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The stochastic Canadian Traveler Problem (CTP), which finds application in robot route

selection under uncertainty, aims to find the traversal policy with the minimum expected cost.

This thesis extends the stochastic CTP to what we call the Robust Canadian Traveler Problem

(RCTP), in which the variability of the policy cost is also considered. An optimal algorithm

and an approximate algorithm are then proposed to compute the policy that has a good balance

of both mean and variation of the traversal cost.

The benefit of the proposed framework versus traditional approaches is shown by doing

simulations in randomly generated worlds as well as on a map of 5 km of paths built from robot

field trials. Specifically, the RCTP framework is able to search for policy alternatives with

significant lower worst-case cost and less computational time compared against the optimal

CTP policy, but with little sacrifice on the expected cost.
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Chapter 1

Introduction

1.1 Motivation

Robots that navigate in real-world scenarios often face the problem of choosing the best route

under uncertainty (e.g., due to incomplete knowledge of the world and noisy observation of

the environment). Such uncertainties can come from factors such as sensor limitations and dy-

namic changes in the environment (lighting, season, terrain modification, etc.). For example,

Fig. 1.1 shows a map of an extended field test that we conducted with a vision-based robot at

an old gravel pit in Sudbury, Canada [43]. The map was created using the Visual Teach and Re-

peat (VT&R) algorithm ([18], [41], [30], [8]) by manually piloting the robot through the path

network once, and then autonomous path repeating was done by localizing over visual features

stored in the map. Navigating in such an unstructured environment for an extended period of

time meant the robot encountered many challenges such as shifting sand with little visual tex-

ture, fast-growing vegetation that changes visual appearance, and unexpected obstacles which

were not present during mapping. All these challenges can result in failures of traversing cer-

tain paths. To make more robust plans for driving through such a network of paths, we propose

to gather historical data on the success of driving on individual path segments and use this in

route selection.

Routing scenarios of this kind can be formalized as a stochastic version of the Canadian

Traveler Problem (CTP) [39]: an agent must find the best traversal policy between two vertices

in a given graph where some edges may be blocked with some known probabilities; we call

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Orthomosaic imagery of the 5 km network of paths at the Ethier Sand and Gravel in
Sudbury, Ontario, Canada. The map shows challenging environmental uncertainties for robust
route planning: lighting change, shifting sand with little visual texture, and dense vegetation
with changing appearance.

such edges stochastic. A stochastic edge’s binary traversability status can only be revealed

upon reaching one of its endpoints.

For a given routing problem, there are a number of possibilities, or realizations, of how the

hidden graph may look. The solution to the CTP is a policy rather than a path; for example, first

attempt path A, if path A is not traversable, then attempt path B. Most prior work on stochastic

CTPs are focused on finding the policy that minimizes the expected traversal cost. However,

the cost variability of attempting a stochastic policy can also be important if we are worried

about the worst case over several realizations.

For instance, consider the situation in which the robot can choose from the following two

policies to travel to the charging station:

• Policy 1: Travel to the charging station with 0.9 probability of traveling 1100 meters and

0.1 probability of traveling 1900 meters.
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• Policy 2: Travel to the charging station with 0.2 probability of traveling 1100 meters and

0.8 probability of traveling 1200 meters.

Note that both policies have the same expected traveling distance of 1180 meters, thus would be

treated equally for algorithms that only minimize the expected cost. An adventurous decision

maker might choose Policy 1 since the probability of traveling the least distance is higher.

However, what if the remaining battery of the robot can only let it travel for up to 1500 meters?

A more risk-averse decision is to choose Policy 2, due to its lower variability around the mean.

The focus of this thesis is thus to investigate path planning algorithms that can solve the

stochastic CTP in a more risk-sensitive manner - being able to find traversal policies that have

a good balance between cost expectation and variability.

1.2 Contributions

The primary goal of the thesis is to present risk-sensitive algorithms that can find robust policies

to travel on a network of paths with uncertainties in road blockage. Specifically, the novel

contributions of this thesis are as follows:

1. Propose the Robust Canadian Traveler Problem (RCTP) that tries to find the traversal

policy over uncertain maps with a good balance of both mean and variation of the traver-

sal cost.

2. Analyze different risk-quantifying methods to evaluate policy risks.

3. Provide an offline and an online algorithm to solve the RCTP.

4. Experimental validation of the algorithms on simulated maps, as well as a map that was

collected from a robot field trial.

1.3 Thesis Overview

The remainder of this thesis is organized as follows. Chapter 2 presents further background

and related work. Chapter 3 formally defines the RCTP and analyses the complexity of the
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problem through its Markov Decision Process (MDP) definition and AND/OR tree representa-

tion. Chapter 4 provides two modified versions of the AO* algorithm [44] to solve the RCTP,

one for offline optimality and one for fast online execution. Implementation tricks will also be

discussed. Chapter 5 will explain the experimental environment, and then discuss the results of

the proposed algorithms versus baseline approaches. Chapter 6 will discuss the methods to in-

tegrate the proposed planner into VT&R - a vision-based robot navigation framework. Finally,

Chapter 7 summarizes the conclusions and future research directions.



Chapter 2

Background and Related Work

This chapter first reviews some popular path planning algorithms in mobile robotics that aim to

find a feasible, or optimal path between a starting position and a goal position in a given map.

Depending on different evaluation criteria, finding the optimal solution can refer to different

objectives such as finding the path that has the shortest distance, the fastest travel time, or the

most likelihood of being successfully traversable.

The Canadian Traveler Problem (CTP) is introduced next. It is a generalization of the

shortest path problem to graphs that are partially observable. For CTPs, the existence of some

edges in the graph can only be revealed when they are being explored. Thus instead of finding

the optimal path, the goal of solving the CTP is to find the optimal strategy (or policy) to travel

the map, namely the agent should know how to take the best action to adjust its plan when new

observations are made.

The work presented in this thesis is motivated by solving the path planning challenges in

the VT&R framework, which is a vision-based robot navigation system. Thus a brief introduc-

tion about the VT&R framework and the map structure being used are also introduced. The

challenge that we are trying to solve for VT&R can be expressed as an instance of the CTP.

However, the goal of the classic CTP is trying to find the optimal policy that minimizes the

expected traversal cost, whereas we are interested in finding more robust policies that are also

sensitive to the possible cost variability. We aim to find a good balance between optimality and

robustness.

5
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2.1 Path Planning for Mobile Robots

The robotics community has committed an enormous amount of time to solving the path plan-

ning problem. There are many algorithms that solve for optimal or approximate optimal paths;

each method has its own strengths and weaknesses depending on the application domains and

the complexity of the problems. In this section, we will review some typical categories of

planning algorithms that are related to our work.

2.1.1 Path Planning in Known Environments

In a known or fully observable environment, the robot knows the entire map of the environ-

ment before it starts traveling. Thus an optimal solution can often be found offline before the

robot actually starts to move. The path planning techniques for fully observable and known

environments are relatively mature and many classic algorithms were proposed. For example,

Bruce-force search methods such as the classic Breadth-first search, Depth-first search, the

Floyd-Warshall algorithm [15], [53], the Bellman-Ford-Moore algorithm [4], [16], [34] and

many others. Though being proposed around the 1960s, Dijkstra’s algorithm [11] and the A*

algorithm [20] are still being widely used today for optimal pathfinding in known environ-

ments.

Dijkstra’s algorithm [11] traverses the graph from a starting vertex and then expands to

other vertices in the order of the vertex cost-to-come (the cost of the vertex to the start). Thus

the algorithm can be used to find the shortest path between the start vertex and every other. It

can also be used to find the shortest path from the start to a single destination by stopping the

algorithm once the shortest path to the destination has been found. In this case, the algorithm

only visits vertices that have a lower cost-to-come than the destination vertex.

Dijkstra’s algorithm can be implemented by using a priority queue to store the vertices

to be visited. Initially, all vertices are marked as unvisited and the start vertex is put into the

queue. Then at every step, the vertex with the lowest cost-to-come is extracted from the priority

queue and marked as visited. All of its unvisited neighbors are then put into the priority queue

and their cost-to-comes are calculated. This process is repeated until the destination vertex is

marked as visited, in which case all vertices that have a lower cost-to-come are already visited,
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thus optimality is guaranteed. Any vertex that has a higher cost-to-come will not be visited,

thus the algorithm does not necessarily traverse the whole graph.

The A* algorithm was later proposed as an improvement over the Dijkstra’s algorithm for

higher efficiency in finding the optimal path. A* also traverses the graph from a starting vertex

and then gradually expands the visited vertices set until the destination is being visited. But

instead of ordering vertices by their cost-to-come, A* orders vertices by a combination of cost-

to-come and heuristic cost-to-go (an estimation of the cost from the vertex to the destination).

The inclusion of the heuristic cost-to-go gives the planner the extra information to evaluate the

quality of the candidates for the next node to be visited. For Dijkstra’s algorithm, the planner

only considers how far a candidate is to the start; whereas for A*, the planner also considers

how close a candidate is to the destination. This will allow the planner to prune bad candidates

that are only close to the start but far to the goal, thus fewer vertices are likely to be expanded

when the goal is visited. Figure 2.1 illustrates a comparison of the node expansions between

A* and the Dijkstra’s algorithm, where A* uses Manhattan distance to evaluate heuristic cost-

to-go. In this instance, A* is able to find the optimal path by visiting far fewer vertices than the

Dijkstra’s algorithm.

Figure 2.1: A performance comparison of the A* algorithm (left) and the Dijkstra’s algorithm
(right) on a random world. The free space is marked in grey; obstacles are marked in black;
the start vertex is marked in green; the destination is marked in red; the optimal path is marked
in yellow; the visited vertices are marked in blue. The A* algorithm uses Manhattan distance
to evaluate heuristic cost-to-go. This figure is generated by PathFinder [52].

It can be proved that if the heuristic being used is admissible (the true cost-to-go is never

over-estimated), then the solution found is optimal. It has also been proved that the A* algo-



CHAPTER 2. BACKGROUND AND RELATED WORK 8

rithm is optimally efficient [20], which means any other algorithm that uses the same heuristic

will expand at least as many vertices as A*. Due to its performance and accuracy, A* still

enjoys widespread use today in robotics.

2.1.2 Path Planning in Partially-Known Environments

In real-world applications, the environment is often partially known or partially observable.

Thus robot navigation is more difficult than that in a known environment. This is due to the

uncertainty of the information in the environment and the robot sensor; or the environment

itself can change during the robot navigation. In such scenarios, it is often more difficult to

obtain an optimal solution. The robot has to evaluate the uncertainties to make more robust

decisions, or frequently use local information to adjust its plan on the way.

Risk-Aware Path Planning

One way to tackle the uncertainties in the environment and the robot sensor is to compute risk-

aware or risk-sensitive plans that are more likely to succeed, or can be bounded by a limited

risk.

For example, Feyzabadi et al. [14] proposed an algorithmic framework that first uses a

risk function to mask the vertices in the map, then a Constrained Markov Decision Processes

(CMDP) will be constructed and solved to produce a path that has a bounded risk.

By taking robot localization uncertainty into consideration, some works [51], [45] etc. sug-

gest to find and follow the path with the lowest accumulated uncertainty for robot navigation,

i.e., execute the most reliable path to the goal. An illustration is demonstrated in Figure 2.2.

The figure shows that though possibly longer than the shortest path, the most reliable path will

have the highest likelihood of being successful. Whereas due to sensor limitations, the robot

could get lost at some point when trying to execute the shortest path, which could cause drastic

failures in practice.
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Figure 2.2: Comparison of the shortest path and the most reliable path between two vertices in
a Pose SLAM graph. (a) A map generated by Pose SLAM [22], with red dots and lines rep-
resenting the trajectory and ellipses representing pose uncertainties. (b) An attempt to traverse
the shortest path to the goal, but at one point the sensor registration fails and robot gets lost.
(c) A successful attempt of traversing the least uncertain path to the goal. The least uncertain
path has the highest likelihood of being successful. Figure reproduced from [51].

Incremental Planning

Another way to adapt to the uncertain environment is to use incremental planning techniques

that first follow an initial plan, and then replan when the previous plan is no longer valid.

Many incremental search algorithms reuse information from previous searches to speed up

the current search and can solve search problems potentially much faster than solving them

repeatedly from scratch.

Lifelong Planning A* (LPA*) [25], D* [49] and its variants Focused D* [50], D* Lite [24]

are among the most popular incremental search techniques. LPA* uses the A* algorithm to

generate an initial path to follow. But instead of restarting the A* algorithm from scratch when

inconsistent observations (obstacles, change in edge weights etc.) are encountered, LPA* will

first start with the inconsistent vertex and identify all of its connected inconsistent neighbors.

LPA* will then only resolve the inconsistent vertices to generate new plans. A vertex is in-
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consistent if its cost-to-come is different from the best value that could be calculated from its

immediate neighbors.

Like the A* algorithm, LPA* uses heuristic to prune the search space and priority queues

are often used in implementation for higher efficiency. But LPA* is more efficient than running

the A* algorithm multiple times by reusing the unchanged information from history.

However, for optimal pathfinding problems, replanning often indicates a better solution

exists. The quality of the plan can be improved if more information can be incorporated into

the planning step.

2.1.3 Offline versus Online Path Planning

Offline planners compute the entire path or trajectory to the destination before the robot starts

to move. For example, A* will only return a solution when the optimal path is found. However,

in practice, many robot systems will only allow a limited amount of computational time to find

a solution. Thus it is often desired for the system to have an online planner that can come up

with a feasible solution quickly, even if the solution is not optimal. The robot will take some

actions first, and then the system can later improve upon the sub-optimal solution when more

computational time is available.

Anytime Repairing A* (ARA*) [28] is an extension of the A* algorithm that achieves the

online performance. ARA* is inspired by the fact that A*’s optimality can be sacrificed to

obtain quicker execution time by inflating the heuristic. ARA* first finds a possibly highly

sub-optimal solution very fast by using an inflated heuristic, then iteratively reduces the degree

of inflation until an optimal solution is found, or the allocated time expires. Like LPA*, ARA*

is able to reuse effort from previous searches to improve efficiency.

Sampling methods are also popular choices for online (or anytime) path planning. Some

typical examples are RRT* [23], and its improved variants such as Informed RRT* [19]. RRT*

is an improvement on Rapidly-exploring Random Trees (RRT) [27]. RRT* solves the path

planning problem by incrementally growing a tree through collision-free space. At every step,

a random sample within a parametric distance is drawn from the search space to perform tree

expansion, which incrementally grows the tree towards unexplored regions. Similar to the
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concept of Dijkstra’s algorithm, the new vertex is connected to a nearby vertex that minimizes

the new vertex’s cost-to-come. It then finds any nearby vertices whose cost-to-come can be

improved by connecting to the new vertex. These vertices will be rewired as descendants of

the new vertex. A feasible solution is found once the goal is added to the tree. The solution can

then be improved over time (and eventually becomes optimal asymptotically) through repeated

tree expansions and rewiring.

8.26 seconds, cbest = 0.76 1 second, cbest = 0.76

(a) (b)

RRT* Informed RRT*

Figure 2.3: A performance comparison of the RRT* algorithm and Informed RRT* algorithm
on a random world. The free space is marked in white; obstacles are marked in black; the start
vertex is marked in green; the destination is marked in red; the expansion tree is marked in
blue; the current best path is marked in pink. Informed RRT* only spent 1 second to find an
equivalent-cost solution that RRT* spent 8.26 seconds to find. Figure reproduced from [19].

Informed RRT* is a further improvement on RRT* that, similar to A* algorithm, uses

admissible heuristics on the upper bound to guide new vertex sampling once a feasible solution

is found. Informed RRT* uses heuristics to avoids regions that will not improve the existing

solution, and thus can improve the solution at a much faster speed than RRT*. Figure 2.3 shows

a comparison of the RRT* and Informed RRT* algorithm, in which Informed RRT* only spent

1 second to find an equivalent-cost solution that RRT* spent 8.26 seconds to find.
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2.2 The Canadian Traveler Problem (CTP)

All the algorithms being discussed in the previous section are designed to find a feasible or

optimal path to the destination if one exists. However, for partially observable environments

where replanning is often necessary, a more general approach is to compute a policy (or strat-

egy) that tells the agent what path to take in every possible realization of the environment. For

example, as in the Canadian Traveler Problem (CTP).

The Canadian Traveler Problem was first proposed by Papadimitriou et al. [39]. The name

of the problem originates from the difficulties that Canadian drivers have in winter: heavy

snow can randomly block some routes in a path network. Most related studies focus on the

stochastic version of the CTP in which for a given graph, some edges are associated with an

independent probability of being blocked; these edges are called stochastic edges. When the

agent is at an endpoint of a stochastic edge, it has the option to disambiguate its state (i.e.,

observing if the edge is traversable or not). The true traversability status of each edge is static

and will not change during the route traversal. The goal of solving the CTP is to find the

optimal policy to traverse from a starting position to the goal with the minimum expected cost.

The optimal policy is different from the shortest path: for a given instance of the problem, there

are a number of possible realizations of how the actual graph may look, a policy describes a

deterministic walk of the graph for every realization. A formal definition of the stochastic

version of the CTP is given in Definition 2.1.

Definition 2.1 ((Stochastic) Canadian Traveler Problem). The stochastic CTP can be described

using a tuple τ =< G = (V,E), C, P, s, t > where:

• G = (V,E) is the given graph with V as the set of vertices and E as the set of undirected

edges connecting the vertices,

• C : e ∈ E → R is the function assigning edge costs,

• P : e ∈ E → [0, 1] is the function assigning edge blocking probabilities. An edge with 0

blocking probability is called a deterministic edge, an edge with 1 blocking probability

will be removed from the graph, otherwise the edge is called a stochastic edge,

• s ∈ V is the starting vertex of the agent,
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• t ∈ V is the destination vertex in G,

• The goal is to find the minimum-expected-cost policy φ∗ = argminφ∈Φ{E(σ(φ))}, where

Φ is the set denoting all possible policies, σ(φ) returns the random variable representing

the cost of policy φ.

s t

y1

y2

5

5

1 (0.1)

1 (0.9)

9

2

Figure 2.4: A simple CTP instance. Dashed lines are stochastic edges. Solid lines are deter-
ministic edges. The cost of each edge is given above the edge. The blocking probabilities of
stochastic edges are shown in parentheses. The goal of solving the CTP is to find the minimum-
expected-cost policy to traverse from s to t.

As an example, Figure 2.4 illustrates a simple CTP instance with two stochastic edges.

In the figure, solid lines denote deterministic edges and dashed ones denote stochastic edges.

Numbers above each edge denote the edge’s cost and blocking probabilities of stochastic edges

are shown in parentheses next to the edge cost.

CTPs can be converted to Markov Decision Processes (MDPs) and Deterministic Partially

Observable Markov Decision Processes (Deterministic POMDPs) [2]. However, Papadim-

itriou et al. [39] showed that the problem is #P-hard and Fried et al. [17] further proved that

CTP is PSPACE-complete, suggesting that the MDP and POMDP formulations will have ex-

ponentially many states. Thus, although CTPs can be solved optimally in MDP and POMDP

formulations in theory, most studies use approximate methods [29], sampling methods [12], or

graph search with heuristic pruning [9], [2] to find sub-optimal policies.

The AO* algorithm [44] and some of its more sophisticated variants [2], [13], [1] have also

been used to solve the CTP. AO* uses branch-and-bound with heuristics to prune the search

space to find an optimal solution as efficiently as possible, making it a typically efficient option

(though the worst-case complexity does not change) to solve the CTP.

There are many variants of the Canadian Traveler Problem that offer extensions in different

aspects:
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• In the k-Canadian Traveler Problem, an upper bound k is imposed on the number of

blocked edges in the graph. A randomized online algorithm is proposed in [5], which is

even optimal for some special configurations of the graph.

• In the Recoverable Canadian Traveler Problem, each blocked stochastic path is associ-

ated with a recovery time to reopen. Noy et al. [3] proposed a polynomial-time travel

strategy that guarantees the smallest worst-case travel time, in the case where an upper

bound on the number of blockages is known in advance, and the recovery times are not

long relative to the travel times.

• Canadian Traveler Problem with Remote Sensing is a generalization to the CTP where

remote sensing actions are allowed at some cost towards a distant location. The goal of

solving the problem is thus minimizing the sum of the travel cost and the sensing cost.

Bnaya et al. [9] proposed a framework that utilizes heuristics to determine when and

where to sense the environment, and is optimal in some special cases.

This thesis is interested in solving the Canadian Traveler Problem by finding solutions

that have a good balance of both policy cost expectation and variability. To the best of our

knowledge, there are no CTP frameworks other than what is being proposed in this thesis, that

explicitly evaluate policy variability and take that into account in policy computation.

2.3 Visual Teach and Repeat

The topics of this thesis were initially inspired by the path planning challenges that the VT&R

framework faces: the VT&R algorithm builds a network of reusable paths [47] [48] for au-

tonomous repeats of the previously demonstrated paths, but some segment of the paths may

not always be traversable during the actual traversal due to various reasons such as prone to

random obstacles or prone to localization failures. This section will introduce the VT&R algo-

rithm and the map structure being used.

Furgale and Barfoot [18] proposed the Visual Teach and Repeat (VT&R) algorithm that

enables mobile robots to autonomously repeat previously demonstrated path by only using vi-

sual data from a stereo camera. The VT&R algorithm consists of two phases. During the teach
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pass, a human will drive the robot to demonstrate desired routes, while the mapping system

will build a local topologically connected map. Then during the repeat pass, the robot will

localize against the previously built map to repeat the demonstrated route autonomously. The

VT&R algorithm was tested in different settings, such as urban, indoor-to-outdoor, vegetation-

free terrain etc. Lots of attempts have been made to improve and extend the VT&R algorithm.

McManus et al. [33] used a laser scanner and lidar intensity images to avoid lighting effects

on the appearance change. Paton et al. [40] transformed images collected from a three-channel

stereo camera into color-constant images that are resistant to changes in outdoor lighting con-

ditions and improved the autonomy repeat rate to be above 99.9%. Berczi et al. [8] extended

the VT&R algorithm to also have the ability to assess the terrain and predict the traversibil-

ity of a new terrain by comparing against past experiences. The initial VT&R algorithm only

localizes against one previous experience (the teach pass), which is vulnerable to environmen-

tal appearance changes over time. Recently, researchers have developed the Multi-Experience

Localization (MEL) algorithm [41] that addresses this limitation of single experience VT&R

with a overarching enhancement: the ability to continuously estimate, with uncertainty, the lo-

calization between the live experience and a privileged (manual) experience, by using several

other intermediate experiences simultaneously to bridge the appearance gap, while only one

teach pass is required.

Figure 2.5: Live demonstration of the VT&R algorithm. The left panel shows the privileged
(teach) paths layered on top of the satellite map. The bottom-left corner shows the image of
the robot. The bottom-right corner shows the features extracted from the live image as well
as the visual odometry track. The top-right corner shows the matched features from the live
image to previous experiences over the path, with different colors indicating feature matches
from different experiences.
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Figure 2.5 shows an example from a live run of the VT&R algorithm with MEL. The left

panel shows the privileged (teach) paths layered on top of the satellite map. The bottom-left

corner shows the image of the robot. The bottom-right corner shows the features extracted from

the live image as well as the visual odometry track. The top-right corner shows the matched

features from the live image to previous experiences over the path, with different colors indi-

cating feature matches from different experiences. The MEL algorithm uses a Spatio-Temporal

Pose Graph (STPG) to support the multi-experience bridging. An example of how MEL using

STPG for multi-experience bridging is shown in Figure 2.6.

Figure 2.6: Overview of the multi-experience localization (MEL) problem and the spatial-
temporal pose graph (STPG) data structure. The aim is to estimate the unknown transform
and uncertainty, {T̂bd, Σ̂bd} (dashed, purple line), between the live vertex, Vb, and the target
vertex, Vd, in the privileged path (solid blue line). This is achieved by matching all landmarks
in Vb to landmarks observed in the map window (dashed, red rectangle), transformed into the
coordinate frame of Vd. This setup allows for outlier rejection and a simple optimization of
{T̂bd, Σ̂bd} against a map of locked landmarks with uncertainty.

The STPG data structure is an undirected graph, G = {V,Es, Et}, where V is a set of

vertices, Et is a set of temporal edges, and Es is a set of spatial edges. Vertices, each with an

associated reference frame, F , store raw sensor observations and triangulated 3D landmarks

with associated covariances and descriptors. An edge in the graph links vertices metrically with

a relative SE(3) transformation with uncertainty. Temporal edges (blue lines) link vertices that

are temporally adjacent, while spatial edges (green lines) link vertices that are temporally dis-

tant yet spatially close. Temporal edges can furthermore be denoted as privileged if they were

collected while the robot was being taught a route or autonomous if the robot was repeating

a route; this distinction is illustrated in Figure 2.6 as solid and dashed lines, respectively. An
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experience is a collection of vertices linked by temporal edges.

The STPG thus naturally forms a network of reusable paths [47] [48] with rich historical

data, which includes robot poses with uncertainties, landmarks observed, vehicle velocities,

obstacle detection results, localization results, and manual interventions etc., all associated

with timestamps. Thus a variety of options are available for generating statistics to predict the

success rate of a proposing route. For example, the temporal difference between a previous

experience and the current experience can act as an indicator of environmental change; the

localization result (uncertainty, accuracy etc.) along an edge tells information about the proba-

bility of successful localization; terrain assessment result and manual intervention history can

also indicate the traversability of the paths.

With each path being assigned a probability of successful traversal, this is exactly the

stochastic Canadian Traveler Problem that was discussed in the previous section. However,

as illustrated by the motivational example in Chapter 1.1, two policies that have similar ex-

pected costs can have quite different variability around the mean. In this thesis, we are more

interested in finding robust policies that, while keeping the expected cost low, are also stable in

terms of possible policy cost variability.

2.4 Discussion

In this chapter, we presented some typical planning algorithms for pathfinding in mobile robotics.

Depending on different contexts of the problems, each algorithm can have its own strength and

weakness.

For fully observable environments where a complete knowledge of the map is given, offline-

optimal and search-based algorithms such as A* are often used to find an optimal path before

the robot taking any actions. Whereas for partially observable environments, it is often difficult

for the agent to find the optimal path due to the missing of information. The agent can only

make a best guess based on its current knowledge and adjusts the plan when new information is

available. Incremental search algorithms such as LPA* can then be applied to make replanning

efficient by utilizing the information from previous searches.

In some settings of partially observable environments, though the observations can only
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be made upon robot execution, the agent can still have a knowledge about all the possible

observation outcomes. For example, the traversability of a path can only be traversable or

untraversable. Thus though finding an optimal path may be hard, the agent might still be able

to compute an optimal policy that tells the robot what is the best action to take in any possible

situation. The Canadian Traveler Problem is one such problem that aims to find the traversal

policy with the minimum expected cost. Existing graph search algorithms such as AO* may

be used to compute the optimal policy.

In practice, many mobile robot systems only allow a limited amount of time to find a

solution. To achieve the real-time performance, incremental search methods such as ARA*

and sampling methods such as RRT* will first sacrifice optimality to find a feasible solution

quickly, and then gradually adjust its plan towards the optimal solution when more time is

available.

There are some other related works that also try to seek for the optimal policy in partially

observable environments. For example, the PAO* algorithm for planning with hidden state

introduces the idea of pinch points [13]. It identifies areas of uncertain traversability that may

have a significant impact on reaching the goal, and then tries to compute an optimal policy with

the minimum expected cost while considering those pinch points. However, not much literature

considers the possible cost variation of following the same policy multiple times in stochastic

environments. In this thesis, we are interested in solving the Canadian Traveler Problem by

finding policies that have low expected costs as well as low variations on the possible costs.

We attempt to find offline solutions that guarantee optimality, as well as online solutions that

can satisfy the needs of real-time operations.



Chapter 3

Problem Formulation

This thesis is devoted to finding robust, or risk-sensitive policies for the Canadian Traveler

Problem, such that both policy cost expectation and variability will be considered during pol-

icy selection. In the previous chapter, we have introduced related literature on the CTP and

some related planning techniques. In this chapter, in order to formalize the Robust Canadian

Traveler Problem, we will first introduce the AND/OR tree data structure that can be used to

represent (and visualize) the CTP problem as well as its policies. Then different approaches

to quantify policy risks will be discussed from the perspective of viewing the policy cost as a

random variable that follows a discrete distribution. Finally, by choosing the exponential risk

as the policy risk measure, a formal definition of the Robust Canadian Traveler Problem will

be proposed. An MDP definition of the RCTP will also be provided.

3.1 Representing CTPs as AND/OR Trees

The AND/OR tree is a data structure often used for problems that can be decomposed into sub-

problems, and if an action can lead to more than one possible state. The AND/OR tree contains

two types of nodes: AND nodes (chance nodes) that combine solutions from all of their chil-

dren; and OR nodes (choice nodes) that choose a single solution from their children[37].

Figure 3.1 shows an example AND/OR tree, in which the root state (an OR node) has two

edges leaving it by taking different actions. Every action leads to an AND node with two

successor OR nodes, each representing a possible outcome by taking the corresponding action.

19
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a1 a2

Figure 3.1: An example AND/OR tree: by convention, OR nodes (choice nodes) are repre-
sented as squares, AND nodes (chance nodes) are represented as circles. In the example, the
root OR has two edges leaving it, one for action a1 and one for action a2. Each action leads to
an AND node with two successor OR nodes, each representing a possible outcome of taking
the corresponding action.

In AND/OR tree search, a solution is a sub-tree defined as follows:

• the initial state (root node in the full AND/OR tree) belongs to the solution sub-tree,

• every OR node in the solution tree selects exactly one edge (choose one action) leaving

it from the corresponding connected edges in the full tree,

• every AND node in the solution tree copies all of the children (possible outcomes from

a chosen action) from the corresponding AND node in the full tree,

• every directed path in the solution tree terminates at a goal state.

To find the minimum-cost solution sub-tree, the cost of each sub-tree associated with a

node must be evaluated, which can be calculated recursively by the function f ∗(v):

• if v is a goal state, f ∗(v) = 0,

• if v is a terminal state other than the goal state, f ∗(v) =∞,

• if v is an OR node, f ∗(v) = minv′∈S(v)[c(v, v
′) + f ∗(v′)],

• if v is an AND node, f ∗(v) =
∑

v′∈S(v)[p(v, v
′) ∗ (c(v, v′) + f ∗(v′))],
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where f ∗(v) denotes the cost of an optimal solution for state vertex v. S(v) represents the set

of children vertices of v in the tree, c(v, v′) is the cost of the edge connecting v and v′, and

p(v, v′) is the probability that taking the previously chosen action in state v results in state v′.

As suggested by [2] and [13], given an instance of the CTP, an AND/OR tree representation

can be constructed as follows:

1. Each node in the AND/OR tree is a state δ = (v, L) where v ∈ V is the position of

the agent. L = {“A”, “T”, “U”}k is an information vector representing the agent’s

knowledge about the k stochastic edges in the graph, in which “A” stands for ambiguous,

“T” stands for traversable and “U” stands for untraversable. The root of the AND/OR

tree is an OR node with state (s, [“A”, ...., “A”]).

2. Children of OR nodes are always AND nodes. These AND nodes are either:

(a) termination states (agent at goal t, or no solution)

(b) states δ′ = (v′, L′) in which v′ is an end vertex of an undisambiguated stochastic

edge and is reachable via a deterministic path from its parent OR node, L′ is copied

from its parent. If v′ connects to more than one undisambiguated edges, copies will

be made for each of them.

The edge cost of an AND node to its parent OR node is the shortest deterministic distance

connecting the two states, assuming all undisambiguated stochastic edges are blocked.

These AND nodes represent the available actions that the parent OR node can take (go

to an endpoint of a stochastic edge to perform disambiguation, or go to a terminal state).

3. Children of AND nodes are always OR nodes, corresponding to the possible disambigua-

tion results from its parent (traversable or untraversable). The edge cost from an OR node

to its parent AND node is the cost of observation (we assume the observation cost is 0 in

this thesis).

3.1.1 A Simple Example

Figure 2.4 illustrates a simple CTP instance with two stochastic edges. The complete AND/OR

tree corresponding to this instance is shown in Figure 3.2, in which the optimal policy with the
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least expected cost is colored in green. In the figure, OR nodes (corresponding to the actions

the agent can take) are depicted by squares and AND nodes (corresponding to probabilistic

outcomes of the agent’s actions) are depicted by circles. The letters “U” and “T” next to arcs

emanating from AND nodes denote untraversable and traversable disambiguation outcomes,

respectively. The fractional number below each AND node is the blocking probability of the

corresponding stochastic edge. The numbers next to arcs emanating from OR nodes denote the

action costs. The expected cost of the optimal policy is thus f(s, (A,A)) = 5+0.1×9+0.9×

1 = 6.8, with a best-case cost of 6 and a worst-case cost of 14.
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Figure 3.2: The complete AO Tree corresponding to the CTP Instance in Figure 2.4. OR
nodes are depicted by squares and AND nodes by circles. Numbers below AND nodes are
blocking probabilities of the corresponding edges to be disambiguated. Numbers beside edges
are action costs. The letters “U” and “T” next to arcs emanating from AND nodes denote
untraversable and traversable disambiguation outcomes, respectively. The policy tree with the
lowest expected cost is in green.

The benefit of representing CTPs as AND/OR trees is that we can use existing graph search

algorithms such as AO* [44] to search for the optimal policy efficiently. AO* is a heuristic
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search algorithm that finds an optimal policy in a given state-space search problem that can

be represented using an AND/OR tree. AO* uses heuristics to prune the search space and

will not require a complete AND/OR tree representation of the problem as it can be implicitly

suggested by the start state and the successor function. AO* builds a solution tree that initially

only contains the start state. The solution tree is grown until a complete policy is found. The

tree expansion is done by repeatedly using a heuristic to select the most promising path to

expand, and then back-propagate to update costs. If the heuristic is admissible (never over-

estimates the actual costs), then the solution found by AO* is optimal. More details about the

AO* algorithm will be discussed in Chapter 3.

3.2 Quantifying Policy Risk

Our motivation to further extend the CTP to the Robust Canadian Traveler Problem comes

from the observation that in some CTP instances, there exist policies that have very close or

even equivalent expected costs to the optimal policy, but the uncertainties over the policies’

costs can vary significantly. For example, the marked policy in Figure 3.2 has the minimum

expected cost of 6.8, but it also has a large worst case of 14. However, consider another policy

as shown in Figure 3.3, It first disambiguates the stochastic edge at y2, then traverses to t either

with a cost of 1 or 2 depending on the disambiguation result. The expected cost of this policy is

5+0.9×2+0.1×1 = 6.9, which is slightly higher than the optimal policy. But the worst-case

cost is only 7, which is much lower. For risk sensitive tasks (for example, when the robot has a

limited remaining battery), we often want to choose such risk-averse policies over the optimal

policy. To find such risk-averse policies, we first need to choose our tool to quantify policy

risks.

For a CTP instance with a policy represented as an AND/OR tree, each traversal of the

policy will reach one of the leaves with some probability. Thus we can view the cost of travers-

ing a policy as a discrete distribution, with each leaf in the tree as a possible outcome. There

are numerous ways to measure risk here, for example by the worst-case cost, the range of the

distribution, the number of categories, etc.
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Figure 3.3: A risk-adverse policy for the CTP Instance in Figure 2.4. OR nodes are depicted by
squares and AND nodes by circles. Numbers below AND nodes are blocking probabilities of
the corresponding edges to be disambiguated. Numbers beside edges are action costs. The let-
ters “U” and “T” next to arcs emanating from AND nodes denote untraversable and traversable
disambiguation outcomes, respectively. This policy has an expected cost of 6.9, a best-case
cost of 6 and a worst-case cost of 7.

3.2.1 Quantifying Policy Risk by Variance

One very popular metric to measure risk is to use variance. By viewing the policy traversal

cost as a random variable following a discrete distribution, the variance of a policy cost can be

calculated as var(π) = E(π2) − E(π)2 =
∑
pic

2
i − (

∑
pici)

2, where pi, ci are the associated

probability and cost of each leaf i. For example, variance of the marked optimal policy in

Figure 2.4 is [(5 + 9)2 × 0.1 + (5 + 1)2 × 0.9]− [(5 + 9)× 0.1 + (5 + 1)× 0.9]2 = 5.76, the

variance of the risk-adverse policy in Figure 3.3 is [(5 + 1)2 × 0.1 + (5 + 2)2 × 0.9] − [(5 +

1)× 0.1 + (5 + 2)× 0.9]2 = 0.09. It has been demonstrated in the literature that it is possible

to solve the mean-variance adjusted MDP [31], but there are some major drawbacks:

• First of all, using variance as part of the evaluation criteria is not friendly to heuristic

graph search algorithms such as AO*. AO* incrementally build its search tree through
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expansions from the tree that just contains the root node. It relies on good-quality heuris-

tic to prune the search space and relies on the admissibility of a heuristic to ensure op-

timality; that is, the heuristic value of a node during expansion should never exceed its

optimal value. However, it is not trivial to find a good admissible heuristic for partial

policy variance except that we know it is non-negative. Without a good heuristic, the

search speed of AO* algorithm can decrease significantly as not much pruning can be

done.

• Secondly, similar to mean-variance optimization in MDPs, it can produce counterintu-

itive policies due to the violation of Bellman’s principle of optimality [32]. In order to

keep the total variance small, a decision maker receiving small rewards at the early stages

may try to avoid large rewards at later stages. Similarly, if the untraversable branch of

an AND node is estimated to have a large cost, then in order to keep the policy variance

small, the returned policy could prefer a large-cost sub-tree over low-cost subtrees in the

traversable branch. Then during the actual course of traversal, even if the agent observes

the stochastic edge to be traversable, it may not take the lowest-cost action based on the

traversable observation, because what the agent really wants is to keep the total variance

small if the next time this stochastic edge become untraversable, which will yield a large

cost.

• Thirdly, variance penalizes deviation below the mean as much as above the mean, while

deviation below the mean is actually desired in terms of the policy cost.

3.2.2 Quantifying Policy Risk by Exponential Risk Measure

To tackle the above-mentioned problems, we propose to use the exponential risk [21] as our

risk measure.

Definition 3.1 (Exponential Risk). Given a random variable π and a weight parameter w > 0,

the exponential risk is given by the function

γ(π,w) =
1

w
ln(E(exp(wπ))).
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A mathematical definition of the exponential risk measure is shown in Definition 3.1. It is

widely used in the financial industry to make risk-aware investment decisions. For example,

for pricing financial securities in incomplete markets [36], and pricing insurance products in

dynamic markets [54]. The exponential risk measure has some nice properties:

• Approximate mean-variance adjustment: by taking a second-order Taylor expansion on

the formula, we can see that

γ(π,w) =
1

w
ln (E(exp(wπ)))

=
1

w
ln

(
1 + wE(π) +

w2

2
E(π2) + · · ·

)
=

1

w

(
wE(π) +

w2

2
E(π2)− 1

2

(
wE(π) +

w2

2
E(π2)

)2

+ · · ·

)
≈ E(π) +

w

2
var(π)

so minimizing exponential risk is approximately minimizing mean plus variance with

weight w/2.

• Monotonicity: if a ≤ b, then γ(a, w) ≤ γ(b, w) for constant a, b.

• Equivariant to translation: γ(a+ π,w) = a+ γ(π,w) for constant a:

γ(a+ π,w) =
1

w
ln (E(exp(w(a+ π))))

=
1

w
ln (E(exp(aw + wπ)))

=
1

w
ln (exp(aw)× E(exp(wπ)))

=
1

w
ln (exp(aw)) +

1

w
ln (exp(wπ))

= a+
1

w
ln (E(exp(wπ)))

= a+ γ(π,w)

• It penalizes deviations above the mean more than deviations below, due to the asymmet-

ric shape of the exponential curve. Though it still penalizes improved paths below the
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expected cost, any solver to the CTP actually already finds the solution with the mini-

mum expected cost. Thus putting more penalization on deviation above the mean will

make the solver to sacrifice as little mean as possible to avoid high-cost paths.

For example, with w = 2, the exponential risk of the marked optimal policy in Figure 2.4

can be calculated as 1
2

ln{exp[(5+9)×2]×0.1+exp[(5+1)×2]×0.9} = 12.85, the exponential

risk of the risk-adverse policy in Figure 3.3 can be calculated as 1
2

ln{exp[(5 + 2)× 2]× 0.9 +

exp[(5+1)×2]×0.1} = 6.95. We can see that the risk-adverse policy has a lower risk than the

optimal policy by the evaluation from the exponential risk measure. Moreover, with w = 2 the

numbers obtained from the exponential risk evaluation are close to policy mean plus variance:

the optimal policy in Figure 2.4 has a mean of 6.8 and a variance of 5.76, 6.8 + 5.76 = 12.56 is

close to its exponential risk 12.85, the risk-adverse policy in Figure 3.3 has a mean of 6.9 and

a variance of 0.09, 6.9 + 0.09 = 6.99 is close to its exponential risk 6.95.

3.3 The Robust Canadian Traveler Problem (RCTP)

Motivated by avoiding large extreme costs, we thus extend the CTP to what we call the Ro-

bust Canadian Traveler Problem (RCTP). In the RCTP, we replace the goal of the problem to

searching for the policy with the minimum exponential risk instead of the minimum expected

cost, as inspired by the properties of the exponential risk measure discussed in the previous

section. A definition of the RCTP is given in Definition 3.2

Definition 3.2 (Robust Canadian Traveler Problem). The Robust Canadian Traveler Problem

can be described using a tuple τ =< G = (V,E), C, P, s, t, w > where:

• G = (V,E) is a graph with V as the set of vertices and E as the set of undirected edges,

• C : e ∈ E → R is the function assigning edge costs,

• P : e ∈ E → [0, 1] is the function assigning edge blocking probabilities. An edge with 0

blocking probability is called a deterministic edge, an edge with 1 blocking probability

will be removed from the graph, otherwise the edge is called a stochastic edge,

• s ∈ V is the starting vertex of the agent,



CHAPTER 3. PROBLEM FORMULATION 28

• t ∈ V is the destination vertex in G,

• w is the parameter that adjusts the weight of the exponential term in the exponential risk

measure.

• The goal is to find the policy φ∗ = argminφ∈Φ{ 1
w

ln (E(exp(w × σ(φ))))}, where Φ is

the set denoting all possible policies, σ(φ) returns the random variable representing the

cost of policy φ.

3.4 Assumptions

The following assumptions are made in our RCTP framework:

1. The blocking probabilities of the stochastic edges are independent from each other.

2. The cost of disambiguation (observing if a stochastic edge is traversable or not at its end

vertices) is zero.

3. Once being disambiguated, the traversability status of the stochastic edges do not change

during the course of traversal.

3.5 The MDP Formulation

As in CTP, the RCTP can also be formulated as an MDP described by the 5-tuple< X,A, Pa, Ca,

γ >, where:

• X is a finite set of states. For RCTP, we can define the states the same way as we do for

the AND/OR tree conversion. X is now the set of all possible (v, L) pairs where v ∈ V

denotes the position of the agent in the graph. L = {“A”, “T”, “U”}k is an information

list maintaining the agent’s knowledge about the traversability of the k stochastic edges

in the graph.

• A is a finite set of actions, with Aδ being the finite set of actions available from state δ.

For RCTP, A is now the set of all possible < v, v′, e > tuples, meaning to traverse from

v to v′, and then disambiguate the stochastic edge e at endpoint v′.
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• Pa(δ, δ′) is the probability that taking action a in state δ will lead to state δ′. For RCTP,

it is specified by the stochastic edge to be disambiguated.

• Ca(δ, δ′) is the immediate cost for transitioning from state δ to δ′. For RCTP, we let it be

the shortest deterministic distance from δ to δ′.

• γ ∈ [0, 1] is the discount factor, we simply let it be 1 for RCTP denoting no discount for

future costs.

Value Iteration (VI) is one of the standard algorithms to solve MDPs by calculating the

array V , such that V (δ) contains the estimated costs (on average) by following the optimal

solution from state δ. For standard MDPs, V can be calculated recursively by:

V (δ) = min
a∈Aδ

{∑
δ′

Pa(δ, δ
′)(Ra(δ, δ

′) + V (δ′))

}
.

Substituting in the exponential risk measure to minimize the exponential risk instead of the

average, we have

V (δ) = min
a∈Aδ

{
1

w
ln
∑
δ′

Pa(δ, δ
′) exp(w(Ra(δ, δ

′) + V (δ′)))

}
.

This is actually one of the risk-sensitive MDPs that have been well-studied [26]. However,

as the problem has an exponential state space of O(|V |3|E|), it is not practical to use MDP with

value iteration to solve large-scale RCTP instances. In the next chapter, we will demonstrate

methods to adapt the AO* algorithm and use heuristics to speed up the policy computation.

3.6 Summary

In this chapter, we showed the approach to represent CTPs as AND/OR trees. The AND/OR

tree can be used to give a nice intuitive visualization of the problem domain and policy struc-

tures. And more importantly, existing AND/OR graph search methods such as AO* can then

be applied to find the optimal policy efficiently.

As illustrated by the AND/OR tree data structure, a CTP policy can be viewed as a discrete

distribution with each leaf in the AND/OR tree as a possible outcome. The AND/OR tree also
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gives access to compute the cost and probability of each category, which can then be utilized to

compute different statistics of the policy that can be used to quantify policy risks. We explicitly

discussed the drawbacks of using the most popular choice - variance, and then propose to use

the exponential risk as a better choice to quantify policy risk.

We then give a formal definition of the Robust Canadian Traveler Problem, which aims

to compute the policy with the minimum exponential risk. Finally, an MDP definition of the

RCTP is also provided to give more insights into the complexity of the problem.



Chapter 4

Algorithms

This chapter describes the algorithms that we propose to solve the Robust Canadian Traveler

Problem. We will first describe the AO* algorithm that can be directly used to solve classic

CTPs represented by AND/OR trees. Then we will propose a modified version of the AO*

algorithm, which we call Offline-RCTP-AO*, that can be used to solve RCTPs optimally of-

fline. Finally, an online version of the algorithm, which we call Online-RCTP-AO*, will be

introduced. The Online-RCTP-AO* algorithm provides approximate solutions to the Offline-

RCTP-AO* algorithm, but with significantly less computational time.

4.1 The AO* Algorithm

In Chapter 3.1, we showed how to represent CTPs as AND/OR trees. In theory, the optimal

policy to a problem that is represented as an AND/OR tree can be found by computing every

node’s minimum expected cost recursively from the bottom layer up to the root. However,

CTPs have an exponential search space, which corresponds to an exponential number of nodes

in the AND/OR tree representation. It is thus not practical to conduct such brute-force compu-

tations. Fortunately, we are only interested in the optimal cost of the root node, and we do not

need to calculate every node’s optimal cost to calculate this number. AO* [44] is a heuristic

search algorithm that improves the brute force method by using heuristics to find the optimal

solution while only visiting a small portion of the search space. Specifically, AO* calculates

node cost in a top-down fashion and uses admissible lower bounds (lower bounds that are guar-

31



CHAPTER 4. ALGORITHMS 32

anteed not to overestimate the true cost of any node) to select the next layer of nodes to expand,

such that only a small portion of the complete AND/OR tree is examined. A detailed descrip-

tion of the AO* algorithm is shown in Algorithm 1. We define the following notation: for a

node (state) v, h(v) returns v’s heuristic cost-to-go, f(v) is the estimated cost of the current

best policy at v, S(v) returns the successors (children) of v, c(v, v′) is the cost of going from

state v to v′.

Algorithm 1 The AO* Algorithm
1: function AO*(s, h(·), t)
2: f(s)← h(s); s.type = OR; T.root← s
3: while s.status 6= SOLVED and f(s) 6= inf do
4: v ← SELECTNODE(T.root)
5: EXPAND(v)
6: for v′ ∈ S(v) do
7: f(v′) = h(v′)
8: if v′ ∈ t then v′.status = SOLVED
9: BACKPROPAGATE(v, T )

10: if T.root.val == inf then
11: return NO SOLUTION
12: return T
13:
14: function BACKPROPAGATE(v, T)
15: while v 6= T.root do
16: if S(v) 6= ∅ then
17: if v.type == OR then
18: v′ = argminv′∈S(v)(f(v

′) + c(v, v′))
19: f(v) = c(v, v′) + f(v′)
20: if v′.status == SOLVED then v.status = SOLVED
21: if v.type == AND then
22: f(v) =

∑
v′∈S(v){p(v, v′)× [c(v, v′) + f(v′)]}

23: if v′.status == SOLVED ∀v′ ∈ S(v) then
24: v.status = SOLVED
25: v = v.parent

AO* builds a solution tree that initially only contains the root node (start state). The so-

lution tree, which is a sub-tree of the complete AND/OR tree representing partial solutions of

the optimal conditions, is gradually augmented until the root node is solved (complete solution

found). The tree expansion is performed by two alternating steps, expansion and propagation:

• expansion: in this step, a non-terminal leaf node (a state representing neither goal state

nor no-solution state) is chosen by traversing the most promising sub-tree from the root.

Its successors are then added to the tree and assigned lower heuristic labels.
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• propagation: in this step, the expanded node’s cost will be recalculated using the heuris-

tic costs of its newly-added successors. If the successors are terminal leaf nodes in the

complete AND/OR tree, the costs are already optimal and the sub-problems associated

with the nodes will be marked as solved, otherwise the costs are lower-bounded by the

heuristic. Then every node’s cost in the expanded-node-to-root path will be updated us-

ing the latest costs of its successors. The statuses (solved or not) of the sub-problems

associated with the nodes are also updated accordingly during the propagation step: the

sub-problem associated with an OR node is solved if its best child is solved; the sub-

problem associated with an AND node is solved if both of its two children are solved.

Figure 4.1 shows the complete AND/OR tree associated with the instance in Figure 2.4. In

the figure, the optimal policy sub-tree returned by AO* is colored in green. Extra expanded

nodes are colored in yellow. Non-terminal leaves in the AO* expansion tree are colored in red.

We can see that the AO* algorithm is able to find the optimal solution by only exploring a small

portion of the complete AND/OR tree.
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Figure 4.1: The complete AO Tree corresponding to the CTP Instance in Figure 2.4. OR nodes
are depicted by squares and AND nodes by circles. Numbers below AND nodes are blocking
probabilities of the corresponding edges to be disambiguated. Numbers beside edges are action
costs. The policy tree returned by AO* is colored in green. Extra expanded nodes are colored
in yellow. Non-terminal leaves in the AO* expansion tree are colored in red.
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For CTPs, an intuitive admissible heuristic to calculate a node (state) v’s cost-to-go is to

calculate the cost of the naive shortest path from the agent position in that node (state) v to

the goal. That is, during the shortest path calculation, all undisambiguated stochastic edges to

the knowledge of v will be treated as traversable (the stochastic edges that are already disam-

biguated will still use their disambiguated true statuses). Since only in the best case scenario all

the remaining undisambiguated stochastic edges would be revealed to be traversable, therefore

this heuristic will never overestimate the true optimal cost of each node, and thus is admissible.

We also note that during the expansion phase, the best partial solution tree may have many

non-terminal leaves. AO* works correctly no matter which of these leaves is chosen for ex-

pansion. However, the efficiency of AO* can be improved by using a good selection function

to choose which non-terminal leaf of the best partial solution tree to expand next. Possibilities

include always selecting the leaf with the least estimated cost, or selecting the leaf with the

greatest probability of being reached.

4.1.1 Domain-Specific Pruning Techniques

Exploiting the properties of the CTP, we can introduce some domain-specific techniques into

the AO* algorithm to make the search even faster. For example, Ferguson et al. [13] proposed to

propagate a node cost not only upwards, but also to its neighbors in order to make the algorithm

converge faster; Aksakalli [1] analyzed the upper bound and lower bound of each node’s cost

to prune unnecessary nodes; Aksakalli et al. [2] further introduced a caching mechanism to

avoid duplicate expansions of different nodes with the same state. All of these techniques can

be applied to our algorithmic framework to speed up the search as well. For the simplicity of

demonstration, we excluded them from our algorithm description in Algorithm 1.

s ty11 4

5 (0.3)

Figure 4.2: A CTP instance with one stochastic edge (denoted by dashed line) and two de-
terministic edges (denoted by solid lines). Cost of each edge is given above the edge. The
blocking probabilities of stochastic edges are shown in parentheses.
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(a) Policy A

(b) Policy B

Figure 4.3: Two possible ways that the AO* algorithm can take to compute the optimal policy
on Figure 4.2, resulting in two policies with different structures but the same expected cost.
OR nodes are depicted by squares and AND nodes by circles. Numbers below AND nodes are
blocking probabilities of the corresponding edges to be disambiguated. Numbers beside edges
are action costs. The policy tree returned by AO* is colored in green. Extra expanded nodes
are colored in yellow. Non-terminal leaves in the AO* expansion tree are colored in red. The
numbers next to the leaves are their heuristic cost-to-go calculated by the naive shortest distance
from the node to the goal. The minimum child (combining cost-to-come and cost-to-go) that
an OR node take is marked by the underline. For policy B, regardless of the disambiguation
result at y1, the agent will take the same path (with a cost of 4) to travel to t. Thus policy B is
equivalent to policy A during traversal, but will take more steps and more time to compute.

However, besides the techniques in the above-mentioned works, there is another trick that

we found can be utilized to speed up the algorithm by pruning the unnecessary disambigua-

tions. Recall that in our AND-OR tree representation of the problem, for each OR node, every

reachable end vertex of an undisambiguated stochastic edge will be added as an AND-node

child to indicate a possible disambiguation. However, under this circumstance, disambiguating

an edge does not necessarily mean trying to traverse that edge, which could cause wasting of
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computational resources to expand trees for unnecessary disambiguations.

Now we consider a simple example in Figure 4.2 that only has one stochastic edge. Fig-

ure 4.3 shows two possible ways that the AO* algorithm can take to expand the solution tree

- resulting in two policies that have different tree structures but are essentially the same in

practice:

• Policy A: Travel from s to t directly with a cost of 5.

• Policy B: First travel from s to y1, then disambiguate the stochastic edge y1t (the upper

edge), whether it is traversable or not, always take the deterministic edge y1t (the lower

edge) to t after the disambiguation. The total cost is also 5 since we assume disambigua-

tion can be performed at zero cost.

Though policy A and B are essentially the same for the navigator, policy B would require

more node expansions, more steps, and thus more time to compute as illustrated by Figure 4.3.

Since the search space of CTPs grows exponentially, performing such unnecessary disambigua-

tions could result in a massive waste of computation time, especially if it occurs at the early

phase of tree expansions and if the implicit tree is deep. To prevent these unnecessary tree

expansions, before we add in any new AND node to the expansion tree, we may first test if the

stochastic edge to be disambiguated will actually be attempted or not.

Moreover, a node will never be expanded if its heuristic cost is greater than the cost of the

risk-free deterministic path to the goal. To utilize these two properties to further speed up the

AO* algorithm, we can modify the tree expansion step to only add “good” successors into the

partial solution tree as follows:

• selective expansion: in this step, a non-terminal leaf node (a state representing neither

goal state nor no-solution state) is chosen by traversing the most promising sub-tree

from the root. Its successors are then added to the tree and assigned lower heuristic

labels. Reject the successors whose node to be expanded is an OR node and any of the

following condition is true:

1. If the cost from the node-to-expand to the successor is larger than the risk-free cost

(assuming all undisambiguated stochastic edges are untraversable) from the node-

to-expand to goal;
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2. If the successor (an AND node)’s two children have the same shortest risk-free path

to the goal.

4.2 Adapting AO* Algorithm to Solve RCTP

This section will demonstrate how to adapt the AO* algorithm to solve RCTPs. The AO*

algorithm will be adjusted to search for the minimum exponential risk with a given weight pa-

rameterw, instead of searching for the policy with the minimum expected cost. We provide two

versions of the adapted AO* algorithm: an offline version that guarantees to find the optimal

policy upon termination; and an online version with a limited search depth, but sequentially

doing planning and execution to promptly interact with the environment.

4.2.1 The Offline-RCTP-AO* Algorithm

Benefiting from the properties of the exponential risk measure, the AO* algorithm can be

easily adjusted to apply to RCTPs - we only need to change the cost estimation function for the

back-propagation phase. We define the following notation: for a node (state) v, φv denotes the

current best (partial) policy at v, h(v) returns v’s heuristic cost-to-go, f(v) is the estimated cost

(exponential risk) of the current best policy at v, f ∗(v) is the optimal cost of v, S(v) returns the

successors (children) of v, c(v, v′) is the cost of going from state v to v′. The adjusted algorithm

is depicted in Algorithm 2. It also has two alternating steps, expansion and propagation:

• expansion: for the Offline-RCTP-AO* algorithm, the expansion step is still the same

as the classic AO* algorithm, except that when selecting the next node to expand, the

estimated exponential risk (updated in the propagation step) is used. Its successors are

then added to the tree and assigned lower heuristic labels.

• propagation: the expanded node’s cost (exponential risk) are now propagated recur-

sively from bottom to root as follows:

– if the node v is an OR node, its updated cost will be the minimum of its children’s

exponential risk plus the edge cost to its minimum child, which represents choosing
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the best action from the sub-problems. Because OR node will only take determin-

istic actions and the exponential risk function is equivariant to translation as proved

in Chapter 3.2.2. Specifically, we have

f(v) = min
v′∈S(v)

{f(v′) + c(v, v′)}

– if the node v is an AND node, f(v) is now updated as follows:

f(v) =
1

w
ln(E(exp(w × σ(φv))))

=
1

w
ln(

∑
v′∈S(v)

p(v, v′)E(exp(w(σ(φ′v) + c(v, v′)))))

=
1

w
ln(

∑
v′∈S(v)

p(v, v′)E(exp(wσ(φ′v))× exp(w × c(v, v′))))

=
1

w
ln(

∑
v′∈S(v)

p(v, v′) exp(wf(v′))× exp(w × c(v, v′)))

=
1

w
ln(

∑
v′∈S(v)

p(v, v′) exp(w(f(v′)) + c(v, v′)))

The form of the equation shows that the estimated exponential risk f(v) can be

calculated recursively in a bottom-up fashion easily without storing any extra infor-

mation.

The only difference between the Offline-RCTP-AO* algorithm and the AO* algorithm is

the state evaluation function, where Offline-RCTP-AO* evaluates a state’s exponential risk

instead of expected cost. Since both functions are monotonic for constants, the Offline-RCTP-

AO* thus also has the property that if the heuristic being used is admissible, the returned policy

is optimal. Moreover, when the algorithm returns, it either returns the solution tree or indicates

that there does not exist a policy that guarantees to reach the goal. Thus the algorithm is also

complete.

The returned policy of Offline-RCTP-AO* also maintains Bellman’s principle of optimal-

ity, which states that each subpolicy of an optimal policy must itself be optimal regarding

its initial state and terminal states. Recall that in our AND/OR tree representation, only OR
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Algorithm 2 The Offline-RCTP-AO* Algorithm
1: function OFFLINE-RCTP-AO*(s, h(·), t)
2: f(s)← h(s); s.type = OR; T.root← s
3: while s.status 6= SOLVED and f(s) 6= inf do
4: v ← SELECTNODE(T.root)
5: EXPAND(v)
6: for v′ ∈ S(v) do
7: f(v′) = h(v′)
8: if v′ ∈ t then v′.status = SOLVED
9: RCTP BACKPROPAGATE(v, T )

10: if T.root.val == inf then
11: return NO SOLUTION
12: return T
13:
14: function RCTP BACKPROPAGATE(v, T )
15: while v 6= T.root do
16: if S(v) 6= ∅ then
17: if v.type == OR then
18: v′ = argminv′∈S(v){f(v′) + c(v, v′)}
19: f(v) = c(v, v′) + f(v′)
20: if v′.status == SOLVED then v.status = SOLVED
21: if v.type == AND then
22: f(v) = 1

w ln
∑

v′∈S(v){p(v, v′)× exp(w[c(v, v′) + f(v′)])}
23: if v′.status == SOLVED ∀v′ ∈ S(v) then v.status = SOLVED
24: v = v.parent

nodes take actions. Our OR node cost update equation (line 23-24) just restates the Bellman

optimality equation.

We can use the same admissible heuristic as we do for CTPs to assign the initial heuristic

values for any newly added nodes during expansion, since in the deterministic case, the ex-

ponential risk has the same value as the deterministic cost. Thus when substituting into the

exponential risk function, our estimated node costs are also admissible.

The offline algorithm is suitable for the following scenarios:

1. There is a known deterministic path (that can be very expensive) from the agent’s position

to the goal. Otherwise the algorithm will simply expand the whole implicit AND/OR tree

and return infinity cost.

2. The agent has enough time to compute the offline optimal policy before starting to tra-

verse the map.

As a demonstration, Figure 4.4 shows the result of applying the Offline-RCTP-AO* using

the exponential risk with w = 2 to the same graph instance as in Figure 2.4. The returned
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Figure 4.4: The complete AND/OR Tree corresponding to the RCTP Instance in Figure 2.4.
OR nodes are depicted by squares and AND nodes by circles. Numbers below AND nodes
are blocking probabilities of the corresponding edges to be disambiguated. Numbers beside
edges are action costs. The policy tree returned by Offline-RCTP-AO* using exponential risk
measure with w = 2 is colored in green. Extra expanded nodes are colored in yellow. Non-
terminal leaves in the AO* expansion tree are colored in red.

policy is colored in green. It is actually the more robust policy in Figure 3.3. It has an expected

cost of 6.9, a best-case cost of 6, and a worst-case cost of 7. The variance of this policy is 0.09

and the evaluated exponential risk (with w = 2) is 6.95. Like the classic AO* algorithm, the

Offline-RCTP-AO* algorithm is able to find the desired policy by only visiting a small portion

of the complete AND/OR tree when a good heuristic is being used.

Similar to AO*, the efficiency of Offline-RCTP-AO* largely depends on the quality of the

heuristic being used. The worst case happens when the heuristic assigns the same value to every

node and all the edges have the same cost. In that case, the algorithm will fully expand every

internal layer of the complete AND/OR tree, and thus has a worst-case runtime of O(|V |3|E|).
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4.2.2 The Log-Sum-Exp Trick

Recall that the exponential risk with parameter w is given by γ(π,w) = 1
w

ln(E(exp(wπ))),

which requires computations of the following form:

z = ln
N∑
n=1

exp(xn).

Depending on the scale of the xn, computing this equation directly can cause potential

numeric overflow or underflow problems. For instance, consider x =
[
0 1

]T
, we can eas-

ily get z = ln(1 + e) ≈ 1.31. However consider another example where we have x =[
1000 1001

]T
, our computer will actually return z = inf due to the overflows when try-

ing to compute exp(1000) and exp(1001). Similarly, we will get z = ln(0) = − inf for

x =
[
−1000 −1001

]T
as will have exp(−1000) = 0 and exp(−1001) = 0 due to the nu-

meric underflows.

Fortunately, we can use the log-sum-exp trick [35] in the implementation step to get around

the potential numeric overflow or underflow issue. The trick to resolve the problem exploits

the following identity:

ln
N∑
n=1

exp(xn) = a+ ln
N∑
n=1

exp(xn − a)

for any scalar a. This means we can freely shift the exponentiated variates up and down with

exactly equivalent results. A common choice is thus to factor out the largest term, namely let

a = max{x1, x2, ..., xn}.

This means that the largest value of the exponential terms would be exp(0) = 1, which

ensures that no numeric overflow would happen. Moreover, if underflow happens to any of the

exponential terms, the result would be still reasonable. Now if we look at the previous examples

again, for x =
[
1000 1001

]T
, we can now compute it as z = 1001 + ln(e−1 + 1) ≈ 1001.31

without any overflow issues. Similarly, for x =
[
−1000 −1001

]T
, we can now compute it as

z = −1000 + ln(1 + e−1) ≈ −999.69 without worrying about underflows.
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4.2.3 The Online-RCTP-AO* Algorithm

Though the Offline-RCTP-AO* algorithm is able to find the desired policy efficiently by using

heuristics to prune the state space, it does not get rid of the curse of dimensionality and can

still take a long time to compute the policy for large-scale problems. For live operation in

real-world scenarios, it is often desired to come up with a traversal plan quickly, even if it is

not optimal. Moreover, the offline algorithm assumes the existence of a deterministic path to

the goal, otherwise the AO* algorithm would simply return infinite expected cost, though there

are chances that the true underlying graph does have a traversable path to the goal.

In this section, we modify the offline algorithm to an online version by introducing a limit

on the search depth to the AO* algorithm. When the search depth is reached, the algorithm

will simply return the best partial tree. The agent will take the first best action from the partial

solution tree and observe the outcomes. Note that in our problem formulation, an action means

traveling to an end vertex of a stochastic edge and performing disambiguation, or traveling to

the goal.

The agent will then keep replanning, executing the new plan, and making new observations

until it reaches the goal or figures out that the goal cannot be reached. The Online-RCTP-AO*

algorithm is depicted in Algorithm 3.

Due to the limited search depth, the Online-RCTP-AO* algorithm has to replan at every

step of plan execution. Each replanning will take in more information to the planner, either

from new observations, or deeper search depths in the complete AND/OR tree. Another way

to think of the Online-RCTP-AO* algorithm is that at every step, the planner will pretend the

stochastic edges that are out of reach of the search depth are always traversable. The online

planner will thus simulate what the offline planner will do, but with a limited foresight. Since

the online planner continuously adjusts its plan from online observations and will only take

one action at every step, we now lose the side product that the offline algorithm produces -

an AND/OR solution tree that can be used to calculate the statistics of the policy. However,

the online algorithm in many cases, will produce competitive or even equivalent results to the

offline algorithm results. Since the number of nodes in the AND/OR tree grows exponentially

to the tree depth, the Online-RCTP-AO* algorithm will respond exponentially faster than the
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Offline-RCTP-AO* algorithm due to the limit on the search tree depth.

Though not being optimal, the Online-RCTP-AO* algorithm is still complete. At every

execution step, the algorithm will disambiguate one stochastic edge. In the worst case, it will

eventually disambiguate all the stochastic edges and obtain full knowledge of the map, and

thus will either find it way to the goal or return no solution.

Algorithm 3 The Online RCTP-AO* Algorithm
1: function ONLINE-RCTP-AO*(s, h(·), t, d)
2: while s 6= t do
3: T ← DEPTH-AO*(s, h(·), t, d)
4: if T.root.val == inf then
5: return NO SOLUTION
6: v ← argminv∈S(T.root)(f(v) + c(T.root, v))
7: s← TRAVERSEANDOBSERVE(s, v)

8:
9: function DEPTH-AO*(s, h(·), t, d)

10: s.val← h(s); s.type = OR; T.root← s
11: while s.status 6= SOLVED and f(s) 6= inf or T.depth < d do
12: v ← SELECTNODE(T.root)
13: EXPAND(v)
14: for v′ ∈ S(v) do
15: f(v′) = h(v′)
16: if v′ ∈ t then v′.status = SOLVED
17: RCTP BACKPROPAGATE(v, T )

18: return T
19:
20: function RCTP BACKPROPAGATE(v, T )
21: while v 6= T.root do
22: if S(v) 6= ∅ then
23: if v.type == OR then
24: . c(v,v’) is the cost from v to v’
25: v′ = argminv′∈S(v){f(v′) + c(v, v′)}
26: f(v) = c(v, v′) + f(v′)
27: if v′.status == SOLVED then v.status = SOLVED
28: if v.type == AND then
29: f(v) = 1

w ln
∑

v′∈S(v){p(v, v′)× exp(w[c(v, v′) + f(v′)])}
30: if v′.status == SOLVED ∀v′ ∈ S(v) then v.status = SOLVED
31: v = v.parent

4.3 Summary

In this chapter, we presented three algorithms: the original AO* algorithm that can be directly

used to solve classic CTPs; the Offline-RCTP-AO* algorithm, which changes the AO* algo-
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rithm to return the policy with the minimum exponential risk instead of the minimum expected

cost; and finally the Online-RCTP-AO* algorithm that imposes a search depth on the Offline-

RCTP-AO* algorithm, and constantly replans after each action and observation.

The Offline-RCTP-AO* algorithm is complete and optimal, which means it will always

find the optimal solution if one exists. It is suitable when there exists a deterministic path from

the starting position to that goal. Otherwise, if the goal cannot be reached without attempting

at least one stochastic edge, both the AO* and Offline-RCTP-AO* algorithm will try to expand

the complete AND/OR tree and return infinite cost. Like AO*, the Offline-RCTP-AO* algo-

rithm is able to find the optimal solution by only visiting a small portion of the complete search

space.

However, the Offline-RCTP-AO* algorithm still suffers from the curse of dimensionality

as the search space does increase exponentially. As the name suggests, the Offline-RCTP-AO*

algorithm may not return a solution promptly for large-scale problems. Thus we also proposed

the Online-RCTP-AO* algorithm. It approximates the offline version of the algorithm with a

limited search depth, but replans at every step when new observations are available. Since the

depth of tree expansion is limited during plan computation, the Online-RCTP-AO* algorithm

will respond exponentially faster than the Offline-RCTP-AO* algorithm for some reasonable

range of search depths. In the worst case, the Online-RCTP-AO* algorithm will disambiguate

all the stochastic edges and plan with full knowledge of the map at the last step. The Online-

RCTP-AO* algorithm is thus complete, though not optimal.



Chapter 5

Experiments

To evaluate the proposed algorithms, experiments were conducted in both simulated environ-

ments as well as on a map of 5 km of paths built from robot field trials. To evaluate the

Offline-RCTP-AO* algorithm, we compared the policies found by solving RCTP with a grid

search over different risk weights against the policies found by solving CTP. We also compared

the policies with a naive policy that continuously uses Dijkstra’s algorithm to find the shortest

path to the goal and replans when being blocked. Finally, all policies were also compared with

the optimal policy: shortest path to the goal when the true status of the graph is known (can

only be known by an oracle). To evaluate the Online-RCTP-AO* algorithm, besides the same

set of experiments as mentioned above, the performances of running the online algorithm with

different search depths were also compared.

5.1 The Simulated Environment

The simulated environment consists of a series of graphs generated by randomly placing 98

distinct vertices in a 100 × 100 coordinate grid, plus the two vertices at (0,0) and (99, 99); a

set of edges were added by computing a spanning tree to ensure the vertices are connected.

Additional edges were added by randomly selecting the edges from the Delaunay triangulation

of the vertices until the graph got a total of 150 distinct edges. Edge costs were represented as

the Euclidean distance between the end vertices. To set up the graph instance for the CTP and

RCTP experiments, the vertex (0, 0) was always chosen as the start vertex, and (99, 99) was

45
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always chosen as the goal. Each edge had a 0.2 probability of being stochastic and the blocking

probability was uniformly sampled from the interval 0 to 1. Figure 5.1 shows an example of

a randomly generated graph, with deterministic edges marked in black and stochastic edges

shown in red (stronger lines having greater chances of being blocked). There are 150 edges in

this map, 22 of them are stochastic edges. The starting position is marked in green and the goal

is marked in red.

Figure 5.1: A simulated environment example, with start vertex marked in green and goal
marked in red. Edge costs are the Euclidean distance between the end vertices. Deterministic
edges are shown in black. Stochastic edges are shown in red, with stronger lines having higher
probabilities of being blocked. There are 150 edges in this map, 22 of them are stochastic
edges.

5.1.1 The Offline-RCTP-AO* Algorithm Experiments

For the Offline-RCTP-AO* algorithm experiments, to avoid infinite expected policy cost, we

only chose graphs that had a deterministic path to the goal (assuming all stochastic edges are

blocked). To avoid all methods trivially choosing the deterministic path, we only chose graphs

where the shortest path to the goal contained at least one stochastic edge.

In Figure 5.2 and Figure 5.3 we show the results of 1000 trials over each of the policies

acquired on the example graph in Figure 5.1. For each trial, the true traversability status of

each stochastic edge was drawn according to its blocking probability. The RCTP policies were

acquired by doing a grid search over increasing weights. For simplicity, we only plotted the

results for the weights that caused a policy change, where “rctp-w” means the policy acquired
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Figure 5.2: Boxplots of simulating 1000 traversal costs for different policies on Figure 5.1,
with mean represented by the red dashed line and scatter points approximating the possible
traversal outcomes. “rctp-w” represents the policy acquired by solving RCTP with weight w.
Note that the true optimal path cost can only be calculated in hindsight.

by solving RCTP with weight w.

Figure 5.2 shows the boxplots of the actual traversal costs with mean represented by the

red dashed line and scatter points approximating the possible traversal outcomes. We can see

that doing Dijkstra’s search with replanning yields the most unstable policy – it has the most

spread out possible outcomes and the largest worst-case cost.

Figure 5.3 (a) shows the distribution of the actual traversal cost by following each of the

different policies. Figure 5.3 (b) shows the distribution of the actual traversal cost minus the

expected cost of the corresponding policy. By comparison, we can see that the non-robust

policy (acquired by solving CTP) obtains the lowest expected cost, but also has a long tail

as evidenced by the shape of the histogram. As we increase the weights, the obtained policy

becomes more and more risk-averse as desired, resulting in smaller worst-case costs and more

centered distributions. Importantly, as evidenced by Figure 5.3 (b), when policy changes as

the weight increases, the exponential risk measure puts more penalty on deviations above the

mean than deviations below. Moreover, when solving the problem with classic methods such

as Dijkstra’s algorithm with replanning, or a classic MDP solver using policy iteration or value

iteration, we only obtain a traversal policy without much additional information. But by us-

ing the AND/OR tree representation and viewing the policy cost as a categorical distribution,
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(a) (b)

Figure 5.3: Results of 1000 trials over each of the policies acquired by solving the problem on
Figure 5.1. “rctp-w” means the policy acquired by solving RCTP with weight w. (a) shows the
distribution of each policy’s traversal cost. (b) shows the distribution of each policy’s traversal
cost minus its expected cost.

not only do we obtain a policy minimizing the weighted exponential risk measure, but also a

statistical description of the costs as a byproduct: the probability of each possible outcome is

computed as well. By comparing the policy cost distributions from different weights, the user

has information on how to tune the parameter and find the most appropriate policy to trade off

the mean and worst-case cost.

Figure 5.4 shows the plot of the returned policy’s exponential risk versus different choices

of the weight w by solving the RCTP on Figure 5.1. We can see that the returned policy’s

exponential risk is always increasing as we increase the weight, though the returned policy

might not change. This is because the exponential risk function is monotonic and we keep

increasing the weight on the exponential term.
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Figure 5.4: The plot of the returned policy’s exponential risk versus different choices of the
weight w by solving the RCTP on Figure 5.1.

(a) (b)

Figure 5.5: (a) The plot of the returned policy’s approximated variance (calculated using the
policy’s exponential risk) versus different choices of the weight w by solving the RCTP on
Figure 5.1. (b) The plot of the returned policy’s variance (calculated through the policy’s
categorical distribution) versus different choices of the weight w by solving the RCTP on Fig-
ure 5.1.

We showed in Chapter 3.2.2 that the exponential risk measure can be thought of as ap-

proximating policy cost mean plus weighted variance. We can thus use a policy’s returned

exponential risk to calculate an approximate value of the policy’s variance. In Figure 5.5, (a)

shows the plot of the returned policy’s approximated variance (calculated using the policy’s ex-

ponential risk) versus different choices of the weight w by solving the RCTP on Figure 5.1. (b)

shows the returned policy’s variance (calculated through the policy’s categorical distribution)

versus the same choice of the weight w. We can see that the two plots have similar shapes,
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which is consistent with our claim. As the weight increases, the algorithm is (approximately)

looking for policies that have smaller variances.

Figure 5.6: Policy worst-case cost versus mean cost for policies on 10 different randomly sim-
ulated graphs. Each line shows how the worst-case cost changes as the policy mean increases
for the series of policies obtained from a given graph.

To analyze the trade-off between policy mean and worst-case costs, experiments were con-

ducted on 10 different simulated graphs. For each graph, the CTP policy was computed and a

series of different weights were applied to obtain the set of RCTP policies, and for each policy,

1000 trials were simulated. The result is shown in Figure 5.6, where each line shows how the

worst-case cost changes as the policy mean increases for the series of policies obtained from

a given graph. We can see from the graph that the lines generally follow a decreasing trend as

the means increase. In many cases, increasing the mean cost by a small amount at the early

phase can result in a big decrease in the worst-case cost.

5.1.2 The Online-RCTP-AO* Algorithm Experiments

To analyze the performance of the Online-RCTP-AO* algorithm and compare with the Offline-

RCTP-AO* algorithm, experiments were conducted on the same graph instance in Figure 5.1.

The Online-RCTP-AO* algorithm was run with different exponential risk weights and search

depths. When weight w equals 0, the algorithm will try to minimize the expected policy cost

instead of the exponential risk, reverting back to solving classic CTPs. For each experiment

setting, 100 trials were conducted. For each trial, the true traversability status of each stochastic
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edge was drawn according to its blocking probability. For simplicity, we only selected the

weights that caused a policy change in the Offline-RCTP-AO* algorithm.

Figure 5.7: Boxplots of simulating 100 traversal costs for solving the RCTP on Figure 5.1 using
the Online-RCTP-AO* algorithm with different exponential risk weights w and search depths.
In each box, mean is represented by the dashed line and scatter points are approximating the
possible traversal outcomes.

Figure 5.7 shows the boxplots of simulating 100 traversal costs for solving the RCTP on

Figure 5.1 using the Online-RCTP-AO* algorithm with different exponential risk weights w

and search depths. When weight w equals 0, the algorithm will try to minimize the expected

policy cost instead of the exponential risk, reverting back to solving classic CTPs. When depth

equals infinity, it is equivalent to solving the problem using the Offline-RCTP-AO* algorithm.

In each box, mean is represented by the dashed line and scatter points are approximating the

possible traversal outcomes. From the boxplots, we can see that when weight w is fixed, the

online algorithm gradually converges to the offline algorithm as the search depth increases.

Moreover, the online algorithm converges at smaller depths when larger weights are used, due

to the use of stronger heuristics.

Figure 5.8 (a) shows the plot of the mean costs versus search depths of simulating 100

traversals for solving the RCTP on Figure 5.1 using the Online-RCTP-AO* algorithm with dif-

ferent exponential risk weights w and depths. The dashed line represents the result of running



CHAPTER 5. EXPERIMENTS 52

(a) (b)

Figure 5.8: (a) The plot of the mean costs versus search depths of simulating 100 traversals
for solving the RCTP on Figure 5.1 using the Online-RCTP-AO* algorithm with different
exponential risk weights w and depths. The dashed line represents the results of running the
Dijkstra’s algorithm with replanning for the same experiments. (b) The plot of the worst-case
costs versus search depths of simulating 100 traversals for solving the RCTP on Figure 5.1
using the Online-RCTP-AO* algorithm with different exponential risk weights w and depths.
The dashed line represents the results of running the Dijkstra’s algorithm with replanning for
the same experiments.

the Dijkstra’s algorithm with replanning for the same experiments. We can see that most of the

time, solving the classic CTP (w = 0) returns the minimum mean cost. Except when the search

depth is small where the agent will take action when not much information is available. This is

consistent with our claim that the goal of solving CTPs is trying to minimize the expected cost

of the policy, whereas the goal of solving RCTPs is not. Then as w increases, in most cases

the mean cost increases as well. But at every search depth, the mean costs of the policies with

different weights are not far from each other.

Figure 5.8 (b) shows the plot of the worst-case costs versus search depths for the same

experiments. We can see that Dijkstra’s algorithm with re-planning has the largest worst-

case cost most of the time. This is consistent with our offline algorithm results that Dijkstra’s

algorithm has the most unstable performance. In most cases, the trying to solve the classic CTP

yields the second-largest worst-case cost. Then as w increases, the worst-case cost decreases.

This again, is consistent with our claim that the RCTP-AO* algorithm will become more and

more risk-averse as we put more weights on the exponential risk.

Combining Figure 5.7 and Figure 5.8 together, we can see that the online algorithm can
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perform reasonably well without reaching the full search depth.

Figure 5.9 shows the runtime comparisons of different settings of the Online-RCTP-AO*

algorithm versus the classic offline AO* algorithm. For each online experiment, the running

time was accumulated for every step of replanning. The replanning usually happened 3 to

6 times. Then the average total planning time over 100 simulations was calculated for each

experiment setting. We can see that in all cases, the running time increases approximately

exponentially as the search depth increases, and then freezes when the online algorithm con-

verges to the offline algorithm when certain search depth is reached. This is because the search

space increases exponentially as the search depth increases. Solving the CTP (w = 0) is more

expensive than solving the RCTP (w > 0) due to the use of weaker heuristics at every plan-

ning step. The total running time decreases when more weight is put on the exponential risks,

which results in stronger heuristics. More importantly, the plot suggests that for complex graph

domains (like in our experimental setting) where offline algorithms cannot come up with the

optimal plan quickly, the online algorithms can be used to provide good approximate solutions

promptly. Especially when the exponential risk measure is used to seek for robust plans, the

accumulated total running time over all steps can still be much smaller than the time needed

for a single pass of the offline algorithm trying to solve the classic CTP.

Figure 5.9: The plot of the average total planning time (accumulated over every step of replan-
ning) versus search depths of simulating 100 traversals for solving the RCTP on Figure 5.1
using the Online-RCTP-AO* algorithm with different exponential risk weights w and search
depths. The dashed line represents the result of running the offline classic AO* algorithm for
the same experiments.
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5.2 The Sudbury Map Environment

We also applied the algorithms to a real-world domain where pose graphs are used for robot

navigation. In these experiments, we used a map dataset that was collected in Sudbury, Canada

[43]. The dataset was generated as a byproduct for testing the VT&R algorithm ([18], [41]),

which is a vision-based navigation system that enables a mobile robot to autonomously repeat

previously demonstrated paths by only using visual data from a stereo camera. The algorithm

computes and saves a rich history of information in its STPG map structure during the course

of autonomous traversals, such as localization uncertainties, obstacles detected, and traversal

success rates.

Figure 5.10: An example of the Sudbury experiment map, with darker edges having larger
chances of being blocked. The starting position is marked in green, the goal is marked in red.
The Sudbury map consists of 172 refactored paths, in this example 11 of them are stochastic.

Within the VT&R2 framework, the route planner works on the spatial-temporal pose graph

(introduced in Chapter 2.3) constructed in the map building phase. The framework generates

vertices with a roughly constant linear spacing of approximately 30 cm. Since the AO* algo-

rithm has an exponential complexity in |E|, where |E| is the number of stochastic edges, this

can be a problem for large networks with thousands or tens of thousands of edges. However,

noticing the fact that for most pose graphs, the path connecting two junctions (intersecting

points of two or more paths) often consists of hundreds of edges chained together. Thus the

original pose graphs can be reduced to graphs that only contain junctions and endpoints, with

each edge chain connecting two junctions being wrapped as a single edge. After this simple



CHAPTER 5. EXPERIMENTS 55

refactorization, the complexity of the problem is now reduced to be exponential in |W | where

|W | is the number of junctions.

The Sudbury dataset was selected to see how the offline and online RCTP algorithms per-

form in practical map structures. We assume the robot is able to observe the true status of a

stochastic edge at its endpoints using its sensors. We then used the same method as before

to randomly assign stochastic edges and blocking probabilities. For the Sudbury map, edge

costs were the actual distances between two vertices, in the unit of meters. The same start-goal

pair was used for all experiments. Figure 5.10 shows an example of the experiment graph,

with darker edges having a higher chance of being blocked. The starting position is marked in

green and the goal is marked in red. The Sudbury map consists of 172 re-factored paths; in this

example 11 of them are stochastic.

5.2.1 The Offline-RCTP-AO* Algorithm Experiments

The offline experiment settings were similar to what we did for the simulated environment: to

avoid infinite expected policy cost, we only chose graphs that had a deterministic path to the

goal (assuming all stochastic edges are blocked). To avoid all methods trivially choosing the

deterministic path, we only chose graphs where the shortest path to the goal contained at least

one stochastic edge.

Figure 5.11: Boxplots of simulating 1000 traversal costs for different policies on Figure 5.10,
with mean represented by the red dashed line and scatter points approximating the possible
traversal outcomes. “rctp-w” represents the policy acquired by solving RCTP with weight w.
Note that the true optimal path cost can only be calculated in hindsight.
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(a) (b)

Figure 5.12: Results of 1000 trials over each of the policies acquired by solving the problem on
Figure 5.10. “rctp-w” means the policy acquired by solving RCTP with weightw. (a) shows the
distribution of each policy’s traversal cost. (b) shows the distribution of each policy’s traversal
cost minus its expected cost.

Figure 5.13: The plot of the returned policy’s exponential risk versus different choices of the
weight w by solving the RCTP on Figure 5.10
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(a) (b)

Figure 5.14: (a) The plot of the returned policy’s approximated variance (calculated using the
policy’s exponential risk) versus different choices of the weight w by solving the RCTP on
Figure 5.10. (b) The plot of the returned policy’s variance (calculated through the policy’s
categorical distribution) versus different choices of the weight w by solving the RCTP on Fig-
ure 5.10.

Figure 5.15: Policy worst-case cost versus mean cost for policies on 5 different randomly sim-
ulated graphs. Each line shows how the worst-case cost changes as the policy mean increases
for the series of policies obtained from a given graph.

As in the other simulations, 1000 trials were conducted over each of the policies acquired

by solving the RCTP problem with different weights on the example graph in Figure 5.10.

The results are shown in Figure 5.11, Figure 5.12, Figure 5.13, Figure 5.14 and Figure 5.15

where Figure 5.15 in particular shows the mean versus worst-case trade-off by doing the same

series of experiments as before over 5 different graphs instances. We can see that all results are

consistent with the observations we made in the simulated environment experiments.
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5.2.2 The Online-RCTP-AO* Algorithm Experiments

To analyze the performance of the Online-RCTP-AO* algorithm on the Sudbury data set and

compare with the Offline-RCTP-AO* algorithm, experiments were conducted on the same

graph instance in Figure 5.10 as well. Similar to what we did in the simulated environment,

the Online-RCTP-AO* algorithm was run with different exponential risk weights and search

depths. When weight w equals 0, the algorithm will try to minimize the expected policy cost

instead of the exponential risk, reverting back to solving classic CTPs. For each experiment

setting, 100 trials were conducted. For each trial, the true traversability status of each stochastic

edge was drawn according to its blocking probability. For simplicity, we only selected the

weights that caused a policy change in the Offline-RCTP-AO* algorithm.

Figure 5.16: Boxplots of simulating 100 traversal costs for solving the RCTP on Figure 5.10
using the Online-RCTP-AO* algorithm with different exponential risk weights w and search
depths. In each box, mean is represented by the dashed line and scatter points are approximat-
ing the possible traversal outcomes.

Figure 5.16 shows the boxplots of simulating 100 traversal costs for solving the RCTP on

Figure 5.1 using the Online-RCTP-AO* algorithm with different exponential risk weights w

and depths. When weight w equals 0, the algorithm will try to minimize the expected policy

cost instead of the exponential risk, reverting back to solving classic CTPs. When depth equals

infinity, it is equivalent to solving the problem using the Offline-RCTP-AO* algorithm. From
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the boxplots, we can see that for this particular problem setting, the online algorithm would re-

turn the same policy as the offline algorithm even at search depth 1, suggesting that the heuristic

being used was strong enough to take good (almost optimal) actions without foreseeing all the

sequential outcomes.

Figure 5.17: The plot of the average total planning time (accumulated over every step of replan-
ning) versus search depths of simulating 100 traversals for solving the RCTP on Figure 5.10
using the Online-RCTP-AO* algorithm with different exponential risk weights w and search
depths. The dashed line represents the results of running the offline classic AO* for the same
experiments.

Figure 5.17 shows the runtime comparisons of different settings of the Online-RCTP-AO*

algorithm versus the classic offline AO* algorithm. For each online experiment, the running

time was accumulated for every step of replanning. The replanning usually happened 2 to

3 times. Then the average total planning time over 100 simulations was calculated for each

experiment setting. We can see that the results are again consistent with the observations we

made in the simulated environment experiments.

5.3 Summary

In this chapter, we showed the experimental results of running the Offline-RCTP-AO* algo-

rithm and the Online-RCTP-AO* algorithm on both simulated environments and a 5 km map

dataset that we collected in Sudbury, Ontario. The algorithms were also compared with a base-

line method that always uses Dijkstra’s algorithm to find the shortest path to the goal, and then

replans when being blocked.



CHAPTER 5. EXPERIMENTS 60

From the offline experiments, we can see that the baseline approach that uses Dijkstra’s

algorithm with replanning always yields the most unstable performance with the largest worst-

case cost. The classic CTP solution will return the policy with the minimum expected cost,

but also at the risk of ending up with large worst-case costs. Whereas for RCTP solutions,

as we put more weight on the exponential risk, the returned policy will be more and more

risk-adverse, with more centered cost distributions. Moreover, though the RCTP planner can

be thought of as approximately minimizing variance-adjusted mean, it will penalize deviation

above the mean more than deviation below. Thus as the exponential risk weight increases, the

RCTP planner will (almost) always try to find policies that have lower worst-case costs first

before it starts to sacrifice the best-case cost. The experimental results suggest that in many

cases, the RCTP planner is able to find policies with significant lower worst-case cost, but with

little sacrifice on the mean cost.

Experiments were also conducted to compare the performance of the Online-RCTP-AO*

algorithm against the Offline-RCTP-AO* algorithm. The experimental results suggest that the

online algorithm will gradually converge to the offline algorithm as the search depth increases.

The online algorithm can perform reasonably well for some small search depths, while pre-

serving the effect of reducing worst-case cost when exponential risk weight is increased. The

experimental result also validates that the online algorithm is much faster than the offline algo-

rithm, due to the limited search depth on the exponentially-growing search space. Moreover,

the runtime comparison of solving CTPs and RCTPs on the same graph instances shows that

the AO* algorithm will return faster when the exponential risk is being used, and thus deeper

search depths can be tolerated for online performance.



Chapter 6

Ideas for Future Integration with VT&R

In order to solve the RCTP problem, the robots should first have an assumption over the

stochastic paths in the map, and then have a mechanism to observe the traversability status

of the terrain. In this chapter, we will thus discuss the approaches to integrate the RCTP plan-

ner into robot routing systems. Specifically, the necessary map preparation steps and system

designs of the Visual Teach and Repeat (VT&R) framework will be presented as an illustration.

6.1 Assigning Stochastic Edges

The VT&R system uses the spatial-temporal pose graph (STPG) to structure the map envi-

ronment and records auxiliary information of the driving history, such as vehicle velocities,

landmarks observed, localization feature matches, manual interventions, and detection of ob-

stacles. In the discussion of the Sudbury map experiments (Chapter 5.2), we have shown the

benefit of refactoring the map to only contain vertices that are junctions and endpoints. In this

section, we will talk about how to exploit the historical data to assign stochastic edges and their

blocking probabilities.

During the repeat phase of VT&R, the robot localizes against the STPG to traverse the path.

The localization is done by matching all landmarks (extracted by visual descriptors) in the live

view to landmarks observed in a selected region of the STPG. Paton et al. [42] showed that the

localization successful rate for an autonomous repeat is highly influenced by the illumination

change, which is dominated by the time difference in day (0 to 12 hours) between the live task
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and the experiences to be matched.

Figure 6.1 shows an analysis of the number of feature matches for the VT&R field tri-

als spanning multiple seasons. The experiments were done by running the single-experience

VT&R algorithm, which does not make use of bridging experiences to aid in localization. The

figure shows that the number of landmark matches often drops below a critical threshold for

robust localization if the time difference is greater than 4 to 6 hours, depending on the season

and the landscape of the environment.

Figure 6.1: Evolution of the number of feature matches for the VT&R field trials spanning
multiple seasons. The thick lines correspond to the median number through a full repeat path,
and the shaded area defines the inter-quartile distance 25-75 %. The dashed line represents
the critical threshold for robust localization. The x-axis represents the time difference, ∆t,
between the teach and the repeat path. Note the log scale on the y-axis. Figure reproduced
from [42].

Thus during the first several attempts of the repeats where not much historical data is gath-

ered, the time difference in day between the live task and the closest experience will play as

the dominant indicator of whether the repeat will be successful or not. Some heuristic function

can then be constructed to use the time difference in day between the live task and the closest

experience to predict the probability of an edge being blocked. An example sigmoid function

is given below:

pblock =
1

1 + e−(x−6)
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The shape of the sigmoid function is shown in Figure 6.2. A path will be assigned a 0.5

probability of being blocked if it is 6 hours away from the closest experience. The blocking

probability will gradually grow to 1 when the closest experience is 12 hours away, and will

gradually decrease to 0 when the closest experience is within the same hour.

Figure 6.2: The shape of an example sigmoid function that uses time difference in day between
the live task and the closest experience to predict the probability of an edge being blocked.

Drastic illumination change is just one of the factors that may cause a repeat failure. Other

factors such as the presence of unexpected obstacles and challenging terrain that requires man-

ual interventions can also interrupt the autonomy of the system. As the framework makes more

attempts to repeat the map and gathers more experiences, it is also feasible to switch the block-

ing probability heuristic to be proportional to the frequency of manual interventions and task

abortions.

6.2 Obstruction Detection and Loss Handling

The RCTP framework is dependent on the assumption that the robot is able to observe traversabil-

ity status of the paths at their endpoints. Here we mainly concern two scenarios that will make

a path untraversable: obstacle blockage and robot getting lost. In this section, we will thus

discuss the mechanisms that the VT&R framework can utilize to achieve obstruction detection

and loss handling.
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6.2.1 Obstruction Detection

Obstacle detection is an important topic in mobile robotics, especially when humans are in-

volved in the environment. Detecting humans and obstacles in an autonomous system can not

only safeguard the robot from harming users (and/or the environment), but also prevent robots

from damaging themselves.

Figure 6.3: Example of the place-dependent terrain-assessment algorithm correctly classifying
a human in the path as unsafe. Figure reproduced from [43].

VT&R is incorporated with a place-dependent, learning-based terrain assessment module

for obstruction detection [8] [6] [7]. The MEL algorithm and the STPG data structure allows

the terrain assessment module to gather information from past experiences and then train a

place-dependent classifier to detect terrain changes. Specifically, a classifier will be trained

at every point on the path to provide more accurate result than a general classifier (trained on

all the data) at assessing the terrain in that place. If the geometric terrain change at a place

is greater than a chosen threshold, then that place will be marked as unsafe to travel (being

blocked). The terrain assessment module will then signal the robot to pause until the terrain

becomes safe to travel again. A qualitative example of the algorithm is illustrated in Figure 6.3,

in which a human blocks the path on the vegetation-rich ridge area. The green patches in the

figure identify unchanged terrain that is safe to travel. The red patches identify geometric

changes in the path. In this example, the human is identified and the path is marked as unsafe

(blocked).

The terrain assessment module will resume the robot to continue the path traversal once

the obstacle is cleared and the terrain is marked to be safe again. To integrate with the RCTP
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planner, a threshold on the robot pause time can be imposed, such that the planner will signal

untraversable observation and change route when the pause time expires. Moreover, the ter-

rain assessment module could also give a measure of terrain roughness, which can be further

incorporated into edge cost assignment.

6.2.2 Loss Handling

During the repeat phase of the VT&R algorithm, the robot attempts to localize the live view to a

vertex in the privileged path. When the localization is successful, the system will propagate the

position estimate and send it to a model-predictive-control path tracker [38]. If the localization

fails, the robot will still rely on Visual Odometry (VO) to keep going and tries to reconnect to

the privileged path up to a certain distance. This mechanism can then be integrated with the

RCTP planner, such that the planner will signal untraversable observation and change route

when the VO distance threshold is exceeded.

However, in order to change route or switch plan, the robot still needs to recover from its

lost status to get localized again. To achieve localization recovery, we propose to add a safe

return module into the current design of the VT&R system. The safe return module will be

activated in the background when the robot signals localization failures and starts to rely on

VO. A fake teach (privileged) experience will then be recorded by the safe return module to

memorize the path that the robot is driving with VO. If the robot gets re-localized again before

the VO distance threshold is exceeded, the fake teach experience will be discarded. Otherwise,

the robot will use this fake teach experience to return to the last localization point when the

robot is lost.

Figure 6.4 depicts the proposed system design to integrate the RCTP planner into the VT&R

system. A typical system flow is as follows: when the robot enters the repeat phase from idling,

it will first topological localize against the STPG to find its starting position on the map. Then

the RCTP planner will compute the policy to traverse to the destination. The robot achieves the

autonomous route following through continuous metric localization until the goal is reached.

If at some point the robot is obstructed or gets lost for a certain period of time, it will then make

untraversable observations and look up the policy to adjust its route. The safe return module
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will be used to help the robot to recover to the last localized position if the robot is lost. The

system will report task failure if no plan can be computed to reach the goal, or the robot fails

the safe return.
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Figure 6.4: The proposed VT&R system design to integrate the Robust Canadian Traveler
Planner. A safe return module is added help recover from robot getting lost.

6.3 Summary

In this chapter, we discussed some approaches to integrate the RCTP planner into VT&R -

a vision-based robot navigation system. We propose to gather and analyze the data on robot

traversal histories to assign blocking (failure) probabilities of path segments and then use this

to compute travel policy. We then described the terrain assessment module that VT&R uses to
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detect path blockage and the mechanisms to detect robot getting lost. Finally, we proposed a

modified system design of VT&R to integrate the RCTP planner. A safe return module is also

added to help recover from robot getting lost.
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Conclusion and Future Work

7.1 Conclusion

In this thesis, we extended the Canadian Traveler Problem (CTP) into what we call the Ro-

bust Canadian Traveler Problem (RCTP) that tries to find the traversal policy over uncertain

maps with a good balance of both mean and variation of the traversal cost. The robustness

was achieved by searching for the policy that has the minimum (weighted) exponential risk in-

stead of the minimum expected cost. The exponential risk can be thought of as approximately

variance-adjusted mean, but with the extra benefit of penalizing deviations above the mean

more than deviations below. Unlike variance-adjusted mean, the exponential risk also main-

tains Bellman’s principle of optimality, and thus permitting existing graph-search methods to

be used for solution.

In order to solve RCTPs, we first showed how to represent RCTPs as AND/OR trees. And

then two versions of the modified AO* algorithm are provided to search for the desired policy in

the AND/OR tree representation: an offline version that is both optimal and complete, namely

an optimal solution is guaranteed to be found if one exists; and an online version with a limited

search depth to provide approximate solutions to the offline algorithm, but with significantly

less computational time.

Simulations were conducted to show the benefit of our framework by comparing with the

classic CTP solutions and another baseline approach that uses Dijkstra’s algorithm with replan-

ning. Specifically, the RCTP framework is able to search for sub-optimal (in terms of expected
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cost) policy alternatives with significantly lower worst-case cost and computational time com-

paring against the optimal policy, but with little sacrifice on the expected cost. The simulation

results also validate that the online algorithm is able to approximate the behavior of the offline

algorithm by imposing a limit on the search depth, but with exponentially faster responding

time.

Finally, we discussed the necessary map preparation steps and system requirements to inte-

grate the RCTP planner into real-world robot navigation systems. Specifically, the map should

be prepared with each path being analyzed and assigned a probability of being blocked. The

robot should have the ability to observe path blockage, detect loss of localization, and recover

from the loss of localization. As a demonstration, we used the VT&R system as an example,

and proposed a modified system design to integrate with the RCTP planner.

In summary, the novel contributions of this thesis are as follows. First, we extended the

Canadian Traveler Problem to the Robust Canadian Traveler Problem that considers not only

the mean, but also the variation of the policy cost while searching for the traversal policy.

Second, we proposed to use the exponential risk to evaluate policies and provided an offline as

well as an online algorithm to solve the RCTP. Third, we validated the proposed algorithms

through experiments on simulated maps, as well as a map that was collected from a robot

field trial. The algorithms developed and the results acquired were submitted to the 2019

International Conference on Robotics and Automation (ICRA).

7.2 Future Work

There are several directions in which to extend our current work. Firstly, as with the classic

stochastic CTPs, we assume the blocking probabilities of the stochastic paths are known. How-

ever, such information is often unavailable, or only noisily available in real-world scenarios;

the problem can be further extended to quantify the blocking probability with uncertainties,

and update its belief through Bayesian updates (for example, using Dirichlet processes). Ross

et. al [46] showed an interesting research direction of doing Bayesian reinforcement learning

on the Partially-Observed Markov Decision Process (POMDP). Specifically, they proposed

a mathematical model called Bayes-Adaptive POMDP that allows the agent to update do-



CHAPTER 7. CONCLUSION AND FUTURE WORK 70

main knowledge from interactions with the environment. Moreover, the model can plan for

sequences of actions with the trade-off between improving the model and gathering reward.

Since CTPs (and RCTPs) can be converted into POMDPs [2], similar approaches might be

useful to enhance our framework.

Secondly, we assume the blocking probabilities are independent of each other, which is

often not true in practice – spatially adjacent places often have similar properties, and other

properties are temporally correlated (e.g., lighting effects). Thus the correlations between dif-

ferent paths could be properly studied as well in order to provide more robust plans. Dey et

al. [10] proposed the Gaussian Traveler Problem (GTP), in which a belief over edge costs is

modeled by the Gaussian Process (GP). The agent will observe local edge costs from online

traversal and then adjust adjacent edge costs through GP updates. Similar approaches might

also be combined with our framework to provide online adjustment of spatially-adjacent edges’

blocking probabilities.

Thirdly, our framework assumes the robot can observe the traversability status of the stochas-

tic paths at no cost. However, this is not always true in practice. For example in our proposed

VT&R design, when the robot sees obstacles, it will wait for a certain amount of time to make

sure the obstacle will not go away by itself; when the robot is lost, it also needs some recovery

time to get back to the last localized position. Thus our framework can also be enhanced to

take the cost of observation into consideration when computing traversal policies.
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