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Introduction: LiDAR (LIght Detection And Rang-

ing) has been used extensively during the past few 
years for on-orbit space shuttle inspection [1] and, 
more recently, for autonomous satellite rendezvous 
[2]. The use of LiDAR as a vision system for long-
range rover navigation has also received considerable 
attention [3, 4] as it provides the capability to operate 
at night and within permanently shadowed regions [5]. 
Space-based LiDAR has many terrestrial applications 
(e.g., [6, 7]). LiDAR has been used extensively for 
atmospheric studies on Earth [8] and, now, with the 
Phoenix mission, for Mars [9]. This research is driven 
by the question: can LiDAR be used as a scientific tool 
for the rover-based geological exploration of planetary 
surfaces? Very few studies have addressed this ques-
tion [10]. A complementary vision system in develop-
ment for planetary exploration – suitable for both rover 
and astronaut mounted scenarios – is the Mobile Scene 
Modeler (mSM) developed by MDA, based on a stereo 
camera system. mSM autonomously generates rapid 
3D models from sequences of stereo images obtained 
from a mobile stereo camera pair [11]. 

 

 
 

Figure 1. LiDAR scan and panoramic image (inset) of a site 
of impact-associated hydrothermal mineralization. 

 

Hardware:  We used an ILRIS36D-ER (Intelligent 
Laser Ranging and Imaging System on pan-tilt unit) 
LiDAR developed by Optech Inc. [12] with a range of 
up to 1 km. Two stereo camera systems were used – 
one in a rover-mounted configuration and another 
simulating astronaut handheld or robotic arm deploy-
ment. The former was a Bumblebee 2, manufactured 
by Canadian company Point Grey Research (PGR).  
This was an integrated fixed-baseline stereo camera 
with a motorized base to allow for panning and tilting. 

Field tests:  We conducted a series of field tests at 
the Haughton impact structure, Canadian High Arctic, 
in July 2008. Haughton is a well-preserved, well- 

exposed 23 km diameter, 39 Myr old meteorite impact 
structure [13]. This site represents an ideal space ana-
logue environment with an unusually wide variety of 
geological features and microbiological attributes [14]. 

Results and Discussion:  Several sites of geologi-
cal interest within Haughton impact structure were 
imaged. This work shows that a key strength of Li-
DAR and mSM is in the 3-D record of a site(s), pro-
viding the ability for a geologist to virtually revisit 
sites, perform measurements, and view from multiple 
directions and angles; the latter is something that is not 
always possible in the field. A particular strength of 
LiDAR is the independence from ambient lighting 
conditions. Many of the outcrops surveyed during the 
field tests had shadowed zones; with conventional 
camera systems little or no useful data could be ob-
tained without supplementary active illumination, 
which was not the case with the LiDAR, and implicitly 
active system. This is particularly relevant for the 
Moon because many high-priority scientific targets lie 
within the permanently shadowed zones of lunar im-
pact craters [15]. Further applications will be dis-
cussed. Future work will address the specific scientific 
information that can be gleaned by LiDAR and mSM 
in a variety of lunar and Martian analogue environ-
ments. 
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