (c) and (d). The
search terminates when no unexpanded vertices have an estimated solution cost less than the cost
to the goal, (e). The resulting solution is resolution optimal, (f), and for the chosen heuristic the
search is optimally efficient in the number of vertices expanded.

Algorithmically, Dijkstra’s algorithm uses a queue of vertices ordered by cost-to-come.

At each iteration the lowest-cost vertex in the queue is removed, the costs-to-come of its

descendants are calculated, and these new vertices are added to the queue. This process

continues until the goal reaches the front of the queue at which point all vertices with lower

costs-to-come have been considered. This avoids vertices with higher costs than the goal

but expands equally in every direction and may still consider vertices that are known to be

unable to provide a better solution.

The A* algorithm (Hart et al., 1968) avoids low-cost vertices that cannot provide better

solutions by searching a graph in order of potential solution quality (Fig. 2.4). Vertices are

expanded in the order given by their combined cost-to-come and a heuristic estimate of the

cost to go from them to the goal. These combined costs will provide an admissible estimate of

the cost of a solution passing through the vertex for any heuristic that does not overestimate

the true cost-to-go. This admissible heuristic allows A* to exploit problem information to

find the resolution-optimal solution by only considering vertices believed to be capable of

providing a better solution.
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A* is algorithmically the same as Dijkstra’s algorithm with the queue of vertices ordered

by their heuristically estimated solution cost. The resulting search is optimally efficient

in the number of vertices expanded since any other resolution-optimal algorithm using the

same heuristic will expand at least as many vertices as A* (Hart et al., 1968). The practical

meaning of this efficiency depends on how accurately the heuristic approximates the true

solution cost and with the trivial zero heuristic A* is equivalent to Dijkstra’s algorithm.

A* was first developed for Shakey (Nilsson, 1969), an early mobile automaton, and it has

remained popular in robotics. An incomplete list of interesting uses includes nonholonomic

multibody systems (Barraquand and Latombe, 1993), systems that can reconfigure their

environments (Lynch and Mason, 1996), and systems that consider interactions between

physical models of the robot and terrain (Cherif, 1999).

A* has also been extended to specific applications, including relaxing resolution optimality

(Section 2.2.1), handling changing graphs efficiently (Section 2.2.2), and finding solutions in

an anytime manner (Section 2.2.3). These techniques improve performance in many situations

but their solutions are still ultimately limited by the a priori discretization (Section 2.2.4).

2.2.1 Near-resolution-optimal Search

A* expands a prohibitively large number of vertices to find a solution to many practical

planning problems. As this solution is only an approximation of the continuous optimum

(i.e., it is only resolution optimal), it may be acceptable to reduce search effort by relaxing

optimality. If an algorithm is guaranteed to find a solution near the optimum at the chosen

resolution, if one exists, it is described as near resolution optimal.

Weighted A* (Pohl, 1970a,b, 1973) finds near-resolution-optimal solutions by inflating

an admissible heuristic by ε > 1 (Fig. 2.5). This prioritizes expanding vertices closer to

the goal and finds solutions to many problems with fewer vertex expansions than A*. The

resulting solution is guaranteed to be no more than ε worse than the resolution-optimal

solution. Lazy Weighted A* (Cohen et al., 2014b) further accelerates the search by delaying

cost calculations until absolutely necessary. This can be beneficial in problems where states

have many descendants and calculating their cost-to-come is computationally expensive, such

as multiarmed manipulation planning problems.

Multi-Heuristic A* (MHA*; Aine et al., 2014, 2015) finds near-resolution-optimal solutions

by combining multiple arbitrarily inadmissible heuristics with a single admissible heuristic.

This allows a wide variety of information to be incorporated into searches, including dy-

namically generated heuristics (Islam et al., 2015), while maintaining a bound on resolution

quality. The resulting solution is guaranteed to be no more than a user-controlled parameter

worse than the resolution-optimal solution.
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(a) (b) (c)

(d) (e) (f)

xstart xgoal S G

S G S G

S G

xstart xgoal

Figure 2.5: An illustration of a simple Weighted A* algorithm (Pohl, 1970a,b, 1973). The continuous
problem, (a), is approximated by a discrete set of states, (b). This discretization is searched outwards
from the start in order of increasing solution cost as estimated by an inadmissible heuristic, (c) and
(d). The search terminates when no unexpanded vertices have a heuristic value less than the cost to
the goal, (e). The use of an inflated heuristic results in a resolution-suboptimal solution, (f), but
can reduce the total number of vertices expanded.

These and other similar techniques may find a solution to specific planning problems

faster than A* but they do so by sacrificing solution quality and in general are not guaranteed

to find the resolution-optimal solution.

2.2.2 Replanning or Incremental Search

Many robotic applications plan and operate in environments that are (partially) unknown or

change during path planning and/or path execution. In these scenarios, A* must be restarted

each time the graph changes to guarantee resolution optimality. This replanning is expensive

and may be unnecessary depending on what regions of the graph have changed. Replanning,

or incremental, search techniques handle graph changes efficiently by reusing previous search

information and only updating the search where necessary.

Dynamic A* (D*; Stentz, 1994) and derived algorithms (e.g., Focussed D*; Stentz, 1995;

D* Lite; Koenig and Likhachev, 2005; and Delayed D*; Ferguson and Stentz, 2005) are

designed for robotic planning in unknown environments. They search a planning problem
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by assuming that it is obstacle free wherever information is unavailable (i.e., a free-space

assumption). The algorithms then incorporate new information as it becomes available (e.g.,

by executing the proposed plan) into an updated plan. This allows a robot to navigate an

unknown environment efficiently by planning and executing a series of paths. The final route

driven by the robot may be suboptimal but each path will be the resolution-optimal solution

from the current robot position to the goal given the available information.

Lifelong Planning A* (LPA*; Koenig et al., 2004) adapts A* to handle graphs with

changing edge weights. The algorithm searches for inconsistent vertices any time the graph is

changed and reinserts them into the search queue. A vertex is inconsistent if its cost-to-come

is different than the best value that could be calculated from its immediate neighbours (the

lookahead value). The search queue is processed in order of potential solution quality as in

A*. This efficiently maintains formal guarantees on resolution completeness and optimality

in the presence of a changing graph (including the addition/removal of vertices) by reusing

unchanged information.

D* and LPA* propagate changes through their entire search in order to maintain resolution

optimality. This can be computationally expensive and it may be desirable to reduce

computational cost by relaxing optimality, as in Section 2.2.1. Truncated D* Lite and

Truncated LPA* (TD* Lite and TLPA*; Aine and Likhachev, 2016) reduce computational

cost by prematurely stopping the propagation of changes. The resulting search is guaranteed

to find a near-resolution-optimal solution no more than a user-controlled parameter worse

than the resolution-optimal solution.

All these techniques require fewer vertex expansions than A* to find a solution to a modified

planning problem but they still only find the resolution-optimal solution. On unmodified

planning problems these algorithm will require the same number of vertex expansions as A*

to find the resolution optimum.

2.2.3 Anytime Search

Many robotic systems have a finite amount of computational time available to solve planning

problems. A* will only find a solution in these situations if the given time is sufficient to

find the resolution-optimal solution. This behaviour is often undesirable and it would be

preferred to have algorithms find the best-possible solution in the available time. This can be

accomplished by finding an initial suboptimal solution and then spending the remaining avail-

able time improving it. Such algorithms can be stopped at any time to retrieve intermediate

solutions and are often described as anytime searches.

Anytime Repairing A* (ARA*; Likhachev et al., 2008, 2003) and Anytime Dynamic A*

(AD*; Likhachev et al., 2005, 2008) achieve anytime search by combining near-resolution-

optimal (Section 2.2.1) and incremental (Section 2.2.2) search techniques. They attempt to
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find an initial suboptimal solution quickly and then incrementally improve it while maintaining

bounds on its resolution suboptimality. They will eventually find the resolution-optimal

solution but can be stopped at any time to retrieve the current near-resolution-optimal

solution. AD* also handles dynamic graphs and has been extended with Anytime Truncated

D* (ATD*; Aine and Likhachev, 2016) to include the performance benefits of prematurely

stopping change propagation.

Finding an initial near-resolution-optimal solution allows these techniques to often find

solutions to planning problems with fewer vertex expansions than A*. With further compu-

tational effort, these solutions can be improved to the resolution optimum but doing so will

require more vertex expansions than A*.

2.2.4 The Limitations of A Priori Discretizations

Graph-based search performance ultimately depends on the accuracy with which the graph

approximates the underlying continuous problem and as a result there has been a significant

amount of research in robotics on different discretizations. Techniques include regular graphs

(Lozano-Pérez and Wesley, 1979), hierarchical, nonuniform, and mulitresolution graphs (e.g.,

SANDROS; Chen and Hwang, 1992), graphs with random perturbations (Sallaberger and

D’Eleuterio, 1995), implicit graphs (Bohlin, 2001), graphs with kinodynamic velocity and

acceleration constraints (Donald et al., 1993), and graphs of precomputed feasible motions

whose representation may be implicit (state lattices ; Pivtoraiko and Kelly, 2005; Pivtoraiko

et al., 2009; and manipulation lattice graphs ; Cohen et al., 2014a).

These discretizations all require selecting a priori resolutions. Low resolutions create

simple graphs that can be searched quickly but often result in low-quality continuous solutions

(if they contain one). High resolutions approximate the problem accurately and yield high-

quality continuous solutions (Bertsekas, 1975) but create complex graphs that are often

expensive to search. These effects are only exacerbated by the exponential growth of graph

size with state dimension, which Bellman (1954, 1957) refers to as the curse of dimensionality.

Selecting an appropriate resolution is a fundamental challenge of using a priori discretiza-

tions to represent continuous problems. In practice the ideal approximation of a problem will

be simple enough to search quickly and complex enough to contain a good solution. This

depends on the specific planning problem and is often expensive and time-consuming to find

since changing the resolution typically requires restarting the search. Practical systems often

use a conservatively complex a priori discretization to guarantee a solution exists and then

use advanced graph-search techniques to find a suboptimal solution quickly.

This thesis seeks methods that avoid these limitations by improving their approximation

continuously with computational time (i.e., they build an anytime representation of the

problem). Such searches often use sampling-based techniques (Section 2.3).
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2.3 Sampling-based Planners

Another way to simplify continuous planning problems is by randomly (Barraquand et al.,

1996) or deterministically (Branicky et al., 2001; Janson et al., 2015a) sampling the search

space (Fig. 2.2). This can allow algorithms to build and search representations that increase in

accuracy with additional computational time (i.e., anytime representations). These anytime

representations avoid dense a priori discretizations and can reduce the curse of dimensionality

and improve performance on systems with differential constraints (Hsu et al., 2002; LaValle

and Kuffner Jr., 2001).

Formal guarantees of these algorithms in relation to the original continuous feasible or

optimal planning problem are often probabilistic. If with an infinite number of samples

an algorithm has a unity probability of finding a solution, if one exists, it is described as

probabilistically complete (Definition 2.3). If with an infinite number of samples it has a unity

probability of converging asymptotically to the optimum, if one exists, it is described as

almost-surely asymptotically optimal (Definition 2.4). By definition, almost-sure asymptotic

optimality implies probabilistic completeness.

Definition 2.3 (Probabilistic completeness). A planner is said to be probabilistically com-

plete if with an infinite number of samples the probability of finding a feasible solution

(Definition 2.1), if one exists, is one,

lim inf
q→∞

P (σq ∈ Σ, σq (0) = xstart, σq (1) ∈ Xgoal) = 1,

where q is the number of samples, σq is the path found by the planner from those samples,

and Σ is the set of all feasible, collision-free paths.

Definition 2.4 (Almost-sure asymptotic optimality). A planner is said to be almost-surely

asymptotic optimal if with an infinite number of samples the probability of converging

asymptotically to the optimum (Definition 2.2), if one exists, is one,

P

(
lim sup
q→∞

c (σq) = c (σ∗)

)
= 1,

where q is the number of samples, σq is the path found by the planner from those samples, σ∗

is the optimal solution to the planning problem, and c (·) is the cost of a path.

Early sampling-based planners include Probabilistic Roadmaps (PRM; Kavraki et al.,

1996), Expansive Space Trees (EST; Hsu et al., 1997, 1999a) and Rapidly exploring Random

Trees (RRT; LaValle, 1998; LaValle and Kuffner Jr., 2001).

PRM uses a two-stage process to solve continuous planning problems. First, a learning

stage uses a local planner to connect samples into a roadmap (i.e., a graph) that approximates
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the collision-free space. A query stage attempts to solve the specific planning problem by

using the local planner to add the start and goal to the roadmap. A feasible solution to the

continuous planning problem can then be found by extracting a path through the roadmap

between the start and goal. PRM is probabilistically complete and with an appropriate

connection scheme (e.g., simplified PRM; Kavraki et al., 1998; or PRM*; Karaman and

Frazzoli, 2011) almost-surely asymptotically optimal (Karaman and Frazzoli, 2011).

Roadmaps can be reused indefinitely and are generally built to span the entire search

space. This makes PRM an efficient algorithm in multiquery planning scenarios but inefficient

for single-query scenarios as individual solutions rarely uses the entire roadmap. Techniques

exist to reduce the computational cost of the unused roadmap (e.g., Lazy PRM; Bohlin and

Kavraki, 2000; and Quasi-random Lazy PRM; Branicky et al., 2001) but in single-query

scenarios it is often more efficient to search incrementally until a solution is found.

EST solves continuous planning problems by incrementally growing trees from the start

and goal of a planning problem. The trees are grown by randomly selecting a vertex and

expanding it to nearby new samples. A feasible solution to the continuous planning problem

is found once the two trees are connected. This technique can be extended to handle

kinodynamic constraints by expanding vertices with a motion model and random control

inputs (Hsu et al., 2002). EST is probabilistically complete but no claims are made about its

asymptotically optimality.

The probability of both expanding a vertex and adding a new sample in EST is inversely

proportional to the number of nearby states. This avoids repeatedly searching the same

regions of the problem domain but requires calculating the number of states nearby to

each vertex in the tree at each iteration. This can be computationally expensive and other

single-query planning algorithms seek simpler methods to prioritize new expansion.

RRT solves continuous planning problems by incrementally growing a tree through

collision-free space (Fig. 2.6). Instead of calculating expansion probabilities for each vertex in

the tree, it draws a random sample from the problem domain and extends the tree towards it.

This guides the search to unexplored regions of the planning domain through a Voronoi bias

(see Voronoi tessellations; Dirichlet, 1850; Voronoi, 1908). A feasible solution to the continuous

planning problem is found once the goal is added to the tree. RRT is probabilistically complete

but not almost-surely asymptotically optimal (Karaman and Frazzoli, 2011).

Algorithmically, RRT draws a random sample from the search domain at each iteration.

This sample is used to extend the nearest vertex in the tree no more than a user-tuned

distance towards it to create a potential new state. This avoids solving two-point boundary-

value problems (two-point BVPs) between the vertex and the random sample which can be

expensive for systems with differential constraints. If the new state and connection are collision

free, they are added to the tree as a new vertex and edge. In practice the sampling distribution

often has a small likelihood of directly sampling the goal to bias the search towards a solution.
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(a) (b) (c)

(d) (e) (f)

xstart xgoal

xstart xgoal

η

Figure 2.6: An illustration of the RRT algorithm (LaValle, 1998; LaValle and Kuffner Jr., 2001).
The continuous problem, (a), is approximated with a sample-based tree rooted at the start. The
tree is grown towards samples, (b), in increments no larger than a user-selected distance, η. Adding
collision-free vertices and edges incrementally searches the collision-free space in an anytime fashion,
(c) and (d). The search is often guided towards a solution by including a low probability of directly
sampling the goal, (e). With an infinite number of samples RRT has a unity probability of finding a
solution, if one exists; however, it will not almost-surely converge to the optimum with additional
computational time, (f).

RRT-Connect (Kuffner Jr. and LaValle, 2000) is a bidirectional version of RRT that

expands trees from both the start and goal (Fig. 2.7). The trees are alternately grown

towards the newest state in the other tree and expanded into unexplored regions of the

problem domain through sampling. Using multiple trees to explore the state space from

different directions allows RRT-Connect to find solutions to many problems faster than

RRT, especially in the presence of directional features (e.g., ‘bug traps’). RRT-Connect is

also probabilistically complete and not almost-surely asymptotically optimal (Karaman and

Frazzoli, 2011).

RRT and RRT-Connect are designed to expand quickly into unexplored regions of the prob-

lem domain (i.e., they are space filling). They continue to expand with additional sampling but

their existing edges and the resulting costs-to-come of vertices are not changed. Vertices may be

optimally connected given the current tree (e.g., k-nearest RRT; Urmson and Simmons, 2003)

but they are almost-surely suboptimally connected with respect to the continuous planning
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(a) (b) (c)

(d) (e) (f)

xstart xgoal

xstart xgoal

η η

ηη

η

Figure 2.7: An illustration of the RRT-Connect algorithm (Kuffner Jr. and LaValle, 2000). The
continuous problem is approximated with two sample-based trees rooted at the start and goal. The
trees are alternately grown towards each other, (a) and (c), and expanded with the RRT search
behaviour, (b) and (d). This quickly navigates directional obstacles, such as ‘bug traps’, while
maintaining a search bias for a solution (e). With an infinite number of samples, RRT-Connect has
a unity probability of finding a solution, if one exists; however, it will not almost-surely converge to
the optimum with additional computational time, (f).

problem (Karaman and Frazzoli, 2011). RRT solution quality can be improved by modifying

existing connections during the search to improve the costs-to-come of vertices incrementally.

Solution quality can also be improved by postprocessing solutions. Techniques such as

path pruning or path shortcutting (Berchtold and Glavina, 1994; Geraerts and Overmars,

2007; Hauser and Ng-Thow-Hing, 2010; Hsu et al., 1999b; Sekhavat et al., 1998) simplify and

improve paths found by sampling-based planners. These are local techniques that provide no

global guarantees and can be applied to the output of any sampling-based planner and will

not be discussed further in this thesis.

Rapidly exploring Random Graph (RRG) and RRT* (Karaman and Frazzoli, 2010, 2011)

modify RRT to consider both the incoming and outgoing edges of new vertices in order to

improve the costs-to-come of existing vertices. RRG uses all these edges to build a graph

while RRT* finds those that locally minimize cost-to-come and maintains a tree (Fig. 2.8).

Both algorithms are probabilistically complete and almost-surely asymptotically optimal

(Karaman and Frazzoli, 2011).



Chapter 2. Background 22

(a) (b) (c)

(d) (e) (f)

xstart xgoal

r

Figure 2.8: An illustration of the RRT* algorithm (Karaman and Frazzoli, 2010, 2011). The
continuous problem is approximated with a sample-based tree rooted at the start as in RRT. States
are optimized over a local neighbour defined by RGG theory, (a). Each new state is both connected
to the local state that minimizes its cost-to-come, (b) and used to rewire existing local states, (c).
The resulting anytime search fills the space while almost-surely asymptotically converging towards
optimal paths, (d) and (e). With an infinite number of samples, RRT* has a unity probability of
both finding a solution and converging asymptotically to the optimum, if one exists, (f).

RRT* maintains a tree through local rewiring. Instead of connecting new vertices to

the nearest vertex in the tree, it connects them to the nearby vertex that minimizes their

cost-to-come. It then considers whether this new vertex can lower the costs-to-come of existing

vertices. Any nearby vertices that can be improved are rewired to be descendants of the

new vertex. This allows existing vertices to benefit from future samples and simultaneously

improves the tree while searching the problem domain.

RRT* performance depends on the size of the neighbourhood used for rewiring. It must

be small enough to be searched efficiently at each iteration but large enough to actually

improve the tree. Karaman and Frazzoli (2011) provide two separate definitions for this

rewiring neighbourhood, either as the k-nearest vertices or all the vertices within a distance,

r. They use RGG theory to provide theoretical lower bounds for these values such that the

resulting solution almost-surely converges asymptotically to the optimum. These bounds are

a function of the number of samples, the dimension of the state space, and its measure (e.g.,

volume).
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Incremental sampling-based planners build and search anytime approximations of contin-

uous planning problems and can be stopped once a suitable solution is found. This avoids

computational effort that is unnecessary to solve the given planning problem and has made

them popular choices in single-query planning scenarios. While algorithms such as EST,

RRT, and RRT* grow their approximations from the start and/or goal, they asymptotically

find paths to every state in the problem domain and their searches are generally agnostic

to the specific problem. This behaviour is inefficient in single-query scenarios and more

efficient algorithms can be designed by exploiting information about the specific planning

problem, as in graph-based searches. Common techniques include different sampling methods

(Section 2.3.1), ordered approximations (Section 2.3.2) and ordered searches (Section 2.3.3).

These approaches often improve performance but they do so without addressing all the

challenges of simultaneously approximating and searching a continuous planning problem

(Section 2.3.4).

The real-time performance of almost-surely asymptotically optimal algorithms can also

improved by relaxing the formal guarantee to asymptotic near optimality (Dobson and Bekris,

2014; Marble and Bekris, 2013, 2017; Salzman and Halperin, 2014; Wang et al., 2015). These

ideas are analogous to near-resolution-optimal graph-based search (Section 2.2.1) and will

not be discussed in detail in this thesis.

2.3.1 Sample Distributions

Sampling-based planners search continuous planning problems by building and connecting

sets of samples. Their performance in finite time depends on the number and distribution of

samples relative to the features of the planning problem. Uniform distributions are effective

on a wide range of problems and easy to analyze (e.g., Karaman and Frazzoli, 2011; Kavraki

et al., 1998) but agnostic to the search domain. One way to improve real-time performance

of sampling-based planners is to use nonuniform sample distributions that prioritize regions

of the problem domain believed to be useful in finding (high-quality) solutions.

Many different sample distributions have been used with PRM (Geraerts and Overmars,

2004), RRT, and RRT*. An incomplete list includes Gaussian distributions (Boor et al., 1999),

obstacle-based sampling (Amato and Wu, 1996; Sun et al., 2005; Yeh et al., 2012) including

near the medial axis of free space (Holleman and Kavraki, 2000; Wilmarth et al., 1999; Yang

and Brock, 2004), visibility (Nissoux et al., 1999; Siméon et al., 2000), manipulability (Leven

and Hutchinson, 2003), and many other techniques to prioritize areas of predicted high utility

(Akgun and Stilman, 2011; Baldwin and Newman, 2010; Burns and Brock, 2005a,b; Jaillet

et al., 2008, 2010; Kiesel et al., 2012; Kim et al., 2014; Nasir et al., 2013; Rickert et al., 2008;

Thomas et al., 2007; van den Berg and Overmars, 2004; Yershova et al., 2005; Zucker et al.,

2008).
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These nonuniform distributions increase the probability of sampling the regions believed to

be of high utility by decreasing the probability of sampling other regions. These undersampled

regions are expected to be less useful but they may still contain solutions to planning problems.

If these are the only solutions to a given problem then their reduced sampling probability

can decrease performance or even preclude finding a solution.

A nonzero sampling probability can be maintained over all possible solutions by combining

nonuniform and uniform sample distributions. This guarantees probabilistic completeness but

reduces nonuniformity by increasing the sampling of otherwise low-probability regions. The

relative ratio of these distributions is often an extra user-specified parameter whose optimal

value can vary widely between different problems.

Nonuniform sample distributions also affect the almost-sure asymptotically optimality of

planners such as RRT*. These algorithms assume uniformly distributed samples to calculate

their rewiring neighbourhoods and violating this assumption invalidates their associated

proofs of asymptotic performance. Almost-sure asymptotic optimality can be maintained by

defining these neighbourhoods in terms of the subset of uniformly distributed samples (Janson

et al., 2015b); however, this results in larger neighbourhoods that rewire more vertices and

increases computational cost.

2.3.2 Heuristically Ordered Approximations

Sampling-based planners are often used to approximate and search continuous planning

problems incrementally. Being able to stop these anytime algorithms once a suitable solution

is found avoids unnecessary computational cost, especially in single-query scenarios, but often

results in searches that are ordered by the sequence of approximating samples (e.g., RRT*).

This is inefficient and more effective algorithms can be created by using heuristic concepts

(e.g., A*) to order the approximation and the resulting search.

Heuristically Guided RRT (hRRT; Urmson and Simmons, 2003) uses rejection sampling

to create a “probabilistic implementation of heuristic search concepts.” At each iteration a

uniformly distributed sample is probabilistically kept or rejected as a function of its heuristic

value relative to the existing tree. This iteratively biases RRT expansion towards regions of

the problem domain believed to contain high-quality solutions and often finds better solutions

than RRT, especially on problems with continuous cost functions (e.g., path length; Urmson

and Simmons, 2003).

Randomized A* (RA*; Diankov and Kuffner Jr., 2007), Hybrid Randomized A* (HRA*;

Teniente and Andrade-Cetto, 2013), and Sampling-based A* (SBA*; Persson and Sharf, 2014)

independently develop A*-based methods to order the sampling-based approximation. Each

algorithm is unique but they all incrementally build trees by heuristically selecting vertices to

expand with local sampling. This prioritizes sampling regions of the problem domain believed

to contain high-quality solutions and can result in better performance than RRT/RRT*.
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Heuristics predict an infinite number of potential high-quality solutions in continuous plan-

ning problems. To solve these problems quickly while maintaining probabilistic completeness,

algorithms with ordered approximations must balance exploiting heuristic information with

exploring the entire problem domain. This can be accomplished in a variety of ways including

a minimum sampling probability for each region (e.g., hRRT), a maximum local sample

density (e.g., RA* and HRA*), and an inverse correlation between local sample density

and expansion priority (e.g., HRA* and SBA*). All these techniques affect the algorithm

performance and require additional user-specified parameters.

Using a minimum sampling probability or including local density in sample ordering allows

exploratory states to be sampled at any iteration and results in a search that simultaneously

expands multiple independent paths regardless of their relative cost. This is inefficient

compared to informed graph-based searches, such as A*, which completely consider each

potential solution and immediately extend paths to the goal whenever possible. Comparatively,

algorithms such hRRT, HRA*, and SBA* may continue to search other regions of the problem

domain even when a state can be immediately connected to the goal.

Using a maximum local sample density limits the number of possible descendants for

each vertex. This reduces anytime performance compared to algorithms such as RRT, which

consider samples indefinitely until a suitable solution is found. Comparatively, algorithms

such as RA* sample regions of the problem domain in order of potential solution quality

until the a priori maximum resolution has been reached. If this resolution is insufficient to

find a (suitable) solution, then the search must be restarted.

2.3.3 Heuristically Ordered Search

Heuristics can also be used to order the search of sampling-based planners without modifying

their representation of the underlying continuous problem. This separation between the

approximation of a problem and the search of a representation is common in multiquery

planners (e.g., the independent learning and query stages of PRM) but can also be used in

single-query scenarios.

RRT# (Arslan and Tsiotras, 2013, 2015) uses LPA* to update an RRG search. This

allows it to incorporate new samples efficiently, propagate the required changes through the

entire graph, and avoid computations that cannot improve a solution once one is found. This

results in better solutions faster than RRT* but still searches for an initial solution in the

random order given by the sequence of samples.

Fast Marching Tree (FMT*; Janson and Pavone, 2013; Janson et al., 2015b) uses RGG

theory to approximate the continuous planning problem with a batch of samples (Fig. 2.9).

It searches this representation with a fast-marching method (Sethian, 1996) that expands

outward from the start in order of increasing cost-to-come, as in Dijkstra’s algorithm (see
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(a) (b) (c)

(d) (e) (f)

xstart xgoal

xstart xgoalr

Figure 2.9: An illustration of the FMT* algorithm (Janson and Pavone, 2013; Janson et al., 2015b).
The continuous planning problem is searched with a sample-based tree rooted at the start. The tree
is grown outwards from the start using a marching method and a radius of connection defined by
RGG theory, (a). In a process reminiscent of Dijkstra’s algorithm (see Fig. 2.3), the search proceeds
in order of increasing cost-to-come, (b)–(d), and terminates when no unexpanded samples have
a cost-to-come less than the goal, (e). With an infinite number of samples, FMT* converges in
probability to asymptotic optimality, (f).

Fig. 2.3). This separates the approximation of a planning problem from its search and

converges in probability to asymptotic optimality (Janson et al., 2015b) but does so in a

manner that is not anytime. The search does not return a solution until it is finished and

must be restarted with more samples if a (suitable) solution is not found. A quasi-anytime

version that does so with heuristics (Salzman and Halperin, 2015) and a bidirectional version

(Starek et al., 2015) have recently been presented.

These two algorithms illustrate the challenges of heuristically ordering the search of a

sampling-based approximation independent of its construction. Searching the representation

after every change, as in RRT#, maintains good anytime performance but searches in the

order given by the sequence of samples and limits the ability for heuristics to improve efficiency.

Searching the representation infrequently/once, as in FMT*, allows for an efficient ordered

search but reduces the number of intermediate solutions and decreases anytime performance.

This again illustrates the need to balance exploiting problem information to perform an

efficient search and exploring the entire problem domain quickly.
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2.3.4 The Challenges of Simultaneous Approximation and Search

Anytime sampling-based planners simultaneously approximate and search a continuous

planning problem. This allows them to continue indefinitely until a (suitable) solution is

found and avoid the challenges of selecting a priori approximations (Section 2.2.4). To do so

effectively, they must balance the accuracy of the approximation with the computational cost

required to search it. This challenge is only amplified by the incremental nature of anytime

sampling-based planners which must regularly consider new samples.

Repeatedly updating the search of a dense representation is prohibitively expensive in

most real-world situations. Anytime sampling-based planners often avoid this cost by building

approximations that do not require an updated search (e.g., RRT only includes one incoming

edge to each vertex) or not updating the entire search (e.g., RRT* only considers connections

to/from the new vertex). These approaches reduce the quality of solutions found from a

given set of samples and increase the real-time rate at which new samples can be added.

This allows algorithms to achieve high sample densities and find (suitable) solutions to many

planning problems in finite computational time.

Requiring high sample density to offset a representation with few connections or an

incomplete search is not scalable. Exponentially more samples will be required to achieve

equivalent sample densities as state dimension increases (i.e., the curse of dimensionality).

Other anytime sampling-based planners avoid this limitation by increasing the accuracy of

the representation given by a set of samples or improving the search. These approaches

require more computational effort (e.g., RRT# updates the search after each iteration) or

decrease anytime performance (e.g., FMT* searches an a priori set of samples) but they do

so efficiently with heuristics and often find better solutions.

Other anytime sampling-based planners attempt to improve performance by ordering

the approximation of the problem domain by potential solution quality. These approaches

may unnecessarily consider low-quality solutions (e.g., hRRT uses a probabilistic ordering) or

decrease anytime performance (e.g., RA* searches a priori resolution) but can also improve

performance.

This thesis seeks effective ways to balance the approximation and search of a continuous

planning problem while maintaining the benefits of both informed graph-based search and

anytime sampling-based planning. It does so by unifying these two approaches and performing

an informed search on incrementally built sampling-based approximations (Section 2.4).

2.4 Discussion

Path planning is a fundamental task for robotic systems operating autonomously in dynamic

and uncontrolled environments. Successful algorithms must be able to find high-quality
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solutions in a reasonable amount of time to problems that are often continuous valued, high

dimensional, and/or poorly bounded. Most algorithms achieve this by approximating the

continuous search domain with either an a priori graph-based or an anytime sampling-based

discretization. There are advantages and disadvantages to both of these approaches.

Using an a priori discretization requires defining the approximation before performing

the search. If the chosen resolution is too low then any solutions that exist in the resulting

representation will be of insufficient quality. If the chosen resolution is too high then the

resulting representation will be prohibitively expensive to search.

Graph-based techniques are effective despite these limitations because of the efficiency

of their search. Informed graph-search techniques, such as A*, search in order of potential

solution quality and are optimally efficient in the number of vertices expanded (Hart et al.,

1968). This makes them popular choices in situations where an appropriate representation

can be chosen a priori.

Using sampling-based techniques requires approximating the planning problem with sets

of samples. These approximations are more accurate and contain better solutions when they

consist of many different connections; however, this makes them computationally expensive

to search. RGG theory can be used to define sparse approximations that are less expensive

to search and have probabilistic asymptotic guarantees (Penrose, 2003).

Building these representations incrementally (i.e., building anytime representations) avoids

the need to define approximations a priori but often requires incremental search. Completely

searching the entire representation after each new vertex always finds the best solution

in the current approximation but can be prohibitively expensive. Only searching parts of

the representation reduces the computational cost of new vertices but makes the planner

performance dependent on sampling order and often results in unordered searches.

Sampling-based techniques are effective despite these limitations because of the efficiency

of their anytime representations. Incremental sampling-based planners, such as RRT*, almost-

surely converge asymptotically to the optimal solution of a problem in an anytime manner

(Karaman and Frazzoli, 2011). This makes them popular choices for situations where an

unknown amount of computational time is available to find a solution and/or an appropriate

representation cannot be chosen a priori.

Unordered sampling-based planners simultaneously search towards every state in the

problem domain. This becomes prohibitively expensive as state dimension increases and

eventually outweighs the advantages of anytime representations in incremental sampling-

based planners. Previous work has used heuristics to improve the performance of anytime

sampling-based planning but has failed to fully realize the benefits of graph-based search.

Existing techniques apply heuristics to only some aspects of the search (e.g., RRT#), sacrifice

anytime performance (e.g., RA*, FMT*), or sacrifice efficiency by including other metrics in

the ordering (e.g., hRRT, HRA*, SBA*).
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This thesis focuses on using heuristics to improve sampling-based planners without

sacrificing the benefits of either informed search or anytime approximation. It does so by

carefully applying techniques from graph-based search to sampling-based planners and in the

process shows how the two approaches can be unified (Fig. 2.2). It makes use of a variety of

techniques from both fields, including efficient informed search (e.g., A*; Hart et al., 1968; Lazy

Weighted A*; Cohen et al., 2014b; and LPA*; Koenig et al., 2004), efficient representations

(e.g., Anytime RRTs; Ferguson and Stentz, 2006; and Quasi-random Lazy PRM; Branicky

et al., 2001), almost-surely asymptotically optimal approximations (e.g., RRT*; Karaman

and Frazzoli, 2011), and batched processing (e.g., FMT*; Janson et al., 2015b).

This work culminates in the development of informed anytime sampling-based planners

that outperform existing techniques, especially in high state dimensions. Informed RRT*

uses heuristics to focus RRT* after an initial solution is found. This allows for an algorithm

that shrinks the search domain to only the set of states that could possible belong to a better

solution. BIT* separates the approximation of the planning problem from its search and

directly applies incremental graph-based searches (e.g., LPA*) on an anytime approximation

built through sampling (e.g., RRT*). This allows for the search to proceed in order of potential

solution quality and reduces the amount of search effort spent considering unnecessarily poor

solutions. These concepts are also extended with SORRT* to the algorithmic simplicity of

Informed RRT*.
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Informed Sampling

or: The counterintuitive nature of high-dimensional shapes

This chapter investigates ways to improve the rate at which anytime almost-surely asymp-

totically optimal planners improve solutions. It shows that one reason RRT* almost-surely

converges slowly to the optimal solution, especially in high state dimensions, is because it

asymptotically finds optimal paths to every state in the problem domain. This behaviour is

inconsistent with single-query planning and can be improved by modifying the search domain.

Search domains are the set of states that could belong to a solution to a planning problem.

Searching the problem domain is logical when seeking an initial solution (e.g., RRT) but not

necessarily when seeking to improve an existing solution (e.g., RRT*). In these situations,

algorithms only need to consider states that could belong to a better solution, an omniscient

set that decreases in size as the solution improves (Ferguson and Stentz, 2006).

Section 3.2 shows that the sampling rate of the omniscient set is an upper bound on the

probability of RRT* improving a solution. Exact knowledge of the omniscient set requires

solving the planning problem but it can be estimated with informed sets. The performance of

these informed sets will depend on their definition and can be described in terms of precision

and recall (Definitions 3.3 and 3.4). Precision is the percentage of states in the informed set

that can improve the solution (i.e., how much of the informed set is in the omniscient set)

and recall is the percentage of states that could improve the solution that are in the informed

set (i.e., how much of the omniscient set is in the informed set). An informed set defined by

an admissible heuristic will be a superset of the omniscient set (i.e., 100% recall) and may be

referred to as an admissible informed set.

A common admissible heuristic for problems seeking to minimize path length is the L2

norm (i.e., Euclidean distance) between a state and the start and goal. The resulting informed

set is a symmetric multidimensional hyperellipsoid (i.e., a prolate hyperspheroid) whose

transverse axis is equal to the length of the current solution (Ferguson and Stentz, 2006;

Otte and Correll, 2013). This heuristic is universally admissible and exactly describes the

30



Chapter 3. Informed Sampling 31

omniscient set in the absence of obstacles (i.e., it is sharp1). This heuristic is well known but

its insights on the minimum-path-length problem are poorly understood.

Section 3.3 shows that common versions of the minimum-path-length problem suffer

from a curse of dimensionality. The difficulty of sampling the omniscient set makes the

probability of improving a solution go to zero factorially (i.e., faster than exponentially)

as state dimension increases. A method to improve this performance by directly sampling

prolate hyperspheroids is presented. This efficiently generates uniform samples in the L2

informed set regardless of its size or the state dimension and outperforms rejection sampling

techniques by orders of magnitude as state dimension increases. Section 3.4 discusses how

these results can be used to improve almost-surely asymptotically optimal planners.

In summary, this chapter makes the following novel contributions:

• Formally defines omniscient and informed sets (Definitions 3.1 and 3.2).

• Defines precision and recall as methods to quantify different informed sets (Definitions 3.3

and 3.4).

• Provides upper bounds on the probability of anytime sampling-based planners, such as

RRT*, improving a solution at any iteration (Theorems 3.3 and 3.6).

• Shows that common formulations of the minimum-path-length problem have a probabil-

ity of improving solutions that decreases factorially with state dimension (Theorem 3.7).

• Develops a method to avoid this curse of dimensionality for problems seeking to minimize

path length to a goal or a countable set of goals by directly sampling the L2 informed

set (Algs. 3.2–3.6).

3.1 RRT*

A version of RRT* as it appeared in Karaman and Frazzoli (2010, 2011) is presented in Alg. 3.1

to motivate the remaining discussion. Necessary notation and subfunctions are detailed in

Sections 3.1.1 and 3.1.2, the requirements for almost-sure asymptotic optimality are presented

in Section 3.1.3, and its performance as a single-query planner is discussed in Section 3.1.4.

RRT* searches for the optimal path to a planning problem by building a tree through

collision-free space (Fig. 2.8). The tree is constructed incrementally from the start state

(Alg. 3.1, Line 1) by drawing samples randomly from the problem domain (Alg. 3.1, Line 3).

These random samples are converted into potential new vertices with a Steer function

that enforces expansion limits and any differential constraints (Alg. 3.1, Lines 4–5). If the

connection from the nearest vertex to the potential new vertex passes solely through free

space then the potential vertex is added to the graph (Alg. 3.1, Lines 6–7). This is the same

incremental search as performed by RRT.

1A bound or estimate is said to be sharp if it is exactly equal to the true value for at least one element of
the domain.
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Algorithm 3.1: RRT*(xstart ∈ Xfree, Xgoal ⊂ X)

1 V ← {xstart} ; E ← ∅; T = (V,E);
2 for i = 1 . . . q do
3 xrand ← Sample;
4 vnearest ← Nearest (V,xrand);
5 xnew ← Steer (vnearest,xrand);
6 if CollisionFree (vnearest,xnew) then

7 V
+←− {xnew};

8 Vnear ← Near (V,xnew, rrewire);
9 vmin ← vnearest;

10 forall vnear ∈ Vnear do
11 cnew ← gT (vnear) + c (vnear,xnew);
12 if cnew < gT (vmin) + c (vmin,xnew) then
13 if CollisionFree (vnear,xnew) then
14 vmin ← vnear;

15 E
+←− {(vmin,xnew)};

16 forall vnear ∈ Vnear do
17 cnear ← gT (xnew) + c (xnew,vnear);
18 if cnear < gT (vnear) then
19 if CollisionFree (xnew,vnear) then
20 vparent ← Parent (vnear);

21 E
−←− {(vparent,vnear)};

22 E
+←− {(xnew,vnear)};

23 return T ;

RRT* achieves almost-sure asymptotic optimality by incrementally rewiring the tree in

the local neighbourhood around each new vertex (Alg. 3.1, Line 8). It finds the best parent

for the vertex (Alg. 3.1, Lines 9–15) and then checks if the vertex can improve any of its

neighbours (Alg. 3.1, Lines 16–22).

RRT* finds the best parent for the newly added vertex by incrementally considering the

cost to come to local vertices and the edge cost to the new state (Alg. 3.1, Line 11). The

vertex that minimizes this sum becomes the parent of the newly added vertex (Alg. 3.1,

Lines 14–15). A similar search is performed to improve the cost-to-come of existing vertices

by incrementally considering the cost to come to the newly added vertex plus the edge cost

to each existing local vertex (Alg. 3.1, Line 17). If this path improves the cost-to-come of

a vertex and the new edge is collision free then the tree is rewired to use the newly added

vertex (Alg. 3.1, Lines 20–22). This entire search procedure continues for a user-defined

number of samples, q (Alg. 3.1, Line 2).
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3.1.1 Notation

RRT*’s tree, T := (V,E), is defined by a set of vertices, V ⊂ Xfree, and edges, E = {(v,w)},
for some v, w ∈ V . The function gT (v) represents the cost to reach a vertex, v ∈ V , from

the start given the current tree, T (the cost-to-come). The function c (v,w) represents the

cost of a path connecting the states v,w ∈ Xfree, and corresponds to the edge cost between

those two states if they are connected as vertices in the tree. The notation X
+←− {x} and

X
−←− {x} is used to compactly represent the compounding set operations X ← X ∪ {x} and

X ← X \ {x}, respectively.

3.1.2 Subfunctions

CollisionFree Given two states, x,y ∈ X, the function CollisionFree (x,y) returns

True if and only if the path from x to y, σ, lies solely in free space, otherwise it returns

False, i.e.,

CollisionFree (x,y) :=




True if ∀t ∈ [0, 1] , σ (t) ∈ Xfree

False otherwise

Near Given a set of states, Y ⊂ X, a state, x ∈ X, and a distance, r ∈ R≥0, the function

Near (Y,x, r) returns the set of states, Xnear, that are within a radius r of the state,

Xnear := {y ∈ Y | ‖x− y‖2 ≤ r} ,

where ‖·‖2 is the L2 norm (i.e., Euclidean distance).

Nearest Given a set of states, Y ⊆ X, and a state, x ∈ X, the function Nearest (Y,x)

returns the state, vnearest, that is the nearest neighbour to the state, e.g., for geometric

planning,

vnearest := arg min
y∈Y

{‖x− y‖2} . (3.1)

Parent Given a tree, T = (V,E), and a vertex, v ∈ V , the function Parent (T ,v) returns

the one and only direct ancestor of v in the tree,

vparent := u s.t. (u,v) ∈ E.

Sample The function Sample returns independent and identically distributed (i.i.d.) samples

from free space, e.g., xrand ∼ U (Xfree).



Chapter 3. Informed Sampling 34

Steer Given two states, x, z ∈ X, the function Steer (x, z) returns a new state, xnew ∈ X,

that is towards z from x and satisfies the expansion and any differential constraints. The

expansion constraint takes the form of a user-selected maximum edge length between states,

η, in geometric planning,

xnew := arg min
y∈X

{‖z− y‖2 | ‖y − x‖2 ≤ η} . (3.2)

3.1.3 Almost-sure Asymptotic Optimality

RRT* must use sufficiently large rewiring neighbourhoods to almost-surely converge asymp-

totically to the optimum. Karaman and Frazzoli (2011) present two definitions of the neigh-

bourhood for uniform sample distributions corresponding to r-disc and k-nearest variants of

RRT*. They show that the r-disc variant of RRT* almost-surely converges asymptotically

to the optimum when the local neighbourhood is the set of states within a radius, rrewire, of

the new state,

rrewire := min {η, rRRT∗} , (3.3)

where η is the maximum allowable edge length of the tree (see Steer in Section 3.1.2) and

rRRT∗ is a function of the problem measure and the number of vertices in the tree. Specifically,

rRRT∗ > r∗RRT∗ ,

r∗RRT∗ :=

(
2

(
1 +

1

n

)(
λ (X)

ζn

)(
log (|V |)
|V |

)) 1
n

, (3.4)

where λ (·) is the Lebesgue measure of a set (e.g., the volume), ζn is the Lebesgue measure of

an n-dimensional unit ball, and |·| is the cardinality of a set.

They show that the k-nearest variant of RRT* almost-surely converges asymptotically to

the optimum when the local neighbourhood is the kRRT∗-nearest states, where

kRRT∗ > k∗RRT∗ ,

k∗RRT∗ := e

(
1 +

1

n

)
log (|V |) . (3.5)

3.1.4 Single-query Performance

RRT* incrementally builds a tree out from the start through the free space of a problem

domain. This allows it to search the entire domain for a solution (i.e., it is space filling);

however, outside of a small sampling bias it leaves the search independent of the goal.

This results in a search that almost-surely converges asymptotically to the optimum by
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(a) (b) (c)

Figure 3.1: An example of RRT* asymptotically finding the optimal path to every state in the
problem domain. RRT* approximates and searches planning problems through incremental sampling.
New samples are added to a tree rooted at the start to both expand its search and improve existing
connections. This process continues indefinitely and almost-surely converges asymptotically to the
optimal solution by asymptotically improving every path in the tree, (a)–(c). This is inefficient in
single-query planning scenarios.

asymptotically finding the optimal paths to every state in the problem domain (Fig. 3.1).

This is inefficient in single-query planning scenarios and can be improved by exploiting the

start and goal states to focus the search.

Problem domains are the set of states that could provide a solution to a given problem.

It is not necessary to search this entire set once a solution is found as only states that

could belong to a better solution need to be considered. This is exploited by Anytime RRTs

(Ferguson and Stentz, 2006) to improve the quality of solutions found by RRT. A series

of shrinking problem domains defined by the previous solution are searched independently

in an attempt to find increasingly better solutions in an anytime fashion. These results

are not asymptotically optimal but similar techniques can be adapted for almost-surely

asymptotically optimal planners, such as RRT*, by formally defining the required search

domains (Section 3.2).

3.2 Omniscient and Informed Sets

RRT* only needs to search the set of states that could belong to a better solution once

a solution is found. This set is a function of the current solution cost and the optimal

cost-to-come and cost-to-go of every state in the problem domain (Definition 3.1).

Definition 3.1 (Omniscient set). Let g (x) be the cost of the optimal path from the start to

a state, x ∈ X, the optimal cost-to-come,

g (x) := min
σ∈Σ
{c (σ) | σ(0) = xstart, σ(1) = x} ,
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and h (x) be the cost of the optimal path from x to the goal region, the optimal cost-to-go,

h (x) := min
σ∈Σ
{c (σ) | σ(0) = x, σ(1) ∈ Xgoal} .

The cost of the optimal path from xstart to Xgoal constrained to pass through x is then given

by f (x) := g (x) + h (x). This defines the subset of states that can belong to a solution better

than the current solution, ci, as

Xf := {x ∈ Xfree | f (x) < ci} . (3.6)

Exact knowledge of Xf requires solving the entire planning problem so it will be referred to as

the omniscient set.

RRT* incrementally builds and improves a tree by adding states from the problem domain.

A necessary condition for this process to improve a solution at any iteration is to add a state

to the tree from the omniscient set (Lemma 3.1).

Lemma 3.1 (The necessity of adding states in the omniscient set). Adding a state from the om-

niscient set, xnew ∈ Xf , is a necessary condition for RRT* to improve the current solution, ci,

ci+1 < ci =⇒ xnew ∈ Xf .

This condition is not sufficient to improve the solution as the ability of states in Xf to

provide better solutions at any iteration depends on the optimality of the tree.

Proof. The proof of Lemma 3.1 is presented in Appendix A.1.

RRT* generates potential new states by applying expansion and differential constraints

between the randomly generated samples and existing states in the tree (see Steer in

Section 3.1.2). The number of states in the tree increases as RRT* expands through the

planning domain and after an initial κ iterations the entire problem will be no more than η

away from the tree. This removes the expansion constraint and makes sampling the omniscient

set a necessary condition to improving the solution (Lemma 3.2).

Lemma 3.2 (The necessity of sampling states in the omniscient set). Sampling the omniscient

set, xrand ∈ Xf , is a necessary condition for RRT* to improve the current solution, ci, after

an initial κ iterations,

∀i ≥ κ, ci+1 < ci =⇒ xrand ∈ Xf ,

for any sample distribution that maintains a nonzero probability over the entire omniscient set.

Proof. The proof of Lemma 3.2 is presented in Appendix A.2.
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This need to sample the omniscient set to improve a solution provides an upper limit on

the probability of RRT* improving a solution at any iteration (Theorem 3.3).

Theorem 3.3 (An upper bound on the probability of improving a solution given knowledge of

the omniscient set). The probability that an iteration of RRT* improves the current solution,

ci, is bounded by the probability of sampling the omniscient set, Xf ,

∀i ≥ κ, P (ci+1 < ci) ≤ P (xrand ∈ Xf ) ,

for any iteration, i, after a sufficient state density is achieved in the initial κ iterations.

Proof. Proof of Theorem 3.3 follows directly from Lemma 3.2. Sampling a state in Xf is a

necessary condition to improve the solution after κ iterations; therefore, the probability of sam-

pling such a state provides an upper bound on the probability of improving the solution.

Knowledge of an omniscient set requires solving the planning problem and these results

can be extended to estimates of the omniscient set. These estimates are often defined in

terms of solution cost heuristics (Definition 3.2).

Definition 3.2 (Informed set). Let f̂ (x) represent a heuristic estimate of the solution cost

constrained to go through a state, x ∈ X, then a heuristic estimate of the omniscient set can

be defined as

Xf̂
:=
{

x ∈ X
∣∣∣ f̂ (x) < ci

}
.

Such a set will be referred to as an informed set.

There are an infinite number of potential informed sets for every planning problem and

choosing the ‘best’ set requires methods to quantify their performance. Estimates of a set are

evaluated in binary classification in terms of their precision and recall (Fig. 3.2). Analogue

terms can be defined in sampling-based planning to quantify the ability of informed sets to

estimate the omniscient set (Definitions 3.3 and 3.4).

Definition 3.3 (Precision for informed sampling techniques). The precision of an informed

sampling technique is the probability that random samples from the informed set could also be

drawn from the omniscient set (e.g., the percentage of states drawn from the informed set,

Xf̂ , that belong to the omniscient set, Xf). For uniform sampling of an informed set, this is

a ratio of measures,

Precision
(
Xf̂

)
:=

λ
(
Xf̂ ∩Xf

)

λ
(
Xf̂

) .

Any subset of the omniscient set with nonzero sampling probability will have 100% precision.
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Xf Xf̂

Precision
(
Xf̂

)
:=

λ(Xf̂
∩Xf)

λ(Xf̂)
≡ +

Recall
(
Xf̂

)
:=

λ(Xf̂
∩Xf)

λ(Xf )
≡ +

Figure 3.2: An illustration of the precision and recall of a rectangular informed estimate, X
f̂
, of an

oblong omniscient set, Xf . The informed set is rendered in grey with shades depending on whether
it correctly (light grey) or incorrectly (dark grey) estimates the omniscient set. The sections of
the omniscient set that are not estimated by the informed set are shown in white. Precision is
the likelihood of correctly sampling the omniscient set by sampling the informed set. Recall is
the coverage of the omniscient set by the informed set. These terms are both ratios of Lebesgue
measures for uniform distributions.

Definition 3.4 (Recall for informed sampling techniques). The recall of an informed sampling

technique is the probability that random states drawn from the omniscient set could also be

sampled from the informed set (e.g., the percentage of states that belong to the omniscient set,

Xf , with a nonzero probability of being sampled from the informed set, Xf̂). For uniform

sampling of an informed set, this is a ratio of measures,

Recall
(
Xf̂

)
:=

λ
(
Xf̂ ∩Xf

)

λ (Xf )
.

Any superset of the omniscient set with nonzero sampling probability will have 100% recall.

Sampling informed sets with high precision can rapidly improve solutions but may prevent

finding the optimal solution if the set has less than 100% recall (e.g., sampling near an existing

solution). Alternatively, sampling informed sets with 100% recall maintains almost-sure

asymptotic convergence to the optimum but may not improve convergence if the set has low

precision it (e.g., sampling the entire problem domain). Almost-surely asymptotically optimal

sampling-based planners can therefore be improved by finding high-precision informed sets

with 100% recall (Definition 3.5).

Definition 3.5 (Admissible informed set). A heuristic is said to be admissible if it never

overestimates the true value of the function,

∀x ∈ X, f̂ (x) ≤ f (x) .

Any informed set defined by such an admissible heuristic will contain all possibly better
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solutions and have 100% recall, i.e.,

Xf̂ ⊇ Xf .

This set will be referred to as an admissible estimate of the omniscient set, or an admissible

informed set. If the heuristic is an admissible estimate of the cost function for all possible

problems then the set will be referred to as a universally admissible informed set.

These definitions of informed sets, precision, and recall allow Lemmas 3.1 and 3.2 and

Theorem 3.3 to be extended to any admissible estimate of the omniscient set (Lemmas 3.4 and

3.5 and Theorem 3.6). These bound the probability of improving a solution at any iteration

by the probability of sampling an admissible informed set. The tightness of this bound will

depend on the precision of the chosen estimate and motivates the need to define high-precision

universally admissible informed sets for common planning problems (Section 3.3).

Lemma 3.4 (The necessity of adding states in an admissible informed set). Adding a state

from an admissible informed set, xnew ∈ Xf̂ ⊇ Xf , is a necessary condition for RRT* to

improve the current solution, ci,

ci+1 < ci =⇒ xnew ∈ Xf̂ ⊇ Xf .

Proof. Proof of Lemma 3.4 follows directly from Lemma 3.1 given that Xf̂ ⊇ Xf .

Lemma 3.5 (The necessity of sampling states in an admissible informed set). Sampling an

admissible informed set, xrand ∈ Xf̂ ⊇ Xf , is a necessary condition for RRT* to improve the

current solution, ci, after an initial κ iterations,

∀i ≥ κ, ci+1 < ci =⇒ xrand ∈ Xf̂ ⊇ Xf ,

for any sample distribution that maintains a nonzero probability over the entire informed set.

Proof. Proof of Lemma 3.5 follows directly from Lemma 3.2 given that Xf̂ ⊇ Xf .

Theorem 3.6 (An upper bound on the probability of improving a solution given knowledge

of an admissible informed set). The probability that an iteration of RRT* improves the current

solution, ci, is bounded by the probability of sampling an admissible informed set, Xf̂ ⊇ Xf ,

∀i ≥ κ, P (ci+1 < ci) ≤ P (xrand ∈ Xf ) ≤ P
(
xrand ∈ Xf̂

)
,

for any iteration, i, after an initial κ iterations.

Proof. Proof of Theorem 3.6 follows directly from Theorem 3.3 given that Xf̂ ⊇ Xf .



Chapter 3. Informed Sampling 40

3.3 The L2 Informed Set

A universally admissible heuristic is well defined for problems seeking to minimize path length

in Rn to a single goal (Ferguson and Stentz, 2006; Otte and Correll, 2013). The cost of a

solution constrained to pass through any state is bounded from below by the L2 norm (i.e.,

Euclidean distance) between the state, x ∈ X, and the start, xstart, and goal, xgoal,

f̂ (x) = ĝ (x) + ĥ (x)

= ‖x− xstart‖2 + ‖xgoal − x‖2 . (3.7)

The set of states that could provide a better solution than the current solution cost, ci, is

then the L2 informed set,

Xf̂ =
{
x ∈ Xfree

∣∣ ‖x− xstart‖2 + ‖xgoal − x‖2 < ci
}
.

This informed set is a universally admissible estimate of the omniscient set and is exact in

the absence of obstacles (i.e., it is sharp over all minimum-path-length problems). The size

of this informed set will decrease as solutions improve.

The L2 informed set is the intersection of the free space, Xfree, and a n-dimensional

hyperellipsoid symmetric about its transverse axis (i.e., a prolate hyperspheroid),

Xf̂ = Xfree ∩XPHS,

where

XPHS :=
{
x ∈ Rn

∣∣ ‖x− xstart‖2 + ‖xgoal − x‖2 < ci
}
.

The prolate hyperspheroid has focal points at xstart and xgoal, a transverse diameter of ci,

and conjugate diameters of
√
c2
i − c2

min, where

cmin := ‖xgoal − xstart‖2 ,

is the theoretical minimum cost (Fig. 3.3). The measure of the informed set is

λ
(
Xf̂

)
≤ λ (XPHS) =

ci (c
2
i − c2

min)
n−1
2 ζn

2n
, (3.8)

where ζn is the Lebesgue measure of an n-dimensional unit ball,

ζn :=
π

n
2

Γ
(
n
2

+ 1
) ,

and Γ (·) is the gamma function, an extension of factorials to real numbers (Euler, 1738).
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xstart xgoal

ci

√
c2i − c2min cmin

Figure 3.3: The L2 informed set, X
f̂
, for a problem seeking to minimize path length in R2 is an

ellipse with the initial state, xstart, and the goal state, xgoal as focal points. The shape of the ellipse
depends on both the initial and goal states, the theoretical minimum cost between the two, cmin,
and the cost of the best solution found to date, ci. The eccentricity of the ellipse is given by cmin/ci.

The probability of uniformly sampling this informed set by sampling any superset (e.g., a

bounding box), Xsampling ⊇ Xf̂ , can be written as a ratio of measures,

P
(
xrand ∈ Xf̂

∣∣∣ xrand ∼ U (Xsampling)
)
≤ λ (XPHS)

λ (Xsampling)
=

π
n
2 ci (c

2
i − c2

min)
n−1
2

2nΓ
(
n
2

+ 1
)
λ (Xsampling)

. (3.9)

This provides a bound on the probability of improving the solution (Theorem 3.6),

∀i ≥ κ, P (ci+1 < ci | xrand ∼ U (Xsampling)) ≤ π
n
2 ci (c

2
i − c2

min)
n−1
2

2nΓ
(
n
2

+ 1
)
λ (Xsampling)

. (3.10)

The probability in (3.10) becomes arbitrarily small for (i) costs, ci, near the theoretical

limit, cmin, (ii) large sampling domains, λ (Xsampling), or (iii) high state dimensions, n. The

solution cost and the sampling domain size may vary with iteration but the state dimension is a

constant of the planning problem. This motivates investigating the effect of state dimension on

the most common formulations of the minimum-path-length planning problem (Theorem 3.7).

Theorem 3.7 (The minimum-path-length curse of dimensionality). The probability that

RRT* improves a solution to a problem seeking to minimize path length decreases factorially

(i.e., faster than exponentially) as state dimension increases,

∀i ≥ κ, P (ci+1 < ci | xrand ∼ U (Xrect)) ≤
π

n
2

2nΓ
(
n
2

+ 1
) , (3.11)

when uniformly sampling a (hyper)rectangle bounding the L2 informed set, Xrect ⊃ XPHS ⊇
Xf̂ ⊇ Xf .

Proof. Theorem 3.7 is proven for RRT* but the theorem and proof holds for any planning

algorithm for which an equivalent to Theorem 3.6 exists.

The smallest possible Xrect that completely contains XPHS is a (hyper)rectangle with

widths that correspond to the diameters of the prolate hyperspheroid (Fig. 3.4). The measure
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XPHS

Xrect

xstart xgoal

Figure 3.4: The minimal rectangular sampling domain, Xrect, that completely contains the prolate
hyperspheroid set, XPHS ⊇ Xf̂

, as defined by the start, xstart, goal, xgoal, and the current solution,
ci, of a planning problem. This is the best-case sampling domain for the algorithm proposed by
Otte and Correll (2013). The rectangle tightly bounds XPHS; however, the probability of finding
a state in XPHS by sampling Xrect decreases factorially with state dimension due to the nature of
high-dimensional space. The probability of RRT* improving a solution with samples generated from
any admissible bounding rectangle therefore decreases rapidly with state dimension.

of any Xrect ⊃ XPHS is therefore bounded from below as

λ (Xrect) ≥ ci
(
c2
i − c2

min

)n−1
2 . (3.12)

When substituted into (3.10) this gives

∀i ≥ κ, P (ci+1 < ci | xrand ∼ U (Xrect)) ≤
π

n
2

2nΓ
(
n
2

+ 1
) ,

proving Theorem 3.7 for all rectangular sets, Xrect, such that Xrect ⊃ XPHS ⊇ Xf̂ ⊇ Xf .

Theorem 3.7 is an upper bound on the utility of rectangular rejection sampling and

is illustrated by plotting (3.11) versus state dimension (Fig. 3.5). The results show that

rectangular rejection sampling can be up to a 78.6% successful in R2 but that its success

decreases factorially as the state dimension increases, becoming 1.6% in R8, and 3.6× 10−4%

in R16. These numbers represent the best-case probability of improvement with rectangular

rejection sampling and actual performance will depend on the size and orientation of the

informed set relative to the sampling domain. This motivates a need for a method to

directly sample the prolate hyperspheroid regardless of size, orientation, or state dimension

(Section 3.3.1).

3.3.1 Direct Sampling

A method to generate uniformly distributed samples in the L2 informed set is adapted from

techniques to generate samples from hyperellipsoids (Sun and Farooq, 2002).
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Figure 3.5: The upper-bound probability of sampling a prolate hyperspheroid, XPHS ⊇ X
f̂
,

from a larger hyperrectangular sampling domain, Xrect ⊇ XPHS, versus state dimension, n. The
sampling probability decreases factorially (i.e., faster than exponentially) as state dimension increases
(Theorem 3.7). This provides an upper-bound on the probability of RRT* improving a solution at
any iteration and shows that common formulations of RRT* do not scale effectively to high state
dimensions.

Let S ∈ Rn×n be a symmetric, positive-definite matrix (the hyperellipsoid matrix) such

that the interior of a hyperellipsoid, Xellipse, is defined as

Xellipse :=
{

x ∈ Rn
∣∣∣ (x− xcentre)

T S−1 (x− xcentre) < 1
}
, (3.13)

where xcentre is the centre point of the hyperellipsoid. Uniformly distributed samples in the

hyperellipsoid, xellipse ∼ U (Xellipse), can be generated from uniformly distributed samples in

the interior of a unit n-dimensional ball, xball ∼ U (Xball), by

xellipse = Lxball + xcentre, (3.14)

where L ∈ Rn×n is a lower-triangular transformation matrix calculated from the Cholesky

decomposition of the hyperellipsoid matrix,

LLT ≡ S,

and

Xball := {x ∈ Rn | ‖x‖2 < 1} .

For hyperellipsoids with orthogonal axes, there exists a coordinate frame in which the

hyperellipsoid matrix is diagonal,

S′ := diag
(
r2

1, r
2
2, . . . , r

2
n

)
,

where rj is the radius of j-th axis of the hyperellipsoid and diag (·) denotes a diagonal matrix.

A rotation from this hyperellipsoid-aligned frame to the world frame, Cwe ∈ SO (n), can be
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used to write (3.13) in terms of S′ as

Xellipse =
{

x ∈ Rn
∣∣∣ (x− xcentre)

T CweS
′−1

CT
we (x− xcentre) < 1

}
,

and (3.14) as

xellipse = CweL
′xball + xcentre, (3.15)

where L′L′T ≡ S′ due to the orthogonality of rotation matrices, C−1
we ≡ CT

we.

The rotation between frames can be solved directly as a general Wahba problem (Wahba,

1965) which has a valid solution even when underspecified (de Ruiter and Forbes, 2013). Gen-

erally, the rotation matrix from one set of axes, {aj}, to another set of axes, {bj}, is given by

Cba = UΛVT , (3.16)

where Λ ∈ Rn×n is

Λ := diag (1, . . . , 1, det (U) det (V)) ,

and det (·) is the matrix determinant. The terms U ∈ Rn×n and V ∈ Rn×n are unitary

matrices such that UΣVT ≡M via singular value decomposition, and M ∈ Rn×n is given

by the outer product of the j ≤ n corresponding axes,

M := [a1, a2, . . . , aj] [b1,b2, . . .bj]
T . (3.17)

The hyperellipsoid for problems seeking to minimize path length is a prolate hyperspheroid

described as,

xcentre :=
xstart + xgoal

2
, (3.18)

S′ := diag

(
c2
i

4
,
c2
i − c2

min

4
, . . . ,

c2
i − c2

min

4

)
,

and,

L′ = diag

(
ci
2
,

√
c2
i − c2

min

2
, . . . ,

√
c2
i − c2

min

2

)
. (3.19)

The local coordinate system is underspecified in the conjugate directions due to symmetry,

making (3.17) just

M = a11
T
1 , (3.20)

where 11 the first column of the identity matrix and the transverse axis in the world frame is

a1 = (xgoal − xstart) / ‖xgoal − xstart‖2 .
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Algorithm 3.2: Sample (xstart ∈ X, xgoal ∈ X, ci ∈ R≥0)

1 repeat
2 if λ (XPHS) < λ (X) then
3 xrand ← SamplePHS (xstart,xgoal, ci);

4 else
5 xrand ← SampleProblem (X);

6 until xrand ∈ Xfree ∩XPHS;
7 return xrand;

Samples distributed uniformly in the L2 informed set, Xf̂ = XPHS ∩Xfree, can therefore

be generated by using (3.15) to transform samples drawn uniformly from a unit n-ball.

These samples are uniformly distributed in the prolate hyperspheroid through scaling, (3.19),

rotation, (3.16) & (3.20), and translation, (3.18).

Sun and Farooq (2002) investigate various methods to generate samples in hyperellipsoids

and provide the following lemma regarding uniform sample density.

Lemma 3.8 (The uniform distribution of samples transformed into a hyperellipsoid from a

unit n-ball. Originally Lemma 1 in Sun and Farooq, 2002). If the random points distributed in

a hyperellipsoid are generated from the random points uniformly distributed in a hypersphere

through a linear invertible nonorthogonal transformation, then the random points distributed

in the hyperellipsoid are also uniformly distributed.

Proof. For brevity, Sun and Farooq (2002) only present anecdotal proofs of Lemma 3.8. A

full proof is presented in Appendix B.

3.3.1.1 Algorithm

The L2 informed set is an arbitrary intersection of the prolate hyperspheroid and the problem

domain. It can be sampled efficiently by considering the relative measure of the two sets and

sampling the smaller set until a sample belonging to both sets is found. These procedures

are presented algorithmically in Algs. 3.2 and 3.3 and are publicly available in OMPL. Note

that Alg. 3.3, Lines 1–6 are constant for most problems and only need to be calculated once.

The function SVD (·) denotes the singular value decomposition of a matrix and

SampleUnitBall (n) returns i.i.d. uniformly distributed samples from the interior of an

n-dimensional unit ball. The measure of the prolate hyperspheroid, λ (XPHS), is given by

(3.8) and SampleProblem returns i.i.d. samples uniformly distributed over the entire plan-

ning domain. Implementations of SVD and SampleUnitBall can be found in common C++

libraries, such as Eigen and Boost, respectively.
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Algorithm 3.3: SamplePHS (xstart ∈ X, xgoal ∈ X, ci ∈ R≥0)

1 cmin ← ‖xgoal − xstart‖2;
2 xcentre ← (xstart + xgoal) /2;
3 a1 ← (xgoal − xstart) /cmin;

4 {U, V} ← SVD
(
a11

T
1

)
;

5 Λ← diag (1, . . . , 1, det (U) det (V));
6 Cwe ← UΛVT ;
7 r1 ← ci/2;

8 {rj}j=2,...,n ←
(√

c2
i − c2

min

)
/2;

9 L← diag (r1, r2, . . . , rn);
10 xball ← SampleUnitBall (n);
11 xrand ← CweLxball + xcentre;
12 return xrand;
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Figure 3.6: The time required to generate a sample inside the L2 informed set using informed
sampling (Alg. 3.2) and the best-case results for rectangular rejection sampling. Rejection sampling
times were calculated from a planning problem where the domain tightly bounds the L2 informed
set (e.g., Fig. 3.4). This underestimates the computational cost of both global and tightly-bounded
versions of rejection sampling. In global sampling, the problem domain generally does not tightly
bound the L2 informed set and a higher percentage of samples will be rejected. In focused rejection
sampling, the start and goal are generally not aligned with the global coordinate system and either
the bounding box must be relaxed, increasing the number of rejected samples (Otte and Correll,
2013), or a coordinate rotation must be applied to align the problem, increasing computational cost.
Samples for Alg. 3.3 were generated from the unit n-ball with Boost 1.58.
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3.3.1.2 Practical Performance

Direct informed sampling (Alg. 3.2) is compared to rejection sampling by measuring the

computational time required for each algorithm to find samples in the L2 informed set. The

average time is calculated by generating 106 samples in the informed set at each dimension

(Fig. 3.6). The results show that rejection sampling slightly outperforms direct informed

sampling in low state dimensions (e.g., 7.3× 10−8 seconds vs. R2: 3.5× 10−7 seconds) but

becomes orders of magnitude slower as state dimension increases (e.g., R16: 4.0×10−2 seconds

vs. 7.2× 10−7 seconds).

These per-sample times may appear small but RRT* and similar sampling-based planners

require high sample densities to find high-quality solutions. This need is only exacerbated by

the curse of dimensionality that sees the number of samples necessary to achieve equivalent

sample densities increase in high state dimensions (e.g., when planning for manipulation).

In R16 direct informed sampling can generate 105 samples in less than a second (7.2× 10−2

seconds) while rectangular rejection sampling requires over an hour (3953 seconds).

The initial samples used for rejection sampling in this experiment were drawn from the rect-

angle that tightly bounds the informed set (Fig. 3.4). This represents the best case for admis-

sible rectangular rejection sampling and real-world performance will be worse as sampling do-

mains will either be larger relative to the informed set or require additional computational cost.

Constant sample domains (e.g., the problem domain) are inexpensive to sample but are

independent of the informed set. The relative size of the informed set decreases as solutions

improve and further reduces performance compared to the experiment. Dynamic sampling

domains (e.g., a rectangle approximating the L2 informed set; Otte and Correll, 2013) adapt

to the shrinking informed set but must deal with its alignment to the problem coordinate

frame. If the informed set is not aligned, then these algorithms must either use an expanded

bounding box that contains the entire informed set or rotate a bounding box to tightly fit the

prolate hyperspheroid, as in direct informed sampling. This either decreases the relative size

of the informed set or increases the computational cost of the initial sampling and further

reduces performance compared to the experiment.

Experimentally, the main cost of Alg. 3.2 appears to be the cost of sampling the unit n-ball.

This is outside the scope of this thesis but suggests potential areas for further improvement.

3.3.2 Extension to Multiple Goals

Many planning problems seek the minimum-length path that connects a start to any state in

a goal region, Xgoal. The omniscient set in these situations consists of all states that could

provide a better solution to any goal and the associated multigoal L2 informed set is given by

Xf̂
:=
{
x ∈ Xfree

∣∣ ‖x− xstart‖2 + ‖xgoal,j − x‖2 < ci for any xgoal,j ∈ Xgoal

}
.
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xstart

xgoal,2xgoal,1

xgoal,3

Figure 3.7: An illustration of the multigoal L2 informed set for a problem seeking to minimize
path length from a start, xstart, at [0, 0]T , to any of three goals, xgoal,j , at [−0.75, 0]T , [0.25, 0]T ,

and [0.7, 0.7]T , and a current solution cost of ci = 1.05. Each ellipse illustrates the L2 informed set
of a start-goal pair. Individual uniform distributions (light grey) create a nonuniform distribution
over the multigoal L2 informed set (dark grey) when the ellipses overlap.

This set for a countable goal region, Xgoal = {xgoal,j}zj=1, is the union of the individual

informed sets of each goal,

Xf̂ =
z⋃

j=1

Xf̂ ,j,

where z is the number of goals and

Xf̂ ,j
:=
{
x ∈ Xfree

∣∣ ‖x− xstart‖2 + ‖xgoal,j − x‖2 < ci
}
,

is the L2 informed set of an individual (xstart,xgoal,j) pair.

If the individual informed sets are independent and do not intersect then a uniform sample

distribution over the multigoal informed set can be generated by randomly selecting an

individual subset, j, in proportion to its relative measure,

p (1 ≤ j ≤ z) :=
λ
(
Xf̂ ,j

)

∑z
k=1 λ

(
Xf̂ ,k

) ,

and then generating a sample with uniform distribution inside the selected subset, Xf̂ ,j.

If the informed sets are not independent and do intersect then this technique will oversam-

ple states that belong to multiple sets (Fig. 3.7). Uniform sample density can be maintained

in these situations by probabilistic rejecting samples in proportion to their membership in

individual sets. This results in a uniform sample distribution over multigoal L2 informed sets

defined by arbitrarily overlapping individual informed sets (Fig. 3.8).
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Figure 3.8: An example of using Alg. 3.4 to create 2500 random samples uniformly distributed over
a complex multigoal informed set. The multigoal L2 informed set is defined by one start at [0, 0]T ,
three goals at [0.25, 0]T , [−0.75, 0]T , and [0.7, 0.7]T , and a current solution cost of ci = 1.05.

Algorithm 3.4: Sample (xstart ∈ X, Xgoal ⊂ X, ci ∈ R≥0)

1 repeat
2 if 1

z

∑z
j=1 λ (XPHS,j) < λ (X) then

3 xgoal,j ← RandomGoal (xstart, Xgoal, ci);
4 xrand ← SamplePHS (xstart,xgoal,j, ci);

5 else
6 xrand ← SampleProblem (X);

7 until xrand ∈ Xfree ∩
(⋃z

j=1 XPHS,j

)
and KeepSample (xrand,xstart, Xgoal, ci);

8 return xrand;

3.3.2.1 Algorithm

The resulting procedure is described in Algs. 3.4–3.6 as modifications of the method to sample

a single-goal L2 informed set, with changes highlighted in red (cf. Alg. 3.2). This method

can be directly extended to problems with a countable start region. The measure of the

informed set defined for a specific start-goal pair, λ (XPHS,j), is calculated from (3.8) using

the appropriate goal, xgoal,j.

3.4 Discussion

Most anytime almost-surely asymptotically optimal planners use the same procedure to

find initial solutions as to improve them. This results in algorithms, such as RRT*, that

almost-surely converge asymptotically to the optimum by asymptotically finding the optimal

paths to every state in the problem domain. This is inefficient in single-query scenarios and

better performance can be attained by focusing the search.
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Algorithm 3.5: RandomGoal (xstart ∈ X, Xgoal ⊂ X, ci ∈ R≥0)

1 a← 0;
2 forall xgoal,k ∈ Xgoal do
3 a← a+ λ (XPHS,k);

4 p← U [0, 1];
5 j ← 0;
6 repeat
7 j ← j + 1;
8 p← p− λ (XPHS,j) /a;

9 until p ≤ 0;
10 return xgoal,j;

Algorithm 3.6: KeepSample (xrand ∈ X, xstart ∈ X, Xgoal ⊂ X, ci ∈ R≥0)

1 a← 0;
2 forall xgoal,k ∈ Xgoal do
3 if ‖xrand − xstart‖2 + ‖xgoal,k − xrand‖2 < ci then
4 a← a+ 1;

5 p← U [0, 1];
6 return p ≤ 1/a;

There exists a set of states that could improve any suboptimal solution, the omniscient

set (Definition 3.1). Algorithms such as RRT* need to add states from within this set to

improve solutions (Lemma 3.1) and can only do so after a finite number of iterations by

sampling the set (Lemma 3.2). This bounds the probability of improving a solution in the

remainder of the search by the probability of sampling the omniscient set (Theorem 3.3).

The omniscient set is unknowable but can be estimated with informed sets (Definition 3.2),

the performance of which are quantified by their precision and recall (Definitions 3.3 and

3.4). A sufficient condition to maintain almost-sure asymptotic optimality while focusing the

search is to consider admissible informed sets that completely contain the omniscient set (i.e.,

have 100% recall; Definition 3.5).

Admissible informed sets provide the same requirements as omniscient sets for algorithms

to improve their solutions (Lemmas 3.4 and 3.5). The probability of sampling an admissible

informed set bounds the probability of almost-sure asymptotically optimal algorithms, such

as RRT*, improving their solution at any iteration (Theorem 3.6). This motivates a need for

high-precision admissible informed sets for common planning problems.

A universally admissible informed set for problems seeking to minimize path length is

given by the L2 norm (i.e., Euclidean distance). The shape of this L2 informed set, a prolate

hyperspheroid, provides insight into the properties of the minimum-path-length problem

(Theorem 3.7). The probability of improving a solution by sampling any rectangular superset

of the omniscient set (e.g., the problem domain) decreases factorially (i.e., faster than

exponentially) as state dimension increases.
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This curse of dimensionality can be avoided by directly sampling the L2 informed set.

A method to do so by directly sampling a prolate hyperspheroid is presented in Algs. 3.2

and 3.3. It is shown to perform better than the best case of rectangular rejection sampling

by orders of magnitude in high state dimensions. This technique is extended to multigoal

problems in Algs. 3.4–3.6.

It is satisfying to note the importance of informed sets being recognized in the literature.

Kunz et al. (2016) use the ideas to develop a hierarchical rejection sampling method for

systems with differential constraints. They can efficiently generate samples from complex

informed sets that cannot be expressed in closed form and for which no direct sampling

method exists.

Omniscient and informed sets provide insight into improving the performance of anytime

almost-surely asymptotically optimal planners. Direct informed sampling can be used to

improve existing algorithms (Informed RRT*; Chapter 4). Informed sets can also provide

guidance for new anytime almost-surely asymptotically optimal sampling-based planners that

unify informed graph-based search and sampling-based planning (BIT*; Chapter 5).

In summary, this chapter presents the following specific contributions:

• Formally defines omniscient and informed sets and the concepts of precision and recall

(Definitions 3.1–3.4).

• Provides upper bounds on the probability of anytime sampling-based planners, such as

RRT*, improving a solution at any iteration (Theorems 3.3 and 3.6).

• Shows that common formulations of the minimum-path-length problem have a probabil-

ity of improving solutions that decreases factorially with state dimension (Theorem 3.7).

• Presents a method to address this curse of dimensionality for problems seeking to

minimize path length to a goal or a countable set of goals by directly sampling the L2

informed set (Algs. 3.2–3.6).



Chapter 4

Informed RRT*

or: The benefits of ignoring bad solutions

This chapter illustrates how informed sets can be used to improve anytime almost-surely

asymptotically optimal planners. It uses the ideas presented in Chapter 3 to develop a

method that focuses RRT* search and avoids states known to be unable to improve the

current solution. This increases the convergence rate of RRT* compared to existing work

and reduces the effects of the minimum-path-length curse of dimensionality (Theorem 3.7).

Section 4.1 reviews the existing work to accelerate RRT* and shows that it can generally be

described as some combination of sample biasing, sample rejection, and graph pruning. These

techniques are effective on some problems but reduce theoretical optimality, fail to address

the limitations of high state dimensions, and/or do not effectively accelerate almost-sure

asymptotic convergence on all problems.

Section 4.2 demonstrates how these limitations can be addressed through direct informed

sampling in problems seeking to minimize path length. Informed RRT* is an anytime almost-

surely asymptotically optimal sampling-based planner designed for single-query planning

scenarios (Fig. 4.1). It uses graph pruning and direct informed sampling to search only

the shrinking subproblem that could contain better solutions (i.e., the L2 informed set).

This process can be viewed as a continuous, almost-surely asymptotically optimal version of

Anytime RRTs that does not require restarting the search (Fig. 2.2).

Unlike sample biasing, Informed RRT* considers all homotopy classes that could provide

a better solution (i.e., 100% recall) while maintaining uniform sample distribution over a

planning subproblem. Unlike sample rejection or graph pruning, it is effective regardless of

the relative size of the informed set or the state dimension (i.e., high precision). It performs

identically to RRT* when the heuristic does not provide substantial information (e.g., small

planning problems and/or large informed sets). A version of Informed RRT* is publicly

released in OMPL.

52
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(a) (b) (c)

(d) (e) (f)

xstart xgoal

xstart xgoal

X
f̂

Figure 4.1: An illustration of the Informed RRT* algorithm. The continuous problem, (a), is
approximated with a sample-based tree rooted at the start and initially built using RRT*, (b). Once
a solution is found, Informed RRT* prunes and focuses the search to the informed set that contains
all possibly better solutions, (c). This set shrinks and focuses the search as better solutions are
found, (d) and (e), and accelerates the almost-sure asymptotic convergence towards the optimal
solution, (f).

Section 4.3 analyzes the theoretical performance of RRT* by deriving sharp bounds on the

expected solution costs at any iteration. It shows that planners focused to the informed set

(e.g., Informed RRT*) can achieve linear convergence to the optimum but that the original

RRT* has provably sublinear convergence (i.e., it converges slower than linear). It also shows

that Informed RRT* is the most effective focusing technique and that rectangular rejection

sampling factorially approaches sublinear convergence as state dimension increases.

Section 4.4 demonstrates the benefits of Informed RRT* experimentally on both abstract

problems and on the CMU Personal Robotic Lab’s HERB, a 14-DOF mobile manipulation

platform. The abstract problems show that Informed RRT* increasingly outperforms existing

techniques as state dimension increases, especially in problems with large planning domains.

The experiments on HERB demonstrate that Informed RRT* outperforms other RRT*

algorithms on some high-dimensional planning problems with tight search limits (i.e., R14).

Section 4.5 reviews this work and discusses the implications of using heuristics to focus

the search for improvements and not the entire search.
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(b)(a) (c)

Xf̂
Xf̂

Xf̂

XfXf Xf

Figure 4.2: A illustration of the precision and recall of various informed sampling techniques.
The informed set is rendered in grey with shades depending on when it correctly (light grey) or
incorrectly (dark grey) estimates the omniscient set. The sections of the omniscient set that are not
estimated by the informed set are shown in white. Path-biasing, (a), generally has high precision
but low recall, especially in the presence of multiple homotopy classes. Global or bounded sampling,
(b), generally has full recall but low precision, especially in high state dimensions or when improved
solutions shrink the omniscient set. Direct sampling of the L2 informed set, (c), has full recall and
high precision, regardless of the size of the omniscient set. It is exactly equal to the omniscient set
in the absence of obstacles (i.e., it is sharp).

In summary, this chapter makes the following novel contributions:

• Reviews existing techniques to accelerate RRT* and shows how they reduce theoretical

optimality, fail to address the problems of high state dimension, and/or do not effectively

accelerate convergence on all problems (Section 4.1).

• Develops Informed RRT* as an example of using informed sets to accelerate almost-

surely asymptotically optimal planning through direct informed sampling and admissible

graph pruning (Algs. 4.1 and 4.2).

• Derives sharp bounds for the expected next-iteration cost of RRT* on problems seeking

to minimize path length (Lemma 4.1).

• Proves that RRT* has sublinear convergence on these problems but that focused variants

(e.g., Informed RRT*) can have linear convergence (Theorems 4.2–4.4).

4.1 Prior Work Accelerating RRT* Convergence

The majority of existing work to improve RRT*’s rate of convergence attempts to increase the

real-time rate of searching the omniscient set. Sections 4.1.1–4.1.4 use results of Chapter 3

to discuss the advantages and disadvantages of these techniques viewed as combinations of

sample biasing, sample rejection, and graph pruning (Fig. 4.2).
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4.1.1 Sample Biasing

Sample biasing attempts to increase the rate at which RRT* improves a solution by biasing

sampling to an informed set. A common informed set for these techniques is the current

solution (i.e., path biasing). This increases the likelihood of sampling a state that can improve

the current solution but reduces the likelihood of finding a solution in other homotopy classes

(i.e., it increases precision by decreasing recall; Fig 4.2a). The ratio of path biasing to global

search is frequently a user-chosen parameter that must be tuned for each problem.

RRT* uses local rewiring neighbourhoods to almost-surely converge asymptotically to

the optimum. These neighbourhoods are defined assuming a uniform sample distribution

and sampling biasing invalidates this assumption and the resulting formal guarantees. One

method to maintain performance guarantees is to use both uniform and nonuniform sample

distributions and calculate the neighbourhoods from only the uniformly distributed samples

(Janson et al., 2015b). This maintains almost-sure asymptotic optimality but may result in a

prohibitively high number of rewirings for heavily biased sample distributions.

Akgun and Stilman (2011) use path biasing in their dual-tree version of RRT*. Once

an initial solution is found the algorithm spends a user-specified percentage of its iterations

refining the current solution. It does this by explicitly sampling near a randomly selected

state along the current solution. This increases the probability of improving the current path

at the expense of exploring other homotopy classes. Their algorithm also employs sample

rejection in exploring the state space (Section 4.1.2).

Nasir et al. (2013) combine path biasing with smoothing in their RRT*-Smart algorithm.

RRT*-Smart smooths solution paths and reduces its number of states and then uses these

states as biases for further sampling around the solution. Path smoothing improves the

current solution but path biasing decreases the likelihood of finding a solution in a different

homotopy class.

Kiesel et al. (2012) use a two-stage sampling process in their f-biasing technique. Samples

are generated by randomly selecting a region of the planning problem and then sampling a

uniform distribution inside it. The regions and their probabilities are calculated by solving a

discretization of the planning problem using Dijkstra’s algorithm. The regions belonging to

the discrete solution are given a higher selection probability but a nonzero probability must

be maintained over all regions to compensate for the incompleteness of the discretization.

This technique provides a sampling bias for the entire RRT* search but once a solution

is found it continues to sample states that cannot provide a better solution. They state

that almost-sure asymptotic optimality is maintained but do not discuss how to modify the

rewiring neighbourhood to do so.

Kim et al. (2014) also use a two-stage sampling process in their Cloud RRT* algorithm.

They use a generalized Voronoi graph (Choset and Burdick, 1995) to define a series of

collision-free, possibly overlapping, spheres in the planning domain from which they generate
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uniform samples. New spheres are added along solutions as they are found and the probability

of selecting each sphere is updated so that samples in the homotopy class of a solution

are biased around the current path without decreasing the probability of sampling other

homotopy classes. Cloud RRT* successfully finds better solutions faster than other algorithms

but continues to sample states that cannot improve the solution. They also do not discuss

the effect of their sampling scheme on almost-sure asymptotic optimality.

Unlike sample biasing methods, Informed RRT* does not sample states that are known

to be unable to improve a solution. It does have a nonuniform sample distribution over

the problem domain but its uniform distribution over the informed set easily maintains

almost-sure asymptotic optimality.

4.1.2 Sample Rejection

Sample rejection attempts to increase the real-time rate at which RRT* improves a solution by

ignoring samples that do not belong to an informed set. This decreases the computational cost

associated with samples that cannot improve a solution but does not increase the probability

of sampling states in the informed set (Fig. 4.2b). Rejection sampling will spend an increasing

amount of time on rejected samples as this probability decreases (i.e., as precision decreases

and the informed set shrinks relative to the sampling domain). The effectiveness of rejection

sampling the L2 informed set decreases factorially (i.e., faster than exponentially) with state

dimension for problems seeking to minimize path length (Theorem 3.7).

Akgun and Stilman (2011) use global rejection sampling in addition to sample biasing in

their dual-tree algorithm. Samples are drawn from the entire problem domain and performance

will decrease rapidly as the solution improves or when used on large or high-dimensional

planning problems.

Otte and Correll (2013) use rejection sampling in their parallelized Coupled Forest of

Random Engrafting Search Trees (C-FOREST) algorithm for problems seeking to minimize

path length. Samples are generated from a rectangular subset of the planning domain that

bounds the L2 informed set and rejected using the L2 heuristic. This increases precision

and improves performance in large planning problems but its effectiveness still decreases

factorially with state dimension (Theorem 3.7).

Arslan and Tsiotras (2013) combine the RRG algorithm (Karaman and Frazzoli, 2011)

with incremental graph search techniques in their RRT# algorithm. This work is extended

in Arslan and Tsiotras (2015) with rejection sampling using three proposed criteria. This

focuses the search but its performance will decrease rapidly as the solution improves or when

used on large or high-dimensional planning problems as the samples are drawn from the

entire planning domain. Some of the rejection criteria also use the current cost-to-come of

vertices, an inadmissible estimate of the optimal cost-to-come that may reject samples that

could later improve the solution.
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Unlike sample rejection methods, Informed RRT* maintains high precision and 100%

recall regardless of the size of the informed set relative to the problem domain. Its focused

search shrinks in response to solution improvements and does not decrease in effectiveness on

large or high-dimensional planning problems.

4.1.3 Graph Pruning

Graph pruning limits the RRT* tree to an informed set. When applied to an existing graph

it helps increase the real-time rate of solution improvement by reducing the computational

cost of basic operations (e.g., nearest neighbour searches). When applied to potential new

states it increases the real-time rate of solution improvement by rejecting states not in the

informed set. After a sufficient number of iterations this is functionally equivalent to rejection

sampling (Lemma 3.5) but with the additional computational cost of converting samples into

potential states (e.g., the Steer function).

Karaman et al. (2011) use graph pruning to implement an online version of RRT* that

improves solutions during path execution. They remove vertices from the tree whose current

cost-to-come plus a heuristic estimate of cost-to-go is higher than the current solution. The cur-

rent cost-to-come of a vertex overestimates its optimal cost-to-come (i.e., it is an inadmissible

heuristic) and this may erroneously remove vertices that could provide a better solution.

Unlike graph pruning methods, Informed RRT* expends no computational effort on states

that are known to be unable to improve the solution. Samples are generated directly from the

current informed set of states and existing vertices in the tree are removed with an admissible

pruning algorithm if and only if doing so does not negatively affect the search.

4.1.4 Other Techniques

Other important techniques in the literature do not fit neatly into the previous categories.

Many of these methods improve solution quality in ways that could be further accelerated

through direct informed sampling.

Ferguson and Stentz (2006) recognize that a solution can be used to estimate the states

that could provide better solutions (i.e., an informed set). Their Anytime RRTs method

incrementally shrinks the planning problem by independently searching a series of informed

sets defined by the previous solutions. Restricting the search domain encourages RRT to find

a better solution; however, the algorithm cannot guarantee one is found.

Alterovitz et al. (2011) add path refinement to RRT* in their Rapidly exploring Roadmap

(RRM) algorithm. Once an initial solution is found, each iteration of RRM either samples a

new state or selects an existing state from the current solution and refines it. Path refinement

occurs by connecting the selected state to its neighbours and results in a graph instead of a

tree. The ratio of refinement to exploration is a user-tuned parameter.
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Shan et al. (2014) use RRT to bootstrap RRT*. An initial solution found by RRT is

simplified and rewired using their RRT* S algorithm before the search is continued with

RRT*. This can find better solutions faster than RRT* alone but the resulting search is not

focused and continues to consider states that cannot provide better solutions.

Salzman and Halperin (2014) relax almost-sure asymptotic optimality to almost-sure

asymptotic near optimality in their Lower Bound Tree RRT (LBT-RRT) algorithm. They

improve search performance by only rewiring connections as necessary to maintain the desired

tolerance to the optimum.

Devaurs et al. (2015) use ideas from stochastic optimization to explore complex cost

functions efficiently in their Transition-based RRT* (T-RRT*) and Anytime Transition-based

RRT (AT-RRT) algorithms. Transition tests accept or reject a potential new state depending

on its cost relative to its parent. These tests help reduce the integral or mechanical work

of the path through the cost space; however, for problems seeking to minimize path length

would be equivalent to graph pruning.

These algorithms, and those designed for more advanced purposes (e.g., RRTX; Otte and

Frazzoli, 2016), can be improved with the techniques illustrated in Informed RRT*. Their

search can be focused more efficiently to the informed set by using direct informed sampling

and/or admissible pruning.

4.2 Focusing Search with Informed RRT*

Informed RRT* demonstrates how informed sets can be used to improve the performance of

incremental almost-surely asymptotically optimal sampling based planners. It uses RRT* to

find an initial solution and then focuses the remaining search to the informed set (Fig. 4.3).

This avoids states that cannot improve the solution and improves the convergence rate

towards the optimum regardless of the relative size of the informed set (e.g., near-minimum

solutions or large problem domains) or the problem state dimension.

Informed RRT* focuses the search through direct informed sampling (Alg. 3.4), admissible

graph pruning (Section 4.2.1), and an updated calculation of the rewiring neighbourhood

(Section 4.2.2). The complete algorithm is presented in Algs. 4.1 and 4.2 as simple modi-

fications to RRT*, with changes highlighted in red (cf. Alg. 3.1). This version is publicly

available in OMPL.

At each iteration, Informed RRT* calculates the current best solution (Alg. 4.1, Line 4)

from the vertices in the goal region (Alg. 4.1, Lines 2, 9–10). This defines a shrinking L2

informed set that is used to both focus sampling (Alg. 4.1, Line 5; Alg. 3.4) and prune the

graph (Alg. 4.1, Line 27; Alg. 4.2). This process continues for as long as time allows. As is

customary, the minimum of an empty set is taken to be infinity and a prolate hyperspheroid

defined by an infinite transverse diameter is taken to have infinite measure.
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Algorithm 4.1: Informed RRT*(xstart ∈ Xfree, Xgoal ⊂ X)

1 V ← {xstart} ; E ← ∅; T = (V,E);
2 Vsol’n ← ∅;
3 for i = 1 . . . q do
4 ci ← minvgoal∈Vsol’n

{gT (vgoal)};
5 xrand ← Sample (xstart, Xgoal, ci);
6 vnearest ← Nearest (V,xrand);
7 xnew ← Steer (vnearest,xrand);
8 if CollisionFree (vnearest,xnew) then
9 if xnew ∈ Xgoal then

10 Vsol’n
+←− {xnew};

11 V
+←− {xnew};

12 Vnear ← Near (V,xnew, rrewire);
13 vmin ← vnearest;
14 forall vnear ∈ Vnear do
15 cnew ← gT (vnear) + c (vnear,xnew);
16 if cnew < gT (vmin) + c (vmin,xnew) then
17 if CollisionFree (vnear,xnew) then
18 vmin ← vnear;

19 E
+←− {(vmin,xnew)};

20 forall vnear ∈ Vnear do
21 cnear ← gT (xnew) + c (xnew,vnear);
22 if cnear < gT (vnear) then
23 if CollisionFree (xnew,vnear) then
24 vparent ← Parent (vnear);

25 E
−←− {(vparent,vnear)};

26 E
+←− {(xnew,vnear)};

27 Prune (V,E, ci);

28 return T ;

Algorithm 4.2: Prune (V ⊆ X, E ⊆ V × V, ci ∈ R≥0)

1 repeat

2 Vprune ←
{

v ∈ V
∣∣∣ f̂ (v) > ci, and ∀w ∈ V, (v,w) 6∈ E

}
;

3 E
−←− {(u,v) ∈ E | v ∈ Vprune};

4 V
−←− Vprune;

5 until Vprune = ∅;
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(a) (b) (c)

(d) (e) (f)

Figure 4.3: An example of how Informed RRT* uses the current solution to focus search to the
L2 informed set. After an unfocused search for an initial solution, (a), Informed RRT* prunes the
graph of unnecessary states and redefines the search domain to the current L2 informed set, (b).
Samples are then generated directly from this informed set, avoiding those that are known to be
unable to improve the current solution. This reduced search space increases the likelihood of finding
an improved solution, which in turn further reduces the search space, (c)–(e). This results in an
algorithm that focuses the search to the subproblem given by the current solution, shown enlarged
in (f), even as the subproblem continues to shrink as the solution is improved.
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(a) (b) (c)

Figure 4.4: A comparison of inadmissible and admissible (Alg. 4.2) pruning algorithms that
demonstrates the effect of considering vertex descendants during graph pruning. A graph found by
RRT*, (a), is pruned using two different methods. In the first, (b), vertices are removed if they
cannot belong to a better solution regardless of their descendants. In the second, (c), vertices are
removed if they cannot belong to a better solution and neither can their descendants (Alg. 4.2). It
is clear that while (c) maintains a uniform sample density in the subset, (b) does not. Furthermore,
the pruning strategy illustrated in (b) has greedily removed vertices that will provide a better
solution through the narrow passage once the graph is further improved.

4.2.1 Graph Pruning (Alg. 4.2)

Graph pruning is a way to reduce the computational complexity of basic RRT* operations,

such as nearest neighbour searches, by removing unnecessary vertices from the tree. A common

technique is to remove all vertices with heuristic values larger than the current solution cost

(i.e., all vertices that are not members of the informed set). This is a sufficient condition to

identify vertices that cannot provide a better solution but an insufficient condition to remove

them. These vertices may have descendants that could provide better solutions (i.e., vertices

that are members of the informed set) and removing them would negatively affect performance

by decreasing vertex density in areas being searched (i.e., the informed set; Fig. 4.4b).

An admissible pruning method that does not remove vertices from the informed set is

presented in Alg. 4.2. It iteratively removes leaves of the tree that cannot provide a better

solution until no such leaves exist. This results in a pruning algorithm that only removes

vertices if they and all their descendants cannot belong to a better solution (i.e., only removes

vertices that are not members of the informed set; Fig. 4.5). This retains all vertices that

may later be beneficial regardless of their current connections and does not alter the vertex

distribution in areas being searched (i.e., the informed set; Fig. 4.4c).

4.2.2 The Rewiring Neighbourhood

Informed RRT* can be viewed as a method to define and search a shrinking planning problem

continuously. This problem contains all possibly better solutions and attaining almost-sure

asymptotic optimality in this focused search domain is sufficient to guarantee almost-sure

asymptotic optimality in the original problem. This motivates revisiting the definitions of

the local rewiring neighbourhoods used by RRT*.
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xstart xgoal

v
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Xf̂

Figure 4.5: An illustration of Alg. 4.2 on a graph containing a solution passing above two obstacles.
Elements of the graph retained by the algorithm are coloured in black, pruned elements in grey,
and the L2 informed set is illustrated as a dashed grey line. Vertices are pruned if and only if they
cannot improve the current solution (i.e., they are not members of the L2 informed set) and neither
can any of their descendants. This pruning condition avoids removing promising vertices (e.g., v)
that are currently descendants of vertices outside the subset (e.g., u) and maintains the vertex
distribution of the L2 informed set.

The bounds presented by Karaman and Frazzoli (2011) depend on graph cardinality and, in

the r-disc variant, the measure of the problem domain. In Informed RRT* the informed set is

the search domain and these values can be limited to the number of vertices in the informed set,∣∣∣V ∩Xf̂

∣∣∣, and its measure, λ
(
Xf̂

)
. The L2 informed set is not known in closed form (it is an

intersection between the prolate hyperspheroid and free space) but its measure can be bounded

from above by the minimum measure of the prolate hyperspheroid and problem domain,

λ
(
Xf̂

)
≤ min {λ (X) , λ (XPHS)} .

This updates (3.4) and (3.5) to

r∗RRT∗ =


2

(
1 +

1

n

)(
min {λ (X) , λ (XPHS)}

ζn

)


log
(∣∣∣V ∩Xf̂

∣∣∣
)

∣∣∣V ∩Xf̂

∣∣∣






1
n

(4.1)

and

k∗RRT∗ = e

(
1 +

1

n

)
log
(∣∣∣V ∩Xf̂

∣∣∣
)
, (4.2)

where λ (XPHS) is given by (3.8) and is a function of the current solution.

These rewiring neighbourhoods can be smaller than the definitions provided by Karaman

and Frazzoli (2011) since they may be calculated from fewer vertices (i.e., only those in the

informed set) and/or a smaller problem measure (i.e., the measure of the informed set). This

reduces the number of rewiring candidates considered for a set of samples, the associated

computational cost at each iteration, and improves the real-time performance of Informed

RRT* while maintaining almost-sure asymptotic optimality.
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4.3 Rates of Convergence

Almost-sure asymptotic optimality provides no insight into the rate at which an algorithm

improves a suboptimal solution. Previous work has found probabilistic rates for PRM*

(Dobson et al., 2015) and FMT* (Janson et al., 2015b), but only estimated the expected

length of an RRT* solution after finite computational time for use as an automated stopping

criterion (Dobson et al., 2015).

One method to quantify incremental planning performance is to evaluate the rate at

which the sequence of solution costs converges to the optimum, this rate can be classified as

sublinear, linear, or superlinear (Definition 4.1).

Definition 4.1 (Rate of convergence). A sequence of numbers, (ai)
∞
i=1, that monotonically

and asymptotically approaches a limit, a∞, has a rate of convergence,

µ := lim
i→∞

|ai+1 − a∞|
|ai − a∞|

.

The sequence is said to converge linearly if the rate is in the range 0 < µ < 1, superlinearly

(i.e., faster than linear) when µ = 0, and sublinearly (i.e., slower than linear) when µ = 1.

The expected convergence rate of an algorithm depends on its specific tuning and the

planning problem. These rates are calculated for RRT* with and without sample rejection

and Informed RRT* (Theorems 4.2–4.4) by first calculating sharp bounds on the expected

next-iteration cost (Lemma 4.1).

Lemma 4.1 (Expected next-iteration cost in geometric planning). The expected value of the

next solution, E [ci+1], is bounded for geometric planning by

pf
nc2

i + c2
min

(n+ 1) ci
+ (1− pf ) ci ≤ E [ci+1] ≤ ci, (4.3)

where ci is the current solution cost, cmin is the theoretical minimum solution cost, n is the

state dimension of the planning problem, and pf = P (xnew ∈ Xf ) is the probability of adding

a state that is a member of the omniscient set (i.e., that can belong to a better solution).

While not explicitly shown, the subset, Xf , and the probability of improving the solution, pf ,

generally are functions of the current solution cost.

The lower bound is sharp over the set of all possible planning problems and algorithm

configurations and occurs for versions of RRT* using an infinite rewiring radius (i.e., η =∞,

and rRRT∗ =∞) in an obstacle-free environment.

Proof. The proof of Lemma 4.1 is presented in Appendix C.

This result allows for the calculation of sharp bounds on the convergence rates of RRT*

(with and without rejection sampling) and Informed RRT* in any configuration or planning
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problem. These bounds will be exact in problems without obstacles and with an infinite

rewiring neighbourhood (i.e., η = ∞, and rRRT∗ = ∞) and show that RRT* has sublinear

convergence to the optimum (Theorem 4.2).

Theorem 4.2 (Sublinear convergence of RRT* in geometric planning). RRT* converges

sublinearly towards the optimum of geometric planning problems,

E [µRRT∗ ] = 1. (4.4)

Proof. The proof of Theorem 4.2 follows directly from Lemma 4.1 when pf is given by (3.9),

and is presented in Appendix D.1.

The convergence rate of RRT* can be improved with adaptive rectangular rejection

sampling. The biggest improvement will occur when samples are generated from a rectangle

that tightly bounds the informed set (Fig. 3.4). This shows that RRT* with adaptive

rectangular rejection sampling (e.g., Otte and Correll, 2013) can converge linearly with an

infinite rewiring neighbourhood in the absence of obstacles but will quickly (i.e., factorially)

approach sublinear convergence with increasing state dimension (Theorem 4.3).

Theorem 4.3 (Linear convergence of RRT* with adaptive rectangular rejection sampling

in geometric planning). RRT* with adaptive rectangular rejection sampling converges at

best linearly towards the optimum of geometric planning problems but factorially approaches

sublinear convergence as state dimension increases,

1− π
n
2

(n+ 1) 2n−1Γ
(
n
2

+ 1
) ≤ E [µReject] ≤ 1. (4.5)

Proof. The proof of Theorem 4.3 follows directly from Lemma 4.1 when pf is given by (3.9)

and (3.12) and is presented in Appendix D.2.

Direct informed sampling avoids the minimum-path-length curse of dimensionality and

can further improve the convergence rate of RRT*. Informed RRT* can converge linearly

with an infinite rewiring neighbourhood in the absence of obstacles and will approach

sublinear convergence significantly slower than rejection sampling as state dimension increases

(Theorem 4.4).

Theorem 4.4 (Linear convergence of Informed RRT* in geometric planning). Informed

RRT* converges at best linearly towards the optimum of geometric planning problems,

n− 1

n+ 1
≤ E [µInformed] ≤ 1, (4.6)

where the lower-bound occurs exactly with an infinite rewiring neighbourhood in the absence

of obstacles.
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Figure 4.6: An illustration of the lower-bounds on linearity, E [1− µ∗], of RRT* with rejection
samping and Informed RRT* (Corollary 4.5). The convergence rates bounds of RRT* with rejection
sampling and Informed RRT* diverge as state dimensions increase and rejection sampling factorially
approaches sublinear convergence (Theorems 4.3 and 4.4).

Proof. The proof of Theorem 4.4 follows directly from Lemma 4.1 when pf = 1, and is

presented in Appendix D.3

Theorems 4.2–4.4 result in the following corollary regarding the relative convergence rates

of the algorithms.

Corollary 4.5 (The faster convergence of Informed RRT* in geometric planning). The

best-case convergence rate of Informed RRT*, µ∗Informed, is always better than that of RRT*,

with or without rejection sampling in geometric planning,

∀n ≥ 2,
n− 1

n+ 1
≤ E [µ∗Informed] ≤ E

[
µ∗Reject

]
≤ E [µ∗RRT∗ ] = 1.

Proof. The proof follows immediately from the lower bounds in (4.4), (4.5), and (4.6). It is

illustrated in Fig. 4.6.

4.3.1 Experimental Validation and Extension

Convergence rates are investigated experimentally for infinite, constant finite, and decreasing

finite rewiring radii. Informed RRT* was run in each configuration for 104 trials in R2, R4,

and R8 on obstacle-free problems to isolate the effects of the rewiring parameters. Each trial

started from the same initial solution but used different pseudo-random seeds to search for

improvements. The logarithmic error, log (ci − cmin), and the resulting mean were calculated

at each iteration of each trial and compared to theoretical predictions. The results validate

Theorem 4.4 and illustrate the effects of rewiring parameters on the convergence rate.
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Figure 4.7: Experimental validation of Lemma 4.1 and Theorem 4.4 showing the linear best-case
convergence rate of Informed RRT* in R2, R4 and R8. Informed RRT* was run 104 times with
different pseudo-random seeds from a common initial solution in each dimension. The solution
cost found by each planner was recorded at each iteration and used to calculate the logarithmic
error (cyan lines), log (ci − c∗), and the mean logarithmic error (blue circles) in (a)–(c). The
best-case solution cost predicted by Lemma 4.1 (black line) demonstrates the linear convergence
predicted by Theorem 4.4 and shows excellent agreement with a line of best fit calculated from
the mean error (blue dashed line). The difference between the best-case predicted by Lemma 4.1
and the mean error from the experiments is further highlighted in (d)–(f) by plotting the relative
error, |(cmean,i − ctheory,i) / (cmean,i − c∗)|, with the results showing excellent agreement up to the
limitations of numerical precision.

L
o
g
o
ra

th
m
ic

e
rr
o
r

40 60 80 100 240

L
o
g
o
ra

th
m
ic

e
rr
o
r

L
o
g
o
ra

th
m
ic

e
rr
o
r

200 400 600 800 1000 1200

(a) R2: η = 0.4, rRRT∗ = ∞
Iteration

(b) R4: η = 0.4, rRRT∗ = ∞
Iteration

(c) R8: η = 0.4, rRRT∗ = ∞
Iteration

100

10−14

10−12

10−10

10−8

10−6

10−4

10−2

1000 2000 3000 4000

Mean Theoretical predictionIndividual trial Best fit

100

10−12

10−10

10−8

10−6

10−4

10−2

100

10−14

10−12

10−10

10−8

10−6

10−4

10−2

120 220200180140 160

10−14

Be
tte

r

Figure 4.8: An experimental investigation on the effect of a finite but constant rewiring neighbour-
hood on the convergence rate of Informed RRT* in R2, R4 and R8. As in the previous experiment,
Informed RRT* was run 104 times with different pseudo-random seeds from a common initial
solution for each dimension. The solution cost found by each planner was recorded at each iteration
and used to calculate the logarithmic error (cyan lines), log (ci − c∗), and the mean logarithmic error
(blue circles). As expected, the resulting mean error is higher than the lower bound of Lemma 4.1
(black line); however, a line of best fit (blue dashed line) suggests that the convergence remains
linear. Combined with the results of Fig. 4.9, this motivates further research on the effects of the
RRT* rewiring neighbourhood.



Chapter 4. Informed RRT* 67

L
o
g
o
ra

th
m
ic

e
rr
o
r

L
o
g
o
ra

th
m
ic

e
rr
o
r

L
o
g
o
ra

th
m
ic

e
rr
o
r

(a) R2: η = ∞, rRRT∗ = 1.1r∗RRT∗

Iteration

(b) R4: η = ∞, rRRT∗ = 1.1r∗RRT∗

Iteration

(c) R8: η = ∞, rRRT∗ = 1.1r∗RRT∗

Iteration
1000 2000 3000 40001000 2000 3000 40001000 2000 3000 4000

100

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

10−14

10−12

10−10

10−8

10−6

10−4

10−2

MeanIndividual trial

Be
tte

r

Figure 4.9: An experimental investigation on the effect of a finite and decreasing rewiring neighbour-
hood on the convergence rate of Informed RRT* in R2, R4 and R8. As in the previous experiments,
Informed RRT* was run 104 times with different pseudo-random seeds from a common initial
solution for each dimension. The solution cost found by each planner was recorded at each iteration
and used to calculate the logarithmic error (cyan lines), log (ci − c∗), and the mean logarithmic
error (blue circles). Unlike experiments with a constant rewiring neighbourhood, the results suggest
that the convergence is sublinear. Combined with the results of Fig. 4.8, this motivates further
research on the effects of the RRT* rewiring neighbourhood.

The experimental results for an infinite rewiring neighbourhood (i.e., η =∞ and rRRT∗ =

∞) show excellent agreement with the theoretical predictions in Theorem 4.4 (Fig. 4.7).

The mean solution cost converges linearly towards the optimum and closely matches the

lower-bound predicted by Lemma 4.1 (Fig. 4.7d–f).

The experimental results for a constant finite rewiring neighbourhood (e.g., η = 0.4

and rRRT∗ = ∞) show that the convergence rate is slower than predicted by Theorem 4.4

(Fig. 4.8). The rate appears to start nonlinearly but quickly stabilize to linear convergence.

It is hypothesized that this change in rate is related to the distribution of samples relative to

the maximum edge length.

The experimental results for a decreasing finite rewiring neighbourhood (e.g., η =∞ and

rRRT∗ = 1.1r∗RRT∗) show that the convergence rate appears to be sublinear (Fig. 4.9). It is

hypothesized that this is a result of the rewiring neighbourhood shrinking ‘too’ fast for the

rate at which sample density increases.

These experiments suggest that further research is necessary to understand the tradeoff

between per-iteration cost and the number of iterations needed to find a solution. A shrinking

rewiring neighbourhood limits the number of rewirings but its apparent sublinear convergence

requires significantly more iterations to find high-quality solutions. Alternatively, the apparent

linear convergence of a constant rewiring radius may find equivalent solutions in significantly

fewer iterations but the number of rewirings required at each iteration increases rapidly.
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Figure 4.10: Illustrations of the planning problems used for Sections 4.4.1, 4.4.2, and 5.5.1.1. The
toy problem shown in (a) is used to both investigate the ability to find solutions within a specified
tolerance of the known optimum and the effect of map width, l, on the ability to find high quality
solutions. The width of the obstacle is a random variable uniformly distributed over the range
[0.25, 0.5]. The problem in (b) is used to investigate the algorithm performance in more complex
problems with many possible homotopy classes. The use of regularly spaced obstacles allows the
problem to scale efficiently to high dimensions. The width of the obstacle is chosen such that the
start and goal states are 5 ‘columns’ apart.

4.4 Experiments

The benefits of focusing the search for improvements in RRT* are demonstrated on simulated

problems in R2, R4, and R8 (Sections 4.4.1 and 4.4.2) and for HERB (Section 4.4.3) using

OMPL1. Informed RRT* is compared to the original RRT* and versions that focus the

search with graph pruning (e.g., Alg. 4.2), heuristic rejection on xnew, heuristic rejection on

xrand, and all three techniques combined.

All planners used the same tuning parameters and the ordered rewiring technique presented

in Perez et al. (2011). Planners used a goal-sampling bias of 5% and an RRT* radius of

rRRT∗ = 2r∗RRT∗ . The maximum edge length was selected experimentally to reduce the time

required to find an initial solution on a training problem, with values of η = 0.3, 0.5, 0.9,

and 1.3 used in R2, R4, R8, and on HERB (R14), respectively. Available planning time was

limited for each state dimension to 3 seconds, 30 seconds, and 150 seconds, and 600 seconds,

respectively. Planners with heuristics used the L2 norm as estimates of cost-to-come and

cost-to-go while those with graph pruning delayed its application until solution cost changed

by more than 5%.

These experiments were designed to investigate admissible methods of focusing search.

More advanced extensions of RRT* were not considered as they commonly include some

combination of the investigated techniques and could instead use direct informed sampling.

1The experiments were run on a laptop with 16 GB of RAM and an Intel i7-4810MQ processor. The
abstract experiments were run in Ubuntu 12.04 (64-bit) with Boost 1.58, while the HERB experiments were
run in Ubuntu 14.04 (64-bit).
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Figure 4.11: The time required to find near-optimal solutions for the problem illustrated in
Fig. 4.10a with l = 2. The results show that in high dimensions direct informed sampling finds
better solutions faster than other methods. Each planner was run 100 different times in R2, R4, and
R8 for up to 3, 30, and 150 seconds, respectively. The time required to find solutions within various
tolerances of the optimum, c∗, were recorded for each trial. The percentage of trials that found a
solution within the specified tolerances is presented in (a)–(c). The median time to find a solution
within the specified tolerances is presented in (d)–(f), with unsuccessful trials assigned infinite time.
The error bars denote a nonparamentric 99% confidence interval on the median value. Informed
RRT* performs similarly to rejection sampling methods of RRT* in low dimensions (R2 and R4);
however, outperforms all other methods as state dimension increases as predicted by the theoretical
results (R8).

4.4.1 Toy Problems

Two separate experiments were run in R2, R4, and R8 on randomized variants of the toy

problem depicted in Fig. 4.10a to investigate the effects of obstacles on (3.10),

∀i ≥ κ, P (ci+1 < ci | xrand ∼ U (Xsampling)) ≤ π
n
2 ci (c

2
i − c2

min)
n−1
2

2nΓ
(
n
2

+ 1
)
λ (Xsampling)

. (3.10 redux)

The problem consists of a (hyper)cube of width l with a single start and goal located

at [−0.5, 0, . . . , 0]T and [0.5, 0, . . . , 0]T , respectively. A single (hyper)cube obstacle of width

w ∼ U [0.25, 0.5] sits between the start and goal in the centre of the problem domain.

These experiments require assigning values to the problem parameters not being inves-

tigated. The choice of these values affect the tests but the combined results of the two

experiments show that increasing problem size and state dimension decreases the ability of

nondirect sampling methods to find near-optimal solutions, as predicted by (3.10). Using

direct informed sampling to focus its search to the informed allows Informed RRT* to limit

these effects and outperforms the other techniques on these problems.
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Figure 4.12: The time required to find a solution within a specified fraction of the known optimum
for the problem illustrated in Fig. 4.10a for various map widths. Each planner was run 100 different
times on maps of various widths in R2, R4, and R8 to find solutions better than 1.01c∗, 1.05c∗, and
1.15c∗, respectively. The time required to find the target solution was recorded for each trial, with
times limited to 3, 30, and 150 seconds, respectively. The percentage of trials that found the target
solution is presented in (a)–(c). The median time to find the solution is presented in (d)–(f), with
unsuccessful trials assigned infinite time. The error bars denote a nonparamentric 99% confidence
interval on the median value. Informed RRT* performs better than the other algorithms on larger
problems, with the difference becoming particularly evident in high state dimensions (R8).

4.4.1.1 Target Solution Quality

The first experiment investigates finding near-optimal solutions in the presence of obstacles.

The time required for each planner to find a solution within various fractions of the known

optimum, c∗, was recorded over 100 trials with different pseudo-random seeds for maps of

width l = 2. The percentage of trials that found a solution within the target tolerance of the

optimum and the median time necessary to do so are presented for each planner in Fig. 4.11.

Trials that did not find a suitable solution were treated as having infinite time for the purpose

of calculating the median. The results show that Informed RRT* performs equivalently to

sample-rejection-based algorithms in low state dimensions but outperforms all techniques in

high dimensions.

4.4.1.2 Map Width

The second experiment investigates finding near-optimal solutions in large planning problems.

The time required for each planner to find a near-optimal solution was recorded over 100

trials with different pseudo-random seeds for maps of increasing width, l. Planners sought a

solution better than 1.01c∗, 1.05c∗, and 1.15c∗ in R2, R4, and R8, respectively. The percentage

of trials that found a sufficiently near-optimal solution and the median time necessary to do
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Figure 4.13: Planner performance versus time for the problem illustrated in Fig. 4.10b. Each
planner was run 100 different times in R2, R4, and R8 with l = 4 and run times limited to 3, 30,
and 150 seconds, respectively. The percentage of trials solved is plotted versus run time for each
planner and presented in (a)–(c). The median path length is plotted versus run time for each
planner and presented in (d)–(f), with unsuccessful trials assigned infinite length. The error bars
denote a nonparamentric 99% confidence interval on the median value. Informed RRT* has similar
performance to rejection sampling methods in R2, but finds better solutions faster in R4 and R8.
This demonstrates the benefits of direct informed sampling even in the presence of high numbers of
obstacles and homotopy classes.

so are presented for each planner in Fig. 4.12. Trials that did not find a suitable solution

were treated as having infinite time for the purpose of calculating the median. The results

show that Informed RRT* outperforms all techniques in large-domain planning problems and

that the difference increases in high state dimensions.

4.4.2 Worlds with Many Homotopy Classes

The algorithms were tested on more complicated problems with many homotopy classes in

R2, R4, and R8. The worlds consisted of a (hyper)cube of width l = 4 with the start and

goal located at [−0.5, 0, . . . , 0]T and [0.5, 0, . . . , 0]T , respectively. The problem domain was

filled with a regular pattern of axis-aligned (hyper)rectangular obstacles with a width such

that the start and goal were 5 ‘columns’ apart (Fig. 4.10b).

The planners were tested with 100 different pseudo-random seeds on each world and state

dimension. The solution cost of each planner was recorded every 1 millisecond by a separate

thread and the median was calculated from the 100 trials by interpolating each trial at a

period of 1 millisecond. The absence of a solution was considered an infinite cost for the

purpose of calculating the median.
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Figure 4.14: A motion planning problem for HERB inspired by Morali and Willis (1978). Planners
must find a collision-free path between each pair of subsequent poses, e.g., (a) to (b). HERB’s
14 DOFs and high number of potential self-collisions make this a nontrivial planning problem for
RRT*. The planners were given 600 seconds for each phase of the planning problem and the results
are presented in Fig 4.15.

The results are presented in Fig. 4.13, where the percent of trials solved and the median

solution cost are plotted versus run time. They demonstrate how Informed RRT* uses direct

sampling of the L2 informed set to improve the real-time convergence of the solution towards

the optimum compared to the other techniques.

4.4.3 Motion Planning for HERB

Informed RRT* was demonstrated on a high-dimensional problem using HERB, a 14-DOF

mobile manipulation platform (Srinivasa et al., 2012). Poses were defined for the two arms

(R14) to create a sequence of three planning problems (Fig. 4.14) inspired by Morali and

Willis (1978). RRT*, RRT* with pruning and rejection, and Informed RRT* were each run

for 50 trials on each problem of the cycle. The resulting median path lengths are presented

in Fig. 4.15. Trials that did not find a solution were considered to have infinite length for the

purpose of calculating the median. This only occurred for the problem from (a) to (b), where

the planners found a solution on 94% of the trials.

Manipulation planning in joint space results in problem domains with strict limits and

the joints on HERB all have between π and and 2π radians of travel. This limited problem

domain can place large sections of the sampled prolate hypershperoid outside the search

domain. This limits the effectiveness of direct informed sampling but, as reflected in the

results, does not prevent Informed RRT* from outperforming existing algorithms on some

problems. RRT* with and without pruning and rejection sampling both fail to improve the

initial solutions on all three planning problems but Informed RRT* is able to improve the

path length in joint space by 3.9%, 7.9%, and 28.2%, respectively. The improvement in length

from (a) to (b) is not statistically significant but the improvements from (b) to (c) and (c)

to (d) demonstrate the benefits of accounting for the relative sizes of the informed set and

problem domain in high state dimensions.
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Figure 4.15: Results from 50 trials on the motion planning problems depicted in Fig. 4.14. The
median path length between each pose found by each planner was calculated after 600 seconds
of planning time. Planners found a solution between each pose in every trial other than the
transition from (a) to (b), where solutions were only found in 94% of the trials. These unsolved
trials were assigned an infinite cost Ffor the purpose of calculating the median. Error bars denote
a nonparamentric 99% confidence interval on the median value. The results show that Informed
RRT* can outperform rejection sampling in high-dimensional problems even in the presence of strict
state-space limits.

4.5 Discussion

RRT* almost-surely converges asymptotically to the optimal solution to planning problems

by asymptotically finding the optimal paths to every state in the problem domain. This is

inefficient given its single-query nature as once a solution is found it only needs to consider

states that could provide improvements (i.e., an informed set). Existing techniques to focus

the search to informed sets are insufficient for problems seeking to minimize path length

(Section 4.1). The majority either reduce the ability to find solutions in other homotopy classes

(i.e., reduce recall) or fail to account for the reduction of the L2 informed set in response

to solution improvement (i.e., have decreasing precision). Even adaptive techniques that

address these problems (e.g.,; Otte and Correll, 2013) fail to account for the factorial decrease

in measure with state dimension (i.e., the minimum-path-length curse of dimensionality;

Theorem 3.7).

Informed RRT* is presented as an example of how direct informed sampling and admissible

graph pruning addresses these limitations (Algs. 4.1 and 4.2; Section 4.2). It focuses the

search for improvements to the L2 informed set regardless of its size relative to the problem

domain or the state dimension of the planning problem (i.e., it has 100% recall and high

precision). This allows it to ignore states that cannot provide a better solution and improves

convergence towards the optimum, especially in planning problems with large domains or

high state dimensions.

RRT* performance can be analyzed theoretically for problems seeking to minimize path

length by using the shape of the L2 informed set (Section 4.3). The resulting bounds on the

expected solution cost at any iteration (Lemma 4.1) are sharp over the set of all possible
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planning problems and algorithm configurations, with the lower bound being exact for an

infinite rewiring radius in the absence of obstacles. This allows for an analysis of the expected

convergence rates for minimizing path length and shows that RRT* provably converges sub-

linearly (i.e., slower than linear; Theorem 4.2) when not focused to the informed set. Focusing

the search can result in linear convergence (Theorems 4.3 and 4.4) but adaptive rectangular

rejection sampling approaches sublinear convergence factorially with state dimension.

These analytical results are verified and extended experimentally to different algorithm

configurations. The experimental results confirm the theoretical limits and suggest that

obstacle-free convergence remains linear with a finite constant maximum edge length, but

becomes sublinear with a finite decreasing RRT* radius. Previous analysis of these rewiring

terms have focused on their effect on iteration complexity but this result should motivate

future research into the trade off between per-iteration cost and convergence rate.

Focusing techniques are also tested experimentally on a variety of planning problems

(Section 4.4). These experiments demonstrate how the better theoretical convergence rate of

Informed RRT* corresponds to finding better solutions faster that other techniques on real

planning problems. This may not occur in small problem domains and/or with long circuitous

solutions but the designs of Algs. 3.2 and 3.4 assure that in these problems Informed RRT*

performs no worse than other methods to exploit the L2 heuristic (e.g., rejection sampling).

Designing these experiments demonstrates the importance of the maximum edge length,

η, on the experimental performance of the tested algorithms. It not only affected the time

required to find an initial solution but also the quality of the solution found in finite time as

a result of (3.3). Specifically, large values of η appeared to decrease the difference between

algorithms; however, also resulted in order of magnitude increases in the time required to

find initial solutions. Given that anytime improvement of a solution is a major feature of

RRT*, η was tuned to minimize the initial-solution time on a series of test problems. When

coupled with the results of Section 4.4, this result should further motivate more research into

the effects of the RRT* tuning parameters, η and rRRT∗ , on real-time performance.

This chapter demonstrates how direct informed sampling can be used to focus RRT*’s

search for improvements to an estimate of the omniscient set. Searching this omniscient set is

the fundamental task of anytime asymptotically optimal planning and the performance of any

informed techniques will ultimately depend on the precision and recall of its estimate. The

L2 informed set is a uniformly admissible estimate of the omniscient set for problems seeking

to minimize path length and is exact in the absence of obstacles. It represents a sharp bound

on the omniscient set even in the presence of differential constraints. This suggests that any

informed set that is more precise for minimum-path-length problems must either (i) exploit

additional information about the problem domain, and/or (ii) be inadmissible for some

minimum-path-length planning problems. Investigating how problem-specific information

(e.g., obstacles) can be used to define new universally admissible heuristics could potentially

allow algorithms such as Informed RRT* to converge linearly in the presence of obstacles.



Chapter 4. Informed RRT* 75

It is satisfying to note Informed RRT* being improved in the literature. Kim and Song

(2015) extend Informed RRT* by applying a path smoother to the existing solution. This

helps locally optimize the path and reduce the size of the L2 informed set, further focusing

the remaining search. Lee et al. (2016) modify Informed RRT* to also include path biasing.

This helps improve performance in online scenarios where path execution must start before

planning is finished. Primatesta et al. (2016) adapt Informed RRT* to allow for path repair

in changing environments. This helps avoid excessive replanning in the presence of dynamic

obstacles. Burget et al. (2016) extend Informed RRT* to include bidirectional search (see

RRT-Connect) in their Bidirectional Informed RRT* (BI2RRT*) algorithm. This helps

quickly find an initial solution and focus the search to an informed set.

Informed RRT* is also used to find initial collision-free paths in various multistage planning

algorithms. Oleynikova et al. (2016) use it in their real-time trajectory optimization method

for unmanned aerial vehicles (UAVs). Bevilacqua et al. (2016) use it in their algorithm to

generate plans that account for user comfort in service and assistive robotics.

This chapter also illustrates the limitations of only applying heuristics to focus the search

for improvements. Informed RRT*’s search is still unordered and considers states regardless

of their potential solution quality. This can result in spending a significant amount of

computational effort on areas of the problem domain that are never used in a solution.

In comparison, anytime graph-based search techniques, such as ARA*, use heuristics to

both order and focus their search. Doing so avoids unnecessary search effort and reduces the

time required to find both the initial solution and subsequent improvements. Chapter 5 applies

these ideas to develop BIT*, an informed anytime sampling-based planner that uses heuristics

throughout its search and almost-surely converges asymptotically to the optimum in an

anytime manner. It can be viewed as a unification of graph-based search and sampling-based

planning techniques.

In summary, this chapter presents the following specific contributions:

• Reviews techniques to accelerate RRT* and shows that they either reduce theoretical

optimality, fail to address the problems of high state dimension, and/or generally do

not effectively improve performance (Section 4.1).

• Develops Informed RRT* as an illustration of how informed sets can accelerate almost-

surely asymptotically optimal planning through direct informed sampling and admissible

graph pruning (Algs. 4.1 and 4.2).

• Derives sharp bounds for the expected next-iteration cost of RRT* on problems seeking

to minimize path length (Lemma 4.1).

• Proves that RRT* has sublinear convergence on these problems but that focused variants

(e.g., Informed RRT*) can have linear convergence (Theorems 4.2–4.4).



Chapter 5

Batch Informed Trees (BIT*)

or: The benefits of trying good solutions first

This chapter demonstrates how informed graph-based search can be used to address the limi-

tations of anytime sampling-based planning. Unifying these approaches results in algorithms

that build anytime approximations of continuous planning problems and search this represen-

tations in order of potential solution quality. This avoids unnecessary computational costs

throughout the search and results in finding better solutions faster than existing algorithms,

especially in high state dimensions.

Single-query anytime sampling-based planners, such as RRT*, often approximate continu-

ous planning problems incrementally. This allows them to stop once a suitable solution is

found but makes their search dependent on the underlying sequence of samples. Such an

unordered search simultaneously expands towards every state in the problem domain and

performs work that is not needed to find the eventual solution. This wasted computational

effort can become prohibitively expensive in large problem domains and high state dimensions.

The effort can be reduced by focusing the search once a solution is found (e.g., Informed

RRT*; Chapter 4) but the search itself will still be inefficient.

Informed graph-based searches, such as A*, avoid unnecessary computational effort by

ordering their entire search by potential solution quality. This assures that solutions are found

by only considering states that could have provided a better solution and effectively solves a

problem by searching the informed set that the solution will define (the future informed set).

These approaches have previously been applied to a priori graph-based discretizations.

Section 5.1 presents a review of previous work to incorporate ordered search concepts

into sampling-based planning. The review is roughly divided into efforts to add sampling to

informed graph-based search (e.g., to provide anytime representations for A*) and to add

heuristics to anytime sampling-based planners (e.g., to order the search of RRT*). This work

either applies heuristics partially (e.g., RRT#), sacrifices anytime resolution (e.g., RA* and

FMT*), or unnecessarily searches outside the future informed set due to metrics other than

solution cost (e.g., SBA*).
76
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Figure 5.1: An illustration of the BIT* algorithm. The continuous planning problem is approximated
with a sample-based tree rooted at the start. The tree is grown outwards using a radius of connection
defined by RGG theory, (a). The search proceeds in order of increasing solution cost as estimated by
an admissible heuristic, (b) and (c), as in A* (see Fig. 2.4) until no edges in can provide a (better)
solution, (d). A batch of new samples is then added to the informed set and the search continues
efficiently with incremental search techniques, (e). The ordered search assures that BIT* finds
solutions without searching outside the future informed set of a batch. With an infinite number of
samples, BIT* has a unity probability of both finding a solution and converging asymptotically to
the optimum, if one exists, (f).

Section 5.2 presents Batch Informed Trees (BIT*) as an example of a single-query sampling-

based planner that is both anytime and ordered only on potential solution quality (Fig. 5.1).

It unifies informed graph-based search and sampling-based planning to efficiently search an

increasingly dense implicit random geometric graph (RGG) defined by batches of samples with

incremental search techniques (Fig. 2.2). Processing batches of multiple samples allows it to

search the current approximation in order of potential solution quality, as in A*. Processing

multiple batches allows it to increase the approximation accuracy of the continuous planning

problem until it contains a suitable solution, as in RRT*. A version of BIT* is publicly

released in OMPL.

BIT* uses heuristics in all aspects of its search to improve its efficiency. It uses informed

sets to focus its approximation of the continuous planning problem to the set of states that

could belong to a better solution, as in Informed RRT*. It uses RGG theory to reduce
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Figure 5.2: A simplified taxonomy of almost-surely asymptotically optimal sampling-based planners
that demonstrates the relationship between RRT*, FMT*, and BIT*. When using a batch size of a
single sample, BIT* is a version of RRT*. When using a single batch consisting of multiple-samples,
BIT* is a version of FMT*.

the number of edges in its approximation while still maintaining almost-sure asymptotic

convergence to the optimum, as in RRT* or FMT*. It uses incremental search to order the

search of a changing approximation by potential solution quality and reuse information, as

in LPA*. It uses an implicit representation of the RGG to avoid the computational cost of

explicitly representing every edge, as in Bohlin (2001) and Quasi-random Lazy PRM (Branicky

et al., 2001). It uses lazy collision checking to avoid considering unnecessary edges, as in Lazy

Weighted A* (Cohen et al., 2014b), lazy versions of PRM (Bohlin and Kavraki, 2000; Branicky

et al., 2001; Hauser, 2015), and other techniques (Helmert, 2006; Sánchez and Latombe, 2002).

BIT* only requires three user-defined options, the RGG constant, the heuristic function,

and the number of samples per batch and can be be viewed as a generalization of existing

sampling-based planners. With no heuristic and multiple batches of one sample, it is a version

of RRT*. With no heuristic and a single batch of m samples, it is a version of FMT* (Fig. 5.2).

Section 5.3 presents a theoretical analysis of BIT* that proves it to be probabilistically

complete and almost-surely asymptotically optimal. It also shows its search order to be

analytically equivalent to a version of LPA* that does not propagate rewirings.

Section 5.4 presents simple extensions of BIT* that may further improve performance

in some planning situations. Extensions include delaying the rewiring of connected vertices

until an initial solution is found, generating samples when necessary just in time (JIT),

and removing unconnected samples while maintaining almost-sure asymptotic optimality.

Extending the idea of removing unconnected samples also results in Sorted RRT* (SORRT*),

a variation of Informed RRT* that is also publicly available in OMPL.

Section 5.5 demonstrates the benefits of BIT* on both abstract problems and experiments

for the CMU Personal Robotic Lab’s HERB, a 14-DOF mobile manipulation platform. The

results show that BIT* outperforms other almost-surely asymptotically optimal planners

while maintaining anytime performance, especially in high dimensions. The only tested

planner that consistently found solutions faster than BIT* was RRT-Connect, a bidirectional

algorithm that does not converge towards the optimum.
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Section 5.6 reviews the benefits of unifying informed graph-based search and sampling-

based planning and discusses potential future work.

In summary, this chapter makes the following novel contributions:

• Reviews existing methods to combine informed search and sampling-based represen-

tations and shows that they either provide incomplete/inefficient ordering or sacrifice

anytime performance (Section 5.1).

• Develops BIT* as a unification of informed graph-based search and sampling-based

planning that is almost-surely asymptotically optimal (Algs. 5.1–5.3).

• Presents extensions to BIT* (Section 5.4), including JIT sampling to allow for the direct

search of unbounded problems (Alg. 5.5) and SORRT* (Alg. 5.6) to apply ordered

search concepts directly to RRT*.

• Demonstrates experimentally the benefits of using ordered search to combat the curse

of dimensionality (Section 5.5).

5.1 Prior Work Ordering Sampling-based Planners

Prior work to combine graph-based search and sampling-based planning can be loosely

classified as either incorporating sampling into informed A*-style searches (Section 5.1.1) or

adding heuristics to incremental RRT/RRT*-style searches (Section 5.1.2).

5.1.1 A*-based Approaches

A* is the optimally efficient search for a given graph and any other algorithm using the same

heuristic to find the resolution-optimal solution will expand at least as many vertices (Hart

et al., 1968). This is achieved by ordering the search by potential solution quality such that

the optimal solution is found by only considering states that could provide a better solution

(i.e., by only searching the future informed set). Applying A* to continuous planning problems

requires discretizing the search domain and significant work has incorporated sampling into

this process, often to avoid the need to do so a priori.

Sallaberger and D’Eleuterio (1995) demonstrate the advantages of including stochasticity

in the representation of a continuous state space by adding random perturbations to a regular

discretization. They solve planning problems for spacecraft and multilink robotic arms using

dynamic programming and show that their technique finds better solutions than regular

discretizations alone; however, the approximation is still defined a priori to the search.

Randomized A* (RA*; Diankov and Kuffner Jr., 2007) uses random sampling to apply A*

directly to continuous planning problems. Vertices are expanded by randomly sampling a user-

specified number of possible descendants in a local neighbourhood. If a sample is sufficiently

different than the existing states in the tree and can be reached without collision it is added
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as child of the expanded vertex. The resulting sampling-based search expands outwards from

the start in order of potential solution quality but is not anytime. If the search does not find

a (suitable) solution then it must be restarted with a different number of samples per vertex.

Hybrid Randomized A* (HRA*; Teniente and Andrade-Cetto, 2013) performs a similar

search for systems with differential constraints by sampling control inputs instead of states.

Vertices are expanded by generating a user-specified number of random control inputs and prop-

agating them forward in time with a motion model. These states are used to expand the tree

and, when they are sufficiently similar to an existing state, rewire the tree to improve the cost

of existing vertices. The search expands vertices with a hybrid cost policy that considers path

cost, the number of nearby vertices, and the distance to obstacles. This biases sampling into un-

explored regions of the problem domain but may extend the search outside the future informed

set and waste computational effort on states that are unnecessary to find the eventual solution.

Sampling-based A* (SBA*; Persson and Sharf, 2014) performs an ordered search by

iteratively expanding vertices in a heuristically weighted version of EST (Hsu et al., 1997,

1999a). At each iteration a single random sample is generated in the local neighbourhood

of the vertex at the front of a priority queue. This queue is ordered on the potential

solution quality of vertices and the likelihood of sampling a unique and useful sample in their

neighbourhoods. These likelihoods bias sampling into unexplored space and, as vertices are

never removed from the queue, are required to avoid over expansion of vertices. They are

estimated from previous collision checks and estimates of the sample density around vertices.

Ordering the search on metrics other than the optimization objective can expand the search

outside the future informed set and waste computational effort on states that are unnecessary

to find the eventual solution.

Unlike these other A*-based methods, BIT* maintains anytime performance while ordering

its search only on potential solution quality. This allows it to be run indefinitely until a suitable

solution is found, return incrementally better solutions, and almost-surely asymptotically

converge to the optimum. This also limits the search to the future informed set and avoids

considering states that are unnecessary to find the eventual solution of each representation.

5.1.2 RRT-based Approaches

RRT and RRT* search continuous planning problems by using incremental sampling to build

a tree through obstacle-free space. This avoids a priori discretizations of the problem domain

and allows them to be run indefinitely until a (suitable) solution is found. This also makes the

search dependent on the sequence of samples (i.e., makes it unordered) and significant work

has sought ways to use heuristics to order the search by potential solution quality. Heuristics

can also be used to focus the search, as in Anytime RRTs (Ferguson and Stentz, 2006) and

Informed RRT*, but this does not change the order of the search.
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Heuristically Guided RRT (hRRT; Urmson and Simmons, 2003) probabilistically includes

heuristics in the RRT expansion step. Randomly sampled states are probabilistically added

in proportion to their heuristic value relative to the tree. This balances the Voronoi bias of

the RRT search with a preference towards expanding potentially high-quality paths. This

improves performance, especially in problems with continuous cost functions (e.g., path

length), but maintains a nonzero probability of searching outside the future informed set and

wasting computational effort.

Kiesel et al. (2012) use a two-stage process to order sampling for RRT* in their f-biasing

technique. First, a heuristic is calculated by solving a coarse discretization of the planning

problem with Dijkstra’s algorithm. This heuristic is then used to bias RRT* sampling to

the regions of the problem domain where solutions were found. This increases the likelihood

of finding solutions quickly but maintains a nonzero sampling probability over the entire

problem domain for the entire search and allows search effort to be wasted outside the future

informed set.

RRT# (Arslan and Tsiotras, 2013, 2015) uses heuristics to order rewirings in RRT*. It

uses LPA* techniques to propagate changes efficiently through the entire tree and assure

that each vertex is optimally connected given the current samples. This allows it to avoid

computational costs that cannot improve the solution once one is found but does not order

the underlying RRT* search which may waste computational effort by searching outside the

future informed set.

Fast Marching Tree (FMT*; Janson and Pavone, 2013; Janson et al., 2015b) uses a

marching method to search a batch of samples in order of increasing cost-to-come, similar to

Dijkstra’s algorithm. This makes its search independent of the sampling order and decouples

the approximation of the continuous planning problem from the search of the resulting

representation but sacrifices anytime performance. Solutions are not returned until the search

is finished and the search must be restarted if a (suitable) solution is not found, as with any

other a priori discretization.

The Motion Planning Using Lower Bounds (MPLB) algorithm (Salzman and Halperin,

2015) extends FMT* with a heuristic and quasi-anytime resolution. Quasi-anytime per-

formance is achieved by independently searching increasingly large batches of samples and

returning the improved solutions when each individual search finishes. It is stated that this

can be done efficiently by reusing information but no specific methods are presented.

Unlike these other RRT*-based methods, BIT* orders its search only on potential solution

quality and still maintains anytime performance. This only searches inside the future informed

sets of representations and reduces wasted computational effort. This also returns suboptimal

solutions in an anytime manner while almost-surely converging asymptotically to the optimum.
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5.2 Ordering Search with BIT*1

Any discrete set of states distributed in the state space of a planning problem, Xsamples ⊂ X,

can be viewed as a graph whose edges are given algorithmically by a transition function (an

edge-implicit graph). When these states are sampled randomly, Xsamples = {x ∼ U (X)}, the

properties of this graph can be described by a probabilistic model known as a RGG (Penrose,

2003).

The connections (edges) between states (vertices) in a RGG depend on their relative

geometric position. Common RGGs have edges to a specific number of each state’s nearest

neighbours (a k-nearest graph; Eppstein et al., 1997) or to all neighbours within a specific

distance (an r-disc graph; Gilbert, 1961). RGG theory provides probabilistic relationships

between the number and distribution of samples, the k or r defining the graph, and specific

properties such as connectivity or relative cost through the graph (Muthukrishnan and

Pandurangan, 2005; Penrose, 2003).

Anytime sampling-based planners can be viewed as algorithms that construct a RGG in

the problem domain and search it. Some algorithms perform this construction and search

simultaneously (e.g., RRT*) and others separately (e.g., FMT*) but, as in graph-based search,

their performance always depends on both the accuracy of their approximation and the

quality of their search. RRT* uses RGG theory to limit graph complexity while maintaining

probabilistic bounds on approximation accuracy but incompletely searches the RGG in the

order its constructed (i.e., performs an unordered search). FMT* performs a complete ordered

search but uses RGG theory to define an a priori approximation of the problem domain (i.e.,

it is not anytime).

BIT* uses RGG theory to limit graph complexity while simultaneously building the graph

in an anytime manner and searching it in order of potential solution quality. This is made

possible by using batches of random samples to build an increasingly dense edge-implicit RGG

in the informed set and using incremental search techniques to update the search (Fig. 5.3).

The anytime approximation allows BIT* to run indefinitely until a (suitable) solution is found.

The incremental search technique allows it to search its changing representation efficiently by

reusing previous information. The ordered search assures that it only considers states from

the future informed set of a given approximation and avoids unnecessary computational cost.

The complete BIT* algorithm is presented in Algs. 5.1–5.3 and Sections 5.2.1–5.2.6 with

a discussion on some practical considerations presented in Section 5.2.7. For simplicity, the

discussion is limited to a search from a single start state to a finite set of goal states with

a constant batch size but the formulation directly extends to searches from a start or goal

region, and/or with variable batch sizes. This version is publicly available in OMPL.

1Pronounced Bit-Star.
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Algorithm 5.1: BIT*(xstart ∈ Xfree, Xgoal ⊂ Xfree)

1 V ← {xstart} ; E ← ∅; T = (V,E);
2 Xunconn ← Xgoal;
3 QV ← V ; QE ← ∅;
4 Vsol’n ← V ∩Xgoal; Vunexpnd ← V ; Xnew ← Xunconn;
5 ci ← minvgoal∈Vsol’n

{gT (vgoal)} ;

6 repeat
7 if QE ≡ ∅ and QV ≡ ∅ then
8 Xreuse ← Prune (T , Xunconn, ci);
9 Xsampling ← Sample (m,xstart, Xgoal, ci);

10 Xnew ← Xreuse ∪Xsampling;

11 Xunconn
+←− Xnew;

12 QV ← V ;

13 while BestQueueValue (QV ) ≤ BestQueueValue (QE) do
14 ExpandNextVertex (QV ,QE, ci);
15 (vmin,xmin)← PopBestInQueue (QE);

16 if gT (vmin) + ĉ (vmin,xmin) + ĥ (xmin) < ci then
17 if gT (vmin) + ĉ (vmin,xmin) < gT (xmin) then
18 cedge ← c (vmin,xmin);

19 if gT (vmin) + cedge + ĥ (xmin) < ci then
20 if gT (vmin) + cedge < gT (xmin) then
21 if xmin ∈ V then
22 vparent ← Parent (xmin);

23 E
−←− {(vparent,xmin)};

24 else

25 Xunconn
−←− {xmin};

26 V
+←− {xmin} ; QV +←− {xmin} ; Vunexpnd

+←− {xmin};
27 if xmin ∈ Xgoal then

28 Vsol’n
+←− {xmin};

29 E
+←− {(vmin,xmin)};

30 ci ← minvgoal∈Vsol’n
{gT (vgoal)};

31 else
32 QE ← ∅; QV ← ∅;
33 until STOP;
34 return T ;

Initialize search
(Section 5.2.1)

Add new batch
(Section 5.2.2)

Select edge
(Section 5.2.3)

Process edge
(Section 5.2.4)
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: An example of how BIT* uses incremental techniques to efficiently search batches of
samples in order of potential solution quality. The search starts with a batch of samples uniformly
distributed in the planning domain. This batch is searched outward from the start in order of
potential solution quality, (a). The search continues until the batch is exhausted or a solution is
found that cannot be improved with the current samples, (b). New samples are then added to the
informed set and incremental techniques are used to continue the search, (c)–(e). This results in an
algorithm that performs an ordered anytime search that almost-surely asymptotically converges
to the optimal solution, shown enlarged in (f). By ordering the search, BIT* finds solutions by
searching the future informed set of a batch.
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BIT* builds an explicit spanning tree of the implicit RGG defined by a batch of samples.

The graph initially consists of only the start and goal (Alg. 5.1, Lines 1–5; Section 5.2.1) but

is incrementally grown with batches of new samples during the search (Alg. 5.1, Lines 7–12;

Section 5.2.2). The graph is searched in order of potential solution quality by selecting the

best possible edge from a queue ordered by potential solution cost (Alg. 5.1, Lines 13–15;

Section 5.2.3) and considering whether this edge improves the cost-to-come of its target vertex

and could improve the current solution (Alg. 5.1, Lines 16–32; Section 5.2.4). The search

continues until no edges in the implicit RGG could provide a better solution, at which point

the accuracy of the RGG approximation is increased by adding a batch of new samples and

the search is resumed. This process continues indefinitely until a suitable solution is found.

5.2.1 Initialization (Alg. 5.1, Lines 1–5)

BIT* begins searching a planning problem with the start, xstart, in the spanning tree,

T := (V,E), and the goal states, Xgoal, in the set of unconnected states, Xunconn (Alg. 5.1,

Lines 1–2). This defines an implicit RGG whose vertices consist of all states (i.e., V ∪Xunconn)

and whose edges are defined by a distance function and an appropriate connection limit.

When the goal is a continuous region of the problem domain it will need to be discretized

(e.g., sampled) before adding to the set of unconnected states.

The explicit spanning tree of this RGG is built using two queues, a vertex expansion

queue, QV , and an edge evaluation queue, QE. These queues are sorted in order of potential

solution quality through the current tree. Vertices in the vertex queue, v ∈ QV , are ordered

by the sum of their current cost-to-come and an estimate of their cost-to-go, gT (v) + ĥ (v).

Edges in the edge queue, (v,x) ∈ QE, are sorted by the sum of the current-cost-to-come of

their source vertex, an estimate of the edge cost, and an estimate of the cost-to-go of their

target vertex, gT (v) + ĉ (v,x) + ĥ (x). Ties are broken in the vertex queue in favour of entries

with the lowest cost-to-come through the current tree, gT (v), and in the edge queue in favour

of the lowest cost-to-come through the current tree and estimated edge cost, gT (v) + ĉ (v,x),

and then the cost-to-come through the current tree, gT (v). These queues are initialized to

contain all the vertices in the tree and an empty queue, respectively (Alg. 5.1, Line 3).

To improve search efficiency, BIT* tracks the vertices in the goal region, Vsol’n, the vertices

that have never been expanded, Vunexpnd, the samples newly created during this batch, Xnew,

and the current best solution, ci. These are initialized to any vertices already in the solution

(empty in all but the most trivial planning problems), the existing vertices, the existing

samples, and the current best solution, respectively (Alg. 5.1, Lines 4–5). As is customary,

the minimum of an empty set is taken to be infinity.

Initialized, BIT* now alternately builds an increasingly accurate implicit RGG approxi-

mation of the continuous planning problem (Section 5.2.2) and searches these representations

for explicit solutions in order of potential solution quality (Sections 5.2.3 and 5.2.4).
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5.2.2 Batch Addition (Alg. 5.1, Lines 7–12)

BIT* alternates between building an increasingly dense approximation of the continuous

planning problem and searching this representation for a solution. The approximation is

updated whenever the search is finished (i.e., both queues are empty; Alg. 5.1, Line 7)

by removing unnecessary states and adding a batch of new samples. This avoids the

computational cost of representing regions of the problem domain that cannot provide a

better solution while increasing the accuracy of approximating the regions that can (i.e.,

the informed set). This improving approximation allows BIT* to almost-surely converge

asymptotically to the optimal solution.

The approximation is pruned to the informed set by removing any states or edges that

cannot improve the current solution (Alg. 5.1, Line 8; Section 5.2.6). This reduces unnecessary

complexity but may disconnect vertices in the informed set that cannot improve the solution

solely because of their current connections. These vertices are recycled as additional ‘new’

samples in the batch so that they may be reconnected later if better connections are found.

The approximation is improved by adding m new randomly generated samples from the

informed set (Alg. 5.1, Line 9). This can be accomplished with direct informed sampling or

advanced rejection sampling (e.g., Kunz et al., 2016).

Each batch of states are labelled as Xnew for the duration of that batch’s search (Alg. 5.1,

Line 10). This set is used to improve search efficiency and consists of both the newly generated

samples and the recycled disconnected vertices. BIT* adds these new states to the set of

unconnected states and initializes the vertex queue with all the vertices in the tree (Alg. 5.1,

Lines 11–12) to restart the search (Sections 5.2.3 and 5.2.4).

5.2.3 Edge Selection (Alg. 5.1, Lines 13–15)

Traditional graph-based search techniques assume that finding and evaluating vertex connec-

tions is computationally inexpensive (e.g., given explicitly). This is not true in sampling-based

planning as finding vertex connections (i.e., the edges in the edge-implicit RGG) requires

performing a nearest-neighbour search and evaluating them requires checking for collisions

and solving two-point BVPs (e.g., differential constraints). BIT* avoids these computational

costs until required by using a lazy search procedure that delays both finding and evaluating

connections in the RGG. Similar lazy techniques can be found in both advanced graph-based

search and sampling-based planners (Bohlin and Kavraki, 2000; Branicky et al., 2001; Cohen

et al., 2014b; Hauser, 2015; Helmert, 2006; Sánchez and Latombe, 2002).

Connections are found by using a vertex queue, QV , ordered by potential solution quality.

This queue delays processing a vertex (i.e., performing a nearest-neighbour search) until

its outgoing connections could be part of the best solution to the current graph. These

connections are evaluated by using an edge queue, QE, also ordered by potential solution
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quality. This queue delays evaluating an edge (i.e., performing collision checks and solving

two-point BVPs) until it could be part of the best solution to the current graph.

A vertex could be part of the best solution when it could provide an outgoing edge better

than the best edge in the edge queue. When the heuristic is consistent (e.g., the L2 norm)

the queue value of a vertex, v ∈ QV , is a lower-bounding estimate of the queue value of its

outgoing edges,

∀x ∈ X, gT (v) + ĥ (v) ≤ gT (v) + ĉ (v,x) + ĥ (x) .

The best edge at any iteration can therefore be found by processing the vertex queue until

it is worse than the edge queue (Alg. 5.1, Line 13). This process of removing a vertex from

the vertex queue and placing its outgoing edges in the edge queue is referred to as expanding

a vertex (Alg. 5.1, Line 14; ; Section 5.2.5). Once all necessary vertices are expanded, the

best edge in the queue, (vmin,xmin), is removed (Alg. 5.1, Line 15) and used for this iteration

of the search (Section 5.2.4).

The functions BestQueueValue (·) and PopBestInQueue (·) return the value of the element

at the front of a queue and pop the element off the front of a queue, respectively.

5.2.4 Edge Processing (Alg. 5.1, Lines 16–32)

BIT* also uses heuristics to avoid expensive calculations when evaluating the best edge,

(vmin,xmin). An edge is added to the spanning tree if and only if

1. an estimate of its cost could provide a better solution, given the current tree,

gT (vmin) + ĉ (vmin,xmin) + ĥ (xmin) < ci, (Alg. 5.1, Line 16)

2. an estimate of its cost could improve the current tree,

gT (vmin) + ĉ (vmin,xmin) < gT (xmin) , (Alg. 5.1, Line 17)

3. its real cost could provide a better solution, given the current tree,

gT (vmin) + c (vmin,xmin) + ĥ (xmin) < ci, (Alg. 5.1, Line 19)

4. and its real cost will improve the current tree,

gT (vmin) + c (vmin,xmin) < gT (xmin) . (Alg. 5.1, Line 20)

Conditions 1 and 3 are always true in the absence of a solution, while Conditions 2 and 4 are

always true when the target of the edge, xmin, is not in the spanning tree.

Checking if the edge could ever provide a better solution or improve the current tree

(Conditions 1 and 2) allows BIT* to reject edges without calculating their true cost (Alg. 5.1,

Lines 16–17). Condition 1 also provides a stopping condition for searching the current RGG.

When an edge fails this condition so does the entire queue and both queues can be cleared
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to start a new batch (Alg. 5.1, Line 32). If the edge fails Condition 2 it is discarded and

the iteration finishes. If the edge passes both these conditions its true cost is calculated by

performing a collision check and solving any two-point BVPs (Alg. 5.1, Line 18). Edges in

collision are considered to have infinite cost.

Checking if the real edge could provide a better solution given the current tree (Condition

3), allows BIT* to reduce tree complexity by rejecting edges that could never improve the

current solution (Alg. 5.1, Line 19). Checking if the real edge improves the current tree

(Condition 4), assures the cost-to-come of the explicit tree decreases monotonically (Alg. 5.1,

Line 20). If the edge fails either of these conditions it is discarded and the iteration finishes.

An edge passing these conditions is added to the spanning tree. If the target vertex is

already connected (Alg. 5.1, Line 21), then the edge represents a rewiring and the current

edge must be removed (Alg. 5.1, Lines 22–23). Otherwise, the edge represents an expansion of

the tree and the target vertex must be moved from the set of unconnected states to the set of

vertices, inserted into the vertex queue for future expansion, and marked as a never-expanded

vertex (Alg. 5.1, Lines 25–26). The new vertex is also added to the set of vertices in the goal

region if appropriate (Alg. 5.1, Lines 27–28).

The new edge is then finally added to the tree (Alg. 5.1, Line 29) and the current best

solution is updated as necessary (Alg. 5.1, Line 30). The search then continues by selecting

the next edge in the queue (Section 5.2.3) or increasing the approximation accuracy if the

current RGG cannot provide a better solution (Section 5.2.2).

5.2.5 Vertex Expansion (Alg. 5.1, Line 14; Alg. 5.2)

The function ExpandNextVertex (QV ,QE, ci) removes the front of the vertex queue (Alg. 5.2,

Line 1) and adds its outgoing edges in the RGG to the edge queue. The RGG is defined

using the results of Karaman and Frazzoli (2011), (3.4) and (3.5), to limit graph complexity

while maintaining almost-sure asymptotic convergence to the optimum. Edges exist between

a vertex and the kBIT∗-closest states or all states within a distance of rBIT∗ , with

rBIT∗ > r∗BIT∗ ,

r∗BIT∗ :=


2

(
1 +

1

n

)


min
{
λ (X) , λ

(
Xf̂

)}

ζn



(

log (|V |+ |Xunconn| −m)

|V |+ |Xunconn| −m

)


1
n

, (5.1)

and

kBIT∗ > k∗BIT∗ ,

k∗BIT∗ := e

(
1 +

1

n

)
log (|V |+ |Xunconn| −m) , (5.2)

where m is the number of samples added in the last batch.
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Algorithm 5.2: ExpandNextVertex (QV ⊆ V, QE ⊆ V × (V ∪X) , ci ∈ R≥0)

1 vmin ← PopBestInQueue (QV );
2 if vmin ∈ Vunexpnd then
3 Xnear ← Near (Xunconn,vmin, rBIT∗);

4 else
5 Xnear ← Near (Xnew ∩Xunconn,vmin, rBIT∗);

6 QE +←−
{

(vmin,x) ∈ V ×Xnear

∣∣∣ ĝ (vmin) + ĉ (vmin,x) + ĥ (x) < ci

}
;

7 if vmin ∈ Vunexpnd then
8 Vnear ← Near (V,vmin, rBIT∗);

9 QE +←−
{

(vmin,w) ∈ V × Vnear

∣∣∣ (vmin,w) 6∈ E,
ĝ (vmin) + ĉ (vmin,w) + ĥ (w) < ci,

ĝ (vmin) + ĉ (vmin,w) < gT (w)
}

;

10 Vunexpnd
−←− {vmin};

This connection limit is calculated from the cardinality of the graph minus the m new

samples to simplify proving almost-sure asymptotic optimality (Section 5.3). This lower

bound will be large for the initial sparse batches but it can be thresholded with a maximum

edge length, as done by RRT* in (3.3). The function Near returns the states that meet the

selected RGG connection criteria for a given vertex.

Every vertex in the tree is either expanded or pruned in every batch. Processing all the

outgoing edges from vertices would result in BIT* repeatedly considering the same previously

rejected edges. This can be avoided by using the sets of never-expanded vertices, Vunexpnd,

and new samples, Xnew, to add only previously unconsidered edges to the edge queue.

Whether edges to unconnected samples are new depends on whether the source vertex

has previously been expanded (Alg. 5.2, Line 2). If it has not been expanded then no

outgoing connections have been considered and all nearby unconnected samples are potential

descendants (Alg. 5.2, Line 3). If it has been expanded then any connections to ‘old’

unconnected samples have already been considered and rejected and only the ‘new’ samples are

considered as potential descendants (Alg. 5.2, Line 5). The subset of these potential edges that

could improve the current solution are added to the queue in both situations (Alg. 5.2, Line 6).

Whether edges to connected samples (i.e., rewirings) are new also depends on whether the

source vertex has been expanded (Alg. 5.2, Line 7). If it has not been expanded then all nearby

connected vertices are considered as potential descendants (Alg. 5.2, Line 8). The subset of

these potential edges that could improve the current solution and the current tree are added

to the queue (Alg. 5.2, Line 9) and the vertex is then marked as expanded (Alg. 5.2, Line 10).

If a vertex has previously been expanded then no rewirings are considered. Improvements

in the tree may now allow a previously considered edge to improve connected vertices but

considering these connections would require repeatedly reconsidering infeasible edges. This

lack of propagated rewiring has no effect on almost-sure asymptotic optimality, as in RRT*.
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Algorithm 5.3: Prune (T = (V,E) , Xunconn ⊂ X, ci ∈ R≥0)

1 Xreuse ← ∅;
2 Xunconn

−←−
{

x ∈ Xunconn

∣∣∣ f̂ (x) ≥ ci

}
;

3 forall v ∈ V in order of increasing gT (v) do

4 if f̂ (v) > ci or gT (v) + ĥ (v) > ci then

5 V
−←− {v} ; Vsol’n

−←− {v} ; Vunexpnd
−←− {v};

6 vparent ← Parent (v);

7 E
−←− {(vparent,v)};

8 if f̂ (v) < ci then

9 Xreuse
+←− {v};

10 return Xreuse;

5.2.6 Graph Pruning (Alg. 5.1, Line 8; Alg. 5.3)

The function, Prune (T , Xunconn, ci), reduces the complexity of both the approximation of

the continuous planning problem (i.e., the implicit RGG) and its search (i.e., the explicit

spanning tree) by limiting them to the informed set. It removes any states that can never

provide a better solution and disconnects any vertices that cannot provide a better solution

given the current tree. Disconnected vertices that could improve the solution with a better

connection are reused as new samples in the next batch to maintain uniform sample density

in the informed set. This assures that in each batch every vertex is either expanded or pruned

as assumed by ExpandNextVertex to avoid reconsidering edges (Section 5.2.5).

The set of recycled vertices is initialized as an empty set (Alg. 5.3, Line 1) and all

unconnected states that cannot provide a better solution (i.e., are not members of the

informed set) are removed (Alg. 5.3, Line 2). The connected vertices are then incrementally

pruned in order of increasing cost-to-come (Alg. 5.3, Line 3) by identifying those that can

never provide a better solution or improve the solution given the current tree (Alg. 5.3, Line 4).

Vertices that fail either condition are removed from the tree by disconnecting their incoming

edge and removing them from the vertex set and any labelling sets (Alg. 5.3, Lines 5–7).

Any disconnected vertex that could provide a better solution (i.e., is a member of the

informed set) is reused as a sample in the next batch (Alg. 5.3, Lines 8–9). This maintains

uniform sample density in the informed set and assures that vertices will be reconnected

if future improvements allow them to provide a better solution. This set of disconnected

vertices is returned to BIT* at the end of the pruning procedure (Alg. 5.3, Line 10).

5.2.7 Practical Considerations

Algs. 5.1–5.3 describe an implementation-agnostic version of BIT* and leave room for a

number of practical improvements depending on the specific implementation.
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Many of the sets (e.g., Xnew, Vunexpnd) can be implemented more efficiently as labels.

Searches (e.g., Alg. 5.2, Line 3) can be implemented efficiently with appropriate datastructures

that do not require an exhaustive global search (e.g., k-d trees). Pruning (Alg. 5.1, Line 8;

Alg. 5.3) is expensive and should only occur when a new solution has been found or limited

to significant changes in solution cost.

Ordered containers provide efficient sorted queues but the order of elements in the vertex

and edge queues change when vertices are rewired. In practice, there appears to be little

difference between efficiently resorting the affected elements in these queues and only lazily

resorting the queue to assure no elements have been missed when reaching the end.

Depending on the datastructure used for the edge queue, it may be beneficial to remove

unnecessary entries when a new edge is added to the spanning tree, i.e., by adding

QE −←− {(v,xmin) ∈ QE | ĝ (v) + ĉ (v,xmin) ≥ gT (xmin)}

after Alg. 5.1, Line 29.

5.3 Analysis

The performance of BIT* is analyzed theoretically using the results of Karaman and Frazzoli

(2011). It is shown to be probabilistically complete (Theorem 5.1) and almost-surely asymp-

totically optimal (Theorem 5.2). Its search order is also shown to be equivalent to a lazy

version of LPA* (Lemma 5.3).

Theorem 5.1 (Probabilistic completeness of BIT*). The probability that BIT* finds a feasible

solution to a given planning problem, if one exists, when given infinite samples is one,

lim inf
q→∞

P (σq,BIT∗ ∈ Σ, σq,BIT∗ (0) = xstart, σq,BIT∗ (1) ∈ Xgoal) = 1,

where q is the number of samples, σq,BIT∗ is the path found by BIT* from those samples, and

Σ is the set of all feasible, collision-free paths.

Proof. Proof of Theorem 5.1 follows from the proof of Theorem 5.2.

Theorem 5.2 (Almost-sure asymptotic optimality of BIT*). The probability that BIT*

converges asymptotically towards the optimal solution of a given planning problem, if one

exists, when given infinite samples is one,

P

(
lim sup
q→∞

c (σq,BIT∗) = c (σ∗)

)
= 1,

where q is the number of samples, σq,BIT∗ is the path found by BIT* from those samples, and

σ∗ is optimal solution to the planning problem.
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Proof. Theorem 5.2 is proven by showing that BIT* considers at least the same edges as RRT*

for a sequence of states, Xsamples = (x1,x2, . . . ,xq), and connection limit, rBIT∗ ≥ rRRT∗ .

RRT* incrementally builds a tree from a sequence of samples. For each state in the se-

quence, xk, it considers the neighbourhood of earlier states that are within the connection limit,

Xnear,k :=
{
xj ∈ Xsamples

∣∣ j < k, ‖xk − xj‖2 ≤ rRRT∗
}
.

It selects the connection from this neighbourhood that minimizes the cost-to-come of the

state and then evaluates the ability of connections from this state to reduce the cost-to-come

of the other states in the neighbourhood.

Given the same sequence of states, BIT* groups them into batches of samples, Xsamples =

(Y1, Y2, . . . , Y`), where each batch is a set of m samples, e.g., Y1 := {x1,x2, . . . ,xm}. It

incrementally builds a tree by processing this batched sequence of samples. For each state

in the sequence, y ∈ Yk, it considers the neighbourhood of states from the same or earlier

batches within the connection limit,

Xnear,k := {x ∈ Yj | j ≤ k, ‖y − x‖2 ≤ rBIT∗} .

The connection from this neighbourhood that minimizes the cost-to-come of the state is the

one that will be added to the tree and all its outgoing edges will be considered in connecting its

neighbours. This contains all the edges considered by RRT* for an equivalent connection limit,

rBIT∗ ≥ rRRT∗ . As (5.1) uses the same connection radius for a batch that RRT* would use for

the first sample in the batch and the connection radius of both are monotonically decreasing,

this shows that BIT* is almost-surely asymptotically optimal and proves Theorem 5.2.

BIT* uses a search order that is equivalent to a version of LPA* that lazily estimates the

edge cost between states in the queue (Lemma 5.3). As BIT* does not reconsider outgoing

connections from rewired vertices (i.e., it does not propagate rewirings), it is not a complete

LPA* search of the RGG but instead a search similar to TLPA* (Aine and Likhachev, 2016).

Lemma 5.3 (Equivalence of BIT* to a lazy LPA* search). An edge queue ordered first on the

sum of a vertex’s estimated cost-to-go, estimated incoming edge cost, and current cost-to-come

of its parent,

gT (u) + ĉ (u,v) + ĥ (v) ,

then the estimated cost-to-come of the vertex,

gT (u) + ĉ (u,v) ,

and then the cost-to-come of its parent,

gT (u) ,

is an equivalent ordering to LPA* (Koenig et al., 2004).
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Proof. LPA* uses a queue of vertices ordered lexicographically first on the solution cost

constrained to go through the vertex and then the cost-to-come of the vertex. Both these

terms are calculated for a vertex, v ∈ V , considering all its possible incoming edges (referred

to as the rhs-value in LPA*), i.e.,

min
(u,v)∈E

{gT (u) + c (u,v)}+ ĥ (v)

and

min
(u,v)∈E

{gT (u) + c (u,v)} .

This minimum requires calculating the true edge cost between a vertex and all of its

possible parents. This calculation is expensive in sampling-based planning (e.g., collision

checking, differential constraints, etc.), and reducing its calculation is desirable. This can

be achieved by incrementally calculating the minimum in the order given by an admissible

heuristic estimate of edge cost. Considering edges into the vertex in order of increasing

estimated cost calculates a running minimum that finds the true minimum when the estimated

cost through the next edge to consider is higher than the current value.

BIT* combines the minimum calculations for individual vertices into a single edge queue.

It simultaneously calculates the minimum cost-to-come for each vertex in the current graph

while expanding vertices in order of increasing estimated solution cost.

5.4 Modifications and Extensions

The basic version of BIT* presented in Algs. 5.1–5.3 can be modified and extended to include

more advanced features that may improve performance for some planning applications. Sec-

tion 5.4.1 presents a method to delay rewiring the tree until an initial solution is found. This

prioritizes exploring the RGG to find solutions and may be beneficial in time-constrained

applications. Section 5.4.2 presents a method to delay sampling until necessary. This avoids ap-

proximating regions of the planning problem that are never searched, improves performance in

large planning problems, and avoids the need to define a priori limits in unbounded problems.

Section 5.4.3 presents a method for BIT* to occasionally remove unconnected samples

while maintaining almost-sure asymptotic optimality. This avoids repeated connection

attempts to infeasible states and may be beneficial in problems when many regions of the free

space are unreachable. Section 5.4.4 extends the idea of reducing the number of connections

attempted per sample during an ordered search to develop Sorted RRT* (SORRT*). This

version of RRT* uses batches of samples to order its search by potential solution quality, as

in BIT*, but only makes one connection attempt per sample, as in RRT*.
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Algorithm 5.4: ExpandNextVertex (QV ⊆ V, QE ⊆ V × (V ∪X) , ci ∈ R≥0)

1 vmin ← PopBestInQueue (QV );
2 if vmin ∈ Vunexpnd then
3 Xnear ← Near (Xunconn,vmin, rBIT∗);

4 Vunexpnd
−←− {vmin};

5 Vdelayed
+←− {vmin};

6 else
7 Xnear ← Near (Xnew ∩Xunconn,vmin, rBIT∗);

8 QE +←−
{

(vmin,x) ∈ V ×Xnear

∣∣∣ ĝ (vmin) + ĉ (vmin,x) + ĥ (x) < ci

}
;

9 if vmin ∈ Vdelayed and ci <∞ then
10 Vnear ← Near (V,vmin, rBIT∗);

11 QE +←−
{

(vmin,w) ∈ V × Vnear

∣∣∣ (vmin,w) 6∈ E,
ĝ (vmin) + ĉ (vmin,w) + ĥ (w) < ci,

ĝ (vmin) + ĉ (vmin,w) < gT (w)
}

;

12 Vdelayed
−←− {vmin};

5.4.1 Delayed Rewiring

Many robotic systems have a finite amount of computational time available to solve planning

problems. In these situations, improving the existing graph before an initial solution is found

only reduces the likelihood of BIT* solving the given problem. A method to delay rewirings

until a solution is found is presented in Alg. 5.4 as simple modifications to ExpandNextVertex,

with changes highlighted in red (cf. Alg. 5.2). The rewirings are still performed once a

solution is found and this method does not affect almost-sure asymptotic optimality.

Rewirings are delayed by separately tracking whether vertices are unexpanded to nearby

unconnected samples, Vunexpnd, and unexpanded to nearby connected vertices, Vdelayed. This

allows BIT* to prioritize finding a solution by only considering edges to new samples and then

once a solution is found improving the graph by considering rewirings from the existing vertices.

A vertex is moved from the never-expanded set to the delayed set when edges to its

potential unconnected descendants are added to the edge queue (Alg. 5.4, Lines 4–5). This

allows future expansions of the vertex to avoid old unconnected samples while tracking that

the vertex’s rewirings have not been considered. Vertices in the delayed set are expanded as

potential rewirings of other connected vertices once a solution is found (Alg. 5.4, Line 9) and

the delayed label is removed (Alg. 5.4, Line 12).

This extension requires initializing and resetting Vdelayed along with the other labelling

sets (e.g., Alg. 5.1, Line 4 and Alg. 5.3, Line 5). This extension is included in the publicly

available OMPL implementation of BIT*.
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Figure 5.4: An illustration of just-in-time (JIT) sampling. Samples are generated only when they
are necessary for the expansion of a vertex, v, into the edge queue. This is accomplished while
maintaining uniform sample density by an expanding informed set. The informed set is expanded by
adding uniformly distributed samples in the prolate hyperspheroidal shell defined by the difference
between the maximum heuristic value of the neighbourhood, creq’d, and the currently sampled
informed set, csampled.

5.4.2 Just-in-Time (JIT) Sampling

Many robotic systems operate in environments that are unbounded (e.g., the outdoors).

These problems has previously required using a priori search limits to make the problem

domain tractable. Selecting these limits can be difficult and may prevent finding a solution

(e.g., defining a domain that does not contain a solution) or reduce performance (e.g., defining

a domain too large to search sufficiently). A method to avoid these problems in BIT* by

generating samples just in time (JIT) is presented in Alg. 5.5 and accompanying modifications

to the main algorithm. This modification generates samples only when needed by BIT*’s

search while still maintaining uniform sample density and almost-sure asymptotic convergence

to the optimum. This avoids approximating regions of the problem that are not used to find

a solution and allows BIT* to operate directly on large or unbounded planning problems.

BIT* searches a planning problem by constructing and searching an implicit RGG defined

by a number of uniformly distributed samples (vertices) and their relative distances (edges).

These samples are given explicitly in Algs. 5.1–5.3 but are not used until they could be

a descendant of a vertex in the tree. This occurs when the samples are within the local

neighbourhood of the vertex (Fig. 5.4). Samples therefore can be generated as needed by

incrementally sampling an expanding informed set. The size of the informed set, creq’d,

necessary to contain the neighbourhood of a vertex, Xnear, for planning problems seeking to
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Algorithm 5.5: UpdateSamples (v ∈ V, csampled ≤ ci, ci ∈ R≥0)

1 creq’d ← min
{
f̂ (v) + 2rBIT∗ , ci

}
;

2 if creq’d > csampled then
3 λsample ← λPHS (creq’d)− λPHS (csampled);
4 m′ ← ρλsample;

5 Xnew
+←− Sample (m′, csampled, creq’d);

6 Xunconn
+←− Xnew;

7 csampled ← creq’d;

minimize path length,

creq’d := max
x∈Xnear

{
f̂ (x)

}
,

is bounded from above as,

creq’d ≤ f̂ (v) + 2rBIT∗ .

JIT sampling only generates samples when necessary to expand vertices by incrementally

sampling this growing informed set. It does this while maintaining uniform sample density by

tracking the previously sampled size of the set, csampled, and only generating the new samples

necessary to increase it. The function UpdateSamples (v, csampled, ci) generates JIT samples

for vertex expansion in geometric planning problems (Alg. 5.5). The required size of the

sampled informed set, creq’d, is a function of the neighbourhood and the maximum size of the

informed set (Alg. 5.5, Line 1). If it is higher than the previously sampled cost, csampled, the

local neighbourhood requires new samples (Alg. 5.5, Line 2). If it is less than the sampled

cost the neighbourhood has already been sampled and no samples are generated.

The number of required new samples, m′, can be calculated from the chosen batch sample

density, ρ, and the volume of the shell being sampled (Alg. 5.5, Lines 3–4). These samples are

added to the set of new states and the set of unconnected states (Alg. 5.5, Lines 5–6). Finally,

the sampled cost is updated to reflect the new size of the sampled informed set (Alg. 5.5,

Line 7).

The function λPHS (·) calculates the measure of the prolate hyperspheroid defined by

the start and goal with the given cost using (3.8). The function Sample (m′, csampled, creq’d)

generates samples within the cost interval [csampled, creq’d) and may be implemented with

rejection sampling.

Using Alg. 5.5 requires modifying Algs. 5.1 and 5.2. The Sample function of a batch

(Alg. 5.1, Line 9) is replaced with an initialization of the sampled cost variable, csampled ← 0,

and UpdateSamples (v, csampled, ci) is added to the front of ExpandNextVertex (Alg. 5.2).

This extension is included in the publicly available OMPL implementation of BIT*.
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5.4.3 Sample Removal

BIT* approximates continuous planning problems by building an implicit RGG. It efficiently

increases the accuracy of this approximation by focusing it to the informed set and alternately

adds new samples to increase density and reduces the size of the informed set by searching

the existing approximation for better solutions. This builds an explicit spanning tree that

contains all states that could currently provide a better solution but may not use every state

in the RGG.

States in an informed set may not be able to improve a solution for many reasons. The

approximation may be insufficiently accurate (i.e., low sample density) to capture difficult

features (e.g., narrow passages) or represent sufficiently optimal paths. The informed set

may also include regions of the problem domain that cannot improve the solution due to

unconsidered problem features (e.g., barriers separating free space) or because it is otherwise

poorly chosen (i.e., low precision). Unconnected samples in the first situation may later be

beneficial to the search but samples in the second represent unnecessary computational cost.

Periodically removing these samples would reduce the complexity of the implicit RGG and

avoid repeatedly attempting to connect them to new vertices in the tree.

Unconnected samples can be removed while maintaining the requirements for almost-sure

asymptotic optimality by modifying the RGG connection limits to consider only uniformly

distributed samples. This can be accomplished by using the number of uniformly distributed

samples added since the last removal of unconnected states in (5.1) and (5.2). This simple

extension is included in the publicly available OMPL implementation of BIT*.

5.4.4 Sorted RRT* (SORRT*)2

Approaching sampling-based planning as the search of an implicit RGG motivates BIT* to

consider multiple connections to each sample. Section 5.4.3 presents a method to limit this

number of attempts by periodically removing samples. The natural extension of this idea

is to consider only a single connection attempt per sample, as in RRT*. This motivates

the development of Sorted RRT* (SORRT*), a version of RRT* that orders its search by

potential solution quality by sorting batches of samples.

SORRT* is presented in Alg. 5.6 as simple modifications of Informed RRT*, with changes

highlighted in red (cf. Alg. 4.1). Instead of expanding the tree towards a randomly generated

sample at each iteration, SORRT* extends the tree towards the best unconsidered sample

in its current batch. It accomplishes this by using a queue samples, QSamples, ordered by

potential solution cost, f̂ (·). This queue is filled with m samples (Alg. 5.6, Lines 5–6) and

the search proceeds by expanding the tree towards the best sample in the queue (Alg. 5.6,

Line 7). This orders the search for the m iterations required to use the samples in a batch,

at which point a new batch of samples is generated and the search continues.

2Pronounced Sort-Star.
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Algorithm 5.6: SORRT*(xstart ∈ Xfree, Xgoal ⊂ X)

1 V ← {xstart} ; E ← ∅; T = (V,E);
2 Vsol’n ← ∅; QSamples ← ∅;
3 for i = 1 . . . q do
4 ci ← minvgoal∈Vsol’n

{gT (vgoal)};
5 if QSamples ≡ ∅ then
6 QSamples ← Sample (m,xstart, Xgoal, ci);

7 xrand ← PopBestInQueue (QSamples);
8 vnearest ← Nearest (V,xrand);
9 xnew ← Steer (vnearest,xrand);

10 if CollisionFree (vnearest,xnew) then
11 if xnew ∈ Xgoal then

12 Vsol’n
+←− {xnew};

13 V
+←− {xnew};

14 Vnear ← Near (V,xnew, rrewire);
15 vmin ← vnearest;
16 forall vnear ∈ Vnear do
17 cnew ← gT (vnear) + c (vnear,xnew);
18 if cnew < gT (vmin) + c (vmin,xnew) then
19 if CollisionFree (vnear,xnew) then
20 vmin ← vnear;

21 E
+←− {(vmin,xnew)};

22 forall vnear ∈ Vnear do
23 cnear ← gT (xnew) + c (xnew,vnear);
24 if cnear < gT (vnear) then
25 if CollisionFree (xnew,vnear) then
26 vparent ← Parent (vnear);

27 E
−←− {(vparent,vnear)};

28 E
+←− {(xnew,vnear)};

29 Prune (V,E, ci);

30 return T ;
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The function PopBestInQueue (·) pops the best element off the front of a queue given

its ordering. A goal bias may be implemented in SORRT* by adding a small probability of

sampling the goal instead of removing the best sample from the queue. This algorithm is

publicly available in OMPL.

SORRT* can be viewed as a simplified version of BIT* that searches the RGG by

considering only the best-possible edge to each vertex. Attempting to connect each sample

once avoids the computational cost of repeated connection attempts to infeasible samples but

makes the search dependent on the sampling order. High-utility samples (e.g., samples near

the optimum) may be underutilized depending on the state of the tree when they are found.

This can become problematic if these samples have a low sampling probability (e.g., samples

in narrow passages). Making multiple connections attempts per sample and retaining samples

for multiple batches allows BIT* to exploit these useful samples more than algorithms such

as SORRT*. As seen in Section 5.5, this results in different performance especially in high

state dimensions.

5.5 Experiments

The benefits of ordering the search of continuous planning problems are demonstrated on

simulated problems in R2, R8, and R16 (Section 5.5.1) and one and two-armed problems

for HERB (Section 5.5.2) using OMPL3. BIT* is compared to RRT, RRT-Connect, RRT*,

FMT*, Informed RRT*, and SORRT*.

All planners used the same tuning parameters and configurations where possible. Planning

time was limited to 3 seconds, 150 seconds, and 300 seconds in R2, R8, and R16 and 5 seconds

and 600 seconds for HERB (R7 and R14), respectively. RRT-style planners used a goal-

sampling bias of 5% and a maximum edge length of η = 0.3, 0.9, and 1.7 on the abstract prob-

lems (R2, R8, and R16) and 0.7 and 1.3 on HERB, respectively. These values were selected ex-

perimentally to reduce the time required to find an initial solution on simple training problems.

The RRT* planners, FMT*, and BIT* all used a connection radius equal to 2 times their

theoretical minimum (e.g., rRRT∗ = 2r∗RRT∗) and approximated the Lebesgue measure of the

free space with the measure of the entire planning problem. The RRT* planners also used the

ordered rewiring technique presented in Perez et al. (2011). Informed RRT*, SORRT*, and

BIT* used the L2 norm as estimates of cost-to-come and cost-to-go, direct informed sampling,

and delayed pruning the graph until solution cost changed by more than 5%. SORRT* and

BIT* both used m = 100 samples per batch and BIT* used an approximately sorted queue.

BIT* also thresholded its large initial connection radius by using the same radius for both

the first and second batches.
3The experiments were run on a laptop with 16 GB of RAM and an Intel i7-4810MQ processor. The

abstract experiments were run in Ubuntu 12.04 (64-bit) with Boost 1.58, while the HERB experiments were
run in Ubuntu 14.04 (64-bit).
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5.5.1 Simulated Planning Problems

The algorithms were tested on simulated problems in R2, R8, and R16 on worlds consisting

of many different homotopy classes (Section 5.5.1.1) and randomly generated obstacles

(Section 5.5.1.2). The planners were tested with 100 different pseudo-random seeds on

each problem and state dimension. The solution cost of each planner was recorded every

1 millisecond by a separate thread and the median was calculated from the 100 trials by

interpolating each trial at a period of 1 millisecond. The absence of a solution was considered

an infinite cost for the purpose of calculating the median.

5.5.1.1 Worlds with Many Homotopy Classes

The algorithms were tested on problems with many homotopy classes in R2, R8, and R16

(Fig. 4.10b). The worlds consisted of a (hyper)cube of width l = 4 with the start and goal

located at [−0.5, 0, . . . , 0]T and [0.5, 0, . . . , 0]T , respectively. The problem domain was filled

with a regular pattern of axis-aligned (hyper)rectangular obstacles with a width such that

the start and goal were 5 ‘columns’ apart.

The results are presented in Fig. 5.5 with the percent of trials solved and the median

solution cost plotted versus run time. These results demonstrates the advantages and

disadvantages of attempting multiple connections per sample. In low dimensions, the main

challenge of this planning problem is avoiding obstacles and BIT* can be outperformed

by planners that attempt only a single connection per sample (e.g., Informed RRT*). In

high dimensions, the exponential increase in planning problem measure (i.e., the curse of

dimensionality) makes navigating towards the goal an equal challenge to avoiding obstacles

and BIT* outperforms other planners, even SORRT*.

This effect is visible in the relative performance of planners across state dimension. In

R2, BIT* performs roughly the same as Informed RRT* and SORRT*. It is faster to solve

100% of the planning trials (Fig. 5.5a) but improves the median solution cost slower than

the two RRT*-based algorithms (Fig. 5.5d). In R8, BIT* drastically outperforms Informed

RRT* and SORRT* in solving all planning trials (Fig. 5.5b) but is slightly outperformed by

those two planners in terms of median solution cost (Fig. 5.5e). In R16, the difference is stark

and BIT* is the only anytime almost-surely asymptotically optimal planner to always solve

the planning problem in the given 300 seconds.

5.5.1.2 Random Worlds

The planners were tested on randomly generated problems in R2, R8, and R16 . The worlds

consisted of a (hyper)cube of width l = 2 populated with approximately 75 random axis-

aligned (hyper)rectangular obstacles that obstruct at most one third of the environment.
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Figure 5.5: Planner performance versus time for the problem illustrated in Fig. 4.10b. Each planner
was run 100 different times in R2, R8, and R16 with l = 4 and run times limited to 3, 150, and 300
seconds, respectively. The percentage of trials solved is plotted versus run time for each planner
and presented in (a)–(c). The median path length is plotted versus run time for each planner
and presented in (d)–(f), with unsuccessful trials assigned infinite cost. The error bars denote a
nonparamentric 99% confidence interval on the median. The results show that BIT* increasingly
outperforms other almost-surely asymptotically optimal planners as state dimension increases. Note
the low success rates of RRT* planners in high dimensions.
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Figure 5.6: Planner performance versus time for a randomly generated problem. Each planner
was run 100 different times in R2, R8, and R16 with l = 2 and run times limited to 3, 150, and 300
seconds, respectively. The percentage of trials solved is plotted versus run time for each planner
and presented in (a)–(c). The median path length is plotted versus run time for each planner
and presented in (d)–(f), with unsuccessful trials assigned infinite cost. The error bars denote a
nonparamentric 99% confidence interval on the median. The results show that BIT* increasingly
outperforms other almost-surely asymptotically optimal planners as state dimension increases. Note
the low success rates of RRT* planners in high dimensions.
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For each state dimension, 10 different random worlds were generated and the planners

were tested on each with 100 different pseudo-random seeds. The true optima for these

problems are different and unknown and there is no meaningful way to compare the results

across problems. Results from a representative problem are instead presented in Fig 5.6 with

the percent of trials solved and the median solution cost plotted versus computational time.

These experiments show that BIT* generally finds better solutions faster than other

sampling-based optimal planners and RRT on these types of problems regardless of the state

dimension. It has a higher likelihood of having found a solution at a given computational time

(Fig. 5.6a–c), and converges faster towards the optimum (Fig. 5.6d–f), with the relative im-

provement increasing with state dimension. The only tested planner that found solutions faster

than BIT* was RRT-Connect, a nonanytime planner that cannot converge to the optimum.

5.5.2 Path Planning for HERB

It is difficult to capture the challenges of actual high-dimensional planning in abstract worlds.

Two planning problems inspired by manipulation scenarios were created for HERB, a 14-DOF

mobile manipulation platform (Srinivasa et al., 2012).

Start and goal poses were chosen for one arm (7 DOFs, Section 5.5.2.1) and two arms

(14 DOFs, Section 5.5.2.2) to define planning problems with the objective of minimizing

path length through configuration space. They were used to compare RRT, RRT-Connect,

Informed RRT*, SORRT*, FMT*, and BIT*. The planners were run on each problem 50

times while recording success rate, initial solution time and cost, and final cost. Trials that

did not find a solution were considered to have taken infinite time and have infinite path

length, respectively, for the purpose of calculating medians. The number of FMT* samples

for both problems was chosen to use the majority of the available computational time.

5.5.2.1 A One-Armed Planning Problem

A planning problem was defined for HERB’s left arm around a cluttered table (Fig. 5.7). The

arm starts folded at the elbow and held at approximately the level of the table (Figs. 5.7a and

5.7b) and must be moved into position to grasp a box (Figs. 5.7c and 5.7d). The planners

were given 5 seconds of computational time to solve this 7-DOF problem with the objective

of minimizing path length in configuration space. FMT* used m = 30 samples.

The percentage of trials that successfully found a solution (Fig. 5.8a), the median time

and cost of the initial solution (Figs. 5.8b and 5.8c) and the final cost (Fig. 5.8d) were plotted

for each planner. Infinite values are not plotted.

The results show BIT* finds solutions more often than other almost-sure asymptotically

optimal planners on this problem (Fig. 5.8a) and also finds better solutions faster than all

tested algorithms, including RRT-Connect (Figs. 5.8b–5.8d). Fig. 5.9 presents a composite

photograph of HERB executing a path found by BIT* for a similar problem.
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(a) (b) (c) (d)

Figure 5.7: A one-armed motion planning problem for HERB in R7. Starting at a position level
with the table, (a) and (b), HERB’s left arm must be moved in preparation for grasping a box on
the far side of the table, (c) and (d).
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Figure 5.8: Results from 50, 5 second trials on the one-armed HERB planning problem shown in
Fig. 5.7. The percent of solutions solved, (a), the median time to an initial solution, (b), the median
initial path length, (c), and the median final path length, (d), are presented with 99% confidence
intervals for each planner. Unsuccessful trials were assigned infinite time and cost. The inability of
nonanytime planners (e.g., RRT, RRT-Connect, and FMT*) to use the remaining available time
to improve their initial solution is denoted with diminished colour in (d), where present. BIT* is
the only almost-surely asymptotically optimal planner to solve all 50 trials and does so in a time
comparable to RRT-Connect. It also finds significantly lower cost paths then all the other planners.

Figure 5.9: A composite figure of HERB executing a path found by BIT* on a one-armed planning
problem similar to Fig. 5.7.
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(a) (b) (c) (d)

Figure 5.10: A two-armed motion planning problem for HERB in R14. Starting under the table,
(a) and (b), HERB’s arms must be moved in preparation for opening a bottle, (c) and (d).
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Figure 5.11: Results from 50, 600 second trials on the two-armed HERB planning problem shown in
Fig. 5.10. The percent of solutions solved, (a), the median time to an initial solution, (b), the median
initial path length, (c), and the median final path length, (d), are presented with 99% confidence
intervals for each planner. Unsuccessful trials were assigned infinite time and cost. The inability of
nonanytime planners (e.g., RRT, RRT-Connect, and FMT*) to use the remaining available time to
improve their initial solution is denoted with diminished colour in (d), when present. BIT* is the
only anytime planner to solve all 50 trials and does so in a time comparable to RRT-Connect. It
focuses the search to the informed set once a solution is found and the resulting increasingly dense
RGG allows it to find lower cost paths then all the other planners.

Figure 5.12: A composite figure of HERB executing a path found by BIT* on a two-armed planning
problem similar to Fig. 5.10.
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5.5.2.2 A Two-Armed Planning Problem

A second planning problem was defined for both of HERB’s arms moving around a cluttered

table (Fig. 5.10). The arms start at a neutral position with their forearms extended under the

table (Figs. 5.10a and 5.10b) and must be moved into position to open a bottle (Figs. 5.10c

and 5.10d). The planners were given 600 seconds of computational time to solve this 14-DOF

problem with the objective of minimizing path length in configuration space. FMT* used

m = 3000 samples.

The percentage of trials that successfully found a solution (Fig. 5.11a), the median time

and cost of the initial solution (Figs. 5.11b and 5.11c) and the final cost (Fig. 5.11d) were

plotted for each planner. Infinite values are not plotted.

The results show that even when more computational time is available, BIT* still finds

solutions more often than other almost-surely asymptotically optimal planners (Fig. 5.11a)

and also finds initial solutions faster than all tested algorithms, including RRT-Connect

(Fig. 5.11b). As a nonanytime algorithm, FMT* is tuned to use the majority of the available

time and finds a better initial solution (Fig. 5.11c) but as BIT* is able to improve its solution

it still finds a better final path after approximately the same amount of time (Fig. 5.11d).

Fig. 5.12 presents a composite photograph of HERB executing a path found by BIT* for a

similar problem.

5.6 Discussion

Most anytime sampling-based planners, such as RRT*, solve planning problems by simultane-

ously searching the entire problem domain. This is inefficient and can become prohibitively

expensive in large planning problems or high state dimensions. Informed graph-based search

techniques, such as A*, avoid this unnecessary computational effort by ordering their search

by potential solution quality. This only considers states when they could provide the best

solution and avoids the computational costs of searching large regions of the problem domain.

This solves planning problems by searching the informed set that will be defined by their

eventual solution (the future informed set).

Existing methods to include heuristic ordering in sampling-based planning are insufficient

(Section 5.1). They either partially apply heuristics (e.g., RRT#), sacrifice anytime resolution

(e.g., RA* and FMT*), or waste computational effort on states that are unnecessary to find

the solution by ordering the search on metrics other than solution cost and expanding outside

the future informed set (e.g., SBA*).

BIT* is an informed anytime sampling-based planner that is ordered only by potential

solution quality (Algs. 5.1–5.3; Section 5.2). It applies informed graph-based search techniques

(i.e., LPA*) directly to continuous planning problems without requiring a priori approxi-
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mations of the search domain. Instead, it alternately builds and searches a sampling-based

approximation (i.e., a RGG) that increases in accuracy indefinitely with additional computa-

tional time. This avoids the computational costs associated with both choosing an insufficient

approximation (graph-based search) and performing an unordered search (sampling-based

planning). It is both probabilistically complete and almost-surely asymptotically optimal

(Theorems 5.1 and 5.2) and can be stopped at any time if a suitable solution is found.

BIT* improves its approximation by adding batches of new samples into the existing RGG

and uses incremental search techniques to update its search efficiently by reusing information.

This is accomplished by using heuristics in all aspects of the search. Estimates of solution

cost are used to order and focus the search, estimates of cost-to-come are used to account

for future graph improvements, and estimates of edge costs are used to avoid unnecessary

collision checks and boundary-value problems. Delayed edge cost calculations can also be

found in lazy versions of both graph-based searches and sampling-based planners (Bohlin

and Kavraki, 2000; Branicky et al., 2001; Cohen et al., 2014b; Hauser, 2015; Helmert, 2006).

A brief set of extensions to BIT* are presented Algs. 5.4–5.5 (Section 5.4). These include

prioritizing an initial solution, avoiding the need to define a priori search limits in unbounded

problems, and avoiding unreachable areas of the problem domain. These ideas also motivate

the development of SORRT* as an extension of batch-ordered search to the algorithmic

simplicity of RRT* (Alg. 5.6).

The benefits of BIT* are demonstrated experimentally on abstract planning problems

and simulated experiments for HERB (Section 5.5). The results highlight the advantages

of both using an ordered search and considering multiple connections per sample. BIT* is

more likely to have found a solution at any given time on the tested problems and generally

finds better solutions faster than the other almost-surely asymptotically optimal planners,

especially in high state dimensions.

The experiments also highlight the relative sensitivity of existing anytime planners to tun-

ing parameters. The performance of RRT-style planners depends heavily on the maximum edge

length, η, and achieving the best performance requires tuning it for the problem size, dimen-

sion, and even obstacle characteristics. Alternatively, the performance of BIT* on the tested

problems did not vary strongly with different choices for its main tuning parameter, batch size.

Avoiding unnecessary edge evaluations allows BIT* to spend more computational effort

on edges. It is satisfying to note that this already being exploited in the literature. Xie et al.

(2015) show that a two-point BVP solver can be used to calculate edges for BIT* for problems

with differential constraints. They find that doing so is competitive to state-of-the-art optimal

sampling-based techniques that are explicitly designed to avoid solving two-point BVPs.

Choudhury et al. (2016) show that a path optimizer (i.e., CHOMP; Zucker et al., 2013)

can be used on potential edges in BIT*. This provides a method to exploit local problem

information (i.e., cost gradients) to propose higher-quality edges and improve performance.
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BIT* has also been used in the literature as a part of multistage planning algorithms.

Lan et al. (2016) use it in their two-stage online planning algorithm for micro UAVs. They

convert the collision-free path found by BIT* into a dynamically feasible path by solving

a series of two-point BVPs. This allows them to avoid the cost of considering differential

constraints during the initial search.

This chapter shows the benefits of unifying informed graph-based search and sampling-

based planning. Using incremental search techniques to efficiently search an increasingly

dense RGG allows BIT* to outperform existing anytime almost-surely asymptotically optimal

planners. These results will hopefully motivate further research into combining graph-based

search and sampling-based planning. Of particular interest would be probabilistic statements

about search efficiency analogous to the formal statements for A*. There is also a clear

opportunity to consider different sampling-based approximations and to use more advanced

graph-based-search techniques, such as ARA* and MHA*, to further accelerate the search

performance of BIT*.

BIT* is described as using LPA* to efficiently search an incrementally built (i.e., changing)

RGG embedded in a continuous planning problem. It is important to note a key difference in

how these two algorithms reuse information. When LPA* updates the cost-to-come of a vertex

it reconsiders the cost-to-come of all possibly descendent vertices. This can be prohibitively

expensive in large graphs and the results of RRT* demonstrate that this propagation is

unnecessary for a planner to almost-surely converge asymptotically to the optimum. By not

propagating these changes, BIT* is more similar to TLPA*.

In summary, this chapter presents the following specific contributions:

• Reviews existing methods to combine informed search and sampling-based represen-

tations and shows that they either provide incomplete/inefficient ordering or sacrifice

anytime performance (Section 5.1).

• Develops BIT* as a unification of informed graph-based search and sampling-based

planning that is almost-surely asymptotically optimal (Algs. 5.1–5.3).

• Presents extensions to BIT* (Section 5.4), including JIT sampling to allow for the direct

search of unbounded problems (Alg. 5.5) and SORRT* (Alg. 5.6) to apply ordered

search concepts directly to RRT*.

• Demonstrates experimentally the benefits of using ordered search to combat the curse

of dimensionality (Section 5.5).



Chapter 6

Conclusion

Autonomous robotic systems operating in dynamic and uncontrolled environments require

path planning algorithms. These algorithms must be able to reliably find high-quality solutions

to given problems in a reasonable amount of computational time. This is a nontrivial task

as the problem domains are often continuously valued, high dimensional, and/or poorly

bounded. The majority of existing techniques simplify this problem by approximating the

search domain either with an a priori graph or through sampling. Both of these approaches

are successful but each have important limitations.

A priori graphs approximate a problem before it is searched. Doing so ‘correctly’ is

challenging since the relationship between resolution and search performance depends on the

specific features of a planning problem (e.g., size and arrangement of obstacles). If the chosen

approximation is insufficient (e.g., a sparse graph) it may preclude finding a (suitable) solution

but if it is excessive (e.g., a dense graph) it may make finding a solution prohibitively expensive.

Graph-based searches are effective planning techniques despite these limitations. This is

because informed algorithms, such as A*, use heuristics to order their search by potential

solution quality. This not only finds the optimal solution to the given representation (i.e., it

is resolution optimal) but does so by expanding the minimum number of vertices possible

using the chosen heuristic (i.e., it is optimally efficient ; Hart et al., 1968).

Sampling-based planners alternatively often build anytime approximations. This avoids

the need to select a resolution a priori and allows them to be run indefinitely until a (suitable)

solution is found. RRT* has a unity probability of finding a solution, if one exists, with

an infinite number of samples (i.e., it is probabilistically complete) and finds continuously

improving solutions (i.e., it is almost-surely asymptotically optimal). This has made it an

effective planning technique despite the fact its search is inefficient. Incremental sampling-

based planners tend to explore the entire problem domain equally (i.e., they are space filling).

This wastes computational effort on regions of the problem domain that are not needed to

find the solution and can be prohibitively expensive in large planning problems and/or high

state dimensions.
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This thesis demonstrates that better planning algorithms can be designed for continuous

planning problems by unifying the informed graph-based search and sampling-based planning

approaches. Chapter 2 discusses how previous work to do so has been incomplete and resulted

in either anytime algorithms that are only partially ordered by solution quality or informed

algorithms with reduced anytime performance. These tradeoffs are unnecessary and this

thesis presents methods to include heuristics directly in anytime sampling-based planners,

including to focus the search domain and order the search.

Chapter 3 analyzes the necessary conditions for incremental sampling-based single-query

planners, such as RRT*, to improve a solution. These take the form of a subset of the

planning problem that contains all better solutions (the omniscient set; Definition 3.1) as well

as heuristic-based approximations (informed sets; Definition 3.2) quantified by their precision

and recall (Definitions 3.3 and 3.4). It is shown that the probability of sampling these sets

provides an upper bound on the probability of improving a solution (Lemmas 3.1, 3.2, 3.4,

and 3.5 and Theorems 3.3 and 3.6). This motivates using heuristics to focus the search of

incremental sampling-based planners to informed sets once a solution is found.

A common admissible heuristic for problems seeking to minimize path length is the L2

norm (Ferguson and Stentz, 2006; Otte and Correll, 2013). The resulting informed set always

contains the complete omniscient set and is exactly equal to it in the absence of obstacles

(i.e., it is sharp). Analysis of its shape shows that common configurations of sampling-based

planners suffer from a minimum-path-length curse of dimensionality that sees the likelihood of

improving a solution decrease factorially (i.e., faster than exponentially) with state dimension

(Theorem 3.7). This limitation is not addressed by existing methods to focus sampling-based

search but can be avoided by directly sampling the L2 informed set (Algs. 3.3–3.6).

Chapter 4 demonstrates how informed sets can be used to improve the rate at which

incremental sampling-based planners improve solutions. Informed RRT* uses admissible

graph pruning and informed sampling to restrict search to the set of states believed to be

capable of providing improvements once a solution is found (i.e., the informed set). The

shape of this informed set when seeking to minimize path length provides sharp analytically

bounds on the expected cost of RRT* at any iteration (Lemma 4.1). It shows that while the

original RRT* has provably sublinear convergence towards the optimum, informed techniques

can have linear convergence (Theorems 4.2–4.4).

The practical effect of improved convergence is demonstrated on simulated problems in

abstract worlds and for HERB, a 14-DOF mobile manipulation platform (Srinivasa et al.,

2012). Informed RRT* is shown to outperform other methods to focus RRT*, especially in

high dimensions and large planning problems.

The ideas of Chapters 3 and 4 were originally presented at the 2014 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS) and are currently in preparation

for submission as a journal paper. The associated code has been made publicly available in

OMPL (Şucan et al., 2012).
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In chronological order, the associated publications are

• Gammell, J. D., Srinivasa, S. S., and Barfoot, T. D. (2014b). Informed RRT*: Optimal

sampling-based path planning focused via direct sampling of an admissible ellipsoidal

heuristic. In Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 2997–3004, Chicago, Illinois, USA

• Gammell, J. D., Srinivasa, S. S., and Barfoot, T. D. (2014c). On recursive random prolate

hyperspheroids. Technical Report TR-2014-JDG002, Autonomous Space Robotics Lab,

University of Toronto. arXiv:1403.7664 [math.ST]

• Gammell, J. D. and Barfoot, T. D. (2014). The probability density function of a

transformation-based hyperellipsoid sampling technique. Technical Report TR-2014-

JDG004, Autonomous Space Robotics Lab, University of Toronto. arXiv:1404.1347

[math.ST]

• Gammell, J. D., Srinivasa, S. S., and Barfoot, T. D. (2017b). Informed sampling for

asymptotically optimal path planning. In preparation

The ideas in these publications have been extended independently. Specifically, Kunz

et al. (2016) develop a hierarchical rejection sampling method for systems with differential

constraints whose informed sets cannot be expressed in closed form. Kim and Song (2015)

extend Informed RRT* by using a local optimizer to further accelerate convergence by rapidly

improving solutions and shrinking the informed set. Lee et al. (2016) improve convergence

towards the optimum of the current homotopy class for online planning scenarios by including

path biasing in Informed RRT*. Burget et al. (2016) extend Informed RRT* to a bidirectional

search in their BI2RRT* algorithm. Primatesta et al. (2016) adapt Informed RRT* for efficient

replanning in environments with dynamic obstacles. Oleynikova et al. (2016) and Bevilacqua

et al. (2016) use Informed RRT* to find topologically feasible initial paths in their multistage

planning algorithms for UAVs and service robots, respectively.

Chapter 5 extends the use of heuristics to all aspects of anytime sampling-based planning,

including ordering the search by potential solution quality. This is accomplished in BIT* by

alternately building and searching a sampling-based approximation of the continuous planning

problem (i.e., a RGG). RGG theory is used to limit the complexity of this approximation

while maintaining probabilistic bounds on its accuracy. Incremental graph-search techniques,

such as LPA*, are used to search this changing approximation efficiently in order of potential

solution quality while reusing information. This effectively separates the sampling-based

approximation of a continuous problem domain from its search and challenges the traditional

planning dichotomy of graph-based and sampling-based techniques (Fig. 2.2).

BIT* uses heuristics in all aspects of the search to reduce computational cost and prioritize

searching for high-quality solutions (i.e., it performs an ordered lazy search). The result is an

algorithm that demonstrates the efficient search nature of graph-based algorithms, such as

A*, and the anytime almost-sure asymptotic optimality of sampling-based algorithms, such
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as RRT*. Experiments on abstract worlds and problems for HERB show that BIT* scales

more effectively to high state dimensions than other almost-surely asymptotically optimal

planners while demonstrating less sensitivity to tuning parameters.

The ideas of Chapter 5 were originally presented at the Information-based Grasp and

Manipulation Planning Workshop at the 2014 Robotics: Science and Systems Conference

(RSS) and the 2015 IEEE International Conference on Robotics and Automation (ICRA).

They are currently being prepared as a submission as a journal paper. The associated code

has been made publicly available in OMPL.

In chronological order, the associated publications are

• Gammell, J. D., Srinivasa, S. S., and Barfoot, T. D. (2014a). BIT*: Sampling-based

optimal planning via batch informed trees. In The Information-based Grasp and

Manipulation Planning Workshop, Robotics: Science and Systems (RSS), Berkeley, CA,

USA

• Gammell, J. D., Srinivasa, S. S., and Barfoot, T. D. (2015). Batch Informed Trees

(BIT*): Sampling-based optimal planning via the heuristically guided search of implicit

random geometric graphs. In Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA), pages 3067–3074, Seattle, Washington, USA

• Gammell, J. D., Srinivasa, S. S., and Barfoot, T. D. (2017a). Informed asymptotically

optimal anytime search. In preparation

The ideas in these publications have been extended both independently and in collaboration.

Xie et al. (2015) use a two-point boundary-value problem (two-point BVP) solver to calculate

edges in BIT* for systems with differential constraints. The results prove to be equivalent to

state-of-the-art optimal techniques designed to avoid such calculations. Regionally Accelerated

BIT* (RABIT*; Choudhury et al., 2016) uses a path optimizer to exploit local information

(i.e., cost gradients) and propose high-quality edges that have been optimized around obstacles.

Both of these works use BIT*’s ordered lazy search to support spending more computational

effort on individual edges.

BIT* is also being used in the robotics literature. Lan et al. (2016) use BIT* in their

multistage online planning algorithm for micro UAVs. They find an initial collision-free path

with BIT* and then solve a series of two-point BVPs to make it dynamically feasible. It is has

also been reported that the CMU AIRLab are successfully using the OMPL implementation of

BIT* on their full-sized autonomous helicopter in a planner ensemble (Choudhury et al., 2014).

This thesis investigates unifying informed graph-based search and anytime sampling-based

planning. The success of this approach will hopefully motivate further research into unifying

these two approaches. There exists clear opportunities to both improve practical performance

with more advanced approximations and graph-search techniques as well as make theoretical

statements about the efficiency of the resulting search of the continuous planning problem.
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In summary, this thesis makes the following specific contributions:

• Analyzes the necessary conditions for incremental sampling-based planners to improve

a solution, formally defining the omniscient and informed sets and identifying that

problems seeking to minimize path length suffer from a factorial curse of dimensionality

(Chapter 3).

• Develops a direct informed sampling technique for problems seeking to minimize path

length to a goal or a countable set of goals (Chapter 3).

• Derives bounds for the expected next-iteration cost of RRT* on problems seeking

to minimize path length and shows that while it has sublinear convergence, focused

variants can have linear convergence (Chapter 4).

• Develops Informed RRT* and shows that it outperforms other methods to focus RRT*

(Chapter 4).

• Demonstrates that informed graph-based search and sampling-based planning can be

unified to solve continuous planning problems efficiently while still maintaining anytime

performance (Chapter 5).

• Develops BIT* and associated extensions including SORRT* and shows that BIT* out-

performs other almost-sure asymptotically optimal sampling-based planners (Chapter 5).

• Provides public OMPL implementations of Informed RRT*, SORRT*, and BIT* (More

information available at http://asrl.utias.utoronto.ca/code).

http://asrl.utias.utoronto.ca/code
http://asrl.utias.utoronto.ca/code


Appendix A

Proofs of Lemmas 3.1 and 3.2

This section restates and proves Lemmas 3.1 and 3.2.

A.1 Proof of Lemma 3.1

Lemma 3.1 (The necessity of adding states in the omniscient set). Adding a state from the om-

niscient set, xnew ∈ Xf , is a necessary condition for RRT* to improve the current solution, ci,

ci+1 < ci =⇒ xnew ∈ Xf .

This condition is not sufficient to improve the solution as the ability of states in Xf to

provide better solutions at any iteration depends on the optimality of the tree.

Proof. At the end of iteration i+ 1 the cost of the best solution found by RRT* will be the

minimum of the previous best solution, ci, and the best cost of any new or newly improved

solutions, cnew,

ci+1 = min {ci, cnew} . (A.1)

Each iteration of RRT* only adds connections to or from the newly added state, xnew, and

therefore all new or modified paths pass through this new state. If any of these new paths

extend to the goal region then their solution cost will be bounded by the optimal solution of

a path through xnew,

cnew ≥ f (xnew) . (A.2)

Lemma 3.1 is now proven by contradiction. Assume that after iteration i RRT* has

a solution with cost ci, which is improved at iteration i + 1 by adding a state not in the

omniscient set, ci+1 < ci, xnew 6∈ Xf . Then by (3.6), the cost of solutions through xnew is
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bounded from below by the current solution,

f (xnew 6∈ Xf ) ≥ ci,

which by (A.2) is also a bound on the cost of any new or modified solutions,

cnew ≥ f (xnew 6∈ Xf ) ≥ ci.

By (A.1), the cost of the best solution found by RRT* at the end of iteration i + 1 must

therefore be ci. This contradicts the assumption that the solution was improved by a state

not in the omniscient set and proves Lemma 3.1.

A.2 Proof of Lemma 3.2

Lemma 3.2 (The necessity of sampling states in the omniscient set). Sampling the omniscient

set, xrand ∈ Xf , is a necessary condition for RRT* to improve the current solution, ci, after

an initial κ iterations,

∀i ≥ κ, ci+1 < ci =⇒ xrand ∈ Xf ,

for any sample distribution that maintains a nonzero probability over the entire omniscient set.

Proof. For simplicity Lemma 3.2 is proven for geometric planning in the absence of kin-

odynamic constraints but the proof can be extended to kinodynamic planning by adding

appropriate assumptions. In RRT (and RRT*) the distribution of vertices in the graph

approaches the sample distribution as the number of iterations approach infinity (LaValle,

1998). All regions of the problem domain with a nonzero sampling probability will therefore be

sampled in the limit and the number of vertices in these regions will increase indefinitely with

the number of iterations. This ever increasing number of vertices means that the worst-case

distance between any state in a sampled subset and the nearest vertex in the graph will

decrease indefinitely and monotonically.

Lemma 3.2 is now proven by contradiction. Assume that by iteration κ there are a

sufficient number of vertices that all possible states in Xf are no further than η from a vertex,

∀x ∈ Xf , min
v∈V
{‖v − x‖2} < η, (A.3)

and that after iteration i ≥ κ, RRT* has a solution with cost ci. Now assume that at iteration

i+ 1 RRT* improves the solution without sampling the omniscient set, ci+1 < ci, xrand 6∈ Xf .

As improving a solution requires adding a state that belongs to this subset, xnew ∈ Xf ,

(Lemma 3.1) this implies that the state added to the graph is not the randomly sampled
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state, xnew 6= xrand. These two states are related through the Steer function, which finds a

state as near to xrand as possible that is no further than η from the nearest vertex in the tree,

xnew := arg min
x∈X

{‖xrand − x‖2 | ‖x− vnearest‖2 ≤ η} , (3.2 redux)

where

vnearest := arg min
v∈V

{‖v − xrand‖2} . (3.1 redux)

In geometric planning, the triangle inequality implies that the nearest vertex to the sample

is also the nearest vertex to the proposed new state,

vnearest ≡ arg min
v∈V

{‖v − xnew‖2} ,

which from (A.3) is bounded in its distance from xnew by

‖vnearest − xnew‖2 < η. (A.4)

The relationship in (A.4) is only satisfied in geometric planning when xnew ≡ xrand due to

(3.2). As by assumption the random sample is not a member of the omniscient set, xrand 6∈ Xf ,

then therefore neither is the newly added state, xnew 6∈ Xf , and by Lemma 3.1 the solution is

not improved, ci+1 = ci. This contradicts the assumption that the solution was improved by

sampling a state not in the omniscient set and proves Lemma 3.2.
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Proof of Lemma 3.8

This section restates Lemma 3.8 as presented by Sun and Farooq (2002) along with a full

proof as presented in Gammell and Barfoot (2014).

Lemma 3.8 (The uniform distribution of samples transformed into a hyperellipsoid from a

unit n-ball. Originally Lemma 1 in Sun and Farooq, 2002). If the random points distributed in

a hyperellipsoid are generated from the random points uniformly distributed in a hypersphere

through a linear invertible nonorthogonal transformation, then the random points distributed

in the hyperellipsoid are also uniformly distributed.

Proof. Let the sets Xball ⊂ Rn and Xellipse ⊂ Rn be the unit n-dimensional ball and a

n-dimensional hyperellipsoid with radii {rj}, respectively, having measures of

λ (Xball) = ζn,

λ (Xellipse) = ζn

n∏

j=1

rj.

Let pball (·) be the probability density function of samples drawn uniformly from the unit

n-ball such that,

pball (x) :=





1

ζn
, ∀x ∈ Xball

0, otherwise.
(B.1)

Let τ (·) be an invertible transformation from the unit n-ball to a hyperellipsoid such that,

τ : Xball → Xellipse,

τ−1 : Xellipse → Xball.
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By definition, the probability density function in the hyperellipsoid, pellipse (·), resulting from

applying this transformation to samples in the unit n-ball is then

pellipse (x) := pball

(
τ−1 (x)

) ∣∣∣∣det

(
dτ−1

dxellipse

∣∣∣∣
x

)∣∣∣∣ . (B.2)

The proposed transformation in (3.14) is,

xellipse = Lxball + xcentre, (3.14 redux)

which has the inverse

τ−1 (xellipse) = L−1 (xellipse − xcentre) ,

and the Jacobian
dτ−1

dxellipse

= L−1. (B.3)

Substituting (B.3) and (B.1) into (B.2) gives,

pellipse (x) :=





1

ζn
|det (L−1)| , ∀x ∈ Xellipse

0, otherwise,
(B.4)

using the fact that τ−1 (x) ∈ Xball ⇐⇒ x ∈ Xellipse. As pellipse (·) is constant for all

xellipse ∈ Xellipse, this proves that when used to transform uniformly distributed samples in

the unit n-ball (3.14) results in a uniform distribution over the hyperellipsoid and proves

Lemma 3.8.

For hyperellipsoids whose axes are orthogonal (e.g., a prolate hyperspheroid), (B.4) can be

expressed in a more familiar and intuitive form. Using the orthogonality of rotation matrices

and (3.15),

xellipse = CweL
′xball + xcentre, (3.15 redux)

as τ (·), makes (B.4)

pellipse (x) :=





1

ζn

∣∣det
(
L′−1CT

we

)∣∣ , ∀x ∈ Xellipse

0, otherwise.
(B.5)

The diagonal hyperellipsoid matrix gives,

L′ = diag (r1, r2, . . . , rn) ,



Appendix B. Proof of Lemma 3.8 118

which makes (B.5)

pellipse (x) :=





1

ζn
∏n

j=1 rj
, ∀x ∈ Xellipse

0, otherwise,

(B.6)

since the determinant is a linear operator, all rotation matrices have a unity determinant,

det (Cwe) = 1, and the determinant of a diagonal matrix is the product of its diagonal entries.

As expected, (B.6) is the inverse of the volume of an n-dimensional hyperellipsoid with radii

{rj}.
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Proof of Lemma 4.1

This section restates and proves Lemma 4.1, which is used in support of Theorems 4.2–4.4.

An earlier version of this proof appeared in Gammell et al. (2014c).

Lemma 4.1 (Expected next-iteration cost in geometric planning). The expected value of the

next solution, E [ci+1], is bounded for geometric planning by

pf
nc2

i + c2
min

(n+ 1) ci
+ (1− pf ) ci ≤ E [ci+1] ≤ ci, (4.3 redux)

where ci is the current solution cost, cmin is the theoretical minimum solution cost, n is the

state dimension of the planning problem, and pf = P (xnew ∈ Xf ) is the probability of adding

a state that is a member of the omniscient set (i.e., that can belong to a better solution).

While not explicitly shown, the subset, Xf , and the probability of improving the solution, pf ,

generally are functions of the current solution cost.

The lower bound is sharp over the set of all possible planning problems and algorithm

configurations and occurs for versions of RRT* using an infinite rewiring radius (i.e., η =∞,

and rRRT∗ =∞) in an obstacle-free environment.

Proof. Proof of the upper bound is trivial. RRT* only accepts new solutions if they improve

its existing solution, assuring that the cost monotonically decreases,

ci+1 ≤ ci. (C.1)

Proof of the lower bound comes from finding an exact expression for the expected value of the

solution cost found by using an infinite rewiring neighbourhood in the absence of obstacles.

The expected solution cost of RRT* depends on the probability of sampling the omniscient

set,

E [ci+1] = pfE [ci+1 |xnew ∈ Xf ] + (1− pf )E [ci+1 |xnew 6∈ Xf ] , (C.2)
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where pf = P (xnew ∈ Xf ). Adding a state from the omniscient set, Xf , is a necessary

condition to improve the solution (Lemma 3.1) and any other state will not change the

solution cost, E [ci+1 |xnew 6∈ Xf ] = ci. This simplifies (C.2) to

E [ci+1] = pfE [ci+1 |xnew ∈ Xf ] + (1− pf ) ci. (C.3)

Solutions found by adding states inside the omniscient are bounded from below by the optimal

path through the state,

E [ci+1 |xnew ∈ Xf ] ≥ E [f (xnew) |xnew ∈ Xf ] , (C.4)

where f (x) is the cost of the optimal path from the start to the goal constrained to pass

through a state, x. With a uniform sample distribution over Xf the right-hand side of (C.4)

becomes

E [f (xnew) |xnew ∈ Xf ] =
1

λ (Xf )

∫

Xf

f (xnew) dV.

When RRT* uses an infinite rewiring radius it attempts connections between every new

state and the start and goal. In the absence of obstacles these paths will be feasible and

represent the optimal solutions using the state. This makes the expected value of this

best-case configuration of RRT* equivalent to the expected optimal solution cost in the

absence of obstacles,

E [ci+1 |xnew ∈ Xf ]
∗ ≡ E [f (xnew) |xnew ∈ Xf ] . (C.5)

The lower bound provided by (C.4) is therefore sharp over the set of all possible planning

problems and algorithm configurations.

In this absence of obstacles, the optimal solution using any state is

f (x) = ‖x− xstart‖2 + ‖xgoal − x‖2 , (3.7 redux)

and the omniscient set is the prolate hyperspheroid, Xf ≡ Xf̂ ≡ XPHS. The measure of the

omniscient set, λ (Xf ) ≡ λPHS, is given by

λPHS :=
ci (c

2
i − c2

min)
n−1
2 ζn

2n
, (3.8 redux)

where ζn is the measure of a unit n-dimensional ball and cmin is the distance between the

start and goal. This allows (C.5) to be written as

E [ci+1 |xnew ∈ Xf ]
∗ =

1

λPHS

∫

XPHS

‖x− xstart‖2 + ‖xgoal − x‖2 dV. (C.6)
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In prolate hyperspheroidal coordinates, µ, ν, ψ1, . . . , ψn−2, with the parameterization

a = 0.5cmin (Appendix E), (3.7) can be expressed simply as

f (x) = cmin coshµ. (C.7)

Substituting (C.7) and the prolate hyperspheroidal differential volume,

dV = an
(
sinh2 µ+ sin2 ν

)
sinhn−2 µ sinn−2 ν sinn−3 ψ1 . . .

sinψn−3 dµ dν dψ1 . . . dψn−2, (E.9 redux)

into (C.6) results in

E [ci+1 |xnew ∈ Xf ]
∗ =

cn+1
min

2nλPHS

∫ µi

µ=0

∫ π

ν=0

∫ π

ψ1=0

. . .

∫ π

ψn−3=0

∫ 2π

ψn−2=0(
sinh2 µ+ sin2 ν

)
sinhn−2 µ coshµ sinn−2 ν

sinn−3 ψ1 . . . sinψn−3 dµ dν dψ1, . . . dψn−2, (C.8)

where the integration limit for µ is derived from (C.7) as

coshµi :=
ci
cmin

. (C.9)

Integrating (C.8) requires applying a series of identities, first

(n− 1) ζn−1 ≡
∫ π

ψ1=0

. . .

∫ π

ψn−3=0

∫ 2π

ψn−2=0

sinn−3 ψ1 . . . sinψn−3 dψ1 . . . dψn−2,

simplifies (C.8) to

E [ci+1 |xnew ∈ Xf ]
∗ =

(n− 1) cn+1
min ζn−1

2nλPHS

∫ µi

µ=0

∫ π

ν=0

(
sinh2 µ+ sin2 ν

)

sinhn−2 µ coshµ sinn−2 ν dµ dν. (C.10)

Next, the definite integral of the product of powers of sin and cos,

∫ π

0

sin2m−1 θ cos2n−1 θ dθ ≡ B (m,n) ,

where B (·, ·) is the beta function,

B (m,n) :=

∫ 1

0

tm−1 (1− t)n−1 dt,



Appendix C. Proof of Lemma 4.1 122

is used to evaluate the integral over ν in (C.10), giving

E [ci+1 |xnew ∈ Xf ]
∗ =

(n− 1) cn+1
min ζn−1

2nλPHS

(
B

(
n− 1

2
,
1

2

)∫ µi

µ=0

sinhn µ coshµ dµ

+ B

(
n+ 1

2
,
1

2

)∫ µi

µ=0

sinhn−2 µ coshµ dµ

)
.

(C.11)

The identity,

B (m+ 1, n) ≡ m

m+ n
B (m,n) ,

and the recursive nature of the n-dimensional unit ball,

ζn ≡ B

(
n+ 1

2
,
1

2

)
ζn−1,

simplifies (C.11) to

E [ci+1 |xnew ∈ Xf ]
∗ =

cn+1
min ζn

2nλPHS

(
n

∫ µi

µ=0

sinhn µ coshµ dµ

+ (n− 1)

∫ µi

µ=0

sinhn−2 µ coshµ dµ

)
. (C.12)

The indefinite integral,
∫

sinhm θ cosh θ dθ ≡ sinhm+1 θ

m+ 1
,

is then used to evaluate (C.12), giving

E [ci+1 |xnew ∈ Xf ]
∗ =

cn+1
min ζn

2nλPHS

(
n

n+ 1
sinhn+1 µi + sinhn−1 µi

)
. (C.13)

Using (3.8) to expand the measure λPHS in (C.13) cancels the measure of the unit n-ball,

giving

E [ci+1 |xnew ∈ Xf ]
∗ =

cn+1
min

ci (c2
i − c2

min)
n−1
2

(
n

n+ 1
sinhn+1 µi + sinhn−1 µi

)
. (C.14)

Using the relationship

coshµ = b ⇐⇒ sinhµ =
√
b2 − 1,
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with (C.9) and some algebraic manipulation finally simplifies (C.14) to

E [ci+1 |xnew ∈ Xf ]
∗ =

nc2
i + c2

min

(n+ 1) ci
,

an exact value for the best-case expected solution cost of RRT*. This result allows (C.3) to

be written as the sharp bound,

E [ci+1] ≥ pf
nc2

i + c2
min

(n+ 1) ci
+ (1− pf ) ci,

which when combined with (C.1) proves Lemma 4.1.



Appendix D

Proofs of Theorems 4.2–4.4

This section restates and proves Theorems 4.2–4.4.

D.1 Proof of Theorem 4.2

Theorem 4.2 (Sublinear convergence of RRT* in geometric planning). RRT* converges

sublinearly towards the optimum of geometric planning problems,

E [µRRT∗ ] = 1. (4.4 redux)

Proof. The expected rate of convergence of RRT* from Definition 4.1 is

E [µRRT∗ ] = E

[
lim
i→∞

ci − cmin

ci−1 − cmin

]
, (D.1)

since, ∀i, ci ≥ cmin. As RRT* almost-surely converges asymptotically to the optimum, this

sequence also almost-surely converges,

P

(
lim
i→∞

ci − cmin

ci−1 − cmin

= µRRT∗

)
= 1,

to a finite value, 0 ≤ µRRT∗ ≤ 1. By Lebesgue’s dominated convergence theorem this allows

the expectation operator to be brought inside the limit of (D.1), giving

E [µRRT∗ ] = lim
i→∞

E [ci]− cmin

ci−1 − cmin

, (D.2)

since ci is the only random variable at iteration i.

Lemma 4.1 provides sharp bounds for the expected solution cost at any iteration, E [ci],

with the lower-bound corresponding to an infinite rewiring radius in the absence of obstacles.
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Substituting this lower bound into (D.2) and performing algebraic simplification gives an

expression for the expected best-case convergence rate,

E [µ∗RRT∗ ] = 1 +
1

(n+ 1)
lim
i→∞

pf
(
c2

min − c2
i−1

)
(
c2
i−1 − cminci−1

) ,

such that E [µ∗RRT∗ ] ≤ E [µRRT∗ ] is a sharp bound over all possible planning problems and

algorithm configurations. Applying l’Hôpital’s rule (l’Hôpital, 1696) with respect to ci−1 gives

E [µ∗RRT∗ ] = 1 +
1

(n+ 1)
lim
i→∞

∂pf
∂ci−1

(
c2

min − c2
i−1

)
− 2pfci−1

(2ci−1 − cmin)
. (D.3)

As iterations go to infinity the probability of adding a sample in Xf becomes the probability

of sampling it (Lemma 3.2). As the lower bound from Lemma 4.1 is for an obstacle-free

problem, Xf ≡ Xf̂ and the probability of sampling it is given by (3.9),

pf =
π

n
2 ci−1

(
c2
i−1 − c2

min

)n−1
2

2nΓ
(
n
2

+ 1
)
λ (Xsampling)

, (3.9 redux)

with a partial derivative of

∂pf
∂ci−1

=
π

n
2

2nΓ
(
n
2

+ 1
)
λ (Xsampling)

(
c2
i−1 − c2

min

)n−1
2

(
1 +

(n− 1) c2
i−1(

c2
i−1 − c2

min

)
)
.

Almost-sure convergence to cmin implies limi→∞ ci−1 = cmin and therefore limi→∞ pf = 0

and limi→∞
∂pf
∂ci−1

= 0, making (D.3),

E [µ∗RRT∗ ] = 1.

As by definition the expected rate of convergence of RRT* is bounded by,

E [µ∗RRT∗ ] ≤ E [µRRT∗ ] ≤ 1,

this result proves Theorem 4.2.
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D.2 Proof of Theorem 4.3

Theorem 4.3 (Linear convergence of RRT* with adaptive rectangular rejection sampling

in geometric planning). RRT* with adaptive rectangular rejection sampling converges at

best linearly towards the optimum of geometric planning problems but factorially approaches

sublinear convergence as state dimension increases,

1− π
n
2

(n+ 1) 2n−1Γ
(
n
2

+ 1
) ≤ E [µReject] ≤ 1. (4.5 redux)

Proof. Proof of Theorem 4.3 follows that of Theorem 4.2 but with the probability of adding

a new state from Xf calculated from (3.9) using (3.12), as

pf ≤
π

n
2

2nΓ
(
n
2

+ 1
) . (D.4)

As
∂pf
∂ci−1

= 0, (D.3) becomes

E
[
µ∗Reject

]
= 1− 1

(n+ 1)
lim
i→∞

2pfci−1

(2ci−1 − cmin)
. (D.5)

Noting that almost-sure convergence to cmin implies limi→∞ ci−1 = cmin and substituting (D.4)

into (D.5) results in

E
[
µ∗Reject

]
= 1− 2pf

(n+ 1)
,

≥ 1− π
n
2

(n+ 1) 2n−1Γ
(
n
2

+ 1
) .

As by definition the expected rate of convergence of RRT* with rectangular rejection sampling

is bounded by,

E
[
µ∗Reject

]
≤ E [µReject] ≤ 1,

this result proves Theorem 4.3 with the bounds being sharp over all possible planning problems

and algorithm configurations.
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D.3 Proof of Theorem 4.4

Theorem 4.4 (Linear convergence of Informed RRT* in geometric planning). Informed

RRT* converges at best linearly towards the optimum of geometric planning problems,

n− 1

n+ 1
≤ E [µInformed] ≤ 1, (4.6 redux)

where the lower-bound occurs exactly with an infinite rewiring neighbourhood in the absence

of obstacles.

Proof. Proof of Theorem 4.4 follows that of Theorem 4.2 but with unity probability of adding

a new state from Xf . From (D.3), the convergence rate of Informed RRT* is then,

E [µ∗Informed] = 1− 1

(n+ 1)
lim
i→∞

2ci−1

(2ci−1 − cmin)
.

As almost-sure convergence to cmin implies limi→∞ ci−1 = cmin this gives,

E [µ∗Informed] =
n− 1

n+ 1
.

As by definition the expected rate of convergence of RRT* with rectangular rejection sampling

is bounded by,

E [µ∗Informed] ≤ E [µInformed] ≤ 1,

this result proves Theorem 4.4, with the bounds being sharp over all possible planning

problems and algorithm configurations.



Appendix E

The Prolate Hyperspheroid

Coordinate System

Let (x1, x2, . . . , xn) be the n-dimensional Cartesian coordinate system, then a prolate hyper-

spheroid coordinate system, (µ, ν, ψ1, ψ2, . . . , ψn−2), can be defined as

x1 =: a coshµ cos ν, (E.1)

x2 =: a sinhµ sin ν cosψ1,

x3 =: a sinhµ sin ν sinψ1 cosψ2,

...

xn−1 =: a sinhµ sin ν sinψ1 sinψ2 . . . sinψn−3 cosψn−2,

xn =: a sinhµ sin ν sinψ1 sinψ2 . . . sinψn−3 sinψn−2,

where the foci of the prolate hyperspheroid occurs in Cartesian coorinates at (±a, 0, . . . , 0)

and every point will lie on the surface of a prolate hyperspheroid with diameter, d = 2a coshµ.

These coordinates can be viewed as a 2D elliptical coordinate system, µ, ν, rotated by

spherical coordinates, ψ1, ψ2, . . . , ψn−2 (Fig. E.1). The coordinates take the values µ ∈ [0,∞),

ν ∈ [0, π], ψ1, ψ2, . . . , ψn−3 ∈ [0, π], and ψn−2 ∈ [0, 2π), except in the 2D case when ν ∈ [0, 2π).

The basis vectors of this curvilinear coordinate system, eµ, eν , eψ1 , . . . , eψn−2 , are defined

as the partial derivatives of (E.1) with respect to the respective prolate hyperspheroid

coordinates, i.e.,

eµ :=
[
∂x1
∂µ

∂x2
∂µ

. . . ∂xn
∂µ

]T
, etc.,

from which the scale factors, hµ, hν , hψ1 , . . . , hψn−2 , are calculated as

hµ := ‖eµ‖2 , etc. (E.2)
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Lines of constant ν (0, π6 , . . . ,
11π
6 )

Lines of constant µ (0, 0.5, . . . , 2)

Figure E.1: The 2D prolate hyperspheroidal coordinate system for a = 1 (i.e., the elliptical
coordinate system). It is extended into higher dimensions by rotation about the transverse axis (i.e.,
x2) in a manner analogous to the extension of the polar coordinate system to the hyperspherical
coordinate system. Starting from the line on the positive x1 axis and proceeding counterclockwise,
the blue lines of constant ν correspond to angles of 0, π6 ,

2π
6 , . . .

11π
6 radians, respectively. Proceeding

outwards, the green lines of constant µ correspond to values of 0, 0.5, . . . , 2, respectively.

The differential unit of volume, dV , is then

dV := hµdµ hνdν hψ1dψ1 . . . hψn−2dψn−2 = hµhνdµ dν
n−2∏

i=1

(hψi
dψi) . (E.3)

First Scale Factor

The partial derivatives of (E.1) with respect to µ are

∂x1

∂µ
= −a sinhµ cos ν,

∂x2

∂µ
= a coshµ sin ν cosψ1,

∂x3

∂µ
= a coshµ sin ν sinψ1 cosψ2,

...

∂xn−1

∂µ
= a coshµ sin ν sinψ1 . . . sinψn−3 cosψn−2,

∂xn
∂µ

= a coshµ sin ν sinψ1 . . . sinψn−3 sinψn−2.
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From (E.2) the scale factor, hµ, is then

hµ = a
(
sinh2 µ cos2 ν + cosh2 µ sin2 ν cos2 ψ1 + cosh2 µ sin2 ν sin2 ψ1 cos2 ψ2 + . . .

+ cosh2 µ sin2 ν sin2 ψ1 . . . sin
2 ψn−3 cos2 ψn−2

+ cosh2 µ sin2 ν sin2 ψ1 . . . sin
2 ψn−3 sin2 ψn−2

) 1
2 .

Using the Pythagorean trigonometric identity and the hyperbolic analogue,

sin2 b+ cos2 b ≡ 1 (E.4)

cosh2 a− sinh2 a ≡ 1,

for every instance of cos2 (·) and cosh2 (·) yields

hµ =a (

x1 term︷ ︸︸ ︷
sinh2 µ− sinh2 µ sin2 ν +

x2 term︷ ︸︸ ︷
sin2 ν + sinh2 µ sin2 ν − sin2 ν sin2 ψ1 − sinh2 µ sin2 ν sin2 ψ1

+

x3 term︷ ︸︸ ︷
sin2 ν sin2 ψ1 + sinh2 µ sin2 ν sin2 ψ1 − sin2 ν sin2 ψ1 sin2 ψ2 − sinh2 µ sin2 ν sin2 ψ1 sin2 ψ2

+ . . .+

xn−1 term︷ ︸︸ ︷
sin2 ν sin2 ψ1 . . . sin

2 ψn−3 + sinh2 µ sin2 ν sin2 ψ1 . . . sin
2 ψn−3

xn−1 term︷ ︸︸ ︷
− sin2 ν sin2 ψ1 . . . sin

2 ψn−3 sin2 ψn−2 − sinh2 µ sin2 ν sin2 ψ1 . . . sin
2 ψn−3 sin2 ψn−2

+

xn term︷ ︸︸ ︷
sin2 ν sin2 ψ1 . . . sin

2 ψn−3 sin2 ψn−2 + sinh2 µ sin2 ν sin2 ψ1 . . . sin
2 ψn−3 sin2 ψn−2 )

1
2 ,

about which the following observations are made:

• The second term of the x1 grouping cancels with the second term of the x2 grouping.

• In the intermediate terms, x2, x3, . . . xn−1, the third and fourth term of each xj grouping

cancels with the first and second terms of the subsequent xj+1 grouping.

• The final xn grouping cancels with the third and fourth terms of the xn−1 grouping.

These observations simplify the first scale factor to

hµ = a
(
sinh2 µ+ sin2 ν

) 1
2 . (E.5)



Appendix E. The Prolate Hyperspheroid Coordinate System 131

Second Scale Factor

The partial derivatives of (E.1) with respect to ν are

∂x1

∂ν
= −a coshµ sin ν,

∂x2

∂ν
= a sinhµ cos ν cosψ1,

∂x3

∂ν
= a sinhµ cos ν sinψ1 cosψ2,

...

∂xn−1

∂ν
= a sinhµ cos ν sinψ1 . . . sinψn−3 cosψn−2,

∂xn
∂ν

= a sinhµ cos ν sinψ1 . . . sinψn−3 sinψn−2.

From (E.2) the scale factor, hν , is then

hν = a
(
cosh2 µ sin2 ν + sinh2 µ cos2 ν cos2 ψ1 + sinh2 µ cos2 ν sin2 ψ1 cos2 ψ2 + . . .

+ sinh2 µ cos2 ν sin2 ψ1 . . . sin
2 ψn−3 cos2 ψn−2

+ sinh2 µ cos2 ν sin2 ψ1 . . . sin
2 ψn−3 sin2 ψn−2

) 1
2 .

Once again making use of the Pythagorean identities, (E.4), for every instance of cos2 (·) and

cosh2 (·) gives

hν =a
(

x1 term︷ ︸︸ ︷
sin2 ν + sinh2 µ sin2 ν +

x2 term︷ ︸︸ ︷
sinh2 µ− sinh2 µ sin2 ν − sinh2 µ sin2 ψ1 + sinh2 µ sin2 ν sin2 ψ1

+

x3term︷ ︸︸ ︷
sinh2 µ sin2 ψ1 − sinh2 µ sin2 ν sin2 ψ1 − sinh2 µ sin2 ψ1 sin2 ψ2 + sinh2 µ sin2 ν sin2 ψ1 sin2 ψ2

+ . . .+

xn−1 term︷ ︸︸ ︷
sinh2 µ sin2 ψ1 . . . sin

2 ψn−3 − sinh2 µ sin2 ν sin2 ψ1 . . . sin
2 ψn−3

xn−1 term︷ ︸︸ ︷
− sinh2 µ sin2 ψ1 . . . sin

2 ψn−3 sin2 ψn−2 + sinh2 µ sin2 ν sin2 ψ1 . . . sin
2 ψn−3 sin2 ψn−2

+

xn term︷ ︸︸ ︷
sinh2 µ sin2 ψ1 . . . sin

2 ψn−3 sin2 ψn−2 − sinh2 µ sin2 ν sin2 ψ1 . . . sin
2 ψn−3 sin2 ψn−2

) 1
2 ,

about which the following observations are made:

• The second term of the x1 grouping cancels with the second term of the x2 grouping.

• In the intermediate terms, x2, x3, . . . xn−1, the third and fourth term of each xj grouping

cancels with the first and second terms of the subsequent xj+1 grouping.

• The final xn grouping cancels with the third and fourth terms of the xn−1 grouping.



Appendix E. The Prolate Hyperspheroid Coordinate System 132

These observations simplify the second scale factor to

hν = a
(
sinh2 µ+ sin2 ν

) 1
2 . (E.6)

Intermediate Scale Factors

The partial derivatives of (E.1) with respect to ψi, 1 ≤ i ≤ n− 3 are

∂x1

∂ψi
=
∂x2

∂ψi
= . . . =

∂xi
∂ψi

= 0,

∂xi+1

∂ψi
= −a sinhµ sin ν sinψ1 . . . sinψi−1 sinψi,

∂xi+2

∂ψi
= a sinhµ sin ν sinψ1 . . . sinψi−1 cosψi cosψi+1,

∂xi+3

∂ψi
= a sinhµ sin ν sinψ1 . . . sinψi−1 cosψi sinψi+1 cosψi+2,

...

∂xn−1

∂ψi
= a sinhµ sin ν sinψ1 . . . sinψi−1 cosψi sinψi+1 . . . sinψn−3 cosψn−2,

∂xn
∂ψi

= a sinhµ sin ν sinψ1 . . . sinψi−1 cosψi sinψi+1 . . . sinψn−3 sinψn−2.

From (E.2) the scale factors, hψi
, 1 ≤ i ≤ n− 3 , are then

hψi
= a sinhµ sin ν sinψ1 . . . sinψi−1

(
sin2 ψi + cos2 ψi cos2 ψi+1 + cos2 ψi sin

2 ψi+1 cos2 ψi+2

+ . . .+ cos2 ψi sin
2 ψi+1 . . . sin

2 ψn−3 cos2 ψn−2

+ cos2 ψi sin
2 ψi+1 . . . sin

2 ψn−3 sin2 ψn−2

) 1
2 .

Returning to the Pythagorean trigonometric identity, (E.4), for every instance of cos2 (·) gives

hψi
= a sinhµ sin ν sinψ1 . . . sinψi−1

(
xi+1 term︷ ︸︸ ︷

sin2 ψi +

xi+2 term︷ ︸︸ ︷
1− sin2 ψi − sin2 ψi+1 + sin2 ψi sin

2 ψi+1

+

xi+3 term︷ ︸︸ ︷
sin2 ψi+1 − sin2 ψi sin

2 ψi+1 − sin2 ψi+1 sin2 ψi+2 + sin2 ψi sin
2 ψi+1 sin2 ψi+2

+ . . .+

xn−1 term︷ ︸︸ ︷
sin2 ψi+1 . . . sin

2 ψn−3 − sin2 ψi sin
2 ψi+1 . . . sin

2 ψn−3

xn−1 term︷ ︸︸ ︷
− sin2 ψi+1 . . . sin

2 ψn−3 sin2 ψn−2 + sin2 ψi sin
2 ψi+1 . . . sin

2 ψn−3 sin2 ψn−2

+

xn term︷ ︸︸ ︷
sin2 ψi+1 . . . sin

2 ψn−3 sin2 ψn−2 − sin2 ψi sin
2 ψi+1 . . . sin

2 ψn−3 sin2 ψn−2

) 1
2 ,
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about which the following observations are made:

• The only term of the xi grouping cancels with the second term of the xi+1 grouping.

• For the intermediate terms, xi+2, xi+3, . . . xn−1, the third and fourth term of each xj

grouping cancels with the first and second terms of the subsequent xj+1 grouping.

• The final xn grouping cancels with the third and fourth terms of the xn−1 grouping.

This leaves unity inside the square root, giving

hψi
= a sinhµ sin ν sinψ1 . . . sinψi−1, 1 ≤ i ≤ n− 3. (E.7)

Final Scale Factor

The partial derivatives of (E.1) with respect to the last prolate hyperspheroid coordinate,

ψn−2, are

∂x1

∂ψn−2

=
∂x2

∂ψn−2

= . . . =
∂xn−2

∂ψn−2

= 0,

∂xn−1

∂ψn−2

= −a sinhµ sin ν sinψ1 . . . . . . sinψn−3 sinψn−2,

∂xn
∂ψn−2

= a sinhµ sin ν sinψ1 . . . . . . sinψn−3 cosψn−2.

From (E.2) the scale factor, hψn−2 , is then

hψn−2 = a sinhµ sin ν sinψ1 . . . sinψn−3

(
sin2 ψn−2 + cos2 ψn−2

) 1
2 ,

to which one last application of the Pythagorean trigonometric identity, (E.4), gives

hψn−2 = a sinhµ sin ν sinψ1 . . . sinψn−3.

This result expands (E.7) to a single expression for all ψi:

hψi
= a sinhµ sin ν sinψ1 . . . sinψi−1, 1 ≤ i ≤ n− 2. (E.8)

Differential Volume

Substituting (E.5), (E.6), and (E.8) into (E.3), gives a final expression for the differential

volume

dV = an
(
sinh2 µ+ sin2 ν

)
sinhn−2 µ sinn−2 ν sinn−3 ψ1 sinn−4 ψ2 . . .

sinψn−3 dµ dν dψ1 dψ2 . . . dψn−3 dψn−2. (E.9)
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Québec, Canada. [Cited p. 111]

Choudhury, S., Gammell, J. D., Barfoot, T. D., Srinivasa, S. S., and Scherer, S. (2016).
Regionally Accelerated Batch Informed Trees (RABIT*): A framework to integrate local
information into optimal path planning. In Proceedings of the IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 4207–4214, Stockholm, Sweden. [Cited
pp. 106 and 111]

Cohen, B., Chitta, S., and Likhachev, M. (2014a). Single- and dual-arm motion planning with
heuristic search. The International Journal of Robotics Research (IJRR), 33(2):305–320.
[Cited p. 17]

Cohen, B., Phillips, M., and Likhachev, M. (2014b). Planning single-arm manipulations with
n-arm robots. In Proceedings of Robotics: Science and Systems (RSS), Berkeley, USA.
[Cited pp. 14, 29, 78, 86, and 106]

de Ruiter, A. H. J. and Forbes, J. R. (2013). On the solution of Wahba’s problem on SO(n).
The Journal of the Astronautical Sciences, 60(1):1–31. [Cited p. 44]
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Roy, B. (1959). Transitivité et connexité. Comptes Rendus Hebdomadaires Des Seances De
L’Academie Des Sciences, 249(2):216–218. [Cited p. 10]

Sallaberger, C. S. and D’Eleuterio, G. M. (1995). Optimal robotic path planning using
dynamic programming and randomization. Acta Astronautica, 35(2–3):143–156. [Cited pp.
17 and 79]

Salzman, O. and Halperin, D. (2014). Asymptotically near-optimal RRT for fast, high-quality,
motion planning. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pages 4680–4685. [Cited pp. 23 and 58]

Salzman, O. and Halperin, D. (2015). Asymptotically-optimal motion planning using lower
bounds on cost. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pages 4167–4172. [Cited pp. 26 and 81]

Sánchez, G. and Latombe, J.-C. (2002). On delaying collision checking in PRM planning:
Application to multi-robot coordination. The International Journal of Robotics Research
(IJRR), 21(1):5–26. [Cited pp. 78 and 86]

Schulman, J., Ho, J., Lee, A., Awwal, I., Bradlow, H., and Abbeel, P. (2013). Finding locally
optimal, collision-free trajectories with sequential convex optimization. In Proceedings of
Robotics: Science and Systems (RSS), Berlin, Germany. [Cited p. 8]
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