
Cooperative Localization and Mapping in
Sparsely-Communicating Robot Networks

by

Keith Yu Kit Leung

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Aerospace Science and Engineering
University of Toronto

Copyright c© 2012 by Keith Yu Kit Leung



Abstract
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This thesis examines the use of multiple robots in cooperative simultaneous localization

and mapping (SLAM), where each robot must estimate the poses of all robots in the

team, along with the positions of all known landmarks. The robot team must operate

under the condition that the communication network between robots is never guaranteed

to be fully connected. Under this condition, a novel algorithm is derived that allows each

robot to obtain the centralized-equivalent estimate in a decentralized manner, whenever

possible. The algorithm is then extended to a decentralized and distributed approach

where robots share the computational burden in considering different data association

hypotheses in generating the centralized-equivalent consensus estimate.
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Notation

k1 : k2 time interval from k1 to k2 inclusive.

hm(·) landmark measurement function.

ψk landmark measurement noise at timestep k.

N set of all robots.

M set of all landmarks.

Ni,k set of robots known to robot i at timestep k.

Mi,k set of landmarks known to robot i at timestep k.

Mk set of landmarks that have been observed by at least one robot up to timestep k.

Xi,k set of states (robots and landmarks) known to exist by robot i at timestep k.

|Q| the cardinality (number of members) of set Q.

∪
j

set union operator on all sets indexed by j.

bel(·) belief, a probability density function representing the likelihood of a set of states

given an initial belief, as well as odometry and measurement information.

v(i, k) a node representing robot i at timestep k in an information flow graph.

v1
path−→ v2 a path that exists between nodes v1 and v2 on an information flow graph.

Si,k set of all estimates, odometry data, and measurement data known to robot i at

timestep k after communication with other robots within communication range.

si metric associated with the distributed contribution from robot i.

k timestep.
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xi,k state of robot or landmark i at timestep k.

ui,k odometry information of robot i at timestep k.

g(·) process (state transition) function.

εk process noise at timestep k.

yj,ii,k relative measurement of robot or landmark j with respect to robot i, expressed in

the local reference frame of robot i at timestep k.

h(·) robot measurement function.

δk robot measurement noise at timestep k.

dj,ik distance between robot or landmark i and robot or landmark j at timestep k.

robs measurement range limit.

rcomm communication range limit.

Xk set of states (robots and landmarks) known to exist by all robots at timestep k.

XQ,k set of states (robots and landmarks) known to exist by robots in set Q at timestep

k.

Uk set of odometry information from all robots at timestep k.

UQ,k set of odometry information from robots in set Q at timestep k.

Yk set of all relative measurements made by all robots at timestep k.

Yi,k set of all relative measurements made by robot i at timestep k.

YQ,k set of all relative measurements made by robots in set Q at timestep k.

Ri,k set of robots that is able to exchange information with robot i at time k..

p(·) probability density function (pdf).

Gk1:k2 information flow graph from timestep k1 to k2.

S−i,k set of all estimates, odometry data, and measurement data known to robot i at

timestep k before communication with other robots within communication range.

C(kc, ke) Checkpoint occurring at timestep kc and existing at timestep ke.
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Cp(kc,i, ke,i) Partial checkpoint occurring at timestep kc,i and existing at timestep ke,i.

bel (Xk1:k2)
i distributed contribution, an estimate calculated based on a particular data

association hypothesis.

bel (Xk1:k2)
∗ consensus estimate.

fa(·) arbitration function, which produces a consensus estimate from distributed contri-

butions).

Cd(ks, kc, kd) distributed checkpoint that exists at kd, when bel (Xks:kc)
∗ is obtainable by

all robots.

Cd
p (ks,i, kc,i, kd,i) distributed partial checkpoint that exists at kd,i, when bel

(
Xks,i:kc,i

)∗
is

obtainable by a robot.

O(·) big O notation for complexity analysis.
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Chapter 1

Introduction

He that does good to another does good also to himself.

Lucius Annaeus Seneca (4 BC-65)

Roman philosopher and playwright.

Before the 1990s, mobile robotic research focused on achieving autonomous naviga-

tion with a single robot. With the advance and maturity of techniques for single-robot

localization, mapping, and path planning, researchers began to examine the possibility

of cooperative multi-robot systems.

It is often claimed that the benefits of deploying a multi-robot system include re-

dundancy against the failure of a robot, the implementation of complex strategies that

require more than a single robot, a decrease in task completion time, and increase in

efficiency through cooperation. However, before these claims can be made, we need to

examine the architecture of the specific multi-robot system in terms of computation and

decision making for the task that the system intends to perform (such as localization

and mapping, or state estimation). In general, we can classify a multi-robot system as

centralized or decentralized, and distributed or non-distributed.

Definition 1: A centralized multi-robot system is a group of robots in which the com-

putation for a task is performed only by a specific robot in the team or by an external

computer.

Definition 2: A decentralized multi-robot system is a group of robots in which the

computation for a task can be performed by any one or more robots in the team.

Definition 3: A distributed multi-robot system is a group of robots in which the com-

putation for a task is divided amongst the robots in the team.

1



Chapter 1. Introduction 2

Note that whether a system is centralized or decentralized is independent of whether

this system is distributed or non-distributed. For instance, we can have a distributed

system where each robot performs a part of the computation for a certain task, but

a centralized processor is required to combine the computations from each robot to

determine the final result.

The benefit of redundancy (against the failure of a robot) exists when a decentralized

system architecture is adopted, and allows all other robots to proceed with their compu-

tations even if one robot fails. In terms of improving efficiency, a distributed system can

be used to make use of the computational resources available from multiple robots. Note

that it is possible for a system to be both decentralized and distributed. This implies

that the computation for a task does not depend on a specific robot, and can be divided

amongst a number of robots. However, communication is an important aspect of coop-

erative systems that have a large impact on performance. This is the main theme of this

thesis.

1.1 Applications of Multi-Robot Systems

Multi-robot systems can be used as a network of mobile sensors to increase situational

or environmental awareness. For instance, robots with different sensing capabilities can

use relative measurements to help each other localize [1]. Sensing is one of the rea-

sons why defence agencies such as Defence Advanced Research Project Agency (DARPA)

are interested in the use of multi-robot systems. One of the earliest studies on deploy-

ing multi-robot systems for military surveillance was the Autonomous Vehicle Aerial

Tracking and Reconnaissance (AVATAR) testbed supported by the DARPA Tactical Mo-

bile Robot program, which showed the potential of using multi-robot systems (involv-

ing aerial and ground vehicles) in cooperative localization and surveillance [2, 3]. The

DARPA Perception of Offroad Robotics (PerceptOR) is a similar program but focused on

the autonomous navigation of a ground vehicle in unknown terrain with the help of an

autonomous “flying eye” helicopter [4, 5, 6]. Another DARPA initiated program, desig-

nated Mobile Autonomous Robot Software (MARS), again aimed at the development of

robust multi-robot systems for reconnaissance, surveillance, as well as search and res-

cue. Part of the work in this program looked at maintaining communication connectivity

between robots during mapping [7, 8, 9] when robots are required to operate in urban

canyons. Cooperative target localization and surveillance was another component of the

MARS program [10, 11, 12, 13].

Although the use of multi-robot systems to date is heavily linked with surveillance
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applications, there are a number of notable humanitarian applications as well. These

include: (i) the use of autonomous aerial and ground vehicles for the detection and

removal of landmines [14, 15, 16], (ii) the use of unmanned aerial vehicles (UAVs) for

detecting forest fires [17, 18, 19], (iii) search and rescue, and (iv) disaster management

[20, 21, 22, 23, 24, 25]. The use of an entomopter robot for assisting a planetary rover in

exploration has also been proposed in the past [26].

1.2 Communication Limitations

Regardless of the type of system architecture or application, communication is an im-

portant aspect of any cooperative multi-robot system. This ability to mutually share

information leads to performance gains in many tasks. Some of the earlier research on

the sharing of information between sensors (i.e., sensor fusion) for state estimation pur-

poses were conducted by Berg and Durrant-Whyte [27, 28]. They used the information

filter to centrally incorporate measurements from many sensors. Grime and Durrant-

Whyte [29] extended this work and considered a decentralized approach and allowed

measurement information to be relayed between sensors. As part of this work, the chan-

nel filter was introduced to ensure that only new information were used to update state

estimates. However, this was shown to work only in an acyclic network (with no loops).

The approach was later extended by Utete and Durrant-Whyte [30] to work for arbitrary

network topologies that are fully connected at all times. A fully connected network im-

plies that it is always possible for information from one robot to reach another robot.

This is an assumption that is common in past research on multi-robot systems. Aban-

doning this assumption, we will explore the impact of operating a multi-robot system

under a dynamic communication network that is never guaranteed to be fully connected.

We will specifically examine the impact of this in the context of robot localization and

mapping (by recursive filtering). This is a problem that a multi-robot system may need

to deal with while operating over a large area, or where occlusions obstruct and limit

the communication range. One solution to this communication problem is to constrain

robots to remain in each other’s communication range limit [31]. We will take a different

approach that does not impose any spatial constraints on the robots.

One of the problems with performing state estimation in a dynamic network is that

the sequence in which information is communicated to a robot is often out of order, and

this leads to the out-of-sequence measurements (OOSM) problem. Bar-Shalom [32][33]

examined some possible remedies for treating OOSM in state estimation using a Kalman

filter (also known as the negative timestep problem), and applied this to target tracking.
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It was shown that for a missed measurement, the only way to properly incorporate the

information into an estimate is to sequentially reprocess all following measurements.

This is an important concept to remember. In situations where past measurements are

no longer available, it is possible to proceed with measurements that are available but

this leads to sub-optimal estimates (in the sense that we can obtain a better estimate if

we have more measurements) [34].

Another issue with performing state estimation in a dynamic network is the cyclic

update problem, where robots repeatedly use a measurement. For instance, this occurs

when one robot provides information to another robot to update its state estimate,

which in turn is provided back to the first robot for updating its state estimate. This

causes the resulting state estimate to be inconsistent (over-confident). Previously, we

mentioned how the channel filter was applied in sensor networks for this reason, but it

was only shown to work for fully connected networks. Howard et al. [35, 36] introduced

the dependency tree as a remedy to this problem for a multi-robot system but it is not

guaranteed to work in all cases.

In this thesis, we will develop an approach to state estimation in a dynamic network

that is never guaranteed to be fully connected, and which avoids both the OOSM and

cyclic update problems. We call this the centralized-equivalent approach, because it is

able to allow robots to recover an estimate equivalent to that produced by a centralized

estimator whenever possible.

1.3 The Centralized-Equivalent Approach

The problem that we are trying to solve in this thesis is cooperative simultaneous local-

ization and mapping (SLAM) with a multi-robot system under the assumption that the

communication network for information exchange is never guaranteed to be fully con-

nected (i.e., in the worst-case scenario, the network is never fully connected). In this

problem, we expect each robot in the team to estimate the poses (positions and orien-

tations) of all robots, as well as the positions of all known landmarks. We will present

in this thesis a novel decentralized solution to this problem that we call the centralized-

equivalent approach, because it enables all robots to recover the centralized-equivalent

estimates when possible. That is, the estimates are exactly the same as ones produced

by a centralized estimator, even when the network is never fully connected.

We began this chapter with the epigraph “He that does good to another does good

to himself” from Lucius Annaeus Seneca, a Roman philosopher and playwright. This

philosophy is often used as the basis and justification for cooperation and teamwork.
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Ironically, with our centralized-equivalent approach to decentralized cooperative SLAM,

we show that “He that does good to himself does good to another”. In state estimation,

recursive filtering methods are used to limit computational requirement and memory

usage. These methods are based on the assumption that the Markov property is valid,

which allows a robot to discard measurements that have already been used in generating

a state estimate. While operating in a dynamic network, the brute-force approach to

obtaining centralized-equivalent estimates would be to keep all measurements and com-

municate everything with all the robots within communication range until memory usage

is at the maximum capacity [37]. Alternatively, the Markov property can be applied but

a robot needs to ensure that other robots no longer need the information that it wishes

to discard. This thesis will prove that if a robot invokes the Markov property whenever

possible (i.e., without consideration of what other robots need) to reduce its own mem-

ory use, it does not affect other robots’ ability to also obtain the centralized-equivalent

estimate. This (in contrast to the work in [38] for instance) implies that a robot does

not need to keep track of what other robots know.

We will begin to explore the decentralized cooperative SLAM problem in Chapter 2 by

first ignoring the need to estimate the position of landmarks. This simplification allows

us to focus our attention on the effect of operating in a dynamic network in the context

of state estimation, and essentially reduces the decentralized cooperative SLAM problem

into the decentralized cooperative localization problem. Once we have developed several

important theorems for our centralized-equivalent approach based on the decentralized

cooperative localization scenario, we will apply them in Chapter 3 to the decentralized

cooperative SLAM problem, and detail extensive hardware experiments that validate

our approach. Finally, in Chapter 4, we look at how estimation with multiple data

association hypotheses can be distributed amongst robots. We show a distributed and

decentralized solution to SLAM that still provides the centralized-equivalent estimate

to all robots whenever possible, while exploiting the distributed computing platform

inherent in a multi-robot system.



Chapter 2

Decentralized Cooperative

Localization

If you want to be incrementally better: Be competitive. If

you want to be exponentially better: Be cooperative.

Unknown author

In this chapter, we begin our study of the decentralized simultaneous localization

and mapping problem by temporarily ignoring the need to estimate a map of the envi-

ronment1. This simplification enables us to focus on handling the network connectivity

constraint. That is, it allows us to more easily examine how centralized-equivalent esti-

mates can be obtained when the communication network is never guaranteed to be fully

connected at any time. This simplification essentially transforms our cooperative SLAM

problem into a cooperative localization2 problem, where robots only use relative measure-

ments to estimate the pose of each other. In Chapter 3, we will reintroduce the map back

into our problem. We will first provide an overview of the recent advances in cooperative

localization. This is followed by the mathematical formulation of our problem. We will

introduce the novel concepts of a checkpoint and a partial checkpoint, which are vital

in satisfying the requirement that our centralized-equivalent approach has to work even

when the network is never fully connected. Our approach is validated and evaluated

through extensive simulations.

1The work in this chapter was presented at the IEEE International Conference on Robotics and
Automation 2009 [39], and also published in the IEEE Transaction on Robotics in 2010 [40]. Since
then, it has been extended by Nerurkar and Roumeliotis [41] who imposed bandwidth constraints on the
network.

2In earlier literature, cooperative localization is often referred to as collaborative localization.

6
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2.1 An Overview Cooperative Localization

The work by Kurazume et al. [42] is one of the earliest in using multiple robots for

cooperative localization. They are the first to introduce the idea of using robots as

features in the environment, which can be used by other robots for localization. The

system introduced in [42] is the first version of their cooperative positioning system

(CPS-I). In their experiments with CPS-I, three robots were used. While one robot

moved, the other two remained stationary, and essentially served as static landmarks

as the moving robot tried to localize. This created a ‘leap-frogging’ motion pattern,

which was later adopted by a number of other researchers such as Rekleitis et al. [43]. In

their work with two robots, one robot remained stationary and tracked the other moving

robot with a light detection and ranging (LIDAR) sensor while it performed mapping at

the same time. The stationary robot also guided the moving robot safely through the

mapped region. This work was extended by using sound navigation and ranging (sonar)

sensors on the robots [44].

Positioning is deterministic in CPS-I as it does not account of measurement noise

in the the measurement model. That is not until the second version of the cooperative

positioning system (CPS-II), which includes a number of other improvements over the

first system [45, 46]. In the final version (CPS-III), Kurazume and Hirose [47] looked for

optimal motion strategies for improving localization performance in large open areas, as

well as areas with a large number of occlusions. On the note of optimal motion strategies,

Trawny and Barfoot [48] also examined this problem with three robots. They found

that there are more optimal trajectories for reducing estimate uncertainty as compared

to when the robots remained in an equilateral triangle formation. More recently, Tully

et al. [49] used three robots from the DARPA Learning Applied to Ground Vehicle (LAGR)

program and examined optimal ‘leap-frogging’ motion strategies to maximize information

gain.

All variants of the cooperative positioning system are essentially centralized systems,

where the processing of the state estimate is performed by one computer. With the

availability of multiple computers on multiple robots, researchers began to look at how

some of the computation for pose estimation can be distributed amongst the team of

robots. Sanderson [50] had some success in distributing estimate calculations but had

to make simplifications by ignoring orientation uncertainty in state propagation and

in updating the estimate with relative position measurements. Madhavan et al. [51]

enabled the distribution of computations by only requiring each robot to run an Extended

Kalman Filter (EKF) for estimating its own pose. When robots measured each other,
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they exchanged their self estimates to calculate the predicted measurement in the update

step of the EKF. Each robot then returned to estimating their own pose. The problem

with this method is that it ignores the correlation between the pose estimates of two

robots when a relative measurement is made between them. In other words, the estimates

produced by each robot are sub-optimal with respect to a centralized estimator. Fox et al.

[52] took a similar approach to [51] in that they only required each robot to maintain

an estimate of their own pose. The difference is that a particle filter (PF) [53] is used

as the filtering method instead of an EKF. When measurements are made between two

robots, a method known as the density tree approach is used to temporarily combine the

probability density functions (PDFs) (i.e., the particles) from the two robots to perform

importance sampling.

One of the most notable advances in cooperative localization was achieved by Roume-

liotis and Bekey [54, 55], who performed distributed multi-robot localization by decom-

posing the EKF into a number of filters that can perform the prediction step of the

EKF locally on each robot. Their work shows how the propagation of the covariance

matrix can be factored using singular value decomposition such that the factored terms

can be computed by each robot individually using their own odometry data. Further-

more, the factored terms only need to be combined before a measurement update, which

then requires full network connectivity (i.e., all robots need to communicate with each

other for the EKF correction step). This approach is able to produce the same result

as a centralized estimator. In [55], relative range and bearing measurements are used

for estimate updates. Martinelli et al. [56] made an extension to this by showing how

relative bearing-only, relative-distance-only, and relative-orientation-only measurements

can be used in the updates. Recently, Bailey et al. [57] also proposed a method which

uses the information form of the EKF for cooperative localization. In their approach,

robots process odometric data locally, while relative measurements between robots are

processed by a central processor. Also, Nerurkar et al. [58] performed cooperative local-

ization using a distributed maximum a posteriori (MAP) estimator. These approaches

are able to replicate the result of a centralized estimator, but require a fully connected

network.

Researchers continued to look for fully distributed approaches to cooperative local-

ization, but many ran into the problem of producing inconsistent and over-confident

estimates because correlations between robot pose estimates were not properly taken

into accounted. For instance, Karam et al. [59] had each robot in a team maintain an es-

timate for the entire team and exchange estimates with each other when they are within

communication range. A robot would use estimates from other robots as a measurement
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in performing EKF updates. As estimates passed back and forth between robots, cyclic

updates occurred and this led to inconsistent estimates. Panzieri et al. [60] used an ap-

proach known as the interlaced EKF, which consists of a bank of EKFs. Each individual

filter only processed a subset of the robot team state. This again is sub-optimal and led

to inconsistent estimates due to the decoupling of the team state estimate. Their solution

to the inconsistency was to artificially increase measurement noise. Martinelli [61] tried

an hierarchical approach by dividing robots into subgroups. A leader in each subgroup is

responsible for producing the estimate of the subgroup. Furthermore, leaders themselves

also form a subgroup. However, since some of the correlations between subgroups are

still ignored, the estimates produced for the team are still sub-optimal and inconsistent.

Another aspect of cooperative localization that researchers have looked at is perfor-

mance limitation, such as the bound on the uncertainty of an estimate. Roumeliotis and

Rekleitis [62] analytically quantified the benefit of cooperative localization, and showed

how increasing the number of robots in a team can improve localization performance in

terms of reducing uncertainty. However, it was discovered that there are diminishing

returns in terms of uncertainty reduction as the number of robots increases. Mourikis

and Roumeliotis [63] examined the upper bound in position estimate uncertainty given

a sensor model and a graph of relative measurements between robots. They concluded

that aside from the number of robots in the team, a robot’s own proprioceptive sensors

and orientation estimates (and not the number of relative measurements between robots)

are the most important factors in determining the increase in position uncertainty.

The method of inter-robot measurements has also received the attention from some

researchers. Rekleitis et al. [64] examined how varying sensing paradigm and the number

of robots affect localization performance. The sensing paradigms included range-only,

bearing-only, range-and-bearing, and full-pose sensing (range, bearing and relative orien-

tation). The results indicated that full-pose measurement provides slightly better results

than range-and-bearing measurement, as well as range-only measurement. Increasing

the number of robots also showed better localization results. However, bearing-only

measurement performed poorly regardless of the number of robots used. Nevertheless,

bearing-only measurements continued to be used by other researchers in cooperative lo-

calization because the measurements can be obtained using an inexpensive monocular

camera. The work by Spletzer et al. [65] is one such example, but they used the dimen-

sions of known targets on each robot to determine the scale factor in their estimates.

Another example is the work by Montesano et al. [66], who compared the performance

of the EKF and the PF in cooperative localization with bearing-only measurements using

two robots.
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In terms of application, Bahr et al. [67, 68] recently performed cooperative localization

with autonomous underwater vehicles (AUVs). Some of the vehicles are surface vehicles

while some are submersibles. Their experiments showed how a small number of vehicles

with good sensors can aid less capable vehicles with acoustic sensors in the heterogeneous

team. To distribute computation, each AUV maintained a bank of filters. Depending

on the measurement, only some of the filters are updated. This is done so that when

estimates are exchanged with other robots, only the estimate that is uncorrelated with

the other robot is communicated to avoid cyclic updates and to maintain consistency.

Other works related to cooperative localization that are worth mentioning include

the works by Spletzer and Taylor [69], and Taylor and Spletzer [70]. They examined

how relative pose between robots can be determined at a given timestep assuming a

measurement model with bounded error. Their solution involved performing optimization

over all robot poses, using the relative range and bearing measurements as constraints.

Dieudonné et al. [71, 72] showed that deterministic cooperative localization with relative

measurements is a NP-hard problem. Note that besides the robotics community, the

signals and communication community also have an interest in cooperative localization.

However, their focus is mainly on the modelling and use of communication signal strength

as a measurement for position estimation [73, 74]. Furthermore, they are often interested

in position estimation of static nodes instead of moving robots.

A recent area of interest in cooperative localization is communication and network

connectivity. Trawny et al. [75] showed how the communication cost of cooperative

localization can be significantly reduced by using quantized measurements. By quantizing

measurements to four bits, their work shows that the estimates produced are practically

the same compared with using real-valued measurements in a MAP estimator.

In this chapter, we will present another advancement in cooperative localization,

which allows the centralized-equivalent estimate to be calculated by all robots whenever

possible in a network that is never guaranteed to be fully connected. We will first present

the mathematical formulation of the cooperative localization problem, under the sparse

network assumption. We will then examine how the distribution of information from one

robot to another affects each robot’s ability to produce the centralized-equivalent state

estimate of the robot team (i.e., the poses of all the robots). From this, we will develop

several key theorems that will be applied within an algorithm that allows all robots to

obtain the centralized-equivalent estimate whenever possible. Through simulations, we

will examine how estimation performance of the algorithm is affected by the number of

robots in the team, the size of the workspace, as well as communication limitations.
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2.2 Mathematical Formulation

2.2.1 System Model

Before we provide a mathematical formulation for the decentralized cooperative local-

ization problem, we first need to define a system model. In a multi-robot system, let N

represent the set that contains the unique identification indices of all robots. The total

number of robots corresponds to |N |, the cardinality of the set, and we assume that the

identification indices of the robots range from 1 to |N |. Furthermore, we define Ni,k as

the set of robots known to robot i at a specific timestep, k.

We assume a general system model for the team of robots:

xi,k = g (xi,k−1,ui,k, εk) , ∀i ∈ N (2.1)

yj,ii,k = h (xi,k,xj,k, δk) , ∀i ∈ N, ∀j ∈ N, i 6= j, dj,ik ≤ robs (2.2)

where in this discrete-time system:

k represents the timestep

xi,k represents the state (pose) of robot i

ui,k represents the odometry information of robot i

g(·) is the state transition function

εk represents the process noise (we do not know the value of this quantity)

yj,ii,k represents the measurement (e.g., range/bearing) of robot j with respect to

robot i in robot i’s local reference frame

h(·) is the measurement function

δk is the measurement noise (we do not know the value of this quantity)

dj,ik is the distance between robot i and j

robs is the measurement range limit

Robots within the communication range limit, rcomm, of each other are able to ex-

change and relay information, which includes state estimates, odometry data, and mea-

surement data. To facilitate the mathematics presented later in this chapter, we will

define some additional notation that represent sets of information. Let

Xk = {xi,k|i ∈ N}

represent the set of all robot poses at timestep k. For robots belonging to a subset
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Q ⊆ N , let

XQ,k = {xi,k|i ∈ Q}

represent the set of robot poses at timestep k, for the robots in the subset. Similarly, let

Uk = {ui,k|i ∈ N}

represent the set of odometry information from all robots at timestep k, and let

UQ,k = {ui,k|i ∈ Q}

represent the set of odometry data at timestep k for all robots in subset Q. For mea-

surement information, let

Yk = {yj,ii,k|i ∈ N, j ∈ N, dj,ik ≤ robs}

represent the set of all relative measurements (made by all robots) at timestep k,

Yi,k = {yj,ii,k|j ∈ N, dj,ik ≤ robs}

represent the set of all relative measurements made by robot i at timestep k, and

YQ,k = {yj,ii,k|i ∈ Q, j ∈ N dj,ik ≤ robs}, Q ⊆ N

represent the set of relative measurements made by the robots in set Q at timestep k.

Finally, let Ri,k represent the set of robots that can exchange information with robot

i at time k. As illustrated in Fig. 2.1, we can define Ri,k with respect to a robot in

one of two ways. Let us consider the red robot in the figure as robot i. In the first

case, as shown in Fig. 2.1a, we assume that Ri,k is the set of robots with which robot

i is connected. In other words, robot i can communicate with robots within communi-

cation range, rcomm, and with other robots outside of its communication range by the

instantaneous relay of information through another robot. In the second case, as shown

in Fig. 2.1b, we assume that robot i can only exchange information strictly with other

robots within its communication range. Information relay is still possible, but additional

timesteps are required for the information to ‘hop’ between robots. For the decentralized

cooperative localization problem in this chapter, we will assume that only the first mode

of information exchange (i.e., Fig. 2.1a) applies. That is, a robot can communicate with

any robot with which it is connected. For subsequent chapters, when we examine the
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decentralized cooperative SLAM problem, we can assume either mode of communication.

The reason why we impose the first mode of communication for decentralized cooperative

localization is because this allows robots to not have to initially know the total number

of robots operating in the team. We will explain this in greater detail in Section 2.4.1.

Robot i 

Information can ‘hop’ 
through this link 

rcomm

(a) Communication mode 1. Ri,k is defined as
the set of robots (in the red patch) connected
to robot i.

Robot i 

Information ‘hopping’ 
is not allowed 

rcomm

(b) Communication mode 2. Ri,k defined as
the set of robots (in the red patch) within
communication range, rcomm, of robot i.

Figure 2.1: Illustrated examples of the two ways in which Ri,k can be defined. A black
line between two robots indicate that they are within communication range, rcomm.

2.2.2 The Probabilistic Framework

In the presence of uncertainty (i.e., noise) in both state transition and measurements

((2.1) and (2.2)), the true state of the system cannot be found exactly, but can only be

estimated using odometry and measurement data. In general, the centralized belief is

represented by a probability density function, p(·), over all robot states, Xk:

bel(Xk) := p (Xk|bel(X0), U1:k, Y1:k) ,

which is conditioned on the initial belief, bel(X0), past odometry data, U1:k, and past

measurements Y1:k. The notation k1 : k2 implies the time interval k1 to k2, inclusive.

It is important to note that this centralized belief accounts for all the information from

the initial timestep to the time of the state estimate (i.e., 0 to k). In our decentralized

approach, we will attempt to have every robot produce an equivalent estimate as the one

produced by the centralized estimator.

From a practical and computation point of view, it is helpful to apply the Markov
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property3 [76, 77]

p (Xk|bel(X0), U1:k, Y1:k) = p (Xk|bel(Xk−1), Uk, Yk)

when performing state estimation. This property is typically assumed to apply in dealing

with stochastic systems such as the one we have defined in (2.1) and (2.2). The assump-

tion is that the belief of the current state of a system is independent of all past states,

and that future estimates are only dependent on the current state estimate. Making use

of this assumption reduces computational requirements by allowing state estimation to

be performed recursively. For a centralized state estimator, this can be accomplished by

using the Bayes filter [76]:

bel(Xk) = p (Xk|bel(X0), U1:k, Y1:k)

= η p (Yk|Xk)

∫
p (Xk|Xk−1, Uk) p (Xk−1|bel(X0), U1:k−1, Y1:k−1) dXk−1

where η is a normalizing constant to ensure that the resulting posterior probability den-

sity function, bel(Xk), preserves the axiom of total probability (i.e., integrates to one).

Applying the Markov property when we have bel(Xk) allows us to replace previous es-

timates, bel(X0:k−1), odometry data, U1:k−1, and measurements, Y1:k−1, by the estimate

bel(Xk). Since these information are no longer needed, they can be safely discarded and

this helps to limit memory usage.

In a decentralized framework wherein robots are not always in contact with each

other, the Markov property can only be applied once a robot obtains sufficient informa-

tion regarding other robots through communication (i.e., a robot will rarely have the

most up-to-date information from all other robots due to the communication constraint).

Furthermore, each robot must ensure that other robots will no longer require any of the

past information it possesses (because the information will be discarded after applying

the Markov property). Hence, given that robots are only occasionally exchanging infor-

mation with each other, our key problem here is to determine the necessary and sufficient

conditions under which the Markov property can be applied in order to obtain an esti-

mate that is equivalent to that obtained by a centralized state estimator. Accordingly,

our objective is for each robot, i ∈ N , to estimate the state of all known robots (i.e., find

bel(Xk)) in a decentralized manner. We call this the centralized-equivalent approach.

3also referred to as the generalized causality principle
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2.3 Information Flow in a Dynamic Network

In the case of sporadic communication and observations, it is essential to track the

information available to each robot for making state estimates to ensure that:

1. a robot does not apply the Markov property without receiving all information

required to calculate the centralized state estimate, and

2. a robot does not re-use information and cause cyclic updates to occur.

3. out-of-sequence-measurements are accounted for in the correct temporal order.

A cyclic update is an event where the same piece of information is used multiple

times (double-counted) in calculating a state estimate. For instance, suppose a robot

communicates its state estimate to another robot, which uses the information to update

its own estimate, and communicates this updated estimate back to the first robot. If the

first robot now uses the updated estimate to perform another update of its own estimate,

then a cyclic update has occurred. A consequence of this is that the estimate will no

longer be equivalent to the centralized estimate. Furthermore, there is a high chance

that the estimate is now inconsistent4 (i.e., the estimate is over-confident) [36].

In a dynamic network, the sequence in which information is communicated to a robot

is often out of order, and this leads to the out-of-sequence measurements (OOSM) prob-

lem. Bar-Shalom [32], Bar-Shalom et al. [33] examined some possible remedies for treating

OOSM in state estimation using a Kalman filter (also known as the negative timestep

problem). It was shown that for a missed measurement, the only way to incorporate it

to produce a centralized state estimate is to sequentially reprocess all following measure-

ments. This is an important concept to note in this chapter.

A graph is a convenient tool for representing network topology. It not only allows us

to represent the communication network between robots at a given time instance, but also

over a time interval. This enables us to capture the dynamics of the network and keep

track of the flow of information between robots. We will first examine the robot network

from the perspective of an outside observer who has the ability to see all the interactions

between robots. This benefit of the global perspective (although unrealistic) allows us to

analyze how information flows through the network to all robots over time. We will then

look at the network locally (i.e., from the perspective of a particular robot) and analyze

when a robot is able to obtain the centralized-equivalent estimate (and when it becomes

appropriate for a robot to apply the Markov property). Without loss of generality, we

will assume for now that rcomm = robs, but this is only for explanation purposes. We

4Refer to [78] to learn more on estimator consistency.
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will revisit this assumption in a later section to show that the two do not need to be

equivalent.

2.3.1 The Global Perspective

Following our plan, we will first examine network dynamics from the perspective of an

outside observer, who has the benefit of seeing the communication linkages between all

robots at any timestep. Let Gk1:k2 be a directed graph that shows the communication

links established between robots from timestep k1 to k2. This graph can be used to

show the flow and distribution of information and we will refer to Gk1:k2 as the global

information flow graph. The number of nodes in Gk1:k2 is the product of the number of

robots and the number of timesteps represented by the graph. These nodes, v, can be

systematically numbered using the time index, k, and the robot index, i, such that

v(i, k) = (k − k1)|N |+ i, (k1 ≤ k ≤ k2) (1 ≤ i ≤ |N |) .

An example of an information flow graph is depicted in Fig. 2.2. In relation to the

system model, an arc connecting two robots at a timestep represents a measurement

between the two robots, and also a communication window that allows the exchange

of information between both robots (remember that we have temporarily assumed that

rcomm = robs). A horizontal arc represents information carried forward through time by a

robot. During state transitions, new odometry data become available, and can be passed

to other robots according to the graph. In general, the presence of an arc connecting

two nodes implies that all information at the originating node is also available at the

destination node. Furthermore, odometry and measurement information that are labelled

on the arcs making up the path in between are also available at the destination node.

As a robot traverses a workspace and occasionally observes and communicates with

other robots, it accumulates information regarding the entire team. The specific data in

its possession will depend on the evolving topology of the information flow graph. To

keep track of what a robot knows, let the knowledge set, Si,k, consist of all odometry and

measurement data, as well as the previous state estimates known to robot i at time k. We

will assume at the initial time that Si,0 = {bel(xi,0)}. It must be noted here that all the

initial beliefs are expressed in the same reference frame (or can be initially determined).

As such, we do not deal with the initial correspondence problem of determining the

relative transformations between the initial local reference frames on each robot. The

practical implication of this is that the robots either have to start in close proximity, or

the initial pose needs to be predetermined before deployment.
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Robot 1 

Robot 2 

Robot 3 

Time 

k = 4k = 0

u1,1 u1,2 u1,3 u1,4

u2,4

u3,4

u2,3

u3,3

u2,2

u3,2

u2,1

u3,1

y2,1
1,1,y

1,2
2,1,

y3,2
2,2,y

2,3
3,2,

y1,3
2,1,y

2,3
1,2,

Figure 2.2: An example global information flow graph, Gk1:k2 , where the edges indicate
how information from one robot reaches another robot between timesteps k1 and k2. The
presence of an arc connecting two nodes implies that all information at the originating
node is also available at the destination node. Odometry and measurement information
that are labeled on the arcs making up the path in between are also available at the
destination node.

At each timestep, the knowledge set expands with the addition of new odometry data

as well as measurement data if another robot is observed. Recall that Ri,k represents

the set of robots connected to robot i at time k. Let S−i,k represent the knowledge set

after state transition and observations, but before communication is established with any

other robot:

S−i,k = Si,k−1 ∪ {ui,k, Yi,k} (2.3)

When communication occurs between robots i and j, they will make their knowledge sets

available to each other, and the knowledge set of both robots will become identical. When

a robot has communicated with all robots within its communication range, its knowledge

set will become the union of its own knowledge set, and the knowledge sets of all other

robots within communication range as follows, where the ∪
j∈Ri,k

operator represents the

union with all the sets indexed by j:

Si,k = S−i,k ∪
j∈Ri,k

S−j,k (2.4)

The above equations model information flow within the robot network at every

timestep. With the progression of time, the knowledge set for each robot will con-
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tinue to expand, causing the information storage requirement to increase as well. If the

Markov property is not exploited in an estimator, the amount of data in each knowledge

set will increase over time without bound. In most centralized recursive state estimators,

we make use of the Markov property to reduce memory storage requirements. In our

decentralized state estimation problem, this must be done with extreme care to ensure

that all robots can also make the same centralized-equivalent estimate. For this purpose,

a checkpoint is defined as follows:

Definition 4: A checkpoint, C(kc, ke), is an event that occurs at the checkpoint time,

kc, that first comes into existence at ke, in which the set of knowledge for each robot i

contains for all j:

1. the previous state estimate of robot j at some timestep, ks,j ≤ kc,

2. all the odometry and measurement data of robot j from timestep ks,j to kc.

Equivalently, a checkpoint occurs at timestep kc when Si,ke ⊇ {Sj,kc |j ∈ N} , (∀i ∈ N).

Using Fig. 2.2 as an example, and assuming that each robot begins with Si,0 =

{bel(xi,0)}, one of the checkpoints that can be found in this figure is C(1, 3). It can be

verified that at k = 3 (i.e., ke), each robot has the previous state estimate of all robots

(at k = 0). Also, each robot has the odometry and measurement data of all robots up

to k = 1 (i.e., kc).

By its definition, the existence of a checkpoint is a necessary and sufficient condition

for obtaining the centralized-equivalent estimate. Note that there exist other sufficient

conditions for obtaining the centralized-equivalent estimate. For instance, having only

two robots in the team that follow (2.3) and (2.4) for knowledge set exchange is a suffi-

cient condition. A fully connected network also allows robots to obtain the centralized-

equivalent estimate at all times. Furthermore, having a fixed communication pattern

between robots may also be a sufficient condition (although this is not investigated ex-

plicitly). Our notion of a checkpoint encompasses all the scenarios above. That is, a

checkpoint exists for all the conditions listed above. More importantly, the existence of a

checkpoint is a necessary and sufficient condition for obtaining the centralized-equivalent

estimate for any arbitrary number of robots, when the network is never fully connected,

and when communication does not occur in any predictable pattern.

The existence of a checkpoint allows for the application of the Markov property (with-

out concern of another robot not having adequate information to perform the same task).

In applying the Markov property, old state estimates, odometry, and measurement data

up to kc, will be replaced by a new centralized-equivalent estimate at kc.
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To make use of a checkpoint, it is first necessary to detect its existence. According

to the definition of a checkpoint, we need to show that the knowledge set of each robot

at timestep ke contains the state estimate for all robots at a timestep ks,j, as well as the

odometry and measurement data for all robots from timestep ks,j to kc. Note that from

(2.3) and (2.4), a property of knowledge sets is that

Si,k1 ⊆ Si,k2 (k1 ≤ k2),

provided that the Markov property is not applied between k1 and k2. This property

guarantees that all information is retained as the knowledge set of a robot accumulates

information over time. By this argument, the knowledge set of a robot must always con-

tain its previous state estimate, all its previous odometry data, as well as measurements.

That is, if the Markov property is not applied,

bel(xi,ks) ∈ Si,ks ⇒ bel(xi,ks) ∈ Si,k, (k ≥ ks),

ui,k ∈ Si,k ⇒ ui,k ∈ Si,kc , (kc ≥ k),

yi,k ∈ Si,k ⇒ yi,k ∈ Si,kc , (kc ≥ k).

The following is a theorem for showing checkpoint existence given an information flow

graph.

Theorem 1.1: C(kc, ke) exists if and only if a path exists from v(i, kc) to v(j, ke) on

Gkc,ke , (∀i, j).

Proof. We will first assume that C(kc, ke) exists. This implies that all odometry, mea-

surements and state estimates from all robots at kc are in the knowledge sets of all robots

at ke. This is only possible if there exists an information flow path from v(i, kc) to v(j, ke),

(∀i, j).
Now we will assume that a path exists from v(i, kc) to v(j, ke), (∀i, j). By the knowl-

edge set update rules, all odometry, measurements and state estimates from all robots

at kc will become incorporated into the knowledge sets of all robots at ke. Therefore,

C(kc, ke) exists.

The necessary and sufficient conditions of Theorem 1.1 provide a method for verifying

checkpoint existence (an indication of when the Markov property is applicable) given an

information flow graph. However, there needs to be a more practical verification method
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for checkpoint existence for implementation purposes (that does not first require the

construction of a graph). Before showing this, we need to introduce a lemma. Referring

to Fig. 2.3, the lemma states that in the interval between the occurrence and existence

time of one checkpoint (i.e., kc1 and ke1), another checkpoint cannot come into existence.

Hence, information in knowledge sets within this interval cannot be replaced by state

estimates since we know (for now) that the Markov property can only be applied at a

checkpoint.

Robot 1 

Robot 2 

Robot 3 

kc1
kc2

ke2
ke1

Figure 2.3: The existence times for sequential checkpoints; checkpoint C(kc2 , ke2) can-
not come into existence before an earlier occurring checkpoint C(kc1 , ke1) comes into
existence. Hence, ke1 must be less than ke2 since kc1 is less than kc2 .

Lemma 1.1: Suppose C(kc1 , ke1) and C(kc2 , ke2) exist, and ke1 6= ke2 . Then kc1 < kc2 if

and only if ke1 < ke2 .

Proof. We will use the information flow graph as an aid in this proof. Furthermore, the

notation v1
path−→ v2 will be used to denote that a path exists from node v1 to node v2. We

will show that there is a violation in the existence of a checkpoint if the necessary and

sufficient conditions are not followed. More formally, first let us assume that kc1 < kc2 .

kc1 < kc2

⇒ v(i, kc1)
path−→ v(i, kc2)

path−→ v(j, ke2), (∀i, j)
⇒ v(i, kc1)

path−→ v(j, k), (∀i, j)(ke1 ≤ k < ke2)

⇒ ke1 < ke2

To explain in greater detail, we know that a robot always carries its knowledge forward

in time (from kc1 to kc2), and that C(kc2 , ke2) exists. Therefore, there must exist a path for

information flow between all robots from kc1 to ke2 . Next, we also know that C(kc1 , ke1)
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exists, and so there must exist a path for information flow between all robots from kc1

to ke1 . Since, by definition of a checkpoint, ke1 is the earliest existence time, this implies

that ke1 must be less than ke2 . This completes the first half of the proof. Now let us

assume that ke1 < ke2 .

ke1 < ke2

⇒ v(i, kc1)
path−→ v(j, ke1)

path−→ v(j, ke2), (∀i, j)
⇒ v(i, k)

path−→ v(j, ke2), (∀i, j)(kc1 < k ≤ kc2)

⇒ kc1 < kc2

Given that C(kc1 , ke1) exists, and with the assumption that ke1 < ke2 , there must exist

a path for information flow between all robots from kc1 to ke2 . Knowing that C(kc2 , ke2)

exists, there must exist a path for information flow between all robots from k to ke2 ,

where k can be less than or equal to kc2 . However, k must be greater than kc1 or else the

earliest existence time of the checkpoint will no longer be ke2 . Therefore kc1 < kc2 .

Note that in the above lemma statement, we specified different existence times (ke1

and ke2) for the two checkpoints. If these times were the same, it would imply that all

robots can simultaneously obtain the centralized-equivalent for two occurrence times. In

this situation, the checkpoint that occurs earlier becomes irrelevant because being able to

calculate the centralized-equivalent estimate at a later timestep guarantees that we can

calculate, or have already calculated the centralized-equivalent estimate for the earlier

occurrence time.

Using the above lemma, we now present a theorem that gives a more practical method

for verifying the existence of a checkpoint for implementation purposes. We will show

that it is possible to know when a checkpoint exists by looking for a subset of odometry

information in the knowledge set of each robot.

Theorem 1.2: C(kc, ke) exists if and only if the knowledge set of each robot at ke

contains {(uj,kc or bel(Xj,kc)) |j ∈ N} , (∀i ∈ N).

Proof. Expressed mathematically the theorem statement is:

Si,ke ⊇ {Sj,kc |j ∈ N} , (∀i ∈ N)⇔ Si,ke ⊇ {(uj,kc or bel(Xj,kc)) |j ∈ N} , (∀i ∈ N)
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We will approach this proof by first assuming that C(kc, ke) exists:

Si,ke ⊇ {Sj,kc |j ∈ N} , (∀i ∈ N)

⇒ Si,ke ⊇
{ {

bel(Xj,ks,j), Yj,ks,j+1:kc ,uj,ks,j+1:kc|j ∈ N
}
, (∀i ∈ N) if (ks,j < kc){

bel(Xj,ks,j)|j ∈ N
}
, (∀i ∈ N) if (ks,j = kc)

⇒ Si,ke ⊇ {(uj,kc or bel(Xj,kc)) |j ∈ N} , (∀i ∈ N)

From Si,ke ⊇ Sj,kc , we expand Sj,kc(∀j) to show the information that can be found in the

knowledge sets depending on whether ks,j (the time of the latest belief for robot j) is less

than kc or equal to kc. Then we show that either uj,kc or bel(Xj,kc) for all robots j will

always be available.

Now assuming that the knowledge set of each robot at ke contains uj,kc or bel(xj,kc):

Si,ke ⊇ {(uj,kc or bel(Xj,kc)) |j ∈ N} , (∀i ∈ N)

⇒ Si,ke ⊇ {Sj,k|j ∈ N} , (∀i ∈ N)(kc ≤ k ≤ ke),

⇒ Si,ke ⊇ {Sj,kc |j ∈ N} , (∀i ∈ N).

According to the knowledge set update rules, all the information from a robot is commu-

nicated to another robot that is within communication range. This implies that having

one piece of information at a particular timestep from a robot is a sufficient condition

for having all the information at the same timestep from the same robot. It follows

then in line 2 above that since odometry data and the belief at kc from all robots j are

available, then Sj,k must also be available for all robots j, where kc ≤ k ≤ ke. Further-

more, we know that the knowledge set of a robot will always contain its past knowledge

set, provided the Markov property has not been applied. We are certain of this because

Lemma 1.1 indicates that another checkpoint cannot come into existence between kc and

ke. Therefore the Markov property can never be applied within this timeframe.

We have just shown how every robot in a robot team can obtain the centralized-

equivalent estimate and apply the Markov property while operating in a network that is

never fully connected.

Up to this point, we have defined how information is exchanged between robots when

they are within communication range. We have also defined the condition that allows

us to determine when all robots have adequate information in their knowledge sets to

calculate the centralized-equivalent estimate. This can be done graphically using the
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information flow graph, or by searching the knowledge set for a subset of odometry infor-

mation. However, recall that we have been examining the network from the perspective of

an outside observer who is able to see all the communication linkages established between

all robots, at every timestep. In terms of implementation, having such an overseer would

defeat the purpose of utilizing a decentralized approach because it would be analogous to

having a centralized agent commanding each robot what to do. In the next part, we will

break away from the luxury of having an overseer, and look at network topology from

the perspective of a single robot.

2.3.2 The Local Perspective

Previously, we have shown a global information flow graph in Fig. 2.2, which represents

the interactions of all robots as viewed by an outside observer. In relation to this, the

graph topology from the point of view of an individual robot will differ as illustrated in

Fig. 2.4.

From a robot’s point of view, it may not be aware of communication events between

other robots until a much later time. This leads to the question of whether or not it

is necessary for a robot to know the complete knowledge set of all other robots (i.e.,

determine that a checkpoint exists) before it can calculate the centralized-equivalent

estimate and safely apply the Markov property without affecting other robots’ abilities

to do the same. It turns out that we do not. To show this, we present the definition of

a partial checkpoint, and a theorem for its existence.

Definition 5: A partial checkpoint, Cp(kc,i, ke,i), is an event that occurs for robot i at

time kc,i, that first comes into existence at ke,i, in which the set of knowledge for robot i

contains for all j:

1. the previous state estimate of robot j at some timestep, ks,j ≤ kc,i,

2. all the odometry and measurement data of robot j from timestep ks,j to kc,i.

Equivalently written in symbols, a partial checkpoint for robot i occurs at timestep kc,i

when Si,ke ⊇ {Sj,kc |j ∈ N}.

Notice that the difference between a partial checkpoint and a checkpoint is that we

are now looking at the knowledge set of only one robot. As with checkpoints, we have

a number of theoretical statements for partial checkpoints’ existence. These statements

(and proofs) are largely similar to Theorem 1.1, Lemma 1.1 and Theorem 1.2.
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Robot 1 

Robot 2 

Robot 3 

k = 1 k = 2 k = 3k = 0 k = 4

(a) The global information flow graph

Robot 1 

Robot 2 

Robot 3 

k = 1 k = 2 k = 3k = 0 k = 4

(b) At k=1, robot 3 is unaware of the interaction between robot 1 and
robot 2.

Robot 1 

Robot 2 

Robot 3 

k = 1 k = 2 k = 3k = 0 k = 4

(c) At k=2, robot 3 is now aware of the previous communication be-
tween robot 1 and robot 2 from timestep 1.

Robot 1 

Robot 2 

Robot 3 

k = 1 k = 2 k = 3k = 0 k = 4

(d) At k=3, robot 3 is unaware of the interaction between robot 1 and
robot 2.

Figure 2.4: Information flow in the perspective of a robot (Robot 3).
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Theorem 2.1: For robot i, Cp(kc,i, ke,i) exists if and only if a path exists from v(j, kc,i)

to v(i, ke,i) on Gkc,ke , (∀j).

Proof. We will first assume that Cp(kc,i, ke,i) exists. This implies that all odometry,

measurements and state estimates from all robots at kc,i are in the knowledge sets of

robots i at ke,i. Clearly, this is only possible if there exists an information flow path

between v(i, kc) to v(j, ke), (∀j).
Next we assume that a path exists between v(i, kc) to v(j, ke), (∀j). By the knowledge

set update rules, all odometry, measurements and state estimates from all robots at kc,i

will become incorporated into the knowledge sets of robot i at ke,i. Therefore, Cp(kc,i, ke,i)

exists.

Lemma 2.1: Suppose Cp(kc1,i, ke1,i) and Cp(kc2,i, ke2,i) exist, and ke1,i 6= ke2,i. Then

kc1,i < kc2,i if and only if ke1,i < ke2,i.

Proof. First let us assume that kc1,i < kc2,i.

kc1,i < kc2,i

⇒ v(i, kc1,i)
path−→ v(i, kc2,i)

path−→ v(j, ke2,i), (∀j)
⇒ v(i, kc1,i)

path−→ v(j, k), (∀j)(ke1,i ≤ k < ke2,i)

⇒ ke1,i < ke2,i

Now let us assume that ke1,i < ke2,i.

ke1,i < ke2,i

⇒ v(i, kc1,i)
path−→ v(j, ke1,i)

path−→ v(j, ke2,i), (∀j)
⇒ v(i, k)

path−→ v(j, ke2,i), (∀j)(kc1 < k ≤ kc2,i)

⇒ kc1,i < kc2,i

Therefore, kc1,i < kc2,i if and only if ke1,i < ke2,i. For further justification of this proof, one

can refer back to the proof of Lemma 1.1, which provides a similar argument structure.

Theorem 2.2: Cp(kc,i, ke,i) exists if and only if the knowledge set of robot i at ke contains{(
uj,kc,i or bel(Xj,kc,i)

)
|j ∈ N

}
.
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Proof. Expressed mathematically, the theorem states that:

Si,ke,i ⊇
{
Sj,kc,i |j ∈ N

}
⇔ Si,ke,i ⊇

{(
uj,kc,i or bel(Xj,kc,i)

)
|j ∈ N

}
Assume that Cp(kc,i, ke,i) exists:

Si,ke,i ⊇ Sj,kc,i , (∀j)

⇒ Si,ke,i ⊇
{ {

bel(Xj,ks,j), Yj,ks,j+1:kc,iuj,ks,j+1:kc,i |j ∈ N
}
, if (ks,j < kc,i){

bel(Xj,ks,j)|j ∈ N
}
, if (ks,j = kc,i)

⇒ Si,ke,i ⊇
{(

uj,kc,i or bel(Xj,kc,i)
)
|j ∈ N

}
Now assuming that the knowledge set of each robot at ke,i contains uj,kc,i or bel(Xj,kc,i):

Si,ke,i ⊇
{(

uj,kc,i or bel(Xj,kc,i)
)
|j ∈ N

}
⇒ Si,ke,i ⊇ {Sj,k|j ∈ N}), (kc,i ≤ k ≤ ke,i)

⇒ Si,ke,i ⊇
{
Sj,kc,i|j ∈ N

}
Therefore, Si,ke,i ⊇

{
Sj,kc,i|j ∈ N

}
⇔ Si,ke,i ⊇

{(
uj,kc,i or bel(Xj,kc,i)

)
|j ∈ N

}
Similarly to Theorem 1.2, Theorem 2.2 is important as it provides a practical method

for detecting partial checkpoint existence. Note that a partial checkpoint can come into

existence at different times for different robots depending on the evolving topology of the

robot network. The question that remains to be answered is whether a robot’s decision

to obtain a centralized-equivalent estimate and apply the Markov property (based on

local information) affects other robots’ abilities to do the same. To answer this, we

now present a lemma, and two important theorems that relate partial checkpoints to

checkpoints, to show how the occurrences of these events are affected when the Markov

property is applied:

Lemma 3.1: C(kc, ke) exists if and only if Cp(kc,i, ke,i) exists, (∀i ∈ N), with (kc,i = kc)

and (ke,i ≤ ke).

Proof. The underlying message in this lemma is that when all robots individually detect

a partial checkpoint that occurs at the same timestep, then a checkpoint exists. The

approach to this proof is to use the definitions of a checkpoint and a partial checkpoint.

We will show that when the knowledge set of each robot satisfies the condition for partial

checkpoint existence for timestep kc, then we also satisfy the condition for checkpoint

existence for timestep kc.
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First, assume C(kc, ke) exists:

C(kc, ke) exists

⇒ Si,ke ⊇ {Sj,kc|j ∈ N} , (∀i ∈ N)

⇒ (∃ke,i ≤ ke) such that, Si,ke,i ⊇ {Sj,kc|j inN} , (∀i ∈ N)

⇒ (∃ke,i ≤ ke) such that, Si,ke,i ⊇
{
Sj,kc,i|j ∈ N

}
, (∀i ∈ N)(kc,i = kc)

⇒ Cp(kc,i, ke,i) exists, (∀i)(kc,i = kc)(ke,i ≤ ke)

We rewrite the expression of a checkpoint existence using the knowledge set notation.

Note that Sj,kc , (∀j) is available to all robots at earliest timestep ke, but it is possible for

individual robots to obtain this at an earlier time ke,i. We then substitute the timestep

variable kc by kc,i. Finally, we use the definition of a partial checkpoint to conclude that

a partial checkpoint (that occurs at the same time) exists for all robots. Now we will

assume Cp(kc,i, ke,i) exists, (∀i), with (kc,i = kc) and (ke,i ≤ ke):

Cp(kc,i, ke,i) exists, (∀i)(kc,i = kc)(ke,i ≤ ke)

⇒ Si,ke,i ⊇
{
Sj,kc,i|j ∈ N

}
, (∀i ∈ N)(kc,i = kc)(ke,i ≤ ke)

⇒ Si,ke ⊇ {Sj,kc|j ∈ N} , (∀i ∈ N)

⇒ C(kc, ke) exists

We first use the definition of a partial checkpoint to express its existence using knowledge

sets. Next, we note that Si,ke is a superset of Si,ke,i since ke,i ≤ ke. We then substitute

the timestep variable kc,i with kc, and use the definition of a checkpoint to conclude its

existence.

Using this Lemma 3.1, we can be sure that when partial checkpoints (that occur at

the same time kc,i for all robots) exist, then a checkpoint also exists (with kc = kc,i, (∀i)).
This will be used in the next theorem, which is the most important theorem of this

chapter. It tells us that a robot’s decision to apply the Markov property (based only on

local information) does not affect other robots’ abilities to do the same.

Theorem 3.1: Suppose the checkpoint C(kc, ke) exists, and robot m applies the Markov

property when Cp(kc, ke,m) exists (i.e., at ke,m). Then Cp(kc, ke,i) continues to exist, (∀i).

Proof. We approach this proof by examining the knowledge set of each robot and the

changes caused by applying the Markov property. We then verify that partial checkpoints
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continue to exist for all robots.

When a checkpoint exists, and before the Markov property is applied by robot m, the

knowledge sets of all robots i contain the belief at some previous time, ks,j, for all robots

j, as well as odometry and measurements up to kc:

C(kc, ke) exists

⇒ Cp(kc, ke,i) exists, (∀i)
⇒ Si,ke,i ⊇ {Sj,kc|j ∈ N} , (∀i ∈ N)

⇒ Si,ke,i ⊇
{ {

bel(xj,ks,j),uj,ks,j+1:kc , Yj,ks,j+1:kc |j ∈ N
}
, (∀i ∈ N) if (ks,j < kc){

bel(xj,ks,j)|j ∈ N
}
, (∀i ∈ N) if (ks,j = kc)

It is of interest to know how the knowledge sets of robots that are receiving information

from robot m will change once robot m applies the Markov property. Again using
path−→

to denote the existence of a path on the information flow graph, let

Q =

{
all robots i

∣∣∣∣v(m, ke,m)
path−→ v(i, ke,i)

}
.

and Q = N − Q. Now if we suppose that robot m has applied the Markov property at

ke,m, then Sm,ke,m ⊇ {bel(xj, kc)|j ∈ N}. Furthermore, all robots in Q will also obtain

this belief in their knowledge set:

Si,ke,i ⊇


{bel(xj,kc)|j ∈ Q}{
bel(xj,ks,j),uj,ks,j+1:kc , Yj,ks,j+1:kc|j ∈ Q

}
, if (ks,j < kc){

bel(xj,ks,j)|j ∈ Q
}
, if (ks,j = kc)

∀i ∈ N

⇒ Si,ke,i ⊇ {Sj,kc |j ∈ N} , (∀i ∈ N)

⇒ Cp(kc, ke,i) exists, (∀i ∈ N)

For robots in Q, their knowledge sets will remain unaffected and contain the same in-

formation as before the Markov property was applied by robot m. Regardless, each of

the three cases for Si,ke,i shown above allows us to conclude that by definition, a partial

checkpoint exists for all robots i. Fig.2.5 is an illustration of this theorem.

The implication of Theorem 3.1 is significant because we are now certain that a robot’s

decision to invoke the Markov property as soon as its partial checkpoint exists (and based

on its own knowledge) will have no effect on the other robots’ abilities to obtain a partial

checkpoint (that occurs for the same timestep, kc). This implies that all robots will only
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Robot 1 

Robot 2 

Robot 3 

Robot 4 

Robot 5 

Markov property applied 

kc ke,2, ke,4 ke,1, ke,5 ke,3, ke

Figure 2.5: An illustration of Theorem 3.1. C(kc, ke) exists, and robot 2 applies the
Markov property at ke2 when Cp(kc, ke2) exists. The set of robots in Q are robots 2 and
3 (i.e., the nodes connected by the dashed edges) and they will obtain bel(Xkc), which is
calculated by robot 2 at ke,2. Note that robot 4 is not in Q because robot 2 obtains the
centralized-equivalent estimate and applies the Markov property after communication
with robot 4.

need to consider their local knowledge when applying the Markov property.

A point worth noting is that some robots do not actually have to perform any calcu-

lations in obtaining a centralized-equivalent estimate. In Theorem 3.1, we grouped these

robots into the set Q. Except for robot 2, which invoked the Markov property, other

robots within this set do not need to perform any calculations because the centralized-

equivalent estimate has already been calculated by another robot (m), and is simply

communicated to them. Therefore, there is no point in performing a redundant calcula-

tion for the same centralized-equivalent estimate. This suggests that with a decentralized

approach, the amount of computation required is less than the amount required to run

a centralized estimator on each robot. However, the difference will depend on how the

network topology evolves over time. We will now conclude this section with the following

theorem, which tells us that if all robots apply the Markov property whenever possi-
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ble based on their local knowledge, all robots are still guaranteed to be able to obtain

centralized-equivalent estimates.

Theorem 3.2: Suppose that (∀i), robot i applies the Markov property when Cp(kc,i, ke,i)

exists. Then (∀C(kc, ke)), Si,ke,i ⊇ {bel(Xkc)}, (∀i) where ke,i ≤ ke and bel(Xkc) is the

centralized state estimate.

Proof. When a checkpoint exists, we know according to Lemma 3.1 that partial check-

points occurring at the same time also exist for all robots. We also know from Theorem

3.2 that regardless of when the Markov property is applied by each robot, partial check-

points will always exists for all robots. Therefore, all robots are able to apply the Markov

property in any order. Hence, the following mathematical statements are true before and

after the Markov property is applied by all robots:

(∀C(kc, ke)), Cp(kc, ke,i) exists, (∀i)(ke,i ≤ ke)

⇒ (∀C(kc, ke)) , Si,ke,i ⊇ {bel(Xkc), (∀i)(ke,i ≤ ke)}

When robot i applies the Markov property at ke,i, the centralized state estimate will

replace the equivalent information in its knowledge set (up to time kc). When all robots

have applied the Markov property, all robots will have the centralized state estimate.

Furthermore, this will occur at ke = max
i
ke,i.

With the above theorem, we are certain that robots can apply the Markov property

based on local knowledge without affecting the ability for others to do so. It also confirms

that all robots are able to obtain the centralized-equivalent state estimate at their partial

checkpoint existence times even if each robot applies the Markov property whenever

possible. Furthermore, we have shown that in having each robot obtain the centralized-

equivalent estimate in a decentralized fashion, an outside observer (the overseer) is an

unnecessary entity.

At this point, it may be useful to review how we arrived at Theorem 3.2. Referring

to Fig. 2.6, we first looked at our problem of cooperative localization in a dynamic

network from the perspective of an outside observer. We introduced the concept of a

checkpoint in Definition 4, followed by Theorem 1.1, Lemma 1.1, and Theorem 1.2 for

detecting the existence of a checkpoint. Next, we looked at the problem from the local

perspective of a robot. We introduced the concept of a partial checkpoint in Definition 5,

followed by Theorem 2.1, Lemma 2.1, and Theorem 2.2 for detecting the existence of a

partial checkpoint. We then related partial checkpoints to checkpoints in Lemma 3.1,
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and used this to show in Theorem 3.1 that a robot’s decision to invoke the Markov

property does not affect other robots’ abilities to do the same. Finally, this leads to

Theorem 3.2, which shows that all robots can obtain a centralized-equivalent estimate

(at certain times with latency dependent on the communication network topology) if

they apply the Markov property whenever possible. Note that in Fig. 2.6, there is one

additional theorem that we have not yet introduced. This theorem deals with the initial

knowledge of robots necessary to guarantee that the centralized-equivalent estimate is

obtainable by all robots, and will be presented in Section 2.4.

Definition 1
 Checkpoint

Theorem 1.1
 Checkpoint Existence (graph approach)

Lemma 1.1
 Occurrences of Checkpoints

Theorem 1.2
 Checkpoint Existence (set approach)

Lemma 3.1
 Relating Checkpoints and Partial Checkpoints

Definition 2
 Partial Checkpoint

Theorem 2.1
 Partial Checkpoint Existence (graph approach)

Lemma 2.1
 Occurrences of Partial Checkpoints

Theorem 2.2
 Partial Checkpoint Existence (set approach)

Theorem 3.3
 Dectection of partial checkpoints

 for robot subgroups in
 decentralized cooperative localization

Theorem 3.1
 Effect of Applying the Markov Property

Theorem 3.2
 All Robots can obtain the Centralized-Equivalent Estimate

Figure 2.6: A graphical summary of the relationship between theorems in this chapter.

Previously, we have indicated that performing state estimation in a dynamic network

requires careful consideration in applying the Markov property, to avoid cyclic updates,

and proper processing of OOSMs. We have already shown that each robot should apply

the Markov property whenever possible. In terms of cyclic updates, we can be sure that

this will never occur in the centralized-equivalent approach because: (a) the knowledge

set update rules ensure that there are no repeating data in a knowledge set, and (b) each

robot will know whether an estimate is equivalent to the centralized estimate (which is

never updated again). In terms of dealing with OOSMs, we only need to ensure that all

information in a knowledge set is processed in the order in which it is produced to avoid
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this problem. These important results will be used to develop our decentralized state

estimation algorithm.

Communication and Measurement Ranges

Up to this point, we have assumed that rcomm = robs, and implicitly assumed that com-

munication and measurements are bi-directional. The applicability of the theorems pre-

sented remains the same regardless of whether communication range is different from

measurement range, and whether they are uni-directional or bi-directional. This is be-

cause using Theorem 2.1 or 2.2, we ensure that each robot will apply the Markov property

if and only if it has all the information necessary to calculate the centralized-equivalent

estimate at the partial checkpoint occurrence time. Fig. 2.7 is an example illustrating

this fact. In case 1, rcomm = robs as we have previously assumed. Using the theorems

that we have developed, robots 2 and 3 will both find Cp(1, 2), then robots 1 and 2 will

find Cp(2, 3). Lastly, robot 2 will find Cp(3, 4). In all partial checkpoint instances, it

can be verified that all robots have gathered the required information to calculate the

centralized estimate regardless of whether communication and measurements occur uni-

directionally or bi-directionally. In case 2 (rcomm > robs), most of the measurements seen

from the previous case do not occur. Still, all partial checkpoint instances are identical

to case 1, and it can be again verified that the centralized estimates can be calculated at

partial checkpoint occurrence times. In case 3 (rcomm < robs), most of the communication

instances seen from case 1 do not occur, and it is not possible for robots 1 and 3 to

calculate the centralized estimate at the timesteps shown. Cp(1, 4) is the only partial

checkpoint that occurs for robot 2, which is the same conclusion that Theorems 2.1 or

2.2 will provide when they are applied.

2.4 Applying the Theory

The theoretical development in the previous section provides the basis for developing

our decentralized state estimation algorithm. We will first discuss the topic of initial

knowledge, and show one of the scalable aspects of our method. This is followed by

the detailed explanation of our decentralized state estimation algorithm, and examine

computational complexity.
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Figure 2.7: The red dashed edges indicate measurements between robots in the above
figures. Even when communication and measurement ranges are different, or uni-
directional, Theorems 2.1 or 2.2 (detection of a partial checkpoint) allows us to correctly
determine when each robot can apply the Markov property to obtain the centralized state
estimate.
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2.4.1 Initial Knowledge of Robots

For a system of robots, we have assumed that each robot initially only has a belief for

its own state. Hence, each robot is only aware of its own existence, and a robot will

only know of the existence of another robot at first contact (i.e., when communication

or a measurement is made between the robots). Correlation between beliefs of two

robots is generated through relative measurements (recall we are assuming that there

are no landmarks for the moment). When the beliefs over all robots are correlated, any

odometry and measurement data for a single robot will not only influence the belief over

the individual robot’s state, but also the belief over all robot states. It is precisely this

reason why there is the need for the notion of a checkpoint, so that all odometry and

measurement data are accounted for to produce a centralized-equivalent estimate in a

decentralized manner.

Due to the independence of beliefs before an encounter, individual (or a group of)

robots can be treated as independent subsystems. In other words, the system of all

robots can be decoupled into smaller subsystems, and into |N | subsystems (of individual

robots) at the initial timestep.

Suppose Q1 and Q2 are two sets of robots that have never encountered each other

before, and let bel(XQ1,k) and bel(XQ2,k) represent the beliefs over the states of the two

groups, respectively. Before accounting for any measurements between the two groups,

statistical independence allows the state estimate for the combined system to be written

as [79]:

bel(XQ1,k, XQ2,k) = bel(XQ1,k)bel(XQ2,k) (2.5)

To implement this, we will always combine state estimates made at the same timestep if

they are found within a knowledge set using (2.5). Measurements can then be processed

to couple and update the states in the combined state estimate. This seemingly simple

process contributes to the scalability of our decentralized state estimation algorithm, in

the sense that it is unnecessary for each robot to initially know how many robots there

are. However, this is only possible when communication is bi-directional and when the

communication range limit is greater than or equal to the measurement range limit (i.e.,

the coupling of state estimates is detectable). Otherwise, each robot will initially need

to know the total number of robots in the team. To formalize this, we have the following

theorem. We will assume that a robot knows of another robot’s existence if its knowledge

set contains any information (odometry or measurement) related to that robot.
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Theorem 3.3: Assume that rcomm ≥ robs and that robots do not initially know the

total number of robots in the team. In decentralized cooperative localization, if robot i

detects Cp(kc,i, ke,i) based on robots known to it, Ni,ke,i , and applies the Markov Property

when the partial checkpoint exists, then robot i is guaranteed to obtain the centralized-

equivalent estimate for all robots when it knows of the existence of all robots.

Proof. For this proof, we want to show that robot i’s estimate of robots known to itself is

always independent of the estimate of robots not known to it. This allows us to combine

these estimates at any time as shown in (2.5). Assume that j ∈ Ni,km , meaning that

robot j is known to robot i at some timestep km (e.g., the time of a measurement). We

need to consider two scenarios: a) what happens when robot j obtains a measurement

of any other robot, n, and b) what happens when robot j is measured by another robot,

n. Dealing with the former case first, assume that yn,jj,km exists.

yn,jj,km exists

⇒ yn,jj,km ∈ S
−
j,km

⇒ yn,jj,km ∈ Sj,km
⇒ n ∈ Nj,k, k ≥ km

The result above basically shows that if robot j measures another robot, it will know of

its existence, which is always expected. Now if a partial checkpoint that occurs at km

exists for robot i (i.e., Cp(km, ke,i) exists), then it follows that:

⇒ yn,jj,km ∈ Sj,km
⇒ yn,jj,km ∈ Si,ke,i
⇒ n ∈ Ni,ke,i

Therefore, for any robot n that is measured by a robot j, which is known to exist to

robot i, robot n’s existence will also be known to robot i when it produces a centralized-

equivalent estimate for the timestep, km, at which robot n was first observed.

Next we want to consider the latter case when a robot known to robot i (i.e., j ∈ Ni)

is measured by another robot, n, at timestep km. Assume that yj,nn,km exists.

yj,nn,km exists

⇒ yj,nn,km ∈ S
−
n,km

⇒ yj,nn,km ∈ Sj,km
⇒ n ∈ Nj,k, k ≥ km
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Robot j knows about any measurements made of it because we have assumed that rcomm ≥
robs. So if robot n measures j, robot n will communicate the measurement to robot j.

Now if we consider the existence of a partial checkpoint that occurs at km for robot i

(i.e., Cp(km, ke,i) exists), then it follows that:

⇒ yj,nn,km ∈ Sj,km
⇒ yj,nn,km ∈ Si,ke,i
⇒ n ∈ Ni,ke,i

Therefore, for any robot n that makes a measurement of robot j, which is known to

exist to robot i, robot n’s existence will also be known to robot i when it produces a

centralized-equivalent estimate for the timestep, km, at which robot n measured robot j.

Finally, since all measurements made by robots in Ni and made to robots in Ni are

known to robot i, it can produce a centralized-equivalent estimate for the robots in Ni

that is statistically independent from the estimate of robots not in Ni (i.e., all the robots

in Ni). Mathematically, when a partial checkpoint, Cp(kc,i, ke,i), exists.

(
∀yn,jj,km ∈ Si,ke,i

) (
∀yj,nn,km ∈ Sj,ke,i

)
, {n, j} ∈ Ni

⇒ bel
(
XNi,kc,i , XNi,kc,i

)
= bel

(
XNi,kc,i

)
bel
(
XNi,kc,i

)
In conclusion, the centralized-equivalent estimate for all robots can always be recovered

by robot i (if it is given the estimate for the robots in Ni), using (2.5).

It is of interest to note that in the case where rcomm < robs, we can not guarantee

that measurements made on robots known to robot i (i.e., robot j ∈ Ni) will be known

by robot i. In this case, we cannot guarantee that the centralized-equivalent estimate

is recoverable by robot i. In other words, we cannot guarantee that bel
(
XNi,kc,i

)
and

bel
(
XNi,kc,i

)
are statistically independent. In this case, it would be necessary for robot i

to initially know the total number of robots in the team, so that partial checkpoints are

detected based on the knowledge of all robots.

2.4.2 The Decentralized Cooperative Localization Algorithm

Algorithm 1 is designed to perform decentralized state estimation in a scalable manner

and is guaranteed to work in a dynamic mobile robot network wherein connectivity

between all robots is not guaranteed. The same algorithm is implemented on each robot

and iterates every timestep. The required inputs are:
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k, the current timestep k

ui,k, odometry data

Yi,k, measurements

Si,k−1, the latest knowledge set

Sj,k (∀j ∈ Ri,k), the knowledge sets of all robots connected to robot i

Fig. 2.8 is a graphical overview of the algorithm. Each robot first updates its knowledge

set with the current odometry and measurements. If other robots are within commu-

nication range, new information from other robots are appended to the knowledge set.

Within this updated knowledge set, we apply Theorem 2.2 to detect partial checkpoints

and apply the Markov property at the partial checkpoint time if possible. Lastly, the

current state estimate is generated. Essentially, each robot is running its own central-

ized state estimator on the available information from the partial checkpoint occurrence

timestep to the current timestep. This estimate is temporary until a partial checkpoint

that exists at the current time exists.

Note that in most cases, it is not possible to reuse the current state estimate at a

later time to generate the centralized state estimate for the same timestep. This is due

to the OOSM problem.
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)

Figure 2.8: An iteration of the decentralized state estimation algorithm, showing how a
knowledge set is updated at timestep k, as well as the calculation of the current belief.
Line numbers correspond to those in Algorithm 1.

At the very first iteration of our algorithm, we assume that each robot initially only

has a state estimate of itself in its knowledge set. On line 1, we update the knowledge set

of robot i by implementing (2.3) and (2.4). Line 2 determines the set of all robots known
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Algorithm 1: Decentralized cooperative localization(k, ui,k, Yi,k, Si,k−1, Sj,k (∀j ∈
Ri,k))

1 Si,k ← Si,k−1 ∪ {ui,k} ∪ {Yi,k} ∪
j∈Ri,k

S−j,k

2 Ni,k ← {Q|(∀bel(XQ,ks) ∈ Si,k), (ks ≤ k)}
3 repeat
4 flagrepeat = false
5 {ks1 , Q1} ← find smallest ks1 such that bel∗ (XQ1 , ks1) ∈ Si,k
6 ks2 ← k
7 if Q1 6= Ni,k then
8 {ks2 , Q2} ← find smallest ks2 such that bel∗ (XQ2 , ks2) ∈ Si,k (Q1 6= Q2)
9 end

10 for kc ← ks2 : ks1 do
11 if UQ1,kc ∈ Si,k or kc = ks1 then

12 S̃i,kc ← Si,k − {UQ1,kr , YQ1,kr} (∀kr > kc)

13 bel∗ (XQ1,kc)← p
(
XQ1,kc |S̃i,kc

)
14 Si,k ← Si,k ∪ bel∗ (XQ1,kc)
15 Si,k ← Si,k − {UQ1,kr , YQ1,kr , bel∗ (XQ1,kr)} (∀kr ≤ kc)
16 break

17 end

18 end
19 if {bel∗ (XQ1,kc) , bel∗ (XQ2,kc)} ∈ Si,k then
20 bel∗ (XQ3,kc)← bel∗ (XQ1,kc) bel∗ (XQ2,kc)

21
Si,k ← Si,k ∪ bel∗ (XQ3,kc)−
{bel∗ (XQ1,kc) , bel∗ (XQ2,kc)}

22 flagrepeat = true

23 end

24 until flagrepeat = false
25 {ks1 , Q1} ← find smallest ks1 such that bel∗ (XQ1 , ks1) ∈ Si,k
26 while Q1 6= Ni,k do
27 {ks2 , Q2} ← find smallest ks2 such that
28 bel (XQ2 , ks2) ∈ Si,k (Q1 6= Q2)(ks1 ≤ ks2)

29 S̃i,ks2 ← Si,k − {UQ1,ku , YQ1,kr} (∀ku > ks2)

30 bel
(
XQ1,ks2

)
← p

(
XQ1,ks2

|S̃i,ks2
)

31 bel
(
XQ1,ks2

, XQ2,ks2

)
← bel

(
XQ1,ks2

)
bel
(
XQ2,ks2

)
32 Q1 ← Q1 ∪Q2

33 ks1 ← ks2
34 end
35 bel (XNi,k)← p (XNi,k|Si,k)
36 return {bel (XNi,k) , Si,k, Ni,k}
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to i by looking for part beliefs bel∗(XQ,ks) in Si,k, where Q represents a set of robots.

Note that bel∗ indicates a belief that is equivalent to the state estimate obtainable using

a centralized state estimator. The loop beginning on line 3 repeats according to the flag

variable set on line 4. The purpose of this loop is to systematically combine multiple

beliefs for independent subgroups of robots in Si,k. To do this, on line 5 we search for the

earliest state estimate bel∗ (XQ1 , ks1) in the knowledge set. If Q1 = N , then we have the

belief over all known robots already. Otherwise, we search for the next earliest estimate

bel∗ (XQ2 , ks2) on line 8. The intention here is to calculate bel∗ (XQ1 , ks2) so that the

beliefs over the two groups can be combined.

The search for a partial checkpoint (for system Q1) begins with the ‘for’ loop on line

10. If Q1 = N , we will attempt to look for a partial checkpoint that is closest to the

current timestep, and this is why ks2 is initially set equal to k on line 6. Otherwise,

we will attempt to find a partial checkpoint at ks2 . If ks1 and ks2 are the same, the

partial checkpoint search is skipped and we proceed directly to line 19 and combine the

estimates found on lines 5 and 8. Line 11 uses Theorem 2.2 to detect the existence of a

partial checkpoint. If one is found, we use the knowledge up to the partial checkpoint time

determined on line 12 to obtain the state estimate on line 13. The new estimate is entered

into the knowledge set on line 14 and we proceed to discard information replaceable by

bel∗ on line 15. On line 16, we break out of the partial checkpoint search since one has

been found.

Line 19 checks if there are two estimates for the same timestep in the knowledge set.

If a pair is found, we proceed to combine them according to (2.5) on line 20, and update

the knowledge set on line 21. The repeat flag defined on line 4 is made true here because

there may be other subgroup beliefs in the knowledge set that can be combined (i.e., in

the next iteration of the line 3–24 loop, the newly combined belief on line 20 becomes

the belief we will find on line 5, and we will attempt to find the next earliest belief for

another subgroup on line 8).

After searching for partial checkpoints, we turn our attention to determining the state

estimate for the current timestep. This is necessary because the occurrence time for the

partial checkpoint last discovered may not be the current timestep. In fact, occurrence

time is equal to the current (existence) time if and only if a robot is able to communicate

with all other robots at the current timestep. We first need to consider to presence of

multiple estimates (for independent groups of robots at different timesteps) that may

still exist in the knowledge set. We again begin with the earliest state estimate in the

knowledge set on line 25, and aim to produce a state estimate at the time of the next

earliest estimate (line 27) in the knowledge set so that the two can be combined. This



Chapter 2. Decentralized Cooperative Localization 40

process repeats in the loop between lines 26 and 33 until we have a single state estimate

over the states of all known robots. The current state estimate is then determined on

line 35, which is based on the estimate at the last partial checkpoint and any information

since then to the current time. Hence, it uses all the information available and is the best

estimate that can be produced at the current time. In calculating this current estimate,

we may not have all the information required to make an estimate that is equivalent to

one produced by the centralized state estimator (i.e., a partial checkpoint does not exist).

In this situation, we will assume the last known velocity for robots from which we do not

have odometry data, but this is only temporary.

There are some important points to highlight about Algorithm 1. First, as mentioned

already, it is unnecessary for a robot to initially know how many robots there are in the

system. Second, since our algorithm is based on the information flow graph, the sequence

of communication between multiple robots or delays in communication can be handled

naturally without any changes to our algorithm. This is one of the practical advantages

with our framework. Third, any recursive filtering method can be used on lines 13, 30

and 35. To give a few examples, the EKF, the Unscented Kalman Filter (UKF), and

the PF [53], could be used in our decentralized state estimation framework. Thus, the

algorithm is very general and is widely applicable in any situation in which there is a

need to perform decentralized state estimation in a dynamic network. Furthermore, a

centralized-equivalent state estimate can always be calculated at the time of a partial

checkpoint. Although the state estimate at the current time may be suboptimal due

to missing information, the equivalent centralized state estimate is guaranteed to be

obtainable later. Once again, a robot assumes that another robot maintains its last

known velocity until its odometry is known.

2.4.3 Complexity Analysis

Since we are exploiting the Markov property, computation and memory usage are lim-

ited provided that all robots are able to detect partial checkpoints in the future, which

is a reasonable assumption if their task is to cooperatively localize. The computational

complexity of Algorithm 1, its memory usage, as well as communication bandwidth re-

quirements will vary depending on the number of timesteps since the previous partial

checkpoint, k − kc, the number of states that need to be estimated, n (which is propor-

tional to the number of robots, |N |), and the filtering method selected for use within

Algorithm 1. The frequency at which partial checkpoints occur depends on factors such

as communication range as well as the size of the workspace. Fig. 2.9 illustrates the
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worst-case scenario for a 4-robot team. The scenario shows that while relative measure-

ments are made between all robots at all timesteps, information exchange does not occur

with one of the robots (Robot 4). This may occur if Robot 4 fails to communicate.

Hence, new partial checkpoints will not come into existence for all the robots, and in-

formation will continue to accumulate in each robot’s knowledge set. This will continue

until communication is re-established to Robot 4.

Robot 1 

Robot 2 

Robot 3 

Robot 4 

!"!"!""

measurement only measurement and communication 

kkc

Figure 2.9: The worst-case scenario in decentralized cooperative localization in terms of
memory usage, computation, and communication

Assume that the EKF is used in the above scenario. Since n = c|N | where c is a con-

stant representing the number of states per robot, we can simplify this complexity analysis

by letting c = 1 without affecting the end result. In a centralized estimator (where all

robots can exchange information at all timesteps), there are (n2 − n) measurements at

each timestep since every robot makes a measurement of every other robot. Assuming

that the dimension of each measurement is constant (i.e., all measurements always pro-

vide only range and bearing information), and we process measurements sequentially, the

computational complexity of processing each measurement is O(n2) (from the Kalman

gain calculation and the covariance update steps). With (n2 − n) measurements, the

overall computational complexity is therefore O(n4) for the centralized estimator. Fur-

thermore, storing the covariance matrix and measurements requires memory usage of

O(n2).
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Using the EKF in our decentralized estimator, memory usage will be of O((k−kc)n2)

for each robot in the worst-case scenario. This is because it is necessary to keep all infor-

mation in the knowledge set that comes after kc and up to the current timestep, k. For

the worst-case scenario shown, at every timestep, all robots except Robot 4 communicate

with each other, passing on measurement and odometry information accumulated since

the last partial checkpoint to n − 2 robots (remember that n = |N |). This makes the

communication bandwidth requirement of O((k − kc)n3) for each robot. The computa-

tional complexity of calculating the current state estimate is O((k−kc)n4) for each robot,

but only when a new partial checkpoint is discovered since the calculation must then be

performed from the last partial checkpoint time. Otherwise, by knowing the state esti-

mate from the previous timestep (k−1), the computational complexity of calculating the

current state estimate is O(n4). In general, the difference in computational complexity

from the centralized approach (i.e., the k−kc factor) is the result of network connectivity

(i.e., the cost of operating in a dynamic and sparse network).

In practice, performing state estimation at high frequency may cause difficulties in

real-time implementations as the number of timesteps since the previous partial check-

point (k−kc) increases at a high rate. A practical solution may be to aggregate odometry

data between measurements to in effect increase the size of each timestep.

Recall from Theorem 3.1 that the ability for robots to pass on state estimates will

eliminate the need for some other robots to perform the calculations for the same state

estimate, hence reducing computational cost. Also, if robots keep track of the information

they have already sent to other robots, redundancy in communication can be reduced in

exchange for increase in memory usage. Furthermore, robots consistently in contact with

each other could form a subgroup and temporarily store their current state estimate to

reduce the amount of computation required for the next timestep (assuming that no past

information is added to their knowledge sets).

2.5 Simulations and Performance Analysis

In the theoretical development of a checkpoint, we showed that a centralized-equivalent

estimate can be obtained by all robots when a checkpoint exists (or by a particular robot

when a partial checkpoint exists). It is of interest to compare the performance of the

decentralized state estimation algorithm (Algorithm 1) against a centralized state esti-

mator. For this purpose, simulations were performed for a group of uniquely-identifiable

robots moving in a workspace in which each robot does not initially know the total num-

ber of robots in the team. The intention of the simulation is to have each robot estimate



Chapter 2. Decentralized Cooperative Localization 43

the states of all robots known to itself. Communication range and measurement range

are set equal, and are limited so that the robots are in a dynamic network that is not

always fully connected. Note, the centralized state estimator would simply not work

under these assumptions. However, to generate results against which we can compare,

we give robots the ability to always communicate with each other at all timesteps for the

centralized estimator only.

2.5.1 Simulation Setup

The Extended Kalman Filter (EKF) [53] was used as the filtering method on lines 13,

20 and 35 of Algorithm 1. Note that many other recursive filtering methods could also

be used. The state of a robot included its position and orientation, (xi,k, yi,k, θi,k). Two

different discrete-time unicycle motion models were used for the simulation. Model (2.6)

was used when the angular velocity component of the input, ωk, equaled zero (or very

close to zero for numerical stability). This model can be derived from the continuous-time

unicycle model using the forward Euler method:xi,kyi,k

θi,k

 =

xi,k−1yi,k−1

θi,k−1

+

∆T cos θi,k−1 0

∆T sin θi,k−1 0

0 ∆T

[vi,k
ωi,k

]
(2.6)

In all other cases, motion model (2.7) was used instead. In comparison to (2.6), model

(2.7) is a better discrete-time approximation of the continuous-time unicycle model.

Model (2.7) can be derived by holding the velocity inputs constant over the sampling

time, ∆T [53]. However, the model can not be used when ωk equals zero:

xi,kyi,k

θi,k

 =

xi,k−1yi,k−1

θi,k−1

+

−
vk
ωk

sin θi,k−1 + vk
ωk

sin (θi,k−1 + ωk∆T )
vk
ωk

cos θi,k−1 − vk
ωk

cos (θi,k−1 + ωk∆T )

ωk∆T

 (2.7)

The inputs to the both motion models were forward and angular velocities, (vk, ωk),

corrupted by independent zero-mean Gaussian noise, εk:

uk =

[
vk

ωk

]
=

[
vk

ωk

]
+ εk, εk ∼

(
0,

[
σv 0

0 σω

])
When robot i observed another robot j within range robs, it measured the relative range,

rj,ik , and bearing, φj,ik , of robot j with respect to itself. Each measurement component



Chapter 2. Decentralized Cooperative Localization 44

was assumed to contain independent zero-mean additive Gaussian noise:

yj,ii,k =

[
rj,ik
φj,ik

]
=


√

(xj − xi)2 + (yj − yi)2

arctan
(
yj,k−yi,k
xj,k−xi,k

)
− θi,k

+ δk δk ∼
(

0,

[
σr 0

0 σφ

])
(2.8)

Simulations started with robots at a random pose, and each had an estimate of its

own pose. These estimates were all expressed within the same reference frame. Robots

moved to random waypoints in the bounded workspace using a feedback control law

similar to that presented in [80, 81]. All simulations ended after 10000 timesteps.

Non-dimensional Parameterization

We postulate that the number of robots, |N |, the size of the workspace, A, (or robot

density ρ), and communication range, rcomm, are all the major factors that will influence

the connectivity of the robot network and localization performance. Therefore, it is

necessary to test if and how simulation results are affected by varying these parameters.

To reduce the dimensionality of this analysis, Buckingham’s Pi Theorem [82] is applied

to generate the dimensionless variables:

π1 = |N |

π2 =
|N |
A
r2comm = ρr2comm

Since we have 3 variables (|N |, A, rcomm), and the units of these contain only 1 fun-

damental quantity (distance), this enables us to use 3 − 1 dimensionless parameters to

analyze the effects of each of the three variables on localization performance.

Network Connectivity

There have been many studies on network connectivity in the past for random graphs.

A network is connected at a given timestep if there exists a path between every pair of

nodes. This is true on the information flow graph if at timestep k a path exists from

v(i, k) to v(j, k), (∀i, j). Furthermore, we define the frequency of connectivity as the

percentage of time that a robot network is connected. This is shown in Fig. 2.10 for

different numbers of (stationary) robots randomly populated in a workspace 1000 times

to obtain an average at each data point. The trend observed also applies to moving

robots [83], and we have also confirmed this through simulation.
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Figure 2.10: The frequency of connectivity observed for different numbers of stationary
robots.
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Figure 2.11: Average error between decentralized and centralized state estimates
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The zero-to-one transition phenomenon observed in Fig. 2.10 is typical for Bernoulli

random graph models wherein connections between robots are determined based on fre-

quency (and not distance) [84], as well as the fixed-radius-random-graph-model used for

generating our robot network [85]. Furthermore, we note that as π1 increases, the π2

value at which phase transition occurs, as well as the steepness of the transition also

increases to approach an asymptotic curve. This corresponds to the findings in [86].

2.5.2 Estimator Performance Results

The network connectivity phase transition is important in providing us with an indication

of how our decentralized state estimation algorithm performs. Low π2 values can be

interpreted as low robot density or short communication range. Under these conditions,

robots are rarely in contact with each other and are infrequently establishing partial

checkpoints. Conversely, high π2 values (after the phase transition) correspond to high

robot density or long communication range. With these conditions, robots are frequently

in contact with each other and establishing partial checkpoints. The range of π2 values

at which the phase transition occurs is an indication of when the implementation of our

decentralized state estimate algorithm becomes advantageous.

We will first present overall performance results collected over hundreds of simulation

trials. Fig. 2.11 plots the root-mean-squared error between the decentralized state esti-

mates produced by our algorithm and the centralized state estimates for x position (the

results for y position are very similar), along with 2-standard-deviation error bars, as well

as orientation, θ. The averaged error at each data point is obtained over 50 simulation

trials.

In Fig. 2.10 and Fig. 2.11, we have identified three specific π2 values: Point A

(π2 = 0.5) corresponds with low frequency of connectivity, point B (π2 = 2.0) is within

the connectivity phase transition region, and point C (π2 = 4.25) corresponds with high

frequency of connectivity. Over the phase transition, the difference between the decen-

tralized and centralized estimates reduces drastically. This is where our decentralized

algorithm begins to show its merits. At point C, connectivity has a high likelihood of

being maintained and the difference in the decentralized and centralized estimates ap-

proaches zero. Note that although the performance between the two is almost identical,

the centralized state estimator will only work if connectivity is guaranteed for all times.

Memory usage is limited since our algorithm makes use of the Markov property.

Actual memory usage will depend on how many robots there are in the network (i.e.,

the number of states to estimate), and the frequency of partial checkpoint occurrence.
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Figure 2.12: Average memory usage of a robot for decentralized state estimation

Fig. 2.12 is a plot of average memory usage with 2-standard-deviation bars. Each plotted

point represents the averaged results of over 50 simulation runs. At low frequency of

connectivity settings, partial checkpoints occur infrequently and each robot must store all

its accumulated data in the duration between partial checkpoints, leading to high average

memory usage. As π2 increases, robot encounters occur more often and the frequency

of partial checkpoint occurrence also increases, leading to reductions in memory usage.

Note, as we increase the number of robots, memory usage also increases due to the

increased dimensionality of the system state.

Now we will present detailed results corresponding to single simulation trials at points

A, B, and C, beginning first with memory usage for a single robot (robot 1) in Fig. 2.13a–

2.13c. Momentary increases in memory usage occur as a robot accumulates information

between partial checkpoints and reduction occurs when the Markov property is applied.

The grey areas in the these figures indicate the timesteps at which partial checkpoints

were detected (i.e., when robot 1 is able to produce a centralized-equivalent estimate and

apply the Markov property). The characteristics and the frequency of these fluctuations

were observed to be dependent on connectivity settings. Note that at high frequency of

connectivity, memory usage approaches that of a centralized estimator. Using these three

graphs, we can also get a sense of computation and communication requirements. As
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(a) π1 = 3, π2 = 0.50 (pt.A).

Figure 2.13: Memory usage for robot 1 at various connectivity settings.

memory usage increases, more information is stored in the knowledge set, which needs to

be communicated and processed during state estimation. However, note that we rarely

experience the worst-case scenario shown in Fig. 2.9, and even in the low-frequency-of-

connectivity case, the timesteps between partial checkpoints are limited.

The difference between the overall uncertainty of robot 1’s decentralized state estimate

and that of the centralized state estimate can be observed in Fig. 2.14a–2.14c. Shown in

these plots are the determinant of the estimation error covariance (which is proportional

to the volume of the uncertainty ellipsoid) for the centralized state estimator (CSE), our

decentralized state estimator (DSE), and decentralized dead-reckoning (DDR), which

only uses odometry data. The grey areas again represent when robot 1 detects the

existence of a partial checkpoint. As the frequency of connectivity increases, uncertainty

for the decentralized state estimate approaches that of the centralized state estimate.

Note that because there are no stationary landmarks, and since all robots are always in

motion, the error covariance gradually inflates over time. This is most evident with the

plots corresponding to the uncertainty growth while dead-reckoning with only odometry

data. In cooperative localization, relative measurements between robots help to reduce

the rate of increase for the uncertainty, but its continual increase in inevitable.



Chapter 2. Decentralized Cooperative Localization 49

(b) π1 = 8, π2 = 2.00 (pt.B).

(c) π1 = 17, π2 = 4.25 (pt.C).

Figure 2.13: Memory usage for robot 1 at various connectivity settings.
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(a) π1 = 3, π2 = 0.50 (pt.A).

(b) π1 = 8, π2 = 2.00 (pt.B).

Figure 2.14: Estimator uncertainty for robot 1 at various connectivity settings.
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(c) π1 = 17, π2 = 4.25 (pt.C). Note that the plots for CSE and DSE are overlap-
ping

Figure 2.14: Estimator uncertainty for robot 1 at various connectivity settings.

(a) π1 = 3, π2 = 0.50 (pt.A).

Figure 2.15: The difference between robot 1’s decentralized estimate and the centralized
estimate for (a,c,e) its own x-position, and (b,d,f) the x-position of robot 2. Note the
difference in scale on the difference.
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(b) π1 = 3, π2 = 0.50 (pt.A).

(c) π1 = 8, π2 = 2.00 (pt.B).

Figure 2.15: The difference between robot 1’s decentralized estimate and the centralized
estimate for (a,c,e) its own x-position, and (b,d,f) the x-position of robot 2. Note the
difference in scale on the difference.
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(d) π1 = 8, π2 = 2.00 (pt.B).

(e) π1 = 17, π2 = 4.25 (pt.C).

Figure 2.15: The difference between robot 1’s decentralized estimate and the centralized
estimate for (a,c,e) its own x-position, and (b,d,f) the x-position of robot 2. Note the
difference in scale on the difference.



Chapter 2. Decentralized Cooperative Localization 54

(f) π1 = 17, π2 = 4.25 (pt.C).

Figure 2.15: The difference between robot 1’s decentralized estimate and the centralized
estimate for (a,c,e) its own x-position, and (b,d,f) the x-position of robot 2. Note the
difference in scale on the difference.

We have also simulated the Cramér-Rao lower bound for uncertainty by evaluating

the Jacobians used in the EKF at the true states [87]. This theoretical lower bound for

uncertainty is not in the above plots, but we have confirmed that it is slightly lower than

that of the centralized state estimator, providing evidence that both the centralized and

decentralized estimators that have been implemented are not overconfident.

Next, we will show the difference between the mean of the decentralized state esti-

mates, and that of the centralized state estimates. Since there are a large number of

states being estimated (by each robot), we elected to only show a portion of these. For

each trial, we will show the difference for robot 1’s own x-position estimates (Fig. 2.15a–

2.15e) and that of robot 1’s estimate of robot 2 (Fig. 2.15b–2.15f). Similar results are

observed for all other robots’ poses. It is evident that as the frequency of connectivity

increases, the difference between the decentralized and centralized state estimates de-

creases. Furthermore, the difference for a robot’s estimate for itself is always closer to

the centralized estimate compared to its estimate of another robot. This is because a

robot is always aware of its own odometry and measurements but not necessarily that of
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another robot depending on the evolving network topology.

It can be seen how the detailed results presented above follow the overall trend in

localization performance and memory usage observed in Fig. 2.11 and Fig. 2.12. Once

again, remember that centralized state estimation is not possible when full connectivity

is not guaranteed between robots at each timestep, and the decentralized state estimator

presented here is proven to allow the equivalent centralized state estimate to be reached

under a dynamic network where robots sporadically communicate. At no time does the

network need to be fully connected.

In our performance evaluation, we only compared our centralized-equivalent approach

to the centralized EKF estimator. In our review in Section 2.1, we covered some alterna-

tive methods that can be applied to robot networks that are never guaranteed to be fully

connected. Although we have not implemented these methods to generate quantitative

results, we will make a qualitative comparison. One important point to highlight is that

our approach is currently the only one that can produce centralized-equivalent estimates

in all sparsely-communicating networks, and that do not suffer from cyclic updates and

OOSM. As described previously, the approach by Karam et al. [59] made robots maintain

estimates of the team by filtering local information. During information exchange, a

robot used estimates from other robots as a measurement in performing EKF updates.

Cyclic updates were problematic, causing estimates to be over-confident. The approach

by Panzieri et al. [60] used multiple EKFs, and each processed a subset of the robot team

state. As the correlations between subgroups are ignored, their solution was inconsistent,

which they tried to patch by increasing measurement noise. The hierarchical approach by

Martinelli [61] also used subgroups and again produced inconsistent estimates. Overall,

the results from these alternative methods may produce estimates with lower uncertainty.

However, because the estimates are over-confident, they are also sub-optimal compared

to our centralized-equivalent approach. The limitations of our approach are the com-

putational, memory storage, and communication complexities. Our approach requires

comparatively more storage as we wait for partial checkpoint existence, as well as more

computation as we calculate the centralized-equivalent estimate from the previous par-

tial checkpoint occurrence time. These are the costs in obtaining centralized-equivalent

estimates in a sparsely-communicating network.

2.6 Localization with a Known Map

Using extensive simulation results we have validated our decentralized state estimation

algorithm (Algorithm 1) and its applicability in a decentralized cooperative localiza-
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tion. Recall that we are currently looking at this problem as a simplification from the

decentralized SLAM problem by removing the presence of objects in the environment

(landmarks) and the need to estimate a map. Before moving on to the decentralized

SLAM problem, it is of interest to discuss the problem of cooperative localization with

a known map. In this problem, we have a map of where the landmarks are located so

there is no need to estimate their positions. Furthermore, we can use the known map to

help localize the robots (provided that the robots have the appropriate sensors to make

relative measurements to the landmarks). In this case, our decentralized algorithm is

still applicable. This is because the idea of information flow, the concept of checkpoints

and partial checkpoints, as well as the underlying theory, remain unchanged. The only

difference here is the system model (previously shown in (2.1) and (2.2)). In cooperative

localization with a known map, we need a measurement model for observing landmarks:

xi,k = g (xi,k−1,ui,k, εk)

yj,ii,k = h (xi,k,xj,k, δk) , (∀j ∈ N)(dj,ik ≤ robs)

ym,ii,k = hm (xi,k,xm,k, ψk) , (∀m ∈M)(dm,ik ≤ robs)

where:

hm is the measurement model

M represents the set of all landmarks (i.e., the map)

xm,k represents the position of a particular landmark (m)

ψ is the landmark measurement noise

The objective remains as find bel(Xk)) in a decentralized manner. 5

2.7 Summary

In this chapter, we examined at a simplified version of the decentralized SLAM problem

by neglecting the presence of, and the need to estimate a map. This reduced the decen-

tralized SLAM problem into the decentralized localization problem, where robots need to

obtain the centralized-equivalent estimate of all robot poses in a decentralized manner.

We began by providing a mathematical formulation of the problem, defined knowledge

sets, and their update rules based on communication between robots. We defined the key

5Note that localization with a known map is a task that could be accomplished using the same
approach for decentralized cooperative localization, but this work has not been carried out.
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concept of a checkpoint, allowing all robots to obtain a centralized-equivalent estimate

and apply the Markov property (an assumption that future estimates are only dependent

on the current estimate, which allows us to discard past information). We also developed

theorems regarding its existence. However, checkpoints are impractical in the sense

that in order to detect their existence, an outside observer is required. This led to us

looking at a network from the perspective of a single robot. We introduced the concept

of a partial checkpoint, which indicates when a single robot can obtain a centralized-

equivalent estimate of all robot poses. We also developed several theorems for detecting

the existence of a partial checkpoint.

In relating partial checkpoints to checkpoints, we were able to show that a robot’s

decision to invoke the Markov property does not affect another robot’s ability to do the

same. Furthermore, if all robots invoke the Markov property whenever possible (when a

partial checkpoint exists) based on their own knowledge, we can be sure that all robots

can still obtain a centralized-equivalent estimate.

Using the theorems we presented, an algorithm was developed allowing each robot

to obtain the centralized-equivalent estimate whenever possible. At every timestep, the

algorithm produces a current estimate (which may be temporary), and a centralized-

equivalent estimate if possible. Note that the time of the centralized equivalent estimate

may not be the current time (i.e., there may be a delay) due to network connectivity.

The algorithm is scalable in the sense that the number of robots in the network does not

need to be known initially, but only when communication is bi-directional, and when the

communication range limit is greater than the measurement range limit.

We validated our decentralized algorithm through simulations. We showed that mem-

ory usage (although large compared to the centralized estimator) is limited by exploiting

the Markov property at partial checkpoints. In our simulations, we also looked at how

various factors (captured by dimensionless variables) affect performance of our decen-

tralized state estimator in comparison to the centralized estimator, and how this relates

to network connectivity. Results show that the performance of our decentralized state

estimator begins to approach that of the centralized state estimator when a phase tran-

sition occurs in the frequency of network connectivity. It must be stressed again that a

centralized state estimator will not be able to produce an estimate unless we assume full

network connectivity at all times.

In the upcoming chapter, we will look at the decentralized SLAM problem without

simplifications. Many of the key theorems that we developed in this chapter will be

carried forward and applied to the decentralized SLAM problem.
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Simultaneous Localization and

Mapping

Teamwork is the ability to work together toward a common

vision. The ability to direct individual accomplishments

toward organizational objectives. It is the fuel that allows

common people to attain uncommon results.

Andrew Carnegie (1835–1919)

industrialist, businessman, and entrepreneur.

In the previous chapter, we examined a simplified version of the decentralized cooper-

ative SLAM problem, where we removed the requirement for robots to estimate the map

(position of landmarks). This simplification transformed the decentralized cooperative

SLAM problem into the decentralized cooperative localization problem. It was done so

that we could focus our attention on the consequence of sporadic network connectivity on

information flow. In this chapter1, we will restore the requirement for robots to estimate

a map. That is, each robot must estimate the poses (i.e., position and orientation) of all

robots, as well as the position of all observed landmarks. We will first provide the math-

ematical formulation of the decentralized cooperative SLAM problem. Then under the

assumption that the communication network is never guaranteed to be fully-connected,

1The work this chapter was presented at the IEEE/RSJ International Conference on Intelligent
Robots and Systems 2010 [88]. It was also accepted for publication in the Journal of Intelligent Robotic
Systems [89].

58
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we will define the conditions under which the centralized-equivalent estimate (for all robot

poses and landmark positions) can be obtained. We will see how these conditions relate

to checkpoints and partial checkpoints, which enables us to apply the theorems developed

from the decentralized cooperative localization problem to the decentralized cooperative

SLAM problem. To validate our approach to decentralized cooperative SLAM, we will

go beyond using simulations, and use a hardware experiment dataset collected using a

fleet of real robots.

3.1 An Overview of Advances in Cooperative SLAM

One of the earliest works on cooperative SLAM was by Fenwick et al. [90], who generalized

the single-robot EKF SLAM approach for the multi-robot scenario. This is essentially a

centralized approach, which requires a fully-connected communication network. Using

the information form of the EKF, Nettleton et al. [91] devised a decentralized algorithm

that takes advantage of the additive update property, which allows the incorporation

of observations into an estimate in any order. However, as pointed out by Rosencrantz

et al. [92], this only works for states that do not change over time and where motion

predictions are not necessary (i.e., only the static map is estimated). Nettleton et al.

[93] acknowledges this, because when we estimate the states of robots and landmarks,

motion predictions affect the estimate uncertainty for the entire system. Later, Nettleton

et al. [93] also presented a SLAM algorithm where robots only communicate sub-map

information to reduce communication bandwidth. However, this no longer produces

centralized-equivalent estimates. Furthermore, as Reece and Roberts [94] point out, the

use of the Covariance Intersection method as part the algorithm in [93] yields highly

conservative estimates. In addition, the algorithm can only handle Gaussian noise as it

is fundamentally based on the Extended Information Filter.

Thrun et al. [95] introduced the Sparse Extended Information Filter (SEIF) for SLAM,

which is an approximation of the centralized-equivalent estimate. This was extended to

the multi-robot SLAM problem, where the robots are not aware of each other’s starting

pose, and overlapping local maps from each robot are combined to form the global map.

Similarly, Ko et al. [96], Zhou and Roumeliotis [97] and Wang et al. [98] also came up

with approaches that involve merging of maps between robots. In the approach proposed

in [96], a robot tries to localize itself in another robot’s map to confirm their relative

positions before merging their maps. In [97], relative measurements between robots, as

well as landmarks in two robots’ maps are used to align and merge maps. Note that

although the approaches described above do not require a fully-connected network at all
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times, they do not produce centralized-equivalent estimates, which is something that we

try to achieve.

Howard et al. [99] presented a novel approach to multi-robot SLAM that uses mani-

fold maps instead of a planar map for a two-dimensional environment. In their approach,

each robot maintains its own manifold map until it encounters another robot, at which

point their maps are merged. The focus of this work is mainly on the mapping aspect,

and a robot only needs to localize itself (as opposed to localizing all robots in the system).

Howard [100] also looked at performing multi-robot SLAM using particle filters. In this

approach, robots are unaware of each other’s initial pose and first perform state estima-

tion in a decentralized manner (i.e., each robot acts as an independent system). When

robots encounter each other for the first time, their individual maps are combined into

a common map using relative pose information. The notion of a virtual robot travelling

backward in time is introduced to allow for the incorporation of information gathered

by a robot before the common map is merged. When all robots have encountered each

other, the state estimation process becomes centralized, and requires a fully-connected

communication network.

3.2 Mathematical Formulation

Before we show the mathematical formulation, it is important to note that there ex-

ist different variations of the cooperative SLAM problem. One variation only requires

robots to localize themselves while estimating a map (such as [96] for example). However

our formulation requires each robot to obtain estimates for the position of all known

landmarks, as well as the poses of all robots in the system.

The mathematical formulation for decentralized cooperative SLAM is similar to that

of decentralized cooperative localization, with the addition of landmarks. As in coopera-

tive localization, let N represent the set containing the unique identification indices of all

robots. In addition to this, let M represent the set that contains the unique identification

indices of all landmarks (the map). The system model is as follows:

xi,k = g (xi,k−1,ui,k, εk) , ∀i ∈ N
xm,k = xm,k, ∀m ∈M
yj,ii,k = h (xi,k,xj,k, δk) , ∀j ∈ N, dj,ik ≤ robs

ym,ii,k = hm (xi,k,xm,k, ψk) , ∀m ∈M, dm,ik ≤ robs

Note that we are still using a general system model (which may be nonlinear), where for



Chapter 3. Decentralized Cooperative SLAM 61

timestep k:

xi,k (i ∈ N) represents the state (pose) of robot i

xm,k (m ∈M) represents the state (position) of the stationary landmark m

ui,k represents the odometry information of robot i

g(·) is the state transition function for the robots

εk represents the process noise

yj,ii,k represents the measurement (e.g., range/bearing) of robot j with respect to

robot i

ym,ii,k represents the measurement of landmark m with respect to robot i

h(·) is the robot measurement function

hm(·) is the landmark measurement function

δk is the robot measurement noise

ψk is the landmark measurement noise

dj,ik is the distance between robot i and robot j

dm,ik is the distance between robot i and landmark m

robs is the measurement range limit

With the inclusion of landmarks, we need to redefine some of the sets introduced in

Chapter 2. Let

Xk = {xi,k,xm,k|i ∈ N,m ∈Mk},

represent the set of all states known to exist at timestep k, where Mk is the set of

landmarks that have been observed by at least one robot up to time k. Let

Xi,k = {xj,k,xm,k|j ∈ Ni,k,m ∈Mi,k},

represent the states of all robots and landmarks known to robot i up to time k, where

Ni,k is the set of robots known to robot i up to time k, and Mi,k is the set of landmarks

known to robot i up to time k. Let

Yi,k = {yj,ii,k,ym,ii,k |j ∈ N,m ∈M,dj,ik ≤ robs, d
m,i
k ≤ robs}

represent the set of measurements from robot i to all robots and landmarks within ob-

servation range.

In the previous chapter, when we examined the decentralized cooperative localization

problem, we assumed that Ri,k represents the set of robots that robot i is connected with

at timestep k (i.e., as in Fig. 2.1a). For the decentralized cooperative SLAM problem, we
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can assume either of the information exchange modes apply. That is, we can also define

Ri,k as the set of robots within communication range of robot i as in Fig. 2.1b:

Ri,k = {j|j ∈ N, di,jk ≤ rcomm}

We will continue to adhere to the probabilistic approach as we are dealing with a stochas-

tic system. The expression for the centralized belief (which is a function that describes

the joint likelihood of the states in Xk),

bel(Xk) := p (Xk|bel(X0), {ui,1:k, Yi,1:k|i ∈ N}) ,

remains the same as in the cooperative localization case, but note here that the belief is

now over the state of all robots and known landmarks.

To keep track of what each robot knows, we will make use of knowledge sets again,

with the update rules defined in (2.3) and (2.4). However, we will assume at the ini-

tial timestep that each robot knows the total number of robots in the team. This is

a subtle but important difference between decentralized cooperative SLAM and decen-

tralized cooperative localization, where a robot only needs to know of its own existence,

and can look for partial checkpoints based on the robots known to it (provided that

rcomm ≥ robs). We will show later in this chapter that this initial knowledge requirement

is necessary to guarantee that the centralized-equivalent estimate is obtainable by all

robots in the decentralized cooperative SLAM problem. In addition to knowing the total

number of robots in the team, each robot also begins with an estimate of its initial pose,

Si,0 ⊇ bel(xi,0). These pose estimates are all expressed within the same reference frame.

In performing state estimation for single-robot SLAM, the system of robot and land-

marks is unobservable unless the initial (absolute) pose of the robot with respect to the

system’s reference frame can be determined [101]. This can be accomplished by using

some prior information. The system can be made observable by directly providing the

estimator with the initial pose of the robot. Alternatively, by knowing the absolute po-

sitions for a number of landmarks (2 in the case of planar two-dimensional SLAM) and

making observations to these landmarks, the system also becomes observable. In the

case where prior information is not available, we can perform relative SLAM, such that

the initial robot pose is used as the reference frame for the system. Although the system

is not observable, we still seek a SLAM solution, which we must interpret carefully given

the lack of prior knowledge. We can extend the above discussion to multi-robot SLAM.

One way of ensuring that the system of multiple robots and landmarks is observable

is to provide the estimator with the initial poses of all the robots. The availability of
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these initial pose estimates is an assumption that we make in our centralized-equivalent

approach to make our system observable.

Once again, we would like to make use of the Markov property,

p (Xk|bel(X0), U1:k, Y1:k) = p (Xk|bel(Xk−1), Uk, Yk) ,

to reduce computational requirements and memory use by allowing state estimation to

be performed recursively. The set Y1:k now includes both inter-robot measurements and

measurements made to landmarks. We saw from Theorem 3.1 that in decentralized

cooperative localization, robots can invoke the Markov property based on their local

knowledge without consideration of other robots’ knowledge. Furthermore, we ensured

that all other robots can perform the same. We will show that this is also the case for

decentralized cooperative SLAM.

Our objective for decentralized cooperative SLAM is for each robot to find bel(Xi,k)

in a decentralized manner, given that the robots are only occasionally exchanging infor-

mation with one another in a sparsely connected and dynamic network.

3.3 Obtaining the Centralized-Equivalent Estimate

It is important not to forget why we are interested in obtaining the centralized-equivalent

estimate. This is because operating in a sparsely-communicating network in a decentral-

ized manner introduces the possibility of cyclic updates and out-of-sequence measure-

ments. These in turn may lead to inconsistent estimates. It must be acknowledged

that the rules that we use for updating knowledge sets help by preventing the duplica-

tion of information in a knowledge set, but we still need to ensure that the same piece

of information is not used more than once in calculating an estimate. By adopting a

centralized-equivalent approach, we can always avoid these problems. Most important

is the fact that obtaining a centralized-equivalent estimate allows us to make use of the

Markov property to limit memory usage.

In Chapter 2, we introduced the concepts of a checkpoint and a partial checkpoint.

These events indicate when a team of robots, or when an individual robot, is able to obtain

the centralized-equivalent estimate and apply the Markov Property in the decentralized

cooperative localization problem. We have also put forward a number of theorems re-

garding the existence of checkpoints and partial checkpoints, which ultimately allowed us

to conclude that all robots should calculate the centralized-equivalent estimate and apply

the Markov property based on local knowledge. Although this action appears greedy, all
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robots are still guaranteed to be able to obtain the centralized-equivalent estimate (pro-

vided that the knowledge set update rules are followed when robots communicate). In

this chapter, we would like to extend the concepts of checkpoint and partial checkpoint

to the decentralized cooperative SLAM problem. One option is for us to prove all the

theorems again for the decentralized cooperative SLAM case, but this will be largely a

repetition of the previous proofs. The reason for this is because landmarks are passive

objects in the workspace that do not produce any measurements, and are incapable of

relaying information. Instead, we will claim that the theorems from Chapter 2 also apply

to the decentralized cooperative SLAM problem, and explain why this is the case.

3.3.1 The Global Perspective

We will begin as in Chapter 2, where we first examined the robot network as an outside

observer of the system that is able to see when each robot makes a measurement (to a

landmark or another robot). The outside observer is also able to see when communica-

tions occur between robots. First, we want to show that the concept of a checkpoint can

be applied to the decentralized cooperative SLAM problem. That is, when a checkpoint

occurs, all robots are able to obtain the centralized-equivalent estimate in decentralized

cooperative SLAM.

Suppose that all robots can calculate the centralized-equivalent estimate in decentral-

ized cooperative SLAM at some timestep, kc. This implies that robots can obtain

bel(Xkc) = p (Xkc| {bel(Xj,0),uj,1:kc , Yj,1:kc |j ∈ N}) ,

or more generally, robots can obtain{
p
(
Xkc |

{
bel(Xj,ks,j),uj,ks,j+1:kc , Yj,ks,j+1:kc|j ∈ N

})
, if ks,j < kc

p
(
Xkc |

{
bel(Xj,ks,j)|j ∈ N

})
, if ks,j = kc.

.

If we examine the dependencies (estimates, odometry, and measurement data) of the

above distribution, we can conclude that these dependencies must be in each robot’s

knowledge set. That is,

Si,ke ⊇
{
{bel(Xj,ks,j),uj,ks,j+1:kc , Yj,ks,j+1:kc |j ∈ N}, if ks,j < kc

{bel(Xj,ks,j |j ∈ N)}, if ks,j = kc

⊇
{
{bel(Xj,ks,j),uj,ks,j+1:kc , Yj,ks,j+1:kc |j ∈ N}, if ks,j < kc

{bel(Xkc)|j ∈ N}, if ks,j = kc
.
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The definition of a checkpoint (Definition 4 from Chapter 2) states that:

A checkpoint, C(kc, ke), is an event that occurs at the checkpoint time, kc, that first

comes into existence at ke, in which the knowledge set for each robot i contains for all j:

1. the previous state estimate of robot j at some timestep, ks,j ≤ kc,

2. all the odometry and measurement data of robot j from timestep ks,j to kc.

Note that this is the exact same information that is required to obtain the centralized-

equivalent estimate in decentralized cooperative SLAM. Therefore, we can conclude that

the existence of a checkpoint allows all robots to obtain the centralized-equivalent esti-

mate in decentralized cooperative SLAM. More formally, when C(kc, ke) exists, all robots

can obtain bel(Xkc). Recall that the difference between the checkpoint existence time,

ke, and checkpoint occurrence time, kc, can be interpreted as the time delay in obtaining

the centralized-equivalent estimate. This is a consequence of robots having to operate in

a sparsely-communicating network that is never guaranteed to be fully connected. Next

we need to show that the theorems related to checkpoints from Chapter 2 also apply to

the decentralized cooperative SLAM case. We will not prove these theorems again for the

decentralized cooperative SLAM case since the proofs will look almost identical to the

decentralized cooperative localization case. Rather, we will claim that these theorems

apply to the decentralized cooperative SLAM problem and provide arguments as to why

this is the case.

Claim 4.1: Theorem 1.1, Lemma 1.1, and Theorem 1.2 apply to the decentralized co-

operative SLAM problem.

Reasoning. Theorem 1.2 states that checkpoint C(kc, ke) exists if and only if a path exists

from node v(i, kc) to node v(j, ke) on the information flow graph Gkc,ke , (∀i, j). Recall that

an information flow graph represents the path in which information is carried forward

in time and exchanged between robots2. Since landmarks are passive objects and do

not communicate or relay information, their presence does not alter the information flow

graph in any way. Therefore, this theorem applies in both the decentralized cooperative

localization and the decentralized cooperative SLAM scenarios.

Lemma 1.1 is concerned with the order of the occurrence times and existence times

for two checkpoints. It states that if C(kc1 , ke1) and C(kc2 , ke2) exist, and ke1 6= ke2 . Then

kc1 < kc2 if and only if ke1 < ke2 . The argument in the proof of this lemma uses the

information flow graph. Again, since the graph topology does not change between the

2In some of the figures presented so far, we explicitly drew out other events such as measurements
between robots, but these are only for explanation purposes and play no part in information flow.
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decentralized cooperative localization and the decentralized cooperative SLAM scenarios,

this lemma applies to the decentralized cooperative SLAM problem.

Theorem 1.2 provides a practical method to detect the existence of a checkpoint. It

states that the checkpoint C(kc, ke) exists if and only if the knowledge set of each robot

at ke contains uj,kc or bel(xj,kc), (∀j). Hence, we only need to search for a subset of

the information required to obtain the centralized-equivalent estimate to determine the

existence of a checkpoint. As we have already shown, these dependencies do not change

from the decentralized cooperative localization to the decentralized cooperative SLAM

case (i.e., we still need a prior estimate with the measurements and odometry data from

all robots up to the time of the new centralized-equivalent estimate). Therefore, this

theorem is also applicable to the decentralized cooperative SLAM problem.

In summary, what we have shown so far is that the concept of a checkpoint applies

not only to the decentralized cooperative localization problem, but also to decentralized

cooperative SLAM. This implies that an outside observer can determine if all robots can

obtain the centralized-equivalent estimate in cooperative decentralized SLAM by checking

for the existence of a checkpoint. In other words, we have generalized the notion of a

checkpoint. We have also reasoned that Theorems 1.2, Lemma 1.1, and Theorem 1.2 from

Chapter 2 also apply to the decentralized cooperative SLAM problem, which provides us

with a way to detect the existence of a checkpoint. However, we have seen before that

the need for a outside observer defeats the purpose of having a decentralized system.

Therefore, we need to again examine if we can eliminate the need of the outside observer

to obtain centralized-equivalent estimates.

3.3.2 The Local Perspective

Once again, we have to acknowledge the fact that a robot’s perception of the network

topology may not be as up to date as that of an outside observer. This was illustrated in

Fig 2.4 in Chapter 2, and we introduced the concept of a partial checkpoint to indicate

when a single robot can obtain the centralized-equivalent estimate for all robots in de-

centralized cooperative localization. We want to show that partial checkpoints can also

be used in decentralized cooperative SLAM.

The following is very similar to the argument we used to show that checkpoints are

applicable in decentralized cooperative SLAM. Suppose that robot i can calculate the

centralized-equivalent estimate in decentralized cooperative SLAM at some timestep, kc,i.

This implies that robot i can obtain
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bel
(
Xkc,i

)
= p

(
Xkc,i|

{
bel (Xj,0) ,uj,1:kc,i , Yj,1:kc|j ∈ N

})
or more generally, robot i can obtain{

p
(
Xkc,i |

{
bel
(
Xj,ks,j

)
,uj,ks,j+1:kc,i , Yj,ks,j+1:kc,i|j ∈ N

})
, if ks,j < kc,i

p
(
Xkc,i |

{
bel
(
Xj,ks,j

)
|j ∈ N

})
, if ks,j = kc,i.

.

If we examine the dependencies (estimates, odometry, and measurement data) of the

above distribution, we can conclude that these dependencies must be in robot i’s knowl-

edge set. That is,

Si,ke,i ⊇
{
{bel

(
Xj,ks,j

)
,uj,ks,j+1:kc,i , Yj,ks,j+1:kc,i|j ∈ N}, if ks,j < kc,i

{bel
(
Xj,ks,j

)
|j ∈ N}, if ks,j = kc,i

⊇
{
{bel

(
Xj,ks,j

)
,uj,ks,j+1:kc,i , Yj,ks,j+1:kc,i|j ∈ N}, if ks,j < kc,i

{bel (Xj,kc) |j ∈ N}, if ks,j = kc
.

The definition of a partial checkpoint (Definition 5 from Chapter 2) states that:

A partial checkpoint, Cp(kc,i, ke,i), is an event that occurs for robot i at time kc,i, that

first comes into existence at ke,i, in which the knowledge set for robot i contains for all j:

1. the previous state estimate of robot j at some timestep, ks,j ≤ kc,i,

2. all the odometry and measurement data of robot j from timestep ks,j to kc,i.

This is the exact same information that is required for a single robot, i, to obtain the

centralized-equivalent estimate in decentralized cooperative SLAM. Therefore, we can

conclude that the existence of a partial checkpoint allows a single robot to obtain the

centralized-equivalent estimate in decentralized cooperative SLAM. In other words, when

C(kc,i, ke,i) exists for robot i, then robot i can obtain bel(Xkc). Next we will show that

the theorems related to partial checkpoints from Chapter 2 also apply to the decen-

tralized cooperative SLAM case. Following our previous approach, we will not prove

these theorems for the decentralized cooperative SLAM case since the proofs will look

almost identical to the decentralized cooperative localization case. Instead, we will claim

that these theorems apply to the decentralized cooperative SLAM problem and provide

arguments as to why this is the case.

Claim 5.2: Theorem 2.1, Lemma 2.1, and Theorem 2.2 apply to the decentralized co-

operative SLAM problem.

Reasoning. Theorem 2.1 states that partial checkpoint C(kc,i, ke,i) exists if and only
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if a path exists from node v(j, kc,i) to node v(i, ke,i) on the information flow graph

Gkc,i,ke,i , (∀j ∈ N). Since landmarks are passive objects and do not communicate or

relay information, their presence does not alter the information flow graph in any way.

Therefore, this theorem applies in both the decentralized cooperative localization and

the decentralized cooperative SLAM scenarios.

Lemma 2.1 examines the order of the occurrence times and existence times for two par-

tial checkpoints. It states that if Cp(kc1,i, ke1,i) and Cp(kc2,i, ke2,i) exist, and ke1,i 6= ke2,i.

Then kc1,i < kc2,i if and only if ke1,i < ke2,i. The argument in the proof of this lemma also

uses the information flow graph. Again, since the graph topology does not change be-

tween the decentralized cooperative localization and the decentralized cooperative SLAM

scenarios, this lemma applies to the decentralized cooperative SLAM problem.

Theorem 2.2 provides a practical method of detecting the existence of a partial check-

point. It states that the partial checkpoint Cp(kc,i, ke,i) exists for robot i if and only if

the knowledge set of robot i at ke contains uj,kc or bel(Xj,kc), (∀j). Hence, we only need

to search for a subset of the information required to obtain the centralized-equivalent

estimate to determine the existence of a checkpoint. As we have already shown, these

dependencies do not change from the decentralized cooperative localization to the decen-

tralized cooperative SLAM case (i.e., we still need a prior estimate with the measurements

and odometry data from all robots up to the time of the new centralized-equivalent esti-

mate). Therefore, this theorem is also applicable to the decentralized cooperative SLAM

problem.

In summary, the concept of a partial checkpoint can be generalized and applies to

both the decentralized cooperative localization problem and the decentralized cooperative

SLAM. Any robot can obtain the centralized-equivalent estimate in decentralized cooper-

ative SLAM by checking for the existence of a partial checkpoint. The partial checkpoint

detection methods also generalizes to cover the decentralized cooperative SLAM case.

As we have seen in Chapter 2, robots can apply the Markov property after obtain-

ing a centralized-equivalent estimate based on local knowledge while ensuring that all

other robots can also obtain the centralized-equivalent estimate. This was proven by

Lemma 3.1, Theorem 3.1, and Theorem 3.2, and we want to show that these also apply

in decentralized cooperative SLAM.

Claim 5.3: Lemma 3.1, Theorem 3.1, and Theorem 3.2 apply to the decentralized co-

operative SLAM problem.

Reasoning. Lemma 3.1 tells us that when partial checkpoints exist with the same oc-
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currence time for all robots, then a checkpoint exists at the same occurrence time. The

proof of this theorem compares the knowledge sets of robots when a checkpoint exists

and when partial checkpoints exist for individual robots. Since we have established that

checkpoints and partial checkpoints can be generalized (without changes) from the decen-

tralized cooperative localization scenario to cover the decentralized cooperative SLAM

problem, this Lemma applies to the decentralized cooperative SLAM problem as well.

Theorem 3.1 is the key theorem that allows our estimation framework to be decen-

tralized. It states that a robot’s decision to invoke the Markov property and discard

information (that it has used to generate the centralized-equivalent estimate) does not

affect the ability of other robots to perform the same (i.e., it does not affect the exis-

tence of checkpoints). The proof of this theorem looks at the knowledge sets of robots

that communicate with a robot that has applied the Markov property. These knowledge

sets are compared to the knowledge sets of robots that do not communicate with the

robot the has applied the Markov property. Although the content of these knowledge

sets are different, we can still conclude that partial checkpoints exist for all robots (i.e.,

all the robots can still obtain the centralized-equivalent estimate) by using the definition

of a partial checkpoint. The intuition behind this discovery is that robots can communi-

cate their centralized-equivalent estimates to each other instead of passing measurement

and odometry data. Since we have not changed the definition of checkpoints or partial

checkpoints, we can conclude that this theorem is applicable to decentralized cooperative

SLAM.

Finally, Theorem 3.2 states that all robots should apply the Markov property when-

ever a partial checkpoint is detected (i.e., based on their own local knowledge), and this

will allow all robots to obtain centralized-equivalent estimates. This theorem is only

an extended interpretation of Theorem 3.1, and therefore, also applies to decentralized

cooperative SLAM.

To reiterate, a robot can detect whether it can obtain a centralized-equivalent estimate

in decentralized cooperative SLAM by checking for the existence of a partial checkpoint,

which we have generalized from the decentralized cooperative localization problem. Be-

cause of this, we can apply Theorems 3.1 and 3.2 to the decentralized cooperative SLAM

problem. The important implication here is that for both the decentralized cooperative

localization and decentralized cooperative SLAM problems, a robot can apply the Markov

property and discard information that it no longer needs without considering what other

robots have in their knowledge sets. In other words, a robot does not need to keep track

of the estimates and measurements known to another robot. Yet, we can still guarantee
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that all robots can obtain the centralized-equivalent estimate. The result of this is that

this makes the decentralized cooperative SLAM algorithm similar to the decentralized

cooperative localization algorithm. However we need to consider the necessary initial

knowledge of each robot, which differ from decentralized cooperative localization.

3.3.3 Initial Knowledge of Robots

Although we have extended the applicability of the theorems developed for decentral-

ized cooperative localization to decentralized cooperative SLAM, these two problems do

not share the same requirement on the initial knowledge of robots. In decentralized

cooperative localization, when we have the communication range limit greater than the

observation (measurement) range limit, it is unnecessary for a robot to know the to-

tal number of robots in the team and yet it can still obtain the centralized-equivalent

estimate (i.e., subgroups of robots can be treated as individual systems) according to

Theorem 3.3. Obtaining the centralized-equivalent estimate in decentralized cooperative

SLAM is more restrictive, as the number of robots in the system needs to be known

to all robots. To explain this, suppose that we separate the robots into subgroups that

initially do not know of each other’s existence for the decentralized cooperative SLAM

problem. In this case, we are not guaranteed that the subgroup estimates are statistically

independent due to the presence of landmarks. Consider Fig. 3.1 as an example, where

there are two sub-groups consisting of a single robot each. Acting independently, each

robot’s self estimate will be correlated with the landmark, but they will not be aware

that the landmark has been observed by both robots (i.e., the estimate of both robots

and the landmark should all be correlated) until they encounter each other. Each robot

will also apply the Markov property at every timestep because they only know of their

own existence. When the two robots finally encounter each other, they will not be able

to merge their estimates to form the centralized-equivalent estimate. To formalize the

above idea, we have the following theorem (which is a counterpart to Theorem 3.3 in

Chapter 2):

Theorem 5.1: In decentralized cooperative SLAM, assume robot i does not initially

know the total number of robots in the team. If robot i detects a partial checkpoint,

Cp(kc,i, ke,i), based on robots known to it, Ni,ke,i , and applies the Markov Property when

the partial checkpoint exists, then robot i is not guaranteed to obtain the centralized-

equivalent estimate for all robots and known landmarks when it knows of the existence

of all robots.
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(a) Correlations in the centralized estimates.
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(b) Correlations in robot 1’s decentralized estimates.
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(c) Correlations in robot 2’s decentralized estimates.

Figure 3.1: In the above information flow graphs with measurements explicitly labelled,
the correlations between the estimates of Robot 1, Robot 2, and a landmark are shown
as shaded ellipses for: a) the centralized estimator, which have the estimates correctly
correlated, b) the decentralized estimates made by robot 1 assuming that it initially only
knows of its own existence, and c) the decentralized estimates made by robot 2 assuming
that it initially only knows of its own existence. In the latter two cases, the robots
will have applied the Markov property at every timestep. When the two robots finally
communicate with each other, they will possess decentralized estimates that cannot be
used to recover the centralized-equivalent estimate.
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Proof. Since we want to show that the centralized-equivalent estimate is not guaranteed

to be obtainable by robot i, we only need to show one example of when this is the case.

We know that robot i knows of its own existence, and therefore, i ∈ Ni. Now suppose

robot i takes a measurement, ym,ii,km
, of a landmark, m3. Suppose that another robot,

n ∈ Ni (not known to robot i), also takes a measurement, ym,nn,km
, of the same landmark.

We can show that robot i will know of landmark m when it detects the existence of the

partial checkpoint Cp(km, ke,i):

ym,ii,km
exists

⇒ ym,ii,km
∈ S−i,km

⇒ ym,ii,km
∈ Si,km

⇒ ym,ii,km
∈ Si,ke,i

⇒ m ∈Mi,ke,i

Robot i however, will not know that robot n exists or that it has also made a measurement

of landmark m, unless robots i and n were within the communication range when the

measurement was made of landmark m at timestep km. This is not guaranteed to happen

because we do not enforce that robots must remain within communication range of each

other. Mathematically, suppose ym,nn,km
exists, and that di,nk > rcomm:

di,nk > rcomm

⇒ ym,nn,km
∈ Sn,kmand ym,nn,km

6∈ Si,ke,i
⇒ n 6∈ Ni,ke,i

Now if robot i detects partial checkpoints based on robots known to it and applies the

Markov property when a partial checkpoint exist, then its estimate, bel(Xi,km), cannot be

used to calculate the centralized-equivalent-estimate for all robots and known landmarks

using (2.5) because of the correlation (i.e., the measurement made by robots i and n of

landmark m) of which robot i does not know. In other words,

bel
(
Xi,km , Xi,km

)
6= bel (Xi,km) bel

(
Xi,km

)
⇒ bel

(
Xi,k, Xi,k

)
6= bel (Xi,k) bel

(
Xi,k

)
, k ≥ km

Note here that we cannot calculate the centralized-equivalent estimate from the origi-

3This proof will also work if we start with the assumption that another robot j ∈ Ni measures land-
mark m. However, we chose to proceed with the simpler case by having robot i make the measurement.
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nal measurement and odometry data since they have been discarded when the Markov

property was applied. Therefore, not only is robot i unable to use bel(Xi,km) to deter-

mine the centralized-equivalent estimate for all robots and known landmarks at timestep

km, future estimates calculated by recursive filtering also cannot be used to recover the

centralized-equivalent estimate for all robots and known landmarks.

Corollary 5.1: In decentralized cooperative SLAM, all robots must initially know the

total number of robots in the team to guarantee that all robots can obtain the centralized-

equivalent estimate for all robots and known landmarks in decentralized cooperative

SLAM.

Proof. From Theorem 5.1, we know that a robot is not guaranteed to obtain the centralized-

equivalent estimate for all robots and known landmarks if the number of robots in the

team is initially unknown, and if it detects partial checkpoints based on the number of

robots known to it. Even if only one robot in the team does not initially know the total

number of robots, there is the possibility that its estimate (which cannot be used to

recover the centralized-equivalent estimate for all robots and known landmarks) will be

passed to other robots. On the other hand, suppose that all robots initially know the to-

tal number of robots in the team, and only use the existence of partial checkpoints (based

on having the required information from all robots) to determine when the centralized-

equivalent estimate is obtainable (and when the Markov property can be applied). In

this case, all robots are guaranteed to obtain the centralized-equivalent estimate for all

robots and known landmarks.

In summary, in decentralized cooperative SLAM we cannot make use of the notion of

independent subgroups, and we cannot guarantee that a robot can obtain the centralized-

equivalent estimate (over all robots and known landmarks) without detecting a partial

checkpoint based on information from all robots, which requires the robot to know the

number of robots in the network. This is not a requirement in decentralized cooperative

localization, under the condition that the communication range limit is greater than or

equal to the observation range limit. However, due to the presence of landmarks, this

‘loophole’ that can be exploited in decentralized cooperative localization to allow partial

checkpoint detection based on a subset of robots cannot be further exploited in decentral-

ized cooperative SLAM. Although this may seem restrictive, we must remember that this

is because we want all robots to be able to obtain the centralized-equivalent estimate in

a sparsely-communicating robot network that is never guaranteed to be fully-connected.
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Furthermore, we are no longer working with the reduced (robot-only) decentralized co-

operative localization problem.

An alternative way of ensuring that the centralized-equivalent estimate is obtainable

is to keep all robots from applying the Markov property (i.e., have all robots retain

all information in their knowledge set through time). This, however, is impractical as

computation and memory usage will increase indefinitely. Hence, we need to allow robots

to know when they can apply the Markov property, which requires knowing the number

of robots in the system.

To recapitulate the content of this section, we have generalized the concepts of a

checkpoint and a partial checkpoint, allowing them to be applicable to the decentral-

ized cooperative SLAM problem. The existence of a checkpoint is equivalent to the

moment when all robots can obtain the centralized-equivalent estimate at the checkpoint

occurrence time. Similarly, the existence of a partial checkpoint for a particular robot

is equivalent to when it is possible for that robot to obtain the centralized-equivalent

estimate. From this, we are then able to apply Theorems 3.1 and 3.2, which allow robots

to apply the Markov property without consideration of other robots, and still ensure that

all other robots can obtain the centralized-equivalent estimate. However, in decentralized

cooperative SLAM, we require robots to initially know the total number of robots in the

system. Through Theorem 5.1 and Corollary 5.1, we showed that the presence of land-

marks makes knowing the number of robots in the team a mandatory initial requirement.

Fig. 3.2 is an illustrative summary of the relationships between the theorems we have

introduced up to this point.

3.4 Applying the Theory

In this section, we will present our decentralized cooperative SLAM algorithm, which is

guaranteed to work in a sparsely-communicating robot network, and provide each robot

with centralized-equivalent estimates over all robots and landmarks. We must stress again

that this algorithm does not require robots to keep track of what other robots know, and

each robot can decide to invoke the Markov property based on their local knowledge.

Surprisingly, the algorithm is simpler in comparison to the decentralized cooperative

localization algorithm (Algorithm 1 from Chapter 2) due to the requirement on initial

knowledge that each robot needs to initially know the total number of robots in the team.

Following the presentation of our algorithm, we will provide a computational complexity

analysis, which is subsequently followed by simulation and hardware experiment results.
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Figure 3.3: The decentralized cooperative SLAM algorithm, which provides centralized-
equivalent state estimates of all robots and map features whenever possible.

3.4.1 The Decentralized Cooperative SLAM Algorithm

Algorithm 2 is our decentralized cooperative SLAM algorithm, developed by combining

the theory provided in Chapter 2, and section 3.3 of this chapter. Fig. 3.3 is a graphical

representation of the algorithm.

Algorithm 2: Decentralized cooperative SLAM(k, ui,k, Yi,k, Si,k−1, Sj,k (i ∈
N)(∀j)(dj,ik ≤ rcomm))

1 Si,k ← Si,k−1 ∪ {ui,k} ∪ {Yi,k} ∪
j∈Ri,k

S−j,k

2 K ← {kr}such that{ui,kr |i ∈ N} ∈ Si,k
3 kc,i ← max(K)

4 S̃i,kc,i ← Si,k − {uj,kr , Yj,kr |j ∈ N} (∀kr > kc,i)

5 bel∗
(
Xkc,i

)
← p

(
Xkc,i |S̃i,kc,i

)
6 Si,k ← Si,k ∪ bel∗

(
Xkc,i

)
7 Si,k ← Si,k − {uj,kr , Yj,kr , bel∗ (Xkr) |j ∈ N} (∀kr ≤ kc)
8 bel (Xk)← p (Xk|Si,k)
9 return {bel (Xk) , Si,k}

Algorithm 2 executes at every timestep on all robots. On line 1, we update the

knowledge set of robot i by implementing Equations (2.3) and (2.4). On lines 2 and

3, we search for the latest partial checkpoint. Line 4 defines the subset of knowledge

that includes all information up to the partial checkpoint time. On line 5, we calculate

an estimate for the partial checkpoint time. Note that bel∗ indicates the centralized-

equivalent estimate. On line 6, we proceed to discard information replaceable by bel∗
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(invoking the Markov property), and enter the newly-calculated belief into the knowledge

set on line 7. On line 8, we use all available information in the knowledge set to produce

the current state estimate. Note that because the centralized-equivalent estimate can be

delayed, we produce a temporary estimate until the centralized-equivalent estimate can be

obtained. For the temporary estimate, robot i assumes robot j maintains its last known

velocity if odometry data are not available. Due to this assumption, temporary estimates

for robots that have been out of communication range for an extended period of time

may have diverged from the real robot pose. Nevertheless, we are guaranteed that the

centralized-equivalent estimate can be recovered when communication is reestablished.

Aside from being able to generate the centralized-equivalent estimate in a network

that is never guaranteed to be fully connected, another feature of our cooperative de-

centralized SLAM algorithm is that we can use a variety of recursive filtering and data

association methods within our framework (on line 5 and 8). The framework is not de-

pendent on specific filtering methods such as the EKF, but the underlying assumption

is that the Markov property is valid and applicable (i.e., any recursive approximation of

the Bayes filter could be used within our framework).

One will notice that the overall structure of our decentralized cooperative SLAM

algorithm is very similar to the decentralized cooperative localization algorithm when

Fig. 3.3 is compared to Fig. 2.8. However, the actual algorithm listing is much longer

and more complex for Algorithm 1. This difference is attributed to the initial knowledge

requirement in decentralized cooperative SLAM, which requires every robot to initially

know the total number of robots in the team. This prevents robots from starting as

individual and independent sub-systems. As such, we no longer need to handle the

merging of beliefs from multiple sub-systems when they encounter each other for the first

time, and this simplifies the algorithm for decentralized cooperative SLAM.

3.4.2 Complexity Analysis

Complexity analysis of our decentralized cooperative SLAM algorithm is difficult because

it is not possible to predict the connectivity of the dynamic robot network. Overall, the

complexity of the algorithm is at least on the order of the filtering and data association

methods implemented, and the computational requirement for a robot will increase as

the number of timesteps since its last partial checkpoint (i.e., k − kc) increases. Let us

consider the worst-case scenario as shown in Fig. 3.4 where we have n robots and m

landmarks. In this scenario, we have every robot measuring every other robot and all

landmarks at every timestep. However, one robot does not communicate with the rest of
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the team. We will assume that the EKF [79] is used as the filtering method. The state

of the system has a dimension that is proportional to the number of robots, n, and the

number landmarks, m. At each timestep the number of measurements is on the order of

n2+nm, and the computational complexity for processing each measurement is quadratic

with respect to the number of measurements. This implies that computational complexity

is O(n4 + n3m) for the centralized estimator in the worst-case scenario. Furthermore,

storing the covariance matrix and measurements requires memory usage of O ((n+m)2).

Robot 1 

Robot 2 

Robot 3 

Robot n 

!"!"!""

measurement only measurement and communication 

Landmark 1 

Landmark m 

kkc

!"!"!""
!"!"!""

Figure 3.4: The worst-case scenario in decentralized cooperative SLAM in terms of mem-
ory usage and computational complexity.

For the same worst-case scenario, the complexity for calculating the current estimate

with our decentralized cooperative SLAM algorithm is O ((k − kc)(n4 + n3m)) when a

new partial checkpoint is discovered. The k − kc (delay) factor comes from the fact

that we need to run the recursive filter from time kc to the current time k. For the

case where no new partial checkpoint is discovered, and by knowing the state estimate

from the previous timestep (k − 1), computational complexity is O(n4 + n3m) (i.e., the
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same as the centralized estimator). Memory usage requirement for the decentralized

estimator is O ((k − kc)(n+m)2). Again, the k − kc factor comes from the fact that we

need to keep all the information since the previous partial checkpoint time to ensure that

the centralized-equivalent estimate is obtainable. Lastly, the communication bandwidth

requirement is O((k−kc)(n3 +n2m)) for our decentralized approach. In practice, we can

reduce communication bandwidth by having each robot remember the latest information

sent to other robots (but note that this does not imply having to know what each robot

has in their knowledge set).

In comparison to the decentralized cooperative localization algorithm, the complex-

ity analysis above is very similar. However, one must not forget that in decentralized

cooperative SLAM, the number of states can be vastly greater than in the decentralized

cooperative localization case due to the presence of landmarks. In either case, there is an

additional cost for having the guarantee that the centralized-equivalent estimate is ob-

tainable by all robots. This is the cost of operating in a network that is never guaranteed

to be fully connected.

3.4.3 Simulations

We will use a simulation as a first validation of Algorithm 2. In the scenario, illustrated

in Fig. 3.5, the robots are moving in circles at constant forward and angular velocities,

and the communication range is limited such that a ‘weaving’ pattern emerges from the

communication linkages established by the robots in both circles. This also prevents

the network from ever being fully connected. As a consequence, there will be a delay to

when the centralized-equivalent estimate for the current timestep can be obtained (i.e., we

need to wait until a partial checkpoint occurs for the current timestep). This also implies

that the estimates shown are the temporary estimates made at each timestep with the

information available to the robot. Recall that we assume other robots maintain their last

known forward and angular velocities if this information is not available. Nevertheless,

our algorithm guarantees that the centralized-equivalent estimate can always be recovered

(when a partial checkpoint does indeed exist). Fig. 3.6 shows several components of the

(current, and temporary) decentralized estimate from Robot 1 (red). Note that even

though there is a delay to when the centralized-equivalent estimate is obtainable, its

(current and temporary) estimate of its own x-position as well as a landmark’s x-position

is very close to the centralized estimate. Robot 1’s estimate of another robot, however,

exhibits greater differences due to the loss of communication. Although this simulation

scenario is simple, it demonstrates that our algorithm can be used in a network that
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is never fully connected. In the following section, we will implement our decentralized

cooperative SLAM algorithm on real hardware.

Figure 3.5: A simulation of a weaving robot network that is never fully connected.

3.5 Hardware Experiment Dataset

To provide a more realistic evaluation of our decentralized cooperative SLAM algorithm,

we have created a two-dimensional multi-robot cooperative localization and mapping

dataset4. The dataset consists of 9 sub-datasets, each ranging between 15 to 70 minutes

in duration. It is produced using a fleet of 5 mobile robots in an indoor workspace with

15 static landmarks (which are repositioned for each sub-dataset). Each sub-dataset

4This dataset has been published in the International Journal of Robotics Research[102]
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(a) Robot 1’s estimate of its own x-position.

(b) Robot 1’s estimate of robot 3’s x-position.

Figure 3.6: Components of robot 1’s decentralized estimate for the scenario shown in
Fig. 3.5
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(c) Robot 1’s estimate of a landmark’s x-position.

Figure 3.6: Components of robot 1’s decentralized estimate for the scenario shown in
Fig. 3.5

contains time-stamped odometry (velocities) and range-bearing measurements that are

logged by each robot. In addition, by using a 10-camera motion capture system, we are

able to obtain precise groundtruth data for all robot poses (position and orientation), as

well as groundtruth landmark positions (which is rarely available in SLAM problems).

Fig. 3.7 is a photograph taken during the production of a dataset.

We will now provide a more in-depth description of the workspace and equipment

used to collect the dataset, the data collection process, and how the dataset is used to

validate our decentralized cooperative SLAM algorithm.

3.5.1 Data Collection

The multi-robot cooperative localization and mapping dataset is produced in a rectan-

gular indoor space with approximate dimensions of 15m×8m. The floor in this space

is visually flat. For each sub-dataset, 15 landmarks and 5 robots are placed in the

workspace. For the duration of each sub-dataset, each robot logs its own odometry data

while driving to randomly generated waypoints in the workspace while avoiding obstacles

(landmarks and other robots). When another robot or landmark is in the field of view of

a robot, a range and bearing measurement is made and logged. Throughout the entire
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Robots 

Landmark 

Vicon motion 

capture system 

Figure 3.7: The data collection process for the multi-robot cooperative localization and
mapping dataset uses a fleet of 5 robots. Groundtruth data for all landmark positions
and robot poses is provided by a 10-camera Vicon motion capture system.

data collection process, a 10-camera Vicon motion capture system monitors and logs the

pose of each robot, as well as the position of all landmarks, for groundtruth data.

The Robots

The fleet of 5 robots used to produce the dataset are identical in construction (see

Fig. 3.8), and are built from the iRobot Create (two-wheel differential drive) platform.

Each robot is equipped with a computer, which interfaces with a monocular camera that

serves as the primary sensing instrument. Conveniently, the camera is mounted at a

location where the measurement coordinate frame coincides with the robot’s body frame

in 2-d, as shown in Fig. 3.9. A cylindrical barcode tube is installed on each robot and

is centered above the robot’s body frame. Each barcode pattern is 30cm in height and

allows for the identification of a robot. Range and bearing measurements can be made

when the barcode is detected by another robot.

In terms of software, each robot runs the Player 5 server [103]. This software is re-

5Player is a open-source software which serves as a network server over which hardware and software
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Figure 3.8: The fleet of 5 robots and a sample of the landmarks used in the making of
the multi-robot cooperative localization and mapping dataset. The barcode patterns are
used in producing range-bearing measurements from the camera mounted on each robot.

sponsible for performing motion control, obstacle avoidance, image processing (for mea-

surements), as well as data logging through a collection of custom-coded and default

drivers.

Landmarks

Cylindrical tubes similar to the ones installed on each robot (but larger in diameter) serve

as landmarks. Each landmark has an unique barcode pattern that is 30cm in height for

identification and measurement purposes.

Odometry

Forward velocity (along the x-axis of the robot body frame) commands, v, and angular

velocity commands (rotation about the z-axis of the robot body frame using the right-

hand rule), ω, are logged at an average of 67Hz as odometry data. The maximum forward

velocity of a robot is 0.16m/s, and the maximum angular velocity is 0.35rad/s.

abstracted as standard interfaces can interact with each other.
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Figure 3.9: Reference frames for the robot body, and the sensor (camera). The frames
are aligned such that the transformation between them only consists of a translation in
the z direction.

Measurements

During dataset production, images captured by the monocular camera on each robot at

frame rate of 10Hz and a resolution of 960×720 pixels are processed to extract range and

bearing measurements from barcode patterns in the field of view. The cameras have a field

of view of approximately 60 degrees. The camera on each robot is individually calibrated

using a planar checkerboard [104] to obtain the parameters necessary to undistort images.

A process that primarily relies on edge detection is used on the undistorted gray-scale

images for detecting barcodes. Fig. 3.10 shows the typical output of the barcode detection

process. Range measurements are obtainable since the vertical focal length and the

barcode height are known. Bearing measurements correspond to the horizontal position

of a barcode in an image. The sources of measurement error include: lighting conditions,

slight tilting of the robot on the presumed-leveled floor, and motion blur.

Each barcode pattern begins (from top to bottom) with a black-white-black start
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Figure 3.10: An example of barcode detection from an undistorted image. A detected
barcode provides a range-bearing measurement, as well as a unique identification signa-
ture.

code, followed by a series of alternating black and white bars, which encodes 2 digits in

accordance with the Universal Product Code (UPC) standard. To reduce the chance of

misreading a barcode, the 2 digits that identify a robot must add up to a checksum of

5, while the digits for a landmark must sum to 7 or 9. In rare instances, mislabelled

barcodes have been found when barcodes partly occlude one another. These instances

are easy to detect using the groundtruth data.

Occlusions

For sub-dataset 9, barriers were placed in the workspace between landmarks to occlude

the robots’ views, as shown in Fig. 3.11. This resulted in a decrease in the number of

measurements made by the robots, and also a decrease in the maximum measurement

range. Fig. 3.12 is a map of the barriers in the workspace.

Groundtruth

A Vicon motion capture system consisting of 10 (MX-40+) cameras provides groundtruth

data for the dataset. The groundtruth coordinate frame also serves as the inertial ref-

erence frame, in which the positions of landmarks (x, y), and robot poses (x, y, θ) are

reported. A unique constellation of reflective markers on each robot allows the system

to identify and track the local body frame (position of orientation) of each robot in 3d
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Figure 3.11: In sub-dataset 9, data collection was performed with barriers in the
workspace to increase occlusions for measurements.

Figure 3.12: A map of the barriers in sub-dataset 9 used for measurement occlusions.

at 100 Hz. Reflective markers are centered on the top of each landmark cylinder so that

landmark positions are also recorded. Vicon claims that the accuracy of their tracking

system is on the order of 1 × 10−4m, and a study (on an older system) [105] appears

to support this claim. However, for the workspace used in producing the datasets, we

believe that positional accuracy is on the order of 1× 10−3m due to the specific configu-

ration of the cameras in the workspace, as well as the ability of the Vicon system to track

numerous moving bodies simultaneously. Occasionally, the Vicon system fails to identify

a robot from its constellation of markers. The log entries of these occasions (identifiable

by observing zero values for all position and rotation components) have been conveniently

removed from the dataset. In rare occasions, the Vicon system will also make an error
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fitting the proper model to the constellation of markers representing a robot. These

instances (detectable by physically impossible changes in position and orientation) have

also been removed from the groundtruth data. Since our datasets are in 2d, position

information in the global z direction, as well as body pitch and roll angles, have been

excluded.

Time Synchronization

A Network Time Protocol (NTP) daemon is used to synchronize the clocks between

the computers and each robot, as well as the groundtruth data logging computer. The

performance of the NTP daemon is checked prior to the collection of each sub-dataset.

For each sub-dataset, the average error reported by the NTP daemon on each computer

is on the order of 1×10−3s, while the maximum error is on the order of 1×10−2s. Based

on this, we consider the clocks on all computers to be synchronized. Timestamps are

applied to all odometry data, range and bearing measurements, groundtruth data, and

camera images. We have also accounted for delays in logging measurements due to image

processing time.

3.5.2 Data Usage

In validating our decentralized cooperative SLAM algorithm with the hardware dataset,

we imposed communication range limits on the robots by using their groundtruth po-

sitions. We also limited communication intervals to every 0.5s (i.e., robots waited for

0.5s between exchanging knowledge sets using (2.3) and (2.4)). The observation range,

robs, was also limited to 3m by ignoring measurements that have a greater range. We

validated our algorithm on each of the sub-datasets. Each validation trial is considered

to be completed when we have processed all the measurement data available.

Similarly to the validation of our decentralized cooperative localization algorithm in

Chapter 2, the EKF was used again as the filtering method in our decentralized cooper-

ative SLAM algorithm for estimating robot poses and landmark positions. The motion

and measurement models, (2.6, 2.7, 2.8), presented previously in Section 2.5.1, were used

in propagating and updating the estimate mean and covariance. Calibration data with

groundtruth information were collected separately from the hardware dataset for the

purpose of determining the noise parameters in the motion and measurement models.

Using groundtruth information, we determined the errors between velocity commands

and actual velocities. Similarly, we examined the errors between groundtruth-predicted

measurements and the actual measurements. From the error statistics, we adjusted for
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biases in our inputs and measurements, and determined the covariance associated with

each noise parameter. Due to estimator inconsistency with the EKF [106], we examined

the normalized estimator error squared normalized-estimator-error-squared (NEES) using

data separate from our experimental dataset. The covariances for input and measure-

ment noises were inflated until a satisfactory level of estimator consistency was achieved.

This gave us the following values:

εk ∼
(

0,

[
5.075 vi,k

2 0

0 0.345
(
rad
s

)2
])

, δk ∼
(

0,

[
0.0215 m2 0

0 0.01 rad2

])

In order for us to focus on the state estimation aspect of decentralized cooperative SLAM,

we performed data association using barcode identification (i.e., we assumed known data

association). Note, however, that our framework allows for the implementation of other

data association techniques if data association is unknown. We will examine the topic

of data association in more detail in Chapter 4. In SLAM, the system state needs to be

augmented in the estimator when a new landmark is observed. The augmented state of

the system can be partitioned as[
x′k xm,k

]T
=
[
xj,k xi,k xm,k

]T
,

where x′k is the state of the system before augmentation, and xm,k is the state of the newly

observed landmark. The state x′k can be further partitioned, such that xi,k represents the

state of the robot that observed the new landmark, and xj,k represents all other states

in the system before augmentation. The state of the new landmark is defined as

xm,k =

[
xm,k

ym,k

]
= f(xi,k,y

m,i
i,k ) =

[
xi,k

yi,k

]
+

[
rm,ii,k cos

(
θi,k + φm,ii,k

)
rm,ii,k sin

(
θi,k + φm,ii,k

)] ,
where ym,ii,k =

[
rm,ii,k , φ

m,i
i,k

]
is the measurement. If we represent the covariance of x′k as

Σ′ =

[
Σj,j Σj,i

Σi,j Σi,i

]
,

then the covariance matrix for the augmented system becomes
Σj,j Σj,i Σj,iFx′

k

T

Σi,j Σi,i Σi,iFx′
k

T

Fx′
k
Σi,j Fx′

k
Σi,i Fx′

k
Σi,iFx′

k

T + Fym,i
i,k

QkFym,i
i,k

T

 ,
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where,

Fx′
k

=
∂f

∂x′k
, Fym,i

i,k
=

∂f

∂ym,ii,k

,

and Qk is the covariance for the measurement noise 6.

3.6 Performance Analysis

The communication range is an important factor to consider when we interpret the results

from our decentralized estimator. As communication range increases, we can expect the

percentage of time that the network is fully connected to also increase. Furthermore,

we can expect that robots have more opportunities to communicate with each other.

For each of the sub-dataset, the percentage of time that the network is fully connected

is shown in Fig. 3.13. The zero-to-one transition phenomenon observed in the figure is

typical for a fixed-radius-random-graph-model [85], which we are using for generating our

robot network. We have indicated on the figure the data that correspond to sub-dataset

1 of our experiments, as we will be examining the performance of our decentralized

estimator for this test in detail. We picked this test in particular because it displayed

the lowest percentage of full connectivity time for all communication range limits out of

all the sub-datasets (i.e., sub-dataset 1 is the worst-case).

We will begin by examining the results from test 1 in detail. In particular, we will

look at robot 1’s estimates. Detailed results from the other 4 robots are similar to those

of robot 1 and are not shown. Fig. 3.14 shows the result of our decentralized cooperative

SLAM algorithm at 30 minutes into test 1. In this case, the communication range was

limited to 2m, resulting in the network being fully connected only 21% of the time.

Fig. 3.15 displays the memory usage of robot 1 in running the decentralized cooper-

ative SLAM algorithm on sub-dataset 1, for the cases where the communication range

limit is limited to 1m, 2m, and 3m. Referring to Fig. 2.10, these cases correspond to

0.6%, 20.7%, and 52.7% of full network connectivity, respectively. Fig. 3.15 also shows

the hypothetical memory usage of robot 1, had it never applied the Markov property.

In using our decentralized cooperative SLAM algorithm, we are able to limit memory

usage because our algorithm makes use of the Markov property. Temporary increases

in memory usage are caused by the loss of connectivity to other robots in the network

(i.e., Robot 1 needs to retain information since its last partial checkpoint occurrence

time). These increases are followed by sharp decreases, which signal that Robot 1 has

6Refer to [107] for a more in-depth explanation of state augmentation in SLAM.
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Figure 3.13: Percentage of time when the network is fully connected as a function of
communication range limit in each dataset.

applied the Markov property (i.e., Robot 1 has detected a new partial checkpoint). Note,

however, that decreases in memory usage do not necessarily imply that the network is

fully connected. For the case where rcomm = 1m, the network is only fully connected

0.6% of the time. Yet, Robot 1 is still able to occasionally apply the Markov property

because information from other robots can be relayed. As the communication range limit

increases, we can see that memory usage decreases, and the Markov property is applied

more frequently. This is because robots have more opportunities to communicate with

each other as communication range limit increases. Similar trends in memory usage are

observed for all other robots, and in all other tests.

Fig. 3.16 shows the amount of information communicated with robot 1 in test 1 for

cases with different communication range limits. The amount of information commu-

nicated remains relatively low for most timesteps in all cases. Instances where there is

a significant increase in the amount of information communicated indicate that robot 1

has just re-established connection with one or more robots (i.e., the robots are updating

each other with the latest information in their knowledge sets). As the communication

range limit decreases, robots are more likely to lose connection with other robots and

experience longer durations of disconnection. This explains why more information is

exchanged when communication is re-established.

We will compare the performance of our algorithm against that of the centralized

EKF-SLAM algorithm. In order for the centralized estimator to work, we allow it to cheat
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Figure 3.14: A graphical representation of the results from sub-dataset 1 after 1800s.
The ellipses over all robots and landmarks are projections of the decentralized estimate
calculated by Robot 1 (the red robot). The communication range was limited to 2m, and
the observation range was limited to 3m.

by ignoring the communication constraints (i.e., the robot network is fully connected at

all times for the centralized estimator). Figs. 3.17, 3.18, and 3.19 are a collection

of graphs showing several components of robot 1’s estimate error for the cases where

the communication range limit is limited to 1m, 2m, and 3m. The components shown

include robot 1’s estimate error of its own x-position, robot 1’s estimate error of robot 3’s

x-position, and robot 1’s estimate error of a landmark’s x-position. These components

shown are representative of a robot’s estimate error of its own pose (for which odometry

information is always available), a robot’s estimate error of another robot’s pose (for

which odometry data are not always available), and a robot’s estimate error of a landmark

position. In each of the plots, we also compare with the centralized estimator error. It

is important to remember that we are allowing the centralized estimator to cheat by

ignoring the communication restrictions. The uncertainty regions shown on each plot are

projections of the 95% confidence ellipsoid for the full-state decentralized estimate (i.e.,

including all robots and landmarks). The grey areas in the plots indicate the timesteps

at which partial checkpoints were detected. In other words, these are instances when

robot 1 is able to obtain centralized-equivalent estimates. However, note that what is
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Figure 3.15: Memory usage of robot 1 in test 1.

shown is the existence of partial checkpoints at the indicated timesteps. The occurrence

time of these partial checkpoints may be delayed depending on the network connectivity.

Hence, even if partial checkpoint existence is detected, the estimate shown may still be

a temporary estimate.

In Fig. 3.17 and 3.19 , we can see that robot 1’s self estimate and its estimate of

a landmark match closely with the centralized state estimates, even in the rcomm = 1m

communication range limit case where the network is only fully connected 0.6% of the

time. Larger differences can be observed between the centralized and decentralized for

robot 1’s estimate of robot 3’s x-position in Fig. 3.18. Instances of larger differences

occur due to the loss of communication between robot 1 and 3. During this time, robot

1 assumes the last known velocity of robot 3 to calculate an estimate. However, this

estimate is only temporary as discussed in Section 3.4. The difference between the

decentralized and centralized estimate decreases eventually, when robot 1 communicates

with robot 3 again, or obtains information of robot 3 through another robot. As the

communication range limit increases, the duration and frequency of communication loss

between robot 1 and robot 3 decrease. This leads to smaller differences observed between

the decentralized and centralized estimates. Estimation errors that are similar to the

above figures are observed in the state estimates of the other robots. Note here that we

cannot expect the decentralized and centralized estimates to be the same unless a partial

checkpoint occurs at the latest timestep (i.e., if a robot communicates with all other

robots at the current timestep). In all other cases, the partial checkpoint occurrence
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Figure 3.16: The amount of information exchanged with robot 1 in test 1.

time (i.e., the time of the centralized-equivalent estimate) is delayed, and we need to use

a temporary estimate for the current timestep.

We will now turn our attention to looking at the overall results from all the datasets.

Again, we tested our decentralized cooperative SLAM algorithm using communication

range limits of 1m, 2m, and 3m. Each data point in Fig.3.20 corresponds to either the

average memory use by all robots (red circles) or the maximum memory use out of all

robots (blue squares) in a particular test, under a particular communication range limit.

A line of best fit is also plotted for both average memory use and maximum memory use

to illustrate the general trend of the data. We can observe that as communication range

decreases (or as the percentage of time that the network is fully connected increases),

both average and maximum memory use decrease. This corresponds with the trend

observed in Fig. 3.15. To reiterate, this trend is due to the robots applying the Markov

property more frequently as communication range limit increases.

Fig. 3.21 shows the average amount of information communicated between robots

during each communication interval (every 0.5s), as well as the maximum amount of

information communicated out of all robots. Again, each data point corresponds to a

particular test and is restricted to a particular communication range limit. The average

amount of information communicated remains low regardless of the percentage of time

that the network is fully connected. The maximum amount of information communicated

increases as the percentage of time that the network is fully connected decreases. The

reason for this, as explained previously, is because robots are likely to lose connection
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(a) Estimate of its own x-position, rcomm = 1.

(b) Estimate of its own x-position, rcomm = 2.

Figure 3.17: Robot 1’s decentralized estimate of its own x-position at various communi-
cation range limits.
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(c) Estimate of its own x-position, rcomm = 3.

Figure 3.17: Robot 1’s decentralized estimate of its own x-position at various communi-
cation range limits.

(a) Estimate of robot 3’s x-position, rcomm = 1.

Figure 3.18: Robot 1’s decentralized estimate of another robot’s x-position at various
communication range limits.
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(b) Estimate of robot 3’s x-position, rcomm = 2.

(c) Estimate of robot 3’s x-position, rcomm = 3.

Figure 3.18: Robot 1’s decentralized estimate of another robot’s x-position at various
communication range limits.
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(a) Estimate of a landmark’s x-position, rcomm = 1

(b) Estimate of a landmark’s x-position, rcomm = 2

Figure 3.19: Robot 1’s decentralized estimate of the x-position of a landmark at various
communication range limits.



Chapter 3. Decentralized Cooperative SLAM 99

(c) Estimate of a landmark’s x-position, rcomm = 3

Figure 3.19: Robot 1’s decentralized estimate of the x-position of a landmark at various
communication range limits.

with other robots and experience longer duration of disconnection as the communication

range limit decreases. These observations are consistent with the results in Fig. 3.16.

Although Fig. 3.21 shows that the amount of information communicated can become

very high when the communication range limit is low, this is only the case if robots have

to update each other with the newest information within one communication interval.

In reality, robots are usually within communication range of each other over multiple

communication intervals. Hence, the exchange of information could be spread out over

this duration.

Next, we will look at the differences between the decentralized and centralized esti-

mates in all 8 tests. Fig. 3.22a-3.22c show the root-mean-squared (rms) differences be-

tween the decentralized and centralized x-position estimates, ex,rms, y-position estimates,

ey,rms, and θ-orientation estimates, eθ,rms, respectively. In each plot, we also distinguish

between robots’ estimates of themselves (red circle), robots’ estimates of all other team-

mates (blue square), and robots’ estimates of all landmarks (black diamond). Lines of

best fit are plotted to provide a sense of the general trends in the data. These trends are

consistent with what was observed in the detailed results from test 1 presented earlier.

In general, for a robot’s decentralized estimates of its own pose, there is very little

difference compared to the centralized estimates. Even as communication range limit de-
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Figure 3.20: Average and maximum memory usage as a function of the percentage of
time that the network is fully connected.

creases, the differences between the decentralized and centralized estimates only increase

slightly. This is because a robot’s own odometry and measurements are always known.

The increasing differences between the decentralized and centralized self-estimates with

decreasing percent connectivity can be explained by the reduced chance for a robot to

obtain measurements from other robots as the communication range limit decreases.

For a robot’s estimates of other robots’ poses, there is on average a greater differ-

ence between the centralized and decentralized estimate compared to the error in its

self-estimate. This is because the latest odometry data from other robots are not always

available for a robot’s current state estimate. Furthermore, this difference becomes larger

as the communication range limit decreases since the opportunities for communication

between robots also decrease. Note, however, that the current state estimate is tempo-

rary and can be updated when more information becomes available. Our decentralized

cooperative SLAM algorithm ensures that the centralized-equivalent estimate can be

obtained later (when a partial checkpoint is detected).

For landmarks, the average differences between the decentralized and centralized es-

timates follow a similar trend to the robots’ self-estimates. The differences are relatively

small because landmarks are static (i.e., they do not have odometry data), and are mainly

due to a robot not having the latest measurements from other robots. This is an impor-

tant point, as it indicates that a robot can retain a good estimate of its own state and

the location of all landmarks even when network connectivity is sparse. This is useful to
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Figure 3.21: Average and maximum amount of information communicate between robots
as a function of the percentage of time that the network is fully connected.

know should robots need to perform path planning in the workspace.

As we have mentioned in Section 2.5.2, computational, storage. and communication

complexities still remain the main limitation of our approach in comparison to other

cooperative SLAM methods. However, of the methods that can operate in sparsely-

communicating networks, our approach is the most accurate in the sense that it is the

only one that can produce the centralized-equivalent estimate (even when the network is

never fully connected). One additional limitation to our approach is that we require the

initial pose estimates to be known (in a common reference frame). Approaches such in

[96], [97] and [98] do not have this requirement, and rely on map alignment algorithms

for merging estimates when robots encounter each other. To reiterate, these approaches

can produce inconsistent estimates.

3.7 Summary

In this chapter, we posed the centralized-equivalent decentralized cooperative SLAM

problem, where it is necessary for all the robots in a team to obtain centralized-equivalent

estimates of known landmark positions and all robot poses, while the communication

network is never guaranteed to be fully connected.

In developing our decentralized cooperative SLAM algorithm, we generalized the con-

cepts of a checkpoint and a partial checkpoint, making them applicable to both the de-

centralized cooperative localization problem, and the decentralized cooperative SLAM
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(a) x-position differences.

(b) y-position differences.

Figure 3.22: The rms differences between the decentralized and centralized estimate for a
robot’s self-estimate, estimates of teammates, and estimates of landmarks, as a function
of the percentage of time that the network is fully connected.
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(c) θ, orientation, differences.

Figure 3.22: The rms differences between the decentralized and centralized estimate for a
robot’s self-estimate, estimates of teammates, and estimates of landmarks, as a function
of the percentage of time that the network is fully connected.

problem. These events identify when all robots and when a single robot can obtain the

centralized-equivalent estimate of the system, respectively. The generalization is impor-

tant as it allows us to use theorems previously developed for the decentralized cooperative

localization problem in Chapter 2. Furthermore, we proved that it is necessary in decen-

tralized cooperative SLAM for each robot to initially know the total number of robots in

the network. This requirement on initial knowledge is not necessary for the cooperative

localization case but is required in decentralized cooperative SLAM. Although this may

seem somewhat restrictive, it is necessary for ensuring that the centralized-equivalent

estimate is obtainable.

To validate our decentralized cooperative SLAM algorithm, we created an extensive

hardware experiment dataset. Using this, we were able to compare the results from

our algorithm against those from a centralized estimator (which we allowed to cheat by

ignoring communication constraints), and evaluated the performance of our algorithm

under different communication range limits. Our results show how memory usage is

limited in our algorithm due to use of the Markov property. The results also show that

the centralized-equivalent estimate can always be recovered after a period of poor network

connectivity. In terms of estimation accuracy, our overall results show that a robot’s

estimate of its own pose and the position of landmarks are close to the centralized estimate

even with a low percentage of time in which the network is fully connected. Furthermore,
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the accuracy of a robot’s estimate of another robot depends on the percentage of time

in which the network is fully connected.

One aspect of SLAM that we only touched lightly upon in this chapter is the problem

of data association. That is, determining with which robot or landmark a measurement

corresponds with. This task is important as improper data association often leads to

a divergence between the estimate and the actual robot and landmark states in most

SLAM algorithms (even single robot ones). This can then lead to a unrecoverable failure

in the localization and mapping system [107]. In validating our decentralized cooperative

SLAM algorithm in this chapter, we made the task of data association easy by allowing

robots to use the barcode identification numbers on each robot and landmark. We also

claimed that our algorithm will still work if we assume unknown data association. How-

ever, the quality of the resulting estimate will depend largely on the data association

method used, and how well it does in correctly assigning correspondences. In practice,

it is useful to keep track of multiple data association hypotheses [108] as a preventive

measure against data association failures (i.e., a bad hypothesis can be discarded and

we can continue to perform state estimation using the remaining hypotheses). However,

maintaining multiple hypotheses also increases computational complexity (as we are es-

sentially running a separate filter for each hypothesis), and memory use. In the following

chapter, we will examine how data association hypotheses can be distributed amongst a

team of robots to make better use of the computational resources available in a network

of robots.



Chapter 4

Distributed and Decentralized

Cooperative Simultaneous

Localization and Mapping

Competition has been shown to be useful up to a certain

point and no further, but cooperation, which is the thing

we must strive for today, begins where competition leaves

off.

Franklin D. Roosevelt (1882–1945)

former president of the U.S.A.

In this chapter, we will examine how a robot team can make better use of the com-

putational resources available in performing state estimation1. Previously in Chapter 3,

we identified that data association (i.e., associating a particular measurement with the

correct robot or landmark) is an important aspect in SLAM, and that it is critical for

measurements to have the correct correspondences. The consequence of a poor data as-

sociation is estimator divergence [107], and this type of failure essentially causes a robot

to be unable to localize and to have a map that is no longer usable. To reduce the chance

of this occurring, multiple estimates using different data association hypotheses can be

maintained [108] so that we have the opportunity to discard and replace estimates made

with bad data associations. The cost of this, however, is higher computational complexity

and memory usage. With a multi-robot system, we have potentially more computational

1The work this chapter was presented at the IEEE International Conference on Robotics and Au-
tomation 2011 [109].
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resources that can be used for maintaining multiple estimates because each robot is

equipped with its own computer. In other words, we can potentially distribute the work

amongst all the robots. However, this is a complex task under the assumption that the

communication network is never guaranteed to be fully connected. At this point, it will

be useful to review the following terms:

Definition 2: A decentralized multi-robot system is a group of robots in which the

computation for a task can be performed by one or more robot in the team.

Definition 3: A distributed multi-robot system is a group of robots in which the com-

putation for a task is divided amongst the robots in the team.

Although there have been numerous publications on cooperative localization, and co-

operative SLAM, few have considered a combined decentralized and distributed approach.

Previously in Chapter 2 and 3 we reviewed some of the more notable advances on these

two problems. These include the work by Roumeliotis and Bekey [55], who performed

distributed multi-robot localization by decomposing the EKF into multiple filters that can

perform the prediction step of the EKF locally on each robot. More recently, Nerurkar

et al. [58] performed cooperative localization using a distributed MAP estimator. Schizas

et al. [110] performed distributed estimation based on reduced-dimensionality observa-

tions from a sensor network, where the measurements are processed by a central node.

Having a fully connected network is a key requirement for the works above. In contrast,

we do not make any assumptions on network connectivity. Most closely related to the

work in this chapter is the study by Ko et al. [96], who performed multi-robot SLAM in

a non-fully connected network. However, the centralized-equivalent estimate cannot be

obtained unless the network is fully connected.

Our idea for distributing the computations for multiple estimates with different data

association hypotheses is illustrated in Fig. 4.1. In the previous chapters, we assumed

known data association. Therefore, robots do not need to maintain multiple estimates

as the centralized-equivalent estimates that they obtain are always calculated based on

correct correspondences. Hence, as shown in Fig. 4.1a, each robot will calculate their

own centralized-equivalent estimate, bel{Xk}, when they have received the necessary

information from other robots (i.e., when a partial checkpoint exists). Note that it is

also possible for a robot to communicate a centralized-equivalent estimate that it has

calculated to another robot; in fact, we rely on this to allow robots to apply the Markov

property without having to worry what other robots know at the time.

Suppose now that we want to maintain multiple estimates with different data as-
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bel{Xk}
Robot 1 

Robot 2 

Robot 3 

u3,1:k, Y3,1:k

u2,1:k, Y2,1:k

u1,1:k, Y1,1:k

bel{Xk}

bel{Xk}

(a) Decentralized approach with
known data association

Robot 1 

Robot 2 

Robot 3 

bel{Xk}1

bel{Xk}2

bel{Xk}3

bel{Xk}∗

bel{Xk}1

bel{Xk}2

bel{Xk}3

bel{Xk}1

bel{Xk}2

bel{Xk}3

u3,1:k, Y3,1:k

u2,1:k, Y2,1:k

u1,1:k, Y1,1:k

bel{Xk}∗

bel{Xk}∗

(b) Decentralized and non-distributed approach,
maintaining multiple estimates using different
data association hypotheses.

Robot 1 

Robot 2 

bel{Xk}1

bel{Xk}2u2,1:k, Y2,1:k

u1,1:k, Y1,1:k

Robot 3 

bel{Xk}3u3,1:k, Y3,1:k

Estimate may be 
communicated 

between robots 

bel{Xk}∗

bel{Xk}∗

bel{Xk}∗

(c) Decentralized and distributed approach, maintaining
multiple estimates using different data association hy-
potheses.

Figure 4.1: Comparing distributed and non-distributed approaches. Same-coloured boxes
represent the quantities obtained by a certain robot. Solid lines show the dependencies
required in obtaining an estimate. A dashed line indicates that an estimate can be
obtained by the sharing of informations. Note that in (b) and (c), we must evaluate,
bel{Xk}1, bel{Xk}2, bel{Xk}3, which are estimates based on different sets of data associ-
ation hypotheses. Only after evaluating these intermediate products can we obtain the
centralized-equivalent estimate.

sociation hypotheses using our existing decentralized approach. Again, our motivation

here is to reduce the chance of estimator divergence and catastrophic failures by relying

on more than just one estimate. When a robot acquires the necessary information to

calculate the centralized-equivalent estimate (i.e., when a partial checkpoint exists for

that robot), it will want to generate a number of different estimates. For illustrative

purposes, suppose a robot maintains three different estimates based on different sets of

data association hypotheses, shown as bel{Xk}1, bel{Xk}2, bel{Xk}3 in Fig. 4.1b. From

these estimates, the robot will select the best estimate, based on some defined metric,

as the centralized-equivalent estimate, bel{Xk}∗. Since each robot needs to repeat this

when they detect a partial checkpoint, there will be redundant calculations, and there
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will exist multiple copies of the same estimates on each robot.

To reduce the amount of redundancy, we want to have the calculations of estimates

with different data association hypotheses distributed amongst the team of robots, as

shown in Fig. 4.1c. When a partial checkpoint is detected by a robot, it will select

a subset of estimates to calculate. For illustrative purposes, in Fig. 4.1c, each robot

calculates one estimate, which is based on a different set of data association hypotheses

than the estimates produced by its teammates. When each robot has completed their

share of the calculations, they will share their estimates with each other. From those,

they will select one (based on some defined metric) as the centralized-equivalent estimate.

With the distributed approach in Fig. 4.1c, robots need to ‘synchronize’ twice to

obtain the centralized-equivalent estimate. The first time is to acquire the information

to perform the calculations for estimates based on different data association hypotheses,

and the second time is to share their calculated estimates so that one can be selected as the

centralized-equivalent estimate. Hence, in comparison to the non-distributed approach

(in Fig. 4.1b, where robots only need to synchronize once), we are reducing redundancy

by adding a second layer of information synchronization.

The notions of a checkpoint and a partial checkpoint have already been defined from

previous chapters for information synchronization purposes. The existence of a partial

checkpoint enables a robot to know when it has gathered the information required to cal-

culate a centralized-equivalent estimate. In Chapter 2, we used the notions of checkpoint

and partial checkpoint for the decentralized cooperative localization problem. Then in

Chapter 3, we extended the application of these concepts to the decentralized cooperative

SLAM problem. In this chapter, we want to again use the notion of a checkpoint and

a partial checkpoint and examine how they can facilitate the distribution of estimate

calculations based on different data association hypotheses. However, as noted above,

we need a second layer of synchronization to produce the centralized-equivalent estimate.

Hence we will introduce (later in this chapter) a couple of new notions, which are similar

to a checkpoint and a partial checkpoint. Following our previous development approach,

we will first examine how the evaluation of multiple estimates based on different data as-

sociation hypotheses can be distributed in a network from a global perspective. Then we

will do the same from the local perspective of a robot, which will lead us to the develop-

ment of our distributed and decentralized cooperative SLAM algorithm. This algorithm

(which we will present in Section 4.3.1), maintains the property of allowing all robots

to obtain the centralized-equivalent estimate whenever possible, while assuming that the

network for communication is never guaranteed to be fully connected. In such a sparse

network, a robot may not always have the latest odometry and measurements from other
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robots. Our approach allows robots to obtain a temporary (localization and map) esti-

mate at the current timestep using information available locally, but we also ensure that

the centralized-equivalent estimate can always be recovered by all robots at a later time.

Additionally, we again do not require a robot to keep track of what other robots know

when it applies the Markov property to discard past information. For validating this new

algorithm, we will use the hardware experiment dataset that we created for validating

the decentralized cooperative SLAM algorithm, and assume unknown data associations

for the measurements. As part of the evaluation, we will compare the difference between

a distributed, and a non-distributed approach. Again, we are motivated by the better

utilization of computational resources available in the network of robots.

4.1 Mathematical Formulation

We will use the same general system model for our multi-robot system as in Chapter 3:

xi,k = g (xi,k−1,ui,k, εk) , ∀i ∈ N
xm,k = xm,k, ∀m ∈M
yj,ii,k = h (xi,k,xj,k, δk) , ∀j ∈ N, dj,ik ≤ robs

ym,ii,k = hm (xi,k,xm,k, ψk) , ∀m ∈M, dm,ik ≤ robs

where for timestep k:

xi,k (i ∈ N) represents the state (pose) of robot i

xm,k (m ∈M) represents the state (position) of the stationary landmark m

ui,k represents the odometry information of robot i

g(·) is the state transition function for the robots

εk represents the process noise

yj,ii,k represents the measurement of robot j with respect to robot i

ym,ii,k represents the measurement of landmark m with respect to robot i

h(·) is the robot measurement function

hm(·) is the landmark measurement function

δk is the robot measurement noise

ψk is the landmark measurement noise

dj,ik is the distance between robot i and robot j

dm,ik is the distance between robot i and landmark m

robs is the measurement range limit
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We will also be using the sets Xk, and Yi,k in our mathematical development. To review,

Xk = {xi,k,xm,k|i ∈ N,m ∈Mk},

represents the set of all states known to exist at timestep k, where Mk is the set of

landmarks that has been observed by at least one robot up to time k.

Yi,k = {yj,ii,k,ym,ii,k |j ∈ N,m ∈M,dj,ik ≤ robs, d
m,i
k ≤ robs}

represents the set of measurements from robot i to all robots and landmarks within

observation range. For communication, we can again assume that either of the modes

illustrated in Fig. 2.1 can be used. That is, we can assume that a robot can communicate

with any robot with which it is currently connected, or we can assume that a robot can

only communicate with other robots within its own communication range.

Previously, we have provided an expression for the centralized belief over Xk. Here, we

will define the centralized belief over a time interval k ∈ [k1, . . . , k2], where 0 ≤ k1 ≤ k2,

which is represented by a probability density function, p(·):

bel (Xk1:k2) := p (Xk1:k2|bel (X0) , {ui,1:k2 , Yi,1:k2|i ∈ N}) ,

which is conditioned on the initial belief, bel (X0), past odometry data, and past range and

bearing measurements. Note that we can obtain the belief over one timestep, bel (Xk), if

we let k1 = k2 = k. The reason for expressing the belief over a time interval will become

apparent as we develop our distributed and decentralized cooperative SLAM algorithm.

As a hint, this is related to the second information synchronization event that needs to

occur with a distributed approach.

We will continue to use the knowledge set, Si,k, to keep track of the information

available to each robot. The update rules for the knowledge sets, as defined by (2.3)

and (2.4) also remain the same as before. As we have established in Chapter 3, in

decentralized cooperative SLAM we need to ensure that all robots initially know the

total number of robots in the team. This is necessary to ensure that all robots can

obtain the centralized-equivalent estimate. Hence, a robot will detect partial checkpoints

based on all the robots in the team.

If we apply the Markov property (to allow for recursive state estimation, reduced

computational cost, and memory usage), we can express the centralized belief as

p (Xk1:k2|bel (Xk1−1) , {ui,k1:k2 , Yi,k1:k2|i ∈ N}) .
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Note here that the centralized belief is still expressed over a time interval. Since we

are operating in a sparsely-communicating robot network, the Markov property can only

be applied once a robot obtains sufficient information regarding other robots through

communication (i.e., when the robot can calculate the centralized-equivalent estimate).

Furthermore, each robot must ensure that other robots will no longer require any past

information that will be discarded when applying the Markov property. In decentralized

cooperative SLAM, a robot can apply the Markov property when it detects the existence

of a checkpoint. For distributed and decentralized cooperative SLAM, we need to make

some changes and introduce some additional concepts to handle the need for double

synchronization, as illustrated in Fig. 4.1.

With the non-distributed decentralized cooperative SLAM algorithm, each robot is

responsible for obtaining their own estimate of the system. This inevitably causes re-

dundancy as robots make the same calculations for the same estimate (Fig. 4.1a). This

redundancy becomes more profound if we want to maintain multiple estimates based

on different data association hypotheses (Fig. 4.1b). It is therefore desirable and com-

putationally advantageous to reduce this redundancy by distributing the computation

amongst the robots in the team. We want to enable robots to calculate state estimates

based on different data association hypotheses, which can be evaluated in parallel across

the robot network (Fig. 4.1c). For instance, if we use a PF [53], each robot can con-

tribute by handling the weight calculations for a subset of particles (i.e., particles may

have different data association hypotheses). We define the computations performed by a

robot towards a centralized-equivalent state estimate as follows:

Definition 6: The distributed contribution, bel (Xk1:k2)
i, is the computation performed

by robot i for the centralized-equivalent estimate bel (Xk1:k2), and it is dependent on the

quantities {bel (Xk1−1) ,ui,k1:k2 , Yi,k1:k2|i ∈ N}.

Note here that each robot’s distributed contribution requires the same input (i.e., the

same previous estimate, with the same odometry and measurement data). However, a

random selection of data association hypotheses are used for each distributed contribu-

tion. Hence, two distributed contributions are different unless the exact same set of data

association hypotheses are selected. Note also that the same inputs that are used to cal-

culate a distributed contribution allows us to obtain the centralized-equivalent estimate,

bel (Xk2), in our previous non-distributed approach. From all robots’ distributed contri-

butions, we want to be able to select one (which we think did the best job in assigning

proper measurement correspondences) as the centralized-equivalent estimate. For this
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purpose, we implicitly associate a metric, si, with each distributed contribution:

bel (Xk1:k2)
i ← {bel (Xk1:k2)

i , si}.

The metrics are used in determining how distributed contributions are used to produce

a consensus estimate:

Definition 7: The consensus estimate, bel (Xk1:k2)
∗, is equivalent to the centralized-

equivalent estimate bel (Xk1:k2), and is only produced by the distributed contributions

from all robots through an arbitration function fa(·) that is known to all robots a priori:

fa : {bel (Xk1:k2)
i |i ∈ N} 7→ bel (Xk1:k2)

∗ (4.1)

As an example, the distributed contribution bel (Xk1:k2)
i may represent the estimate

produced by robot i using a certain set of data association hypotheses, with the metric si

representing the product of the likelihoods of all the measurements used in the estimate.

The arbitration function, fa(·), can be defined such that when the distributed contribu-

tions from all robots have been obtained, the one with the highest metric is selected as

the consensus estimate, bel (Xk1:k2)
∗.

Note that the arbitration function is general, and can encompass the case where

distributed computation is unnecessary (i.e., when all robots consider the same data

association hypothesis as in Fig. 4.1a, and a robot’s distributed contribution is just

interpreted as the centralized-equivalent estimate):

fa(bel (Xk1:k2)
i) = bel (Xk1:k2)

i = bel (Xk1:k2)
∗ , i ∈ N.

Our objective in this chapter is to determine how cooperative SLAM can be solved

as a recursive filtering problem in a distributed and decentralized fashion. Furthermore,

this needs to be done in a dynamic and sparsely-communicating robot network that is

never guaranteed to be fully connected. Additionally, we want all robots to obtain the

(centralized-equivalent) consensus estimate (of all robots and known landmarks) when-

ever possible.

4.2 Operating in a Dynamic and Sparse Network

In the previous chapter, we presented a solution for decentralized cooperative SLAM

where robots are able to compute the centralized-equivalent estimate in a non-distributed
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manner while operating in a network that is never fully connected. Distributing the so-

lution in a sparse network creates a more complex situation because not only do robots

have to detect when they have sufficient information to calculate their distributed contri-

butions, they also need to reach a consensus (centralized-equivalent) estimate, bel (Xk)
∗

(recall the double synchronization requirement shown in Fig. 4.1c). In our theoretical

development, we will take a similar approach to Chapter 2 and Chapter 3, and first ex-

amine our robot network from a global perspective (i.e., that of an outside observer). We

will then examine how robots observe the network locally.

4.2.1 The Global Perspective

It is important to know when all robots are able to calculate a distributed contribution,

bel (Xk)
i, as well as the consensus estimate, bel (Xk)

∗. For the purpose of determining

when distributed contributions are obtainable by all robots, we need to first review the

definition of a checkpoint.

A checkpoint, C(kc, ke), is an event that occurs at the checkpoint time, kc, that first

comes into existence at ke, in which the knowledge set of each robot i contains for all j:

1. the previous state estimate, bel
(
xj,ks,j

)∗
, ks,j ≤ kc,

2. all the odometry and measurement data of robot j from timestep ks,j to kc.

Equivalently, a checkpoint occurs at timestep kc when Si,ke ⊇ {Sj,kc|j ∈ N} ,∀i ∈ N .

The concept of a checkpoint was used in Chapter 2 for the decentralized cooperative

localization problem, and was generalized in Chapter 3 for the decentralized cooperative

SLAM problem. The existence of C(kc, ke) indicates that all robots have the required

information in their knowledge sets to individually calculate the centralized-equivalent

estimate, bel (Xkc), using the same set of data association hypotheses. We now want to

use the concept of a checkpoint to indicate when all robots are able to obtain a distributed

contribution in a distributed approach to cooperative SLAM. That is, we want to show

that when a checkpoint exists, each robot’s knowledge up to timestep kc can be used

in potentially random-seeded processes (e.g., such as Data-Aligned Rigidity-Constrained

Exhaustive Search (DARCES) [111]) performed on each robot to obtain different dis-

tributed contributions (and the associated metric, si). Once robots have all the dis-

tributed contributions, we can then form a (centralized-equivalent) consensus estimate

using the arbitration function. To formalize the first part of this (i.e., the first of the two

synchronization requirements), we have the following theorem.

Theorem 6.1: Suppose that the knowledge sets of all robots contain a (centralized-
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equivalent) consensus estimate for some previous timestep ks (i.e., Si,ke ⊇ {bel (Xks)
∗},∀i ∈

N). In performing distributed estimation, checkpoint C(kc, ke) exists, with ks < kc ≤ ke,

if and only all robots can obtain a distributed contribution, bel (Xks+1:kc)
i, at ke.

Proof. First assume that C(kc, ke) exists. This implies

Si,ke ⊇ {bel (Xks)
∗ ,uj,ks+1:kc , Yj,ks+1:kc |j ∈ N},∀i ∈ N.

Using Definition 6, we know that all robots can calculate bel (Xks+1:kc)
i.

The reverse argument is also true if we first assume that bel (Xks+1:kc)
i is obtainable

by all robots. This implies that Si,ke contains the quantities required for C(kc, ke) to exist

for all robots i ∈ N , according to Definition 4. For an illustrated example of checkpoint

existence for distributed and decentralized cooperative SLAM, look ahead to Fig. 4.2.

Note that when C(kc, ke) exists, every robot is able to obtain the distributed contribu-

tion over the interval ks + 1 : kc. We need to remember that the distributed contribution

is obtained after communication at the current timestep. Therefore, we must wait for a

later timestep to communicate distributed contributions to other robots. We made the

estimate time interval explicit because we need to keep estimates for this entire interval

(and not just for the latest timestep). The reason for this, as we shall see in Section 4.2.2,

is for the second synchronization that needs to occur to generate the consensus estimate.

Once we obtain the consensus estimate, we will be able to apply the Markov property

to discard used information. To show when the consensus estimate is obtainable by all

robots (i.e. the second synchronization), we define a distributed checkpoint as follows:

Definition 8: A distributed checkpoint, Cd(ks, kc, kd), where ks ≤ kc < kd, is an event

that first comes into existence at kd, when ∀i ∈ N , Si,kd ⊇ {bel (Xks:kc)
j |j ∈ N}, or

Si,kd ⊇ {bel (Xks:kc)
∗}.2

When each robot has the distributed contributions from all robots, the arbitration

function, fa(·), can be used to obtain the consensus estimate.

Theorem 6.2: A distributed checkpoint Cd(ks, kc, kd) exists if and only if all robots

i ∈ N can obtain the consensus estimate bel (Xks:kc)
∗ at kd.

2Note that kc must be less than kd because after the robots have calculated their distributed contri-
butions, they must wait for the next communication interval to exchange the distributed contributions
with each other.
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Proof. First, assume that Cd(ks, kc, kd) exists. This implies that

Si,kd ⊇
{
{bel (Xks:kc)

j |j ∈ N} or

bel (Xks:kc)
∗ ,∀i ∈ N.

That is, if robots do not already have the consensus estimate, bel (Xks:kc)
∗, they can

use the arbitration function (4.1) to obtain the consensus estimate from the distributed

contributions from all robot.

The reverse argument is also true if we first assume that all robots can obtain

bel (Xks:kc)
∗. The consensus estimate can be obtained by each robot through direct

communication with another robot (i.e., Si,kd ⊇ bel (Xks:kc)
∗). It can also be obtained by

the using the arbitration function, which requires

Si,kd ⊇
{
bel (Xks:kc)

j |j ∈ N
}
.

This implies that the distributed checkpoint, Cd(ks, kc, kd), exists at kd according to

Definition 8.

To review, in order for all robots to obtain the (centralized-equivalent) consensus

estimate in distributed and decentralized cooperative SLAM, we must first detect the

existence of a checkpoint, which allows each robot to calculate a distributed contribution

(i.e., the first synchronization event). Then, we must detect the existence of a distributed

checkpoint, which enables robots to either calculate the consensus estimate by applying

the arbitration function, or to receive the consensus estimate from another robot through

communication (i.e., the second synchronization event). Fig. 4.2 provides a simple ex-

ample that illustrates this process. However, what we have shown so far is from the

perspective of an outside observer of the robot network (i.e., all communication at all

timesteps can be observed). Robots do not have this benefit of knowing all the commu-

nications that have occurred between other robots. Analogous to our previous approach

in the theoretical development of the solutions to decentralized cooperative localization

and decentralized cooperative SLAM, we will now examine how distributed estimation

can be performed by only considering the local knowledge of a robot.

4.2.2 The Local Perspective

Previously, we reused the concept of a checkpoint, and introduced the new concept of a

distributed checkpoint, which applies to all robots in the system, and require an outside
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Robot 1 

Robot 2 

Robot 3 

S1,0 ⊇ bel(X0)
∗

S2,0 ⊇ bel(X0)
∗

S3,0 ⊇ bel(X0)
∗

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

S2,7 ⊇ bel(X1:2)
∗

S3,7 ⊇ bel(X1:2)
∗

S1,4 ⊇ bel(X1:2)
1

S2,4 ⊇ bel(X1:2)
2

S3,4 ⊇ bel(X1:2)
3

S1,7 ⊇ bel(X1:2)
∗

C(2, 4) exists

Cd(1, 2, 7) exists

Figure 4.2: An information flow graph showing the existence of a checkpoint and a
distributed checkpoint. Assume that all robots initially have bel (X0)

∗ in their knowledge
sets. At k = 4, All robots are able to obtain distributed contributions for timesteps 1 to 2.
Hence, the checkpoint C(2, 4) exists at k = 4 (i.e., we can find a path on the graph from
all the nodes at k = 2 to all the nodes at k = 3). Note that the distributed contributions
are obtained after communication. Therefore, they cannot be communicated to another
robot at the same timestep in which they are calculated. At k = 7, each robot is able to
obtain the distributed contributions from all robots, and calculate the consensus estimate
by using the arbitration function. Therefore, Cd(1, 2, 7) exists.

observer to detect their existence. We will now introduce the corresponding events of a

partial checkpoint and a distributed partial checkpoint in distributed and decentralized

cooperative SLAM for a single robot. We will also explain in this section why it is

necessary to maintain distributed contributions over a time interval. Furthermore, as

part of the the second synchronization routine in the distributed approach to obtain

the consensus estimate, we will introduce the consensus rule, which must be executed

on all robots. Finally, we will show how robots can apply the Markov property without

considering the knowledge of other robots (similar to what we showed in Chapter 2 for the

decentralized cooperative localization problem). First, we should review the definition of

a partial checkpoint.

A partial checkpoint, Cp(kc,i, ke,i), is an event that occurs at the partial checkpoint

time, kc,i, that first comes into existence at ke,i, in which the knowledge set of robot i

contains for all j:

1. the previous state estimate, bel
(
xj,ks,j

)∗
, ks,j ≤ kc,

2. all the odometry and measurement data of robot j from timestep ks,j to kc.

Equivalently, a partial checkpoint occurs for robot i at timestep kc when Si,ke ⊇ {Sj,kc|∀j}.
Using this definition, we will show that the existence of a partial checkpoint for

a robot corresponds to when that robot can obtain a distributed contribution at the

partial checkpoint occurrence time (i.e., this is the first of two synchronizations that
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happen locally on a robot).

Theorem 7.1: Suppose that the knowledge set of robot i contains a consensus estimate

for some previous timestep ks (i.e., Si,ke,i ⊇ {bel (Xks)
∗}). In performing distributed

estimation, partial checkpoint Cp(kc,i, ke.i) exists, with ks < kc,i ≤ ke,i, if and only if

robot i can obtain the distributed contribution bel
(
Xks+1:kc,i

)i
at ke,i.

Proof. First assume that Cp(kc,i, ke.i) exists. This implies

Si,ke,i ⊇ {bel (Xks)
∗ ,uj,ks+1:kc , Yj,ks+1:kc∀j ∈ N}.

Using Definition 6, we know that robot i can calculate bel
(
Xks+1:kc,i

)i
. Now if we first

assume that bel
(
Xks+1:kc,i

)i
is obtainable by robot i. This implies that Si,ke,i contains

the quantities required for Cp(kc,i, ke.i) to exist for robot i, according to Definition 5.

Once again, at the existence times for these partial checkpoints, the corresponding

robot is able to use the information in its knowledge set to calculated a distributed

contribution (i.e., an estimate based on a self-chosen set of data association hypotheses).

For an examples for partial checkpoint existence, look ahead to Fig. 4.2.

Having completed its share of the work for determining the consensus estimate, a

robot now must wait for the distributed contributions from all the other robots, so it can

apply the arbitration function, fa(·), to obtain the consensus estimate (i.e., the second

synchronization event that happens locally on a robot). For this, we define the following:

Definition 9: A distributed partial checkpoint, Cd
p (ks,i, kc,i, kd,i), where ks,i ≤ kc,i < kd,i,

is an event that first comes into existence at kd,i, when Si,kd,i ⊇ {bel
(
Xks,i,kc,i

)j
,∀j ∈ N},

or Si,kd,i ⊇ {bel
(
Xks,i,kc,i

)∗}.
For the existence of a distributed partial checkpoint, we have the following theorem:

Theorem 7.2: A distributed partial checkpoint Cd
p (ks,i, kc,i, kd,i) exists for robot i if and

only if robot i can obtain the consensus estimate bel
(
Xks,i:kc,i

)∗
at kd,i.

Proof. First, assume that Cd
p (ks,i, kc,i, kd,i) exists. This implies that

Si,kd ⊇
{
{bel

(
Xks,i:kc,i

)j |j ∈ N} or

bel
(
Xks,i:kc,i

)∗ .
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If robot i does not already have the consensus estimate, bel
(
Xks,i:kc,i

)∗
, it can use the ar-

bitration function in equation (4.1) to obtain the consensus estimate from the distributed

contributions from all robots.

The reverse argument is also true if we first assume that robot i can obtain bel
(
Xks,i:kc,i

)∗
.

This consensus estimate can be obtained by robot i through direct communication with

another robot (i.e., Si,kd ⊇ bel
(
Xks,i:kc,i

)∗
). It can also be obtained by using the arbitra-

tion function, which requires

Si,kd,i ⊇
{
bel
(
Xks,i:kc,i

)j∣∣∣ j ∈ N} .
This implies that the distributed checkpoint, Cd

p (ks,i, kc,i, kd,i), exists at kd,i according to

Definition 9.

Look ahead to Fig. 4.2 again for examples of distributed partial checkpoint existence.

Not only does the existence of a distributed partial checkpoint for a robot indicate when

that robot can obtain the consensus estimate of the system, but it is also an indication of

when the Markov property can be applied. However, before we detect distributed partial

checkpoints, we need to consider the following. The existence of a partial checkpoint is

based on the local knowledge of a robot (which can be different from that of another

robot for the same timestep). Therefore, robots may have distributed contributions

that do not have matching time intervals due to different partial checkpoint occurrence

times. According to our definition of a distributed partial checkpoint, we must obtain

the distributed contributions that span the same time interval from all robots before

the consensus estimate can be generated. Intuitively, we need to do this to ensure that

we make a fair comparison when we apply the arbitration function (i.e., we are not

comparing estimates from different timesteps). Hence, some distributed contributions

may need to be truncated before the arbitration function is used to produce the consensus

estimate. This is the reason (which we have refrained from explaining in detail earlier)

for maintaining distributed contributions over a time interval. More formally, to resolve

this time interval mismatch problem, we will introduce the following rule on all robots:

Definition 10: The consensus rule is an instruction that is executed on each robot i at

time k. It dictates that if

∃j,∃m 6= j, such that Si,k ⊇
{
bel
(
Xks:ke,j

)j
, bel

(
Xks:ke,m

)m}
, ke,j > ke,m,
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then

bel
(
Xks:ke,m

)j ← bel
(
Xks:ke,j

)j
, and

Si,ke,i ←
{
Si,ke,i ∪ bel

(
Xks:ke,m

)j}− bel
(
Xks:ke,j

)j
.

In other words, the consensus rule dictates that if robot i has multiple distributed contri-

butions in its knowledge set, it will truncate them according to the distributed contribu-

tion with the earliest-ending time, and then update its knowledge set. Note that because

we are performing recursive filtering, a truncated estimate does not account for any fu-

ture measurements. Therefore, future estimates are not affected by the truncation. In

practice when we implement this rule on a robot, we can make it part of the arbitration

function. Fig. 4.3 contains the same information flow graph as in Fig. 4.2, but it shows

when each robot locally detects partial checkpoints and distributed partial checkpoints.

In this example, note that the consensus rule is applied to truncate robot 1’s distributed

contribution from bel (X1:3)
1 to bel (X1:2)

1.

S1,6 ⊇ bel(X1:2)
∗S1,4 ⊇ bel(X1:3)

1

S2,3 ⊇ bel(X1:2)
2

S3,3 ⊇ bel(X1:2)
3

Robot 1 

Robot 2 

Robot 3 

S1,0 ⊇ bel(X0)
∗

S2,0 ⊇ bel(X0)
∗

S3,0 ⊇ bel(X0)
∗

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

S3,7 ⊇ bel(X1:2)
∗

Cd
p (1, 2, 7) exists

Cd
p (1, 2, 6) exists

Cp(2, 3) exists

Cp(3, 4) exists

Cp(2, 3) exists

S2,6 ⊇ bel(X1:2)
∗

Cd
p (1, 2, 6) exists

Consensus rule is used  
to truncate this for the  
consensus estimates. 

Figure 4.3: An information flow graph showing the existence of partial checkpoints and
distributed partial checkpoints. Assume that all robots initially have bel (X0)

∗ in their
knowledge sets. At k = 3, robots 2 and 3 obtain distributed contributions for timesteps
1 to 2. Hence, the checkpoint Cp(2, 3) exists for both of them. Robot 1 is able to obtain
the distributed contribution for timesteps 1 to 3 at k = 4, hence, Cp(3, 4) exists for robot
1. We must remember that distributed contributions are obtained after communication.
At k = 6, robots 1 and 2 obtain the distributed contributions from all robots. Both
robots apply the consensus rule to truncate bel (X1:3)

1 to bel (X1:2)
1, and calculate the

consensus estimate by using the arbitration function. Therefore, Cd(1, 2, 6) exists. At
the next timestep, robot 3 also obtains the consensus estimate.

When a robot has obtained distributed contributions that have the same time interval

from all robots (i.e., when a distributed partial checkpoint exists for the second synchro-
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nization), it can use the arbitration function to generate the consensus estimate and apply

the Markov property. As we have seen previously in Chapter 2, the partial checkpoints

may come into existence at different timesteps for different robots. Similarly, distributed

partial checkpoints may come into existence at different timesteps for different robots.

Hence, not all robots will apply the Markov property at the same time. We will show in

the following theorem that all robots can still obtain the consensus estimate if a robot

discards information as it applies the Markov property. This theorem is very similar to

Theorem 3.1, previously introduced for the decentralized cooperative localization prob-

lem. The intuition here is that if a robot applies the Markov property, it means that it

has already obtained the consensus estimate. Therefore, instead of communicating the

data that were used to generate that consensus estimate, it can just pass the consensus

estimate to another robot.

Theorem 7.3: Suppose Cd(ks, kc, kd) exists. If robot i applies the Markov property at

kd,i when Cd
p (ks, kc, kd,i) exists, then Cd(ks, kc, kd) continues to exist and all robots can

still obtain the consensus estimate bel (Xks:kc)
∗.

Proof. We will start with the condition that a distributed partial checkpoint exists for

robot i:

Cd
p (ks, kc, kd,i) exists

⇒Si,kd,i ⊇ bel (Xks:kc)
∗

After applying the Markov property, robot i will no longer have the past information re-

quired to calculate bel (Xks:kc)
j. Let Q represent the robots j 6= i, for which Cd

p (ks, kc, kd,j)

exists at kd,j > kd,i and Sj,kd,j ⊇ Si,kd,i (i.e., robots for which distributed partial check-

points exist after the existence of robot i’s distributed partial checkpoint, and after com-

municating with robot i). Also, let Q = N − Q. At the distributed partial checkpoint

existence time for any robot j:

Sj,kd,j ⊇
{
{bel (Xks:kc)

m |m ∈ N} ,∀j ∈ Q
bel (Xks:kc)

∗ , ∀j ∈ Q
⇒Sj,kd,j ⊇ bel (Xks:kc)

∗ , ∀j ∈ N

Therefore, Cd(ks, kc, kd) continues to exist and all robots can still obtain the consensus

estimate bel (Xks:kc)
∗.
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Once again, Theorem 7.3 indicates that robots affected by robot i’s action of applying

the Markov property can directly receive the consensus estimate from robot i (instead of

the distributed contributions from all robots). Robots that are not affected by robot i

will use the arbitration function to obtain the consensus estimate. Therefore, robots can

apply the Markov property without considering each other’s knowledge.

Recall that due to the network topology, the timestep at which we can obtain the

centralized-equivalent estimate in decentralized cooperative SLAM may not be the cur-

rent timestep. Likewise, the timestep at which we can obtain the consensus estimate

in distributed and decentralized cooperative SLAM may not be the current timestep.

We will call this delay the centralized-equivalent estimate delay. In decentralized coop-

erative SLAM, where a robot only needs to detect the existence of a partial checkpoint,

Cp(kc,i, ke,i) (i.e., where we only synchronize once), this delay is ke,i−kc,i. For distributed

and decentralized cooperative SLAM (i.e., where we synchronize twice), where a robot

first needs to detect the existence of partial checkpoint, and then the existence of a

partial distributed checkpoint, Cd
p (ks, kc, kd,i), this delay is kd,i − kc. Furthermore, we

expect the centralized-equivalent estimate delay to be greater in distributed and decen-

tralized cooperative SLAM (because we need to synchronize twice before obtaining the

centralized-equivalent estimate).

Another type of delay what we can define is the time between which consecutive

centralized-equivalent estimates are obtained. We call this the existence delay. For the

non-distributed decentralized cooperative SLAM case, this is the time between two con-

secutive instances of partial checkpoint existence. In other words, if Cp(kc1,i, ke1,i) exists

right before Cp(kc2,i, ke2,i) exists, the existence delay is ke2,i−ke1,i. In distributed and de-

centralized cooperative SLAM, this delay is the time between two consecutive instances

of distributed partial checkpoint existence. Hence, if Cd
p (ks1,i, kc1,i, kd1,i) exists right be-

fore Cd
p (ks1,i, kc1,i, kd1,i) exists, then the existence delay is kd2,i − kd1,i. In general, we

can expect the existence delay to be greater in distributed and decentralized cooperative

SLAM (again due to the need to synchronize twice).

To summarize, to examine how a single robot can obtain the (centralized-equivalent)

consensus estimate, we reused the concept of a partial checkpoint from previous chapters.

However, in distributed and decentralized cooperative SLAM, the existence of a partial

checkpoint is used to indicate when a robot can calculate its distributed contribution

(an estimate based on a particular set of data association hypotheses). A robot requires

the distributed contributions from all robots to form the (centralized-equivalent) con-

sensus estimate by using an arbitration function. This is possible when a distributed

partial checkpoint exists. This also allows a robot to apply the Markov property to dis-
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card information that it has already used. However, it is possible that the distributed

contributions from other robots do not span the same time interval. Therefore, before

applying the arbitration function, a robot must apply the consensus rule according to

Definition 10. In applying the Markov property, we showed that it is possible for a robot

to do so without considering the knowledge of other robots, similarly to what we have

shown in Chapter 2 for the decentralized cooperative localization problem. To show the

connections between the theoretical development of this chapter and that of the previous

chapters, Fig. 4.4 is an illustrative summary of the relationships between the theorems

that we have introduced up to this point.

4.3 Applying the Theory

From the theoretical development in the previous section, we now have the fundamental

components of our distributed and decentralized cooperative SLAM algorithm, which al-

lows us to distribute the computation of multiple estimates with different data association

hypotheses. Furthermore, it allows robots to obtain (centralized-equivalent) consensus

estimates while operating in a network that is never guaranteed to be fully connected.

In terms of the initial knowledge of robots, we still need robots to initially know

the total number of robots in the team. As explained in Chapter 3, this is because the

presence of landmarks does not allow us to divide the team into independent subsystems

while maintaining the guarantee that the centralized-equivalent estimate is obtainable.

4.3.1 The Distributed and Decentralized Cooperative SLAM

Algorithm

According to our theory, each robot must try to detect the existence of a partial check-

point before calculating a distributed contribution, and detect the existence of a dis-

tributed partial checkpoint before calculating the consensus estimate (which is equivalent

to the centralized estimate). Fig. 4.5 is an illustration of the distributed and decentral-

ized cooperative SLAM algorithm (Algorithm 3). A copy of this algorithm runs on every

robot, and iterates once per timestep.

To explain Algorithm 3 in greater detail, on line 1, information exchange occurs with

other robots. Remember that we are using our knowledge set update rules defined by

(2.3) and (2.4). If a distributed contribution has not yet been calculated (line 2), then

we attempt to look for a partial checkpoint and calculate bel
(
Xks:kc,i

)i
using a recursive

state estimation method, if possible (lines 3-7). We then apply the consensus rule on
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Figure 4.5: The distributed and decentralized cooperative SLAM algorithm, which pro-
vides consensus estimates generated from the distributed contributions from all robots.
The need to synchronize information twice is accomplished by the detection of a partial
checkpoint, and the detection of a distributed partial checkpoint.

line 9 to ensure that all distributed contributions within the knowledge set have the

same time interval. If a distributed partial checkpoint exists (line 10), we can apply

the arbitration function (line 11) to obtain the consensus estimate in our knowledge set

(line 12). On line 13, we apply the Markov property and discard information that is

replaced by the consensus estimate. Finally, we calculate a temporary estimate for the

current time on line 15 using information available in the knowledge set. In doing so,

robots temporarily assume other robots maintain their last known velocity if odometry

information is unavailable.

Note here that as with Algorithms 1 and 2, we can use a variety of recursive filters

in calculating a distributed contribution (on line 5). Also, note that the estimate for the

current timestep produced on line 15 is a temporary estimate that does not account for

information from all robots up to the current time. This is because we are operating in

a network that is never guaranteed to be fully connected, and hence information from

other robots at the current timestep may not be received until a later time. Nevertheless,

the (centralized-equivalent) consensus estimate can always be recovered at a later time.

4.3.2 Complexity Analysis

For the complexity analysis of our distributed and decentralized cooperative SLAM al-

gorithm, we will refer back to the worst-case scenario illustrated in Fig. 3.4, where every

robot measures every other robot and known landmarks at every timestep, and all but
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Algorithm 3: Distributed and decentralized cooperative SLAM(k, ui,k, Yi,k, Si,k−1,
Sj,k (i ∈ N)(∀j)(dj,ik ≤ rcomm))

1 Si,k ← Si,k−1 ∪ {ui,k} ∪ {Yi,k} ∪
j∈Ri,k

S−j,k

2 if 6 ∃i, Si,k ⊇ bel
(
Xkc,i

)i
then

3 K ← {kr}, such that {uj,kr |j ∈ N} ∈ Si,k
4 if K 6= ∅ then
5 calculate bel

(
Xkc,i

)i
such that kc,i = max (K)

6 Si,k ← Si,k ∪ bel
(
Xks:kc,i

)i
7 end

8 end
9 apply the Consensus Rule

10 if Si,k ⊇
{

bel (Xks:kc)
j |j ∈ N

}
then

11 bel (Xks:kc)
∗ ← fa

({
bel (Xks:kc)

j |j ∈ N
})

12 Si,k ← Si,k ∪ bel (Xks:kc)
∗

13 Si,k ← Si,k − {uj,kr , Yj,kr , bel (Xks−1)
∗ |j ∈ N} , ∀kr ≤ kc

14 end
15 bel (Xk)← p(Xk|Si,k)
16 return {bel (Xk) , Si,k}

one robot communicates with every other robot at every timestep. As before, the number

of measurements is on the order of n2 + nm.

Assume that the EKF is used within our framework, and that we have d data asso-

ciation hypotheses, which can be divided evenly amongst the robots. When all robots

reestablish communication with each other, the computational complexity of our dis-

tributed decentralized approach is O((k − kc)(n
4 + n3m)d/n) while that of the (non-

distributed) decentralized approach is O((k− kc)(n4 + n3m)d). For both the distributed

and non-distributed approaches, the complexities for communication bandwidth and

memory use are O((k − kc)(n
3 + n2m)) and O ((k − kc)(n+m)2), respectively. How-

ever, note that the (k − kc) centralized-estimate delay factor is generally larger for the

distributed case (which we can support with our experimental results). This again is due

to the double synchronization required with the distributed approach. From the exper-

imental results in Chapter 3, we already know that a lower communication range limit

leads to less frequent communication between robots. This in turn increases both the

centralized-equivalent estimate delay, and the existence delay, and potentially produces

greater difference between the current estimates produced by the decentralized estimator

and the centralized estimator.
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4.4 Performance Analysis

4.4.1 Experiment Setup

To validate our distributed and decentralized cooperative SLAM algorithm, we will con-

duct a proof-of-concept experiment utilizing our multi-robot cooperative localization and

mapping dataset that was previously used for testing our decentralized cooperative SLAM

algorithm in Chapter 3. We will use sub-dataset 1 in particular, which runs for a duration

of 30 minutes. Furthermore, we will limit the communication range limit to 2m, causing

the robot network to be fully connected only 21% of the time.

In testing our distributed approach, we will assume that data association is unknown

(i.e., the barcode patterns on the landmarks are not used for correspondences). This

means that robots can only use the position estimate of robots and landmarks to deter-

mine the actual robot or landmark that corresponds with a range-bearing measurement.

Since our focus is on demonstrating our distributed framework, and not on a particular

data association method, or a particular filtering method, we will use a simple maximum

likelihood [108] approach for data associations and the extended Kalman filter (EKF) [53]

within our algorithm. However, note that our algorithm allows for other data association

methods (such as a simple nearest neighbour [108] approach, or a more sophisticated

joint-compatibility branch and bound [112] approach for examples) and other recursive

filtering methods to be used.

In this proof-of-concept experiment, when a robot detects a partial checkpoint, it will

produce one distributed contribution. However, note that it is possible for each robot to

maintain numerous estimates, each based on a different set of data association hypothe-

ses. Nevertheless, we will have distributed the calculations of estimates based on various

data association hypotheses amongst the team. When a robot obtains a measurement,

yj,ii,k, the identity of i is known since it is the robot that initiated the measurement. How-

ever, the robot must make a hypothesis to what j corresponds. In our experiment, a

robot will randomly select a possible value for j. It will then calculate the likelihood of

the measurement based on its current estimates of robot poses and landmark positions.

That is, it will take its current knowledge of robot and landmark positions (and their

uncertainty) to determine the likelihood distribution for the expected measurement, and

calculate the Mahalanobis distance [108] using the actual measurement. We can expect

that as the actual measurement gets closer to the expected measurement, the Maha-

lanobis distance will also decrease (i.e., the actual measurement appears more likely).

Since each robot is only selecting one (out of many possible) data association hypothesis

for a measurement, we apply a threshold to ensure that the correspondence selected is
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at least somewhat likely. If the Mahalanobis distance for a measurement is below the

threshold value, the robot must select an alternate correspondence for the measurement.

We also have a distance threshold to determine when a new landmark should be initiated.

From the Mahalanobis distance of a measurement, we can also obtain the likelihood of

the measurement. That is, the value of the PDF p(y|Xk) evaluated at y = yj,ii,k. For

each distributed contribution, its metric (used in the arbitration function) is the product

of all the measurement likelihoods. When a distributed partial checkpoint exists for a

robot, the arbitration function (which is the same for all robots) selects the distributed

contribution with the highest metric as the consensus estimate.

4.4.2 Performance Results

Recall that our motivation for maintaining multiple estimate based on different data

association hypotheses is that in case we make a bad choice in data association (which

we cannot correct since we are performing recursive filtering and applying the Markov

property to discard used information), we can throw out the estimate that used the

bad data association and continue with the other estimates that we have (by using the

arbitration function). To provide a real example of this from our experiment, consider the

sequence of events shown in Fig. 4.6. In each sub-figure, the estimates (drawn as ellipses)

of robot and landmark positions from robot 1 (the red robot) are shown. In Fig. 4.6a,

we can see that robot 1’s estimates of landmark positions are fairly consistent (i.e., the

true positions of the landmarks are close to the estimated mean positions, and within

the 95% uncertainty ellipses). Shortly after, in Fig. 4.6b, robot 1’s self estimate appears

to have diverged (partly due to a lack of measurements and unexpected motion). At this

point, robot 1 makes a measurement of landmark 61 (which is drawn from its estimated

pose in the plot). Visually this measurement falls somewhere between landmark 61 and

landmark 27 (i.e., both are likely to have been measured). In this case, robot 1 incorrectly

corresponds the measurement with landmark 27, and runs its estimator based on this

data association hypothesis. Due to this mistake, it later causes the entire map to begin

to diverge, as shown in Fig. 4.6c. If we examine the estimate of landmark 54, it can be

clearly seen that the actual position of the landmark is well outside of the uncertainty

ellipse of its estimate. If we only maintained one estimate, based on the data association

hypothesis made by robot 1, it is plausible that the map will continue to diverge and

we will not be able to go back to correct the mistake in data association. Luckily, we

have other robots with estimates calculated with the correct association for the previous

measurement of landmark 61. In Fig. 4.6d, when the robots are within communication
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range, they are able to exchange their distributed contributions and select one of them

as the consensus estimate. In this case, robot 1’s distributed contribution was not chosen

as the consensus estimate. As a result, we can see that the landmark estimates are once

again consistent. Note that it is a possibility that a consensus estimate has been selected

from a distributed contribution that uses incorrect correspondences. In Fig. 4.6, the

relatively larger ellipses to the right of each plot are results of incorrect correspondences

in the consensus estimate.

We will now examine the error (compared against groundtruth data) for several com-

ponents of robot 1’s estimate. The results from the distributed and decentralized coop-

erative SLAM algorithm are similar to the results we observed from the decentralized

cooperative SLAM algorithm. Robot 1’s x-position estimate (output from line 15 of Algo-

rithm 3) errors of itself, robot 3 (representative of errors for other robots), and landmark

54 from Fig. 4.6c (representative of errors for other landmarks) are shown in Fig. 4.7.

Instances of distributed partial checkpoint existence are also shown. Even though the

network is only fully connected 21% of the time, robot 1 still maintains an estimate of

its own pose with low errors because its own odometry data is always available. Land-

mark estimates also have low errors because they are static. However, estimates of other

robots can have high errors when they are out of communication range. Nevertheless,

estimate errors for other robots reduce once updated odometry data are available, and

when a robot obtains a new consensus estimate. Notice that in the landmark estimate

error plot, the error temporarily increased at about 1500s. This error is the result of

the mistake in data association shown in Fig. 4.6. When robot 1 obtains a consensus

estimate, the estimate error immediately reduces.

Note that the results shown in Fig. 4.7 are temporary current estimates, which are up-

dated later with consensus estimates. As we have discussed earlier, one of the trade-offs

between our distributed approach and a non-distributed approach is the centralized-

equivalent estimate delay, and the existence delay. We expect that the delays will be

greater in the distributed case because robots have to look for partial checkpoints and

distributed partial checkpoints to obtain the (centralized-equivalent) consensus estimate

(i.e., double synchronization is required). In contrast, robots only need to look for par-

tial checkpoints in the non-distributed case to obtain the centralized-equivalent esti-

mate. In our experiment, for the decentralized cooperative SLAM algorithm, the average

centralized-equivalent estimate delay is 144 timesteps (2.9s), while the average existence

delay is 490 timesteps (9.8s). In comparison, for the distributed and decentralized co-

operative SLAM algorithm, the average centralized-equivalent delay is 518 timesteps

(10.4s), while the average existence delay is 745 timesteps (14.9s). Although we experi-
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(a) Robot 1’s estimate error of its own x-position.

(b) Robot 1’s estimate error of robot 3’s x-position.

Figure 4.7: Components of robot 1’s distributed decentralized estimates with rcomm = 2.
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Increase in error due to a 
mistake in data association

(c) Robot 1’s estimate error of landmark 54’s x-position.

Figure 4.7: Components of robot 1’s distributed decentralized estimates with rcomm = 2.

Figure 4.8: A comparison of the amount of computation performed on robot 1.
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ence greater delays with a distributed approach, the amount of computations performed

by each robot is reduced compared to the non-distributed approach if we consider the

same number of data association hypotheses in generating the centralized-equivalent es-

timate. As a comparison of the amount of computation performed on a robot, Fig. 4.8

plots the cumulative number of EKF iterations processed on robot 1 over time with our

distributed decentralized approach versus the non-distributed approach. As we can see,

the amount of computation performed by a robot using the distributed approach is lower

than that of the non-distributed approach.

4.5 Summary

In this chapter, we examined the cooperative SLAM problem with the assumption that

data association for measurements is unknown, while keeping the assumption that the

communication network is never guaranteed to be fully connected. To reduce the chance

of divergence and catastrophic failure in our estimator caused by incorrect correspon-

dences, we chose to consider multiple data association hypotheses and perform state

estimation on using each of those hypotheses. In order to reduce computational load, we

examined how computation can be distributed amongst a team of robots and developed

the distributed and decentralized cooperative SLAM problem.

Comparing with the non-distributed approach to cooperative SLAM, the distributed

approach requires two synchronization events instead of one. The first is to ensure that

robots have the necessary information in knowledge sets to calculate distributed contri-

butions, which are essentially estimates based on the same measurement and odometry

data, but on different sets of data association hypotheses selected through, for example, a

random process. For this, we reused the notions of a checkpoint and a partial checkpoint.

The second synchronization event ensures that robots have the distributed contributions

from all robots, so that the (centralized-equivalent) consensus estimate can be produced

using the arbitration function.

Since the local information on each robot may be different due to the dynamic net-

work, partial checkpoints may occur at different times, leading to distributed contribu-

tions to be calculated for different times on different robots. To ensure that we can apply

the arbitration function to obtain the consensus estimate, we require robots to maintain

their distributed contributions over a time interval, so that it gives us the opportunity to

take the distributed contributions from all robots and truncate them to the same time

interval. When a robot obtains a consensus estimate, it is able to apply the Markov

property to discard used information. Similarly to Chapter 2, we proved that a robot
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can apply the Markov property without consideration of other robots’ knowledge sets,

while ensuring that all other robots can still obtain the consensus estimate.

In our proof-of-concept validation, we showed that the performance of the distributed

and decentralized cooperative SLAM algorithm is comparable to that of the decentralized

cooperative SLAM algorithm in terms of estimator error. However there is a trade-off

with using a distributed approach as it causes greater centralized-equivalent estimate

delay and existence delay. The benefit with a distributed approach is the decrease in

the amount of computation performed on each robot. In conclusion, we are able to re-

duce the amount of computation on each robot by allowing longer delays in obtaining

centralized-equivalent estimates because we need to perform an additional synchroniza-

tion of information with the distributed approach.



Chapter 5

Conclusions

How strange is the lot of us mortals! Each of us is here for

a brief sojourn; for what purpose he knows not, though he

senses it. But without deeper reflection one knows from

daily life that one exists for other people.

Albert Einstein (1879–1955),

scientist.

In this thesis, we examined the problem of cooperative SLAM with a multi-robot

system operating in a network that is never guaranteed to be fully connected. In this

problem, we required each robot to estimate the poses of all robots, as well as the posi-

tion of all known landmarks. We call our novel solution to the problem the “centralized-

equivalent approach”, because it enables all robots to recover the centralized-equivalent

estimates whenever possible. That is, when possible, the estimates that are exactly the

same as ones produced by a centralized-estimator, even when the network is never fully

connected. This enabled us to avoid the problems of out-of-sequence-measurements, as

well as cyclic updates. Our solution is widely applicable, and can be used in situations

where robots are operating over a large distance and cannot always maintain channels

for communication, or in environments where communication range is limited by occlu-

sions. Even if robots are in close proximity, our solution can be used simply to improve

the robustness of the system by handling temporary drop outs and delays in network

connections.

In a sense, the development of our solution has shown that in the best interest of

the team, robots should act in the best interest of themselves provided that they share

information with the rest of the team. That is, assuming that the knowledge set exchange

rules are followed, if a robot applies the Markov property whenever it detects the existence

134
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of a partial checkpoint, we can guarantee that all other robots are able to also obtain the

same centralized-equivalent estimate and also apply the Markov property. This allows a

robot to be greedy and apply the Markov property whenever possible based only on its

local knowledge. Furthermore, a robot does not need to know what other robots know

when applying the Markov property, nor does it need to care about this.

In developing a solution, we decided to first look at a simplified version of the decen-

tralized SLAM problem by neglecting the presence of landmarks and the need to estimate

a map. This transformed the decentralized SLAM problem into the decentralized local-

ization problem, where all robots need to obtain the centralized-equivalent estimate of all

robot poses in a decentralized manner. In our mathematical formulation of the problem,

we defined knowledge sets and their update rules based on the exchange of information

between robots. We defined the key concept of a checkpoint, which allows all robots to

obtain a centralized-equivalent estimate and apply the Markov property, and developed

theorems regarding its existence. However, checkpoints are impractical in the sense that

in order to detect their existence, an outside observer is required. This led us to examine

information flow from the perspective of a robot. We introduced the concept of a partial

checkpoint, which indicates when a single robot can obtain a centralized-equivalent esti-

mate of all robot poses. We also developed several theorems for detecting the existence of

a partial checkpoint. In relating partial checkpoints to checkpoints, we were able to show

that a robot’s decision to invoke the Markov property does not affect another robot’s

ability to do the same. Furthermore, if all robots invoke the Markov property whenever

possible (when a partial checkpoint exists) based on their own knowledge, we can be sure

that all robots can still obtain an centralized-equivalent estimate.

Using the theorems we presented, an algorithm was developed that allows each robot

to obtain the centralized-equivalent estimate whenever possible. At every timestep, the

algorithm produces a current estimate (which may be temporary), and a centralized-

equivalent estimate, if possible. The timestep of the centralized equivalent estimate may

not be the current time (i.e., there may be a delay) due to network connectivity. This

is the reason why the algorithm also generates a temporary estimate for the current

timestep. The decentralized cooperative localization algorithm is scalable in the sense

that the number of robots in the network does not need to be known initially, but only

when communication is bi-directional, and when the communication range limit is greater

than the measurement range limit.

We used simulations to validate our decentralized cooperative localization algorithm

and showed that memory usage (although large compared to the centralized estimator)

is limited by exploiting the Markov property at partial checkpoints. In our simulations,
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we also looked at how various factors (captured by dimensionless variables) affect perfor-

mance of our decentralized state estimator in comparison to the centralized estimator,

and how this relates to network connectivity. Simulation results show that the perfor-

mance of our decentralized state estimator begins to approach that of the centralized

state estimator when a phase transition occurs in the frequency of network connectivity.

It must be stressed again that a centralized state estimator will not be able to produce

an estimate unless we assume full network connectivity at all times.

Having established a solution for decentralized cooperative localization in a dynamic

network that is never guaranteed to by fully connected, we re-considered the presence

of landmarks and returned to the the decentralized cooperative SLAM problem, where

it is necessary for all the robots in a team to obtain centralized-equivalent estimates of

known landmark positions and all robot poses.

In developing our decentralized cooperative SLAM algorithm, we generalized the con-

cepts of a checkpoint and a partial checkpoint, making them applicable to both the de-

centralized cooperative localization problem, and the decentralized cooperative SLAM

problem. The generalization is important as it allows us to use theorems previously de-

veloped for the decentralized cooperative localization problem. However, we proved that

it is necessary in decentralized cooperative SLAM for each robot to initially know the

total number of robots in the network. This initial condition is not necessary for the co-

operative localization case but is required in decentralized cooperative SLAM. Although

this may seem somewhat restrictive, it is necessary for ensuring that the centralized-

equivalent estimate is obtainable.

To validate our decentralized cooperative SLAM algorithm, we created an extensive

hardware experiment dataset. Using this, we were able to compare the results from

our algorithm against that from a centralized estimator (which we allowed to cheat by

ignoring communication constraints), and evaluated the performance of our algorithm

under different communication range limits. Our results again show that memory usage

is limited in our algorithm due to use of the Markov property. The results also show that

the centralized-equivalent estimate can always be recovered after a period of poor network

connectivity. In terms of estimation accuracy, our overall results show that a robot’s

estimate of its own pose and the position of landmarks are close to the centralized estimate

even with a low percentage of time in which the network is fully connected. Furthermore,

the accuracy of a robot’s estimate of another robot depends on the percentage of time

in which the network is fully connected.

In testing our decentralized cooperative SLAM algorithm, we assumed that data

association (correspondences of measurements) is known. However, the algorithm should



Chapter 5. Conclusions 137

be able to handle the unknown data association case, as it is possible to incorporate a

data association routine in our algorithm before an estimate (for both the centralized-

equivalent estimate, and the temporary current estimate). The quality of the resulting

estimate depends largely on the data association method used, and how well it does in

assigning proper correspondences.

To reduce the chance of a catastrophic failure in our estimator caused by incorrect

correspondences, we need to maintain multiple data association hypotheses and run the

state estimator on each of those hypotheses. However, maintaining multiple hypotheses

also increases computational complexity (as we are essentially running a separate filter for

each hypothesis), and memory use. In order to reduce computational load, we examined

how computation can be distributed amongst a team of robots to make better use of the

computational resources available. This led to the distributed and decentralized coopera-

tive SLAM solution. In formulating the solution, we used the concepts of checkpoint and

partial checkpoint to indicate when robots can calculate a distributed contribution for the

(centralized-equivalent) consensus estimate. Each distributed contribution is essentially

an estimate made using a particular data association hypothesis. The contributions from

all robots are used to generate the consensus estimate through the use of the consensus

rule and an arbitration function when robots detect the existence of a distributed partial

checkpoint. Having generated a consensus estimate, we proved that a robot can apply

the Markov property without consideration of other robot’s knowledge, while ensuring

that all other robots can still obtain the same consensus estimate. The performance of

the distributed and decentralized cooperative SLAM algorithm is comparable to that

of the decentralized cooperative SLAM algorithm in terms of estimator error. However

there is a trade-off with using a distributed approach as it causes greater centralized-

equivalent estimate delay and existence delay. The benefit with a distributed approach

is the decrease in computational load on each robot.

We will summarize the contributions of this thesis in the following list:

1. We introduced the notions of a checkpoint and a partial checkpoint, which indicate

when all robots or a single robot can obtain the centralized-equivalent estimate in

decentralized cooperative localization and decentralized cooperative SLAM, while

operating in a network that is never guaranteed to be fully connected.

2. We developed the decentralized cooperative localization algorithm, where each

robot uses only local knowledge to determine when it can obtain the centralized-

equivalent estimate and apply the Markov property. While this is a greedy action,

we are also guaranteed that other robots can also obtain the centralized-equivalent
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estimate for the entire team of robots.

3. We developed the decentralized cooperative SLAM algorithm, which extends the

decentralized cooperative localization algorithm and applies to systems with land-

marks.

4. We showed that for decentralized cooperative localization, robots do not need to

initially know the total number of robots in the team, and that partial checkpoints

can be detected based on a subgroup of known robots.

5. We showed that for decentralized cooperative SLAM, it is necessary for robots

to initially know the total number of robots in the team to guarantee that the

centralized-equivalent estimate is obtainable.

6. We created a multi-robot SLAM dataset, which not only helped validate the algo-

rithms presented in this thesis, but is also freely available for the robotics commu-

nity to use.

7. We performed detailed analysis on how communication range affects localization

performance, memory use, and communication bandwidth requirements in both

decentralized cooperative localization and decentralized cooperative SLAM

8. We introduced the notions of a distributed checkpoint and a distributed partial

checkpoint, which indicate when all robots or a single robot can obtain a consensus

estimate in distributed and decentralized cooperative SLAM. The consensus esti-

mate is considered the best estimate chosen from estimates generated with different

data association hypotheses.

9. We presented the distributed and decentralized cooperative SLAM algorithm, where

robots produced estimates (distributed contributions) based on specific data asso-

ciation hypotheses when a partial checkpoint exists, and combines them to form a

consensus estimate when a partial distributed checkpoint exists.

There are a number of potential future developments based on the work presented

in this thesis. Some of these topics aim to further improve the estimates generated

with our “centralized-equivalent” approach, while others examine more practical issues

in implementing a system for real world applications.
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The runaway robot

With the current decentralized cooperative localization, decentralized cooperative SLAM,

and distributed and decentralized cooperative SLAM algorithms, if one robot unexpect-

edly fails to ever communicate with the rest of the team again (whether due to hardware

failures, or poor planning), then all robots will never detect the existence of a partial

checkpoint or a distributed partial checkpoint again. As such, every robot will continue

to collect measurement and odometry information without every applying the Markov

property again. Eventually, all robots will run out of memory and cause a system-wide

failure. One possible research topic is to examine how to deal with such a scenario. The

solution may not be as simple as dropping the estimate of the lost robot, as we also need

to consider what needs to be done if the presumably lost robot returns to join the team.

Improve temporary estimates with planning information

One of the consequences of operating in a dynamic network that is never guaranteed

to be fully connected is that a robot’s estimate of another robot may have diverged so

much that the estimate of the other robot is almost useless if actions need to be planned

based on the current system state. One possibility of mitigating this divergence is for

robots to inform other robots of their intentions of where they are moving to (i.e., their

motion plans). Currently in our algorithms, if odometry information is not available

from a certain robot in calculating an estimate, we assume that the robot maintained its

last known forward and angular velocities. If planning information is available, we can

use that to predict the motion of another robot, and possibly reduce the divergence of

the estimate on another robot when it goes out of communication range for an extended

period of time.

Planning to checkpoint

Along with the motivation from the last point, where we want to prevent estimate diver-

gence, we can plan for checkpoints to occur at regular intervals for the system of robots.

There are many ways in which this can be achieved such as having robots return to a

certain location for rendezvous with another robot at a certain time. Another approach

may be to have robots dedicated as messengers, whose sole purpose is to rendezvous with

other robots and relay information so that checkpoints can occur.
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The sliding window approach

Throughout this thesis, we have emphasized the application of the Markov property to

limit memory use on each robot. However, the fact that the Markov property is applicable

(i.e., that future estimates only depends on the current estimate so that past information

can be discarded) is only an assumption. If we assume that the Markov property does

not apply, then we are forced to perform batch estimation over all timesteps and our

decentralized approach because inapplicable. However, that is an extreme case. We can

also assume that future estimates only depend on the estimates from a limited number

of timesteps in the past (i.e., over a window). This sliding window approach may lead to

better estimates, but at a cost of higher computational requirements.

Unknown initial correspondence

An assumption that we have made in this thesis is that the initial relative poses between

robots are known (although a robot may not initially have the initial estimate of another

robot in its knowledge set, each robot begins with a belief of its own pose, and all the

beliefs are expressed in the same reference frame). In other words, we have avoided the

initial correspondence problem. How this initial correspondence can be determined is

still an open problem in cooperative localization and cooperative SLAM. One approach

that falls in line with the notion of a checkpoint is to define the notion of a initial corre-

spondence checkpoint, the existence of which could indicate when enough measurements

have been made between robots so that the initial correspondence is observable, and can

be solved by batch estimation. Extending this, we can impose that we require adequate

measurements so that we can solve for the initial correspondence with a certain level of

confidence.

Currently, the number of autonomous multi-robot systems in use is still limited. One

of the reasons for this is that we are still at the stage of making single robot systems

robust enough for real deployments. Although research and experiments have shown

the potential of multi-robot systems in improving localization and mapping results, the

effort required in implementing a multi-robot system and making it robust is significantly

higher than that for single-robot systems. In many cases, the required effort in operating

a multi-robot system may not be worthwhile considering the improvement that is gained.

We hope that the work presented in this thesis will help make future multi-robot systems

more robust and thereby increase the deployment of multi-robot systems.
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