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The stochastic Canadian Traveler Problem (CTP), which finds application in robot route

selection under uncertainty, aims to find the traversal policy with the minimum expected cost.

This thesis extends the stochastic CTP to what we call the Robust Canadian Traveler Problem

(RCTP), in which the variability of the policy cost is also considered. An optimal algorithm

and an approximate algorithm are then proposed to compute the policy that has a good balance

of both mean and variation of the traversal cost.

The benefit of the proposed framework versus traditional approaches is shown by doing

simulations in randomly generated worlds as well as on a map of 5 km of paths built from robot

field trials. Specifically, the RCTP framework is able to search for policy alternatives with

significant lower worst-case cost and less computational time compared against the optimal

CTP policy, but with little sacrifice on the expected cost.
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Chapter 1

Introduction

1.1 Motivation

Robots that navigate in real-world scenarios often face the problem of choosing the best route

under uncertainty (e.g., due to incomplete knowledge of the world and noisy observation of

the environment). Such uncertainties can come from factors such as sensor limitations and dy-

namic changes in the environment (lighting, season, terrain modi�cation, etc.). For example,

Fig. 1.1 shows a map of an extended �eld test that we conducted with a vision-based robot at

an old gravel pit in Sudbury, Canada [43]. The map was created using the Visual Teach and Re-

peat (VT&R) algorithm ([18], [41], [30], [8]) by manually piloting the robot through the path

network once, and then autonomous path repeating was done by localizing over visual features

stored in the map. Navigating in such an unstructured environment for an extended period of

time meant the robot encountered many challenges such as shifting sand with little visual tex-

ture, fast-growing vegetation that changes visual appearance, and unexpected obstacles which

were not present during mapping. All these challenges can result in failures of traversing cer-

tain paths. To make more robust plans for driving through such a network of paths, we propose

to gather historical data on the success of driving on individual path segments and use this in

route selection.

Routing scenarios of this kind can be formalized as a stochastic version of the Canadian

Traveler Problem (CTP) [39]: an agent must �nd the best traversal policy between two vertices

in a given graph where some edges may be blocked with some known probabilities; we call

1
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