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A mobile robot equipped with a range sensor can create a map of its environment given

the range measurements and corresponding robot pose(s). These maps, although not

perfect, are useful for path planning, exploration, search, and often the objective is

to create an accurate map of the environment. Occupancy grid mapping (OGM) is a

popular mapping technique that discretizes the environment into cells (or voxels) and

seeks to estimate the occupancy probability of each cell. Computing the probability of

all possible maps is computationally intractable and thus it is typically estimated using

Bayesian inference to compute the probability of each cell and assuming that the cells

are independent.

This thesis revisits the assumptions made in traditional OGM and reintroduces cell

correlations in the prior, the measurements, and the posterior. While the full Bayesian

posterior is intractable, we develop improved approximations and show how two popular

techniques, variational inference (to optimize parameters of a chosen model type) and

Markov Chain Monte Carlo (MCMC), can be used to relax traditional assumptions. We

show that mutual information between cells in the full Bayesian posterior is concentrated

locally and approaches zero for cells that are distant. Therefore, we have developed OGM

algorithms that maintain local cell correlations to a varying degree and this degree can

be user-defined.

We also introduce a data-driven prior that correlates cells locally, which is shown to

be particularly effective when occupancy measurements are sparse. The result is an OGM
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algorithm that is able to interpolate between measurement rays, reduce the effect of sensor

noise, better estimate the occupancy of each cell and also the joint marginal of a group

of cells. The algorithms are shown to work on simulated and hardware datasets, where

computing the full Bayesian posterior would be computationally intractable. Depending

on the mapping application, the methods offer some different points on the tradeoff curve

between speed of operation and map quality in their ability to capture the full Bayesian

posterior.
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Chapter 1

Introduction

Many vehicles that have traditionally been piloted by human operators on board (e.g.,

planes, trains, and automobiles) are being equipped with sensors and controls to be

piloted remotely (i.e., teleoperated) and computers on board the vehicle are even capable

of semiautonomous or fully autonomous control of the vehicle. Furthermore, vehicles

are increasingly being designed to be operated without a human pilot on board and we

broadly describe these vehicles as mobile robots. The utility of mobile robots continues

to expand as they are often utilized for tasks that are seen as dull, dirty, or dangerous

for human operators. For example, these robots are deployed in repetitive applications

such as floor cleaning, security and warehouse robotics, as seen in Figure 1.1. They are

also used for tasks that could be dangerous to a human pilot, such as mining, driving,

surveillance, and extraterrestrial exploration, as seen in Figure 1.2. As sensors, computers

(a) Autonomous floor cleaning robot.
Photo credit: Avidbots (2020).

(b) Autonomous warehouse robot. Photo
credit: OTTO Motors (2020).

Figure 1.1: Mobile robots are often used in industry to perform repetitive tasks like
cleaning floors and moving pallets in a warehouse.

1
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(a) Robocar set the record for world’s
fastest autonomous car in 2019 with a
speed of 282.42 km/h. Photo credit: Rob-
orace (2020).

Mars 2020/Perseverance

National Aeronautics and Space Administration

Over the past two decades, missions flown 
by NASA’s Mars Exploration Program have 
shown us that Mars was once very different 
from the cold, dry planet it is today. Evidence 
discovered by landed and orbital missions point 
to wet conditions billions of years ago. These 
environments lasted long enough to potentially 
support the development of microbial life. 

The Mars 2020/Perseverance rover is designed to 
better understand the geology of Mars and seek 
signs of ancient life. The mission will collect and 
store a set of rock and soil samples that could be 
returned to Earth in the future. It will also test new 

Key Objectives

Mission Timeline

• Launch in July-August 2020 from Cape 
Canaveral Air Force Station, Florida

• Launching on a ULA Atlas 541 procured under 
NASA’s Launch Services Program

• Land on Mars on February 18, 2021 at the 
site of an ancient river delta in a lake that once 
filled Jezero Crater

• Spend at least one Mars year (two Earth years) 
exploring the landing site region

Key Hardware

Perseverance will carry seven instruments to 
conduct unprecedented science and test new 
technology on the Red Planet. They are:

• Mastcam-Z, an advanced camera system with 
panoramic and stereoscopic imaging capability 
with the ability to zoom. The instrument also 
will determine mineralogy of the Martian surface 
and assist with rover operations. The principal 
investigator is James Bell, Arizona State 
University in Tempe.

technology to benefit future robotic and human 
exploration of Mars.

• Explore a geologically diverse landing site

• Assess ancient habitability  

• Seek signs of ancient life, particularly in special 
rocks known to preserve signs of life over time

• Gather rock and soil samples that could be 
returned to Earth by a future NASA mission

• Demonstrate technology for future robotic and 
human exploration

(b) NASA’s Perseverance rover, which
launched on July 30, 2020 and is scheduled
to land on Mars in February 2021. Photo
credit: NASA (2020).

Figure 1.2: Mobile robots can protect human pilots when performing dangerous tasks,
such as driving at high speed and exploring extraterrestrial environments.

and algorithms continue to evolve, mobile robots will become more ubiquitous in our

society.

Mobile robots are equipped with an array of sensors to measure changes in the robot

and to detect the environment. These sensors provide inputs to a variety of algorithms

that enable the mobile robot to complete an assigned task or mission. The enabling

algorithms can be mission specific, but some tasks that are common to most mobile

robots are localization, mapping and path planning. Localization algorithms deal with

determining the pose (position and orientation) of the robot in the environment. Mapping

algorithms deal with creating a map of the environment that the robot senses. Path

planning algorithms generally use the output of localization and mapping algorithms to

determine where the robot can move. This thesis will focus on the mapping problem,

which is an enabling technology for path planning and other algorithms and is often the

goal of the mission in and of itself. The mapping problem is often coupled with the

localization problem, but this thesis separates the two and assumes that the localization

problem is solved separately. This decoupling has been shown to be effective in the

literature (Thrun et al., 2001; Tong et al., 2012) and allows the work in this thesis to

focus on mapping independent of localization error.

Mobile robots can use a variety of sensors to map the environment, some of which are

highlighted in Figure 1.3. Tactile sensors can be inexpensive, but require the robot to

touch the environment, which means that each measurement can take considerable time.

Furthermore, these sensors may change the environment by interacting with it. Therefore,
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Figure 1.3: A mobile robot can be equipped with a variety of range sensors, which are
often used for mapping the environment. Image credit: Cardinal (2020).

many robots will use light, sound, or radio frequencies to detect the environment. Some

sensors will only detect these frequencies, however, when the sensor both emits and

detects the frequency, these sensors are known as LiDAR, sonar and radar, respectively.

Radar is often used on aerial and ground vehicles as radio waves can travel great distances.

Sonar sensors are less expensive and often used on ground vehicles and submarines. Sonar

is commonly used on underwater vehicles because sound waves travel faster in water

than air and also travel farther than radio waves in sea water. Although radar and sonar

sensors are more robust to weather conditions, LiDAR is commonly used on ground

vehicles because it can provide more accurate range measurements. Infrared sensors

are also less accurate than LiDAR because they compute depth based on the angle

of received light, whereas LiDAR computes depth based on the time-of-flight of each

laser ray. Furthermore, LiDAR has a narrow sensing frustum (or beam divergence) as

compared to other range sensors, which enables more accurate measurements. Figure 1.4

illustrates the narrow beam divergence of LiDAR as compared to radar. This thesis will

assume the use of narrow-beam range sensor, such as LiDAR, but the theory may be

applied more broadly.

Cameras are also a popular mapping sensor in mobile robotics, but they do not

inherently measure depth. These sensors do not generally emit light, but detect the

reflection of light in the environment. Multiple cameras, such as stereo cameras, can be

used to infer depth from camera images. Alternatively, cameras can be coupled with

other range sensors to provide depth information. In addition to the visible spectrum,

infrared cameras are commonly used for thermal imaging and night vision. For a mapping
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Figure 1.4: LiDAR has a narrow beam divergence (or sensing frustum) compared to other
range sensors like radar. This enables LiDAR to more accurately detect the object that
reflected the beam. This thesis will focus on narrow-beam range sensors, such as LiDAR.
Image credit: Schiavullo (2018).

algorithm, cameras and other sensors can be modeled as a series of narrow-beam range

measurements; some sensors even estimate the depth of each pixel in the camera image.

Therefore the algorithms presented in this thesis may be applied to these sensors as well,

or the algorithms may be adapted for different sensor models.

Given a series of range measurements from on board a mobile robot, some mapping

algorithms use this data to create a map of the environment relative to the robot’s pose.

However, given a series of robot poses and range measurements from each, many mapping

algorithms seek to create a globally consistent map of the environment. The mapping

technique used may depend on the computation available, the sensor, the mission, or

other factors. Section 1.1 will explore various mapping techniques presented in the lit-

erature and highlight the benefit of occupancy grid mapping (OGM) relative to other

methods. This thesis will then focus on OGM and Section 1.2 will present an overview

of the thesis and Section 1.3 will highlight the novel contributions made.

1.1 Literature Review and Motivation

Mobile robots have been using range sensors to map their environment for decades (Mar-

tin and Moravec, 1996; Moravec and Elfes, 1985). Given a series of range measurements

and the respective robot pose (position and orientation) from where each measurement

was taken, various methods exist to represent this information. Of the mapping tech-

niques developed in the literature, some of the most popular can be broadly categorized

as semantic maps, feature maps, geometric maps and grid maps (Tipaldi, 2009).
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Figure 1: Intel test map: (left) Occupancy grid map built via SLAM along with Voronoi graph. (middle) The labeled Voronoi graph defines
a place type for each point on the map. Hallways are colored gray (red), rooms light gray (green), doorways dark grey (blue), and junctions
are indicated by black circles. (right) Topological-metric map given by the segmentation of the labeled Voronoi graph. The spatial layout of
rooms and hallway sections is provided along with a connectivity structure indicated by lines and dots (doorways are dark gray (blue) dots).

randomly chosen location. Along its path, the robot records
the sequence of rooms, hallway sections, junctions, and door-
ways it passes through. We used edit distance to compare
sequences recorded on maps labeled using our algorithms to
those recorded on ground truth maps. Edit distance deter-
mines the minimum number of operations (insertions, dele-
tions) needed to make the inferred path match the ground
truth path. Our resulting measure, called topological edit dis-
tance (TED), reports the ratio of edit distance to path length;
a lower TED ratio means better performance. The final re-
ported statistic is the average of 100 randomly selected paths
in the map. The random paths taken on the correspond-
ing maps in different tests were chosen consistently to al-
low a straightforward comparison. The TED scores of the
aforementioned experiments are summarized in Table 4. The
V RFDmethod offers clear improvements significant at the
p<0.06 level over ABSC . The V RFMmethod appears bet-
ter, but the overall improvement is insignificant due to poor
performance on the Allen map. One explanation for this is
that V RFM failed to correctly label several junctions between
hallways, which many paths will pass through.

ABld. Allen Frbg. Intel Avg.
ABS 79.4 60.5 76.6 62.6 69.8 ± 9.4
ABSC 35.7 30.9 74.2 59.8 50.1 ± 20.0
V RFD 18.2 22.1 23.7 25.7 22.4 ± 3.1
V RFM 14.3 50.6 21.0 22.2 27.0 ± 15.8

Table 2: Topological Edit Distance of leave-one-out place labeling.

Figure 1 shows the performance of our technique on one
of our test maps (shown for V RFD , V RFM is very similar).
The coloring of the middle map is given by labeling all points
with the label of the nearest point in the VRF. The right panel
shows the exploded topological-metric map resulting from
grouping contiguous room and hallway regions of the same
label into topological nodes. As can be seen, the topological-
metric map generated automatically by our VRF nicely rep-
resents the environment’s connectivity structure (indicated by
lines and doorway and hallway nodes) and the spatial layout

of individual rooms and hallway sections. Figure 2 provides
a visual comparison of V RFDwith ABSC(AdaBoost using
spatial and connectivity features). In agreement with the re-
sults given in Table 2, our approach generates significantly
more consistent segmentations of the environments. For in-
stance, AdaBoost generates a large number of false-positive
doorways and hallways, especially in the cluttered rooms of
the Freiburg map. Our labelings are also more consistent than
those reported by [Stachniss et al., 2005].

5 Conclusions
We presented Voronoi random fields, a novel approach to
generating semantically meaningful topological-metric de-
scriptions of indoor environments. VRFs apply discrimina-
tively trained conditional random fields to label the points of
Voronoi graphs extracted from occupancy grid maps. The
hidden states of our VRFs range over different types of
places, such as rooms, hallways, doorways, and junctions. By
performing inference in the graph structure, our model is able
to take the connectivity of environments into account. We
use AdaBoost to learn useful binary features from the contin-
uous features extracted from Voronoi graphs and occupancy
maps. The parameters of our model are trained efficiently
using pseudo-likelihood. Experiments show that our tech-
nique enables robots to label unseen environments based on
parameters learned in other environments, and that the spatial
reasoning supported by VRFs results in substantial improve-
ments over a local AdaBoost technique.

We consider these results extremely encouraging; they pro-
vide mobile robots with the ability to reason about their en-
vironments in terms more similar to human perception. As a
next step, we will add high-level contextual information such
as the length of hallways and the shape of rooms to our model.
Each segmentation will then correspond to a two-level CRF,
with the upper level representing the features of these places
(similarly to [Liao et al., 2006]). To avoid summing over
all possible CRF structures, we will replace MAP estimation
with a sampling or k-best technique.

An obvious shortcoming of our current approach is the re-

IJCAI-07
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Figure 1.5: 2D maps produced using LiDAR and the Intel Lab dataset. The image on
the left shows the occupancy grid map with the robot path. The image in the middle
shows a semantic map where hallways are shown in red, rooms in green, doorways in blue
and junctions as black circles. The image on the right shows a topological-metric map
highlighting the connectivity between rooms and hallways at junctions and doorways.
Image credit: Friedman et al. (2007).

Semantic maps provide an abstraction of the space and a means for human-robot

communication. For example, the space may be categorized according to characteris-

tics such as scalability, inference model, temporal coherence, and topological map usage

(Kostavelis and Gasteratos, 2015). One such semantic map is shown in Figure 1.5, where

the map is segmented into rooms and hallways, connected by junctions and doorways.

The semantic map shown in the third image may discard some of the information in the

first and second image after processing it to develop the semantic map.

A feature map detects and stores the position of specific features, such as lines,

corners, or scale invariant feature transform (SIFT) features (Lowe, 2004). In addition

to the position of each feature, these mapping techniques typically store a measure of

uncertainty. Figure 1.6d illustrates a feature map representation of the true map shown

in Figure 1.6a. The feature map extracts S-shapes, Z-shapes, and doors from the true

map (or measurements of the true map). Note that much of the environment is not

represented as it is not recognized as one of these features based on the measurements.

Geometric maps use range data to detect shapes in the environment, such as circles

or polygons. These mapping algorithms are typically storage efficient as they extract and

store high-level geometries. Figure 1.6b shows the true map in Figure 1.6a represented as

lines. This representation works well for the man-made indoor environment in Figure 1.6.

However, this representation would struggle to represent unstructured data such as that

shown in Figure 1.7.
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Figure 5.10
Three examples of single hypotheses of position using different map representations: (a) real map
with walls, doors and furniture; (b) line-based map o around 100 lines with two parameters; (c)
occupancy grid-based map o around 3000 grid cells size cm; (d) topological map using
line features (Z/S lines) and doors o�around 50 features and 18 nodes.
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Figure 5.10
Three examples of single hypotheses of position using different map representations: (a) real map
with walls, doors and furniture; (b) line-based map o around 100 lines with two parameters; (c)
occupancy grid-based map o around 3000 grid cells size cm; (d) topological map using
line features (Z/S lines) and doors o�around 50 features and 18 nodes.
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Figure 1.6: Mapping a 2D environment using various mapping techniques. The robot’s
currently perceived map is shown in bold. (a) The real map with walls, doors and
furniture. (b) A geometric map representation using lines. (c) A grid-based map repre-
sentation, where dark cells are occupied. (d) A topological map using line features (Z/S
shapes) and doors. Image credit: Siegwart et al. (2014).

Figure 1.5 shows the development of a semantic from a grid-based map. Grid-based

mapping will be the focus of this thesis and several examples are discussed in Section 1.1.1.

However, many maps are generated without a predefined grid and these are discussed in

Section 1.1.2. For example, a simple representation of range measurements is a point-

cloud where only the location of each reflected point is stored. This method is shown in

Figure 1.7a and is able to quickly represent the data and is often sufficient for a robot

to interact with its environment. In many cases, objects and features can be extracted

from the point-cloud which further aid in more advanced interaction (e.g., localization

or grasping). Alternatively, a mesh can be applied to the point-cloud data to create a

terrain map. A mesh map representation is popular in video game graphics as surfaces

appear opaque.

Both point-cloud and mesh representations summarize the range measurement using

the single point where it was reflected and thus neglect the non-reflective or unoccupied

space that was measured between the source (robot) and the reflective surface. There

are several scenarios where the robot would benefit from accurately representing the

unoccupied space and differentiating it from unknown (i.e., not measured) space. For

example, exploration algorithms often seek to explore the boundary between unoccupied

and unknown areas (Yamauchi, 1997) or seek to reduce uncertainty in the map (Hou

et al., 2019; Stachniss, 2009). Furthermore, some applications will have the robot plan

its interaction in the environment (i.e., navigation, grasping, etc.) with a previously

generated map. For example, if the robot plans to move through the environment, it

would be necessary to plan that movement through unoccupied space as opposed to
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Octomap: A Probabilistic, Flexible, and Compact

3D Map Representation for Robotic Systems

Kai M. Wurm Armin Hornung Maren Bennewitz Cyrill Stachniss Wolfram Burgard

Abstract—In this paper, we present an approach for mod-
eling 3D environments based on octrees using a probabilistic
occupancy estimation. Our technique is able to represent full
3D models including free and unknown areas. It is available
as an open-source library to facilitate the development of 3D
mapping systems. We also provide a detailed review of existing
approaches to 3D modeling. Our approach was thoroughly
evaluated using different real-world and simulated datasets.
The results demonstrate that our approach is able to model
the data probabilistically while, at the same time, keeping the
memory requirement at a minimum.

I. INTRODUCTION

Several robotic applications require a 3D model of the
environment. Three-dimensional models are relevant in many
airborne, underwater, or extra-terrestrial missions and may
also be needed in domestic scenarios, for mobile manipula-
tion tasks, or for navigation in multi-level environments.

In the past, various approaches for modeling environments
in 3D have been proposed. Figure 1 depicts a tree observed
in 3D laser range scans and modeled in three commonly used
representations, namely point clouds, elevation maps [7],
and multi-level surface maps [19]. It also shows the rep-
resentation of the tree using the structure proposed in this
paper which has been designed to meet the following four
requirements:

Full 3D model. The map should be able to model arbitrary
environments without prior assumptions about it. The
representation should model occupied areas as well as
free space. If no information is available about an area
(commonly denoted as “unknown” areas), this informa-
tion should be encoded as well. While the distinction
between free and occupied space is essential for safe
navigation, information about unknown areas is impor-
tant for the autonomous exploration of an environment.

Updatable. It should be possible to add new information
or sensor readings at any time. Modeling and updating
should be done in a probabilistic fashion. This will
account for sensor noise or measurements which result
from dynamic changes in the environment. Furthermore,
multiple robots should be able to contribute to the same
map and a previously recorded map should be extendable
when new areas are explored.

All authors are with the University of Freiburg, Department of Computer
Science, D-79110 Freiburg, Germany.

This work has been supported by the German Research Foundation (DFG)
under contract number SFB/TR-8 and by the EC within the 7th framework
programme under grant agreement no FP7-IST-213888-EUROPA and FP7-
IST-248258-First-MM.

Fig. 1. 3D representation of a tree as a point cloud (top left), elevation map
(top right), multi-level surface map (bottom left), and using our approach
(bottom right).

Flexible. The extent of the map should not have to be known
in advance. Instead, the map should be dynamically
expanded as needed. The map should be multi-resolution
so that, for instance, a high-level planner for navigation
will be able to use a coarse map, while a local planner,
e.g. for manipulation tasks, may operate using a fine
resolution. This will also allow for efficient visualizations
which scale from coarse overviews to detailed close-up
views.

Compact. The map should be stored efficiently, both in
memory and on disk. It should be possible to generate
compressed files for later usage or convenient exchange
between robots even under bandwidth constraints.

Although 3D mapping is an integral component of many
robotic systems, there exist very few readily available im-
plementations. Recently, the European Commission iden-
tified the lack of available software modules for robotic
applications as a limiting factor both in research and in
industrial applications, leading to the BRICS (Best Practice
in Robotics) project.

In this paper, we present an integrated mapping sys-
tem based on octrees for the representation of the three-
dimensional structure of the environment. The goal is to
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Fig. 1. 3D representation of a tree as a point cloud (top left), elevation map
(top right), multi-level surface map (bottom left), and using our approach
(bottom right).

Flexible. The extent of the map should not have to be known
in advance. Instead, the map should be dynamically
expanded as needed. The map should be multi-resolution
so that, for instance, a high-level planner for navigation
will be able to use a coarse map, while a local planner,
e.g. for manipulation tasks, may operate using a fine
resolution. This will also allow for efficient visualizations
which scale from coarse overviews to detailed close-up
views.

Compact. The map should be stored efficiently, both in
memory and on disk. It should be possible to generate
compressed files for later usage or convenient exchange
between robots even under bandwidth constraints.

Although 3D mapping is an integral component of many
robotic systems, there exist very few readily available im-
plementations. Recently, the European Commission iden-
tified the lack of available software modules for robotic
applications as a limiting factor both in research and in
industrial applications, leading to the BRICS (Best Practice
in Robotics) project.

In this paper, we present an integrated mapping sys-
tem based on octrees for the representation of the three-
dimensional structure of the environment. The goal is to
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Fig. 1. 3D representation of a tree as a point cloud (top left), elevation map
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views.
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between robots even under bandwidth constraints.
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tem based on octrees for the representation of the three-
dimensional structure of the environment. The goal is to
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(d) Octomap (Wurm
et al., 2010)

Figure 1.7: 3D representation of a tree using various mapping techniques. (a) Point
clouds store a single point per range measurement. (b) Elevation maps discretize the
map to a 2D Cartesian grid and assume a single height value per discretization. (c)
Multilevel surface maps enable elevation maps to estimate multiple height values per
discretization. (d) Octomap is based on OGM and discretizes the 3D environment and
estimates the occupancy probability of each discretization. Image credit: Wurm et al.
(2010).

unknown areas that have not been mapped. Further applications of maps and metrics

to compare them are discussed in Section 1.1.3.

1.1.1 Grid-Based Mapping

Grid-based mapping algorithms begin by discretizing the environment, then proceed

to estimate some information about each discretization. The elevation map shown in

Figure 1.7b has discretized the environment in a 2D grid, then seeks to estimate the

height of each grid cell. This type of representation works well for plains, hills, and other

terrain where each grid cell has a single height, but as Figure 1.7b illustrates, it fails to

represent environments with overhang. A multilevel surface map seeks to overcome this

limitation of elevation maps, without the storage burden of discretizing the environment

in a 3D grid. As shown in Figure 1.7c, the multilevel surface map is able to improve

upon the elevation map by estimating multiple heights per grid cell, but is still not able

to capture the numerous heights per grid cell in the tree.

A popular paradigm in robotics to represent the environment is to discretize the envi-

ronment and subsequently estimate the occupancy of each discrete unit (referred to as a

cell in 2D and a voxel in 3D). Although there are some variations to this approach (such

as Reflection Probability Mapping (Tipaldi, 2009) and different discretizations (Wurm

et al., 2011)), generally the environment is discretized as a Cartesian grid and the robot
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seeks to estimate the occupancy of each discrete unit, or cell. This paradigm is commonly

known as Occupancy Grid Mapping (OGM) (Elfes, 1989a; Moravec, 1988; Moravec and

Elfes, 1985) and is shown in Figure 1.6c. Occupancy grid mapping has been extensively

used in robotics for over 30 years and although it was originally developed with sonar

sensors, it has since been used for a variety of range sensors including LiDAR (Limketkai

et al., 2003; Yguel et al., 2006), radar (Bauer et al., 2019; Homm et al., 2010; Li et al.,

2019; Werber et al., 2015; Weston et al., 2019), and cameras (Li and Ruichek, 2013;

Muffert, 2018; Perrollaz et al., 2012; Shankar and Michael, 2020). OGM can be used in

1D, 2D, and 3D environments. However, the storage cost increases exponentially with

each dimension, which has prompted some researchers to pursue compression algorithms

for this type of mapping algorithm (Andriamahefa, 2017; Cain and Leonessa, 2016; Hor-

nung et al., 2013; Joubert et al., 2015; Li and Ruichek, 2013; Peasley et al., 2012; Wurm

et al., 2011, 2010; Zhou et al., 2018). Figure 1.7d illustrates one such compression based

on an octree representation that estimates occupied voxels with greater resolution than

unoccupied voxels.

For computational and storage efficiency, the occupancies of cells in the map are

generally considered independent and are typically only correlated by measurements.

However, even when OGM was first developed, Elfes (1989a) noted in the conclusion of

his PhD thesis that OGM would benefit if we “maintain and update inter-cell links that

provide connectivity information about the set of cells that compose a single object”.

Elfes wrote that this would aid in the recognition and handling of objects. In this thesis,

we examine the cell independence assumption and explore the benefits of including cell

correlations in the posterior and the prior, as well as in the measurements. We show that

accounting for these cell correlations yields more accurate maps.

Occupancy grids provide a means of mapping the occupied and unoccupied areas of

an environment, given, for example, range measurements gathered by a mobile robot.

Moravec and Elfes (1985) first introduced occupancy grids, and Moravec (1988) subse-

quently derived a more efficient method of storing and updating them. The computed

occupancy grid is generally, although not always, thresholded as occupied or unoccupied

(on a cell-by-cell basis), then used for path planning, navigation (Elfes, 1987), localiza-

tion (Fox et al., 1998; Pfaff et al., 2007; Thrun et al., 2001) and other tasks (Elfes, 1989b;

Martin and Moravec, 1996). However, knowing the occupancy probability of each map or

of each cell lends itself well to entropy and information gain calculations. These calcula-

tions are often used in exploration algorithms when evaluating the expected information
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gain of scanning a particular location on the map (Hou et al., 2019; Kaufman et al., 2018;

Makarenko et al., 2002; Merali et al., 2012; Stachniss and Burgard, 2003). Before using

occupancy grids to compute the information in the map, we must ensure that the map

contains the correct information, given the noisy sensor measurements and occupancy

prior used to construct it.

Occupancy Grid mapping was originally developed as a binary Markov Random Field

(MRF), where each cell is considered independent. In the conclusion of his PhD thesis,

Elfes (1989a) recognized that “the application of higher-order Markov Random Field esti-

mation methods to Occupancy Grids needs to be investigated.” Recently, Muffert (2018)

and Shankar and Michael (2020) have explored a higher-order MRF in OGM to model

dependencies between neighbouring grid cells using cameras. Muffert (2018) showed that

by using a MRF to bias neighbouring cells to have the same occupancy probability the

map was better able to estimate unoccupied space and did slightly better in occupied

areas. Shankar and Michael (2020) use a higher-order MRF and loopy belief propagation

to correlate cells along measurement rays. In this thesis, we explore higher-order MRFs

for OGM by introducing cell correlations in the prior, as well as correlating cells from

narrow-beam range measurements. We highlight some drawbacks of this approach and

propose a novel data-driven prior for neighbouring cells.

Researchers commonly assume a uniform cell prior (Dhiman, 2019) for OGM, but this

thesis explores both a data-driven prior and correlating neighbouring cells in the prior.

Researchers have previously tried to represent the prior structure in the environment.

For example, Anguelov et al. (2004) use an expectation maximization algorithm to detect

doors in an indoor hallway environment. Schaefer et al. (2018a) is able to exploit the

structure of a man-made structure to generate straight walls in the environment. Shrestha

et al. (2019) use a deep neural network to predict unseen regions of building floor plans

using floor plan training data. The data-driven prior highlighted in this thesis offers the

ability to introduce cell correlations in the prior beyond straight walls and orthogonal

structures.

In an occupancy grid, each cell in the map is occupied or unoccupied for some dis-

cretization. However, if a larger discretization is selected, then a cell may be partially

occupied. Therefore, there has been some research that discusses the idea of a certain

portion of the cell being occupied (Agha-Mohammadi et al., 2019), but this ambiguity

is often resolved by further discretizing the environment until an adequate resolution is

reached where each cell can be classified as occupied or unoccupied (Hornung et al., 2013;
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Wurm et al., 2010). In addition, O’Meadhra et al. (2019) present a method for computing

variable resolution OG maps using Gaussian mixture models (GMM). For larger grid res-

olutions, Biber and Strasser (2003) introduced the normal distribution transform (NDT)

for scan matching of 2D laser scans. This method is similar to OGM in that it discretizes

the map into a grid, but it then assigns a normal distribution to each cell that locally

models the probability of measuring a point in that cell. This approach has since been

extended to the concept of a NDT occupancy map (NDT-OM) (Saarinen et al., 2013a;

Saarinen et al., 2013) and applied to 3D maps and has proven effective for large maps and

large cell (or voxel) sizes (Stoyanov et al., 2013). Furthermore, Saarinen et al. (2013b)

highlights the effectiveness of NDT-OM for Monte Carlo localization over traditional

OGM. The NDT-OM uses a minimum of 11 variables per cell to estimate the various

parameters (mean, upper diagonal of covariance, number of points and occupancy prob-

ability). However, Saarinen et al. claim that the NDT-OM is still more storage efficient

than traditional OGM because they find a NDT-OM with 80cm cell resolution to be as

accurate as an occupancy grid with 10cm resolution; thus implying a storage efficiency

of storing 11 variables as opposed to (8×8 =) 64. This thesis will introduce a different

concept, the data-driven patch prior, which can be limited to any number of patch config-

urations to consider per cell. Moreover, the patch-based methods presented in this thesis

are able to estimate cells with few or even no measurements based on the occupancy of

neighbouring cells and do not presume the measurements to be normally distributed in

each cell. Saarinen et al. present their results on maps with cells of resolution 40cm to

1.2m, whereas all of the results presented in this thesis are on finer-resolution grids (e.g.,

2cm).

NDT algorithms are able to model a 2D as well as a 3D environment. Stoyanov et al.

(2013) compare NDT algorithms to traditional OGM and a triangle mesh method of

mapping the terrain and find that NDT algorithms are more likely to correctly predict

unseen measurements in the sensor’s field of view (FOV). Triangle meshes are a popular

method to represent a 3D surface (Thrun et al., 2003), especially in computer graphics.

In 2D, the mapped surface is represented by line segments (Chatila and Laumond, 1985).

But like point clouds, these methods do not represent the unoccupied or unknown space or

differentiate between them. Another popular method to represent a surface is a Gaussian

process (GP). Given a 2D grid, a GP can represent the height of the terrain using a

Gaussian distribution in function space. The sensor measurements are therefore used to

learn the hyperparameters of the GP, which can then be used to estimate the height for
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any 2D position. A key criterion for a GP is selecting the type of covariance function

associated with the function-space Gaussian PDF, known as the kernel. Lang et al. (2007)

and Plagemann et al. (2008) used a nonstationary kernel that was able to handle different

surface types. These methods are shown to provide conservative height predictions in

occluded areas, but do not differentiate between unknown and unoccupied space.

1.1.2 Mapping without a Grid Structure

Grid-based mapping algorithms, including OGM, require that the map be discretized

according to a particular coordinate system. This could introduce some limitation in their

ability to model the world. Paskin and Thrun (2005) present a unique occupancy mapping

technique using polygon random fields (PRF), which are able to estimate occupancy

in the map without a grid structure. PRFs were developed by Arak (1982) and later

extended by Arak and Surgailis (1989) to allow the polygons to be in multiple states and

further extended by Arak et al. (1993) for more complicated graph structures. Paskin

and Thrun were the first to bring the idea from statistical literature and apply it to

real data in robotics. Kluszczynski et al. (2007) later applied the technique to images in

computer graphics.

Unlike traditional OGM, the method developed by Paskin and Thrun is able to esti-

mate areas of the map that are not mapped directly as the algorithm seeks to fit polygons

to the data that interpolate between measurements. The authors use a Metropolis-

Hastings MCMC algorithm to sample PRF maps from the posterior and are therefore

able to estimate the occupancy of any area in the map by averaging over these samples.

This thesis also presents a MCMC algorithm, but it is applied to grid-based occupancy

mapping. The grid-based algorithm is easily initialized by traditional OGM methods,

whereas the PRF method can take hours to converge to a stationary distribution. In

addition, this thesis is able to exploit the grid structure to introduce a data-driven prior

that results in maps that better estimate the underlying map. The PRF methods are not

confined to a grid resolution, but do have a scale parameter that dictates the smoothing

applied to the structures in the map.

A Gaussian Processes (GP) (Rasmussen and Williams, 2006) is a stochastic process

that enables high-dimensional regression by using measurements to learn covariance and

mean functions. GPs enable Continuous Occupancy Mapping (COM) that estimates a

map as a continuous smooth surfaces (O’Callaghan et al., 2009; O’Callaghan and Ramos,
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Fig. 5 Occupancy maps visualization; from left to right: OGM,
I-GPOM, I-GPOM2. The maps are build incrementally using all obser-
vations available in the Intel dataset. For the I-GPOM and I-GPOM2
maps the Matérn (ν = 3/2) covariance function is used. I-GPOM and
I-GPOM2 can complete partially observable areas, i.e. incomplete areas

in the OGM; however, using two GPs in I-GPOM2 method produces
more accurate maps for navigation purposes. The SLAM problem is
solved by using the Pose SLAMalgorithm and themap qualities depend
on the robot localization accuracy

Table 1 Comparison of the AUC and runtime for OGM, I-GPOM, and
I-GPOM2 using the Intel dataset

Method AUC Runtime (min)

OGM 0.9300 7.28

I-GPOM 0.9439 102.44

I-GPOM2 0.9668 114.53

(O’Callaghan and Ramos 2011) can mitigate the first afore-
mentioned deficiency, however, the integration over GPs
kernels is computationally demanding and results in less
tractablemethods. In order to address these problemswe pro-
pose training two separate GPs, one for free areas and one for
obstacles, andmerge them to build a unique continuous occu-
pancy map (I-GPOM2). The complete results of occupancy
mapping with the three different methods in the Intel dataset
are presented in Fig. 5, while the AUCs are compared in
Table 1. The I-GPOM2 method demonstrates more flexibil-
ity to model the cluttered rooms and has higher performance
than the other methods. The ground truth map was generated
using the registered points map and an image dilation tech-
nique to remove outliers. In this way, the ground truth map
has the same orientation which makes the comparison con-
venient. GPOM-basedmaps infer partially observed regions;
however, in the absence of a complete ground truth map, this
fact can be only verified using Fig. 5 and is not reflected in the
AUC of I-GPOM and I-GPOM2. Algorithms 4 and 5 encap-
sulate the I-GPOM2 methods as implemented in the present
work.

3.6 Frontier map

Constructing a frontier map is the fundamental ingredient
of any geometry-based exploration approach. It reveals the

boundaries between known-free and unknown areas which
are potentially informative regions for map expansion. In
contrast to the classical binary representation, defining fron-
tiers in a probabilistic form using map uncertainty is more
suitable for computing expected behaviors. The boundaries
that correspond to frontiers can be computed using the fol-
lowing heuristic formula.
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where ∇ denotes the gradient operator, and β is a factor
that controls the effect of obstacle boundaries. ∥∇ p(m[i])∥1
indicates all boundaries while ∥∇ p(m[i]

o )∥1 defines obsta-
cle outlines. The subtracted constant is to remove the biased
probability for unknown areas in the obstacles probability
map.

The frontier surface is converted to a probability frontier
map through the incorporation of the map uncertainty. To
squash the frontier and variance values into the range (0, 1),
a logistic regression classifier with inputs from f̄ [i] and map
uncertainty σ [i] is applied to data which yields

p
(
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where w[i]
f = γ f

√
λ[i] denotes the required weights, λ[i] !

σmin/σ
[i] is the bounded information associated with loca-

tion i , and γ f > 0 is a constant to control the sigmoid shape.
The details of the frontier map computations are presented
in Algorithm 6. Figure 6 (middle) depicts an instance of the
frontier map from an exploration experiment in the Cave
environment (Howard and Roy 2003).
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Figure 1.8: A figure from Jadidi et al. (2018) comparing traditional OGM to incremental
GPOM on the Intel Lab dataset. The image on the left is traditional OGM and offers
more crisp boundaries between occupied and unoccupied regions. The two images on the
right are two variants of incremental GPOM and are able to estimate unmapped areas
of the environment, but have a smoothing effect on the occupancy maps.

2012). O’Callaghan and Ramos (2012) introduced Gaussian process occupancy mapping

(GPOM) that is also able to estimate the occupancy of areas in the map without a grid

structure. Unlike traditional OGM, this method is also able to estimate the occupancy

of unmapped areas. Furthermore, the GPOM algorithm is anytime and thus able to

provide accurate representations of large environments at arbitrary resolutions. The

MCMC OGM algorithms presented in this thesis are also anytime and able to estimate

unmapped areas of the map. However, the algorithms presented here provide a finite

resolution, but do not smooth sharp features in the environment.

A major drawback of GPOM is its cubic time complexity. Lee et al. (2019) present

a Gaussian process implicit surfaces (GPIS) map representation that can be used online

by clustering the data using quadtrees (Finkel and Bentley, 1974) and octrees (Meagher,

1982) and training each cluster locally. Jadidi et al. (2018) developed an incremental

GPOM which is able to run online and can be used for frontier-based exploration of

the map. Figure 1.8 compares traditional OGM to incremental GPOM on the Intel

Lab dataset (which is used in this thesis). The GPOM algorithms are able to estimate

unmapped areas, but have a smoothing effect on the map and require batch offline opti-

mization of hyper-parameters. OGM algorithms are able to produce maps with a sharp

transition from occupied to unoccupied and the algorithms in this thesis address their

ability to estimate unmapped areas. GPs have also been used for other map representa-

tions such as implicit shape potentials that enable a grasping robot to grasp an object

from occluded views (Dragiev et al., 2011). Hilbert maps (Ramos and Ott, 2016) are

continuous occupancy maps built by projecting the LiDAR measurements in a Hilbert



Chapter 1. Introduction 13

space, learning a logistic regression classifier, and then classifying each point in space as

free or occupied. However, this approximation for continuous occupancy mapping yields

less accuracy than GPOMs as seen in Figure 1.9 that shows Hilbert maps on the same

Intel Lab dataset as used in Figure 1.8. Figure 1.9 also illustrates the smoothing effect

of Hilbert maps relative to OGM. This smoothing can lead to narrow unoccupied areas

being classified as occupied and therefore hindering a navigation algorithm that uses

the map for path planning. Senanayake and Ramos (2017) extend Hilbert maps using

Bayesian techniques to run faster, but with similar accuracy and Guizilini and Ramos

(2018) use Hilbert maps to estimate occluded areas of a map, although it sacrifices some

detail in the map in doing so. In addition, Guizilini et al. (2019) have recently used

Hilbert maps to predict occupancy in dynamic environments, and Zhi et al. (2019) ex-

tend Bayesian Hilbert maps to a method that reduces their cubic complexity to below

quadratic.

Schaefer et al. (2018b) have recently presented a mapping technique that stores the

map parameters of a decay rate sensor model in the discrete frequency domain. This

method is memory efficient but unable to distinguish between unoccupied and unknown

areas of the map.

1.1.3 Mapping Applications and Metrics

This thesis shows that traditional OGM techniques can be overconfident in their estimates

of the map and this overconfidence can lead to inaccurate information gain calculations.

Before developing the mapping techniques presented in this thesis, we used traditional

OGM techniques to evaluate next-best-view candidates by computing the expected in-

formation gain at the candidate locations (Merali et al., 2012). However, the information

gain calculation led to similar results as less computationally expensive methods (Ya-

mauchi, 1997) using traditional OGM. Recently, Hou et al. (2019) have been able to use

one of the mapping methods developed in this thesis to better perform information-based

next-best-view (NBV) planning. Furthermore, Kaufman et al. (2018) have recently pro-

posed an entropy-based exploration algorithm using occupancy grids and Kaufman et al.

(2019) highlight that robots often have limited onboard computing, but may have the

ability to send data to an off-board computer for further computation. This thesis devel-

ops some offline and some anytime algorithms that are able to produce more accurate

OG maps than traditional OGM.
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Ramos and Ott 1723

Table 1. Main differences between GPOM and Hilbert maps.

Method Type Prior Inference cost Learning cost
(per query) (per iteration)

Hilbert Maps Parametric Logistic m m
GPOM Nonparametric Gaussian n2 n3

GPOM: Gaussian processes occupancy map.

Fig. 2. Evolution of the different maps as observations are incrementally added. From top to bottom we have sparse RBF, Nyström,
Fourier and occupancy grid maps with 10%, 3 0%, 60% and 100% (left to right) of the data incorporated. Axis units are in meters.
Note that Fourier features introduce some artifacts, particularly in areas with no data points. Both Nyström and sparse features produce
similar results. Occupancy grid maps are visually sharper but this does not necessarily translate to better accuracy as the method does
not attempt to extrapolate or generalize to unobserved cells.

and remained unchanged for each of the maps we experi-
mented with. A grid search can also be applied to set these
parameters automatically.

5.1. Comparisons between the features

In the first experiment, we compare the three approaches
to construct features for Hilbert maps. The experiment

was conducted using the data from Intel-Lab (available
at http://radish.sourceforge.net/). To better understand the
generalization power of the features, we created a series
of occupancy maps where several beams from each obser-
vation were removed. The maps created were compared
against test measurements retained for evaluation purposes
and therefore not presented to the algorithm. Figure 2 shows
the maps created by the three features and the conventional

Figure 1.9: A figure from Ramos and Ott (2016) comparing various Hilbert Map algo-
rithms to traditional OGM using the Intel Lab dataset. Hilbert maps are able to estimate
unobserved cells whereas traditional OGM techniques are not. The algorithms presented
in this thesis extend OGM algorithms to estimate unobserved cells while maintaining or
improving the sharpness depicted here for OGM.

Occupancy grid mapping (OGM) is extensively used in mobile robotics because of its

wide range of applications and robustness to noise and error in the range measurements

(Elfes, 1989a; Thrun, 2002). To quantify how well an occupancy grid mapping algorithm

has done, a benchmark occupancy grid is required. Moravec and Cho (1989), Moravec

and Blackwell (1992), and Thrun (1998) compared the computed occupancy grid to the

ground truth occupancy grid, whose cells are either occupied or unoccupied (available

in simulation). However, it is difficult for a mapping algorithm to produce the ground
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truth map from a finite number of sparse measurements. Thus this thesis uses the full

Bayesian solution (and approximations of it) as a benchmark for OGM. To compare the

OG map to a GT map, each cell is typically thresholded at a single value to produce a

binary map. Thus, we also examine OGM as a binary classification problem (Georgiou

et al., 2017) and compare the metrics of precision and recall (Davis and Goadrich, 2006)

to compare the maps on a cell-by-cell basis for various cell threshold values.

Thrun (2003) proposes a batch hill-climbing algorithm to determine the maximum

a posteriori (MAP) estimate of the occupancy grid, given the sensor measurements and

respective robot poses. The MAP estimate does not represent the uncertainty in the map

as all cells are either occupied or unoccupied. Jang et al. (2006) apply this method to

small groups of cells in the map, as opposed to the entire map, to improve the computa-

tional efficiency. Thrun (2003) goes a step further and seeks to quantify the uncertainty

in the map by computing the residual occupancy uncertainty of each cell in the map.

Although this thesis assumes a static world, several researchers have used OGM for

dynamic environments (Hoermann et al., 2018; Li and Ruichek, 2014; Meyer-Delius et al.,

2012; Oh and Kang, 2016; Tipaldi et al., 2011; Ziebart et al., 2009) and the research

presented here could be extended to a dynamic environment. Whether the environment

is dynamic or the robot is moving while mapping, the sensor measurements can be

affected by motion distortion. Luo et al. (2019) projects 3D LiDAR data onto a 2D OG

to account for motion distortion. This thesis uses a stop-and-scan approach to avoid

these effects. OGM lends itself well to cooperative robots sharing the same map as each

map is developed in global coordinates as opposed to coordinates relative to the robot.

Li et al. (2014) highlight a method to perform map merging with cooperative robots and

Mazuran et al. (2014) proposes a measure to determine global consistency in the map.

Furthermore, Sodhi et al. (2019) highlights a method to correct the robot pose based on

OG map consistency in a SLAM algorithm (Durrant-Whyte and Bailey, 2006). Although

this thesis does not address robot localization error or map merging, cooperative robots

in communication would also lend themselves to computing higher-fidelity maps using

the algorithms developed in this thesis as each robot could compute a portion of the

map.

Given the various mapping techniques in the mobile robotics literature, OGM stands

out in its ability to map known, unknown, and unoccupied areas of the map. This

technique is widely used in mobile robotics and has been improved by numerous methods

since its creation. However, the majority of these methods still make an independence
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assumption between cells and therefore assume no mutual information between them.

This thesis highlights the benefits of keeping these cell correlations and shows novel

methods to estimate the full Bayesian solution, which is otherwise intractable for real

maps.

1.2 Thesis Background and Overview

The 3D site mapping project began in 2008 as a collaboration between the University

of Toronto (UTIAS), industry (MDA Space Missions) and the Canadian Space Agency

(CSA), with funding from the Canadian government (NSERC). The project came to a

successful conclusion in 2011 with a site-mapping mission on the CSA’s Mars Emulation

Terrain (MET), which measures 60m×120m and includes inclines, rocks, cliffs, and a

5.5m-diameter crater (Merali et al., 2012). The research conducted was broadly divided

into mapping and planning. The mapping research was led by Chi Hay Tong, and

the planning was led by the author. The next-best-view (NBV) planning research was

presented at several conferences (SVAR-2009, SVAR-2010, SVAR-2011, i-SAIRAS-2012,

SVAR-2012, SVAR-2013) and served to motivate our interest in capturing the residual

uncertainty in occupancy grid mapping (OGM).

Therefore, this thesis focuses on occupancy grid mapping (OGM) and provides a

study of cell correlations in this popular mapping paradigm. This thesis assumes that

the robot moves in a static world and that each robot pose is known. These assumptions

enable a study of the mapping technique without the dynamics of a changing environment

or pose uncertainty for range measurements. Therefore, the experiments in this thesis

are conducted using a stop-and-scan approach to minimize or eliminate pose uncertainty

and dynamic effects. This thesis highlights that OGM is a complex Bayesian inference

problem and is intractable for even simple 2D maps like that shown in Figure 1.10. This

thesis applies both variational inference (VI) and Markov Chain Monte Carlo (MCMC)

methods to estimate the true posterior in OGM.

Figure 1.10 highlights some of the results of this thesis on a simple 2D example.

Figure 1.10a shows the ground truth map and the three robot scan locations. A series of

narrow-beam range measurements are taken from each of these locations. Given the range

measurements and corresponding robot pose, a mapping algorithm seeks to estimate

the underlying map. Figure 1.10b illustrates the result of applying traditional OGM

and the other four are results from algorithms presented in this thesis using the same
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measurements. Figure 1.10g shows that each cell is displayed on a scale from white, to

yellow, to red, to black, to represent the occupancy probability of each cell (darker cells

are more likely to be occupied); this scale is used to visualize OG maps throughout this

thesis.

In Chapter 2, this thesis will introduce the mathematical formulation of occupancy

grid mapping. Since OGM estimates the map probabilistically, Section 2.2 will discuss a

method of computing the most likely occupancy grid from measurement data. Section 2.3

will derive the full Bayesian solution for OGM and estimate the probability of each

map (as opposed to cell) without any assumptions. We first published this work in

Merali and Barfoot (2012) and it highlights the computation and storage burden of the

paradigm without simplifying assumptions. Section 2.4 will then introduce the commonly

made assumption in OGM that allows it to run efficiently online. Section 2.5 will apply

variational inference techniques to traditional OGM by optimizing the update term to

better capture the uncertainty in each cell. This improvement is observable in comparing

Figure 1.10c to Figure 1.10b and we published this work in (Merali and Barfoot, 2014).

Although traditional OGM maintains an estimate of the occupancy of each cell, it is

important to note that in a real map, each cell will be either occupied or unoccupied for

some discretization.

Chapter 2 concludes with a discussion of cell correlations in the sensor model in

Section 2.6 that highlights that cell correlations are local. Figure 1.11 illustrates the

mutual information between proximate cells and shows that the mutual information

approaches zero as cells are farther apart. Traditional OGM assumes that cells are

independent and therefore assumes zero mutual information in the posterior, but this

thesis explores various methods of retaining these cell correlations to improve the map

estimate.

Given that cell correlations are local, Section 3.1 extends traditional OGM to compute

the probability of a patch of cells as opposed to individual cells. This method assumes

that cells in the same patch are fully correlated, but that patches are independent of one

another. This extension is novel, but unpublished. Section 3.2 extends the online patch

map algorithm to an offline, batch solution that is more computationally expensive, but

is better able to capture the residual uncertainty in the map. We first published the

offline patch map solution in Merali and Barfoot (2012) and its ability to better capture

the residual uncertainty in the map is seen in Figure 1.10d.
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(a) Ground Truth (b) Traditional OGM

(c) Section 2.5: Traditional OGM with opti-
mized ∆

(d) Chapter 3: Offline patch map with K
patches

(e) Chapter 4: MCMC with a cell prior of
p(mk)=0.234

(f) Chapter 5: MCMC with border-based,
data-driven, patch prior

p(mk)
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(g) Legend for occupancy grids presented throughout this thesis

Figure 1.10: Various OGM algorithms presented in this thesis from the same 2D data.
Each algorithm is trying to estimate the ground truth map based on range measurements.
Algorithms (c), (d), (e), and (f) are novel to this thesis.
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Figure 1.11: Mutual information between cells in the posterior using the full Bayesian
solution to OGM. Note that values are higher for proximate cells and zero for distant cells.
The cell independence assumption in traditional OGM assumes no mutual information
between cells.

Chapter 4 discusses a method called Markov Chain Monte Carlo (MCMC) and its

ability to sample from the full posterior. Using the same input data as traditional OGM,

this method is better able to capture the cell correlations in the posterior and does not

suffer from the negative effects of patch-boundaries as the patch map algorithms do.

Furthermore, the MCMC method continues to improve its estimate as more samples are

drawn from the posterior. We first published this work in Merali and Barfoot (2013),

but generalize the approach in Section 4.2 to sample patches of cells. The result of the

MCMC algorithm is illustrated in Figure 1.10e, but the cell prior has been decreased

from 0.5 to a more realistic 0.234 and thus unmapped cells appear lighter in the figure

(i.e., have a lower occupancy probability).

Chapter 5 introduces cell correlations in the prior. By sampling patches of cells

from realistic maps, we obtain a data-driven patch prior that better represents prior cell

correlations in OGM. Using the MCMC algorithm developed in Chapter 4, we apply a

data-driven prior to each patch sampled by the algorithm. The result is a map that

better estimates the original map as seen in Figure 1.10f. This work is novel and being

prepared for publication. It is worth noting that both the MCMC algorithm and the

data-driven prior estimate will only benefit from more samples and thus these algorithms

lend themselves well to the growing trend of faster computing on board the robot and

computing these results on more powerful computers that are not physically on the robot

(Kaufman et al., 2019).
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Throughout this thesis, each of the algorithms are explained with 1D toy examples

and simple 2D examples like that depicted in Figure 1.10. Finally, Chapter 6 highlights

the results of the algorithms presented in this thesis on large scale 2D data – both

simulated and hardware data. The simulated data provides perfect robot localization,

whereas the hardware data has a localization accuracy of 2-3cm. The simulated data also

provides a range of maps to showcase that the algorithms work in various environments.

We highlight that introducing a data-driven, patch prior is particularly beneficial when

data is sparse and this result is also observed in Figure 1.10f in that the algorithm is able

to estimate the occupancy of cells “between” measurements.

1.3 Thesis Contributions

The novel contributions presented in this thesis are:

• Section 2.3.1 presents a method of computing the full Bayesian solution for OGM

by constraining the robot’s pose. This can be computed for a 1D map of any size

and is useful in evaluating other OGM algorithms.

• Section 2.5 optimizes traditional OGM to capture the residual uncertainty, resulting

in more accurate maps without sacrificing the speed of traditional methods. This

work was presented and published at ICRA-2014 (Merali and Barfoot, 2014).

• Section 3.1 introduces Online Patch Map, which generalizes traditional OGM to

estimate patches of cells. This formulation produces more accurate maps by en-

abling the posterior to keep cell correlations for cells in the same patch (novel but

not published).

• Section 3.2 introduces Offline Patch Map, which is a batch solution to better es-

timate the residual uncertainty in the map. This method is a useful benchmark

for estimating the full Bayesian solution in 2D. This researched was presented and

published at IROS-2012 (Merali and Barfoot, 2012).

• Chapter 4 uses MCMC Gibbs sampling to estimate the full Bayesian solution in

OGM, which was first presented and published at ICRA-2013 (Merali and Barfoot,

2013). Given enough samples, this anytime algorithm can produce more accurate

maps than patch map methods.
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• Chapter 5 introduces a data-driven patch prior and a method to correlate neigh-

bouring patches in MCMC OGM. This extension to MCMC OGM is faster and

more accurate than the algorithm without this extension (being prepared for pub-

lication).



Chapter 2

Occupancy Grid Mapping (OGM)

Fundamentals

Chapter 1 highlighted the importance of mapping in robotics. This thesis is focused

specifically on occupancy grid mapping, which is a technique that discretizes the envi-

ronment and seeks to estimate the true map based on the occupancy of each discrete

unit. This technique was introduced in 1985 and is still heavily used in robotics today.

This method lends itself to a variety of range sensors such as sonar (Nagla et al., 2012;

Thrun, 2003), radar, cameras (Pathak et al., 2007; Perrollaz et al., 2012), infrared, but

this thesis will focus on LiDAR as this technique has a narrow sensing frustum, can

measure long distances and is becoming more ubiquitous in robotics as its cost decreases

and capabilities increase.

This chapter begins by describing the problem mathematically in Section 2.1. Dis-

cretizing an analog environment into binary cells (or voxels) results in a finite number

of cell combinations to represent the environment. OGM refers to each combination as

a potential map of the environment and seeks to estimate the likelihood of each map.

However, the number of possible maps is large and it is therefore difficult to estimate

the likelihood of each of them. Many applications are simply concerned with the most

likely map and therefore Section 2.2 describes how it is possible to focus on the single

most likely map, which can be computed relatively quickly. In Section 2.3 we develop the

mathematical formulation to estimate the probability of every possible map, but high-

light that it becomes computationally intractable for reasonably sized maps. Therefore,

Section 2.3.1 examines a special case of this formulation and shows that the probability

of every map can be computed if the robot is stationary. Although this formulation is

22
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not useful for real experiments, it provides a useful benchmark to compare other OGM

techniques and is used throughout this thesis. For example, since OGM was first devel-

oped, it has focused on estimating the occupancy probability of each cell (as opposed to

each map) by assuming that cells in the map are independent and that measurements are

conditionally independent. These assumptions and this formulation is presented in Sec-

tion 2.4 and compared to the benchmark developed for a stationary robot. Section 2.5

goes a step further and uses this benchmark to develop a novel update technique for

traditional OGM. The new update function can be used in existing OGM algorithms to

better estimate the uncertainty in each cell with no increase in computational cost and

it better estimates the uncertainty in each cell. Finally, Section 2.6 highlights that the

sensor introduces cell correlations in the map, but traditional OGM methods disregard

these correlations by assuming cells are independent. However, the cells are only locally

correlated, which prompts the algorithms presented in subsequent chapters to improve

OGM by retaining local cell correlations.

2.1 OGM Formulation

In this section, we develop the OGM formulation used throughout this thesis. Given a set

of range measurements, z, and corresponding robot poses, x, mapping algorithms seek to

estimate the map, m. OGM is a commonly used mapping framework that represents the

unoccupied space as well as the occupied areas measured by range sensors. Specifically,

these algorithms discretize an analog environment, into a regular grid of K cells (or

voxels), m1:K . Each cell in the map is represented by a binary random variable, mk, where

k = 1 . . . K, that indicates whether the cell is occupied, mk=1, or unoccupied, mk=0. The

true map, known as the ground truth map, correctly indicates the value of each mk. An

occupancy grid mapping algorithm seeks to determine the map, mr, that best represents

the world, given a set of N scalar range measurements, z1:N , and corresponding robot

pose vectors, x1:N . To simplify the notation, we will not include the subscript 1 :N when

referring to the set of all measurements or poses, just as all K cells in the map are referred

to as m. Each robot pose, xn, represents the position and orientation of the robot and is

therefore a vector representing each degree of freedom of the robot – in a 2D environment

this is typically the x- and y-position and the yaw angle for orientation. As most narrow-

beam range sensors measure the distance to the first occupied cell, f , (and not beyond

that) the occupancy of cells inside walls or obstacles cannot be measured. The ground
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truth map indicates the true state of these unmeasurable cells, but a mapping algorithm

cannot use range measurements to estimate the state of these cells. It is therefore typical

in the literature to refer to these cells as unknown and estimate them at the cell prior

(Collins et al., 2007) as opposed to occupied or unoccupied.

Therefore, OGM algorithms are concerned with using Bayesian methods to compute

the probability of each map, p(mr), given the range measurements and corresponding

robot poses,

p(mr|z, x). (2.1)

Since the map is discretized into K cells and a binary random variable is used to represent

the occupancy of each cell, there are therefore R=2K possible occupancy grids. We use

a superscript to represent these maps: mr, where r = 1 . . . R. Of the R possible

maps, there is one true map, known as the ground truth (GT) map. The full Bayesian

solution to OGM therefore seeks to estimate the probability of all possible maps given the

range measurements and their corresponding pose, which can become computationally

intractable when the number of cells is large. Therefore, OGM methods seek to estimate

Equation (2.1) for all values of r, but it is computationally intractable for realistic maps.

This thesis employs both variational inference and MCMC techniques to estimate this

quantity better than traditional OGM methods, as outlined in the following chapters.

In addition, Chapter 5 will introduce the use of prior information that can be used to

improve the map estimates.
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Figure 2.1: Occupancy grid after six measurements drawn from p(z|f) =N (f, d2). The
robot is at k = 0, the true first occupied cell is at k = 8 (therefore f = 8). The full
Bayesian solution estimates all R= 2K possible maps, but the marginal cell occupancy
is illustrated here. The ground truth map is perfectly confident about the occupancy of
cells that can be mapped (irrespective of the measurements). The MAP estimate also
does not represent uncertainty, but is obtained from the measurements. The traditional
OGM algorithm is shown for comparison with both an update term from the literature
and optimized values.
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For even a small number of cells in the map, K, the true Bayesian posterior is difficult

to illustrate for all possible maps, R=2K . Therefore, throughout this thesis we illustrate

the marginal cell occupancy, p(mk|z, x), as we showed in Figure 1.10. Because many of

the algorithms in this thesis aim to accurately capture the residual uncertainty in each

cell, a 1D occupancy grid is often depicted to illustrate the marginal cell probabilities on

a bar plot, such as the one seen in Figure 2.1. This figure illustrates a 1D map, where

the robot is stationary at cell m0 and the wall, or first-occupied-cell, is at cell m8. The

sensor model will be discussed in more detail in Section 2.6, but unless stated otherwise,

this thesis will model the sensor as having Gaussian noise about the true range, fn, and

standard deviation of σ cells, p(zn|fn) = N (fn, σ
2). Thus, in the example in Figure 2.1,

the robot has taken six range measurements and seeks to estimate p(m|z1:6) and the

figure depicts the marginal occupancy probability of each cell, p(mk|z1:6) using various

algorithms. This example will be repeated several times in this thesis to compare and

contrast the various OGM algorithms.

2.2 Maximum a Posteriori (MAP)

Most OGM algorithms provide a method to estimate the probability of each of the

possible maps, but Thrun (2003) introduces a method of computing the single most likely

map, known as the maximum a posteriori (MAP) estimate, m̃, by maximizing p(z|x, m̃).

It is an iterative Expectation-Maximization (EM) algorithm that begins with a random

map, m̃(i=0), and updates a single cell, m̃
(i)
k , given the occupancy of all other cells in the

map at the previous iteration, m̃
(i−1)
¬k . The notation m̃

(i−1)
¬k indicates an estimate of all cells

in the map except cell mk at iteration (i− 1). The algorithm iterates through all K cells

in the map several times and performs hill-climbing until each cell reaches a steady-state

value of 0 or 1. Thrun computes the MAP estimate for sonar sensors, which have a wide

sensing frustum and may measure the distance to one of multiple obstacles, or measure

the absence of obstacles. Because any one of several obstacles could have caused the

sensor measurement, Thrun accounts for multiple possibilities. In this thesis, however,

we only consider narrow-beam range sensors (e.g., laser rangefinders) that measure the

distance to only the first occupied cell, f , along the measurement ray. Thus, computing
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the MAP estimate is simplified. To compute the MAP estimate, we recognize that

p(z|x, m̃) =
p(m̃k|z, x, m̃¬k)p(z|x, m̃¬k)

p(m̃k|x, m̃¬k)
. (2.2)

From Equation (2.2) we note that p(z|x, m̃¬k) does not depend on the occupancy

of cell m̃k and the denominator is simply the prior occupancy probability of each cell.

Therefore, we rearrange Equation (2.2), and seek to maximize

p(m̃k|z, x, m̃¬k) =
p(m̃k|x, m̃¬k)p(z|x, m̃)

p(z|x, m̃¬k)

=

p(m̃k|m̃¬k)
N∏
n=1

p(zn|xn, m̃)

p(z|x, m̃¬k)
, (2.3)

where we recognize that the occupancy of cell, m̃k, is independent of the set of robot

poses, x. Note that we have assumed that each measurement, zn, is independent given the

occupancy of all cells in the map, m̃. This assumption is realistic for a static world, unlike

the measurement independence assumption made in traditional occupancy grid mapping

that will be discussed in Section 2.4. Computing the denominator of Equation (2.3) is

avoided by introducing the log-odds notation. That is, for a random variable, y, the

log-odds of y is

l(y) = log

(
p(y)

1− p(y)

)
.

Note that the probability of y can still be recovered from the log-odds notation:

p(y) =
exp (l(y))

1 + exp (l(y))
.

Therefore, in the log-odds domain, we use Equation (2.3) to compute

l(m̃k|z, x, m̃¬k) = log

(
p(m̃k=1|z, x, m̃¬k)
p(m̃k=0|z, x, m̃¬k)

)
= l(m̃k|m̃¬k) +

N∑
n=1

log

(
p(zn|xn, m̃¬k, m̃k=1)

p(zn|xn, m̃¬k, m̃k=0)

)
. (2.4)
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Computing p(zn|xn, m̃¬k, m̃k) in Equation (2.4), amounts to evaluating the sensor

model because together m̃¬k and m̃k give the occupancy of every cell in the map, m̃.

Given the occupancy of all cells, and the robot pose, xn, we can extract the first occupied

cell, fn. The sensor model will be discussed in more detail in Section 2.6, but unless stated

otherwise, this thesis will model the sensor as having Gaussian noise about the true range,

fn, and standard deviation of σ cells, p(zn|fn) = N (fn, σ
2).

The term l(m̃k|m̃¬k) in Equation (2.4) is equal to zero if we assume a uniform prior and

cell independence in the prior. Therefore, the term is set equal to zero for our experiments,

but the uniform prior assumption is revisited in Chapter 5. To compute the MAP

estimate of the occupancy grid, we employ an Expectation-Maximization (EM) algorithm

(Dempster et al., 1977). The E-Step, or expectation, is calculated using Equation (2.4).

After computing l(m̃k|z, x, m̃¬k), the M-Step, or maximization, sets the value of cell m̃
(i)
k

according to

m̃
(i)
k =


1 if l

(
m̃k|z, x, m̃(i−1)

¬k

)
> l(λ)

0 if l
(
m̃k|z, x, m̃(i−1)

¬k

)
< l(λ)

m̃
(i−1)
k otherwise

,

where l(λ) is a constant value and commonly set to 0. The new value of m̃
(i)
k , is then

used to compute the next cell in the grid, m̃
(i)
k+1. After numerous iterations of all cells in

the map, the solution converges to a local maximum likelihood estimate. The algorithm

works well when the initial map is randomly generated and it converged to a global

maximum in each case we tested. However, we observed that convergence is faster when

the initial map has all cells unoccupied (as did Thrun (2003)). We also observed that

changing the prior has the largest effect on the unmapped cells. Our offline patch map

algorithm, described in Chapter 3, requires that the unknown cells be marked as occupied

to ensure that they will reflect the range sensor. Therefore, we sacrifice the convergence

speed of the MAP estimate and initialize all cells as occupied, m̃
(i=0)
k = 1,∀ k = 1 . . . K.

In our 1D toy example, the MAP solution is shown to exactly estimate the ground truth

map in Figure 2.1.

2.3 Full Bayesian Solution

Occupancy grid mapping algorithms are concerned with using Bayesian methods to com-

pute the probability of each map given a set of range measurements and corresponding
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robot poses, p(mr|z, x). Section 2.2 highlighted a method of computing which of these

maps is the most probable, but did not compute the probability of each map. Besag

(1986) illustrates that the MAP solution often inaccurately represents the marginal like-

lihood of a specific random variable (the occupancy of a cell in this case). Thus, it would

be more effective, although more computationally expensive, to estimate the probability

of every possible map, than to compute marginal probabilities. The probability of each

map, mr, given the range measurements and corresponding poses, is computed as,

p(mr|z, x) =
p(zn|mr, z1:n−1, x)p(mr|z1:n−1, x)

p(zn|z1:n−1, x)

=
p(zn|mr, xn)p(mr|z1:n−1, x1:n−1)

R∑
j=1

p(zn,m
j|z1:n−1, x)

=
p(zn|mr, xn)p(mr|z1:n−1, x1:n−1)
R∑
j=1

p(zn|mj, xn)p(mj|z1:n−1, x1:n−1)
.

This equation is written recursively to incorporate each new sensor measurement, zn,

incrementally. In this chapter, we assign a uniform prior probability for each map,

p(mr) = 1/R, but we revisit this assumption in Chapter 5.

Similar to Section 2.2, we introduce the hidden state of the first occupied cell to write

p(zn|mr, xn) as the sensor model, p(zn|fr,n), where fr,n is dependent on the map, mr, and

the robot pose, xn. Hence, the occupancy grid mapping algorithm reduces to

p(mr|z, x) =
p(zn|fr,n)p(mr|z1:n−1, x1:n−1)
R∑
j=1

p(zn|fr,n)p(mj|z1:n−1, x1:n−1)
. (2.5)

Note that the denominator is a normalizing constant that does not increase the com-

putational complexity since the numerator is computed for all values of r. Computing

Equation (2.5) of each of the R maps, will yield the probability of every possible map.

As we illustrated in Figure 1.10 and Figure 2.1, occupancy grid maps are often visualized

and compared on a cell-by-cell basis. Therefore, the marginal probability of a cell being

occupied is calculated by summing the map probabilities for those maps in which the cell



Chapter 2. Occupancy Grid Mapping (OGM) Fundamentals 29

of interest is occupied:

p(mk|z, x) =
R∑
r=1

p(mk|mr)p(mr|z, x), (2.6)

where p(mk|mr) ∈ {0, 1}. This can be used as a benchmark for occupancy grid mapping

algorithms, introduced in later sections, that only seek to compute the probability of each

cell being occupied, as opposed to the probability of a map. However, the computation

time for this formulation is exponential in the number of cells in the map, K, because

R = 2K . As a result, this formulation is limited to computing the full solution for a

map with a small number of cells (e.g., K=20 cells requires several hours). Hence, this

solution is only suitable for small 1D maps, and not for any reasonably sized 2D or 3D

maps.

2.3.1 Pose-Constrained Full Solution

In the preceding section, we presented the full Bayesian solution to OG mapping but

noted that it is computationally expensive to compute for R maps. In this section, we

show that by constraining the robot’s pose in 1D, we only need to compute the full

solution for K unique maps. By introducing the hidden state of the first occupied cell,

f=1 . . . F , we are able to compute the probability of each map given range measurements

and corresponding poses, p(mr|z, x). Throughout this thesis, we assume that the range

sensor is a narrow-beam sensor such as a laser rangefinder. Thus, the sensor will measure

the distance to the first occupied cell along the measurement ray, as opposed to a sensor

with a wide sensing frustum (e.g., ultrasonic range sensor), which Thrun (2003) handles

by taking the expectation over possible obstacles in the sensing frustum.

Therefore, given the probability of each map from Equation (2.5), computing the

probability of R maps is computationally expensive. Given that it is common for a

range sensor measurement to trace more than 50 cells per measurement, it would be

computationally intractable to compute the full solution of even a 1D map of this size.

However, by assuming the robot’s pose is fixed, we note that Equation (2.5) only yields

K unique solutions. Specifically, p(mr|z, x) is different for each value of f . Therefore

the R possible maps can be grouped by their respective value of f , mr ∈ f . To compute
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p(mr|z), we compute the K possible solutions and then multiply by the frequency of that

value of f in the denominator,

p(mr|z) =
p(zn|fr)p(mr|z1:n−1)

K∑
j=1

2(K−j)p(zn|f=j)p(mj|z1:n−1)
,

where the notation mj refers to any mr ∈ f = j. This equation is written recursively

to incorporate each new sensor measurement, zn, incrementally. Here, we use a uniform

prior probability for each map, p(mr)=1/R, but revisit this assumption in Chapter 5.

Finally, the probability of a cell being occupied is calculated by summing the map

probabilities for those maps in which the cell of interest is occupied:

p(mk|z) =
R∑
r=1

p(mk|mr)p(mr|z), (2.7)

where p(mk|mr) ∈ {0, 1}. This equation can be used to compare the full solution to

traditional OG mapping algorithms that only calculate the probability of a cell being

occupied, as opposed to the probability of a map. This result is highlighted in Fig-

ure 2.1; although the full solution approaches the ground truth map as the number of

measurements increases, it has not yet converged after six measurements. We should

not be more confident in the estimate of a cell’s occupancy than the full Bayesian solu-

tion allows. Hence, having a Bayesian mapping algorithm converge to the ground truth

given a finite set of measurements, would imply that the algorithm is overconfident in

its estimate. This conclusion is further evidenced in cells with no measurements; the

ground truth map will be perfectly confident about the cell’s occupancy, whereas the

full solution will remain at the prior. Note that computing the full solution is typically

exponential in the number of cells in the map, K, because R= 2K . However, the pose-

constrained formulation presented here allows us to compute the probability of only K

maps. Therefore, we can use this formulation to compare any size map in 1D against the

full Bayesian solution, as we will demonstrate throughout this thesis. While this does

not admit a practical algorithm for real-world use, it is a convenient benchmarking tool

in one dimension.
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2.4 Traditional Occupancy Grid Mapping (OGM)

The full solution derived in Section 2.3 is too computationally expensive to be used in real

time and on realistic 2D and 3D maps. Therefore, traditional occupancy grid mapping

(Elfes, 1989a; Moravec, 1988; Moravec and Elfes, 1985) makes simplifying assumptions

to reduce the computation time to be linear in the number of cells that the measurement,

zn, traverses.

The first assumption is that the occupancy of a cell is independent of all other cells:

p(m) =
K∏
k=1

p(mk).

This assumption results in losing any mutual information between cells, but dramati-

cally reduces the computational and storage burden because the problem is reduced to

computing p(mk|z, x) for K cells, as opposed to computing p(mr|z, x) for R=2K maps:

p(mk|z, x) =
p(zn|mk, z1:n−1, x)p(mk|z1:n−1, x)

p(zn|z1:n−1, x)
.

This equation is written iteratively to incorporate each new measurement, zn, using the

previously computed cell occupancy probability, p(mk|z1:n−1, x).

The second assumption is that measurements are conditionally independent, given

the occupancy of a single cell of interest:

p(z|mk) =
N∏
n=1

p(zn|mk). (2.8)

However, this assumption made in traditional occupancy grid mapping is not strictly true,

even in a static world (Kaufman et al., 2016). Note that this assumption differs from the

static-world assumption, made in Section 2.3, that measurements are independent given

the occupancy of all cells in the map,

p(z|m) =
N∏
n=1

p(zn|m).

But traditional OGM uses this second assumption because it reduces the cell update
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equation to

p(mk|z, x) =
p(zn|mk, xn)p(mk|z1:n−1, x1:n−1)

p(zn|z1:n−1, x)

=
p(mk|zn, xn)p(zn|xn)p(mk|z1:n−1, x1:n−1)

p(mk|xn)p(zn|z1:n−1, x)
. (2.9)

Computation of the terms that do not depend on mk in this expression are avoided by

using the log-odds domain, and therefore this formulation is often referred to as the

log-odds formulation of OGM in the literature:

l(mk|z, x) = l(mk|z1:n−1, x1:n−1)︸ ︷︷ ︸
stored value

+ l(mk|zn, xn)︸ ︷︷ ︸
update term

− l(mk)︸ ︷︷ ︸
cell prior

. (2.10)

The three terms in this equation are easily computed. The first term, l(mk|z1:n−1, x1:n−1),
is computed at the previous iteration and stored in the evidence grid (an evidence grid

is simply an occupancy grid in the log-odds domain (Martin and Moravec, 1996)). The

second term, l(mk|zn, xn), is the update term that must be computed at each iteration.

Finally, the third term, l(mk), is a constant based on the prior for each cell. Setting the

prior to p(mk)=λ=0.5 (maximum entropy prior) ensures the third term is equal to zero.

This assumption is not necessarily correct and is explored in further detail in Chapter 5,

but it is commonly used in the literature (Dhiman, 2019; Xu et al., 2019).

For the update term, the robot pose, xn, is only used to convert the cell, mk, from

global coordinates to the robot’s local coordinates so that it may be compared to zn

(which is in local coordinates). Therefore, we introduce the variable κ, where κ = 0 . . . F ,

to enumerate the cells, mκ, that the measurement zn could possibly measure. Hence,

mκ=0 is the cell that the robot occupies at pose xn (the starting pose of the measurement

ray zn), and mκ=F is the cell at the maximum range of the sensor given the position and

orientation of the sensor, xn. The update term can now be written l(mκ|zn). This update

term is known as the log-odds of the inverse sensor model, p(mκ|zn). A commonly used

form in the literature (Borenstein and Koren, 1991; Hähnel, 2004; Murray and Little,

2000; Stachniss, 2006; Vasto, 2011; Xu et al., 2019) is

l(mκ|zn) =


lfree if κ < zn

locc if κ = zn

0 otherwise

,
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Update Term used in Traditional OGM

Figure 2.2: A commonly used inverse sensor model for traditional OGM in the log-odds
domain. The parameters locc and lfree are normally selected such that locc > 0 ≥ lfree.

where lfree and locc are manually selected, and generally locc ≥ −lfree, and locc > 0. Various

values for lfree and locc are presented in the OG literature. Section 2.5 will explore the

inverse sensor model in detail. However, unless stated otherwise, this thesis will use the

values reported by Hähnel (2004) of lfree = −1.3863 and locc = 1.38631 and refer to this as

traditional OGM. Figure 2.2 illustrates this commonly used inverse sensor model. Again,

the two assumptions are beneficial because l(mκ|zn) is precomputed making the update

linear in the number of cells through which zn passes. Hence, traditional OGM is an

online algorithm that is often used for large maps (e.g., K � 20).

Traditional OGM is depicted in Figure 2.1 and highlights that it is overconfident in its

occupancy estimate of some cells and underconfident in others. Again, the full solution

represents the true occupancy probability of each cell. The next section will improve

this estimate using traditional OGM methods without sacrificing the speed and ease of

implementation that have contributed to the wide-spread use of traditional OGM.

2.5 Optimizing Traditional OGM

Section 2.4 highlighted Equation (2.10) as the formula used in traditional occupancy

grid mapping. In this equation, l(mk) is a prior and l(mk|z1:n−1, x1:n−1) is the value stored

in the evidence grid before incorporating the measurement zn. Traditional occupancy

grid mapping uses the so-called inverse sensor model, p(mk|zn, xn), to update the map.

Therefore, it is important to compute the inverse sensor model in the log-odds domain,

which we call the update term, ∆= l(mk|zn, xn)= l(mκ|zn). As explained in Section 2.4,

the expression mκ is the cell mk relative to the pose xn and ∆ is part of the log-odds

Bayesian update rule. This update term is known as the log-odds of the inverse sensor

model, p(mκ|zn), and can be computed a priori.

1Hähnel (2004) reports these values in the probability domain as pfree = 0.2 and pocc = 0.8 and we
use the natural logarithm of these values.
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Figure 2.3: Optimized update terms from five parameterizations found in the literature
and our parameterization with 21 parameters (p21). The tuning parameters for each
update term are indicated (locc, lfree, β, α) with the exception of the Elfes 1989 parameters,
which could not be displayed on this plot. κ is the number of cells from the robot to the
cell being updated and zn is the range measurement in units of cells.

The update term governs the amount of information that is added to the map with

each new measurement. However, the OG mapping literature contains several different

update functions. Therefore, in this section we use variational inference (VI) techniques

to better estimate the various update functions found in the literature. In Merali and

Barfoot (2014) we compared and optimized the update terms to best capture the residual

uncertainty in the OG map. Note that we only reviewed update terms for narrow-

beam range sensors; other researchers have provided update terms for different types of

sensors. For example, Thrun (1998) used an artificial neural network (ANN) to optimize

the update term for multiple sonar sensors on the robot. In addition, Kaufman et al.

(2016) proposed update functions for both a ray (narrow-beam range sensor) and a scan

without the measurement-independence assumption used in traditional OGM. Without

this assumption, however, the OG update is slower and therefore this section focuses

on traditional OGM. Figure 2.3 illustrates five update functions from the literature and

Table 2.1 specifies the tuning parameters of each.

The tuning parameters for each update term listed in Table 2.1 are shown in Fig-

ure 2.3. Borenstein and Koren (1991) developed a reactive obstacle avoidance algorithm.

To update the map quickly, they elected to use a simple update term that only adds

information where the range sensor detected an obstacle, κ= zn. In contrast, all of the

other update terms add information (positive or negative) along the length of the mea-

surement ray and some even beyond that. The update term described in Section 2.4 and

first presented by Moravec (1988) is the most commonly found in the literature (Murray

and Little, 2000; Stachniss, 2006). This update term will add locc to the evidence grid

where the range sensor detected an obstacle, κ = zn, and lfree to all cells between the



Chapter 2. Occupancy Grid Mapping (OGM) Fundamentals 35

Table 2.1: Tuning parameters for various update functions, ∆, from the literature

Tuning Parameters Optimized Values

Borenstein and Koren (1991) locc -0.2197

Moravec (1988) locc, lfree 0.9787, -0.7021

Marshall and Barfoot (2007) locc =−lfree, β 0.7183, 2

Stachniss (2006) (sonar) locc, lfree, α 0.5115, -0.8135, 7

Elfes (1989a) σ, lmin 2.9627, -12.9047

sensor and the obstacle, κ<zn. Arbuckle et al. (2002) and Hähnel (2004) used a similar

update term, but enforced the constraint that locc = −lfree. Although not discussed in

the paper, Marshall and Barfoot (2007) also enforced this constraint but found that it

resulted in the OG map overestimating the distance to the obstacle. Therefore, they

allowed the update term to add locc to the evidence grid for β cells, κ=zn to κ=zn+β−1,

which addressed their issue. Stachniss (2006) used two update terms in his PhD thesis.

For a laser rangefinder, he used the common update term first presented by Moravec

(1988). However, for a noisier sonar sensor, he linearly interpolated between lfree and

locc with the width of this interpolation, denoted α, centered on κ= zn. Finally, Elfes

(1989a) presented an update term in his PhD thesis that is based on a range sensor with

Gaussian noise, p(zn|f)=N (f, σ2). Specifically, Elfes defines the update term as

∆ = log

(∑F
f=1 p(zn|f)p(f |mκ = 1)∑F
f=1 p(zn|f)p(f |mκ = 0)

)
.

In our research, we found that thresholding the minimum value of ∆ yields better re-

sults. Therefore, for this parameterization, we also include a variable, lmin, at which we

threshold the minimum value of ∆. Neither of the two parameters for (Elfes, 1989a) are

shown in Figure 2.3 because the lmin value is beyond the range of the y-axis displayed

and σ is used to compute ∆.

Section 2.3 explained how to compute the full Bayesian solution for OG mapping. This

solution makes no assumptions, unlike the traditional OG mapping algorithm discussed

in Section 2.4. Therefore, we use variational inference techniques to optimize the ∆

parameters in 1D where the full solution can be computed quickly by assuming the

robot’s pose is constrained, as shown in Section 2.3.1. In addition to the parameters in

the literature, we treat each value of the update term as variable and optimize the update
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term for an increasing number of parameters centered around κ= zn. The optimization

seeks to minimize the divergence between the OG produced using the update term and

traditional OGM methods as compared to the full Bayesian solution. These optimized

parameters can then be used in 2D or 3D to better capture the residual uncertainty.

The Kullback-Leibler divergence (Kullback and Leibler, 1951), DKL(p||q), quantifies

the difference between two probability distributions, p and q, where p is the benchmark

probability, and q is the estimated probability. Variational inference techniques seek to

minimize the Kullback-Leibler divergence between the two distributions. Given the cell

independence assumption in traditional OGM, we are able to compare two occupancy

grids by computing DKL(pk||qk) for each cell, mk, in the map between the full solution

and estimated map. Once

DKL(pk||qk) =
1∑

mk=0

p(mk) log

(
p(mk)

q(mk)

)

is computed for each cell, mk, the sum over all cells is the DKL between the two maps:

DKL(p||q) =
K∑
k=1

DKL(pk||qk).

However, to optimize the tuning parameters, we need only optimize the cross entropy

between the two maps,

H(pk, qk) = −
1∑

mk=0

p(mk) log (q(mk)) ,

H(p, q) =
K∑
k=1

H(pk, qk),

because the cross entropy and Kullback-Leibler divergence are equal to within an additive

constant if the benchmark probability, p, is constant. This is known as the principal of

minimum discrimination information (Kullback, 1959).

Each of the tuning parameters for the five update terms were optimized using the

BFGS (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) Quasi-Newton

method with a mixed quadratic and cubic line search procedure. Specifically, we used

the same 1D dataset with 1000 OG maps as we did in Merali and Barfoot (2012) and

Merali and Barfoot (2013). However, in Merali and Barfoot (2014), we divided the 1000
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Figure 2.4: The occupancy grids computed by the various algorithms in the literature
and our parameterization with 21 parameters (p21) for one of the 1D datasets. The full
solution is also shown for reference. Note that our algorithm most closely resembles the
full solution near the obstacle, f=60.

datasets into 10 equal sets and performed 10-fold cross validation. In other words, we

optimized on 900 datasets, then tested on 100 datasets and repeated this procedure 10

times. In this optimization, the range sensor had a maximum range of F =75 cells, but

the obstacle was f =60 cells from the (static) robot and the range sensor had Gaussian

noise with a standard deviation of σ=3 cells, p(z|f)=N (60, 32). Each dataset produced

an OG map using traditional OGM and the tuning parameters being optimized for the

update term. This occupancy grid was compared to the full solution using cross entropy

to quantify the divergence of the two maps. The best update terms from this optimiza-

tion are shown in Figure 2.3 and the third column of Table 2.1. Figure 2.4 illustrates

a portion of the OG created by each of the optimized algorithms for one of the 1000

datasets. Figure 2.4 also shows the full Bayesian solution for reference.

Figure 2.3 shows the optimized update terms for p21 and Figure 2.4 uses the optimized

terms to illustrate an example OG created by p21. The p21 algorithm refers to an

optimization that we conducted by optimizing an increasing number of ∆(κ− zn) values

centered around κ=zn. We assumed that ∆=0 for values beyond (away from the robot)

the parameters being optimized and we assumed that ∆ is equal to the first value being

optimized (nearest to the robot) for the values of delta that were closer to the robot than

those being optimized. For one parameter being optimized, p1, our method outperformed

Borenstein and Koren (1991) because we were able to add information to all cells between

the rover and the obstacle. However, our method is equivalent to Moravec (1988) for two

parameters, p2. Thus, as we increase the number of parameters, this methodology should

be able to capture and outperform all of the other ∆ functions that we have identified in

the literature. Figure 2.5 illustrates the optimized parameters for the increasing number

of parameters. Interestingly, as the number of parameters increases, the update term
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Figure 2.5: The optimized update term for an increasing number of parameters centered
around κ = zn. The optimization was completed for parameters 1 to 21, but only every
other parameterization is illustrated here.

Table 2.2: Optimized update function, ∆, with 21 tuning parameters - referred to as p21.
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≥ 10

0

becomes more negative for values of κ < zn. Also, near κ = zn the update term adds

less information per cell but is distributed over more cells as the number of parameters

increases. Table 2.2 shows the optimized ∆ function for p21. As expected, the highest

value is at κ=zn and approaches zero for larger values of κ. Notably, the ∆ function adds

significant negative information to the evidence grid for cells near the robot, κ−zn ≤ 11,

indicating that the inverse sensor model is confident that these cells are unoccupied.

Figure 2.6 shows how the cross entropy decreases as the number of parameters be-

ing optimized increases. Figure 2.6 also shows the best cross entropy values for the

other algorithms in the literature for reference; the parameterization from Borenstein

and Koren (1991) was excluded from Figure 2.6 because its cross entropy values were

significantly higher than the rest. Interestingly, adding parameters near the robot, as

opposed to beyond the obstacle, more dramatically decreases cross entropy. Intuitively

this makes sense as the range sensor should not be changing the occupancy probability

of cells beyond the obstacle. Furthermore, Figure 2.6 shows that the parameterization

proposed by Elfes (1989a) did extremely well and our method had to optimize 19 or more

parameters to do better. Figure 2.3 gives more insight into this result as we see where

Elfes 1989 and p21 differ. Figure 2.7 further highlights this result by illustrating the av-

erage DKL on a cell-by-cell basis for the cells near the obstacle. These figures show that

our parameterization better models the full solution near the obstacle at the expense of



Chapter 2. Occupancy Grid Mapping (OGM) Fundamentals 39

5 10 15 20
1.8

1.9

2

2.1

2.2

2.3
x 10

4

numParam

C
ro

s
s
 E

n
tr

o
p

y

 

 

Number of Parameters

H
(p

,q
)

2 4 6 8 10 12 14 16 18 20
1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3
x 10

4

numParam

C
ro

s
s
 E

n
tr

o
p

y

 

 

Moravec 1988

Marshall and Barfoot 2007

Stachniss 2006 (sonar)

Elfes 1989

Increasing ParametersBe
tt
er

Figure 2.6: The best cross entropy values for optimized two-assumption OG mapping
algorithms as compared to the full Bayesian solution.
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Figure 2.7: The average DKL for each of the two-assumption OGM algorithms in the
literature and our solution with 21 parameters, compared to the full Bayesian solution.
The obstacle is at k = 60, so we see that the largest divergence is centered around the
obstacle and that our parameterization has the lowest average divergence.

performing slightly worse beyond the obstacle. We clearly see that the algorithms (with

the exception of Borenstein and Koren (1991)) diverge most from the full solution near

the obstacle and that our parameterization of the update function diverges the least.

Particularly, the parameterization proposed by Moravec (1988) diverges the most near

the obstacle boundary. This is the most common OG mapping algorithm found in the

literature and what we refer to as traditional OGM in this thesis.
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The optimized p21 algorithm is applied to the 1D toy example and presented in Fig-

ure 2.1 alongside the other OGM algorithms discussed in this chapter. Furthermore, the

optimized ∆ functions are applied to simulated 2D results and presented in Section 6.1.2.

However, throughout this thesis, we will show the results of various OGM algorithms on

a simple 2D example to further highlight the difference between the algorithms. Some of

these results were shown in Figure 1.10 and the legend shown in Figure 1.10g is commonly

used in this thesis for the 2D OG maps. Figure 2.8 introduces this simple 2D example

and illustrates some of the results from this chapter. Figure 2.8a illustrates the ground

truth map and the three robot locations where narrow-beam range measurements were

taken from. Specifically, the robot acquires 720 measurements at each location in 0.5◦

increments, for a total of 2160 measurements. Each of these measurements has Gaussian

random noise about the true range measurement, p(zn|f) = N (f, 32). Figure 2.8b shows

these measurement rays, where blue cells indicate that the ray passed through the cell

without being reflected and red cells indicate that the measurement ray was reflected at

that cell. Note that some measurement rays do not terminate in a red cell, indicating

that the measurement ray reached its maximum range without being reflected. Most

significantly, no measurement rays reach the upper-right corner in this example. Fig-

ure 2.8c illustrates an occupancy grid created from Figure 2.8b by showing blue cells as

white (unoccupied), red cells as black (occupied) and the remaining cells as orange (un-

known). This map has no notion of uncertainty and cannot deal with conflicting range

measurements in a cell and is therefore only shown for reference.

The remaining three maps shown in Figure 2.8 are computed using traditional OGM

methods, but with different ∆ functions. Figure 2.8d illustrates the occupancy grid map

generated using a common ∆ function from the literature (Hähnel, 2004). Figure 2.8e

illustrates the occupancy grid map generated using the optimized values of a ∆ function of

the same form. These optimized values, shown in the second row of Table 2.1, are closer to

zero, indicating that traditional OGM is overconfident and adds too much information to

the map for each measurement. Finally, Figure 2.8f illustrates the result of our optimized

∆ function with 21 parameters, explained in this section. This map is more confident

that mapped cells near the robot are unoccupied, but it is also less confident that cells

that reflected the range sensor are occupied. The result is an occupancy grid that better

captures the uncertainty in the map.
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(a) Ground Truth (b) Range measurements

(c) Occupancy grid without uncertainty (d) Traditional OGM

(e) Optimized ∆ using model from Moravec
(1988)

(f) Optimized ∆ using our p21 model (Merali
and Barfoot, 2014)

Figure 2.8: 2D example illustrating the ground truth map and robot positions in (a),
the range measurements in (b), and four possible OG maps resulting from these range
measurements in (c)-(f). The OG map in (c) does not model uncertainty in the occupancy
map and is shown for reference. The remaining three OG maps use traditional OGM
methods with a different ∆ function for each. The result in (d) uses a common ∆ function
from the literature, the result in (e) uses an optimized version of this ∆ parameterization.
By allowing the ∆ function to have 21 different parameters (f), we are able to add more
or less information to the map along each measurement ray to better approximate the full
Bayesian solution. The legend used, with the exception of (b), is shown in Figure 1.10g.
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2.6 Mutual Information from Measurements

The preceding sections have shown the need for incorporating sensor measurements in

OGM with an accurate inverse sensor model. The literature discusses various sensor

models, but this thesis is concerned with narrow-beam range sensors. In robotics, laser

range finders are a common example of narrow-beam range sensors, but several other sen-

sors may be modeled as narrow-beam range sensors, such as cameras, ultrasonic sensors,

and even radar (e.g., Shankar and Michael, 2020).

The nature of a narrow beam range sensor is to return the distance to the first occupied

cell, f ; a signal will pass through unoccupied cells and reflect off the first occupied cell.

Therefore, by introducing the hidden state of the first occupied cell, p(zn|mr, xn) can

be written as the sensor model, p(zn|fr,n), where fr,n is dependent on the map, mr, and

the robot pose, xn. Furthermore, this thesis is concerned with a static environment and

therefore assumes that measurements are independent of one another given the map,

p(z|mr) =
N∏
n=1

p(zn|mr).

This assumption is valid for a static environment unlike the assumption shown in Equa-

tion (2.8) for traditional OGM that assumes measurements are independent given the

occupancy of a single cell.

As discussed in Section 2.4, traditional OGM assumes that the occupancy probability

of cells are not correlated and that measurements are independent of one another given

the occupancy of a single cell (as opposed to all cells in the map). Therefore, traditional

OGM uses an inverse sensor model, but range sensors are more accurately modeled as

p(zn|mr, xn) = p(zn|fr,n), which is known as the forward sensor model. Several exam-

ples of the forward sensor model exist in the literature (Agha-Mohammadi et al., 2019;

Dhiman, 2019; Hou et al., 2019; Pathak et al., 2007; Thrun, 2003), but two of the most

common are Gaussian noise about the true measurement and pattern-matching. For a

standard deviation of σ cells and the first occupied cell fr,n, the Gaussian sensor model

is,

p(zn|fr,n) = N (fr,n, σ
2)

=
1

σ
√

2π
exp

(
−(zn − fr,n)2

2σ2

)
.
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The pattern-matching sensor model will increase the probability of cell configurations

that match the measurement and decrease the probability of other cell configurations.

To reduce computation time, the pattern-matching sensor model will typically increase

the probability of one configuration and decrease the others equally. This version of the

pattern-matching sensor model is equivalent to the Gaussian sensor model with a small

standard deviation – such that the probability mass is concentrated at p(zn = fr,n). For

example,

p(zn|fr,n) =

{
pocc if zn = fr,n

(1− pocc)/F otherwise
,

where pocc ∈ (0, 1] is a user-defined value and is typically greater than 0.5 and the

remaining probability mass is equally distributed over the other F possible values of fr,n.

The pattern-matching sensor model is also referred to as the piecewise constant sensor

model (PCSM) in the literature (Dhiman, 2019), and is predominately used because it

can be applied faster than a Gaussian sensor model. Note that both models can be

precomputed and therefore do not need to be computed online. However, the pattern-

matching sensor model need only update one map, mr, or a subset of maps that satisfy

the cell configuration to allow, fr,n = zn. Further details about the sensor model can be

found in Section 6.3 of Thrun et al. (2005).

In this thesis, we wish to highlight that the forward sensor model will introduce cell

correlations from measurements, whereas the inverse sensor model will not. One measure

of cell correlations is the mutual information (MI) between cells, which measures the

dependence between the two cells. Specifically, MI quantifies the amount of information

in one cell by observing another. For two cells, mj and mk, the mutual information

between them is quantified as,

MI(mj,mk) =
1∑

mj=0

1∑
mk=0

p(mj,mk) log

(
p(mj,mk)

p(mj)p(mk)

)
.

Therefore, if two cells are independent, p(mj,mk) = p(mj)p(mk), then the MI between

them is zero.

Given the ability to quantify mutual information, Figure 2.9 illustrates the MI be-

tween all pairs of cells in a 1D occupancy grid. In the two examples, the OG was

computed using the full Bayesian solution with the same measurements and a forward
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(a) Mutual information with a Gaussian
sensor model of p(zn|fr,n)=N (fr,n, 3

2).
(b) Mutual information with a pattern-
matching sensor model with pocc=0.9.

Figure 2.9: Comparing the mutual information between cells in the posterior using the
full Bayesian solution to OGM, where the robot is at cell k=0 and z = {11, 7, 8, 8, 5, 9}.
Note that values are higher for proximate cells and zero for distant cells. In contrast, the
cell independence assumption made by traditional OGM assumes no mutual information
between cells.

sensor model. However, Figure 2.9a shows the result of using a Gaussian sensor model,

whereas Figure 2.9b uses a pattern-matching sensor model. The resulting plots highlight

that both forward sensor models add mutual information to the map, but in both cases

the mutual information is highest between proximate cells and is zero or near-zero for

cells that are farther apart. Critically, all of the mutual information introduced by the

forward sensor model is assumed to be zero by the inverse sensor model and traditional

OGM techniques.

The insight that mutual information is highest between proximate cells and near-zero

between cells that are farther apart, serves to motivate much of the work in this thesis.

By recognizing that mutual information is local and not global, we are able to develop

algorithms that approximate the full Bayesian solution by accounting for these local cell

correlations. In the next chapter, we develop OGM algorithms that seek to retain the

mutual information between proximate cells. In Chapter 5, we are able to extend the

notion of local cell correlation to the prior and not just measurements.

2.7 Chapter Summary

In this chapter we have formulated the full Bayesian solution to OGM and shown that it is

computationally intractable for realistic maps. Section 2.3.1 demonstrates a novel method
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to compute the full Bayesian solution for a 1D map when the robot’s pose is constrained.

This result is then used to optimize the update term in traditional OGM in Section 2.5.

The resulting novel update terms can be used in traditional OGM to better capture

the residual uncertainty in the map with no additional computation or storage cost.

Finally, Section 2.6 highlights that the sensor introduces mutual information between

proximate cells, but traditional OGM is unable to capture this information. Therefore,

the following chapters will introduce methods to better estimate the full posterior in

OGM by leveraging the fact that mutual information is well approximated by using

nearby cells.



Chapter 3

Patch Map

Chapter 2 highlights that the full Bayesian solution is computationally intractable for

real maps and that traditional OGM makes simplifying assumptions that enable it to run

online. One of these simplifying assumptions is that cells are independent and therefore

discard any mutual information between cells. However, Section 2.6 illustrates that the

forward sensor model introduces local cell correlations in the map, but that traditional

OGM cannot represent these correlations because it assumes no mutual information

between cells by only storing the occupancy probability of each cell, p(mk|z, x). In

addition, Section 2.6 also reveals that mutual information is greatest between proximate

cells. Therefore, this chapter presents a novel patch map that retains mutual information

between proximate cells yielding a better estimate of the true information in the map,

given the measurements and the poses from which they were taken. Specifically, we

introduce the notion of a patch, or grouping, of cells and discretize the map into a coarse

set of patches. We then compute the full Bayesian solution for each patch, but make

an independence assumption between patches for efficiency. The goal of the patch map

is to capture local cell correlations as the full solution does, but to be computationally

tractable to be used for realistic maps (2D or 3D).

Section 3.1 generalizes traditional OGM to estimate patches of cells as opposed to

individual cells. This novel formulation simplifies to traditional OGM for a patch size of

one cell and can therefore be viewed as a generalization. However, by increasing the patch

size, the algorithm is able to keep cell correlations between cells in the patch and therefore

better estimate the true information in the map. The independence assumption between

patches allows the algorithm to run online. However, Section 3.2 relaxes this assumption

by introducing an offline map to correlate patches. We published this novel offline patch

46
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map algorithm in Merali and Barfoot (2012) as a benchmark for OGM algorithms in 2D,

where the full solution is computationally intractable. Further experimental results of

this algorithm are shown in Section 6.1.1.

3.1 Online Patch Map

Section 2.3 highlights that the full solution for OGM does not make the cell independence

assumption. As a result, the occupancy of each cell is correlated with all other cells

in the map through the measurements. However, given the mutual information study

in Section 2.6, we feel that the full solution can be approximated by accounting for

dependence between only proximate cells as opposed to all cells. Thus, we propose a

solution where the full solution is computed for a particular patch, ak, of the map, centered

on cell, mk. Then we compute the probability of all possible patch configurations, w =

1 . . .W , where there are W = 2L possible patch configurations for a patch size of L cells.

If each patch has L cells and assuming that no patches overlap, then there are K/L

patches in the map. Hence, for a map with K cells, the computation is O(K/L×W ) as

opposed to O(2K) for the full solution. In 1D, we define the patch as a cluster of adjacent

cells and in 2D we suggest three possible patch connectivity neighbourhoods shown in

Figure 3.1.

Equation (2.5) shows that the full solution uses the forward sensor model, p(zn|fr,n).

Typically, the occupancy of all cells along the measurement ray must be known to deter-

mine fr,n. The patch map algorithm iterates through all possible values of ak,w, but for

the online patch map, we assume that the first-occupied-cell, fk,w, is independent of cells

outside of ak,w. Note that we will revisit this assumption in Section 3.2. Therefore, we

(a) L = 1 (b) L = 5 (c) L = 9

!!"#

!!$#

(d) Legend

Figure 3.1: Three possible patch connectivity neighbourhoods for a 2D map. Each patch,
ak is centered on a specific cell, mk. The patch method increases in complexity as the
number of cells in the patch, L, increases, but it better captures the true information in
the map, given the measurements, z.
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are able to use a similar formulation to traditional OGM and compute the probability

of each patch, p(ak,w|z, x), independently. By storing the value of each patch configura-

tion, p(ak,w|z1:n−1, x1:n−1), in the grid we are able to update the stored value incrementally

with each new measurement, using the forward sensor model. Using Bayes rule, the

probability of a particular patch configuration centered on cell mk is

p(ak,w|z, x) =
p(zn|ak,w, z1:n−1, x)p(ak,w|z1:n−1, x)

p(zn|z1:n−1, x)

=
p(zn|ak,w, xn)p(ak,w|z1:n−1, x1:n−1)

p(zn|z1:n−1, x)

=
p(zn|ak,w, xn)p(ak,w|z1:n−1, x1:n−1)

W∑
j=1

p(zn|z1:n−1, x, ak,j)p(ak,j|z1:n−1, x)

=
p(zn|ak,w, xn)p(ak,w|z1:n−1, x1:n−1)
W∑
j=1

p(zn|xn, ak,j)p(ak,j|z1:n−1, x1:n−1)
. (3.1)

This computation is required for all patch configurations. As a consequence, the

denominator adds little computational cost, because the numerator must be computed

for each patch configuration, w. Thus, this formulation reduces to the formulation of

traditional OGM in Equation 2.9 for a patch size of L = 1 and can therefore be seen

as a generalization of traditional OGM. However, the formulation in Equation (3.1)

uses the forward sensor model, p(zn|ak,w, xn), as opposed to the inverse sensor model

used in traditional OGM. Similar to the cell inverse sensor model, p(mk|zn, xn), used in

traditional OGM, we introduce a patch inverse sensor model, p(ak,w|zn, xn). The inverse

sensor model can be used by applying Bayes’ Rule to the forward sensor model,

p(ak,w|z, x) =
p(zn|ak,w, xn)p(ak,w|z1:n−1, x1:n−1)

p(zn|z1:n−1, x)

=
p(ak,w|zn, xn)p(zn|xn)p(ak,w|z1:n−1, x1:n−1)

p(ak,w|xn)p(zn|z1:n−1, x)

= η

patch inverse sensor model︷ ︸︸ ︷
p(ak,w|zn, xn)

stored value︷ ︸︸ ︷
p(ak,w|z1:n−1, x1:n−1)

p(ak,w|xn)︸ ︷︷ ︸
patch prior

, (3.2)
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where η is a normalizing constant. By introducing the patch inverse sensor model,

p(ak,w|zn, xn), this formulation clearly shows that the online patch map algorithm is

a generalization of traditional OGM, shown in Equation 2.9. However, as highlighted in

Section 2.5, optimizing an inverse sensor model requires a great deal of tuning. Recently,

Bauer et al. (2019) have used a neural network to learn a similar patch prior for a radar

sensor with the patch centered around the robot. One possible patch inverse sensor model

we propose is to increase the likelihood of patch configurations that match the sensor

measurement and decrease the others. For example,

p(ak,w|zn) =

{
pmatch if cells in ak,w correspond to zn

η otherwise
,

where pmatch ∈ (0, 1] is a user-defined value and the sum of all matching probabilities is

typically greater than 0.5 and the remaining probability mass is equally distributed over

the other possible patch configurations. Note that the term p(ak,w|z1:n−1, x1:n−1) is stored

in the patch-based occupancy grid for each patch configuration. Regardless of whether

the forward sensor model (Equation (3.1)) or the inverse senor model (Equation (3.2))

is used to compute p(ak,w|z, x), the marginal probability of a cell being occupied may

be calculated by summing the patch probabilities for those patches in which the cell of

interest is occupied:

p(mk|z, x) =
W∑
w=1

p(mk|ak,w)p(ak,w|z, x),

where p(mk|ak,w) ∈ {0, 1}.

Although the patch map has been developed for higher dimensions, the theory was

implemented in 1D with the forward sensor model so that it could be compared to the

full Bayesian solution. Figure 3.2 illustrates the resulting occupancy grid using different

values of L. As expected, the OG approaches the full solution for increasing values of

L. However, this figure also highlights that the marginal occupancy probability of a cell

is more accurate if it is correlated to its neighbours on both sides as opposed to one

side (i.e., the cell is near the center of the patch). All of the patch algorithms depicted

draw the first patch boundary starting before cell k = 1, then every L cells thereafter.

Therefore the algorithms with L=3 and L=5 better predict the occupancy probability

(closer to the full solution) of the cell at k=9, than the algorithms with L=4 and L=8
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Figure 3.2: Occupancy grid after six measurements. The robot is at k = 0, the true
first occupied cell is at k=8 (therefore f =8). The full Bayesian solution illustrates the
true occupancy probability of each cell. The online patch map is computed for various
values of L and approaches the full solution as L increases. All patch algorithms start the
patch boundaries before k=1. The cell occupancy is less accurate near patch boundaries
where cells are independent of neighbouring cells in another patch. The traditional
OGM algorithm is also shown for comparison with an update term from the literature
and optimized values.

because the latter two algorithms have a patch boundary between cells 8 and 9. And the

algorithm with L=5 performs poorly for cell 11 because it has a patch boundary between

cells 10 and 11. Thus, we see the negative impact of patch boundaries – a problem that

we will seek to address in Chapter 4.

Patch boundaries are selected before incorporating measurements, but this choice

can lead to different map estimates for the same patch size, L. Figure 3.3 highlights

this problem by illustrating two patch maps resulting from a patch size of L = 4, but

with different patch boundaries. The first has patch boundaries starting before k=1 and

the second is offset by two cells. The figure illustrates that the first algorithm poorly

estimates cells 5 and 6, but then estimates cell 7 well. However, the opposite result is

true for the second algorithm that has a patch boundary between cells 6 and 7. Chapter 4

will propose a solution to the problem of patch boundaries.

To quantitatively compare two occupancy grids, we compute the Kullback-Leibler

divergence, DKL(pk||qk), for each cell, mk, in the map between the benchmark, p, and

estimated, q, maps. Once

DKL(pk||qk) =
1∑

mk=0

p(mk) log

(
p(mk)

q(mk)

)
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Figure 3.3: Occupancy grid after six measurements. The robot is at k = 0, the true
first occupied cell is at k=8 (therefore f =8). The full Bayesian solution illustrates the
true occupancy probability of each cell. The online patch map is illustrated for L= 4,
where one has a boundary starting at k = 1 and the second is offset by two cells. The
cell occupancy is less accurate near patch boundaries where cells are independent of
neighbouring cells in another patch. The same algorithm can therefore yield different
results depending on where the patch boundary lies – this is clearly shown in cells 6 and
7. The traditional OGM algorithm is also shown for comparison with an update term
from the literature and optimized values.

Table 3.1: The average DKL (from 1000 1D datasets) between maps produced by OG
mapping algorithms and the full solution

Traditional
OGM

Traditional OGM
– Optimized

Patch Map
L = 1

Patch Map
L = 3

Patch Map
L = 5

Online 6.7870 0.2509 0.5297 0.3100 0.2290
Offline 0.2834 0.0749 0.0274
Offline w/overlap n/a 0.0287 0.0038

is computed for each cell, mk, the sum over all cells is the DKL between the two maps:

DKL(p||q) =
K∑
k=1

DKL(pk||qk).

Table 3.1 shows the Kullback-Leibler divergence between various mapping algorithms

and the full solution, averaged over 1000 datasets. Each dataset includes between one

and eight measurements drawn from p(zn|f) = N (f, σ2) with f = 20 and σ = 2 cells.

The values in Table 3.1 indicate that as the patch size, L, increases, the patch map

more accurately models the full solution. The table also highlights that the optimized

∆ function from Section 2.5 is a great improvement over traditional OGM techniques

and that the online patch map algorithm with a forward sensor model (first row) only

performs better with L≥5.
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3.2 Offline Patch Map

Section 3.1 shows that the online patch map algorithm does well at estimating the map by

keeping cell correlations between cells in the patch. However, as highlighted in Figure 3.2,

the patch independence assumption results in inaccuracies near the patch boundaries.

As a consequence, for the offline patch map algorithm presented here, we relax this

independence assumption to achieve a more accurate map estimate, but at the cost of

additional computation. We first introduced the patch map algorithm in Merali and

Barfoot (2012) as a benchmark that could be used to evaluate other OGM techniques.

The offline patch map algorithm incorporates knowledge of an occupancy grid such as

the ground truth map or MAP estimate that does not model the uncertainty in the map.

This additional map can be used to determine the first occupied cell, which is used by

the forward sensor model. In contrast, the online patch map algorithm presented in

Section 3.1 assumes that the range measurement will not be reflected by cells outside

of the patch being updated, ak. The formulation presented in this section is known as

the offline patch map algorithm as it is a batch solution and is not iterative like the

online version. Therefore, the offline patch map algorithm lies somewhere between the

computationally intractable full Bayesian solution and the online patch map algorithm

on the accuracy vs. efficiency tradeoff curve.

Equation (2.5) shows that the full solution requires the forward sensor model, p(zn|fr,n),

which is conditioned on the first occupied cell, fr,n. To compute fr,n, the occupancy of

all cells along the measurement ray must be known. The online patch map algorithm as-

sumes that patches are independent and therefore the forward sensor model only depends

on the patch being updated, p(zn|fr,n) ≈ p(zn|ak,w, xn). To determine the first occupied

cell, f , the offline patch method uses the ground truth (GT) or MAP occupancy of all

cells outside the current patch; this subset of cells is denoted m̃¬a. The offline patch

map algorithm uses ak,w and m̃¬a to obtain the occupancy of all cells in the map and

estimate f for the forward sensor model, p(zn|fr,n) ≈ p(zn|ak,w, xn, m̃¬a). For the offline

patch map algorithm, we assume that unknown cells in the GT map or MAP estimate

are represented as occupied in m̃¬a and will reflect the range sensor. This considera-

tion is necessary because some patch configurations will allow the range sensor to map

these unknown cells. Therefore, by incorporating m̃¬a, the offline patch map algorithm

estimates the probability of a particular patch configuration centered on cell mk as
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p(ak,w|z, x, m̃¬a) =
p(ak,w|x, m̃¬a)p(z|ak,w, x, m̃¬a)

p(z|x, m̃¬a)

≈
p(ak,w)

N∏
n=1

p(zn|ak,w, xn, m̃¬a)

W∑
j=1

(
p(ak,j)

N∏
n=1

p(zn|ak,j, xn, m̃¬a)
) . (3.3)

This computation is required for all patch configurations. As a consequence, the de-

nominator adds little computational cost, because the numerator must be computed for

each w. In this formulation, we assume that the prior probability of a particular patch

configuration, p(ak,w), is independent of all other cells in the map and we also assume a

uniform patch prior, p(ak,w) = 1/W . Both of these assumptions will be explored further

in Chapter 5. We have also made the static-world assumption that measurements are

independent given the map. Therefore, the measurements may be incorporated incre-

mentally using the forward sensor model, p(zn|ak,w, xn, m̃¬a). This forward sensor model

is more accurate than that used in the online patch map algorithm because ak,w and m̃¬a

together yield the occupancy of every cell in the map, which must be mr for some r.

Note that p(ak,w|z, x, m̃¬a) need only be computed for the subset of measurements that

pass through the patch, ak. Measurements that do not pass through ak will yield the

same probability for all W configurations of ak,w, and the factors on the numerator of

Equation (3.3) will cancel with common factors on the denominator. Similarly to the

full solution, the probability of a cell being occupied may be calculated by summing the

patch probabilities for those patches in which the cell of interest is occupied:

p(mk|z, x, m̃¬a) =
W∑
w=1

p(mk|ak,w)p(ak,w|z, x, m̃¬a), (3.4)

where p(mk|ak,w) ∈ {0, 1}.

The benefit of the offline patch map algorithm is highlighted in Figure 3.4. In contrast

to the online algorithm presented in Figure 3.2 for the same measurements, the offline

algorithm better estimates the full Bayesian solution. For example, comparing L= 3 in

Figures 3.4 and 3.2, the estimate of p(mk=7|z) is quite poor for the online algorithm and

quite good for the offline algorithm. However, the offline patch map algorithm is still
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Figure 3.4: Occupancy grid after six measurements. The robot is at k = 0, the true first
occupied cell is at k = 8 (therefore f = 8). The full Bayesian solution illustrates the
true occupancy probability of each cell. The offline patch map is computed for various
values of L and approaches the full solution as L increases. All patch algorithms start the
patch boundaries before k=1. The cell occupancy is less accurate near patch boundaries
where cells are independent of neighbouring cells in another patch. The traditional
OGM algorithm is also shown for comparison with an update term from the literature
and optimized values.

adversely effected by patch boundaries. Figure 3.4 highlights this for the L=3 algorithm

as the occupancy estimate for cells in the patch ak=5, k={4, 5, 6}, become progressively

worse until the next patch boundary. In the subsequent patch, ak=8, the estimate is quite

accurate again for cell k=7, but worse again for cells k={8, 9}.

It is clear that the marginal cell occupancy probability is more accurate for cells in

the middle of a patch as opposed to near the patch boundaries. As a consequence, we

are better able to estimate the marginal probability p(mk|z) by applying Equation (3.4)

for a patch, ak, centered at each cell, mk, as we showed in Merali and Barfoot (2012).

Computing the probability of a patch centered at each cell will reduce the effects of patch

boundaries and ensure that each cell is symmetrically correlated to its neighbours. This

approach is further supported by the analysis in Section 2.6 that highlights that mutual

information is greatest between proximate cells.

This variant of the patch map is well suited as an offline benchmark that can be used

to compare other OGM techniques. In Section 2.5, we used the full Bayesian solution

as a benchmark in 1D to optimize the ∆ function, but the patch map can be used as

a benchmark in 2D, where the full solution is computationally intractable. Just as we

compared OGM algorithms using the Kullback-Leibler divergence with the full solution

as the reference map in 1D, the patch map algorithm can be used in 2D for the same

purpose.
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To further highlight the accuracy of this approach, Table 3.1 shows the Kullback-

Leibler divergence between various mapping algorithms and the full solution in 1D, av-

eraged over 1000 datasets. Each dataset includes between one and eight measurements

drawn from p(zn|f) = N (f, d2) with f = 20 and d = 2 cells. The values in Table 3.1

indicate that as the patch size, L, increases, the patch map more accurately models the

full solution. In fact, a small increase in the patch size makes a significant difference

in the DKL values. This result supports the finding in the mutual information study in

Section 2.6 that MI between cells quickly approaches zero for cells that are farther apart.

Table 3.1 also highlights that the offline patch map provides a significant improvement

over the online version. Furthermore, allowing the patches to overlap and only computing

the marginal cell occupancy of the one cell at the center of each patch yields the lowest

DKL of all. Note that in Merali and Barfoot (2012) we showed that using the MAP

estimate as the reference map yielded slightly better performance than using the ground

truth map, so in this analysis we have only used the MAP estimate for m̃¬a. Therefore,

for larger maps where the full solution is computationally intractable, a patch map using

the MAP estimate and the largest possible patch size would best approximate the full

Bayesian solution.

Note that the cost of computing p(ak,w|z, x, m̃¬a) for a patch centered at each cell,

increases the computational complexity of the algorithm from O(K/L×2L) to O(K×2L).

In either case, selecting L is a trade-off between computation time and fidelity. The

strength of the patch map is the ability to make this trade, as opposed to the ‘all-or-

nothing’ offered by the full solution. Note that the patch map generalizes to the full

solution for L = K, as there will only be a single patch. Conversely, the offline patch

map algorithm with a patch size of L = 1 is how Thrun (2003) computed the residual

uncertainty in the map after computing the MAP estimate.

Figure 3.5 illustrates the various patch map algorithms from this chapter using the

same data used to generate Figure 2.8. Comparing the two figures illustrates, on a 2D

example, the same findings that were shown analytically in 1D in Table 3.1, that each of

the patch map algorithms perform near or above the level of the optimized traditional

OGM algorithms presented in Section 2.5. Comparing the patch map algorithms, Fig-

ure 3.5b and Figure 3.5c appear pixelated as a result of the patch boundaries between

the 3×3 patches. Figure 3.5d does not appear pixelated due to overlapping the patches

and can be used as a benchmark for OGM in 2D. Furthermore, the online patch map

algorithm shows greater uncertainty near the wall boundaries.
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(a) Ground Truth (b) Online patch map with K/L patches

(c) Offline patch map with K/L patches (d) Offline patch map with K patches

Figure 3.5: 2D example illustrating the resulting OG maps from the same measurements
taken from three robot positions. The patch maps depicted use a patch size of L= 9.
Each of these patch map algorithms performs better than traditional OGM. The offline
algorithms incorporate information from the MAP solution. Computing the probability
of a patch centered at each cell, yields the best marginal occupancy probability for each
cell.

3.3 Chapter Summary

In conclusion, this chapter has presented a method to retain mutual information between

neighbouring cells in occupancy grid mapping. The novel patch map algorithms are better

able to capture the residual uncertainty in the map and their development was motivated

by the observation in Chapter 2 that mutual information is greatest between proximate

cells in OGM and that traditional OGM techniques do not retain this information. The

online patch map is a generalization of traditional OGM using patches as opposed to

individual cells. However, the offline patch map algorithm is a more computationally

expensive batch solution that more accurately represents the marginal cell occupancy.

The offline solution is a useful benchmark in comparing OGM techniques in 2D where the
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full solution is computationally intractable. Section 6.1.1 will show experimental results

of the patch map algorithm applied to 2D data. Also, Section 6.1.2 uses the offline patch

map algorithm as a benchmark for large scale 2D experiments.



Chapter 4

Markov Chain Monte Carlo

(MCMC)

Chapter 2 highlights that the full Bayesian solution to OGM is computationally in-

tractable for real maps, but that mutual information is well approximated using prox-

imate correlations. Therefore, Chapter 3 presents two novel patch-based algorithms to

approximate the full solution. These algorithms are able to account for cell correla-

tions between cells in the same patch, but the patch map algorithms have predefined

patch boundaries. The patch map algorithms correlate cells within a patch, but cells

near patch boundaries are therefore asymmetrically correlated with neighbouring cells.

Section 3.2 proposes an extension to the offline patch map algorithm that computes a

patch centered at each cell to ensure that each cell is symmetrically correlated to its

neighbouring cells. However, this extension requires significantly more computation than

even the offline patch map algorithm and is mainly useful for computing the marginal

probability of each cell – a commonly used metric for evaluating an OG. In this chapter,

we explore the usefulness of OGM beyond strictly the marginal cell probabilities. We

present a method of approximating the full solution using an inference technique based

on numerical sampling, also known as Monte Carlo techniques. These approximations

work well in situations where the posterior distribution may not be of particular interest

itself, but instead its expectation is the focus. Furthermore, these sampling algorithms

provide anytime solutions as they improve their estimate with more computation, while

also being able to provide a reasonable estimate quickly.

The offline patch map algorithm extends the work of Thrun (2003) to approximate the

full solution. However, both of these methods require either the maximum a posteriori

58
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(MAP) estimate of the occupancy grid or the ground truth map (available in simulation)

before computing the residual uncertainty in each cell. In contrast, this chapter outlines

a Markov Chain Monte Carlo (MCMC) method known as Gibbs sampling (Geman and

Geman, 1984) that does not require these offline estimates of the map. MCMC methods

are able to sample from a complex distribution of interest (in this case, the full Bayesian

solution), thus enabling an accurate approximation of the distribution by averaging over

many samples. MCMC approaches apply the Markov assumption by generating the next

sample based solely on the current state or latest sample. This process generates a

Markov chain, as the transition probabilities between samples are only a function of the

single previous sample.

The Metropolis algorithm (Metropolis et al., 1953; Metropolis and Ulam, 1949) was

the first MCMC method. It sampled from a proposal distribution and accepted the new

sample based on an acceptance probability. The Metropolis-Hastings algorithm (Hast-

ings, 1970) extended this algorithm by using an arbitrary transition probability function.

Both of these algorithms typically sample from a multivariate distribution. In contrast,

the Gibbs sampler (Geman and Geman, 1984) only considers a univariate conditional

distribution, which is generally easier to compute. Moreover, the Gibbs sampler does not

have parameters that require tuning like most other MCMC methods including Hamilto-

nian Monte Carlo (HMC) (Neal, 2011). In this chapter, we show that because we are able

to compute the probability of a patch in the occupancy grid being occupied, given the

occupancy of all other cells in the map, we can therefore use Gibbs sampling to sample

from the full posterior with no approximations.

We first published this novel MCMC Gibbs sampling algorithm in Merali and Barfoot

(2013). It has since been extended to a factor graph approach by Dhiman et al. (2014)

and Dhiman (2019) and used for viewpoint planning by Hou et al. (2019). In addition,

Liu and von Wichert (2014) used an MCMC algorithm to provide semantic information

about the environment. Liu and von Wichert (2014) extend the work of Song-Chun

Zhu et al. (2000) by applying an MCMC algorithm to occupancy grid mapping. Their

algorithm does not seek to improve the occupancy estimate as ours does, but instead

uses an OG map to estimate the semantic map from which it was derived. The improved

OGM techniques discussed in this thesis could serve to aid algorithms seeking to estimate

semantic map information.

Section 4.1 presents the novel MCMC Gibbs sampling algorithm that we published

in Merali and Barfoot (2013). This algorithm samples one cell at a time to generate map
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samples from the full posterior. We show that with sufficient samples, this algorithm can

accurately estimate the full Bayesian solution. Further experimental results of this algo-

rithm will be shown in Section 6.1.3. Section 4.2 generalizes the cell sampling approach

to sample patches of cells. The two algorithms produce similar estimates of the poste-

rior, but the patch samples are more computationally expensive. However, the benefit of

this extension will be realized in Chapter 5 where we examine the patch prior. Both of

the MCMC sampling algorithms presented in this chapter are able to estimate the full

posterior without the patch-boundary effect observed in Chapter 3 and both provide an

anytime solution, in contrast to the patch map algorithms.

4.1 Sampling Cells

One powerful family of sampling techniques are known as Markov Chain Monte Carlo

(MCMC) techniques. These techniques have their origins in physics (Metropolis and

Ulam, 1949), but only in the late 1980s did they make a significant impact on the field of

statistics (Bishop, 2006). The Markov assumption states that the next state is indepen-

dent of all previous states, given the current state. Therefore, for a sampling algorithm,

this means that the next sample depends on the current state and no other states.

The key to a MCMC algorithm is the acceptance probability. Once a new sample

is proposed, it is only accepted with the probability given by the acceptance probabil-

ity. The basic Metropolis algorithm (Metropolis et al., 1953) assumes that the proposal

distribution is symmetric. This algorithm is generalized by the Metropolis-Hastings algo-

rithm (Hastings, 1970) that removes the assumption that the proposal distribution is a

symmetric function of its arguments. All of these MCMC methods require that the state

transition probabilities leave the posterior distribution invariant and that the Markov

chain be ergodic (Barber, 2012).

Gibbs sampling (Geman and Geman, 1984) can be viewed as a special case of the

Metropolis-Hastings algorithm. In fact, it is seen as an efficient case since the acceptance

probability is always one (Bishop, 2006). The idea behind Gibbs sampling is to update

each component of the state by sampling from its conditional distribution given all other

components of the state. In this section, we achieved this by updating one cell in the

occupancy grid, mk, given all of the measurements, z, their respective poses, x, and the

occupancy of all other cells in the map, m¬k. The new value computed for each cell is

used to condition the next distribution. The algorithm states that we do this for each
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cell in the map to complete one iteration. By taking the average of several iterations,

the resulting map will asymptotically converge to the true posterior.

To show that this method samples from the correct distribution, we must show that

p(m|z, x) is invariant of each Gibbs sampling step and therefore the whole Markov chain.

To show this, we note that p(m|z, x) = p(mk|z, x,m¬k)p(m¬k|z, x). p(m¬k|z, x) is clearly

invariant, as m¬k is left unchanged at each step. Furthermore, each step samples from

the correct conditional distribution, p(mk|z, x,m¬k), by definition. Therefore, the joint

distribution is invariant.

Furthermore, we must show that it is ergodic. A sufficient condition for ergodicity

is that none of the conditional distributions be zero for any value of mk. As long as

we can ensure this, the Gibbs sampling technique will sample from the correct posterior

distribution.

4.1.1 Cell Sampling Formulation

To implement Gibbs sampling for OGM we compute the marginal occupancy probability

of a specific cell, mk, given all of the measurements, z, their respective poses, x, and the

occupancy of all other cells in the map, m¬k. We compute this probability as

p(mk = 1|z, x,m¬k) =
p(mk = 1|x,m¬k)p(z|x,m¬k,mk = 1)

p(z|x,m¬k)

=
p(mk = 1|m¬k)p(z|x,m¬k,mk = 1)

p(z|x,m¬k)
. (4.1)

Similarly, we can compute the probability that the cell, mk is unoccupied as

p(mk = 0|z, x,m¬k) =
p(mk = 0|m¬k)p(z|x,m¬k,mk = 0)

p(z|x,m¬k)
.

Comparing the two equations above, we note that the denominators are the same. There-

fore, by computing the odds of p(mk = 1|z, x,m¬k), we avoid having to compute the

denominator:

o(mk|z, x,m¬k) =
p(mk = 1|z, x,m¬k)
p(mk = 0|z, x,m¬k)

=
p(mk = 1|m¬k)p(z|x,m¬k,mk = 1)

p(mk = 0|m¬k)p(z|x,m¬k,mk = 0)
.
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The computational cost is further reduced by computing the logarithm of this odds:

l(mk|z, x,m¬k) = log

(
p(mk = 1|z, x,m¬k)
p(mk = 0|z, x,m¬k)

)
= l(mk|m¬k) + l(z|x,m¬k,mk)

= l(mk|m¬k)︸ ︷︷ ︸
cell prior

+
N∑
n=1

l(zn|xn,m¬k,mk)︸ ︷︷ ︸
sensor model

, (4.2)

where the notation l(·) is used to represent the log odds. Note that we have made the

assumption that measurements are independent of one another given the occupancy of all

cells in the map. This assumption is true for a static world, unlike traditional occupancy

grid mapping, which assumes that measurements are independent of one another given

the occupancy of a single cell. Also, note that the probability p(mk=1|z, x,m¬k) can be

recovered from Equation (4.2),

p(mk = 1|z, x,m¬k) =
exp (l(mk|z, x,m¬k))

1 + exp (l(mk|z, x,m¬k))
.

Computing l(zn|xn,m¬k,mk) in Equation (4.2), is simply the log odds of the forward

sensor model. As we did in previous chapters, we model the sensor as having Gaussian

noise about the true range, f , and standard deviation of d cells, N (f, d2). The MCMC

algorithm samples from p(m|z, x) using Gibbs sampling via the conditional distribution

in Equation (4.2). The log odds domain is convenient to prevent numerical instability.

Therefore a cell is occupied if,

log

(
rand

1− rand

)
< l(mk|z, x,m¬k),

and unoccupied otherwise; rand is a random variable drawn from the uniform distribution

(0, 1).

The term l(mk|m¬k) in Equation (4.2) is the prior for the cell occupancy. This value

will be explored further in Chapter 5, but in this chapter, we assume that the cell is

independent of all other cells, i.e. l(mk|m¬k) = l(mk). Furthermore, if we assume a

uniform cell prior, i.e. l(mk)=0, then Equation (4.2) is simplified to,

l(mk|z, x,m¬k) ≈
N∑
n=1

l(zn|xn,m¬k,mk). (4.3)
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(a) OG after 100 iterations (b) OG after 1000 iterations

Figure 4.1: 2D example of MCMC OGM with a uniform prior. The algorithm has not
reached a stationary distribution after 1000 iterations. The legend used is shown in
Figure 1.10g.

4.1.2 Cell Sampling Application

In Merali and Barfoot (2013) we showed that using a uniform cell prior, p(mk) = 0.5,

required more iterations (> 200) to reach a stationary distribution, than using a more

realistic prior of p(mk=1)=0.15 that was able to reach a stationary distribution in less

than 20 iterations. However, these results were from experiments that used an explo-

ration algorithm to ensure the cells were well mapped. Repeating this experiment on the

sparsely mapped 2D example used thus far in this thesis, we found that the algorithm

had difficulty converging to a stationary distribution using a uniform prior. Figure 4.1

illustrates the resulting OG map after 100 and 1000 iterations using a uniform prior and

it can be seen that the map has still not reached a stationary distribution. Furthermore,

we see that given the Gaussian sensor model, shorter range measurements converge be-

fore longer ones. The Gaussian sensor model depends on the first occupied cell, f , which

requires that all cells between the robot and the first occupied cell be unoccupied. There-

fore, longer range measurements (i.e., higher values of f) are statistically less likely than

shorter ones if cells are independent in the prior. However, each range measurement in-

troduces cell correlations between the cells it traces in the OG map. Therefore, the cells

are correlated in the posterior and the MCMC algorithm provides a way of representing

those correlations, unlike traditional OGM.

By reducing the cell prior to a more realistic p(mk = 1) = 0.234, Figure 4.2a shows

that the MCMC algorithm is better able to converge to a stationary distribution than

Figure 4.1b, because each cell in the map was initialized by drawing from the cell prior.
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(a) OG after 1000 iterations (b) OG after 7500 iterations

Figure 4.2: 2D example of MCMC OGM with a prior of p(mk=1)=0.234. The algorithm
has not reached a stationary distribution after 7500 iterations. The legend used is shown
in Figure 1.10g.

The prior will be examined in depth in Chapter 5, where we show that p(mk) = 0.234

is more realistic. However, Figure 4.2b illustrates that even after many more iterations,

the algorithm has not reached a stationary distribution. We therefore find that starting

the MCMC algorithm with a realistic map is especially important for sparsely mapped

environments. Hence, we start the MCMC algorithm with a map obtained by threshold-

ing the result of traditional OGM. Beginning with a stationary distribution, the MCMC

algorithm will continue to draw samples from the posterior and these samples can be used

to estimate various statistics about the map. For example, by averaging the occupancy

of a specific cell over many MCMC samples, we are able to estimate the marginal cell

occupancy of each cell as depicted in Figure 4.6.

Similar to the observation by Paskin and Thrun (2005), we find that the MCMC

algorithm can be sped up by preprocessing and storing all of the measurements that affect

a given cell (or patch). Because only measurements that map mk will affect its conditional

distribution, the algorithm only considers those relevant measurements to draw each

sample. Furthermore, when iterating through the relevant measurements, some will

traverse an occupied cell before mk. These measurements can also be omitted according

to the Gaussian sensor model since the value of mk will not influence the conditional

distribution. Finally, the burn-in period can be virtually eliminated be initializing the

MCMC algorithm with a thresholded OG generated by traditional OGM. Thresholding

each cell in an OG map is a common technique to generate a binary map from an OG and

discussed in further detail in Chapter 6. To initialize the MCMC algorithm we suggest

thresholding each cell in the OG map generated using traditional OGM at the cell prior
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Figure 4.3: The MCMC Gibbs sampling method converges to the full Bayesian solution
for occupancy grid mapping with more samples. The Kullback-Leibler divergence (DKL)
quantifies the difference between the two probability distributions.

(p(mk) = 0.234 in this case). The MCMC algorithm is therefore able to immediately

begin drawing samples from the full posterior.

The MCMC algorithm draws map samples (binary maps in the case of OGM) from

the posterior, p(m|z, x). These samples can then be used to compute various statistics

such as the marginal occupancy probability of each cell. The occupancy grid mapping

literature most often uses this metric to compare occupancy grids because traditional

OGM makes the cell independence assumption, so other statistics are computed from

these marginals. In this regard, the MCMC algorithm performs quite well and we high-

light 2D experimental results with this technique in Section 6.1.3. When compared to

the full Bayesian solution on a 1D toy example, the MCMC algorithm is visually in-

distinguishable from the full solution after only 100 iterations. This convergence to the

full Bayesian solution is illustrated in Figure 4.3 by computing the Kullback-Leibler di-

vergence, on a cell-by-cell basis, from the full solution at each iteration. In particular,

the convergence plot highlights that the MCMC method moves quickly from a random

sample to sampling from the desired posterior. Thus by discarding the first few samples

(approximately 10 in this case), we are left with a Gibbs sequence that samples from

the correct posterior distribution. To further highlight this fact, we compute the MCMC

algorithm on the same data used to generate Table 3.1 with 105 MCMC iterations and

the resulting average DKL was 3.72 × 10−5; more than two orders of magnitude lower

than any of the algorithms presented in Section 2.5 or Chapter 3.

This highlights another key benefit of the iterative MCMC algorithm over the batch

solution presented for the offline patch map algorithm, which is the fact that the MCMC

algorithm provides an anytime solution and will continue to improve its estimate given
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more computation time. This is beneficial for both a quick estimate when computation

time is limited and a more accurate estimate when computation time is available. This

is particularly true when a thresholded OG generated by traditional OGM is used as the

first iteration of the MCMC algorithm; thus eliminating the burn-in period.

Figure 4.4 illustrates that the MCMC algorithm is able to produce marginal cell

probabilities that approach the full Bayesian solution and that its accuracy increases

with more samples. This result was also computed by initializing the algorithm with a

random map and the first 10 samples are thus used as a burn-in period. Compared to the

full solution, the sampling algorithm is more computationally efficient. The full solution

is exponential in the number of cells in the map, O(2K), whereas the MCMC Gibbs

sampling method is polynomial, O(maxSamples×K×N). Thus, each sample approaches

the complexity of traditional OG mapping, O(N × F ), but without the assumptions

made by traditional OGM that were discussed in Section 2.4. However, traditional OGM

allows the map to be updated incrementally with each new measurement, where each

update is linear in the number of cells that the measurement affects, O(F ). In contrast,

the MCMC sampling algorithm presented here is a batch solution that estimates the

univariate probability given all measurements that affect it, at each iteration. Because the

MCMC algorithm samples from the full posterior, it is able to estimate various marginal

probabilities. For example, the algorithm is able to compute the mutual information

between cells to produce estimates that are indistinguishable from the full solution for

mutual information, like that shown in Figure 2.9. Therefore, the MCMC algorithm is

a robust method to approximate the full solution with increasing fidelity based on the

computation available.
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Figure 4.4: Occupancy grid after six measurements. The robot is at k = 0, the true first
occupied cell is at k = 8 (therefore f = 8). The full Bayesian solution illustrates the true
occupancy probability of each cell. The MCMC algorithm estimates the full solution
with increasing fidelity as it draws more samples from the posterior.
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4.2 Sampling Patches

Section 4.1 presented a novel MCMC Gibbs sampling algorithm for OGM and Chapter 3

developed algorithms that are able to compute the full solution for a patch of cells.

In this section, we generalize the the MCMC Gibbs sampling algorithm presented in

Section 4.1 by incorporating the insights of the patch map algorithms. The patch map

algorithms were developed to capture the cell correlations between proximate cells, but

Section 4.1 explained that the MCMC cell sampling algorithm is able to capture the

mutual information between cells. However, Chapter 5 will highlight the importance of

cell correlations in the prior and how patch sampling can incorporate these correlations.

Therefore, this section extends the MCMC algorithm to sample a patch of cells as opposed

to a single cell.

4.2.1 Patch Sampling Formulation

Equation (4.1) defines the MCMC update term for a single cell, which is equivalent to a

patch size of L= 1. Therefore, we can generalize this to the conditional distribution for

a patch as

p(ak = w|z, x,m¬ak) =
p(ak=w|x,m¬ak)p(z|x,m¬ak , ak=w)

p(z|x,m¬ak)

=

p(ak=w|m¬ak)
N∏
n=1

p(zn|xn,m¬ak , ak=w)

p(z|x,m¬ak)
, (4.4)

where the term m¬ak represents the occupancy of all cells in the map, m, except those

in the patch ak.

Equation (4.4) has made the static-world assumption that measurements are indepen-

dent of one another given the occupancy of all cells in the map. This assumption is quite

different than the assumption made in traditional OGM that assumes measurements are

independent given the occupancy of one cell. The patch prior will be explored further in

Chapter 5, but in this section we assume that the prior occupancy probability of a patch

is independent of all other cells in the map, p(ak=w|m¬ak) = p(ak=w), and we assume



Chapter 4. Markov Chain Monte Carlo (MCMC) 68

a uniform patch prior, p(ak=w)=1/W . Therefore Equation (4.4) is simplified to

p(ak = w|z, x,m¬ak) ≈ η

N∏
n=1

p(zn|xn,m¬ak , ak=w), (4.5)

where η is a normalizing constant.

4.2.2 Patch Sampling Application

Algorithm 1 describes the MCMC Gibbs sampling algorithm. Note that a patch size

of L = 1 is equivalent to the MCMC method presented in Section 4.1 and in Mer-

ali and Barfoot (2013). The algorithm will return the desired number of samples,

maxSamples−burnIn, from the full posterior. If the algorithm begins with a random

map (typically drawn from the patch prior), it is common to discard the early samples as

the Gibbs sequence has not converged (the discarded samples as known as burn-in). The

remaining samples in the Gibbs sequence can be used to compute various statistics about

the full solution. For example, the occupancy probability of a particular cell or patch can

be computed by averaging the occupancy of that cell or patch over many samples. This

result is highlighted in Figure 4.5 for various patch sizes, L. Note that the value chosen

for the patch size has little effect on the accuracy of the marginal probability, but a larger

patch size increases the computational complexity as each update requires computing the

probability of W =2L patch configurations. The need to compute all W patch configura-

tions will be revisited in Chapter 5. Figure 4.5 shows that the MCMC algorithm is not

overconfident or underconfident near the obstacle boundaries like traditional OGM.

To showcase the effectiveness of the MCMC algorithms, Figure 4.6 illustrates the 2D

OG map computed using the MCMC algorithm and a patch size of L=1. As explained

in Section 4.1, the burn-in period was avoided by having the MCMC algorithm start

with an OG created by thresholding a map developed by traditional OGM. Figure 4.6b

shows the MCMC algorithm is able to accurately estimate the cell marginals with only

100 iterations. Figure 4.6c illustrates that the result is more accurate with more itera-

tions – this is particularly visible in the unknown cells approaching a homogeneous prior

probability. However, Figure 4.6d illustrates the map after 10 000 iterations and some of

the cells mapped by long range measurements appear to be approaching the prior. In

fact, this only appears in cells mapped by few, long range measurement. This anomaly

is a result the MCMC algorithm sampling one of the cells along the measurement ray as
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Algorithm 1: MCMC Gibbs sampling patches for OGM

Given z, x, L, maxSamples, burnIn
Generate a starting map, m(0), from the prior, p(ak|m¬ak), or by thresholding an OG
Define mr as m(0)

for i = 1 to maxSamples do
for t = 1 to K/L do

Select random patch ak from mr

Sample a
(i)
k from p(ak,w|z, x,mr

¬ak)

Define ark, in mr, as a
(i)
k

end for
Set m(i) = mr

end for

return set of samples, mburnIn:maxSamples, from the full posterior
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Figure 4.5: Occupancy grid after six measurements. The robot is at k = 0, the true first
occupied cell is at k = 8 (therefore f = 8). The full Bayesian solution illustrates the
true occupancy probability of each cell. The MCMC algorithms are computed for various
values of L with 105 iterations each. Each MCMC algorithm approaches the full solution
with more samples. The traditional OGM algorithm is also shown for comparison with
an update term from the literature and optimized values.

occupied and thus changing the value of f . The cells beyond this occupied cell therefore

revert to the prior, p(mk)=0.5, and are more likely to be occupied without the influence

of the range measurement that indicates that they are unoccupied. As highlighted in Sec-

tion 4.1, decreasing the prior to a lower, more realistic, value helps achieve convergence

from a random prior map. In Figure 4.6e and Figure 4.6f, we see that lowering the cell

occupancy prior to a more realistic value of p(mk) = 0.234, yields a more accurate map

without the anomaly observed with a uniform prior. Again, a larger patch size would

increase computational cost, but would not provide a more accurate result than a patch

size of L=1 with a uniform prior.
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(a) Ground Truth. (b) MCMC with L=1 and 100 iterations.

(c) MCMC with L=1 and 1000 iterations. (d) MCMC with L=1 and 10 000 iterations.

(e) MCMC with L = 1, p(mk) = 0.234 and
1000 iterations.

(f) MCMC with L = 1, p(mk) = 0.234 and
10 000 iterations.

Figure 4.6: 2D example illustrating the resulting OG maps from the same measurements
taken from three robot positions. The MCMC algorithm is able to better approximate
the full Bayesian solution with more iterations and thus perform better than traditional
OGM and the patch map algorithms. A more accurate cell prior yields a better result.
The legend used is shown in Figure 1.10g.
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Figure 4.7: Probability that cell k is the first occupied cell, f , after six measurements.
The robot is at k = 0, the true first occupied cell is at k=8. With enough iterations, the
MCMC algorithm is able to accurately approximate the full Bayesian solution. The patch
map algorithms do not approximate it as well due to the patch boundaries. Increasing
the patch size can even make the estimate worse by moving the patch boundary. The
traditional OGM algorithm is also shown for comparison with an update term from the
literature and optimized values.

4.2.3 Estimating the First-Occupied-Cell

To further illustrate the benefit of the MCMC algorithm over the patch map algorithms,

we introduce a new metric by which to compare OGM techniques that uses the mutual

information between cells. In the 1D toy example, we use the resulting OG to compute

the first occupied cell, f . Note that we define p(f = k|z, x) as the probability that the

cell mk is occupied and that all cells between the robot (at cell k= 0) and this cell are

unoccupied,

p(f=k|z, x) = p(m1:k−1 =0,mk=1|z, x). (4.6)

Figure 4.7 illustrates that the MCMC algorithm is able to estimate p(f |z, x) nearly

as well as the full Bayesian solution by counting the number of samples that have the

pattern f and dividing that sum by the total number of samples. Given that each map

is equally likely in the prior, the full solution estimates that f is most likely 7 as opposed

to 8 because higher values of f are less likely; we address this concern in Chapter 5. In

contrast to the full solution, both the online and offline patch map algorithms multiply

the probability of each patch configuration that matches the pattern f , thus assuming

independence between patches. Figure 4.7 highlights that a larger patch size does not

necessarily ensure a better estimate as it moves the patch boundary, which can result in

a worse estimate. Similarly, the traditional OGM algorithms compute this quantity on
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a cell-by-cell basis,

p(f=k|z, x) ≈ p(mk=1|z, x)
k−1∏
i=1

p(mi=0|z, x). (4.7)

The MCMC algorithm is shown to perform better than the other algorithms because it

does not make an independence assumption and samples from the full posterior. Note

that the extension to the offline patch map algorithm presented in Section 3.2, where the

patches overlap, was developed to produce the best marginal cell occupancy probability,

but it is not clear how to compute statistics like p(f =k|z, x) from this method, except

to have nonoverlapping patches.

4.3 Chapter Summary

In conclusion, the MCMC Gibbs sampling algorithm for OGM presented here is a novel

method to draw samples from the full posterior and is therefore a powerful method to

estimate the full Bayesian solution and is computationally tractable in higher dimensions.

The MCMC method is an anytime algorithm and will continue to improve its estimate

as more iterations are drawn and these iterations can be used to compute statistics like

marginal cell occupancy, or the occupancy of a cluster of cells like the the first occupied

cell, f . Furthermore, this method does not have the asymmetric cell correlations that

were observed in the patch map. We also extended the MCMC algorithm to sample

patches of any size (as opposed to cells), and the value of this extension will be presented

in Chapter 5.



Chapter 5

Cell Correlations in the Prior

Thus far, this thesis has assumed that the map (or cell) prior is uniform, with the

exception of the offline patch map algorithm in Section 3.2 that has the ability to use

the ground truth map or MAP solution. Recently, Georgiou et al. (2015); Georgiou et al.

(2017) have presented a method to extract ground truth information from an architectural

drawing or a floor plan, then initialize the probability of each cell in traditional OGM

based on the ground truth map. Specifically, Georgiou et al. (2017) use a FastSLAM

algorithm (Montemerlo et al., 2003) because of its ability to separate the localization

and mapping tasks using Rao-Blackwellization. Where such prior information is available,

most of the OGM algorithms could benefit from incorporating them as an initial estimate.

In Chapter 4 we showed that initializing the MCMC algorithm to a better estimate of

the map reduced or eliminated the burn-in period typically seen with such sampling

algorithms. If a floor plan map is available, an MCMC mapping algorithm would benefit

from starting with that map as an initial estimate.

Some researchers have assumed that the general structure of the map is known a

priori, as opposed to an estimate of the map. For example, Milstein (2008) uses prior

information about the shape of the building to construct a more accurate OG in the

skeletal FastSLAM algorithm. Specifically, Milstein recognizes that a robot traveling

indoors is typically traveling in a straight corridor and can use this information to im-

prove the robot’s localization estimate and therefore the map in the SLAM algorithm.

Similarly, Peasley et al. (2012) are able to produce more accurate OG maps by focusing

on the reconstruction of man-made environments. Peasley et al. do this by removing

drift and rotation from the robot pose estimate in a SLAM algorithm, thus yielding an

improved map estimate. Furthermore, Schaefer et al. (2018a) do not incorporate a priori

73
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information in a SLAM algorithm, but instead seek to extract polylines (e.g., straight

walls in a man-made environment) from the data.

This thesis has thus far focused on the full Bayesian solution for OGM presented in

Section 2.3 as the standard by which all other OGM algorithms should be measured.

However, when formulating the full Bayesian solution in Section 2.3, we began by assum-

ing that we have no prior information and therefore every possible map is equally likely

before measurements are incorporated. In this chapter, we question this assumption and

explore how to incorporate a more realistic prior into occupancy grid mapping. Sec-

tion 5.1 will illustrate a method of incorporating prior information into the full solution,

so it can be used as a new benchmark for mapping in 1D.

Section 5.2 moves beyond the 1D toy example and introduces a novel approach to

incorporating prior information into the MCMC algorithm presented in Chapter 4. This

approach is more general than other approaches that assume a specific structure for the

map being estimated. We show that accounting for local cell correlations in the prior

enables the mapping algorithm to better estimate areas between range measurements

and to reconcile range measurement noise to maps that more closely represent the true

underlying map.

5.1 Full Bayesian Solution with a Data-Driven Prior

In Section 2.3 we presented the full Bayesian solution for OGM, where we assumed that

each map is equally likely, mr = 1/R. In this chapter, we seek to apply a more realistic

data-driven prior to each map. Specifically, for the 1D toy example, we assume that the

robot is stationary at cell k=0 and that there is one obstacle that is equally likely to start

at any cell in the map, mk, or to not exist. As a consequence, there are K+1 possible

values of f and the prior probability of each first-occupied cell is p(f) = 1/(K+1). In

addition to assuming that all cells to the left of the obstacle are unoccupied (one obstacle

per map), we also assume that all cells to the right are occupied (e.g., a thick wall).

By making this simplifying assumption, only K+1 of the R= 2K maps have a nonzero

probability, yielding a large computational efficiency. Therefore, we need only compute

p(mr|z, x) for K+1 maps as the others have a probability of zero. Figure 5.1 illustrates

this prior for a map with K= 3 cells and therefore 2K = 8 possible maps. In particular,

Figure 5.1a shows the K+1 maps with a nonzero (and equal) prior probability, while

Figure 5.1b shows the maps that have zero probability given this data-driven prior.
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(a) Equally likely maps given a data-driven map prior

(b) Maps with zero likelihood given a data-driven map prior

Figure 5.1: A 1D Map with K = 3 cells has these 2K = 8 possible maps. A uniform
prior assumes all 8 maps are equally likely, whereas a data-driven prior assumes that
the K+1 = 4 maps in (a) are equally likely and the remaining maps in (b) have zero
probability. The robot is to the left of the map and measures to the right in this example.

After computing the posterior probability of the K+1 maps, statistics about the

map including marginal cell occupancy, the first occupied cell, and mutual information

between cells can be computed using the same methods presented in previous chapters.

Figure 5.2 shows the mutual information between every pair of cells in the 1D map from

the map probabilities computed using the data-driven prior. The figure highlights that

most of the mutual information is at the wall boundary between cells k = 7 and k = 8,

and this is generally the most critical part of an OG map as most algorithms seek to

estimate the transition from unoccupied to occupied areas. Notably, traditional OGM

discards this mutual information by assuming cells are independent. Similar to Fig-

ure 2.9, Figure 5.2 shows that there is higher mutual information between neighbouring

cells and that the mutual information quickly approaches zero for cells that are farther

Figure 5.2: Mutual information between cells in a 1D map from the full solution using a
data-driven prior. Note that the wall, or first-occupied-cell, is at f=8 and the robot is at
cell k=0. A data-driven prior results in more mutual information between neighbouring
cells than a uniform prior, but it still approaches zero as cells are farther apart.
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Figure 5.3: Occupancy grid after six measurements. The robot is at k = 0, the true
first occupied cell is at k = 8 (therefore f = 8). The MCMC algorithms compute cell
marginals from 105 map samples, with varying patch sizes.

apart in the map (approximately two cells in this example). However, comparing the

magnitude of the mutual information in the two figures reveals that a data-driven prior

adds additional mutual information to the map from the prior (the uniform prior added

no mutual information). Thus, the case for keeping this mutual information is stronger

with a data-driven prior and the argument for focusing on proximate cell correlations

remains valid as the mutual information approaches zero for non-proximate cells.

Figure 5.3 illustrates the marginal cell occupancy probability as derived from the full

solution with a uniform prior and with a data-driven prior, after six range measurements

drawn from p(zn|fn = 8) = N (fn, d
2). The MCMC algorithms plotted in the figure will

be discussed in Section 5.2. The data-driven prior results in an occupancy grid that is

more confident that cells before the wall are unoccupied, and that cells after the wall are

occupied. Furthermore, the data-driven prior results in cells past the wall being likely

to be occupied, as opposed to being estimated at the cell prior as is the case with the

uniform map prior. Intuitively, this result makes sense as there are no measurements of

these cells and we have defined the data-driven prior to have all cells past the wall to be

occupied. Figure 5.3 also shows the OG created using traditional OGM for comparison.

Often, OG mapping algorithms are evaluated by their accuracy in computing the

marginal cell probability of each cell in the map, but this marginalization does not use

the mutual information between cells. Alternatively, Section 4.2.3 shows that in the 1D

toy example, the maps can be evaluated on their ability to estimate the first-occupied

cell, f . Specifically, Equation (4.6) defines p(f = k|z, x) as the probability that cell mk

is occupied and all cells between the robot (at cell k= 0) and this cell are unoccupied.

The algorithms plotted in Figure 5.4 show the estimate of p(f |z, x) for various OGM

techniques. In particular, the figure shows the probability of the first-occupied cell using
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Figure 5.4: Using various occupancy grid mapping algorithms to estimate p(f =k|z, x).
The robot is at k=0 and the true first-occupied cell is at k=8. The full Bayesian solution
is computed with both a uniform prior over maps and a data-driven prior. The MCMC
algorithm approximates the full solution with increasing fidelity as the patch size, L,
increases. The traditional OG mapping algorithm does not capture mutual information
between cells and can therefore be overconfident in estimating the first-occupied cell.
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Figure 5.5: The average first-occupied cell, p(f |z, x), for various OGM algorithms after
50 trials, where each trial had 2 to 8 measurements drawn from p(zn|fr,n)=N (8, 32). The
robot is at k= 0 and the true first-occupied cell is at k= 8. The full Bayesian solution
is computed with both a uniform prior over maps and a data-driven prior. The MCMC
algorithm approximates the full solution with increasing fidelity as the patch size, L,
increases. The traditional OG mapping algorithm does not capture mutual information
between cells and can therefore be overconfident and inaccurate in estimating the first-
occupied cell.

the same algorithms and measurements used in Figure 5.3. The MCMC algorithms

plotted in Figure 5.4 will be discussed in Section 5.2. Figure 5.4 highlights that the

full Bayesian solution with a uniform prior over all maps estimates the most likely first-

occupied cell to be at k=7, whereas with a data-driven prior it is correctly estimated at

cell k = 8. The estimate using traditional OGM has the correct expectation using this

set of measurements, but the estimate is overconfident.

To highlight this overconfidence, Figure 5.5 shows the average probability for p(f |z, x),

for each of the algorithms after 50 trials, where each trial had 2 to 8 measurements drawn

from p(zn|fr,n)=N (8, 32). Similar to Figure 5.4, the expected value of the first-occupied
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cell using the full solution with a uniform prior over all maps is at k=7 and with a data-

driven prior it is at k= 8. However, averaging over 50 trials illustrates that traditional

OGM can not only be overconfident in its estimate, but also have an inaccurate expected

value. In practice, this inaccuracy may lead to a poor localization estimate of the robot

or obstacle if the OG map was used for this purpose. Furthermore, this plot highlights

the issue observed by Marshall and Barfoot (2007), and discussed in Section 2.5, that

traditional OGM can overestimate the distance to an obstacle.

5.2 MCMC with a Nonuniform Prior

The full solution presented in Section 2.3 assumes that every map (a combination of

occupied and unoccupied cells) is equally likely. However, Section 5.1 illustrates a new

benchmark for comparison – the full Bayesian solution with a more realistic or data-

driven prior. This prior is based on the observation that occupied and unoccupied cells

tend to be clustered together in real environments, and is thus simplified to a cluster of

unoccupied cells, followed by a cluster of occupied cells for the 1D toy example. Fur-

thermore, Figure 5.2 shows that a data-driven prior increases the mutual information

between neighbouring cells but that the MI still approaches zero for cells that are farther

apart. Therefore, capturing mutual information between proximate cells in the prior

may accurately estimate the full Bayesian solution with a data-driven prior, presented in

Section 5.1.

Although, the full solution remains computationally intractable for higher dimen-

sions, we have presented several methods to approximate it in the preceding chapters.

Moreover, some of these approximations utilize a prior over a patch of neighbouring cells.

For example, Equation (3.3) in Section 3.2 shows that the offline patch map algorithm

incorporates a patch prior, p(ak,w). Even the online variant of the patch map, which is

formulated iteratively in Equation (3.1) in Section 3.1, begins with an estimate of p(ak,w)

before incorporating any measurements. Finally, Equation (4.4) in Section 4.2, incor-

porates a patch prior, p(ak = w|m¬ak), for each MCMC sample drawn in Algorithm 1.

Therefore, although a prior over all possible maps may be computationally intractable

for higher dimensions, a prior over all possible patch configurations may not be. As

highlighted in Chapter 4, the MCMC algorithm has several advantages over the patch

map algorithm, namely the lack of patch boundaries and its ability to better estimate

the full solution given more computation. Therefore, we will illustrate the benefit of a
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nonuniform patch prior using the MCMC Gibbs sampling algorithm, but note that it

would also benefit the patch map algorithms. Furthermore, since online patch map is a

generalization of traditional OGM, this algorithm would also benefit from the data-driven

prior presented in this chapter.

In Chapter 4, we used MCMC Gibbs sampling as a method to sample from the full

solution in occupancy grid mapping. Specifically, Equation (4.4) extends the formulation

to sample a patch of size L. In Section 4.2, we assumed a uniform prior over all patch

configurations, but were able to incorporate any patch prior in the MCMC algorithm by

sampling using the update equation,

p(ak,w|z, x,m¬ak) = η p(ak,w|m¬ak)︸ ︷︷ ︸
patch prior

N∏
n=1

p(zn|xn,m¬ak , ak,w)︸ ︷︷ ︸
sensor model

, (5.1)

where η is a normalizing constant. By using Equation (5.1) in Algorithm 1 we are able

to sample the full posterior using a nonuniform patch prior. The following three sections

will analyze various methods for computing the patch prior, p(ak,w|m¬ak), and highlight

the benefits of each using the MCMC Gibbs sampling algorithm.

5.2.1 Higher-Order Markov Random Field

When occupancy grid mapping was first developed, Elfes (1989b) described the occu-

pancy grid map representation as a Markov Random Field (MRF) of order 0, meaning

that all cells in the map are independent of one another. However we can also consider a

higher-order MRF to introduce correlations between cells, as seen in Figure 5.6. In a 2D

grid, an order 1 MRF assumes that each cell is connected to its four nearest neighbours

(known as 4-connected), and an order 2 MRF assumes that each cell is connected to its

eight nearest neighbours (known as 8-connected). Muffert (2018) presented the order 1

MRF for OGM in 2D to introduce correlations between cells. In our 1D toy example, an

order 1 MRF assumes that each cell is connected to its two nearest neighbours (known

as 2-connected), and an order 2 MRF assumes that each cell is connected to its four

nearest neighbours (known as 4-connected), etc. Therefore, a cell, mk, is independent of

all other cells in the map, given its neighbours, p(mk|m¬k) ≈ p(mk|neighboursmk
); this

is referred to as a Markov blanket.
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(c) Legend

Figure 5.6: Cell connectivity for higher-order MRFs. An Order 0 MRF assumes cells
are independent. An Order 1 MRF has cells connected to its two nearest neighbours in
1D and four nearest neighbours in 2D. An Order 2 MRF has cells connected to its four
nearest neighbours in 1D and eight nearest neighbours in 2D.

In this section, we compute the prior for a single cell (patch size of L= 1) and we

assume that the MRF is symmetric, meaning that the edge weights, ε, are the same

for any two neighbouring cells independent of their location in the MRF (Koller and

Friedman, 2009). Specifically, we state that the edge weight between two neighbouring

cells, mj and mk, is

εj,k(mj,mk) =

{
1 if mj = mk

ψ if mj 6= mk

,

where 0 ≤ ψ ≤ 1. Therefore the marginal cell occupancy probability can be computed

by counting the number of neighbouring cells that are occupied, n1, or unoccupied, n0,

then computing

p(mk = 1|neighboursmk
) =

ψn0

ψn0 + ψn1
.

Or in the log-odds domain

l(mk|neighboursmk
) = log

(
ψn0

ψn1

)
= (n0 − n1) log (ψ) .

Therefore the minimum sufficient statistic to compute p(mk|neighboursmk
) is n0−n1. By

using a higher-order MRF each cell in the OG is correlated to its neighbouring cells. The

goal of this approach is to correlate neighbouring cells because realistic maps generally

have occupied and unoccupied areas clustered together.



Chapter 5. Cell Correlations in the Prior 81

0 2 4 6 8 10 12 14 16
0

1
Cell Occupancy Probability after 6 Measurements

ROBOT

Occupied
k (cell index)

<latexit sha1_base64="6/ZvETB/GLZDcNTUpmoWmFesGMU=">AAAB/3icbVBNS8NAEN3Ur1q/ooIXL4tFqCAlkYKCl4IXjxXsBzShbDbTdulmE3Y3Yok9+Fe8eFDEq3/Dm//GbZuDVh8MPN6bYWZekHCmtON8WYWl5ZXVteJ6aWNza3vH3t1rqTiVFJo05rHsBEQBZwKammkOnUQCiQIO7WB0NfXbdyAVi8WtHifgR2QgWJ9Roo3Usw9G3mnmyahCgXPvEjMRwv3JpGeXnaozA/5L3JyUUY5Gz/70wpimEQhNOVGq6zqJ9jMiNaMcJiUvVZAQOiID6BoqSATKz2b3T/CxUULcj6UpofFM/TmRkUipcRSYzojooVr0puJ/XjfV/Qs/YyJJNQg6X9RPOdYxnoaBQyaBaj42hFDJzK2YDokkVJvISiYEd/Hlv6R1VnVr1dpNrVyv5HEU0SE6QhXkonNUR9eogZqIogf0hF7Qq/VoPVtv1vu8tWDlM/voF6yPb/fjlVo=</latexit>

p
(m

k
|z

)

<latexit sha1_base64="6UxwemOpnyQkhNCSYjMLTXv7sAQ=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRahXsquFPRY8OKxgv2AdinZNNuGJtk1yQp17Z/w4kERr/4db/4b0+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyfXc7zxQpVkk78w0pr7AI8lCRrCxUjeuisHk6fF8UK64NTcDWiVeTiqQozkof/WHEUkElYZwrHXPc2Pjp1gZRjidlfqJpjEmEzyiPUslFlT7aXbvDJ1ZZYjCSNmSBmXq74kUC62nIrCdApuxXvbm4n9eLzHhlZ8yGSeGSrJYFCYcmQjNn0dDpigxfGoJJorZWxEZY4WJsRGVbAje8surpH1R8+q1+m290qjmcRThBE6hCh5cQgNuoAktIMDhGV7hzbl3Xpx352PRWnDymWP4A+fzB6iGj6U=</latexit>

Figure 5.7: Occupancy grid after six measurements. The robot is at k=0, the true first
occupied cell is at k=8 (therefore f=8). The full Bayesian solution is illustrated with a
uniform prior. The MCMC algorithms are computed with L= 1 and 105 map samples,
with varying degrees of cell correlations in the prior. The higher order MRF algorithms
have a smoothing effect, which may be useful in homogeneous regions but not where the
map transitions from unoccupied to occupied.

We can now use this updated prior in Equation (5.1). More specifically, in Equa-

tion (4.2), where we have formulated the MCMC update term for L= 1 in the log odds

domain. The resulting occupancy grid is seen in Figure 5.7 for increasing MRF orders.

Note that an MRF of order 0 is equivalent to an independent patch prior and therefore

models the full solution with a uniform map prior. However, increasing the MRF order,

results in higher correlation between neighbouring cells and has a smoothing effect on

the marginal cell occupancies. Thus, correlating the cell occupancy to its neighbours

works well for the majority of a map where large homogeneous sections are unoccupied

(e.g., free space) or occupied (e.g., a wall or other body). However, much of the OGM

research is focused on the transition from unoccupied to occupied (e.g., the location of

the wall or obstacle). Therefore the MRF approach is effective in “filling in the gaps”

for homogeneous regions of the occupancy grid that may have few or even no measure-

ments. However, the higher-order MRF approach performs worse than the data-driven

approach from Section 5.1 at the transitions from unoccupied to occupied, where there

is a discontinuity. Therefore, Section 5.2.2 will introduce an algorithm that incorporates

a data-driven prior and can be used in dimensions higher than 1D.

The high-order MRF adds little computation cost to the MCMC algorithm presented

in Section 4.1 and is therefore able to be applied to higher dimensions. Figure 5.8 illus-

trates the marginal cell probability on a 2D map for various MRF orders. Figure 5.8b

illustrates the order 0 MRF and is therefore the same as Figure 4.6c. Figure 5.8c shows

the resulting OG for a first-order MRF, where the smoothing effect of the MRF can be

seen near the walls. This effect is more pronounced on the second-order MRF in Fig-
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ure 5.8d. Notably, the cell correlations in the prior have a significant effect on unmapped

or unknown cells. For example, the unknown cells “behind the wall” tend to be biased

toward the occupied value of the walls and Figure 5.8c shows the clustering of occupied

and unoccupied cells, whereas Figure 5.8d has stronger cell correlations resulting in all

of these cells being occupied. Comparing the three MCMC results in Figure 5.8, a ma-

jor benefit of neighbouring cell correlations in the prior is seen and that is the ability

to more accurately estimate the occupancy probability of unknown cells between range

measurements. The nature of narrow-beam range sensors (like laser range finders) is to

map cells along a narrow ray, then the next measurement ray is rotated slightly, but

from the same source location as the previous measurement. Coupling this effect with

the Cartesian discretization of OG mapping yields the Moiré pattern observed by other

researchers (e.g., Yguel et al., 2006) and seen in the unoccupied regions of Figure 5.8b.

But introducing cell correlations in the prior enables the algorithm to minimize or elim-

inate this effect as seen in Figures 5.8c or 5.8d. However, Figure 5.8d also highlights the

negative impact of a strong, and symmetric, cell correlation in the prior, and that is that

a narrow wall surrounded by unoccupied cells can be “eaten away”, i.e., occupied cells

are estimated as unoccupied.

5.2.2 Data-Driven Patch Prior

The 1D toy example from Section 5.1, showed the benefit of introducing a more realistic

prior, as opposed to a uniform prior over all maps. For the 1D toy example, the prior

probability of a patch configuration, p(ak,w), can be computed by taking the sum of

every instance of each patch configuration in the K+1 possible maps and dividing by

the total number of patches in those maps. Since we have assumed that there is at

most one obstacle per map and that all cells to the right of the obstacle are occupied,

we have eliminated half of the possible patch configurations and thus the additional

computation of computing W/2 patch configurations. In fact, we find that the two

most likely patch configurations (fully occupied or fully unoccupied), account for the

majority of the probability mass of the prior. Specifically, each has a probability of

(K−L+2)/(2K+2) and the remaining probability mass is distributed equally over the

remaining, 2(L−1)−2, possible patch configurations. Therefore, as the number of cells in

the map, K, increases the prior probabilities of the fully occupied and fully unoccupied

patches approach 50% in our 1D toy example. For example, for a patch size of L=1, there
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(a) Ground Truth. (b) MCMC with MRF-0; L = 1; 1000 itera-
tions.

(c) MCMC with MRF-1; L = 1; 1000 itera-
tions.

(d) MCMC with MRF-2; L = 1; 1000 itera-
tions.

Figure 5.8: 2D example illustrating the resulting OG maps from the same measurements
taken from three robot positions. The MCMC algorithm uses higher order MRF to
correlate prior cell occupancy. These correlations in the prior allow the OG to effectively
update the cell occupancy of unmapped cells that are proximate to mapped cells. The
legend used is shown in Figure 1.10g.

are only two possible configurations and each has equal prior probability, p(mk) = 0.5,

for any sized map. In another example, for a map with K = 3 cells and a patch size

of L = 3, there are W = 2L = 8 possible patch configurations, of which half have zero

likelihood. The example of K = 3 and L = 3 generates the eight patch configurations

shown in Figure 5.1, and the four configurations in Figure 5.1a have equal probability,

whereas the four configurations shown in Figure 5.1b have zero probability. However,

for a slightly larger map with K = 4 cells and the same patch size of L = 3, the fully

occupied and fully unoccupied patch configurations are more likely. Specifically, each

has a probability of p(ak,w) = 0.3 and the remaining two patch configurations shown in

Figure 5.1a have a probability of p(ak,w)=0.2. The four patch configurations depicted in

Figure 5.1b continue to have zero prior probability.
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Algorithm 2: MCMC Gibbs sampling patches with a data-driven patch prior

Given z, x, L, prandPatch, m(0), maxSamples, burnIn
Define mr as m(0)

for i = 1 to maxSamples do
for t = 1 to K/L do

Select random patch ak from mr

if rand(0,1) < prandPatch then

Set a
(i)
k to a random patch configuration

else
Sample a

(i)
k from p(ak,w|z, x,mr

¬ak)
end if
Define ark, in mr, as a

(i)
k

end for
Set m(i) = mr

end for

return set of samples, mburnIn:maxSamples, from the full posterior

Therefore, we have formulated a data-driven patch prior for the 1D toy example,

p(ak,w), and see that half of these are zero. Because of this, we must modify Algorithm 1

to ensure that the sampling algorithm is ergodic. We could achieve this result by applying

a nonzero probability to each of the prior patch configurations, but this would not yield

the computational efficiency of not having to compute the probability of each of these

patch configurations. Instead, we elect to meet the ergodicity requirement by having

the sampling algorithm select a random patch configuration with probability prandPatch.

In this thesis, we set prandPatch = 0.001, which we found strikes a balance between the

time it takes to reach a stationary distribution while still exploring the solution space.

Algorithm 2 presents an updated Gibbs sampling algorithm that is suitable for a data-

driven patch prior where some patch priors may be zero.

Given Algorithm 2, we can now use the data-driven values of p(ak,w) in Equation (5.1)

to draw samples from the full posterior for varying patch sizes, L. Figure 5.3 illustrates

the OG after six measurements, using this data-driven patch prior. The result is a better

approximation of the full Bayesian solution with a data-driven prior, as compared to the

higher order MRF estimate in Figure 5.7. Specifically, the data-driven prior is able to

better estimate the marginal cell occupancy of the occupied cells. However, note that

unknown cells that are far from the wall, return to the cell prior, p(mk) = 0.5, because

unlike the higher order MRF, patch priors are independent of neighbouring cells.
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(a) Map 0 (b) Map 1 (c) Map 2 (d) Map 3 (e) Map 4

(f) Map 5 (g) Map 6 (h) Map 7 (i) Map 8 (j) Map 9

Figure 5.9: Ten 2D ground truth maps. Each map is designed to represent a different
type of environment and each measures 500×500 cells with a 20 cell occupied border.

The data-driven patch prior, p(ak,w), can be computed analytically for the 1D toy

example because we know every possible map and its likelihood. However, the precise

structure of realistic maps is not known. Therefore, to extend the concept to 2D, we

conducted a data-driven analysis of local cell correlations. We did this by sampling

5×5 patches of cells centered at randomly selected cells from ten simulated maps with

K=250 000 (500×500) cells. These are the same ten maps used in our previous research

(Merali and Barfoot, 2012, 2013, 2014) and are illustrated in Figure 5.9. The maps have

varying shapes and thicknesses of walls and distances between them to provide a diverse

set of patch priors. Each patch sample was flipped and rotated to capture all eight

permutations to remove orientation bias. From the 1010 patch samples drawn, we are

able to subsample other cell configurations, such as 3×3 patches or single cells. From the

samples, we determined that the probability of a cell being occupied is p(mk) = 0.234,

which is effectively the proportion of occupied cells in the ten sample maps. This value

for the cell prior was used in the MCMC algorithm in Section 4.2 and yielded a more

accurate result.

Figure 5.10 illustrates the frequency of the 3×3 and 5×5 patch configurations on

a logarithmic scale to highlight how few patch configurations were ever sampled in the

data. Specifically, of the 29 =512 possible patch configurations with a patch size of L=9,

only 124 patch configurations were ever sampled and 99.9% of those samples were of the
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(a) Histogram of 3×3 patches sampled.
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(b) Histogram of 5×5 patches sampled.

Figure 5.10: Histogram of patch configurations from 1010 patches sampled from data for
(a) 3×3 and (b) 5×5 patches. Many patch configurations do not appear in the data and
therefore need not be computed when using a data-driven patch prior.

50 most likely patch configurations. Furthermore, 74.3% of 3×3 patches sampled were

fully unoccupied and 21.1% were fully occupied and therefore together made up >95% of

samples. Similarly, for a patch size of L=25, only 2329 possible patch configurations (of

225) were ever sampled, which is 0.0069% of the patch configurations. Furthermore, 99.9%

of samples drawn are of the most likely 436 patch configurations. Although not visible

in Figure 5.10b, the two most popular patch configurations were sampled more than the

y-axis depicts. Namely, 71.98% of the sampled 5×5 patches are fully unoccupied and

18.92% are fully occupied; therefore these two patch configurations together are >90% of

samples. These samples are mainly in homogeneous areas that are fully occupied or fully

unoccupied. Therefore these homogeneous areas could use a more coarse resolution, but

the fine resolution is helpful to capture map details near the boundary between occupied

and unoccupied cells. Much of the OG mapping research is concerned with accurately

mapping this boundary as it effects the maps usefulness to perform tasks such as object

recognition, localization and path planning.
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(a) Common patch,
p(ak,w)=0.4528%

(b) Uncommon patch,
p(ak,w)=0.0033%

(c) Not found in data,
p(ak,w)=0

Figure 5.11: Three examples of 3×3 patches. It is computationally more efficient to only
compute configurations common in the data, like (a), or less common configurations, like
(b). Configurations like (c) never appear in the data and need not be computed.

In addition to the most common fully occupied and fully unoccupied patch config-

urations, Figure 5.11 shows other examples of patch configurations that are likely and

unlikely. The insight that very few patch configurations occur in the data yields signifi-

cant computational savings in addition to resulting in maps that more closely model real

maps. In our patch map research (Merali and Barfoot, 2012), we found that computing

patches larger than L=9 became computationally intractable. However, this new insight

shows that computation of a patch size of L = 25 would only require computing 2329

patch configurations as opposed to 225. Moreover, most of the benefit could be realized

by computing only the most likely 436 patch configurations, which is less than the 29

configurations computed for L=9. This efficiency will be more pronounced as the patch

size increases and if this work is extended from 2D to 3D.

Figure 5.12 illustrates the result of applying the MCMC Gibbs sampling algorithm

with a 2D data-driven patch prior for various patch sizes. Note that Figure 5.12b was

previously presented in Figure 4.6e to highlight that a data-driven prior overcomes some

limitations of a uniform prior. Also, Figures 5.12c and 5.12d were computed by only

considering the subset of patches that account for 99.9% of the samples for computational

efficiency – all other patch configurations are assumed to have zero prior probability.

Comparing the three MCMC results in Figure 5.12 highlights that the data-driven patch

prior has the ability to better estimate the unknown cells between range measurements, as

we saw with the higher-order MRF. We also observe that the cell occupancy probability

returns to the cell prior for unknown cells that are far from the wall, as observed in 1D in

Figure 5.3. In addition, the data-driven patch prior does not suffer from the “eating into
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(a) Ground Truth. (b) MCMC with data-driven prior; L = 1;
1000 iterations.

(c) MCMC with data-driven prior; L = 9;
1000 iterations; most likely 50 patch configu-
rations in the patch prior.

(d) MCMC with data-driven prior; L = 25;
1500 iterations; most likely 436 patch config-
urations in the patch prior.

Figure 5.12: 2D example illustrating the resulting OG maps from the same measurements
taken from three robot positions. The MCMC algorithm uses a data-driven prior to
correlate prior cell occupancy. These correlations in the prior allow the algorithm to
better estimate unmapped cells and draw patch samples that are likely in the prior. The
legend used is shown in Figure 1.10g.

the wall” that we observed in the higher order MRFs in Section 5.2.1. Most notably, only

considering a subset of likely patch configurations has a substantial computational saving

(e.g., a 5×5 patch goes from computationally intractable to being computed faster than

a 3×3 patch) and an accurate data-driven prior yields a more realistic map estimate.

5.2.3 Data-Driven Patch Prior with Border

In Section 5.2.1, we highlighted the benefit of correlating the prior patch probability to

its neighbouring cells, specifically to those in the Markov blanket. Then in Section 5.2.2,

we applied a data-driven prior but assumed that the patch prior is independent of other
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(a) p(ak,w|borderak)
= 97.41%

(b) p(ak,w|borderak)
= 1.87%

(c) p(ak,w|borderak)
= 0.58%

(d) p(ak,w|borderak)
= 0.13%

Figure 5.13: An example of four 3×3 patches and their likelihood given the same 16 border
cells. Conditioning the patch prior on the border results in a significant computational
savings because so few (often one) patch priors are nonzero. The four 3×3 patches
depicted (in red) are the only four sampled from the data with the given border.

cells in the map. We will now explore combining these two concepts with a data-driven

patch prior that is correlated to other cells in the map. The MCMC Gibbs sampling for-

mulation in Equation (5.1) allows the patch prior to be correlated to all other cells in the

map, p(ak,w|m¬ak). Correlating to every other cell in the map would be computationally

intractable, but having the patch prior correlated to a Markov blanket around the patch

yields much of the benefit as we have shown throughout this thesis that cell correlations

are greatest between neighbouring cells. Therefore, in this section, we define a Markov

blanket around each patch as those cells that are adjacent to the patch, which we refer

to as the border cells. Using the same 5×5 patch samples from Section 5.2.2, we are

able to compute the probability of a 3×3 patch configuration, given the configuration

of 16 border cells of that patch. Figure 5.13 shows an example 16-cell border and four

possible 3×3 patch configurations within that border. Similarly, we are able to compute

the probability of a cell, L=1, given the configuration of its 8 border cells.

Figure 5.14 highlights additional statistics that can be computed from the 1010 sam-

ples of 5×5 patches presented in Section 5.2.2. Specifically, Figure 5.14a illustrates that

only 865 unique 16-cell borders are ever sampled; much less than the 216 possible borders.

Two of the values shown are greater than the y-axis displayed. In particular, 71.98% of

the borders are fully unoccupied and 18.92% of the borders are fully occupied. These

percentages are the same as the fully unoccupied and fully occupied 5×5 patches observed

in Section 5.2.2; therefore only these two patch configurations have these particular bor-

ders. The corollary to this is that, for both of these cases, if these 16 border cells are

observed, then there is only one possible 3×3 patch observed in the data for the interior

cells.
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(a) Histogram of 5×5 patches sampled, sorted by 16-cell border.
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(b) Number of unique 3×3 patches, given 16-cell border.

Figure 5.14: Sub-sampling the 1010 patches sampled from data. The 5×5 patches can be
grouped by their 16-cell border to highlight additional sparsity in 3×3 patch prior when
the border is known.

Therefore, Figure 5.14b shows the number of unique 3×3 patches for a given 16-cell

border. As observed with the fully unoccupied and fully occupied borders, the majority

of borders have only one unique 3×3 patch configuration and the maximum is 13. This

is significantly less than the 124 patch configurations observed in the data or even the

50 configurations that represent 99.9% of the samples. Therefore, conditioning the patch

prior on the border in Equation (5.1), yields a significant computational efficiency as very

few patch configurations have a nonzero likelihood given the border. In fact, because the

patch prior is zero for all but one patch configuration in most cases, the measurements,

p(zn|xn,m¬ak , ak,w), have no effect on those cases and the MCMC algorithm will sample

the one patch configuration with a nonzero prior probability in Algorithm 2. This is yet

another computational efficiency of conditioning the patch prior on the border. In fact,

in our 2D experiments we observed that for ∼ 57% of MCMC samples there was only one
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possible 3×3 patch configuration in the prior, given the border. This empirical evidence

correlates with the observation from Figure 5.14b that most 16-cell borders have only

one corresponding 3×3 patch configuration.

To further highlight the additional sparsity achieved by conditioning the 3×3 patch

on its border, Figure 5.15 shows that the average probability of the most likely 3×3

patch given its border is 86.5% and that the four most likely patches account for 99.7%

of the probability mass. Figure 5.15 also illustrates the maximum and minimum prior

probability of accounting for additional 3×3 patch configurations and we observe that

after the first 7 configurations, the highest prior patch probability is 0.40%. Therefore,

conditioning the 3×3 patch prior on its border cells, reduces the computation to at most

13 patch configurations, but most of the benefit can be achieved by only computing 7 or

even 4 patch configurations.

An example 3×3 patch prior given its 16-cell border is shown in Figure 5.13. Given

the border depicted, the fully unoccupied 3×3 patch has a prior probability of 97.41%.

In contrast, this same patch represents 74.3% of patches when not conditioned on the

border. More revealing is that the fully occupied patch has a 21.1% prior probability

when independent of the border, but is zero when conditioned on the border shown

in Figure 5.13. This observation is true for many common patch configurations. For

example, the common 3×3 patch depicted in Figure 5.11a also has zero likelihood when

conditioned on the border shown in Figure 5.13. Furthermore, note that the patches

depicted in Figure 5.13 have their occupied cells neighbouring the occupied cells in the

border, as we would expect from real maps. The data-driven prior from Section 5.2.2,

Figure 5.15: Average probability of a 3×3 patch, given its 16-cell border. This analysis
of the 1010 patch samples highlights the sparsity in the prior when the border is known.
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Figure 5.16: Occupancy grid after six measurements. The robot is at k = 0, the true first
occupied cell is at k = 8 (therefore f = 8). The full Bayesian solution is illustrated with
a uniform prior and a data-driven prior. The MCMC algorithms draw 105 map samples,
using varying patch sizes. The data-driven patch prior is conditioned on bordering cells
and is thus able to estimate the marginal cell occupancy better than a data-driven patch
prior that assumes the patch is independent of its bordering cells.

that is independent of the border, assumes that symmetric variants of the same patch are

equally likely, but Figure 5.13 shows that the symmetric variants of the patches depicted

are zero (with the exception of Figure 5.13a because of its rotational and symmetric

invariance). Thus, in addition to the computational efficiency, conditioning on the patch

border enables a more accurate prior estimate of the patch.

The 1010 patches sampled from prior maps can also be used to determine the prob-

ability of a cell, L = 1, given its 8 bordering cell. This analysis shows that only 84 of

the possible 28 =256 borders are observed in the data. Furthermore, in only 40 of these

unique 8-cell borders are both occupied and unoccupied cells observed for L=1. There-

fore, the remaining 44 borders observed will be perfectly confident in the occupancy of

the cell being sampled by the MCMC algorithm.

Approximating the prior in Equation (5.1) by conditioning the patch prior on border-

ing cells as opposed to all cells outside of the patch, p(ak,w|m¬ak) ≈ p(ak,w|borderak), is

seen to be effective for the 1D toy example in Figure 5.16. In 1D, each patch has only two

border cells – one on either side of the patch. The figure highlights that as the patch size,

L, increases, the MCMC algorithm is able to better estimate the full Bayesian solution

using data-driven prior. By comparing the marginal cell occupancy in Figure 5.16 of the

MCMC algorithm with a patch size of L=1, to an order 1 MRF in Figure 5.7, we observe

that the data-driven patch prior that is conditioned on bordering cells better represents

the transition from unoccupied to occupied. Specifically, the occupancy probability of

cell mk=7 is lower and cell mk=8 is higher when using the data-driven approach.
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Extending this algorithm to 2D using a border-based data-driven prior yields the

results illustrated in Figure 5.17. Similar to the higher-order MRF prior, we see that

unknown cells on the far side of the wall tend to occupied as opposed to the cell prior.

We also observe that the algorithm is able to estimate unknown cells between range

measurements as unoccupied. In comparing the results in Figure 5.17 to the data-driven

prior that was independent of the border in Figure 5.12, we see that incorporating the

border yields straighter walls that resemble the ground truth map, given the same noisy

measurements. Although Figure 5.17b shows some of the “eating-into-walls” issues that

were highlighted previously with higher-order MRFs in Figure 5.8d, increasing the size

of the patch prior alleviates this issue as seen in Figure 5.17c. Therefore, it appears

that a binary (cell) prior can become overconfident, but a patch prior allows for more

configurations to overcome this issue.

Table 5.1 highlights the computational benefit of only computing the probability

of patch configurations that are likely given the bordering cells. These results were

computed for the simple 2D example shown throughout this thesis thus far and depicted

in Figure 5.17a. The results in the table were computed using a laptop computer running

Matlab on Ubuntu with 32GB of RAM and a 2.70GHz Intel i7-6820HQ CPU. For a patch

size of L=1, the uniform prior is computed fastest because a uniform prior removes the

prior addition term, l(mk), in the log-odds domain as we saw in Equation (4.3). However,

Equation (4.2) demonstrates that a data-driven prior introduces this additional term

and therefore adds computation time. A border-based data-driven prior adds additional

computational cost to look up a unique prior value based on the 8 border cells. Therefore,

neither data-driven prior results in computational efficiency for a patch size of L = 1

Table 5.1: Average time to compute one map sample (K/L patches) for various patch
sizes, L, and priors. The 2D map has K = 64 000 cells. A data-driven prior is more
efficient than a uniform prior because it only computes the probability of likely patch
configurations. A border-based data-driven prior is more efficient still because the border
reduces the number of likely patch configurations in the prior. Only 5×5 patches were
sampled from prior maps and therefore cells bordering a patch size of L= 25 were not
sampled.

Uniform Prior [s]
Data-Driven Prior

[s]
Data-Driven Prior

with Border [s]
L=1 4.4 5.1 6.6
L=9 38.3 23.9 2.7
L=25 intractable 124.9
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(a) Ground Truth. (b) MCMC with border-based data-driven
prior; L=1; 500 iterations.

(c) MCMC with border-based data-driven
prior; L=9; 5000 iterations.

Figure 5.17: 2D example illustrating the resulting OG maps from the same measurements
taken from three robot positions. The MCMC algorithm uses a border-based data-driven
prior to correlate prior cell occupancy. These correlations in the prior allow the algorithm
to better estimate the map and provide computational efficiency. The legend used is
shown in Figure 1.10g.

because there are only two possible patch configurations and a data-driven prior does not

reduce that. For a patch size of L=9, computing a map sample with all 29 =512 possible

patch configurations requires an average of 38.3 seconds, but that time is reduced to 23.9

seconds by only considering the most likely patch configurations representing 99.9% of

the 3×3 samples. This computation time is reduced to only 2.7 seconds by only computing

patch configurations that are likely given the 16 border cells. We are able to compute a

map sample with a border-based data-driven prior with L=9 faster than a uniform prior

with L=1 because we compute K/L patches for each map sample. Therefore, the border-

based data-driven prior can be both faster and more accurate for larger patch sizes. For

a patch size of L = 25 the computational savings is the most pronounced, however we
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did not compute it for a border-based data-driven prior because we did not sample 7×7

patches to compute the border-based prior values. By only computing the 2329 patches

that represent 99.9% of the 5×5 samples, each map sample requires only 124.9 seconds

on average. However, computing a map sample with a uniform prior and a patch size of

5×5 is computationally intractable as there are 225 possible patch configurations. We

estimate that a single map sample would require approximately (225/2329×124.9/3600=)

500 hours.

5.3 Chapter Summary

In this chapter, we analyzed the importance of a realistic prior in OGM. We showed that

a realistic prior increases cell correlations between proximate cells, which underscores the

importance of keeping local cell correlations. We then extended the MCMC algorithm

developed in Chapter 4 to incorporate a more realistic prior using three methods.

First, we used a higher-order MRF representation of occupancy grids that assume

neighbouring cell correlations are constant. This method better represents homogeneous

regions of the map, but has a smoothing effect that can result in its inability to rep-

resent narrow walls or obstacles. Second, we presented a novel data-driven patch prior

that enables realistic local cell correlations in the prior for the MCMC Gibbs sampling

algorithm and allows the mapping algorithm to estimate unobserved cells that border

observed cells. This data-driven approach to the prior yields improved results and also

a computational efficiency as many patch configurations are not observed in the prior.

Third, Section 5.2.3 extended the sampling method by conditioning the patch prior on

the cells bordering the patch being sampled in the MCMC algorithm. This conditioning

results in further computational efficiency, the ability to propagate measurements to all

unobserved cells and a resulting map that is able to estimate the original map better

than existing OGM techniques. Notably, the algorithm presented in Section 5.2.3 is able

to draw map samples faster than the MCMC algorithm with a uniform prior, presented

in Section 4.1. The algorithms will be evaluated on real data in Chapter 6.



Chapter 6

Experimental Results

This thesis has presented numerous OGM algorithms and used several existing techniques

to compare them. A summary of these methods is outlined in Table 6.1, where the novel

algorithms presented in this thesis are listed below the double horizontal line. All of these

grid-based maps will depend on the size, K, and orientation of the initial grid chosen.

The ground truth map is the term used to describe the true underlying map based on the

grid selected; this is typically only available in simulation. All other techniques seek to

estimate the maps based on sensor measurements and are therefore effected by the sensor

model, p(zn|xn,mr)=p(zn|fr,n). The full Bayesian solution estimates all 2K possible maps

without assuming cell or measurement independence. Given that this is computationally

intractable for realistic maps, other OGM algorithms seek to estimate the OG with

various simplifying assumptions. Throughout this thesis, we have illustrated the benefits

of the various OGM techniques on a pose-constrained 1D toy problem so they could be

compared to the full Bayesian solution, which can be computed for this 1D example. We

have also shown anecdotal 2D results on a simple example to illustrate the effectiveness of

the algorithms in a higher dimension and to highlight their ability to correlate cells that

are not directly measured. In this chapter, we apply the algorithms to realistic 2D data

to highlight their effectiveness on simulated datasets in Section 6.1 and real hardware

datasets in Section 6.2. The simulated results allow the algorithms to be compared on

experiments where the ground truth map is known, the robot pose is precisely known

and the measurement model is also known. A more thorough analysis is conducted on

the simulated results where the algorithms can be tested on various known environments.

The algorithms are also shown to be effective on real hardware data, where the true map

is not known and the robot pose and sensor model are estimated.

96
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Table 6.1: Summary of grid maps discussed in this thesis. Algorithms below the double
line are novel to this thesis.

Label Reference Application Description
Key

Variables

Ground Truth Reference
True map, often only
available in simulation.

MAP Section 2.2 Offline
Maximum a posteriori
estimate; the most likely
map based on data.

Traditional OGM Section 2.4 Online

Most commonly used
OGM technique that was
first presented by
Moravec and Elfes (1985)

∆

Full Bayesian
Solution

Section 2.3 Intractable
Computing the
probability of every
possible OG map

Pose-Constrained
Full Bayesian
Solution

Section 2.3.1
1D

Reference

Computing the
probability of every
possible OG map

p21 Section 2.5 Online
Optimized traditional
OGM

∆

Online Patch
Map

Section 3.1 Online
Generalizing traditional
OGM to estimate patches
of cells

L,
p(ak|zn, xn)

Offline Patch
Map

Section 3.2 Offline

Batch algorithm that
estimates each patch of
cells using a forward
sensor model and a
reference map

L, m̃

MCMC w/
Uniform Prior

Section 4.1 Anytime

MCMC Gibbs sampling
cells from the full
posterior; marginals can
be computed from many
samples

p(mk)

MCMC w/
Data-Driven
Prior

Section 5.2 Anytime
MCMC Gibbs sampling
patches, where the patch
prior is based on data

L,
p(ak,w|m¬ak)

The full Bayesian solution is too computationally expensive to compute for 2D (or

3D) maps. Therefore, we propose thresholding the 2D OG map generated and comparing

to the binary ground truth map, which is available in simulation. Grewe et al. (2012)

propose an evaluation metric of comparing an OG to a ground truth map by comparing
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the percentage of free and occupied cells. However, Georgiou et al. (2017) propose the

use of precision and recall (Davis and Goadrich, 2006) to compare the maps on a cell-by-

cell basis, which offers further insights. In this chapter, we also use precision and recall

to evaluate OG maps, but we weight the two equally with an F1 metric, which will be

defined in Section 6.1.4. In contrast, Georgiou et al. use an F2 metric that favours recall

over precision, as opposed to weighting them equally.

6.1 Simulation Results

To compare and contrast the various OGM algorithms in 2D, we collected 100 simulated

2D datasets in Player/Stage (Gerkey et al., 2003): 10 runs on each of 10 realistic maps.

The 10 maps are shown in Figure 5.9 and range from cluttered office-type maps to sparsely

occupied maps. The maps are 500×500 cells, and each range measurement can map a

maximum of F =75 cells with Gaussian noise on each measurement, p(zn|f)=N (f, 32).

A screenshot from the Stage robotics simulator is shown in Figure 6.1 to highlight the

relative size of the range measurements on one of the maps. Both the overall size of the

map and the maximum range of the sensor are held constant across the 100 simulations. A

simple exploration algorithm is used to ensure coverage for each of the datasets. The robot

only maps the environment when stopped, as is common with exploration algorithms that

seek to produce highly accurate maps (Tong et al., 2012).

Section 6.1.1 highlights the results of the offline patch map algorithm that were first

presented in Merali and Barfoot (2012) and described in Chapter 3. The offline patch

map estimates the full solution in 2D quite well and is therefore used as a benchmark in

Section 6.1.2 to compare the optimized traditional OGM algorithms that were presented

in Section 2.5. These results were also published in Merali and Barfoot (2014) to highlight

the benefit of optimizing the update function in traditional OGM. The MCMC algorithm

presented in Chapter 4 is used on simulated 2D data in Section 6.1.3. Specifically, the

results are shown for sampling one cell at a time (as opposed to a patch) as we recognize

that the two produce the same result for a uniform prior. These experimental results were

first published in Merali and Barfoot (2013). Finally, Section 6.1.4 shows the benefit of

incorporating a patch prior on the 2D datasets. These results are based on the algorithms

presented in Section 5.2 and are being prepared for publication.
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Figure 6.1: A screenshot from the Stage robotics simulator used to collect the 100 sim-
ulated datasets. The robot (in red) is shown at the first scan location and uses a stop-
and-scan approach and measures 360-degrees around the robot at each scan location. A
border of 20 occupied cells was later applied to each dataset; the map depicted here is
one of ten shown in Figure 5.9.

6.1.1 Patch Map Results

In Chapter 3, we introduced various patch map algorithms and explained that an offline

patch map algorithm with a large patch size, L = 9, and the MAP estimate for cells

outside of the patch, is a great benchmark for comparing the marginal cell occupancy of

each cell in the map. In fact, with a uniform patch prior, a patch size larger than L=9

becomes computationally intractable. Therefore, each of the 100 simulated 2D datasets

was used to compute a 3×3 patch centered at each of the K cells using the offline patch

map method described in Section 3.2, with both the MAP solution and GT used for cells

outside of the patch being estimated.

Figure 6.2 illustrates a typical result from one of the 100 datasets and compares the

offline patch map result to traditional OGM. In addition, the figure shows three magnifi-

cations per map to highlight some anecdotal results. The first magnification illustrates a

well mapped boundary where the patch map begins to approach the ground truth map.

The patch map is more confident in the cell boundary than the traditional OG map,

which could translate to better localization in a grid-based localization problem where

the map is given. The second magnification illustrates a poorly mapped boundary, where

the patch map remains at the prior as opposed to the overconfident ground truth map.
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(b) Traditional OGM
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Figure 6.2: Results from one of the 100 2D datasets. Image (a) illustrates the ground
truth map, where p(mk) ∈ {0, λ = 0.5, 1}. Image (b) shows the result of traditional
OGM. Image (c) shows the number of times the range sensor reflected off a cell, mk, in
the dataset. Image (d) illustrates the patch map using ground truth, p(mk|z, x, m̃¬a).
Image (e) shows the patch map using the MAP estimate. Image (f) displays the DKL

between (b) and (e), where the values have been thresholded at DKL(pk||qk) = 1 for
the purpose of this illustration. The circles in the six images are magnifications. The
first magnification shows that the patch map approaches the ground truth map in well-
mapped areas. The second magnification shows that patch map remains at the prior
for unmapped cells, unlike the ground truth map. The third magnification shows that
the traditional OGM algorithm is not confident about the unoccupied space, but the
patch map is. Each cell in the third magnification received few (between one and three)
measurements.

Finally, the third magnification highlights that traditional OGM is not as confident as

the patch map method in poorly mapped unoccupied areas. Depending on the occu-

pancy threshold, traditional OGM could consider this area occupied, thus hindering a

path planning (or even localization) algorithm. Furthermore, we observe that the patch

map generated using the MAP estimate in Figure 6.2(e) is nearly indistinguishable from

the patch map generated using the GT map in Figure 6.2(d). In fact, 97.4% of the cells
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have exactly the same probability, DKL = 0, and an additional 1.7% have a divergence

of less than 0.001, DKL < 0.001. Thus, we conclude that in the absence of the ground

truth map, the MAP estimate is suitable for achieving nearly the same patch map. Note

that Figure 6.2(c) only counts the number of times a cell reflected a range measurement

(positive information), not the number of times a measurement passed through the cell

without being reflected (negative information). The patch map and traditional OGM

algorithms use the negative information to decrease the probability that cells are occu-

pied. Finally, Figure 6.2(f) illustrates the DKL between each cell in the map generated

by traditional OGM (shown in Figure 6.2(b)) and the offline patch map using the MAP

solution (show in Figure 6.2(e)). This figure highlights that traditional OGM diverges

most near the boundaries between unoccupied and occupied areas of the map and the

three magnifications highlight that traditional OGM fails to capture the uncertainty in

the map in both sparsely mapped and heavily mapped areas.

Since the full solution could not be computed for the simulated 2D maps with K =

250 000 cells, the benchmark used in 2D is the offline patch map computed using the MAP

estimate for m̃¬a and overlapping patches of size L=9. For comparison, the patch map

is computed for L ∈ {1, 5, 9} in the configurations shown in Figure 3.1. The occupancy

grids were also computed using the traditional OGM algorithm described in Section 2.4.

Table 6.2 summarizes the results by comparing the DKL between the maps produced

by various OG mapping algorithms and the benchmark map. Table 6.2 highlights that

the MAP estimate and the ground truth map diverge a great deal from the benchmark.

In addition, the table shows that using the MAP estimate or ground truth (GT) for

m̃¬a makes little difference. Finally, the table shows that a patch size of L= 9 or even

L= 5 realizes the majority of the benefit. Therefore, with a uniform patch prior, there

is merit to computing the patch map for a patch size greater than L= 1, but most of

the benefit is realized with only slightly larger patches. This conclusions aligns with the

mutual information study in Section 2.6 that mutual information is greatest between

neighbouring cells and approaches zero as cells are farther apart.

6.1.2 Optimizing Traditional OGM

Section 6.1.1 showed that the offline patch map algorithm is able to accurately capture

the residual uncertainty in 2D occupancy grids. Furthermore, Section 2.5 illustrated

that traditional OGM can be optimized to capture the residual uncertainty in the map,
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Table 6.2: The average DKL (from 100 2D datasets) between maps produced by various
OG mapping algorithms and an offline patch map using the MAP estimate, a uniform
patch prior, and L=9

DKL

MAP Estimate 6.065× 105

Ground Truth 8.259× 104

Traditional OGM 7.476× 103

Patch map from GT, L=1 7.518× 103

Patch map from MAP, L=1 8.814× 103

Patch map from GT, L=5 4.715× 103

Patch map from MAP, L=5 3.542× 103

Patch map from GT, L=9 1.321× 103

without sacrificing the fast computation time that allows traditional OGM to run online.

In this section, we show that the optimization performed in 1D is effective in 2D and

use the offline patch map as a benchmark because the full Bayesian solution cannot be

tractably computed for these large 2D maps.

Given the optimized update terms for traditional OGM shown in Section 2.5, the new

update terms can be used online. Therefore, the online computation time is the same

as traditional OGM methods. For comparison, we use the update term presented by

Hähnel (2004) and used throughout this thesis as the traditional update term. For each

of the simulated datasets, we are able to compute the OG using traditional methods and

the optimized update terms presented in Table 2.1. As a benchmark, we use the offline

patch map with overlapping 3×3 patches centered at each cell and compute the DKL

for each cell as compared to this benchmark. Table 6.3 shows the average DKL of the

100 experiments for each set of parameters compared the to the benchmark map. For

reference, a map that exactly matches the benchmark would have DKL =0, and an entirely

unknown map where each cell has a value of p(mk) = 0.5 would have DKL = 1.25×105,

given the benchmark maps. Note that each simulated map has K = 2.5×105 cells and

therefore dividing the mean DKL values in Table 6.3 by this value of K yields the average

DKL per cell. Therefore the p21 algorithm has an average DKL =0.0158 per cell, whereas

traditional OGM has an average DKL = 0.0584 per cell. As expected, we see that the

optimized parameters of Moravec (1988) and Marshall and Barfoot (2007) outperform

the unoptimized parameters of traditional OGM. Using the unoptimized parameters, the

average DKL between the maps produced and the benchmark map is 1.46 × 104. Also,

the update term presented by Borenstein and Koren (1991) is the only one to perform
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Table 6.3: Average DKL of 100 experiments between online OG map and offline patch
map in 2D

mean(DKL) min(DKL) max(DKL)

Traditional OGM 1.46× 104 8.91× 103 2.37× 104

Borenstein and Koren (1991) 1.25× 105 1.07× 105 1.37× 105

Moravec (1988) 9.54× 103 6.29× 103 1.39× 104

Marshall and Barfoot (2007) 1.11× 104 7.22× 103 1.67× 104

Stachniss (2006) (sonar) 7.57× 103 4.78× 103 1.19× 104

Elfes (1989a) 4.14× 103 2.58× 103 6.53× 103

p21 3.95× 103 2.62× 103 5.79× 103

worse than traditional OGM and similar to an entirely unknown map. This is expected

as this update term only adds information to the map where the sensor was reflected and

does not decrease the occupancy probability of cells that were measured as unoccupied.

Furthermore, Table 6.3 highlights that the parameterization from Section 2.5 with 21

parameters has the lowest average DKL compared to the benchmark map with a value of

3.95× 103. Therefore, the new update term better approximates the benchmark map.

Figure 6.3 illustrates the improved performance of the OG mapping algorithm by

using the optimized 21-parameter ∆ function as opposed to those found in the literature.

The figure compares the performance on one of the 2D datasets. Figure 6.3(a) shows

the number of positive measurements (i.e., the cell reflected range sensor) in each cell.

The three black circles on each image are magnifications. The first magnification shows

a heavily-mapped area and the second shows an under-mapped area. Figure 6.3(b)

shows the benchmark offline patch map. Figure 6.3(c) shows the OG using a ∆ function

from the literature (Hähnel, 2004) and Figure 6.3(d) shows the OG using the optimized

p21 ∆ function. Figure 6.3(e) and (f) show the DKL on a cell-by-cell basis between

(c) and (d), respectively, compared to the benchmark map. The many dark cells in

Figure 6.3(e) indicate that the OG created using a ∆ function from the literature strongly

diverges from the benchmark map, especially in heavily-mapped areas. Note that the

largest divergence is concentrated in areas where the range sensor returned a reading,

as depicted in Figure 6.3(a). The third magnification highlights an unoccupied area,

where the optimized ∆ function better captures the residual uncertainty. Each of the

cells in the third magnification had one to three measurements. It is not surprising that
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(c) Traditional OGM
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(d) Optimized OGM
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(b) O✏ine Patch Map
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Figure 6.3: Results from one of the 2D datasets. Image (a) shows the number of times the
range sensor reflected off a cell, mk, in the dataset. Image (b) illustrates the benchmark
map created using an offline patch map algorithm. Image (c) is the OG created using
traditional OGM (Hähnel, 2004). Image (d) is the OG created using the optimized 21-
parameter ∆ function. Image (e) displays the DKL between (c) and (b) and image (f)
displays the DKL between (d) and (b). In both images (e) and (f) the values have been
thresholded at DKL(pk||qk) = 1 for the purpose of this illustration. The circles in the
six images are magnifications. The first magnification shows that traditional OGM is
overconfident in well-mapped areas. The second magnification shows that the optimized
parameters outperform traditional OGM, even on walls with few measurements. The
third magnification shows that the optimized parameters also estimate the unoccupied
cells more accurately. Each cell in the third magnification received few measurements.

the optimized p21 ∆ function outperforms the others in unoccupied areas because, as

Section 2.5 highlighted, this parameterization reduces the occupancy probability of cells

in the unoccupied areas more than other ∆ functions. Therefore, we have shown that

the optimized ∆ function can be used online in a traditional OGM algorithm to better

capture the residual uncertainty in the map without sacrificing computation time.
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6.1.3 MCMC with a Uniform Prior

The offline patch map algorithm is an effective benchmark for comparing marginal cell

occupancy probabilities in OGM. However, in Chapter 4, we presented a MCMC Gibbs

sampling algorithm that is capable of computing the cell marginals in addition to other

statistics about the map as it draws samples from the full posterior. Furthermore, the

MCMC algorithm is an anytime algorithm as it can provide an estimate quickly, but the

estimate continues to improve as more samples are drawn.

To demonstrate that the MCMC algorithm can be computed for large maps where

the full solution is computationally intractable, we use the MCMC algorithm with a

uniform prior and L=1 to sample from the full posterior for all 100 simulated datasets.

These experiments highlight the importance of selecting a suitable prior probability for

each cell in the occupancy grid. When a uniform cell prior of p(mk) = 0.5 is used, the

MCMC algorithm required in excess of 200 iterations to reach a stationary distribution.

By lowering the prior to a more realistic value of p(mk) = 0.15, the algorithm converges

in less than 20 iterations, as illustrated in Figure 6.4. The MCMC experiments also show

that by starting the algorithm with a thresholded OG map developed using traditional

OGM, a stationary distribution is reached on the second iteration.

The experiments show that the MCMC Gibbs sampling method can be used for large

maps with K=2.5×105 cells. Each iteration of the MCMC algorithm takes approximately

10.3 seconds in our unoptimized Matlab implementation on a laptop computer with 32GB

(a) MCMC sample after 5 it-
erations

(b) MCMC sample after 10 it-
erations.

(c) MCMC sample after 20 it-
erations.

Figure 6.4: MCMC map samples after 5, 10, and 20 iterations, when starting from
a cell prior of p(mk) = 0.15. MCMC algorithms typically disregard early samples as
the algorithm has not yet reached a stationary distribution. In this case, a stationary
distribution is reached in less than 20 samples.
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of RAM and a 2.70GHz Intel i7-6820HQ CPU. One key benefit of the MCMC algorithm

is that the OG estimate becomes more accurate as more samples are drawn. The average

DKL between the MCMC method and the ground truth map for the 100 experiments is

8.8×105. The average DKL between the MCMC method and traditional OGM for the

100 datasets is 6.3×103. This result indicates that traditional OGM more closely models

the MCMC method. Since the ground truth map does not model uncertainty and does

not depend on the measurements, this result is intuitively correct.

Figure 6.5 shows typical results from one of the 100 datasets. The three magnifica-

tions in the figure highlight some anecdotal results. The first magnification shows an

obstacle boundary that received several measurements. In this case, the MCMC method

approaches the ground truth map. The MCMC method is more confident about the

obstacle boundary than traditional OGM, which should translate to better localization

in a grid-based localization problem where this map is used. Conversely, the second mag-

nification highlights an obstacle boundary that received few or no measurements. The

MCMC algorithm remains at the prior for cells with no measurements, unlike the ground

truth map that does not depend on the measurements. Hence, if the ground truth map

were used as a benchmark, it would not be realistic to expect an OGM algorithm to es-

timate cells with no measurements. Lastly, the third magnification shows an unoccupied

area that received few (between one and three) measurements. The traditional OGM

algorithm does not reduce the occupancy probability of these cells to near-zero as the

MCMC algorithm does. Therefore, depending on the user-defined occupancy threshold,

the traditional OGM algorithm may consider this area occupied, which would hinder

path planning or localization algorithms that the map may be used for. The differences

between the algorithms are further illustrated by the DKL plots in Figure 6.5 (e) and (f).

With a constant cell prior, the cells are only correlated by the measurements and not the

prior. Therefore, cells that are not mapped remain at the cell prior.

6.1.4 MCMC with a Data-Driven Patch Prior

The MCMC algorithm is able to draw samples from the full posterior. However, in

Chapter 5 we showed that the algorithm can be improved by incorporating a data-

driven patch prior and that the prior is more effective when it is conditioned on the cells

bordering the patch. Therefore, in this section we analyze the 100 simulated datasets

using the MCMC algorithm with a data-driven patch prior as described in Section 5.2.
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As shown in Chapter 4 and 5, a data-driven cell prior allows the MCMC algorithm to

better estimate the occupancy of cells, especially those with few or even no measurements.

Therefore, to show the effectiveness of a data-driven patch prior, we compare the maps

produced to the ground truth map that was used to create the dataset.

(c) Traditional OGM
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Figure 6.5: Results from one of the 2D datasets. Image (a) shows the number of times
the range sensor reflected off a cell, mk, in the dataset. Image (b) illustrates the ground
truth map, where p(mk) ∈ {0, λ = 0.15, 1}. Image (c) shows the result of traditional
OGM. Image (d) illustrates the result of the MCMC Gibbs sampling algorithm. Image
(e) displays the DKL between (b) and (d), where the values have been thresholded at
DKL(pk||qk) = 1 for this illustration. Similarly, image (f) shows the DKL between (c) and
(d). The circles in the six images are magnifications. The first magnification shows that
the MCMC method approaches the ground truth map in well-mapped areas. The second
magnification shows that unmapped cells in (d) remain at the prior, unlike the ground
truth map. The third magnification shows that traditional OGM is not confident about
the unoccupied space, but the MCMC algorithm is; each cell in the third magnification
received few (between one and three) measurements.
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Each ground truth map is binary (each cell is occupied or unoccupied), as shown in

Figure 5.9. However, this thesis and much of the OGM literature has considered the

unknown cells inside objects in the environment to be at the cell prior, p(mk), because

these cells cannot be mapped by a range sensor and if cells are considered independent

in the prior, then the OGM algorithms cannot estimate these cells beyond the cell prior.

However, by correlating cells with a patch prior, we are better able to estimate the oc-

cupancy of these cells, especially when estimating the patch prior given the cells that

border it. Therefore, in this section, we compare the results of the MCMC OGM algo-

rithms to the binary ground truth map. We use the metrics of precision and recall to

evaluate the maps against the ground truth map, as is common for evaluating binary

classification algorithms. Occupancy grids are often thresholded at some marginal cell

probability in order to produce a binary map that can then be used for localization,

path-planning and other purposes (e.g., Nagla et al., 2012). We therefore illustrate the

effectiveness of the algorithms on a Precision-Recall plot that shows the effectiveness of

the algorithm on these two metrics for various marginal cell probability threshold values.

To generate these metrics, each cell in the OG map is compared to the ground truth

map and those that match are marked as true positives (TP). However, cells that are

estimated to be occupied, but are unoccupied in the ground truth are marked as false

positive (FP) and cells that are estimated to be unoccupied, but are occupied in the

ground truth are marked as false negative (FN). The two metrics are therefore defined

as (Davis and Goadrich, 2006),

precision =
TP

TP + FP
,

recall =
TP

TP + FN
.

Therefore, if the OGM algorithm estimates all cells as occupied, then no false negatives

will be detected and the algorithm will have perfect recall but poor precision. Conse-

quently, it is important to have a balance of these two factors and this is often measured

by a weighted sum of the two known as a F1 score,

F1 = 2× precision× recall

precision + recall
. (6.1)
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(a) Traditional OGM

(b) MCMC with a data-driven patch prior; L=1; 100 iterations

(c) MCMC with a border-based data-driven patch prior; L=9; 100 iterations

Figure 6.6: Three different OGM algorithms are used to estimate the occupancy grid
from the same data. The first column illustrates the OG produced using the legend in
Figure 1.10g, the second column is the best thresholded map (best F1 score), and the
third column only shows the cells that differ from the ground truth map (FP in blue and
FN in red). Algorithms that better estimate the GT map (shown in Figure 5.9j), show
fewer cells in the third column.
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Figure 6.6 shows the map generated by various algorithms on one of the datasets for

each of (i) the original OG, (ii) the best thresholded map, and (iii) the FP/FN map.

Specifically, the false positives are shown in blue and the false negatives are shown in

red. In Figure 6.6a, we see that traditional OGM does well at estimating the map, but

not necessarily near the walls where the map transitions from unoccupied to occupied.

Furthermore, the false positives in the unoccupied space pose a challenge for localization

and path planning algorithms. For example, a path planning algorithm would avoid

planning a path through the area with false positives to avoid a perceived collision. A

localization algorithm would have difficulty using the map for localization in the area

with false positives in the unoccupied space as it would expect a range sensor to reflect

off of those cells, but it would not. Figure 6.6b shows the result of the MCMC algorithm

with a data-driven prior after 100 iterations. This algorithm better estimates the residual

uncertainty in the map and is therefore able to produce a more accurate thresholded map

as well. Not only does this map exhibit less false negatives (red), but it also notably does

not exhibit the false positives (blue) in the free space, thus allowing a path planning

algorithm to plan a path in this space and localization algorithms to better localize

against the map. Finally, Figure 6.6c highlights that incorporating a border-based data-

driven patch prior into the MCMC algorithm yields significantly better results as the

thresholded map very nearly resembles the ground truth map, shown in Figure 5.9j.

This result is evident by the few false positives and false negatives shown in the third

image. This high fidelity estimate of the ground truth map could be used to improve

path planning and localization algorithms.

To highlight that the results in Figure 6.6 are robust to different threshold values,

Figure 6.7 performs a similar analysis on the three algorithms at three different threshold

values: (i) 0.1, (ii) 0.2, and (iii) 0.6. Traditional OGM estimates all unknown cells at

the cell prior and therefore does dramatically worse when a threshold above this value

is chosen – as seen in the third image of Figure 6.7a. The MCMC algorithm with L=1

also performs poorly for unknown cells when I high cell threshold is used. However, this

algorithm performs better than traditional methods for cells that are mapped. Finally,

the MCMC algorithm with a border-based data-driven patch prior and L=9 outperforms

the other algorithms for all three threshold values, as indicated by the few FP and FN

cells shown in Figure 6.7c. Therefore Figure 6.7 highlights that this MCMC method is

robust to varying threshold values and the absence of blue and red cells in Figure 6.7c

demonstrates that the algorithm accurately estimates the ground truth map.
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(a) Traditional OGM

(b) MCMC with a data-driven patch prior; L=1; 100 iterations

(c) MCMC with a border-based data-driven patch prior; L=9; 100 iterations

Figure 6.7: The OG is computed using three different algorithms, then thresholded at
three values and compared to the ground truth map (shown in Figure 5.9j). Maps in
each column represent a different threshold value of 0.1, 0.2, and 0.6, respectively. The
correctly estimated cells are not displayed, but the false positives are displayed in blue
and the false negatives in red. Therefore, the fewer cells displayed, the more accurately
the algorithm estimates the ground truth map. Traditional OGM estimates all unknown
cells at the cell prior and thus experiences a sharp decline in the estimate as a threshold
greater than the cell prior is selected. The MCMC algorithm with a border-based data-
driven prior outperforms the other two algorithms for all three thresholds.
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Table 6.4: Precision and Recall of 100 simulated datasets. Comparing traditional OGM
to MCMC OGM with a data-driven prior.

Traditional
OGM

Data-driven
prior, L=1

Data-driven
prior, L=9

Border-based
Data-driven
prior, L=9

Max Precision 0.9717 0.9571 0.9913 0.9976
Max F1 Score 0.9328 0.9460 0.9458 0.9820
Threshold for max F1 0.20 0.10 0.10 0.07
Precision @ max F1 0.9310 0.9026 0.9032 0.9694
Recall @ max F1 0.9346 0.9939 0.9925 0.9950

To further illustrate the strength of the border-based data-driven patch prior MCMC

algorithm, Figure 6.8 illustrates the P-R curves over all 100 simulated datasets, and

Table 6.4 summarizes the highest precision, recall, and F1 score achieved for each method

in the analysis. Furthermore, Figure 6.9 plots the F1 score over all 100 datasets for

various threshold values. This analysis was conducted by estimating the maps for all

100 simulated datasets and varying the threshold value for each algorithm’s estimate of

the marginal cell occupancy for all 500×500×100 cells. Not only does the border-based

algorithm have the highest precision and F1 score, but Figure 6.9 highlights that it is

robust to the threshold as there is little uncertainty in the marginal occupancy probability

of each cell. Figure 6.9 also highlights that all of the algorithms perform poorly for very

low threshold values. However, we note that traditional OGM has a large discontinuity

at the cell prior because all unmapped cells are estimated at the cell prior. Figure 6.8

shows that traditional OGM can have higher precision than the MCMC algorithms that

do not incorporate a patch border. In fact, the plot is somewhat deceiving as both

MCMC algorithms have a higher maximum F1 score as shown in Table 6.4, but they can

do worse on precision for very high threshold values (i.e., > 0.97) as traditional OGM

can be overconfident in the marginal cell occupancy probability. Note that the values

in Table 6.4 for the data-driven prior for L = 1 and L = 9 are quite close (except for

maximum precision) and we believe that this slight difference will continue to decrease

with more iterations of both MCMC algorithms. However, Figure 6.9 shows that a larger

data-driven patch size outperforms a smaller one on F1 score for most threshold values.

Overall, the MCMC algorithm with a border-based data-driven patch prior outperforms

the other algorithms in all measures. This result is highlighted in Table 6.4 and by the

fact that it dominates the other algorithms in Figure 6.8.
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Figure 6.8: Precision-Recall curve for 100 simulated datasets, where each MCMC algo-
rithm is averaged over 100 map samples. The MCMC algorithm with a border-based
data-driven patch prior outperforms the other algorithms for all thresholds.
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Figure 6.9: F1 score for 100 simulated datasets as a function of cell threshold value.
The MCMC methods are able to achieve a higher F1 score than traditional OGM for
certain cell occupancy probability threshold values. The MCMC algorithm that uses a
border-based data-driven patch prior is very robust to the threshold value selected as it
has a high F1 score for nearly all cell threshold values.
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Treating OGM as a binary classification problem and analyzing the precision and re-

call of an OG highlights one effective use of capturing cell correlations in OGM. However,

by thresholding the map on a cell-by-cell basis, all mutual information between cells is

lost. As highlighted in Chapter 4, the MCMC algorithm is also a powerful tool to esti-

mate other statistics, such as the first-occupied-cell along a measurement ray. In higher

dimensions, this can be generalized to estimating the occupancy of a group of cells. For

example, a path planning algorithm may seek to determine the joint probability that all

cells along a path are unoccupied or a semantic mapping algorithm may seek to determine

the occupancy probability of a group of cells to determine the size or shape of an area.

The MCMC algorithm for OGM enables these and many more applications that should

be studied further. However, the improved binary classification is one illustration of the

effectiveness of this approach. It is worth noting that many of the cells will not have

mutual information with neighbouring cells and most of the mutual information exists

where the range sensor is reflected – often the most critical part of the map to estimate.

Dhiman (2019) also observed this result and suggested having the MCMC algorithm fo-

cus on sampling cells that reflect the measurement four times more frequently than other

cells. He also observed that this leads to faster convergence of the MCMC algorithm.

This and other extensions of the research presented in this thesis are discussed further

in Section 7.2, but the analysis presented in this section highlights some of the benefits

of capturing the cell correlations in both the measurements and the prior.

6.2 Hardware Results

Section 6.1 showcased various OGM algorithms presented in this thesis on realistic data

from simulated datasets. Some of these algorithms use a data-driven patch prior which

was derived from drawing patch samples from the 10 maps used to generate the simulated

datasets. The set of patch priors is the same throughout this thesis. In this section, we

show that the mapping algorithms can be applied to real data and that the data-driven

patch priors can be applied to maps that were not sampled to generate the patch priors.

To demonstrate this, we use publicly available data of the Intel Research Lab in Seattle,

Washington (Howard and Roy, 2003) and the MIT Stata Center in Cambridge, Mas-

sachusetts (Fallon et al., 2013). These datasets were chosen because they were created

by densely mapping a confined area using a laser range finder on a mobile robot. The

dense laser data is useful for creating a benchmark map and can be subsampled to high-
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light that the algorithms are able to estimate the benchmark with less data. O’Meadhra

et al. (2019) used a similar approach to highlight the benefit of their algorithm on sparse

data. This approach was not required with the simulated data in Section 6.1 because the

ground truth map was known. Both datasets also use the dense data to provide accurate

estimates of the robot’s pose with each laser scan.

Given the two datasets, we use all of the data within each set to generate a benchmark

OG for each dataset. The benchmark map is created using traditional OGM and then

each cell in the map is thresholded at an occupancy probability of 0.20 because, as we saw

in Table 6.4, this value yields a high F1 score for traditional OGM. Figure 6.10 shows the

two benchmark maps, where occupied cells are shown in black and the remaining cells

are unoccupied. The two maps in Figure 6.10 also include additional information that

will be discussed in the following sections. Section 6.2.1 will discuss the results of the

Intel Lab dataset in detail and Section 6.2.2 will examine the results of the MIT Stata

dataset. Both sections will show the effectiveness of the MCMC algorithm for OGM with

a border-based data-driven patch prior.

6.2.1 Intel Lab Dataset

In the Intel Lab dataset, the location is estimated by a SLAM algorithm using the dense

laser data. The dataset uses a laser range finder that can measure up to 80 meters with

±15mm accuracy and measures every 1.0◦ for a 180◦ field-of-view. The Intel Lab dataset

had many measurements that were reported as maximum range, which were considered

erroneous given that the experiment was conducted indoors, where the hallways were no

more than 20 meters long. As a consequence, any measurements longer than 20 meters

were ignored in this dataset. Figure 6.11a shows the OG map generated using traditional

OGM and all of the range measurements in the dataset and Figure 6.11b shows the

OG after omitting the maximum range measurements. Figure 6.11b appears to better

represent the environment and we therefore omit the maximum range measurements

for any further analysis using the Intel Lab dataset. Given the occupancy grid map

estimate using traditional OGM shown in Figure 6.11b, we threshold the map to obtain

the benchmark map shown in Figure 6.11c; note that this is the same result shown in

Figure 6.10a.

A densely mapped environment does not have much uncertainty in the OG map and

therefore provides an analog for the ground truth map. To showcase the algorithms
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(a) Benchmark OG map for the Intel Lab dataset

(b) Benchmark OG map for the MIT Stata dataset

Figure 6.10: The binary benchmark OG map used for the two hardware datasets, overlaid
with the first 10 cells mapped by each measurement ray from the three experiments on
each map. For the benchmark map, occupied cells are show in black and all other cells
are unoccupied. The most dense experimental dataset uses all of the rays depicted, the
second most dense uses only those depicted in red and blue and the least dense uses only
the rays depicted in blue.
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(a) OG with all measure-
ments

(b) OG without maximum
range measurements

(c) Binary OG with each cell
thresholded at p(mk)=0.20

Figure 6.11: OG maps generated using traditional OGM with the Intel Lab dataset.
Figure (a) shows the OG map produced by using all of the data. The dataset contains
many maximum range measurements, so figure (b) shows the resulting OG map after
removing those. Finally, figure (c) shows the result after thresholding each cell at p(mk)=
0.20. The thresholded map is used as the benchmark as other OGM algorithms seek to
estimate it with fewer measurements. The legend used is shown in Figure 1.10g.

developed in this thesis, we use a subset of the data in each experiment to approximate

a sparsely mapped environment. Note that such sparsity would exist in data collected at

longer range (e.g., outdoors) or from a fast moving vehicle (e.g., a car or plane), or from

a lower cost sensor. Although this sparsity would highlight the benefit of the algorithms

presented in this thesis, the same sparsity could result in decreased localization accuracy

and may not provide a reference map similar to that obtained from a dense dataset.

Therefore, we use the dense data to retain the localization benefit, but subsample the

measurements from the hardware datasets to highlight the strength of the MCMC OGM

algorithms with a data-driven patch prior, presented in Section 5.2.

Table 6.5 outlines how much of the Intel Lab dataset was used for the three exper-

iments conducted on this dataset. All of the data was used to develop the benchmark

map, which was then used to evaluate the map generated by each of the subsequent

experiments. All three experiments only use half of the range measurements per robot

position, thus leaving 2.0◦ between measurements in the 180◦ field-of-view of the sensor.

The first experiment uses all of the robot poses in the dataset, the second experiment

uses half of the robot poses and the third experiment uses only 10% of the robot poses.

Each of the experiments was conducted on a map size of 30m × 30m and used a grid

resolution of 2.0cm per cell. This is a considerably finer resolution than is typical in the

literature, where authors typically use a grid resolution of 5-25cm (e.g., Danescu et al.,
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Table 6.5: Experiments conducted on the Intel Lab dataset (Howard and Roy,
2003). Each map measures 30m×30m with a grid resolution of 2.0cm for a total of
K = 2.25 × 106 cells. The benchmark has a 1.0◦ increment between measurements,
whereas each experiment has a 2.0◦ increment between measurements.

Number of
Poses

Measurements
per Pose

Total
Measurements, N

Portion of
Cells Mapped

Benchmark 910 180 163 800 59.63%
Experiment 4 910 90 81 900 55.78%
Experiment 5 455 90 40 950 50.27%
Experiment 6 91 90 8190 28.22%

2011; Schaefer et al., 2018b). A finer grid resolution enables a more detailed map of the

environment. Given the grid resolution and measurements, Table 6.5 also indicates the

portion of cells in the map with at least one range measurement. This ratio highlights

the sparsity of mapped cells with each experiment.

Figure 6.10a displays the binary benchmark map for the Intel Lab dataset by showing

the occupied cells in black and the remaining cells are unoccupied. However, the white

unoccupied cells are also overlaid with the first 10 cells mapped by each measurement

ray in the experiments. Each cluster of measurement rays originates from a robot pose.

All of the measurement rays shown in Figure 6.10a were used for Experiment 1. Only

the red and blue rays were used for Experiment 2 and only the blue rays were used for

Experiment 3.

Similar to Section 6.1.4, for each experiment, traditional OGM was compared to

MCMC with a data-driven prior with a patch size of L=1, L=9 and with a border for

L=9 as well. However, as these experiments intentionally examine sparse measurements

in the map and the previous experiments in simulation used an exploration algorithm

to ensure full coverage of the map being explored, the sparse measurements revealed a

challenge with the MCMC technique depicted in Figure 6.12. As stated previously, the

MCMC algorithm starts with a thresholded version of traditional OGM to reduce or

eliminate the burn-in or convergence period typically required for MCMC algorithms.

However, Figure 6.12 highlights that the MCMC algorithm with L=1 appears to diverge

from the correct solution as more samples are obtained. Upon further investigation,

this appears to be a result of (a) the sensor model and (b) sampling a single cell at a
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(a) OG after 10 MCMC sam-
ples

(b) OG after 30 MCMC sam-
ples

(c) OG after 60 MCMC sam-
ples

Figure 6.12: OG maps generated using the MCMC algorithm with L=1 and 10% of the
measurements in the Intel Lab dataset. The resulting OG map is shown after drawing
(a) 10, (b) 30, and (c) 60 samples from the posterior. However, because the measurement
model used depends on the first-occupied-cell, f , and the algorithm only samples one cell
at a time, the result is that many measurements are negated by the “flipped” cell in a
sparsely mapped area. A larger patch size with a data-driven prior can help overcome
this limitation. The legend used is shown in Figure 1.10g.

time in the MCMC algorithm. The sensor model relies on the previous iteration of the

map to determine the first occupied cell, f . However, a single incorrectly flipped1 cell

along the measurement ray yields a significantly worse range estimate for that sensor

measurement. However, if that measurement was the only measurement for some cells,

then the cells beyond that flipped cell will essentially draw from the prior and several more

unoccupied cells will be sampled as occupied, thus compounding the problem. This issue

was not observed previously because cells had multiple measurements that would prevent

unoccupied cells from reverting to the prior if one range measurement was impacted by

the randomness of the sampling algorithm. We believe that a different sensor model could

overcome this issue. However, we also found that sampling patches as opposed to cells

also helped to overcome this issue, as a patch is more likely to be measured by multiple

measurements. This effect was also observed for a patch size of L = 9 for very sparse

measurements, but it was not observed when the patch prior was dependent on the cells

bordering the patch. Therefore, we have omitted the results of the MCMC algorithm

with L=1 from this section. Furthermore, we have recognized that an additional benefit

of conditioning the patch prior estimate on bordering cells is to overcome this issue.

1We use the term flipped to describe a cell being sampled as occupied that was previously sampled
as unoccupied, or vice versa.
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Figure 6.13 shows the result of the Experiment 1 on the Intel Lab dataset. Each

of the three algorithms depicted performs well against the benchmark map. However,

Figure 6.13c shows that the MCMC algorithm using a border-based data-driven patch

prior shows several false negatives (red) in undermapped areas. We believe that the

MCMC algorithm is actually correct in its estimate of these cells, but they were not

represented in the benchmark map since it is not a true ground truth map. Figure 6.14

shows the result of Experiment 2 on the Intel Lab dataset. We observe that traditional

OGM has several false positives as expected because cells are more sparsely mapped in

this experiment and traditional OGM methods are not able to estimate unmapped cells

beyond the cell prior. In contrast, the MCMC algorithm with a patch size of L=9 is able

to estimate many of the cells between range measurements as unoccupied. Therefore, we

not only see fewer false positives than traditional OGM, but also some false negatives

that we believe are in fact correct because the benchmark map was not able to accurately

capture their occupancy. Finally, Figure 6.14c depicts the MCMC algorithm with L=9

and a border-based data-driven patch prior. This algorithm shows very similar results

to Experiment 1. Therefore, we find that fewer measurements (i.e., increased sparsity)

have little effect on this algorithm’s ability to estimate the benchmark map.

The Experiment 3 results on the Intel Lab dataset are shown in Figure 6.15. The

sparsity in this experiment is evident from the map generated by traditional OGM in

Figure 6.15a. The resulting thresholded map highlights the occupied cells between range

measurements. The thresholded map in Figure 6.15a would be virtually unusable for

most path planning and localization algorithms. In fact, the data in Experiment 3 is

so sparse that we begin to see the challenges in Figure 6.15b with L = 9 that were

observed in Figure 6.12 with less sparse data and L= 1. Namely, in patches with very

few measurements, and a sensor model that is dependent on the first-occupied-cell, the

MCMC algorithm is unable to converge to the correct solution and reverts to sampling

from the prior. However, Figure 6.15c highlights that by conditioning the patch prior

on bordering cells, the MCMC algorithm is able to converge and sample from the full

posterior. The result is a map that clearly indicates the hallways and most of the rooms.

The map generated best estimates the benchmark map and would be usable for path

planning and localization algorithms. Moreover, the map may also be useful for semantic

mapping algorithms that seek to label the hallways and rooms.

We quantify the results of the three experiments by computing the F1 score, pre-

sented in Equation (6.1), that combines the precision and recall of the experiments as
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(a) Traditional OGM

(b) MCMC with data-driven patch prior; L=9; 100 iterations

(c) MCMC with data-driven patch prior with border; L=9; 170 iterations

Figure 6.13: Three different OGM algorithms are used to estimate the occupancy grid
from Experiment 1 on the Intel Lab dataset. The first column illustrates the OG produced
using the legend in Figure 1.10g, the second column is the best thresholded map (best
F1 score), and the third column only shows the cells that differ from the benchmark map
(FP in blue and FN in red). Algorithms that better estimate the benchmark map, shown
in Figure 6.10a, show fewer cells in the third column.
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(a) Traditional OGM

(b) MCMC with data-driven patch prior; L=9; 100 iterations

(c) MCMC with data-driven patch prior with border; L=9; 200 iterations

Figure 6.14: Three different OGM algorithms are used to estimate the occupancy grid
from Experiment 2 on the Intel Lab dataset. The first column illustrates the OG produced
using the legend in Figure 1.10g, the second column is the best thresholded map (best
F1 score), and the third column only shows the cells that differ from the benchmark map
(FP in blue and FN in red). Algorithms that better estimate the benchmark map, shown
in Figure 6.10a, show fewer cells in the third column.
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(a) Traditional OGM

(b) MCMC with data-driven patch prior; L=9; 350 iterations

(c) MCMC with data-driven patch prior with border; L=9; 200 iterations

Figure 6.15: Three different OGM algorithms are used to estimate the occupancy grid
from Experiment 3 on the Intel Lab dataset. The first column illustrates the OG produced
using the legend in Figure 1.10g, the second column is the best thresholded map (best
F1 score), and the third column only shows the cells that differ from the benchmark map
(FP in blue and FN in red). Algorithms that better estimate the benchmark map, shown
in Figure 6.10a, show fewer cells in the third column.
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(a) Benchmark map with only mapped
cells.

(b) Benchmark map with all cells within 10
cells of a mapped cell.

Figure 6.16: Benchmark map for Intel Lab dataset where only cells near measured cells
are included – white cells are unoccupied and black cells are occupied. The cells depicted
in orange are omitted when comparing maps to the benchmark as they do little to
highlight the effectiveness of the various mapping algorithms. Figure (a) shows only the
mapped cells as part of the benchmark, whereas (b) includes cells that are within 10 cells
of a mapped cell. We use (b) to compute the F1 to include more occupied cells.

compared to a benchmark map. The benchmark map presented in Figure 6.10a is used to

compute the F1 score; however, certain cells are omitted from the computation because

the bounding box chosen can affect the result. Many cells in the benchmark map are far

from any sensor measurements and therefore each of the algorithms considered is likely

to estimate these accurately and therefore inflate the F1 score of each algorithm. If a

benchmark map is dominated by these cells, then the differences between the F1 scores

is diminished. Figure 6.16 shows two possible benchmark maps considered. Figure 6.16a

shows only the measured cells considered (in black or white) and cells with no range

measurements omitted from the benchmark and shown in orange. This map would use

only 59.63% of the cells; however, it would favour mapping algorithms that bias cells as

unoccupied since each range measurement can map several cells as unoccupied and only

one as occupied. Figure 6.16b shows an alternative benchmark map that includes all

cells that are within 10 cells of a cell mapped by a range measurement. This benchmark

includes 73.04% of the cells and seeks to strike a balance between considering all cells in

the bounding box and only those mapped by a range measurement. Therefore, we use
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Figure 6.17: F1 scores for Intel Lab dataset experiments with 50%, 25% and 5% of
measurements used to create the benchmark map. All of the OGM algorithms do well
when the area is densely mapped, but the MCMC algorithms that use a data-driven
patch prior are able to better estimate the map with sparse measurements.

the black and white cells show in Figure 6.16b to compute the F1 score of the various

algorithms for each experiment on the Intel Lab dataset.

Figure 6.17 summarizes the results from the Intel Lab experiments by plotting the F1

score of each OGM algorithm against a decreasing number of range measurements (i.e.,

each of the three experiments). As shown in Table 6.5, each experiment considers fewer

range measurements by decreasing the number of robot poses considered for each exper-

iment. Therefore, the decrease in measurements is correlated to an increased sparsity of

cells that are mapped. The results of Experiment 1 show that each of the algorithms is

able to estimate the benchmark map well with a dense set of measurements. Specifically,

traditional OGM is seen to outperform the others on Experiment 1 since it was used

to develop the benchmark map. However, as the number of measurements decreases

and sparsity increases, the MCMC patch algorithms clearly do better as they incorpo-

rate measurements from neighbouring cells and a data-driven patch prior. Furthermore,

the MCMC algorithm with a border-based patch prior outperforms the other algorithms

when the data is particularly sparse in Experiment 2 and 3. Again, we believe that this
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Table 6.6: Average time to compute one MCMC map sample (K/L patches) for ex-
periments on the Intel Lab dataset, where L = 9 and K = 2.25×106. A border-based
data-driven patch prior is more efficient because the border reduces the number of likely
patch configurations in the prior.

Data-driven prior [s]
Border-based,

Data-driven prior [s]
Experiment 1 6433 1518
Experiment 2 3023 723.6
Experiment 3 306.1 166.8

algorithm would outperform in all instances if a ground truth map was available as we

saw in Section 6.1.4. Figure 6.17 also shows the performance of the p21 algorithm from

Section 2.5 for reference. The p21 algorithm performs similarly to traditional OGM on

this metric as it is the same algorithm with a different ∆ function. The optimized p21

algorithm is seen to perform slightly worse on the F1 metric, but this is likely because

traditional OGM was used to generate the benchmark map.

Table 6.6 highlights the computation time required to draw one map sample using

the MCMC algorithm on each of the Intel Lab experiments. The results in the table were

computed using a laptop computer running Matlab on Ubuntu with 32GB of RAM and a

2.70GHz Intel i7-6820HQ CPU. Furthermore, each map sample drew 2.25×106 cells and

did not omit cells that were not used to compute the F1 score. Each sampling algorithm

could be sped up by only sampling mapped cells or cells in close proximity to mapped

cells as shown in Figure 6.16. Table 6.6 shows that the border-based patch prior is able to

draw each MCMC sample faster than the algorithm that does not depend on the border.

Coupled with the fact that this method also performs the best on the F1 metric, we

recommend this algorithm over others. Traditional OGM, particularly with an optimized

∆ function, is useful for a fast initial estimate and works well as the first sample in an

MCMC algorithm. However, the MCMC algorithm is able to achieve a better result

by drawing additional samples from the full posterior. The MCMC algorithm with a

border-based data-driven patch prior will perform particularly well in sparsely mapped

environments. Even in densely mapped environments, this algorithm generates a map

that is more robust to a cell threshold value. In addition, the MCMC algorithm has the

ability to compute more than the cell marginals. For example, the samples can be used

to estimate the joint probability of several cells.
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6.2.2 MIT Stata Dataset

The MIT Stata Center dataset (Fallon et al., 2013) contains extensive 2D LiDAR data

in an indoor environment where the authors manually calibrated the robot poses, such

that the laser scans match the floor plans of the building. The authors of the MIT data

were able to achieve 2-3cm accuracy for each robot pose estimate. This dataset uses a

laser range finder that is capable of measuring up to 30 meters with ±50mm accuracy

and measures every 0.25◦ for a 260◦ field-of-view. This dataset is significantly more dense

than the Intel Lab dataset and therefore only one experiment from the dataset was used

– specifically the dataset labeled “2012-04-03-07-56-24 part4 floor2.gt.laser”.

Table 6.7 outlines how much of the MIT Stata dataset was used for the three exper-

iments on this dataset. All of the data was used to develop the benchmark map shown

in Figure 6.10b and the resulting map from each experiment was subsequently compared

to this benchmark. All three experiments use only 10% of the range measurements per

robot position, thus leaving 2.5◦ between measurements in the 260◦ field-of-view of the

sensor. Experiment 4 uses all of the robot poses in the dataset, Experiment 5 uses 10%

of the robot poses and Experiment 6 uses only 1% of the robot poses. Each of the exper-

iments was conducted on a map size of 50m × 50m and used a grid resolution of 3.3cm

per cell. Again, this fine grid resolution enables a more detailed map of the environment.

Given the grid resolution and measurements, Table 6.7 also indicates the portion of cells

in the map with at least one range measurement. This ratio highlights the sparsity of

mapped cells with each experiment.

Figure 6.10b illustrates the benchmark map used for experiments on the MIT Stata

dataset. The robot poses in this dataset are quite close together. The sparse measurement

rays used for Experiment 6 are shown in blue. Experiment 5 uses these in addition to

those shown in red. Finally, Experiment 4 uses the rays shown in blue, red and green;

however, the green rays are hardly visible as they are overlaid by the others.

Figure 6.18 shows the result of Experiment 4 on the MIT Stata dataset. Each of the

three algorithms depicted performs well against the benchmark map. Note that the MIT

Stata dataset has better coverage of the map than the Intel Lab dataset and therefore

the benchmark map generated is more complete. Therefore, we note that the MCMC

algorithms represent the benchmark well and do not have the false negatives that were

seen in Figure 6.13.
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Table 6.7: Experiments conducted on a portion of the MIT Stata dataset (Fallon et al.,
2013). Each map measures 50m×50m with a grid resolution of 3.3cm for a total of
K = 2.25× 106 cells. The benchmark has a 0.25◦ increment between measurements,
whereas each experiment has a 2.5◦ increment between measurements.

Number of
Poses

Measurements
per Pose

Total
Measurements, N

Portion of
Cells Mapped

Benchmark 1977 1040 2 056 080 16.21%
Experiment 4 1977 104 205 608 14.58%
Experiment 5 198 104 20 592 11.74%
Experiment 6 20 104 2080 5.23%

Figure 6.19 shows the result of Experiment 5 on the MIT Stata dataset. We ob-

serve that traditional OGM has several false positives as expected because cells are more

sparsely mapped in this experiment and traditional OGM methods are not able to es-

timate unmapped cells beyond the cell prior. In contrast, the MCMC algorithm with a

patch size of L= 9 is able to correctly estimate many of the cells between range mea-

surements as unoccupied. Therefore, we see fewer false positives in Figure 6.19b than

traditional OGM in Figure 6.19a. Figure 6.19c illustrates the results of a third algo-

rithm, the MCMC algorithm with L = 9 and a border-based, data-driven prior. This

algorithm shows very similar results to Experiment 4. Therefore, we find that fewer

measurements (i.e., increased sparsity) have little effect on this algorithm’s ability to

estimate the benchmark map.

Figure 6.20 shows the results from Experiment 6, the final experiment on the MIT

Stata dataset. The sparsity in this experiment is evident from the map generated by

traditional OGM in Figure 6.20a. The resulting thresholded map highlights the occupied

cells between sequential range measurements. This map would be virtually unusable for

most path planning and localization algorithms. The sparsity of the measurement data

also causes some issues with the MCMC algorithm with a data-driven prior as seen in

Figure 6.20b. Specifically, the MCMC algorithm is unable to estimate the benchmark

solution in some areas due to the sparsity of the measurements. However, Figure 6.20c

highlights that by conditioning the patch prior on bordering cells, the MCMC algorithm

is better able to estimate the benchmark map. The result is a map that clearly indicates

the hallways and most of the rooms. The map generated by this algorithm is the best

estimate of the benchmark map and would be usable for path planning and localization

algorithms. Moreover, the map may also be useful for semantic mapping algorithms that

seek to label the hallways and rooms.
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(a) Traditional OGM

(b) MCMC with data-driven patch prior; L=9; 100 iterations

(c) MCMC with data-driven patch prior with border; L=9; 300 iterations

Figure 6.18: Three different OGM algorithms are used to estimate the occupancy grid
from Experiment 4 on the MIT Stata dataset. The first column illustrates the OG
produced using the legend in Figure 1.10g, the second column is the best thresholded map
(best F1 score), and the third column only shows the cells that differ from the benchmark
map (FP in blue and FN in red). Algorithms that better estimate the benchmark map,
shown in Figure 6.10b, show fewer cells in the third column.
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(a) Traditional OGM

(b) MCMC with data-driven patch prior; L=9; 100 iterations

(c) MCMC with data-driven patch prior with border; L=9; 180 iterations

Figure 6.19: Three different OGM algorithms are used to estimate the occupancy grid
from Experiment 5 on the MIT Stata dataset. The first column illustrates the OG
produced using the legend in Figure 1.10g, the second column is the best thresholded map
(best F1 score), and the third column only shows the cells that differ from the benchmark
map (FP in blue and FN in red). Algorithms that better estimate the benchmark map,
shown in Figure 6.10b, show fewer cells in the third column.
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(a) Traditional OGM

(b) MCMC with data-driven patch prior; L=9; 100 iterations

(c) MCMC with data-driven patch prior with border; L=9; 1220 iterations

Figure 6.20: Three different OGM algorithms are used to estimate the occupancy grid
from Experiment 6 on the MIT Stata dataset. The first column illustrates the OG
produced using the legend in Figure 1.10g, the second column is the best thresholded map
(best F1 score), and the third column only shows the cells that differ from the benchmark
map (FP in blue and FN in red). Algorithms that better estimate the benchmark map,
shown in Figure 6.10b, show fewer cells in the third column.
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(a) Benchmark map with only mapped
cells.

(b) Benchmark map with all cells within 10
cells of a mapped cell.

Figure 6.21: Benchmark map for MIT Stata Center dataset where only cells near mea-
sured cells are included – white cells are unoccupied and black cells are occupied. The
cells depicted in orange are omitted when comparing maps to the benchmark as they do
little to highlight the effectiveness of the various mapping algorithms. Figure (a) shows
only the mapped cells as part of the benchmark, whereas (b) includes cells that are within
10 cells of a mapped cell. We use (b) to compute the F1 to include more occupied cells.

Similar to Section 6.2.1, we evaluate the three experiments by computing the F1 score,

presented in Equation (6.1), that combines the precision and recall of the experiments as

compared to a benchmark map. The benchmark map presented in Figure 6.10b is used to

compute the F1 score; however, certain cells are omitted from the computation because

the bounding box chosen can affect the result. Figure 6.21 shows two possible benchmark

maps, where Figure 6.21a shows only the measured cells in black or white and cells with

no range measurements shown in orange. The measured cells represent only 16.21% of the

cells in the map, so there is a greater need to omit cells in the F1 computation than in the

Intel Lab experiments. Figure 6.21b shows an alternative benchmark map that includes

all cells that are within 10 cells of a cell mapped by a range measurement and includes

24.09% of the cells. To evaluate the F1 score on the MIT Stata Center experiments, we

use the occupied (black) and unoccupied (white) cells show in Figure 6.21b, and omit

those shown in orange.

Figure 6.22 summarizes the results from the MIT Stata experiments by plotting the

F1 score of each OGM algorithm against the decreasing number of measurements used in
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Figure 6.22: F1 scores for MIT Stata dataset experiments with 10%, 1% and 0.1% of
measurements used to create the benchmark map. All of the OGM algorithms do well
when the area is densely mapped, but the MCMC algorithms that use a data-driven
patch prior are able to better estimate the map with sparse measurements.

each experiment. Considering fewer robot poses and therefore fewer measurements results

in more sparsely mapped cells. Each of the algorithms is able to estimate the map well

with a dense set of measurements as seen in Experiment 4 with 10% of the measurements.

Traditional OGM is seen to perform best on this experiment because this algorithm was

used to create the benchmark map. However, as the number of measurements decreases

and the cells are more sparsely measured, the MCMC patch algorithms clearly do better

as they incorporate measurements from neighbouring cells and a data-driven patch prior.

Specifically, Experiment 5 uses only 1% of the data used to generate the benchmark map

and the F1 score of the MCMC algorithm with a border-based data-driven prior is largely

unaffected in contrast to the other algorithms that perform worse with the sparse data

in Experiment 5. This algorithm continues to outperform the others on the F1 metric as

the data is reduced to 0.1% of range measurements in Experiment 6 (i.e., only 20 poses).

Figure 6.22 also shows the result of using the optimized ∆ function, p21, described in

Section 2.5. As seen with the Intel Lab dataset, this algorithm performs similarly to

traditional OGM on the F1 metric.
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Table 6.8: Average time to compute one MCMC map sample (K/L patches) for exper-
iments on the MIT Stata dataset, where L = 9 and K = 2.25×106. A border-based
data-driven patch prior is more efficient because the border reduces the number of likely
patch configurations in the prior.

Data-driven prior [s]
Border-based,

Data-driven prior [s]
Experiment 4 4158 1734
Experiment 5 557.2 201.2
Experiment 6 44.71 33.14

Furthermore, each map sample drew 2.25×106 cells and did not omit cells that were

not used to compute the F1 score. Each sampling algorithm could be sped up by only

sampling mapped cells or cells in close proximity to mapped cells as shown in Figure 6.16.

Table 6.6 shows that the border-based patch

Table 6.8 summarizes the computation time for the MCMC algorithms. These results

were computed using a laptop computer running Matlab on Ubuntu with 32GB of RAM

and a 2.70GHz Intel i7-6820HQ CPU. Similar to Table 6.6, these results are from sampling

2.25×106 cells and did not omit cells that were omitted in computing the F1 score. Each

sampling algorithm could be sped up by only sampling mapped cells or cells in close

proximity to mapped cells as shown in Figure 6.21. Table 6.8 highlights that the border-

based prior yields a significant computational savings and Figure 6.22 shows that it also

yields superior performance. We therefore recommend this algorithm over other OGM

algorithms, particularly in sparsely mapped areas. The MCMC methods are considered

anytime as they continue to improve their estimate with additional computation to draw

more samples from the posterior. Furthermore, the MCMC algorithms enable OGM to

estimate more than marginal cell probabilities, such as the joint probability of several

cells.

6.3 Chapter Summary

In this chapter we showed the benefit of several novel OGM techniques developed in this

thesis on both simulated and hardware data. Using 100 simulated datasets we performed

an in-depth analysis of many of these novel algorithms. Section 6.1.1 showed that the

novel offline patch map algorithm is able to be computed for realistic maps, where the

full Bayesian solution would be computationally intractable. Section 6.1.2 then used
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the offline patch map as a basis to compare the optimized update terms developed in

Section 2.5. Therefore, we showed that OGM with the optimized update terms can be

computed online and is better able to estimate the offline patch map, as compared to

traditional OGM.

Section 6.1.3 showed that the MCMC Gibbs sampling algorithm is able to draw

samples from the full posterior without making a cell independence assumption between

cells. Therefore, this novel anytime algorithm is able to estimate cell marginals as well as

other statistics about the full posterior. Given more computation time, the algorithm will

continue to draw more samples from the posterior and improve its estimate. Section 6.1.4

highlighted that the MCMC algorithm is able to use the novel data-driven patch prior

and sample patches from the posterior. This algorithm is shown to perform so well on

the simulated data that the results are nearly indistinguishable from the ground truth

map.

Section 6.2 tests the MCMC Gibbs sampling algorithm with a data-driven patch

prior on real hardware data. Section 6.2.1 shows the results on the Intel Lab dataset

and Section 6.2.2 on the MIT Stata Center dataset. In both cases, the hardware data is

subsampled to highlight that the MCMC algorithm outperforms others when the mea-

surement data is sparse. In particular, we show the benefit of a border-based data-driven

patch prior for the MCMC algorithm and demonstrate that it is able to provide the

best estimate of the map for sparse measurements. In addition, this algorithm is faster

to compute than other variants of the MCMC OGM algorithm. As robots continue to

move faster and sensors measure longer distances, the measurement data will become

increasingly sparse and thus this algorithm will continue to perform well. Furthermore,

as computers increase in speed or as offboard computing is more readily available, the

MCMC algorithm will benefit by drawing more samples and producing a more accurate

map estimate. The hardware results show that the novel algorithms developed in this

thesis are better able to estimate the map and that this result is more pronounced on

sparse datasets.
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Conclusion

This thesis has provided further insight into occupancy grid mapping (OGM), which was

first presented in 1985 and has been a dominant mapping technique used in robotics since

that time. OGM is particularly useful as it estimates the unoccupied space as well as

the occupied space and is therefore able to distinguish between unknown and unoccupied

areas. We used OGM in our viewpoint-planning work, which we published in Merali

et al. (2012), and that research motivated the in-depth analysis of cell correlations in

OGM that we present in this thesis.

In Chapter 2, we presented the OGM framework and introduced the notion of a

full Bayesian solution for OGM, which all other OGM techniques seek to approximate

because it is computationally intractable for realistic map sizes. We first presented this

notion in Merali and Barfoot (2012), but extend the idea in Section 2.3.1 to efficiently

compute the full Bayesian solution for any 1D map where the robot’s pose in constrained.

Section 2.5 then describes a method of variational inference to optimize traditional OGM

using the full Bayesian solution in 1D; this work was published in Merali and Barfoot

(2014). The result is an algorithm that runs online for any size map as fast as traditional

OGM, but better captures the residual uncertainty in the map. Chapter 2 concludes by

highlighting the mutual information between cells in the full Bayesian solution that is lost

due to the cell independence assumption in traditional OGM. However, we show that the

mutual information is highest between neighbouring cells and quickly approaches zero as

the cells are farther apart.

Chapter 3 exploits the learning that cell correlations tend to be local by introducing

the idea of estimating the occupancy probability of a patch of correlated cells as opposed

to each cell independently. We first introduced the patch map idea in Merali and Barfoot

136
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(2012), but specifically the offline patch map algorithm presented in Section 3.2. In

Section 3.1, we presented a novel algorithm, known as the online patch map algorithm,

that extends traditional OGM to estimating patches of correlated cells as opposed to

each cell independently. Both patch map algorithms are able to better capture the

residual uncertainty in the map, compared to traditional OGM, and especially between

cells in the same patch. However, these patch map algorithms suffer from asymmetric

cell correlations at patch boundaries.

The issue of patch boundaries was resolved in Chapter 4 by introducing a Markov

Chain Monte Carlo (MCMC) Gibbs Sampling algorithm that samples from the full poste-

rior. We first introduced and published this novel MCMC OGM algorithm in Merali and

Barfoot (2013) and we generalized it in Section 4.2 to sample patches of cells as opposed

to individual cells. This sampling algorithm does not suffer from patch boundaries as

patch boundaries are not predefined and any patch of cells can be sampled. Furthermore,

the MCMC algorithm does not require a reference map as the offline patch map algo-

rithm does and the MCMC algorithm continues to improve its estimate as more samples

are drawn from the posterior. We also showed that the MCMC samples can be used

to compute statistics other than cell or patch occupancy probability. For example, the

MCMC samples can be used to compute the first-occupied-cell along a measurement ray

without making an independence assumption between cells or patches of cells along the

measurement ray.

Chapter 5 explores the notion of introducing cell correlation in the prior. Section 5.2.1

explores correlating cells to their neighbouring cells, and Section 5.2.2 explores using a

data-driven patch prior. The patch prior (as opposed to a cell prior) is able to exploit

structure in the data, such as common patch configurations. Subsequently, Section 5.2.3

combines the two ideas by coupling a data-driven patch prior with a dependence on

cells that border the patch. Exploiting this dependence results in further computational

efficiency and yields maps that more closely represent the true map from fewer measure-

ments. The work in Chapter 5 is being prepared for publication.

Finally, the algorithms presented in this thesis are analyzed on simulated and hard-

ware datasets in Chapter 6. Specifically, 100 simulated datasets across 10 different maps

are analyzed to highlight the benefits of the various algorithms on larger 2D maps. The

results reinforce the 1D and simple 2D results presented throughout this thesis. The

algorithms are then tested on two hardware datasets and the results are shown on in-

creasingly sparse data to highlight the patch prior’s ability to accurately estimate the
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occupancy of cells with few or even no measurements. Chapter 6 also highlights that the

MCMC algorithm with a border-based prior is more computationally efficient than other

MCMC OGM algorithms.

In conclusion, the optimized ∆ function developed in Section 2.5 can better capture

the residual uncertainty in the map at no additional computational cost, compared to

traditional OGM. The concept of a patch of cells is useful because most cell correlations

are local – these correlations may come from the prior or the measurements. The MCMC

OGM algorithm is a useful method to draw samples from the full posterior and is there-

fore able to correlate all cells. Furthermore, this method is able to compute statistics

beyond the marginal cell occupancy that is commonly used in OGM. The MCMC algo-

rithm benefits further by using a border-based data-driven patch prior that is able to

estimate the underlying map with very sparse measurements of the environment. This

anytime algorithm can start with a map developed using traditional OGM, then con-

tinue to improve the map estimate as it draws more samples. Chapter 6 showed that

this algorithm is able to produce a map that is nearly indistinguishable from the ground

truth map with enough samples.

7.1 Review of Novel Contributions

In summary, this thesis makes the following novel contributions:

• Section 2.3.1 presents the pose-constrained full Bayesian solution for OGM that

can be used to evaluate other OGM algorithms in 1D.

• Section 2.5 optimizes the inverse sensor model for traditional OGM, published in

Merali and Barfoot (2014).

• Section 3.1 generalizes traditional OGM to an online patch map algorithm that

captures mutual information between cells in the patch.

• Section 3.2 presents an offline patch map algorithm that better captures the residual

uncertainty in the map and can be used as a benchmark for other OGM algorithms

in 2D; published in Merali and Barfoot (2012).

• Chapter 4 introduces a MCMC Gibbs sampling method to provide an anytime

algorithm for OGM that captures cell correlations; published in Merali and Barfoot

(2013).
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• Chapter 5 applies a data-driven patch prior to OGM that takes advantage of the

sparsity in the patch prior (being prepared for publication).

• Section 5.2.3 extends the data-driven patch prior to include neighbouring cells in

the prior, resulting in more sparsity and higher-fidelity maps (being prepared for

publication).

Finally, although not discussed in detail in this thesis, the study into the benefits of

cell correlations in OGM was motivated by our earlier research on next-best viewpoint-

planning using occupancy grids. This early research used traditional OGM techniques

to estimate the occupancy probability of each cell in the map. We then used the OG to

weigh potential viewpoints based on the expected information gain in the map from each

candidate viewpoint. Some of the results of this research were published in Merali et al.

(2012).

7.2 Future Work

This thesis has highlighted the benefits of keeping cell correlations in OGM. However,

there remain several open problems and extensions of this work. For example, Section 2.6

briefly discussed different sensor models, but this thesis focused on a narrow-beam range

sensor with Gaussian noise. The research presented in this thesis can be extended by

exploring various sensors and sensor models, including those with a wider sensing frustum.

The pattern-matching sensor model may be useful in this regard. The remainder of our

recommendations fall into four categories: improving the data-driven prior, applying

the data-driven prior to other algorithms, improving the MCMC algorithm, and new

applications of this research.

The data-driven prior presented in Chapter 5 can be improved in a number of ways.

For instance, the prior samples drawn were 5×5 cells, which allows the MCMC algorithm

to sample 3×3 patches if the full 16 cell border is used. Larger patch sizes may improve the

result at the cost of more computation. Furthermore, considering fewer or more border

cells around the patch may result in faster computation or more accuracy, respectively.

We suspect that fewer than 16 border cells (e.g., four corner cells) for a 3×3 patch will

yield a similar result with less storage cost. This thesis only considered square patches

and there may be merit in exploring other shapes and sizes. For example, using a patch

that is the same shape and size of a robot, target, or sensing frustum may be useful. The
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data-driven prior should also be extended to 3D, where we suspect further structure in

the 3D environment will yield additional computational savings. For example, occupied

cells are likely to cluster near the lower portion of 3D patch priors due to gravity and

the patch symmetry observed in 2D may not exist in 3D.

In addition to changing the shape and size of the patch prior, the effect of cell resolu-

tion requires further investigation for both the prior and map. Furthermore, the samples

themselves can be drawn from more diverse prior maps to include a diverse set of patch

priors. Alternatively, they can be drawn from more specific prior maps that better rep-

resent the application. For example, a warehouse robot may be equipped with map and

patch priors from other warehouse environments as opposed to outdoor environments

and vice versa. Section 5.2.1 explored higher-order MRFs for OGM, but assumed con-

stant edge weights between neighbouring cells. However, having the measurements affect

the edge weights may result in more accurate maps. Specifically, range sensors are able

to strengthen the connection between many cells that are observed as unoccupied and

decrease the correlation between the cell(s) that reflects the measurement and the cells

before it.

The data-driven patch prior presented in Chapter 5 can be applied to OGM algo-

rithms other than the MCMC algorithm. This prior can be applied to the MAP solution

presented in Section 2.2 to better estimate the most likely OG, given the data. The

data-driven prior would also result in cells past the wall to be estimated as occupied,

which was assumed when using the MAP solution for the offline patch map algorithm in

Section 3.2. Furthermore, this prior can be applied directly to the patch map algorithms

presented in Chapter 3. The online patch map algorithm may be able to compute more

accurate OG maps than traditional OGM at a similar computation cost. Further, apply-

ing this prior to the offline patch map may also yield a more accurate result and improve

the computation speed as we observed in Section 5.2 that the majority of patch configu-

rations are not observed in the data-driven prior. In addition, the patch map algorithms

could be extended to shapes other than squares. For example, patches could be linear

arrays of cells if cell correlations are seen to be directional in some environments.

In developing the MCMC algorithms for OGM, we observed several key factors that

could improve the algorithm. Focusing the MCMC samples to be drawn from areas

with the most uncertainty (typically near walls), is one way to improve the efficiency

of the algorithm. In fact, Dhiman (2019) made a similar observation and suggests that

sampling cells which reflect the measurement four times more than other cells leads to
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faster convergence. This implies sampling unknown and unoccupied areas less as they

generally have less uncertainty. Therefore, the MCMC OGM algorithm may also benefit

from being extended to a quadtree or octree map representation where cells near obstacles

are further discretized and are therefore sampled more per unit volume. In addition, the

MCMC algorithm can avoid drawing samples from areas of the map that are reasonably

certain. This certainty may be influenced by the number of MCMC samples drawn or

the number of measurements. Similar to the observation by Paskin and Thrun (2005),

the algorithm may benefit from reducing samples drawn from areas of the map that are

more certain. Furthermore, if areas of the map are being sampled disproportionately, it

may make sense to only store new samples on each MCMC iteration to conserve storage

space.

The MCMC mapping algorithm may be extended to be applied online by focusing

the map updates to areas with new measurements. In addition, cooperative robots could

be used to each compute a portion of the map using MCMC, each drawing samples from

a different part of the map, then sharing their samples to obtain a global perspective of

the map. MCMC algorithms parallelize well and thus the algorithms presented in this

thesis would benefit from being implemented on a GPU for greater speed.

This thesis has focused on static environments, and the algorithms could be extended

to non-static environments. For example, the MCMC algorithms could “forget” mea-

surements that were taken in the distant past. Furthermore, the patch prior could be

used to distinguish between the static environment (e.g., buildings, furniture, etc) and

dynamic obstacles (e.g, humans, vehicles, etc). In addition, the maps resulting from

this work can be used for semantic grid maps, which is an active field of research and

commonly start with an OG map (Liu and von Wichert, 2014; Qi et al., 2020). Liu

and von Wichert (2014) highlight that their semantic mapping algorithm has difficulty

classifying under-mapped rooms as rooms. The results in Section 6.2 highlight that the

algorithms presented in this thesis are especially useful for sparsely mapped environ-

ments. As mobile robots continue to move faster, grid resolution continues to increase,

and range sensors map farther, mapping algorithms will increasingly deal with sparsely

mapped environments. Finally, as the computational capabilities of robots continue to

improve, the anytime algorithms presented in this thesis will provide better estimates of

the otherwise intractable full Bayesian solution for occupancy grid mapping.
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