
Visual Odometry Aided by a Sun Sensor and an Inclinometer

by

Andrew J. Lambert

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Graduate Department of Aerospace Science and Engineering
University of Toronto

Copyright c� 2011 by Andrew J. Lambert



Abstract

Visual Odometry Aided by a Sun Sensor and an Inclinometer

Andrew J. Lambert

Master of Applied Science

Graduate Department of Aerospace Science and Engineering

University of Toronto

2011

Due to the absence of any satellite-based global positioning system on Mars, the Mars

Exploration Rovers commonly track position changes of the vehicle using a technique

called visual odometry (VO), where updated rover poses are determined by tracking

keypoints between stereo image pairs. Unfortunately, the error of VO grows super-linearly

with the distance traveled, primarily due to the contribution of orientation error. This

thesis outlines a novel approach incorporating sun sensor and inclinometer measurements

directly into the VO pipeline, utilizing absolute orientation information to reduce the

error growth of the motion estimate. These additional measurements have very low

computation, power, and mass requirements, providing a localization improvement at

nearly negligible cost. The mathematical formulation of this approach is described in

detail, and extensive results are presented from experimental trials utilizing data collected

during a 10 kilometre traversal of a Mars analogue site on Devon Island in the Canadian

High Arctic.
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Notation

a : Symbols in this font are real scalars.

a : Symbols in this font are real column vectors.

A : Symbols in this font are real matrices.

E[·] : The expectation operator.

F−→a : A reference frame in three dimensions.

(̄·) : Symbols with an overbar are nominal values of a quantity.

(̂·) : Symbols with a hat are estimates of a true quantity.

(̃·) : Symbols with a tilde are measured quantities.

(·)× : The cross-product operator that produces a skew-symmetric matrix

from a 3× 1 column.

1 : The identity matrix.

0 : The zero matrix.

ρd,e
a : A vector from point e to point d (denoted by the superscript) and

expressed in F−→a (denoted by the subscript).

Ca,b : The 3× 3 rotation matrix that transforms vectors from F−→b to F−→a.
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Chapter 1

Introduction

Since landing in 2004, the Mars Exploration Rovers (MERs) have been traversing the

Martian surface in search of and gathering scientific data. Due to communication latency

and bandwidth limitations, the rovers are usually commanded once per Martian sol

using a prescheduled sequence of driving directions (Matthies et al., 2007). Accurate

autonomous execution of these commands maximizes the scientific yield of the mission

and allows the rover to avoid potentially dangerous locations. Thus, accurate vehicle

localization is a critical aspect of the planetary rover operations on Mars.

During autonomous traverses across nominal terrain, the MERs use wheel odometry

measurements to track position changes of the vehicle, due to the absence of any satellite-

based global positioning system (GPS) on Mars. However, the rovers have frequently

encountered steep slopes and sandy terrain, resulting in large amounts of wheel slip

and rendering the odometry measurements unreliable. Figure 1.1 depicts a particularly

challenging example from the Opportunity rover, in which the vehicle rotated its wheels

enough to have travelled 50 meters, but was only displaced by 2 meters due to extensive

wheel slip.
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Chapter 1. Introduction 2

Figure 1.1: A photograph from the Opportunity Rover at Purgatory Ripple on Mars,
depiciting extensive wheel slip (Maimone et al., 2007). Photo credit: JPL/Caltech.

For these high-slip situations, the MERs employ a technique called visual odometry

(VO), where updated vehicle poses are determined by tracking keypoints between stereo

image pairs. This method can provide accurate localization in cases of wheel slip or

wheel dragging, but can also act as an initial slip detection tool to increase vehicle

safety (Maimone et al., 2007). The use of VO is currently limited to short drives due

to computation time, but in future planetary missions with increased processor power,

the benefits of visual odometry will be useful over longer range traverses. Unfortunately,

the error of VO grows super-linearly with the distance travelled, primarily due to the

contribution of orientation error (Olson et al., 2003).

This thesis outlines a novel approach that has been developed to counteract this

phenomenon, incorporating sun sensor and inclinometer measurements directly into the

VO pipeline to limit error growth of the motion estimate. This approach was motivated by
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previous research demonstrating that periodic absolute orientation updates, such as those

obtained from a sun sensor, restrict the error to grow only linearly with distance (Olson

et al., 2003). Note that the use of a sun sensor (or similarly a startracker) is well-suited for

the exploration of Mars (or the Moon), whose lack of a useful magnetic field precludes the

use of a compass for absolute heading information (Eisenman et al., 2002). Additionally,

a sun sensor is not subject to drift, which can plague inertial sensors used to monitor

heading over long distances and times. The novel technique detailed in this thesis builds

upon this periodic approach, incorporating sun sensor and inclinometer measurements

directly into the visual odometry solution as they are acquired. This formulation allows

for continuous correction of the vehicle’s heading estimate, allowing for greatly improved

accuracy over long distances. The sun sensor provides absolute heading information (as

well as pitch/roll over long periods of time), while the inclinometer measures the pitch

and roll of the rover platform, allowing the application of angular corrections to the full

attitude of the vehicle.

This thesis is organized as follows. Chapter 2 outlines the major elements of the

visual odometry pipeline and examines the relevant techniques that have been employed

in previous research. Prior work regarding the use of sun sensors in rover navigation

is also reviewed. Chapter 3 outlines the mathematical formulation of our estimation

framework. Chapter 4 begins by providing the details of our experimental test data

acquired at a Mars analog site on Devon Island in the Canadian Arctic. Next, detailed

results are presented from the experimental trials. This includes an evaluation of stereo

feature detectors, an demonstration of how the sun sensor and inclinometer measurements

greatly improve visual odometry estimates, and an examination of the computational

gains made possible by this algorithm. Chapter 5 provides a thorough discussion of the

inherent VO bias for planetary rovers that was discovered during the experimental trials.

Chapter 6 summarizes the findings of this thesis, and looks forward to possible extensions

of this work in future research.



Chapter 2

Visual Odometry and Sun Sensing

for Rover Navigation

The original visual odometry system was introduced by Moravec (1980) in his doctoral

thesis. The implementation was simple, but it was the first to contain the fundamental el-

ements of the modern VO pipeline: a keypoint detector, a keypoint matching algorithm,

and a motion estimator. This basic model was continued by Matthies, who achieved

significantly better accuracy by treating the motion estimation as a statistical estima-

tion problem, and modelling the landmark uncertainties as ellipsoidal three-dimensional

Gaussians (Matthies and Shafer, 1987; Matthies, 1992). The system outlined by Matthies

formed the basis of the MER VO algorithm (Matthies et al., 2007), and helped to estab-

lished the modern visual odometry pipeline, as illustrated in Figure 2.1.

This chapter will describe in detail the major elements of this pipeline and examine the

relevant techniques that have been employed in previous research. Prior work regarding

the use of sun sensors in rover navigation will also reviewed.

.
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Figure 2.1: The basic visual odometry pipleline using a stereo camera.

2.1 The Visual Odometry Pipeline

2.1.1 Keypoint Detection

Once a stereo image has been acquired from the camera, rectified, and processed into a

usable form, the first step in the visual odometry pipeline is to extract distinct points of

interest, or keypoints, from within the image. Figure 2.1.1 illustrates the large number

of keypoints that are typically detected within a single image. A number of different

keypoint detectors have been employed in the literature for this task, each with its own

unique properties. The Mars Exploration Rovers use the Harris corner detector, which

uses the auto-correlation function to measure changes in image intensity that result

from shifting the image patch (Harris and Stephens, 1988). Harris corners are simple

to compute, and thus are well-suited for computationally limited planetary exploration

rovers. Another computationally efficient method is the FAST (Features from Accelerated

Segment Test) feature detector (Rosten and Drummond, 2005, 2006). In this algorithm,

a circle of pixels surrounding a candidate point is examined, and a feature is detected if a

certain number of these contiguous pixels are above or below the intensity of the candidate

by some threshold. Because of its high speed and reliability, the FAST detector has been

used extensively in the literature (Mei et al., 2010; Howard, 2008; Konolige and Bowman,
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Figure 2.2: Keypoints extracted from the left and right images of a stereo pair using
the SURF detector. The sizes of the circles indicate the scale of the keypoint that
was detected. The blue circles represent light blobs on dark backgrounds, while red
corresponds to dark blobs on light backgrounds.

2009). Another option is the SURF (Speeded-Up Robust Features) detector (Bay et al.,

2008), which uses integral images to detect blob-like structures at multiple scales. The

technique is based on the Scale Invariant Feature Transform (SIFT) algorithm (Lowe,

2004), but uses a number of fast approximations to speed up performance. A GPU

implementation of the SURF algorithm was recently utilized by Furgale and Barfoot

(2010) for a visual-teach-and-repeat system. In Chapter 4, the Harris, FAST, and SURF

keypoint detectors are compared experimentally to determine which detector produces

the most accurate visual odometry estimate as compared to groundtruth.

2.1.2 Stereo Matching

After keypoint detection has been performed, the next step in the VO pipeline is to

match similar keypoints between the left and right images of the stereo pair. Once a

keypoint pair has been established, the pixel location disparity of the keypoint in the left

and right images can be measured, as shown in Figure 2.3. Chapter 3 details how this

disparity measurement can be used to triangulate the three-dimensional location of the

observed landmark, given the camera baseline and focal length.
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Figure 2.3: Disparity measurements produced by matching the keypoints observed in
Figure 2.1.1. Note that matches in the foreground generally have large disparity, in-
dicating these keypoints are close, while those in the background have small disparity,
indicating they are far. There are some mismatches as well, such as those in the sky
portion of the image.

If the images have not been rectified, a two-dimensional search must be performed within

the image to find a corresponding keypoint. However, image rectification aligns the left

and right images of the stereo pair, such that a point in space projects onto the same row

of each image. Thus, in this thesis, keypoints are detected in the left and right images, and

matches are found by searching along the epipolar line of the rectified stereo pair, plus or

minus some allowable tolerance to account for noise. This is a commonly used approach

in the literature (Mei et al., 2010; Nister et al., 2006), but an alternative technique is

to detect keypoints in a single image, and then search for correspondences using dense

stereo processing (Howard, 2008; Konolige et al., 2007). On the slow processors of the

MERs, down-sampled image pyramids are used to speed up correlation (Johnson et al.,

2008). In most VO systems, keypoint similarity is computed using a normalized cross

correlation approach (Maimone et al., 2007; Konolige et al., 2007).
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(a) Raw feature tracks, with remaining outliers. (b) Feature tracks after outlier rejection.

Figure 2.4: During the feature matching and tracking stages, some erroneous correspon-
dences will be made, resulting in outlying feature tracks. These outliers are clearly ap-
parent in (a), where many of the feature tracks seem to contradict the consensus motion.
To produce the feature tracks observed in (b), outliers were removed using a RANSAC
technique, resulting in a set of tracks that support a single motion hypothesis.

2.1.3 Keypoint Tracking

After matching stereo keypoints in the first frame, the rover may drive some distance

and then acquire a new stereo image. Keypoints will then be detected and matched in

this new stereo frame, following the same procedures outlined above. After this has been

completed, the next task in the stereo pipeline is to temporally match the keypoints

across these two stereo frames, producing the feature tracks observed in Figure 2.4(a).

By estimating the relative movement of the these tracked landmarks in the two stereo

frames, an estimate of the rover’s motion can be computed.

Keypoint tracking is similar in principle to the keypoint matching described above,

but the search area is no longer defined by epipolar lines; some idea of the rover’s mo-

tion between the two stereo frames must be used to constrain the window in which the

corresponding keypoint may exist. Some simple approaches are to assume that the rover

motion is small (Nister et al., 2006) or is at constant velocity (Davison et al., 2007), which

can work if VO is running at a high framerate. A more informed technique is to use the
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coarse motion estimate from an IMU (Konolige et al., 2007). On the MERs, IMU and

wheel odometry measurements are used to predict the attitude and position changes of

the rover, respectively (Johnson et al., 2008). This approach has been upgraded for the

MSL rover, where predictions are made using conservative motion bounds that account

for potential wheel slip (Johnson et al., 2008).

2.1.4 Outlier Detection

A significant limitation of the keypoint matching and tracking algorithms outlined above

is that they are purely appearance based; essentially, a correspondence occurs when one

image patch is found that looks fairly similar to another image patch. This approach,

while simple and computationally efficient, inevitably leads to mismatches and outlying

feature tracks. This is especially true in terrain with repetitive patterns and texture,

such as the sand and rock fields observed on Mars. Outliers can clearly be observed

in Figure 2.4(a), where many of the feature tracks appear to contradict the consensus

motion. Removal of these outliers is critical for obtaining accurate motion estimates from

visual odometry.

The most common technique for outlier removal in visual odometry is an iterative

process known as Random Sample and Consensus, or RANSAC (Fischler and Bolles,

1981). In each iteration of RANSAC, a model of the data is generated using a randomly

selected minimal subset. Next, this model is evaluated by tallying how many of the

remaining data points fit the model within a fixed threshold. After a set number of

iterations, the most successful model is re-estimated using all its inlying points, producing

a coarse motion estimate that can be used to initialize the nonlinear numerical solution

of bundle adjustment. While the standard RANSAC approach has been used extensively

in the literature (Maimone et al., 2007; Konolige et al., 2007; Mei et al., 2010), a number

of variations have been developed to speed computation. One such flavour is preemptive

RANSAC (Nister, 2003), where a set number of models are generated up front. These
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models are then iteratively evaluated using small subsets of the data, and the most

unlikely hypotheses are rejected. This reduces the computational effort significantly, as

many of the models are eliminated using a small number of points instead of the entire

set. Preemptive RANSAC was used to generate the inlying feature tracks shown in

Figure 2.4(b), as well as in the experiments of Chapter 4.

2.1.5 Compute Motion Estimate

After removing outlying feature tracks, the final step in the visual odometry pipeline is to

compute a maximum likelihood estimate for camera translation and rotation between the

acquisition of the two stereo frames. As previously mentioned, Matthies and Shafer (1987)

established the probabilistic foundation for solving this problem, modelling the landmark

uncertainties as ellipsoidal three-dimensional Gaussians and using a covariance-weighted

nonlinear least-squares approach to solve for the rover pose update. This algorithm was

used successfully on the MER rovers with only minor changes from the system originally

described in Matthies’ doctoral thesis (Maimone et al., 2007). However, most of the

notable contemporary VO systems (Nister et al., 2006; Konolige et al., 2007; Mei et al.,

2010) utilize a technique called bundle adjustment (Brown, 1958), an iterative Gauss-

Newton minimization algorithm that solves for both motion and structure; that is to say,

it solves for both the rover pose and the three-dimensional locations of the landmarks

(although the landmark positions are not strictly required in VO). Chapter 3 explains

in detail the frame-to-frame bundle adjustment solution and how it can be solved in

a computationally efficient manner by exploiting the sparsity patterns of the matrices

involved.

One of the inherent benefits of the bundle adjustment framework is that it allows for

multi-frame solutions; in other words, one can utilize the measurements from a sliding

window of frames to improve motion estimate accuracy. This approach has been used

to great effect in a number of systems (Mei et al., 2010; Li et al., 2007); in particular,
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Konolige et al. (2007) used a sliding window bundle adjustment formulation, fused with

IMU measurements using an EKF, to achieve a max error of 0.08% over a 9 km tra-

verse. However, incorporating the additional measurements from a handful of frames

significantly increases the computational burden of bundle adjustment; as the goal of

this thesis was to improve accuracy while having a comparable computational cost to the

MERs, a frame-to-frame approach has been used in all experiments.

2.2 Sun Sensing in Rover Navigation

The inclusion of a sun sensor on future rover missions was one of the recommendations

made after the 1997 Mars Pathfinder mission (Wilcox and Nguyen, 1998). Subsequently,

there were several studies at NASA’s Jet Propulsion Lab into the use of a dedicated sun

sensor for rover navigation. A visual odometry simulation study by Olson et al. (2003)

found that long range position error grows super-linearly with the distance travelled, pre-

dominantly due to the contribution of orientation error. However, if absolute orientation

measurements are available, the error is bounded to grow linearly with distance. Volpe

(1999) performed field tests using the Rocky 7 rover, in which wheel odometry motion

estimates were corrected using a sun sensor, in conjunction with an accelerometer to

determine sensor tilt. These tests experimentally verified that the use of an absolute ori-

entation sensor can restrict the positional error of a rover to grow linearly. Additionally,

Trebi-Ollennu et al. (2001) describe the design and testing of a sun sensor on one of the

FIDO rover platforms, reporting errors in rover heading of a few degrees. However, to

economize, the MERs were launched without dedicated sun sensors and instead use the

PANCAM stereo camera pair to search for and acquire images of the sun (Eisenman et al.,

2002). This sun sensing technique is only used as a periodic heading or attitude update,

not a direct component of any online navigation algorithm. This sun sensing procedure

had only been used about 100 times as of January 2007 (Maimone et al., 2007).



Chapter 2. Visual Odometry and Sun Sensing for Rover Navigation 12

More recently, Furgale et al. (2011a) presented an experimental study of sun sensing as

a rover navigational aid. Navigational information is estimated using sun measurements,

a local clock, quasi-analytical models of solar ephemeris, and, in some cases, a gravity

vector measurement from an inclinometer. An estimate utilizing multiple measurements

is determined by minimizing a scalar weighted cost function. Using these techniques, the

absolute heading of the rover was able to be determined to within a few degrees. In this

thesis, these techniques were used to produce periodic attitude updates for comparison

to our technique, in which the sun sensor measurements are used directly in the VO

pipeline.

In summary, while significant research has been focused on visual odometry and sun

sensor aided navigation, the algorithm presented in this thesis is the first to incorporate

sun sensor measurements directly into the visual odometry formulation. This novel ap-

proach provides considerable benefits for planetary rover exploration, as detailed in the

following chapters.



Chapter 3

Mathematical formulation

In this chapter, we outline the mathematical formulation of our visual odometry solution

with sun sensor and inclinometer measurements. We start by establishing notational and

mathematical conventions and defining our key coordinate frames. We then outline the

derivation of the error terms for the stereo camera, sun sensor, inclinometer, and prior.

Finally, we discuss the bundle adjustment formulation that allows us to incorporate sun

sensor and inclinometer measurements into the estimation solution as they are acquired.

This approach enables us to constantly correct the orientation estimate of VO using

absolute orientation information, preventing superlinear growth of error.

3.1 Preliminaries

For the sake of clarity, we will briefly explain the notational scheme used in this thesis. A

summary of these conventions has also been provided on page vi for reference purposes.

Vectors are represented by boldface lowercase characters, and matrices by boldface up-

percase characters. The identity matrix is represented by 1, while a zero matrix is written

as 0. An overbar denotes the nominal value of a quantity, a hat over top of an element

indicates that it is an estimate of a true quantity, and a tilde signifies a measured value.

The vector ρd,e
a represents a translation from point e to point d, expressed in coordinate

13
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frame F−→a. The rotation matrix Ca,b rotates vectors expressed in F−→b into F−→a. We use

the following set of three standard rotation matrices, using the shorthand cθ := cos θ and

sθ := sin θ:

Rx (θ) =





1 0 0

0 cθ sθ

0 −sθ cθ




, Ry (θ) =





cθ 0 −sθ

0 1 0

sθ 0 cθ




, Rz (θ) =





cθ sθ 0

−sθ cθ 0

0 0 1





Given any 3×1 vector r = [r1 r2 r3]
T , we can also define the usual 3×3 skew-symmetric

cross operator (Hughes, 1986):

r× :=





0 −r3 r2

r3 0 −r1

−r2 r1 0





We will now discuss notation for the linearization of rotations, which will be used exten-

sively throughout this thesis. Let us define a rotation matrix C(θ), where θ is a 3 × 1

column of Euler angles that define the rotation. A perturbation in this rotation matrix

can be written as follows:

C
�
θ̄ + δθ

�
≈

�
1−

�
S
�
θ̄
�
δθ

�×�
C
�
θ̄
�

(3.1)

where θ̄ is the nominal value, δθ is the perturbation, S
�
θ̄
�
is the matrix relating rotation

vectors to Euler angles evaluated at the operating point, and C
�
θ̄
�
is the rotation matrix

at the operating point. We note that this expression describes how a perturbation of a

rotation matrix corresponds to a perturbation of Euler angles, θ̄ + δθ. Notationally, it

is simpler to write this expression as

C
�
θ̄ + δθ

�
=

�
1− δφ×�C

�
θ̄
�
, (3.2)

where δφ := S
�
θ̄
�
δθ is a 3× 1 rotation vector (Hughes, 1986).
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3.2 Important coordinate frames

Topocentric 

frame 

Camera 

frame 

Sun sensor 

frame 
F−→s

F−→g

F−→c F−→t0

Figure 3.1: Illustration of the coordinate frames used in our formulation.

Our estimation framework relies on four main coordinate frames, with which we can

describe all of our measurements and vehicle transformations. Figure 3.1 shows the sensor

head used in our experiments, with each of the relevant coordinate frames defined.

The camera frame, F−→c, is defined with origin at the left camera of the stereo appa-

ratus. The x-axis is aligned with horizontal pixels, the y-axis with vertical pixels, and

the z-axis is aligned with the optical axis. The sun sensor frame, F−→s, is defined having

a z-axis aligned with the outward normal of the sensor. For the inclinometer frame, F−→g,

the x- and y-axes of the frame are defined by the orthogonal sensing axes of the sensor.

The locally defined topocentric frame, F−→t, is such that the x-axis points in the eastward

direction, the y-axis points north, and the z-axis is opposite to the local gravity vector.
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With these definitions in hand, we can describe the pose of our rover. The estimate

frame in our formulation, F−→t0 , has the orientation of the topocentric frame and is located

at the origin of our GPS unit at time t = 0. At each timestep k, we calculate the

translation, ρck,t0
t0 , and rotation, Cck,t0 , of the camera frame, F−→c, relative to F−→t0 , which

can easily be transformed to a vehicle frame using calibration information.

3.3 Derivation of error terms

Given the stereo camera, sun sensor, and inclinometer measurements recorded at time k,

our goal is to determine the maximum likelihood camera transformation at this timestep.

Our method is to use a bundle adjustment approach that will estimate the states,

{Cck,t0 ,ρ
ck,t0
t0 } and {Cck−1,t0 ,ρ

ck−1,t0
t0 }, and the positions of the stereo camera landmarks,

pj,t0
t0 . Unlike the standard VO approach, which solves for a relative transformation from

time k−1 to k, we solve for the states relative to F−→t0 ; this is because our new sun sensor

and inclinometer measurement error terms require a current estimate of the vehicle orien-

tation relative to the topocentric frame. In this technique, Gauss-Newton optimization is

used to minimize an objective function composed of Mahalonobis distances proportional

to the negative log likelihood of all the measurements. In order to build this objective

function, we require error terms for each of the individual sensors, which we will derive

in detail in this section.

3.3.1 Stereo camera model

We will now describe the observation models for our sensors, beginning with a stereo

camera model. Note that we are not performing multi-frame visual odometry in this

thesis, but instead only matching stereo keypoints frame to frame, as on the MERs.

Accordingly, we begin with an initial stereo image pair at time k− 1, and then a second

at time k. Our goal is to determine the translation and rotation of the camera between
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the two image pairs by estimating the two states, {Cck,t0 ,ρ
ck,t0
t0 } and {Cck−1,t0 ,ρ

ck−1,t0
t0 }.

Our measurements are (ul, vl) and (ur, vr), the pixel locations of observed keypoints in

the left and right rectified stereo images, respectively. The projection of landmark j,

with three-dimensional location pj,ck
ck

= [x y z]T , into the image plane is described by

our observation model for a stereo camera:

yj
k = h

�
pj,ck
ck

�
=





ul

vl

ur

vr





=
1

z





fu(x+ b
2)

fvy

fu(x− b
2)

fvy





+





cu

cv

cu

cv





+ δyi
k (3.3)

where fu and fv are the horizontal and vertical focal lengths in pixels, b is the camera

baseline, and δyj
k is the noise associated with each measurement, modelled as a zero-

mean Gaussian density with covariance Tyjk
. Thus, we can define the error term for

stereo measurements as follows:

ejyk := yj
k − h

�
pj,ck
ck

�
(3.4)

The three-dimensional location of the landmark relative to the camera frame at time k,

pj,ck
ck

, can be expressed as follows:

pj,ck
ck

= Cck,t0

�
pj,t0
t0 − ρck,t0

t0

�
(3.5)

In order to linearize the error term (3.4), we first perturb the landmark location (3.5)

about its nominal value, as follows:

pj,ck
ck

= p̄j,ck
ck

+ δpj,ck
ck

≈
�
1− δφ×

k

�
C̄ck,t0

�
p̄j,t0
t0 + δpj,t0

t0 − ρ̄ck,t0
t0 − δρck,t0

t0

�



Chapter 3. Mathematical formulation 18

Expanding and eliminating the products of small perturbation terms gives

pj,ck
ck

≈ C̄ck,t0

�
p̄j,t0
t0 − ρ̄ck,t0

t0

�
+ C̄ck,t0δp

j,t0
t0

− C̄ck,t0δρ
ck,t0
t0 + δφ×

k C̄ck,t0

�
ρ̄ck,t0
t0 − p̄j,t0

t0

�
.

Using the identity a×b ≡ −b×a, we can rewrite the perturbed landmark position as

pj,ck
ck

= C̄ck,t0

�
p̄j,t0
t0 − ρ̄ck,t0

t0

�
+ C̄ck,t0δp

j,t0
t0

− C̄ck,t0δρ
ck,t0
t0 +

�
C̄ck,t0

�
p̄j,t0
t0 − ρ̄ck,t0

t0

��×
δφk.

This equation can be written in matrix form as

pj,ck
ck

= p̄j,ck
ck

+

�
Dx Dp

�



δx

δp



 , (3.6)

where

p̄j,ck
ck

= C̄ck,t0

�
p̄j,t0
t0 − ρ̄ck,t0

t0

�
, Dx =

�
0 0 −C̄ck,t0

�
C̄ck,t0

�
p̄j,t0
t0 − ρ̄ck,t0

t0

��×
�
,

Dp = C̄ck,t0 , δx =





δρck−1,t0
t0

δφk−1

δρck,t0
t0

δφk





, δp = δpj,t0
t0 .
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Substituting (3.6) into (3.4), we obtain our linearized error term:

ejyk ≈ yj
k − h



p̄j,ck
ck

+

�
Dx Dp

�



δx

δp









≈ yj
k − h

�
p̄j,ck
ck

�
− ∂h

∂p

����
p̄
j,ck
ck

�
Dx Dp

�



δx

δp





= yj
k − h

�
p̄j,ck
ck

�
−
�
Aj

k Bj
k

�



δx

δp



 (3.7)

where

Aj
k = EkDx, Bj

k = EkDp, Ek =
∂h

∂p

����
p̄
j,ck
ck

.

Following the same logical progression, an analogous error term can be derived for the

same landmark observed at time k − 1, which will depend on the state perturbation

terms, δρck−1,t0
t0 and δφk−1:

ejyk−1
= yj

k−1 − h
�
p̄j,ck−1
ck−1

�
−
�
Aj

k−1 Bj
k−1

�



δx

δp



 (3.8)

where

Aj
k−1 = Ek−1

�
−C̄ck−1,t0

�
C̄ck−1,t0

�
p̄j,t0
t0 − ρ̄ck−1,t0

t0

��×
0 0

�
,

Bj
k−1 = Ek−1C̄ck−1,t0 , Ek−1 =

∂h

∂p

����
p̄
j,ck−1
ck−1

.
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Figure 3.2: Definitions of the sun sensor measurement angles, φk and θk, as well as the
ephemeris and measurement frames.

3.3.2 Sun sensor model

We will now outline the derivation of the sun sensor observation model, which closely

resembles the one derived by Barfoot et al. (2010a). After image acquisition and some

post-processing, the sun sensor determines a unit vector pointing from the sensor to the

sun. This unit vector can be completely described relative to the sun sensor frame by

the measurement sk, consisting of a rotation about the x-axis by angle φk and a rotation

about the y-axis by θk. The definition of these angles is shown in Figure 3.2. In order to

perform our analysis, we also define an ephemeris frame, F−→ek , with z-axis aligned with

the sun direction, s−→k
, and y-axis lying in the yz-plane of the topocentric frame, F−→t0 .

Additionally, we define a measurement frame, F−→mk
, with z-axis aligned with the sun

direction, s−→k
, and y-axis lying in the yz-plane of the sun sensor frame, F−→sk .

Thus, we can write the set of Euler angles from our current measurement, η̃k, as

follows:

sk := η̃k =




θk

φk



 (3.9)

Based on these angle definitions, we can define the following Euler sequence for Csk,mk
,

our measurement:

Csk,mk
= Rx(φk)Ry(θk)Rz(0) (3.10)
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We can also define an Euler sequence for Cek,mk
, which is a rotation about the z-axis (of

either frame) through an unknown angle, ψk:

Cek,mk
= Rx(0)Ry(0)Rz(ψk) (3.11)

With these definitions at hand, we can now go about deriving an error term for the sun

sensor measurements. Noting that Csk,mk
contains the measurement information, we

wish to build a predicted version of this, Ĉsk,mk
. This predicted measurement will be

based on our current attitude estimate relative to the topocentric frame, Ĉck,t0 , and the

other interframe rotations:

Ĉsk,mk
:= CT

c,sĈck,t0Ct0,ekCek,mk

= Rx(φ̂k)Ry(θ̂k)Rz(ν̂k)

Note that the rotation, Ct0,ek , can be obtained from ephemeris, date and time of day,

and an approximate knowledge of our current global position, and thus can be considered

a known quantity. Also, the rotation, Cc,s, is the rotation between the sun sensor and

camera frames, and is assumed to be known from calibration. The angle ν̂k is non-zero

because we are using Ĉck,t0 , not the true value, Cck,t0 . Next, we can write the current

timestep attitude estimate, Ĉck,t0 , as a multiplicative perturbation about some initial

estimate, C̄ck,t0 , as follows:

Ĉsk,mk
≈ CT

c,s

�
1− δφ×

k

�
C̄ck,t0Ct0,ekCek,mk

= CT
c,sC̄ck,t0Ct0,ekCek,mk

−CT
c,sδφ

×
k C̄ck,t0Ct0,ekCek,mk

Next, we insert Cc,sC
T
c,s, which is equal to identity, into the expression:

Ĉsk,mk
= CT

c,sC̄ck,t0Ct0,ekCek,mk
−CT

c,sδφ
×
k Cc,sC

T
c,sC̄ck,t0Ct0,ekCek,mk
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Using the identity (Cr)× ≡ Cr×CT , we can manipulate the expression to the following:

Ĉsk,mk
=

�
1−

�
CT

c,sδφk

�×�
CT

c,sC̄ck,t0Ct0,ekCek,mk
(3.12)

The compound rotation, CT
c,sC̄ck,t0Ct0,ek , may be expressed as the following Euler se-

quence:

CT
c,sC̄ck,t0Ct0,ek = Rx(φ̄k)Ry(θ̄k)Rz(ν̄k)

Thus, we can write (3.12) as follows:

Ĉsk,mk
=

�
1−

�
CT

c,sδφk

�×�
Rx(φ̄k)Ry(θ̄k)Rz(ν̄k)Rz(ψk)

=
�
1−

�
CT

c,sδφk

�×�
Rx(φ̄k)Ry(θ̄k)Rz(ν̄k + ψk)

=
�
1−

�
CT

c,sδφk

�×�
C̄sk,mk

(3.13)

where C̄sk,mk
= Rx(φ̄k)Ry(θ̄k)Rz(ν̄k +ψk). The angle ψk is unknown, but as we will see,

we will not need it. The resulting expression for our predicted measurement is of the

same linearized form as (3.2), with the δφk from (3.2) taking the form CT
c,sδφk in (3.13).

Thus, the perturbation of the predicted measurement rotation matrix, as shown in (3.13),

corresponds to a perturbation of the predicted measurement Euler angles, η̂k ≈ η̄k+δηk.

We can derive an expression for the perturbation δηk using (3.1) and (3.2):

CT
c,sδφk = S(η̄k) δηk

⇒ δηk = S−1(η̄k) C
T
c,sδφk (3.14)

Thus, the expression for the perturbed predicted measurement in Euler angles is as

follows:

η̂k = η̄k + S−1(η̄k) C
T
c,sδφk (3.15)

where
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η̂k :=





ν̂k

θ̂k

φ̂k




, η̄k :=





ν̄k + ψk

θ̄k

φ̄k




, S(η̄k) :=

�
Rx(φ̄k)Ry(θ̄k)13 Rx(φ̄k)12 11

�
.

Note that the unknown angles ν̄k and ψk are not used in the calculation of S(η̄k), due

to our selection of Euler sequence. Additionally, our selection of Euler sequence has its

singularity at θk = π/2, which is out of the field of view of our sensor. We note, however,

that our Euler angle terms consist of 3 unique angles, while our measurements consist of

only 2 angles. To put our error expression in the same terms as our measurements, we

utilize a projection matrix, P, of the following form:

P :=




0 1 0

0 0 1





Multiplying (3.15) by this projection matrix gives us the predicted sun sensor measure-

ment in 2 Euler angles. Note that the application of the projection matrix makes the

values of the unknown angles, ν̄k and ψk irrelevant. We can now write our final linearized

expression for the sun sensor measurement error:

esk = (sk − η̂k)

= sk −P
�
η̄k − S−1(η̄k) C

T
c,sδφk

�
(3.16)

We can reexpress the error term in matrix form as follows:

esk = sk −Pη̄k +U δx (3.17)

where

U =

�
0 0 0 PS−1(η̄k) C

T
c,s

�
.
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Figure 3.3: Definitions of the inclinometer measurement angles, βk and γk, as well as the
measurement frame.

3.3.3 Inclinometer model

The process of deriving the inclinometer model is essentially the same as for the sun

sensor, so we present a very brief summary of the main concepts here. The inclinometer

is measuring the pitch angle, βk, and roll angle, γk, of the inclinometer with respect to the

topocentric frame. The definition of these angles is shown in Figure 3.3, where we have

shown the angles measured relative to the negative gravity vector, which is equivalent

to the negative z-axis of the topocentric frame. We also define a measurement frame,

F−→nk
, with z-axis aligned with the negative gravity direction, g−→k

, and y-axis lying in the

yz-plane of the inclinometer frame, F−→gk . Thus, we can write the set of Euler angles from

our current measurement, η̃k, as follows:

gk := η̃k =




βk

γk



 (3.18)

Based on these angle definitions, we can define the following Euler sequence for Cgk,nk
,

our measurement:

Cgk,nk
= Rx(γk)Ry(βk)Rz(0)
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We can also define a Euler sequence for Ct0,nk
, which is a rotation about the z-axis (of

either frame) through an unknown angle, ψk:

Ct0,nk
= Rx(0)Ry(0)Rz(ψk)

Noting that Cgk,nk
contains the measurement information, we can build a predicted

version of this, Ĉgk,nk
. This predicted measurement will be based on our current attitude

estimate relative to the topocentric frame, Ĉck,t0 , and the other interframe rotations:

Ĉgk,nk
:= CT

c,gĈck,t0Ct0,nk

= Rx(γ̂k)Ry(β̂k)Rz(ν̂k)

Following the same procedure as outlined in the sun sensor model subsection, the lin-

earized inclinometer error term can be determined from the above equations as follows:

egk = gk −P
�
η̄k − S−1(η̄k) C

T
c,gδφk

�
(3.19)

We can reexpress the error term in matrix form as follows:

egk = gk −Pη̄k +G δx (3.20)

where

G =

�
0 0 0 PS−1(η̄k) C

T
c,g

�
. (3.21)

We note that (3.17) and (3.20) are of the same form, since both the sun and gravity

directions are vector measurements described by a pair of rotations about the x- and

y-axes.
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3.3.4 Prior Term

As previously mentioned, because our sun sensor and inclinometer measurement error

terms require a current estimate of the vehicle orientation relative to the topocentric

frame, we solve for the states relative to F−→t0 . To constrain this solution in space, we

include a prior on the state variables based on the estimate up to the current time;

this bundle adjustment implementation is functionally similar to the iterated extended

Kalman filter. We start by taking our estimate of the state resulting from the bundle

adjustment solution at the previous timestep, and reframing it as a prior incorporating the

information from all our measurements up to the time k−1 (at the end of Section 3.4, we

will show how this prior is determined from the estimated quantities at a given timestep).

We denote this term as x̂ = {Ĉck−1,t0 , ρ̂
ck−1,t0
t0 }, with 6× 6 covariance matrix Tk−1. With

this prior defined, we go about deriving the error terms for the translation and rotation

elements of the vehicle state.

For the translational terms, we start by defining the error between the prior and the

true state as δρ̂ck−1,t0
t0 , which we assume to be a small perturbation. The covariance of

this error, E
�
δρ̂ck−1,t0

t0 δρ̂ck−1,t0
t0

T
�
, is described by the 3 × 3 upper left hand corner of

Tk−1. With these definitions at hand, we can write the following expression for the true

state:

ρck−1,t0
t0 ≈ ρ̂ck−1,t0

t0 + δρ̂ck−1,t0
t0 (3.22)

Following a similar logic, we can also express the true translational state using our current

state estimate plus some error perturbation:

ρck−1,t0
t0 ≈ ρ̄ck−1,t0

t0 + δρck−1,t0
t0 (3.23)
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By equating (3.22) and (3.23) and rearranging some terms, we can arrive at an error

expression for the translational prior:

ek−1trans := δρ̂ck−1,t0
t0 = ρ̄ck−1,t0

t0 − ρ̂ck−1,t0
t0 + δρck−1,t0

t0 (3.24)

The rotational prior error can be derived in a similar, albeit slightly more complicated,

fashion. We start by defining the error between the prior and the true state as the

rotation vector δψk−1, which we assume to be a small perturbation:

δψ×
k−1 := 1−Cck−1,t0Ĉ

T

ck−1,t0
(3.25)

The covariance of this error, E
�
δψk−1 δψk−1

T
�
, is described by the 3×3 lower right hand

corner of Tk−1. We can also express the true rotational state as a perturbation of our

current state estimate:

Cck−1,t0 ≈
�
1− δφ×

k−1

�
C̄ck−1,t0 (3.26)

We can combine these two expressions by substituting (3.26) into (3.25):

δψ×
k−1 = 1−

�
1− δφ×

k−1

�
C̄ck−1,t0Ĉ

T

ck−1,t0
(3.27)

Noticing that the C̄ck−1,t0Ĉ
T

ck−1,t0
term will be small, we can make the following approxi-

mation:

C̄ck−1,t0Ĉ
T

ck−1,t0
≈ 1− δξ×k−1 (3.28)

where δξk−1 can be determined by computing the value of 1 − C̄ck−1,t0Ĉ
T

ck−1,t0
= δξ×k−1,

and picking off the elements of δξk−1 from the resulting matrix. Substituting (3.28) into

(3.27) and eliminating products of small perturbations yields

δψ×
k−1 = δφ×

k−1 + δξ×k−1.
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Applying the identity a×+ b× ≡ (a+ b)×, we arrive at our final error expression for the

rotational state prior:

ek−1rot := δψk−1 = δξk−1 + δφk−1 (3.29)

In order to use these error terms in the bundle adjustment solution, we also define the

following matrices:

ek−1 =




ek−1trans

ek−1rot



 , R =




1 0 0 0

0 1 0 0





It is worth pointing out that our formulation only applies a prior to the vehicle state

and not the landmarks. Because there is no prior introduced on the landmarks, we have

not accounted for the fact that keypoints may be matched at multiple frames; in other

words, we run the risk of overtrusting measurements. However, this is an inherent risk

in any frame-to-frame VO system, where the additional complexity of carrying forward

landmark estimates through time is undesirable. It is important to note that, while frame-

to-frame bundle adjustment provides a good estimation framework for our application,

the sun sensor and inclinometer error terms derived in this thesis could be incorporated

into any number of solution methods. As such, this landmark uncertainty issue could

be resolved by using the sun sensor and inclinometer measurements within a full SLAM

solution. However, this approach falls beyond the scope of this thesis, as our goal was to

improve accuracy without increasing computational cost significantly.
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3.4 Bundle adjustment solution

Using our linearized error terms from above, we can construct our objective function,

which we will minimize to obtain the maximum likelihood estimate for our new vehicle

state:

J (x,p) :=
1

2

�
eTk−1T

−1
k−1ek−1 + eTg T

−1
g eg + eTs T

−1
s es + eTyT

−1
y ey

�
(3.30)

where T−1
k−1, T

−1
g , T−1

s , and T−1
y represent the inverse covariance matrices for the previous

state, inclinometer, sun sensor, and stereo feature measurements, respectively. We can

minimize this objective function using Gauss-Newton optimization. An update step in

the optimization process can be determined by augmenting the classic bundle adjustment

update step (Brown, 1958) as follows:

HTT−1H




δx

δp



 = −HTT−1e (x̄, p̄) (3.31)

where

H :=





R 0

G 0

U 0

A B





, T−1 := diag
�
T−1

k−1,T
−1
g ,T−1

s ,T−1
y

�
,

and where A and B incorporate each of the Jacobians Aj
k and Bj

k for the keypoints

observed at time k as well as the Jacobians Aj
k−1 and Bj

k−1 for the same keypoints

observed at the time k − 1. Constructing the left hand side, we have

HTT−1H =




RTT−1

x R+GTT−1
g G+UTT−1

s U+ATT−1
y A ATT−1

y B

BTT−1
y A BTT−1

y B



 (3.32)

where the matrix is partitioned into the pose and landmark components.
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(a) Contribution of stereo
camera terms, as in (3.33).
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(b) Contribution of prior,
sun sensor, and inclinometer
terms, as in (3.33).
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(c) Summed matrix with all
terms, as in (3.32).

Figure 3.4: The actual sparsity pattern of the HTT−1H matrix from one timestep of our
data set, showing contributions from the stereo camera, prior, sun sensor, and inclinome-
ter terms. Black indicates an occupied element, while white represents a zero. The red
lines indicate the block partitioning shown in (3.32) and (3.33).

We can explicitly illustrate the contributions of the stereo camera, prior, sun sensor, and

inclinometer terms by rewriting (3.32) as a sum:

HTT−1H =




ATT−1

y A ATT−1
y B

BTT−1
y A BTT−1

y B





� �� �
stereo camera terms

+




RTT−1

x R+GTT−1
g G+UTT−1

s U 0

0 0





� �� �
prior, sun sensor, and inclinometer terms

(3.33)

From (3.33), we can see that the inclusion of the additional measurements does not

disturb the sparse structure of the bundle adjustment problem. The prior, sun sensor,

and inclinometer terms are block diagonal (as shown in Figure 3.4(b)), and are added

to the upper left corner of the stereo camera terms, which are also block diagonal (see

Figure 3.4(a)). Thus, as shown in Figure 3.4(c), the sparse structure is preserved. This

allows us to solve for the update step using computationally efficient sparse methods, as

outlined in Appendix A.
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We determine the state at time k, {Cck,t0 ,ρ
ck,t0
t0 }, through an iterative sequence of

update steps, as per Gauss-Newton (note that while we also solve for the state at time

k−1, the new estimate is discarded, as it was necessary only to allow the addition of the

prior term):

1. Using the current estimated values for {Cck,t0 ,ρ
ck,t0
t0 }, {Cck−1,t0 ,ρ

ck−1,t0
t0 }, and pj,t0

t0 ,

compute an update step

�
δxT δpT

�T
by solving equation (3.31) using sparse bun-

dle adjustment methods (see Appendix A).

2. Check for convergence. If converged, stop; otherwise continue to Step 3.

3. The state and feature position updates are then applied to {Cck,t0 ,ρ
ck,t0
t0 }, {Cck−1,t0 ,ρ

ck−1,t0
t0 },

and pj,t0
t0 , respectively, according to

Cck,t0 ← ΦkCck,t0 ,

ρck,t0
t0 ← ρck,t0

t0 + δρck,t0
t0 ,

pj,t0
t0 ← pj,t0

t0 + δpj,t0
t0 ,

where

Φk = cos (δφk)1+ (1− cos (δφk))

�
δφk

δφk

��
δφk

δφk

�T

− sin (δφk)

�
δφk

δφk

�×

,

and δφk := |δφk|.

4. Return to Step 1.

Upon convergence, we obtain our maximum likelihood estimate for the current state at

time k, {C̄ck,t0 , ρ̄
ck,t0
t0 }. Additionally, as shown in Appendix A, the 6×6 covariance matrix

corresponding to this state, Tk, is computed as part of the sparse bundle adjustment

solution. With this information in hand, we can form the prior term that will be used at

next timestep, k+ 1. The current state estimate, {C̄ck,t0 , ρ̄
ck,t0
t0 }, is redefined at the next
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timestep as the prior term, x̂ = {Ĉck−1,t0 , ρ̂
ck−1,t0
t0 }. Similarly, the covariance matrix for

the current state, Tk, is used as the covariance matrix of the prior, Tk−1.

This formulation allows us to incorporate sun sensor and inclinometer measurements

directly into the visual odometry solution, as we acquire them. Note that we do not

require both or any sun vector and gravity measurements at a given timestep; any mea-

surements that are available can be individually included in the bundle adjustment so-

lution. Thus, whenever possible, we are continuously correcting the camera orientation

using absolute information, preventing the aggregation of errors over time. If there are no

absolute orientation measurements at that timestep, the bundle adjustment will proceed

as usual, solving for the camera transformation using only the stereo keypoints.



Chapter 4

Experimental Results

4.1 Description of field experiments

In order to test our visual odometry algorithm with sun sensor and inclinometer measure-

ments, we utilized an extensive data set that was collected by Furgale et al. (2011b) in

July 2008. A pushcart rover was taken on a 10 km traverse in a Mars analog environment

on Devon Island, collecting stereo images, sun vectors, inclinometer gravity vectors, and

GPS groundtruth for position. The details of this data set are presented in this section,

including particulars of the traverse and the hardware configuration.

4.1.1 Scenario description

Data collection took place near the Haughton-Mars Project Research Station (HMPRS)

(75◦22’ N latitude and 89◦41’ W longitude) on Devon Island in the Canadian High Arctic.

The site is considered to be a strong analog for planetary environments (Lee et al., 1998;

Barfoot et al., 2010b) due to its geological makeup and vegetation-free desert landscape,

as seen in Figures 4.1 and 4.4. A pushcart rover platform traversed a 10 km loop through

rugged canyons, sandy flats, and high-grade slopes over a period of 10 hours. To illustrate

the path of the pushcart rover, Figure 4.2 shows the entire traverse loop plotted in Google

Earth. The test was performed in July 2008; the Arctic sun remained above the horizon

line for 24 hours a day.

33



Chapter 4. Experimental Results 34

Figure 4.1: Typical images acquired by the stereo camera during the 10 km traverse of
Devon Island. Note that for our experiments, we used 512×384 greyscale versions of the
images. The letter labels are used to identify the image locations in Figure 4.2.

The 10 km loop has been partitioned into 23 sections of varying length, labelled with

indices from 0 to 22. At the beginning of each of the individual sections, the rover

platform remained stationary for a few minutes to collect large amounts of sun sensor

and inclinometer data. These measurements have been used to provide periodic updates

of the platform orientation for the full 10 km estimated traverse (Enright et al., 2009). It

would also be possible to use these computed orientations to initialize the rover attitude

of each VO path estimate, but any small angular error in the initial heading between

our estimated path and our groundtruth path will lead to large errors over the course

of hundreds of metres. To make the error reporting as accurate as possible, we have
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Figure 4.2: The 10 km traverse loop plotted in Google Earth. The starting points for the
23 individual sections are shown, as well as the locations of the images from Figure 4.1.

aligned the first 50 m of each estimated section traverse with GPS groundtruth, and

then calculated the error on the remaining length of the traverse. This ensures that we

are reporting the positional error accumulated by VO along the traverse path, and not

reporting errors due to inaccurate initial heading. Positional groundtruth was provided

by a pair of Magellan ProMark3 GPS units, which were used to produce post-processed

differential GPS for the whole traverse. These measures of rover platform position and

orientation allow us to confidently assess the accuracy of our motion estimates from VO.
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(a) The pushcart rover platform at Devon Island. (b) Sinclair Interplanetary SS-411 digital sun
sensor.

Figure 4.3: The key hardware utilized in our field trials on Devon Island.

4.1.2 Hardware configuration

The data set was collected using a pushcart platform outfitted with a suite of rover engi-

neering sensors, as seen in Figure 4.3(a). Since our visual odometry technique does not

use any wheel odometry or rover telemetry data, the unactuated nature of the platform

has no effect on our motion estimation. The stereo camera was a Point Grey Research

Bumblebee XB3 with a baseline of 24 cm and a 70◦ field of view, mounted approximately

1 m above the surface pointing downward by approximately 20◦. Over the course of the

10 km traverse, the stereo camera acquired 49410 images, which have been processed to

512×384 rectified greyscale images for these experiments. Color versions of some typical

images from the data set are presented in Figure 4.1, further illustrating the Mars-like

nature of the terrain. The inclinometer was a Honeywell HMR-3000, which weighs only

90 grams and uses a fluid tilt sensor to estimate the direction of gravity. Since the sen-

sor directly outputs gravity vectors, the rover computer does not have to perform any

expensive computation to produce these measurements.
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Figure 4.4: The pushcart rover platform traversing on Devon Island.

The sun sensor used in these experiments is a Sinclair Interplanetary SS-411 digital

sun sensor, as shown in Figure 4.3(b). It is a low-power, low-mass device designed for use

on microsatellites, weighing in at only 34 grams. A linear pixel array is used to capture

an image, which is then processed by an integrated microcontroller to output floating

point sun vector measurements in the sensor frame (Enright and Sinclair, 2007). Since

the processing is done onboard by the sensor, producing sun vector measurements is of

minimal computational cost to the rover computer. Additionally, the sensor monitors

the quality of the detected images, rejecting poor quality images that can be caused by

clouds or other factors. This produces intermittent gaps in the sun sensor data, which can

subsequently affect our motion estimate. However, our VO framework is flexible enough

to incorporate sun measurements when available and rely entirely on stereo vision when

they are not.
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4.2 Results

We will now present the experimental results produced by running our algorithm, as

previously outlined in Chapter 3, offline on the 10 km loop data set from Devon Island.

Motion estimates were calculated for each of the 23 individual sections of the traverse,

allowing us to illustrate statistical trends on a large set of data. First, we evaluate

the performance of three stereo feature detectors on the images from the Mars analog

environment. Next, we examine the contributions of the sun sensor and inclinometer,

and demonstrate the improved localization accuracy using both sensors on individual

and concatenated sections. Finally, we present results illustrating how our algorithm

can be used to decrease the number of images required by VO, thereby reducing its

computational burden.

4.2.1 Evaluating feature detectors

As detailed in Chapter 2, the first step in the visual odometry pipeline is to extract

keypoints in the image. Section 2.1.1 introduced the Harris, FAST, and SURF detection

algorithms, which have been commonly used in the literature. In order to evaluate which

of these three detectors would perform best on our data, we ran our visual odometry

algorithm (without sun sensor and inclinometer measurements) on all 23 individual sec-

tions of the dataset using each of the detectors. In order to make the comparison as fair

as possible, we adjusted the parameters of the detectors such that each produced ap-

proximately the same number of detected keypoints for a given image, which were then

passed to identical stereo matching and tracking algorithms. Also, for this comparison

test, we did not utilize the keypoint scale values outputted by the SURF detector in any

way, so as to maintain a level playing field.
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(a) Harris.
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(b) FAST.
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(c) SURF.

Figure 4.5: XYZ error as a function of distance for all individual traverses, using the
three feature detectors. Mean error curves have been included to aid comparison.

The results for each detector are shown in Figure 4.5, where the XYZ (i.e., Euclidean)

error growth curves are shown for all 23 individual traverse sections. Additionally, to aid

comparison between detectors, we have computed and plotted the mean error curves for

the 23 traverse sections in Figure 4.6. In the interest of smoothness, the mean values

were calculated in 5 m windows, and have only been computed up to a distance of

travel where there are data available from 15 trials. As previously mentioned, for the

purpose of accurate error reporting, we have aligned the first 50 m of each estimated

path with groundtruth and the calculated the error on the remainder of the traverse. It

is also important to note that some parameters in the algorithm required tuning, such

as the disparity threshold for the stereo feature measurements. These values were tuned
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Figure 4.6: Mean XYZ error curves for all 23 traverse sections to aid comparison between
the Harris, FAST, and SURF detectors.

to optimize performance on Section 0, and then those tuned parameters were retained

for use with every other section. This procedure is similar to any field trial, in which

parameters can be tuned based on a known set of data, and then tested experimentally

in the field. Numerical results are presented in Table B.1 of Appendix B.

From Figure 4.5, we observe that some of the sections were quite challenging, pro-

ducing large error compared to what has typically been reported in the literature. It

is important to note that we are testing our technique on long distance traverses, over

which the error of visual odometry is superlinearly increasing. Also, the challenging

sections of the traverse often consisted of long stretches of flat terrain covered in small,

pebble-like rocks. These flat, uniform landscapes are representative of common plane-

tary environments, but they make rich feature detection difficult, producing the results

we have observed. Also, unlike some of the more accurate techniques presented in the

literature (Konolige et al., 2007; Mei et al., 2010), we are simply using frame-to-frame

stereo matching, rather than a multiframe approach. Overall, the results indicate that

the SURF detector is best suited to our challenging planetary analog terrain, as observed

in Figure 4.6.
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4.2.2 Using feature scale

Given these results, we have selected the SURF detector to use in all our following visual

odometry experiments incorporating a sun sensor and inclinometer. However, we first

wish to examine whether we can further improve the accuracy of our motion estimates by

utilizing the keypoint scale information to our advantage. The scale gives us some sense

of our uncertainty in the location of the keypoint; specifically, a small keypoint scale

indicates that the location of that feature in the image is known with little uncertainty,

while a large keypoint scale implies great uncertainty.
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(a) Uniform matching, uniform co-
variance.
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(b) Scale matching, uniform covari-
ance.
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(c) Uniform matching, scale covari-
ance.
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(d) Scale matching, scale covariance.

Figure 4.7: XYZ error as a function of distance for all individual traverses, using the
varations on matching and covariance. Mean error curves have been included to aid
comparison.
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Figure 4.8: Mean XYZ error curves for all 23 traverse sections to aid comparison between
uniform matching and uniform covariance (UM, UC), scale matching and uniform covari-
ance (SM, UC), uniform matching and scale covariance (UM, SC), and scale matching
and scale covariance (SM, SC), all using SURF features..

One way to use this information is to compute the covariance for each keypoint

as a function of the keypoint scale, and employ each scale-specific covariance in the

bundle adjustment solution. We can also use the scale information in the stereo matching

step. Normally, we impose some threshold on how much a keypoint observed in left and

right stereo images can violate the epipolar constraint, while still being considered a

valid keypoint. Usually, this matching is performed with a uniform threshold over all

keypoint scales, but a better approach would be to make this threshold a function of the

keypoint uncertainty, or scale. We tested the effects of keypoint-scale based matching and

covariance by computing visual odometry solutions using the same 23 traverse sections,

producing the mean error curves presented in Figure 4.8. Numerical results are also

presented in Table B.2 of Appendix B. We observe that employing the scale information

in both of these techniques produces slightly more accurate motion estimates at a low

additional cost. Thus, these modifications will be used in all following experiments.
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4.2.3 Evaluating the effects of the sun sensor and inclinometer

In this section, we present the motion estimates for each of the 23 sections produced by

visual odometry incorporating sun sensor and inclinometer measurements. As determined

in the above sections, these experiments were performed using the SURF feature detector

with scale-based keypoint matching and covariance. We compare these results against

the motion estimate produced using visual odometry only. Once again, the first 50 m

segment of the estimated path is aligned with groundtruth, and all parameters are tuned

on the first section and held constant for the remaining sections. The results are shown in

Figure 4.9, where the XYZ error of the motion estimates has been plotted as a function

of distance traversed. For ease of comparison, we have also included mean error curves

computed in the same fashion as in Section 4.2.1 (mean values were calculated in 5 m

windows, and have only been computed up to a distance of travel where there are data

available from 15 trials). Numerical results are presented in Table B.3 of Appendix B,

with the three-dimensional motion estimate error being expressed as a percentage of the

total traversal distance.

In Figure 4.9(a), results are presented from the usual visual odometry algorithm,

utilizing no additional measurements. As we have observed in the preceding sections,

the error grows superlinearly with distance. Once again, this is because small orienta-

tion errors become amplified into large position errors over long distances. In contrast,

Figure 4.9(b) shows that the addition of the sun sensor and inclinometer measurements

consistently and dramatically limits the error growth on a large set of unique traverses.

The constant orientation corrections from the sun sensor and inclinometer keep the plat-

form attitude close to true, preventing the large amplification of errors and maintaining

an approximately linear error growth.
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(a) VO.

0 100 200 300 400 500 600 700
0

20

40

60

80

100

Distance of Travel (m)

XY
Z 

Er
ro

r (
m

)

 

 

Traverse Data
Mean Curve

(b) VO with sun sensor and inclinometer.

Figure 4.9: XYZ error as a function of distance for all individual traverses, with mean
error curves included.
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The most striking thing about this improvement is that it comes at a very low cost.

The rover needs not perform any computation to acquire the measurement vectors, and

since there are many more stereo keypoints than sun or gravity vectors, the additional cost

to bundle adjustment is almost negligible. A simple timing analysis using our MATLAB

implementation showed that including the sun sensor and inclinometer measurements

increased the computation time by approximately 0.3%. Given that our implementation

is not currently optimized for speed, this is not meant to be taken as a formal timing

test, but as an anecdotal demonstration that these additional measurements do not add

a heavy computational burden to standard bundle adjustment.

In terms of the specific contributions of the sun sensor and inclinometer, the sun sensor

will mainly provide information about the vehicle heading, and the inclinometer largely

the pitch and roll. However, both sensors provide some measure of the full attitude of the

rover. This is because, over the course of a traverse, the ground undulates and the sun

moves in the sky, so the sensors will be measuring a continuous sequence of non-parallel

vectors. In our experiments, we have found that the combination of both sensors greatly

outperforms the use of either the sun sensor or the inclinometer alone. This is not only

due to the fact that we are obtaining two distinct sets of vectors in nearly perpendicular

directions, but we can also apply more frequent corrections.

To summarize, we have shown on a large set of individual traverses the statistical error

improvement of VO with sun sensor and inclinometer measurements included. However,

it is beneficial to focus in on a single typical example of these traverses, in order to glean

some finer detail. For this thesis, we will focus on section 14, which demonstrates a typical

error improvement. In order to visualize how our algorithm affects the motion estimate

itself, we have presented the section 14 traverse and motion estimates in Figure 4.14(a).

We observe that the heading error is greatly reduced, due to the corrections of the sun

sensor, as well as the pitch error, due to the corrections of the inclinometer.
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(a) Estimated motion path for Section 14, with
99.7% uncertainty ellipses shown.

0 50 100 150 200 250 300 350 400 450
0

10

20

30

40

50

60

Distance of Travel (m)

XY
Z 

Er
ro

r (
m

)

 

 
VO
VO with SS and Inc

(b) Error growth as a function of distance for
Section 14. Note that the superlinear error
growth of VO has been reduced to a more linear
curve using sun sensor and inclinometer.

Figure 4.10: Estimated path results of our algorithm on Section 14 of the traverse,
illustrating the accuracy improvement when using the sun sensor and inclinometer.
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Figure 4.11: x- (left), y- (middle), and z- (right) axis error plots for the Section 14
traverse, estimated without sun sensor and inclinometer measurements.
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Figure 4.12: x- (left), y- (middle), and z- (right) axis error plots for the Section 14
traverse, estimated using sun sensor and inclinometer measurements.
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Figure 4.14(a) also illustrates the growth of the 99.7% uncertainty ellipses over a num-

ber of timesteps from the traverse. We note that the incorporation of the sun sensor and

inclinometer measurements significantly reduces the uncertainty in the robot’s location

at any given time. This result is shown in finer detail in Figures 4.11 and 4.12, illus-

trating the uncertainty envelopes for the Section 14 traverse. Once again, the significant

accuracy improvements provided by the sun sensor and inclinometer are achieved with

very low additional computational cost.
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Figure 4.13: Three-dimensional view of motion estimate results for the full 10 km traverse.

As a final demonstration of the benefits of continuous sun sensor and inclinometer

corrections, we have computed path estimates for the full 10 km traverse. The results are

presented in Figures 4.13 and 4.14, with path estimates from three different versions of our
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(a) x-y plane view of motion estimate results.
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(b) Error growth as a function of distance.

Figure 4.14: Additional results from the full 10 km traverse, illustrating that the con-
tinuous orientation corrections from the sun sensor and inclinometer greatly limit error
growth in the VO motion estimate.

algorithm. The first is straight visual odometry, with no additional measurements used

at any point. The second variation is visual odometry with periodic orientation updates

from the sun sensor and inclinometer at the start of each new section (approximately

every 500 m), as previously demonstrated by Carle et al. (2010). These periodic updates

are computed by allowing the vehicle to remain at rest for an extended period of time, in

order to collect a large number of measurements. A batch solution method is then used

to accurately compute the vehicle attitude, as described by Enright et al. (2009). This

version of our algorithm is similar to the approach of the MERs, where sun measurements

are periodically used to update the rover’s orientation. The third version of our algorithm

is visual odometry with continuous corrections from the sun sensor and inclinometer, as

described in Chapter 3. Figure 4.13 illustrates that continuous correction of the vehicle’s

orientation using sun sensor and inclinometer measurements greatly restricts the error

growth, producing an error of only 0.6% at the end of the 10 km traverse. We also

observe that continuous corrections are significantly more accurate than only periodically

updating the attitude, with very low additional computational cost.
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In summary, over such a long traverse, we can significantly improve our visual odom-

etry system with minimal additional computation, power, or mass, simply by including

a sun sensor and inclinometer. To provide more detail about the terrain along the tra-

verse, Figure 4.15 has also been included, showing the GPS altitude as a function of path

length. The index and starting time of each individual traverse section has also been

indicated.
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Figure 4.15: Altitude from GPS, relative to start of 10 km loop, as a function of dis-
tance. The individual traverse section indices have been indicated, as well as the Central
Daylight Time (CDT) at the beginning of each traverse.
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4.2.4 Using sun sensor and inclinometer measurements to

reduce VO computation

In addition to the accuracy gains demonstrated in Section 4.2.3, we can also use the

sun sensor and inclinometer measurements to lessen the computational requirements of

visual odometry. As previously mentioned, the use of VO on the MERs has been severely

limited by slow computation time. The hardware configuration of the rovers, including

a space-qualified 20 MHz processor and slow-throughput camera bus, results in each

VO update cycle taking up to 3 minutes to compute (Maimone et al., 2007). With a

maximum spacing between images of 75 cm, the effective rover speed when using VO

is approximately 10 m/h, an order of magnitude lower than the nominal rover speed

(Maimone et al., 2007). Thus, in the interests of covering maximal ground, the use of

VO has been limited to short drives (less than 15 m) involving specific terrain and tasks,

despite its high positional accuracy. While the upcoming Mars Science Lab (MSL) rover

employs a faster 200 MHz processor, its effective driving speed will still be limited by the

VO update cycle time (Johnson et al., 2008; Matthies et al., 2007).

A simple approach to reduce this computational burden would be to acquire and

process fewer stereo images per distance of travel. However, due to the increased spatial

transformation of the camera between images, keypoint tracking becomes more difficult as

the frame rate is decreased. With fewer keypoints, we would expect a less accurate visual

odometry estimate. Our proposed algorithm compensates for this loss of accuracy by

incorporating absolute orientation information from low-cost sun sensor and inclinometer

measurements. The idea is to reduce the computational burden of visual ododmetry per

distance of travel, while maintaining accuracy comparable to conventional VO.
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Figure 4.16: Number of tracked keypoints for traverse Section 14, illustrating the greatly
reduced number of keypoints when processing every fourth frame.

As a demonstration of this concept, we gradually reduced the number of images

in our Devon Island data set and computed corresponding VO estimates. Note that

this also led to a reduced number of sun sensor and inclinometer readings, since these

measurements must be associated with a stereo image acquired at approximately the

same time. Perhaps counter-intuitively, we observed that initially reducing the frame rate

actually produced less error in the motion estimate. This phenomena has been previously

described by Howard (2008), who noted that higher visual odometry frame rates will

integrate more noise into the motion estimate. While the accuracy did improve initially,

further reducing the frame rate eventually resulted in sufficiently few tracked keypoints

to produce a poor VO estimate. For our data set and algorithm, this was observed when

every fourth stereo image was processed. Figure 4.16 illustrates the significantly reduced

number of tracked keypoints at low frame rate for the representative Section 14 traverse.

We then computed new motion estimates for all 23 traverse sections incorporating sun



Chapter 4. Experimental Results 52

sensor and inclinometer measurements, producing the mean error curves observed in

Figure 4.17. The absolute orientation corrections bring the low frame rate errors back

into a comparable range with the high frame rate results, and, quite often, are even more

accurate. This comparable error comes at a greatly reduced cost, since we are computing

four times fewer VO updates, processing significantly less keypoints, and the additional

cost of the sun sensor and inclinometer measurements is nearly negligible.
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Figure 4.17: Mean XYZ error curves for varying frame rates, illustrating the average
error for all 23 traverse sections. Note that the low frame rate result with sun sensor and
inclinometer measurements included closely resembles the high frame rate result.



Chapter 5

Identifying Bias

Inspecting the full 10 km traverse from Chapter 4, it is interesting to note that the alti-

tude estimate is responsible for most of the error; specifically, the motion estimate from

regular visual odometry travels nearly 2 km up into the air. Upon further inspection of

the individual traverse section estimates, we found that all but one ended up above the

true path, as shown in Table B.4 of Appendix B. This result was particularly interesting

because similar behaviour had been observed in the visual-teach-and-repeat experiments

performed by Furgale and Barfoot (2010). Given the Gaussian noise model of our mea-

surements, we would expect the motion estimates to be uniformly spread around the true

paths, so it was a curious question: why does the estimate always seem to go up?

In order to tackle this problem, we needed to be able to isolate the variables; the

upward bias could have been caused by anything from an incorrect camera calibration to

a mathematical or coding error. In order to narrow things down, a simulation environ-

ment was created to generate artificial keypoint measurements which could be fed into

our sparse bundle adjustment solver. The simulated data included all correspondences

between keypoints, eliminating the need for any keypoint matching or tracking and al-

lowing us to determine whether the bias was introduced in the measurements or in the

computation of the pose estimate.
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Figure 5.1: An illustration of how four keypoint measurements are used to model the
oblique planetary terrain. Note how landmarks close to the camera appear at the bottom
of the image, while far away landmarks appear at the top.

The measurements were generated as follows:

1. At time k−1, simulate an observed stereo keypoint measurement by selecting pixel

locations within imaginary left and right images.

2. Project this measurement into a three-dimensional landmark using the camera

model described in (3.3).

3. Move the the imaginary camera straight ahead forward, simulating rover motion.

4. Now at time k, re-observe the landmark as pixel measurements in the left and right

cameras using the inverse of the camera model from (3.3).

5. Corrupt all pixel measurements with Gaussian noise.

At first, our approach was to generate a large number of random keypoint locations

that were uniformly distributed throughout the scene. The VO estimates produced using

these random keypoints had no discernible bias, indicating that the bundle adjustment
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implementation was not the root of the problem. So we tried an alternate keypoint

configuration, using only four landmarks to very simply model the oblique terrain which

a planetary rover typically observes. As seen in Figure 4.1, landmarks close to the camera

appear in the bottom of the image, while far away landmarks are seen near the top. Our

approach reproduces this oblique presentation of the landmarks to the camera using only

four measurements, as shown in Figure 5.1.

Interestingly, using this oblique keypoint configuration produced VO results that were

strongly biased in the upward direction. Figure 5.2 illustrates the results from 50 VO

trials, each consisting of 1000 simulated images separated by a 0.5 m camera translation.

As expected, the motion estimates produced using random landmarks are uniformly

spread about the true path, due to the measurement noise. The estimates produced

using the oblique landmarks, on the other hand, are spread about an upward trajectory,

indicating that a bias is present.
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Figure 5.2: Motion estimates from 50 trials, demonstrating the upward VO bias that is
introduced when oblique landmarks are used.
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As further confirmation of this phenomenon, VO tests were conducted with alternate

oblique keypoint configurations; for example, when the landmarks close to the camera

were placed on the right hand side of the image and the far away landmarks on the

left, the motion estimates showed a left-leaning bias. Similar results were observed for

down and right biases, indicating that whichever orientation the landmarks are obliquely

presented to the camera, the VO estimate will exhibit a bias toward the far landmarks.

Thus, from these results, we believe that foward-facing stereo-based VO inherently

tends to drift in the vertical direction for planetary applications due to the nominally

oblique presentation of the terrain to the camera with far landmarks in the upper portion

of the image and close landmarks near the bottom. To our knowledge, this phenomenon

has not been previously identified in the literature. This could be because the bias

is small, and its effect must accumulate over a large sequence of images to produce

significant errors in the motion estimate, as was observed in the 10 km traverse shown

in Chapter 4. Previous research using relatively short range traverses (Maimone et al.,

2007), full Simultaneous Localization and Mapping (SLAM) frameworks (Mei et al.,

2010), or IMU data to correct drift (Konolige et al., 2007), may not have observed this

bias. Or perhaps it has just been explained away; Konolige et al. (2007), for example,

noticed significant VO drifts in a study of 200 m traverse sections, but posit that it is

due to incorrect stereo rig calibration and camera tilt deviation.

One related work has been published by Sibley et al. (2007), who identified that

stereo cameras are inherently biased to over-estimate the range of landmarks. This bias is

caused by the nonlinear nature of the camera model; the estimated range is proportional

to 1
d , where d is the measured keypoint disparity. This 1

d nonlinearity in the camera

model means that while the disparity measurements may be normally distributed, the

resulting spread of range measurements follows a heavy-tailed distribution, as shown

representatively in Figure 5.3. The mean of this heavy-tailed distribution is actually

farther away than the true range value, producing a bias.
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Figure 5.3: An illustration of the range bias for stereo cameras. The mean of the heavy-
tailed range distribution is greater than the true range value, producing a bias.

It is important to note from Figure 5.3 that the bias increases with larger range values,

as the camera model becomes increasingly nonlinear. This implies that in the case of a

planetary rover, there will be more range bias on the landmarks at the top of the image

compared with the features at the bottom. We believe that it is this gradient of range

biases on the landmarks that produces the upward bias observed in our visual odometry

motion estimates.

Given that we know something about the Gaussian noise on the disparity measure-

ments and the nonlinearity of the camera model, it seems plausible that we should be

able to estimate this bias. Our approach was to use a technique outlined by Box (1971),

which provides a closed-form equation for calculating the bias in nonlinear estimation

problems with Gaussian noise on the measurements. However, despite extensive experi-
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mentation, this formulation was not able to properly describe the upward bias that we

were observing in the VO estimates. After further investigation, we believe that this

discrepancy is caused by the inherent disparity thresholds used in stereo visual odom-

etry. These thresholds come into play since there cannot be any negative disparity

measurements for matched keypoints, and additionally, a minimum disparity threshold

is commonly enforced to prevent very far away landmarks from impeding the nonlinear

numerical solution. These thresholds effectively truncate the Gaussian noise distribution

on the measurements, which in turn produces a truncated heavy-tailed distribution on

the range values. The truncated nature of this distribution disrupts the mean range

value; in fact, we have seen that this truncation effect causes underestimation of the

range values, rather than the expected overestimation seen by Sibley et al. (2007).

Since the noise on the measurements is not purely Gaussian, the approach described

by Box (1971) is no longer appropriate for estimating the bias. We have shown this

phenomenon using a simple one-dimensional simulation. The simulation starts with a

vehicle on a linear track taking a measurement to some landmark. The vehicle then

drives some distance along the track, takes a new measurement of the same landmark,

and estimates what the translational distance of travel was. We use a measurement model

such that the range is proportional to 1
d , where d is the value measured by the rover;

thus, we introduce the same nonlinearity as in the stereo camera model, and as such,

we expect to see similar biases present. The results are shown in Figure 5.4, with each

data point being calculated from a million trials at a specific landmark distance. The

estimated bias computed with the Box (1971) formulation closely matches the actual bias

when Gaussian noise has been applied to the measurements. If, however, the Gaussian

noise is truncated, we can see that the actual bias deviates strongly from the estimated

bias. This reflects the situation observed for the upward bias in three-dimensional visual

odometry.
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Figure 5.4: Bias results from one-dimensional simulation, averaged the results from a
million trials at each landmark distance. The bias estimated using the Box (1971) frame-
work closely approximates the actual bias when using Gaussian noise. However, the bias
estimate is poor when the noise is truncated.

Unfortunately, computing an estimate for the upward bias using this truncated Gaus-

sian noise is challenging, and will be the subject of future work. Regardless, the results

outlined in this chapter are noteworthy, having identified and largely characterized a bias

that affects all planetary visual odometry systems. In lieu of accurate bias estimation,

including absolute attitude measurements helps to reduce its effect, as we have observed

in Figure 4.13, as does increasing the numbers of frames over which the optimization is

performed (Konolige et al., 2007).



Chapter 6

Summary

In this thesis, we have presented a novel algorithm for incorporating sun sensor and in-

clinometer measurements directly into the visual odometry solution using sparse bundle

adjustment. Through rigorous testing on 10 kilometres of data from a planetary analog

environment, we demonstrated that these absolute orientation measurements greatly re-

strict the error growth of the motion estimate, especially over long traversal distances.

In particular, the small error achieved by our algorithm over the full traverse loop places

it among some of the most accurate visual odometry systems in the world. Importantly,

incorporating the sun sensor and inclinometer measurements comes at a very low cost

in terms of power, weight, and computation. In other words, one could easily improve

an existing visual odometry system with little effort and cost by adding and integrating

these two sensors. The mathematical formulation and experimental results presented

in this thesis have been published in the literature by Lambert et al. (2011). Looking

forward, we plan to investigate methods to further improve the quality of our visual

odometry estimates. One such approach would be to use a sliding window approach for

visual odometry, including measurements from a handful of previous timesteps into the

estimate.
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Another contribution of this thesis is the identification the inherent upward bias that

affects planetary visual odometry systems. The tendency of VO estimates to travel up

into the air has been a mysterious phenomenon, plaguing the results in this thesis and

the work of Furgale and Barfoot (2010). Through extensive simulation, however, we have

shown definitively that this bias is caused by the oblique presentation of landmarks to

the camera. While this inherently affects VO in expansive outdoor environments, such

as planetary terrain, it may come into play in other environments as well. For example,

Lovegrove et al. (2011) recently published visual odometry results using a rear parking

camera which appear to always drift to the right. It may be possible that landmarks

close to the camera, like other cars or curbs, tend to appear on one side of the images,

producing a bias in the motion estimates. Regardless, being able to accurately estimate

this bias in any environment would be an extremely useful contribution. In this thesis,

we have characterized the bias in great detail, illustrating the camera model nonlinearity

that comes into play and the truncated Gaussian noise that makes estimation difficult.

Looking forward, our future research will focus on correctly estimating the upward bias

using a truncated noise model, followed by investigating what accuracy gains can be made

by subtracting it off. This bias compensation technique could then be combined with the

effective error reduction of the sun sensor and inclinometer measurements, producing a

robust approach for improving the accuracy of visual odometry for planetary rovers.

In summary, the novel contributions of this thesis are:

1. The first algorithm for directly incorporating sun sensor and inclinometer measure-

ments within a visual odometry pipeline.

2. The first tests of visual odometry (with and without sun sensor and inclinometer

measurements) on long-range planetary relevant data.

3. The first identification and characterization of an upward bias in visual odometry

for planetary rover operations.



Appendix A

Efficiently Solving Sparse Bundle

Adjustment

This appendix is meant to serve as a companion to Section 3.4, outlining the low-level

details of solving the sparse bundle adjustment problem in a computationally efficient

fashion. We start by recalling equation 3.31, the usual bundle adjustment update step

equation:

HTT−1H




δx

δp



 = −HTT−1e (x̄, p̄)

In order to derive sparse solution methods for the update step, we start by re-expressing

(3.31) as an Ax = b problem:




A11 A12

AT
12 A22





� �� �
A




x1

x2





� �� �
x

=




b1

b2





� �� �
b

(A.1)

where

A = HTT−1H, x =




δx

δp



 , b = −HTT−1e (x̄, p̄) ,
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and where, recalling from Figure 3.4(c), the A11 and A22 partitions are block-diagonal.

The simplest sparse solution method utilizes the Schur complement to manipulate (A.1)

into a form that is more efficiently solved. Both sides of (A.1) are premultiplied by




1 −A12A

−1
22

0 1



 ,

producing the following expression:




A11 −A12A

−1
22 A

T
12 0

AT
12 A22








x1

x2



 =




b1 −A12A

−1
22 b2

b2



 (A.2)

Note that the solution for x1 is now decoupled from the solution for x2, and thus we can

write an expression directly for x1 as follows:

x1 =
�
A11 −A12A

−1
22 A

T
12

�−1 �
b1 −A12A

−1
22 b2

�
(A.3)

Since A22 is block-diagonal, we can solve for A−1
22 in an efficient manner. Additionally,

the
�
A11 −A12A

−1
22 A

T
12

�
is very small, as observed in Figure 3.4(c), so its inverse will not

be expensive to compute. Thus, we can solve (A.3) to obtain x1 in an efficient manner.

The expression for x2,

x2 = A−1
22

�
b2 −AT

12x1

�
, (A.4)

can also be solved inexpensively, once again owing to the sparsity of A22. Thus, we have

solved (A.1) for x1 and x2 in an efficient manner, which is what we wanted. However,

we may also want to obtain the covariance matrix associated with the state, x. Unfortu-

nately, this covariance matrix is equal to the inverse of A, which is not sparse and will be

quite expensive to invert. Thus, this Schur complement method is not the most efficient

approach if we require information about the uncertainty of the state. While this was the
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approach that we used for the experiments in this thesis, we later developed an alternate

method which allows us to obtain the covariance matrix in an efficient manner.

This alternate method begins by noting thatA is a symmetric positive definite matrix,

and as such, it can be factored as follows through a Cholesky decomposition:




A11 A12

AT
12 A22




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A

=


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0 U22




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U




UT

11 0

UT
12 UT

22




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UT

(A.5)

It is important to note here that the U22 matrix is also block-diagonal. If we multiply

the two U matrices together, it yields the following expression:




A11 A12

AT
12 A22



 =




U11U

T
11 +U12U

T
12 U12U

T
22

U22U
T
12 U22U

T
22



 (A.6)

We can now solve for each of the individual U elements. We recognize the expression for

A22,

A22 = U22U
T
22,

as the form of a Cholesky decomposition. Thus, since A22 is block-diagonal, we can

solve for U22 efficiently. Turning our attention to the U12 element, we can rewrite the

expression for A12 as follows:

U12 = A12U
−T
22

Since U22 is block diagonal, this expression for U12 is cheap to compute as well. Finally,

in order to solve for U11, we rewrite the expression for A11 in the familiar Cholesky form:

�
A11 −U12U

T
12

�
= U11U

T
11,
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While the
�
A11 −U12U

T
12

�
matrix is dense, as we saw in Figure 3.4(c), A11 is very small.

Thus, this Cholesky decomposition will not be expensive to compute. Having determined

values for all the elements of U, we can also compute U−1:
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 (A.7)

With all the above terms efficiently computed and at hand, we can now easily compute

an expression for A−1:

A−1 =
�
UUT

�−1

= U−TU−1
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Using A−1, we can now solve equation A.1 for our desired update step. However, A−1

also happens to be the covariance matrix associated with the state x. Having already

computed this matrix, we can simply pick off Tk, the 6× 6 block of A−1 corresponding

to the covariance of the rover pose at the current time, k.



Appendix B

Data Tables from Experiments

This appendix catalogues the individual traverse data from the experiments outlined in

Chapter 4. Table B.1 presents the visual odometry errors for Harris, FAST, and SURF

feature detectors. Table B.2 shows the errors produced using the four permutations

of matching and covariance. Table B.3 presents the main result of this thesis, that

sun sensor and inclinometer measurements greatly reduce the error of visual odometry.

Finally, Table B.4 demonstrates that all but one of the individual traverse estimates

travelled up into the air when using regular VO.
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Table B.1: VO XYZ error for the Harris, FAST, and SURF feature detectors, expressed
as percentage of traversal distance for individual sections.

Section Distance Harris FAST SURF
(m) (%) (%) (%)

0 413 10.9 8.1 10.9
1 477 17.6 23.2 13.9
2 606 12.5 15.1 11.4
3 541 11.8 14.3 8.0
4 402 10.5 16.4 6.1
5 552 24.7 31.0 12.5
6 538 19.2 24.3 19.3
7 499 23.0 19.0 7.0
8 444 18.0 42.3 11.2
9 487 14.9 18.8 15.7
10 572 20.4 25.7 16.6
11 386 10.5 16.5 8.2
12 557 33.2 40.0 17.0
13 490 18.9 26.4 17.5
14 442 23.3 30.4 14.6
15 557 16.4 23.4 5.8
16 503 27.3 40.6 20.8
17 423 21.7 30.0 13.0
18 338 14.8 20.0 9.4
19 316 6.8 9.5 5.2
20 296 8.8 7.0 8.6
21 170 3.5 4.3 2.5
22 124 1.3 1.1 1.4
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Table B.2: VO XYZ error for uniform matching and uniform covariance (UM, UC), scale
matching and uniform covariance (SM, UC), uniform matching and scale covariance (UM,
SC), and scale matching and scale covariance (SM, SC), all using SURF features. Error
is expressed as percentage of traversal distance for individual sections.

Section Distance UM, UC SM, UC UM, SC SM, SC
(m) (%) (%) (%) (%)

0 413 10.9 1.1 5.6 1.6
1 477 13.9 11.1 11.8 5.4
2 606 11.4 2.4 12.4 2.3
3 541 8.0 12.9 10.0 8.1
4 402 6.1 6.2 4.4 5.0
5 552 12.5 12.5 12.2 9.4
6 538 19.3 17.5 15.5 11.3
7 499 7.0 9.8 5.6 10.2
8 444 11.2 11.5 10.3 9.0
9 487 15.7 9.3 12.2 7.6
10 572 16.6 14.5 14.2 10.2
11 386 8.2 3.5 7.8 5.3
12 557 17.0 20.6 14.5 17.5
13 490 17.5 17.2 14.9 14.9
14 442 14.6 18.4 10.1 12.6
15 557 5.8 10.9 5.9 9.0
16 503 20.8 17.8 17.8 15.7
17 423 13.0 15.4 11.2 12.2
18 338 9.4 7.0 8.0 6.5
19 316 5.2 3.9 5.3 4.0
20 296 8.6 7.1 4.8 3.7
21 170 2.5 2.6 7.7 3.0
22 124 1.4 1.3 1.3 1.3
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Table B.3: VO XYZ error, with and without sun sensor and inclinometer, expressed as
percentage of traversal distance for individual sections.

Section Distance VO VO-SS-Inc
(m) (%) (%)

0 413 1.6 1.3
1 477 5.4 2.1
2 606 2.3 0.8
3 541 8.1 1.4
4 402 5.0 1.2
5 552 9.4 0.7
6 538 11.3 2.0
7 499 10.2 1.4
8 444 9.0 1.3
9 487 7.6 1.8
10 572 10.2 1.0
11 386 5.3 0.7
12 557 17.5 1.1
13 490 14.9 1.5
14 442 12.6 1.7
15 557 9.0 1.1
16 503 15.7 3.5
17 423 12.2 1.4
18 338 6.5 1.0
19 316 4.0 1.0
20 296 3.7 1.9
21 170 3.0 2.0
22 124 1.3 1.4
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Table B.4: VO altitude error at the end of the traverse, in metres. A positive value
indicates that the estimate is above the groundtruth path, while a negative value indicates
that it is below.

Section Distance Altitude Error
(m) (m)

0 413 -3.6
1 477 25.3
2 606 3.8
3 541 42.6
4 402 16.8
5 552 43.8
6 538 30.7
7 499 45.6
8 444 35.5
9 487 22.2
10 572 57.0
11 386 17.3
12 557 91.8
13 490 58.8
14 442 53.4
15 557 34.3
16 503 63.7
17 423 33.2
18 338 17.6
19 316 11.7
20 296 6.7
21 170 2.3
22 124 0.8
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