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As mobile robots leave structured indoor environments to operate in challenging out-

door environments, their motion controllers require advanced techniques to mitigate

the effects of unmodelled surface materials (e.g., snow, sand, grass), terrain topogra-

phy (e.g., side-slopes, inclines), and complex robot dynamics. This thesis investigates

learning-based control within the context of path-tracking autonomous mobile robots.

Learning-based algorithms alleviate the need for significant engineering work in iden-

tifying and modelling all disturbances that a controller may be required to mitigate.

Furthermore, they are capable of predicting and acting in anticipation of repeatable ef-

fects and disturbances not modelled prior to deployment. The learning-based algorithms

reduce tracking errors, increase operational speed, and increase localization reliability.

Specifically, the thesis presents four approaches: 1) Iterative Learning Control (ILC), 2)

Learning-based Nonlinear Model Predictive Control (LB-NMPC), 3) Robust Min-Max

LB-NMPC (MM-LB-NMPC), and 4) Robust Constrained LB-NMPC (RC-LB-NMPC).

ILC generates an acausal feedforward signal that reduces the path-tracking errors using

information from any previous trial. While the approach is computationally appealing,

ILC typically assumes that the robot is initialized with identical initial conditions for

each trial and tracking the same desired path (i.e., generalization is non-trivial). On the

other hand, LB-NMPC is a technique that uses a learned process model directly, en-

abling interpolation and extrapolation from experiences. In this case, the current control

action is obtained by solving a finite-horizon optimal control problem using the current
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state of the plant as the initial state at each time-step. Finally, this thesis investigates

two recent results in Robust NMPC in order to guarantee controller stability through-

out the learning process in spite of model uncertainty. For MM-LB-NMPC, the control

problem is altered to optimize for plausible worst-case scenarios. For RC-LB-NMPC,

tightened constraints are applied to nominal predictions such that all plausible predicted

sequences satisfy the given constraints. The resulting RC-LB-NMPC algorithm is a ro-

bust, learning controller providing safe, conservative control during initial trials when

model uncertainty is high and converging to high-performance, optimal control during

later trials when model uncertainty is reduced with experience.
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Chapter 1

Introduction

Autonomous mobile robots can be incredibly useful in many fields, especially those deal-

ing with dull, dirty, or dangerous tasks in challenging off-road terrain. For example, a few

of the fields that could benefit most by autonomy include transportation (Thrun et al.,

2006; Urmson et al., 2008), planetary exploration (Maimone et al., 2007; Johnson et al.,

2008), forestry (Hellström et al., 2006; Rossmann et al., 2009), agriculture (Foglia and

Reina, 2006), and mining (Marshall et al., 2008). Figure 1.1 shows several large machines

that have been used in experimental work developing algorithms for autonomous mobile

robots.

In such applications, mobile robots can provide several benefits. For example, they

can provide increased productivity through consistent operation over long-term tasks. In

addition to being unaffected by fatigue, they can be applied to long-term tasks facing

inclemental weather provided they are equipped with appropriate sensors. For exam-

ple, radar is capable of sensing through fog and lidar sensors are capable of sensing in

darkness. Furthermore, they can provide improved safety and reduced operating costs

for hazardous operations by removing the need for on-board human operators and the

resulting life-support and protective equipment (i.e., mining, planetary exploration, and

forestry). Without the need for life-support systems, autonomous mobile robots can also

be applied to new applications since they can be designed to withstand conditions that

would be harmful to humans such as extreme temperatures, pressures, and radiation lev-

els. In other applications, they can improve safety by reducing collisions using high-rate,

accurate omnidirectional sensing (i.e., transportation).

In many applications, mobile robot operation in off-road, outdoor environments can

be characterized by the problem of autonomous traversal (i.e., the problem of getting from

1



2 Chapter 1. Introduction

Figure 1.1: Example machines that have been used as experimental autonomous mobile
robots. (Top left) The Valmet 830 forest machine is used to shuttle timber from a felling
area to a road (Hellström et al., 2006). (Top right) Stanley is the autonomous car created
by Stanford University that won the 2005 DARPA Grand Challenge (Thrun et al., 2006).
(Bottom) The Atlas Copco LH14 load-haul-dump machine is used to shuttle excavated,
fragmented rock within underground mines (Marshall et al., 2008).

point A to point B) with the goal of transporting payloads. The problem is typically

described by three components: Guidance, Navigation, and Control. First, a guidance

algorithm must plan a safe and efficient path through the environment avoiding obstacles

such as trees, boulders, or dynamic objects. In addition to planning, this component also

relies on accurate terrain assessment and obstacle detection, both of which struggle in

unstructured, outdoor environments. In many mobile robot applications, it is adequate

if not necessary, to explore and navigate the environment by creating and maintaining a

network of paths analogous to automotive roads. The use and reuse of paths reduces the

need for repeated application of exploratory and terrain assessing software. Second, the

mobile robot must localize relative to the desired path. Although the Global Positioning

System (GPS) has become ubiquitous in everyday use, GPS can be unreliable due to

signal blockage. Specifically, it is typically unreliable in exactly the environments where

mobile robots need to localize: urban canyons, extraterrestrial bodies, forests, and un-

derground. As a result, significant research has been focused on leveraging cameras and
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Control
Algorithm

Mobile Robot

Navigation
Algorithm
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Algorithm

System
Output

System
Input

Desired
State

Estimated State

Figure 1.2: Block diagram showing the general organization of guidance, navigation,
and control algorithms for autonomous mobile robots. In this thesis, experiences based
on desired state, estimated state, and system input are gathered over time and used to
update the controller at the end of each path traversal or trial through learning (dashed
line). At any given time, the improved controller uses real-time desired and estimated
states to compute the system input.

lidar units for localization. Such approaches typically generate relative state estimates

based on local landmarks and scenery. Finally, given a desired path and localization

relative to the path, the mobile robot must compute commands to be sent to the vehicle

actuators that keep the machine on the desired path. This thesis explores the problem

of computing high-performance control inputs through learning (Figure 1.2).

1.1 Mobile Robot Control

Many mobile robots, including those shown in Figure 1.1, achieve locomotion using wheels

and can be modelled as either unicycles or bicycles (Oriolo, 2014), both examples of non-

holonomic systems. Such systems require fundamentally nonlinear approaches for path-

tracking control (Brockett, 1983; Kolmanovsky and McClamroch, 1995). As a result,

initial work on path-tracking control for wheeled mobile robots focused on finding solu-

tions considering operation in simple, small-scale, indoor environments. Two common

approaches include Feedback Linearization (Samson and Ait-Abderrahim, 1991; De Luca

and Di Benedetto, 1993) and Lyapunov techniques (Kanayama et al., 1990; Aicardi et al.,

1995). Feedback Linearization proposes a time-varying transformation of the nonlinear

system into an equivalent linear system. The feedback-linearized system is then stabilized

with a suitable control input. On the other hand, Lyapunov techniques propose a non-

linear, scalar, positive-definite function of the process states and solve for time-varying

control laws such that the time derivative of the Lyapunov function is negative-definite.



4 Chapter 1. Introduction

Figure 1.3: Practical mobile-robot controllers face modelling challenges due to surface
materials, terrain topography, and complex robot dynamics. In this work, controllers are
tested on robots ranging from the skid-steered, 50 kg Husky and 900 kg Grizzly robots
(left and center), to the Ackermann-steered, 600 kg MATS vehicle (right) in off-road
terrain using vision-based localization.

Between these two elegant approaches, Oriolo et al. (2002) later declared the problem

of controlling nonholonomic systems virtually solved from a theoretical point of view.

However, the stability and performance of these approaches depend heavily upon the

accuracy of the unicycle and bicycle models.

Nonholonomic constraints are not the only modelling challenge facing practical mobile

robot control. Ultimately, operation in off-road terrain requires the controller to mitigate

the effects of surface materials (e.g., snow, sand, grass), terrain topography (e.g., side-

slopes, inclines), and complex robot dynamics (Figure 1.3). As a result, research shifted

towards compensating for modelling errors. Initially, backstepping control and adaptive

control were widely investigated to mitigate uncertain dynamics (Fierro and Lewis, 1998;

Fukao et al., 2000) and uncertain kinematics such as caused by wheel slip (Dong and Kuh-

nert, 2005; Cariou et al., 2009; Guillet et al., 2013). However, these examples are founded

on Feedback Linearization or Lyapunov techniques with parameterized process models,

and are thus limited by the requirements to find either an appropriate nonlinear transfor-

mation or an applicable scalar Lyapunov function. As opposed to such approaches that

restrict model fidelity, Model Predictive Control (MPC) is an optimal control framework

that uses a process model directly (Rawlings and Mayne, 2009; Mayne, 2014). MPC in

general has received a significant amount of attention in recent years due to its ability
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to handle complex linear and nonlinear systems with state and input constraints. For

example, Kühne et al. (2005) and Klančar and Škrjanc (2007) present MPC-based mo-

bile robot controllers based on kinematic models and show results for robots travelling

on smooth, flat surfaces. Peters and Iagnemma (2008) demonstrate MPC for a mobile

robot where the process model includes effects such as tire deformation, wheel-terrain

interaction, and suspension compliance. Notably, MPC has enabled algorithms to use

richer models in computing control inputs.

In practice, finding representative a priori models for off-road effects is challenging

since (i) the terrain is often not known ahead of time, (ii) robot-terrain interaction models

often do not exist, and (iii) even if such models did exist, finding model parameters

is cumbersome. In the last decade, there has been significant work on learning-based

controllers for robotics in general (Schaal and Atkeson, 2010; Nguyen-Tuong and Peters,

2011). Learning-based algorithms collect data over sequential trials and use it to improve

operation. For mobile robots, improvements may take the form of reduced path-tracking

errors, increased operational speed, or increased localization reliability. As stated by

Arimoto et al. (1984), credited with the development of a technique called Iterative

Learning Control for manipulator robots, “It is human to make mistakes, but it is also

human to learn much from experience.”

Learning-based controllers produce the aforementioned improvements for mobile, path-

repeating robots in several ways. First, learning-based algorithms address complex effects

using data collected in situ. This alleviates the need for significant engineering work in

identifying and modelling all disturbances that a controller may be required to mitigate

prior to operation. Second, since learning-based algorithms collect data in operation,

they are capable of compensating for gradually changing effects, such as robot wear,

wheel ruts, or terrain changes due to weather or seasons. For example, wheel ruts cannot

be reliably predicted prior to operation since they are the result of terrain properties and

actual robot behavior. However, they can be readily characterized by data acquired dur-

ing operation. Finally, learning-based algorithms are capable of predicting and acting in

anticipation of repeatable disturbances along a desired path using disturbance observa-

tions that were collected and stored in memory during previous trials. This distinguishes

learning-based algorithms from adaptive algorithms that only react to tracking errors by

briefly using disturbance observations to adjust controller parameters before discarding

the information.
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1.2 Thesis Overview

Motivated by modelling challenges stemming from outdoor environments, this thesis fo-

cuses on learning-based control enabling high-performance, off-road, mobile robot opera-

tion. The work progressively investigates algorithms addressing increasingly demanding

capabilities largely inspired by insights gained through experimental work:

Computationally Tractable: Practical learning-based controllers for mobile robots

must be capable of producing real-time inputs if they are to improve safety and

productivity with respect to human operators. In this work, we consider 10 Hz to

be a minimum update frequency for real-time operation of mobile robots. Further-

more, we aim for algorithms that can be implemented by a single CPU core, leaving

other cores to be used by the necessary guidance and navigation algorithms.

Large-scale Operation: In addition to real-time operation, practical learning-

based controllers must be capable of operating on multi-km networks of paths.

This suggests that any proposed learning-based controller should be capable of

providing real-time control independent of the size of the dataset. In order to

handle large datasets in real-time, we build upon state-of-the-art machine learning

techniques and optimization techniques.

Efficient Training: Training is time consuming and expensive in practice! Prior

to learning, a robot is likely travelling at slower speeds resulting in extended battery

use and exposure to path-tracking errors. In an effort to make the most of training

time, practical learning-based controllers should enable safe path completion during

the first trial and rapid improvements over following trials. Furthermore, we show

that anytime learning and the ability to generalize from collected data further

maximize the value extracted from previous experience.

Robust Control: In general, our proposed algorithms begin with a nominal con-

troller based on a priori knowledge of the system process model and improve it

with machine learning techniques. Controller robustness, i.e. the capability of a

controller to maintain stability of a system in spite of model uncertainty, is an open

question for learning controllers in general. However, practical learning-based con-

trollers need to offer controller robustness as robots tackle increasingly challenging

and unknown environments at higher speeds.
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Chapter 3
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Chapter 2
Vision-based Localization

(Overview)

Figure 1.4: A diagram depicting the logical flow of this thesis with the associated publi-
cations (* full-paper refereed conference papers, ˆ journal papers).

The structure of this thesis is shown in Figure 1.4 where we identify the logical flow

of the work. We begin with Chapter 2 where we present an overview of the vision-based

path localizer that provides state estimates for all learning-based algorithms presented

in this thesis.

In Chapter 3, we introduce Iterative Learning Control (ILC). ILC was initially pro-

posed by Arimoto et al. (1984) to improve the operation of fixed-base robots. ILC

constructs an acausal feedforward signal over sequential trials using error information

from any previous trial. The contribution of this chapter is a learning-based algorithm

for mobile robots composed of ILC in parallel with a feedback controller. This enables

path completion during the first trial, and improved performance thereafter. Moreover,

we propose a novel formulation enabling the robot to track the desired path at a safe

speed during the first trial and increased speed during later trials. Finally, we provide

the first experimental results for ILC on challenging, off-road paths including over 700 m

of travel by two significantly different skid-steered robots1.

1Associated video at http://tiny.cc/RobotLearnsIteratively



8 Chapter 1. Introduction

Chapter 4 presents an automated speed scheduler to provide safe desired speeds con-

sidering previous path-tracking errors, control inputs, and localization reliability. In our

experiments with ILC, angular speeds were computed by the controller while a constant

linear speed was manually selected prior to each trial based on operator experience. This

revealed an opportunity to use experience to compute time-optimal speed schedules for

any given trial. A time-optimal speed schedule results in a mobile robot driving along a

planned path at or near the limits of the robot’s capability. However, deriving models

to predict the effect of increased speed can be very difficult. The novelty here is the

incorporation of experience when computing a speed schedule in order to guarantee low

path-tracking errors and reliable localization. The proposed speed scheduler was tested

in over 4 km of travel on outdoor terrain using a large Ackermann-steered robot travelling

between 0.5 m/s and 2.0 m/s and is later used to specify training speeds.

In Chapter 5, we present Learning-based Nonlinear Model Predictive Control (LB-

NMPC), a learning-based algorithm capable of interpolating and extrapolating from pre-

vious experience. In practice, ILC is computationally appealing for real-time applications

or applications with low computing power since the ILC feedforward signal is computed

offline. However, we found in our initial work with ILC that anytime learning and the

ability to generalize from learned experiences are key requirements for flexible (and useful)

learning-based mobile robot operation in large-scale, outdoor environments. For exam-

ple, a learning-based controller should be capable of maintaining and accessing learned

experiences for many paths, speeds, and combinations thereof in order to operate in a

changing environment. In NMPC, the current control action is obtained by solving a

finite-horizon optimal control problem at each time-step based on the current state and

a model of the system (Rawlings and Mayne, 2009). Furthermore, the process model is

typically specified a priori and remains unchanged during operation. The contribution

in this chapter is an NMPC algorithm where the a priori process model is augmented

with an experience-based disturbance model. The resulting controller compensates for

effects not captured by the fixed process model, such as environmental disturbances and

unknown dynamics. Inspired by local learning, we present a novel approach where dis-

turbances are modelled as a Gaussian Process (GP), and predictions are computed based

on a sliding window of training data. This allows for real-time operation over long paths,

anytime learning, and the ability to generalize from experience. Finally, we present

extensive real-world testing on three significantly different robots in over 3 km of travel2.

2Associated video at http://tiny.cc/RobotLearnsDisturbances
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In general, our LB-NMPC algorithm is initialized with an a priori model and learns

the discrepancies between the known model and actual robot behavior. Therefore, the

augmented process model used by our LB-NMPC algorithm has varying levels of un-

certainty depending on disturbance observations collected during previous trials. In

Chapters 6 and 7, we investigate robust LB-NMPC algorithms to explicitly deal with

the uncertainty in the disturbance model and guarantee safe, collision-free path-tracking

throughout the learning process. Ideally, the robust extensions to the LB-NMPC al-

gorithm automatically choose between conservative inputs when the learned model is

relatively uncertain, and optimal, high performance inputs when model uncertainty is

reduced through learning. Both chapters present experimental results showing improve-

ment of the controllers in the face of modelling errors that occur naturally throughout

the learning process.

Specifically, we investigate robust Min-Max LB-NMPC (MM-LB-NMPC) in Chap-

ter 6. When optimizing based on the nominal predicted behavior, i.e., not taking model

uncertainty into account, worst-case tracking errors due to modelling errors and an over-

confident controller can be large. In our LB-NMPC algorithm, these tracking errors were

mitigated by low scheduled speeds. However, in this work, we aim to reduce worst-case

errors by altering the NMPC performance function to solve for optimal controls based

on the worst-case scenario. This represents the first example of MM-LB-NMPC to our

knowledge. Furthermore, the novelty in this work also includes the efficient prediction

of the mean and uncertainty of state sequences considering the learned model using a

Sigma-Point Transform. We present results from testing on a demonstrative path and

show the reductions in worst-case tracking errors due to the robust controller.

In Chapter 7, we investigate Robust Constrained LB-NMPC. Robust Constrained

MPC (RC-MPC) is an active area of research and endeavours to guarantee constraint

satisfaction when considering uncertain systems (Mayne, 2014). State constraints pro-

vide a direct method of incorporating real-time obstacle information from an on-board

guidance algorithm. At each time-step, RC-MPC aims to identify control inputs that

result in constraint satisfaction by all plausible predicted trajectories considering a fixed

estimate of model uncertainty. However, such approaches are generally conservative since

the models are not updated online. The major contribution in this chapter is a RC-LB-

NMPC algorithm combining several of the components developed throughout the thesis.

Specifically, the algorithm combines the GP-based learned model (Chapter 5), efficient

prediction of state sequences (Chapter 6), and state and input constraints. The result
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is a robust, learning controller that provides safe, conservative control during initial tri-

als when model uncertainty is high and high-performance, optimal control during later

trials when model uncertainty is reduced with experience. We present extensive exper-

imental results including over 5 km of travel by a 900 kg skid-steered robot at speeds

up to 2.0 m/s showing constraint satisfaction and performance improvements over time3.

Finally, Chapter 8 summarizes the contributions of this thesis and discusses future work.

3Associated video at http://tiny.cc/RobotLearnsRobustly



Chapter 2

Vision-based Localization

2.1 Introduction

One of the key requirements for the automation of off-road mobile robots is accurate

and timely state estimation, a task that has been prohibitively challenging for many

years. In this chapter, we present an overview of the vision-based localization algorithm

(Furgale and Barfoot, 2010) that provides accurate state estimates for our learning-

based controllers over long-distance, off-road paths. While visual localization is not a

novel claim of this thesis, the resulting state estimates are a critical prerequisite for

the learning algorithms described subsequently, and thus this chapter is included for

completeness. Specifically, the longitudinal position along a path and the lateral and

heading information with respect to a path are used as inputs to our learned models (i.e.,

they are a function of robot position relative to the desired path). It is important to note

that GPS is not accurate enough to provide the required localization information, and

thus this vision-based system is a key enabler of the learning algorithms in this thesis.

Stereo Visual Odometry (VO) is a technique for dead-reckoning a robot pose using

a stereo camera as the primary sensor. Cameras are generally viewed as accurate, cost

effective, real-time (> 10 Hz) sensors enabling mobile robot operation. VO is a sparse

method, representing the world using a sparse set of key points tracked over a sequence

of image pairs. Work on estimating robot motion with stereo VO can initially be traced

back to work by Moravec (1980). His work was further developed by Matthies (Matthies

and Shafer, 1987; Matthies, 1989) and later demonstrated on NASA’s Mars Exploration

Rovers (Maimone et al., 2007) and Mars Science Laboratory (Johnson et al., 2008).

Visual Teach & Repeat (VT&R) (Furgale and Barfoot, 2010; Furgale, 2011) is an

11
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Figure 2.1: Overview of the vision-based localization algorithm.

extension to the VO pipeline that enables accurate and timely relocalization relative to

a previously taught desired path (Figure 2.1). The ability of the VT&R algorithm to

produce accurate, real-time state estimates in off-road environments is a key technology

enabling this research. The localization algorithm operates in two phases. In the first

operational phase, the visual teach phase, the robot is manually piloted along the desired

path. Localization in this initial phase is obtained relative to the robot’s starting position

by VO. In addition to the VO pipeline, a Map Building component defines path vertices

at short and regular intervals along the path, composed of a key frame and the associated

local key points (feature descriptors and their 3D positions). During the repeat phase,

the VT&R algorithm estimates the pose of the robot relative to the nearest key frame by

relocalizing against the stored key points. Relocalization is achieved by matching feature

descriptors to generate feature tracks between the current robot view and the teach-pass

robot view. As long as sufficient correct feature matches are made, the system generates

consistent localization over trials and is able to support a learning-based controller.

2.2 Mathematical Formulation

2.2.1 Feature Extraction

The first step in both teach and repeat phases is to extract relevant features from the

most recent stereo image pair. The current implementation uses the Speeded Up Robust

Features (SURF) algorithm (Bay et al., 2008) for feature detection and description. At

time k, the algorithm generates a set of stereo key points from the latest stereo pair by
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Figure 2.2: Example of key points extracted from a stereo image pair. Lines shown
connect the left and right image locations associated with a single key point. Blue lines
are from features based on light blobs on dark backgrounds, while red lines are from
features based on dark blobs on light backgrounds. Image credit: Furgale (2011).

collecting SURF features from both the left and right images, and making descriptor-

based associations between the pair (Figure 2.2). Key point b has image coordinates,

yk,b = (u, v, d), and an associated 64-dimensional description vector, dk,b. The image

coordinates, u and v, are the horizontal and vertical pixel coordinates in the left image,

respectively, while d is the disparity, the difference between the left and right horizontal

pixel locations. Each key point also has a 3D feature location, pb,kk = (x, y, z), repre-

senting the position of feature b with respect to and expressed in the left camera frame,

F−→ck (Figure 2.3). The image and measurement coordinates are related by an observation

model, h(·),

yk,b = h(pb,kk ) =
1

z


fu 0 cu 0

0 fv cv 0

0 0 0 cbfu



x

y

z

1

 , (2.1)

and an inverse observation model, g(·), that triangulates points seen in a stereo pair,

pb,kk = g(yk,b) =
cb
d


u− cu

fu
fv

(v − cv)
fu

 , (2.2)

where cu and cv are horizontal and vertical optical centers in pixels, fu and fv are hori-

zontal and vertical focal lengths in pixels, and cb is the camera baseline in meters.
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Frk~

Fck~ Fm
~

Figure 2.3: The two major frames used in this chapter are the camera frame, F−→ck , and
robot control frame, F−→rk , that are related by a known and often fixed transform, Tck,rk .
The camera frame is defined by the left camera while the control frame is the frame
about which process models will be defined for controllers presented in this thesis. The
submap frame, F−→m, is only used for derivation purposes but can be generally thought of
as a camera frame from a previous time-step.

2.2.2 Feature Tracking

In general, the VO and localization blocks in Figure 2.1 compute a transformation be-

tween the camera frame at time k, F−→ck , and a submap frame, F−→m, based on a set of

tracked features (Figures 2.3 and 2.4). A submap is a collection of key points where

each key point contains: (i) qa,mm = (x, y, z), the position of feature a with respect

to and expressed in F−→m, and (ii) va, the SURF descriptor associated with feature a.

Descriptor-based tracking between the live view and submap is done by identifying near-

est neighbours in descriptor space. Outlier candidate tracks are rejected based on an

implementation of Random Sample and Consensus (Nistér, 2005). Finally, the pose of

the camera relative to F−→m is computed by minimizing a cost function weighting the

reprojection error of inlier features. Considering the nth inlying feature track repre-

senting a match between key point a (submap) and key point b (latest stereo pair), the

reprojection error, en, is defined as

en = yk,b − h
(
Ck,m(qa,mm − ρk,mm )

)
, (2.3)
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Figure 2.4: Example of key points tracked from a previous stereo image before (left)
and after (right) outlier rejection. For VO, tracked features are used to estimate camera
motion relative to the previous camera frame. For localization, tracked features are used
to estimate the camera motion relative to the nearest key frame. Image credit: Furgale
(2011).

where Ck,m ∈ R3×3 and ρk,mm = (x, y, z) represent the camera rotation and translation,

respectively, with respect to F−→m. The cost function is defined as

J =
M∑
n=1

eTnWn en, (2.4)

where M is the number of inlier feature tracks, and Wn is a weighting matrix based

on the inverse of the estimated measurement covariance of yk,b. Specifically, (2.4) is

minimized with respect to Ck,m and ρk,mm using the Gauss-Newton method. Finally, the

algorithm produces an estimate of the camera’s pose in the submap frame,

Tk,m =

[
Ck,m −Ck,m ρ

k,m
m

0T 1

]
. (2.5)

For VO, the submap is based on the previous camera frame, F−→ck−1
, and associated

stereo features, thus the computed transformation is the camera’s pose relative to the

camera frame at the previous time-step, Tck,ck−1
= Tck,m. For localization, the submap

is based on key frame i, F−→ci , and the associated submap features, thus the computed

transformation is the camera’s pose relative to the ith key frame, Tck,ci = Tck,m.
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2.2.3 Map Building

Considering Sections 2.2.1 and 2.2.2, we now have the two main tools to generate a

topometric pose graph composed of a set of vertices related by relative transformations,

each containing a feature-based submap. Specifically, an initial key frame, F−→ci , where

i = 0, is defined as the initial camera pose and the corresponding submap is initialized

with the key point list at time k = 0, {y0,j,d0,j}. The robot is then manually piloted along

the desired path. In subsequent time-steps, the camera’s pose is computed by VO relative

to the most recent key frame by a series of transformations, Tck,ci = Tck,ck−1
Tck−1,ci . New

tracked features are added to the ith key frame submap until the camera motion exceeds

a threshold on either translation or rotation. At this point, a new key frame is defined,

F−→ci+1
, where Tci+1,ci = Tck,ci , and the submap for vertex i+ 1 is initialized with the

key point list generated at time k. It is also assumed that there exists a robot control

frame, F−→rk , where the transformation between the camera and robot frame is given by

the known transform, Tck,rk . As a result, the algorithm also defines robot key frames,

F−→ri , where Tri+1,ri = T−1ck,rk Tci+1,ci Tck,rk .

2.2.4 Repeat Phase Localization

State estimation at every time-step in the repeat phase is accomplished using a com-

bination of VO and localization. The algorithm first uses VO to propagate the pose

estimate relative to the previous time-step and previous closest path vertex, Tck,ci =

Tck,ck−1
Tck−1,ci . The algorithm then searches for the closest key frame by euclidean dis-

tance and refines the state estimate considering the associated submap. In the case that

refinement fails (i.e., due to too few feature matches), the algorithm discards the ‘re-

fined’ estimate and proceeds to the next time-step using the VO-based state estimate in

a dead-reckoning fashion. At the start of a repeat, the algorithm performs a localization

search to find its position relative to the closest vertex in the pose graph.

The final output at time k is a 2D estimate of the current robot pose (Figure 2.5),

x̂k = (x, y, θ), and a sequence of 2D desired poses, xd = (. . . ,xd,i−1,xd,i,xd,i+1, . . .), all

relative to the nearest robot key frame, F−→ri . Specifically, 2D desired poses, xd,i+j, are

formed based on Tri+j ,ri by extracting the (x, y) coordinates from ρi+j,iri
, and the yaw

coordinate, θ, from the yaw-pitch-roll Euler-angle sequence extracted from Cri+j ,ri . The

estimated robot pose is similarly extracted from Trk,ri , where Trk,ri = T−1ck,rk Tck,ci Tck,rk .
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Figure 2.5: At every time-step, the vision-based localization algorithm provides the 2D
pose of the robot, x̂k = (x, y, θ), relative to the nearest path vertex, xd,i.

2.3 Conclusion

In summary, we have presented a brief overview of the real-time, vision-based localization

algorithm that provides state estimates for all path-tracking controllers presented in

this thesis. The algorithm operates in two phases: (i) the visual teach phase, where

localization relative to the start of the path is obtained using VO, and (ii) the repeat

phase, where localization relative to the nearest path vertex is obtained by relocalizing

against stored key points. During an experiment to quantify relocalization accuracy,

the authors compared the lateral path-tracking error estimated by the algorithm to that

measured by Differential-GPS (Thales DG-16), revealing a lateral estimation error with

mean -0.3 cm and standard deviation 2.9 cm. However, the ability of the VT&R algorithm

to match features depends on the perspective of the camera during repeat passes. As a

result, one motivation for the learning-based algorithms presented in this thesis is the

ability to improve localization reliability through reductions in path-tracking errors and

thus camera perspective errors.



Chapter 3

Iterative Learning Control

3.1 Introduction

In this chapter, we present ILC as an added-benefit, feedforward control for a practical

autonomous mobile robot1. ILC was first introduced in the literature by Arimoto et al.

(1984) to give systems that operate repetitively the ability to take advantage of knowledge

gained during previous iterations. Here, we seek to apply ILC to a path-repeating mobile

robot. There exist few references in the literature of applications of ILC on autonomous

mobile robots and none, to our knowledge, demonstrating operation in challenging off-

road paths with unknown terrain and vehicle dynamics (Figure 3.1).

ILC constructs an acausal feedforward signal that reduces control error over sequen-

tial iterations using error information from any previous trial. The algorithm generally

requires little online computation since the feedforward signal is computed offline. As a

result, ILC has been commonly applied to mass-production, industrial systems with low

computational power (Bristow et al., 2006). In a few cases, it has also been demonstrated

on quadrotors (Schoellig et al., 2012; Hehn and D’Andrea, 2014). In our work, the low

computation time during operation is attractive since it enables real-time control and

operation over long-distance paths involving potentially large datasets.

Recent sources for ILC literature include survey papers by Bristow et al. (2006)

and Ahn et al. (2007). In the review by Bristow et al., ILC algorithms can be sep-

arated into four main groups: (i) Proportional-Derivative (PD), (ii) model inversion,

(iii) H∞, and (iv) optimal (quadratic) algorithms. PD-type algorithms are a tunable

design and construct the feedforward signal using proportional and derivative gains on

1Associated video at http://tiny.cc/RobotLearnsIteratively
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(a) Husky A200 robot tracking a sandy path in-
cluding a 5-15◦ side slope.

(b) ROC6 robot tracking a path at three times
the nominal safe speed of 0.35 m/s.

Figure 3.1: Experimenting with ILC for mobile robots operating in outdoor environments.
Here we show resulting paths with ILC enabled and disabled. The orange arrows show the
current trajectory of the robots as they drive with ILC disabled. The green arrows show
the path with reduced errors from when the robots were travelling with ILC enabled.

error signals collected in previous trials (Arimoto et al., 1984; Chen and Moore, 2002b).

Model inversion algorithms use inverted plant dynamics as the learning function and thus

converge rapidly in few trials at the cost of extensive modelling (Ghosh and Paden, 2002).

H∞ algorithms incorporate model uncertainty to ensure robust convergence but can be

conservative (De Roover and Bosgra, 2000). Finally, quadratic algorithms compute op-

timal feedforward signals, balancing control inputs and tracking errors (Gunnarsson and

Norrlöf, 2001; Schoellig et al., 2012).

In previous work on mobile robots, Oriolo et al. (1998) and Han and Lee (2011)

demonstrated PD-ILC on short, indoor paths less than 4 m in length using wheel odom-

etry for localization. Chen and Moore (2002a) demonstrated PD-ILC for mobile robots

in simulation. In this work, we also experiment with PD-ILC. However, our implemen-

tation is founded on VT&R, a vision-based, on-board localization system that enables

us to test on long paths in challenging outdoor terrain (Figure 3.2). As a result, our

PD-ILC algorithm is required to compensate for unmodelled effects such as wheel slip,

terrain topography, and robot dynamics. First, we show results from the repetition of a

40-m-long, outdoor path with sand and side-slopes by a 50 kg four-wheeled robot. Then

we show the results from the repetition of a 50-m-long path by a 150 kg six-wheeled

robot learning to drive quickly.

Our PD-ILC algorithm is implemented in parallel to a feedback-linearized controller,

as in the work of Kang et al. (2005). The addition of the feedback signal allows for path
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(a) Image taken during the first trial of experi-
ment 1 with relatively high path-tracking error.

(b) Image taken during the sixth trial of experi-
ment 1 with low path-tracking error.

Figure 3.2: Visual representations of relocalization in our VT&R framework. Each feature
track represents the translation between a feature identified during the teach phase and
re-identified during a repeat phase. In general, high path-tracking errors reduce the
number of matched features and the resulting localization reliability.

completion during the first trial (i.e., prior to learning). This is important in reducing

the training time required for a learning-based algorithm. Furthermore, the feedback

signal also compensates for nonrepeatable disturbances in later trials. For example,

wheel ruts and gravel paths evolve over multiple trials and thus cannot in general be

completely compensated for by the feedforward signal. The feedback-linearized controller

is selected due to its low computational complexity and its ability to handle nonholonomic

constraints.

Finally, we propose a version of ILC where the feedforward control signal is parame-

terized by path length as opposed to time. In previous work on mobile robots, altering

the scheduled speed on successive trials is non-trivial as the feedforward ILC signal is

parameterized by time. In our work, we are able to schedule increasing speeds as track-

ing errors are reduced over sequential trials without reindexing feedforward signals since

we assume the feedforward commands are place-specific. As a result, our robots begin

experiments at a safe low speed and are capable of iteratively learning to drive faster.

3.2 Mathematical Formulation

The path-tracking controller is the sum of a feedback-linearized control signal and a

feedforward ILC signal (Figure 3.3). In the following, we present the two controllers.
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Iterative Learning
Control

Feedback-Linearized
Control

Mobile Robot
xd,k xkek ωfb,k

ωff,k

ωcmd,k

Vision-based
Path Localizer

Figure 3.3: The ILC algorithm is in parallel to the FL controller and learns only from
path-tracking errors. The dashed line indicates that the tracking errors are used to
update the feedforward signal.

3.2.1 Feedback-Linearized Control

We use Feedback Linearization as described by Samson and Ait-Abderrahim (1991) as

our base path-tracking controller. We model our robots as unicycles with state, xk =

(xk, yk, θk), and inputs, vcmd,k and ωcmd,k = ωff,k + ωfb,k, representing the linear and

angular velocities, respectively, at time k (Figure 3.4). At every time-step, the VT&R

localization algorithm provides the position of the robot, xk, relative to the nearest

desired pose by Euclidean distance. We also define the lateral and heading path-tracking

errors, eL,k = yd,k − yk and eH,k = θd,k − θk. Assuming for now that the feedforward

command, ωff,k, is zero and defining the time between control signals as ∆t, we find[
eL,k+1

eH,k+1

]
=

[
eL,k

eH,k

]
+ ∆t

[
vk sin eH,k

ωfb,k

]
. (3.1)

Assuming the robot forward velocity is constant and letting pk =
(
eL,k, vk sin eH,k

)
, a

new system of equations is given by

pk+1 =

[
1 ∆t

0 1

]
pk + ∆t

[
0

vk cos eH,k

]
ωfb,k, (3.2)

=

[
1 ∆t

0 1

]
pk + ∆t

[
0

1

]
ηk, (3.3)

where ηk = vk cos(eH,k)ωfb,k. Equation 3.3 represents a linear system with state pk and

input ηk. Now by setting ηk = −γTp, where γ = (γ1, γ2) with γ1, γ2 > 0, we find the
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ωk
θk

vk

xd,i−1

xd,i

xd,i+1

xk

yk

Figure 3.4: Definition of robot velocities, vk and ωk, and three pose variables, xk, yk, and
θk. At each time-step, the VT&R algorithm provides an estimate of the robot position
relative to the nearest desired pose by Euclidean distance. (ref. pages 21, 33, 54, 79).

stable, closed-loop system

pk+1 =

[
1 ∆t

−∆tγ1 1−∆tγ2

]
pk. (3.4)

Solving for the feedback control input, ωfb,k, given the two definitions of ηk, we find

ωfb,k =
−γ1eL,k − γ2vk sin eH,k

vk cos eH,k
. (3.5)

With suitable tuning values and paths, this control input without feedforward in combi-

nation with VT&R vision-based localization has been demonstrated to follow paths up

to 3.2 km in length autonomously (Furgale and Barfoot, 2010) at speeds up to 0.35 m/s.

3.2.2 Added-benefit Iterative Learning Control

In practice, increasing the forward velocity or travelling on paths with sand or side-

slopes can result in increased path-tracking errors that may put the robot in danger and

challenge the ability of VT&R to relocalize. As shown in Figure 3.3, ILC learns a feed-

forward control input, ωff,k, from these path-tracking errors. The ILC algorithm is able

to generate feedforward commands that anticipate and preemptively respond to repeated

disturbances and unmodelled robot dynamics since it has access to the entire sequence

of errors along the path from previous trials. Intuitively, the learned, feedforward signal

amounts to steering corrections along the path.
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Unlike traditional ILC algorithms where feedforward commands are a function of time,

our feedforward commands are a function of vertex indices, representing the distance

along the path. This allows the algorithm to track the desired path at a safe speed

during the first trial, and travel at increased speed during later trials using place-specific

feedforward commands. We introduce i as an index for variables occurring at the ith

path vertex and denote the time between vertex i and vertex i+1 as ∆ti. Now assuming

a non-zero feedforward command, ωff,ki , we approximate (3.4) as

pi+1 =

[
1 ∆ti

−∆tiγ1 1−∆tiγ2

]
pi + ∆ti

[
0

vi cos eH,i

]
ωff,i (3.6)

= Aipi + Biωff,i. (3.7)

Considering there are N vertices in our path, we can produce N relationships,

p1 = A0p0 + B0 ωff,0,

p2 = A1p1 + B1 ωff,1

= A1A0p0 + A1B0 ωff,0 + B1ωff,1,

...

that can be organized to produce the ‘lifted form’ (Bristow et al., 2006) for trial j,

p(j) = pinit + B(j)ω
(j)
ff , (3.8)

where

p(j) =


p1

p2

...

pN

 , pinit =


A0p0

A1:0p0

...

AN−1:0p0

 , ω
(j)
ff =


ωff,0

ωff,1
...

ωff,N−1

 ,

B(j) =



B0 0 0 0 . . . 0

A1B0 B1 0 0 . . . 0

A2:1B0 A2B1 B2 0 . . . 0
...

...
. . .

AN−1:1B0 AN−1:2B1 . . . BN−1


,
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and Aa:b = Aa Aa−1 . . .Ab. Once in lifted form, we can introduce the error for trial j,

e(j) = pd − p(j), (3.9)

where pd is the desired state and is identically zero. Then

e(j) = −pinit −B(j)ω
(j)
ff , (3.10)

and

e(j+1) − e(j) = −B(j+1)ω
(j+1)
ff + B(j)ω

(j)
ff

≈ −B(j)ω
(j+1)
ff + B(j)ω

(j)
ff . (3.11)

To compute the feedforward control input for the next trial we use a proportional-type

ILC controller of the form

ω
(j+1)
ff = γuω

(j)
ff + Γee

(j), (3.12)

with forgetting factor, γu, and learning gain, Γe. As a result, we have that

e(j+1) = e(j) − γuB(j)ω
(j)
ff −B(j)Γee

(j) + B(j)ω
(j)
ff

= e(j) + γu(e
(j) + pinit)−B(j)Γee

(j) − (e(j) + pinit)

= (γu −B(j)Γe)e
(j) − (1− γu)pinit. (3.13)

Stabilization in the trial domain amounts to selecting γu and Γe such that the eigenvalues

of (γu −B(j)Γe) are stable. Considering B(j), we used the update law

ω
(j+1)
ff,i = γuω

(j)
ff,i +

−γLεL,i − γH sin εH,i
cos εH,ki

, (3.14)

where εL,i and εH,i are lookahead errors,

εL,i =
1

κ

i+κ∑
m=i+1

eL,m, εH,i =
1

κ

i+κ∑
m=i+1

eH,m, (3.15)

and κ is the number of vertices to lookahead. In (3.14), the gains γL and γH set the

rate of convergence while the forgetting factor γu gives the system the ability to forget

nonrepetitive disturbances.
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Figure 3.5: Experiment 1 test path overview (left) and side-slope (right) at the Canadian
Space Agency’s Mars Emulation Terrain in Longueuil, Québec, Canada. The terrain
offers a large selection of surface topographies intended for robot mobility testing. The
path selected included a steep side-slope around 10-15 m into the path. Another photo
of the side-slope section is shown in Figure 3.1.

3.2.3 Dealing with Initial Conditions

Since the initial conditions of each trial were set by the conclusion of a previous trial, we

could not guarantee identical initial conditions for each trial. As such, we followed the

approach of Freeman et al. (2011) and smoothly modified the desired path to create a

zero-error initial condition for the first mic vertices of each trial. For trial j, this is:

p′d,i=

pd,i− (mic−i)
(mic)

(pd,i−p
(j)
0 ), i < mic

pd,i, i ≥ mic.
(3.16)

3.3 Experimental Results

3.3.1 Overview

We tested the ILC algorithm in two different experiments. The first test was conducted

using a 50 kg Husky robot travelling along a 40-m-long sandy path including an unmod-

elled side-slope. The side-slope test was conducted on the Canadian Space Agency’s

Mars Emulation Terrain in a sandy section with slopes of between 5-15◦ as shown in

Figure 3.5. The second test was conducted using a 160 kg ROC6 robot sequentially nav-

igating a 50-m-long path with speeds gradually increased to three times the speed for
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which the feedback-linearized controller was tuned. The speed test was conducted in the

University of Toronto Institute for Aerospace Studies (UTIAS) MarsDome along a path

through tight valleys and over a combination of gravel and sandy surfaces.

In both cases, the controller described in Section 3.2 was implemented and run in

addition to the VT&R software (Chapter 2) on a MacBook Pro with an Intel 2.4 Ghz

Core2Duo processor and 4 GB of RAM. The input camera in both experiments was a

Point Grey Bumblebee XB3 stereo camera. The resulting real-time localization and

path-tracking control signals were generated at approximately 10 Hz. Since GPS was not

available, the improvement due to the ILC feedforward control signal was quantified by

the localization of the VT&R algorithm.

3.3.2 Experiment 1: Learning Kinematics

In the first experiment, the ILC algorithm successfully reduced the maximum lateral

and heading errors by factors of roughly three after six trials (Figures 3.6 and 3.7). For

demonstration purposes, γu was set to 1.0, encouraging quick learning. However, the rate

of convergence was often delayed and influenced by the evolution of the environment in

response to the robot’s activity. For example, repeating the same path caused ruts to

form and sand located on side-hills to shift thereby causing new unmodelled disturbances

and delaying the reduction in path-tracking errors. In addition, it was found that the

topography of the environment around the path resulted in changing disturbances from

trial to trial. For example, if the path were along the ridge of a hill, the disturbances

caused by the side-slope decreased from trial to trial as the robot path approached the

ridge of the hill. While the ILC algorithm inherently continued to adjust its feedforward
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Figure 3.6: Lateral and heading error versus trial number in experiment 1. The maximum
and Root-Mean-Square (RMS) errors are reduced significantly within the first few trials.
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Figure 3.7: The ILC algorithm was able to quickly reduce the maximum lateral and
heading errors but had a greater challenge eliminating the errors completely.

signal, in practice, γu should be set to less than 1.0 to give the system a greater ability

to forget non-repeating disturbances and noise. Finally, in addition to posing a physical

danger a robot, high path-tracking errors also cause reductions in vision-based localiza-

tion reliability due to perspective shift. This can be seen visually in Figure 3.2, where

we show examples of relocalization at the same point along the desired path in trials 1

and 6.

3.3.3 Experiment 2: Learning Dynamics

In the second experiment, the ILC algorithm successfully mitigated the effects of increased

repeat speed over the course of ten trials in the UTIAS MarsDome (Figure 3.8). As can

be seen in Figure 3.9, ILC was used to gradually learn to drive at 1.0 m/s by sequentially

increasing the repeat speed each trial. After ten trials, the ILC algorithm had reduced the

lateral and heading errors by factors of roughly three compared to the errors when driving

at 1.0 m/s without the ILC algorithm. Furthermore, when driving at 1.0 m/s without

learning, two manual interventions were required to bring the robot back on the path from

locations on the sides of the valleys. Of note, without any other algorithm development,

the process of learning to drive at a new speed implies forgetting the old. Interestingly,



28 Chapter 3. Iterative Learning Control

Figure 3.8: Experiment 2: ROC6 at the start of the path in the MarsDome facility in
Toronto, Ontario, Canada. The facility provides a network of sandy and gravel floor
valleys defined by a set of impassable gravel hills.
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Figure 3.9: Even though the ROC6 mass was 110 kg greater than that of the Husky,
using the same ILC tuning parameters as experiment 1 resulted in decent performance in
experiment 2. With ILC disabled, the robot was unable to complete the path at 1.0 m/s.

γL and γH were identical to those for the Husky suggesting the ILC learning gain has

some independence of platform and path. Overall, the choice to produce a feedforward

signal indexed by vertex number and thus distance along the path, as opposed to time,

was largely made to facilitate changes in robot speed and to conform to the vertex-based

VT&R system. The result was computationally simple and effective at reducing tracking

errors.
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3.4 Discussion

In general, ILC offers an efficient and effective method of improving path-tracking through

experience. Real-time inputs for mobile robots operating on long-distance paths are

possible since the feedforward signal is computed offline. However, the algorithm learns

only a single sequence of feedforward commands leading to two issues. Firstly, since the

algorithm is only capable of maintaining a single sequence of commands, the algorithm

is only applicable to a system operating on a single path with a single speed schedule.

For example, we demonstrated the algorithm on a robot learning to drive quickly in the

second experiment. Prior to each trial, the scheduled speed was increased relative to the

previous trial until a desired max speed was achieved. However, if the desired speed were

then reduced, the algorithm would need to relearn how to drive slowly. Moreover, it is

not clear how to maintain a single sequence of feedforward signals for operation on a

network of paths, where there would be many possible combinations of speeds and paths

for any given trial. Secondly, the ILC algorithm requires the speed to be scheduled prior

to operation since the feedforward signal is also computed prior to operation. As a result,

ILC would not be suitable for operation in an environment with dynamic obstacles where

speed is selected in real-time.

Our work on ILC with mobile robots led to the insight that in addition to providing

real-time inputs over long-distance paths, learning-based algorithms for mobile robots

should be capable of anytime learning and generalization. Ideally, the robot would be

able to collect data anytime it moves (i.e., anytime learning) and maintain a database of

such learned experiences. This would allow for the robot to collect a variety of experiences

resulting from arbitrary initial conditions, terminal conditions, desired paths, and desired

speeds. In addition to maintaining a database of learned experiences, the robot would

then ideally be capable of generalizing from previous learned experiences. In this way,

the learning-based controller would enable flexible and useful mobile robot operation in

large-scale, outdoor environments. For example, this would allow for situations when

the robot is forced to slow down due to dynamic obstacles or issues encountered during

a trial. As a result, the learning-based algorithms presented in Chapters 5, 6, and 7 all

enable anytime learning and generalization in addition to real-time inputs and operation

on long-distance paths.
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3.5 Conclusion

In summary, the contribution in this chapter is an added-benefit, proportional-type Itera-

tive Learning Controller for a path-repeating, mobile robot negotiating off-road, challeng-

ing terrain. The feedforward ILC algorithm operates in parallel to a feedback-linearized

controller. The feedback-linearized controller enables the robot to complete the path in

the first trial and also compensates for non-repeating disturbances in later trials. The

ILC algorithm produces a feedforward signal that acausally mitigates disturbances not

modelled by the feedback controller. Further, we present a novel formulation whereby

the ILC signal is spatially-indexed allowing the algorithm to learn to drive at higher

speeds without needing to reindex the feedforward command sequence. Thus considering

a single commanded linear speed, the resulting feedforward signals are assumed to be

place-specific and are effectively indexed only by the distance along a desired path.

Two experiments, including over 700 m of travel, demonstrated the system’s ability

to handle unmodelled terrain and rover dynamics. During the first experiment, a four-

wheeled 50 kg robot was taught a 40-m-long path including a 5-15◦ sandy side-slope. The

ILC signal effectively reduced the lateral and heading errors by factors of three in the

first six trials. During the second experiment, a six-wheeled 160 kg robot was taught a

50-m-long path with little margin for error across terrain with varying ground properties.

ILC was used to gradually learn to drive at a speed three times the nominal repeat speed

of 0.35 m/s. Compared to driving at 1.0 m/s without learning, the resulting lateral and

heading path-tracking errors were reduced by a factor of three after ten trials.
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Experience-based Speed Scheduling

4.1 Introduction

This chapter presents a novel experience-based speed scheduler. In our work on ILC,

the commanded linear speed was set manually prior to each trial. The problem of speed

scheduling is generally addressed by a guidance algorithm as part of a planned trajectory.

Speeds should be set appropriately in order to guarantee safe path-tracking and localiza-

tion, in much the same way as speed limits on roads. The main issue is in predicting the

performance of robot subsystems, such as vision-based localization systems, as a func-

tion of variables such as speed and robot state in order to identify a constraint-satisfying

speed schedule a priori.

In this work, we present a speed scheduling algorithm that minimizes travel time

and simultaneously guarantees feasibility of the trajectory despite unknown effects by

incorporating experience from previous path traversals. For example, the speed scheduler

uses localization experience to selectively increase the speed of sections of the path where

localization reliability can be guaranteed. Motion blur at high speeds is one cause of

reduced localization reliability and is very difficult to predict a priori. To our knowledge,

this is the first algorithm to incorporate experience from previous path traversals when

producing a speed schedule.

There are many speed scheduling approaches in the literature. For schedulers seeking

minimum-time trajectories, the general approach is to identify limits on the robot speed

and acceleration as a function of constraints, such as actuator limits, then plan a schedule

to operate at the highest speed possible. As a result, most approaches differ primarily in

which constraints are addressed.

31
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Stereo Camera

Figure 4.1: Experiments are performed using a large Defence Research and Development
Canada (DRDC) Mule Research Vehicle (DMRV) where the sole sensor used for localiza-
tion is a Point Grey Bumblebee stereo camera (highlighted in red). The experience-based
speed scheduler is able to identify speed limits considering requirements on path-tracking
error limits and vision-based localization reliability.

Classic speed schedulers for mobile robots concentrate on generating smooth speed

profiles prior to commencing path traversal while incorporating electromechanical con-

straints on speeds and accelerations (Fatouhi et al., 2002; Bianco, 2009). For example,

Munoz et al. (1994) derive the maximum robot speed, acceleration, and deceleration

from motor and brake system specifications. Prado et al. (2003, 2002) include speed and

acceleration limits resulting from predicted motor temperature and battery power. Other

schedulers predict lateral accelerations and friction forces considering weight transfers to

constrain the speed based on slip and path-tracking error limits (Prado et al., 2003; Pur-

win and D‘Andrea, 2006; Waheed and Fotouhi, 2009). In each of these papers, detailed

models of the robot and environment are required to generate the appropriate speed or

acceleration limits. In this work, in addition to simple a priori speed and acceleration

limits, we use past observations of vision-system performance, path-tracking errors, and

control inputs to iteratively identify speed and acceleration limits.

Other approaches schedule the speed while tracking a path, using experiences in

real-time to identify speed limits. For example, the Stanley robot, designed for the

2006 DARPA Grand Challenge, slows down after encountering rough sections along a
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planned path (Thrun et al., 2006). Path roughness is identified using measurements of

the vertical acceleration of the vehicle (Brooks and Iagnemma, 2005). The approach

is shown to decrease the damage to the robot caused by shock and vibration, thereby

increasing the long-term system reliability. While the approach employed by Thrun et al.

(2006) is designed for systems traversing a path for the first time, it nevertheless results

in the robot experiencing serious shock and vibrations at the start of rough patches

along a path. Our approach, on the other hand, schedules speed based on experience

from previous path traversals. This gives our system the ability to slow down before

encountering challenging sections of the path, rather than behaving reactively. Finally,

in some speed schedulers, the speed is also determined in real-time in order to prevent

collisions with dynamic obstacles (Kant and Zucker, 1986; Prado et al., 2003; Purwin and

D‘Andrea, 2006). In these cases, it is assumed that the dynamic obstacle is travelling

across the path and therefore waiting a few moments will result in a clear path. An

investigation into the sensing, control, and actuation requirements for real-time obstacle

avoidance is presented by Kelly and Stentz (1998a,b). In this work, we assume the

environment is free of dynamic obstacles and the planned path avoids static obstacles.

4.2 Mathematical Formulation

4.2.1 Overview

In this work, we consider the mobile robot to be tracking a desired trajectory consisting

of a set of N desired poses (Figure 3.4),

Pd = (xd,1, . . . ,xd,N),

where xd,i = (xd,i, yd,i, θd,i), and N scheduled speeds during the jth trial,

V(j)
sched = (v

(j)
sched,1, . . . , v

(j)
sched,N).

At time k, the VT&R algorithm produces an estimate of the robot’s pose, xk = (xk, yk, θk),

relative to the nearest path vertex by Euclidean distance. The path-tracking controller

then sets the commanded linear velocity of the robot, vcmd,k, based on the scheduled

speed at the nearest path vertex, vsched,i, and computes a commanded angular velocity,

ωcmd,k. In general, the controller aims to minimize path-tracking errors.
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In this work, we present a novel method of producing speed schedules, V(j+1)
sched . In

Section 4.2.2, we discuss the experience collected during trial j for use in computing

schedules. In Sections 4.2.3 and 4.2.4, we present our method of proposing a speed

schedule for trial j+1 based on experience and limiting it based on a priori speed and

acceleration limits, respectively.

4.2.2 Collected Experience

During each trial, the robot drives the full path, gathering experience. Specifically, we

collect vision-based localization, path-tracking, and control-input experience for use in

speed scheduling. For consistency, experience is only stored as the robot passes each

desired vertex.

Vision-based Localization Experience

When using vision-based localization systems, there exists a speed limit above which

localization becomes unreliable and the safety of the robot can no longer be assured.

This speed limit may come as a result of low light conditions, a degraded scene (relative

to when the path was taught), large deviations from the path, or perhaps motion blur.

Instead of trying to predict the effect of these conditions, we record the number of features

matched by the VT&R system, c
(j)
feat,i, when passing the ith vertex during the jth trial as

an indicator of the conditions faced by the localization system,

C(j)feat = (c
(j)
feat,1, . . . , c

(j)
feat,N).

Intuitively, we make the assumption that there exists a relationship such that as the speed

of the robot increases, the number of matched features at a given path vertex decreases.

While this relationship is not known a priori, we use experience to judge whether the

speed at the ith path vertex during the next trial can be increased further.

Path-tracking Experience

We also record the lateral and heading path-tracking errors, e
(j)
L,i and e

(j)
H,i, respectively,

[
e
(j)
L,i

e
(j)
H,i

]
=

[
0 1 0

0 0 1

]
xi, (4.1)



4.2. Mathematical Formulation 35

when passing the ith vertex during the jth trial,

E (j)L = (e
(j)
L,1, . . . , e

(j)
L,N),

E (j)H = (e
(j)
H,1, . . . , e

(j)
H,N).

We do this for two reasons. First, we have assumed that the planned path is safe and

free of obstacles. Therefore, it is important to maintain low path-tracking errors since

we can only guarantee that the terrain near the planned path is free of obstacles. In the

case that the path planner provides additional information about the lateral distance to

obstacles, our speed scheduler could restrict the robot speed so as to ensure sufficiently low

lateral path-tracking errors. Second, the vision system is sensitive to perspective changes

between the teach pass and any repeat pass. Perspective changes are the direct result

of path-tracking errors and reduce the reliability of the localization system. Prediction

of path-tracking errors as a function of speed is challenging. Thus we use experience to

judge the effect of speed on path-tracking errors.

Control-input Experience

Finally, the scheduled linear speed must also address constraints on angular velocities

resulting from actuator limits. As a result, we record the commanded angular velocity,

ω
(j)
cmd,i, when passing the ith vertex during the jth trial,

Ω(j) = (ω
(j)
cmd,1, . . . , ω

(j)
cmd,N).

In order to track the desired path at a velocity, vk, the robot must be capable of turning at

an angular velocity, ωk. In order to achieve this actual angular velocity, the path-tracking

controller commands a commanded angular velocity, ωcmd,k, compensating for wheel slip,

side slopes, and other model discrepancies through state feedback. As the commanded

linear velocity is increased over trials, so too the commanded angular velocity will increase

in order to track the path. In practice, detailed models of wheel slip including the effects

of side-slopes and ground texture are often only available for specific situations. For

example, Nagatani et al. (2013) present models for the case when a robot is required to

traverse a straight path across a side-slope. By using experience, we are able to predict

that the commanded angular velocities remain within the actuator limits when generating

new speed schedules with no a priori knowledge of the terrain topography.
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Distance Along Path

Speed

V(j)
sched

:

V(j+1)
sugg :

Vmax:

V(j+1)
sched

:

Isolated change is pruned

before computing V(j+1)
sched

Scheduled speed for jth trial

Suggested speed before pruning

A priori speed limits

Scheduled speed for next trial

Figure 4.2: Experience-based speed scheduling occurs in two steps: (i) modifications to
the previous speed schedule are suggested based on experience (green), (ii) the suggested
speeds are constrained by a priori speed and acceleration constraints (blue).

4.2.3 Experience-based Speed Schedule Modification

After completing the desired path, the next step in the speed-scheduler algorithm is

to suggest new desired speeds for the next trial based on the desired speeds during

the jth trial and the collected experience described in Section 4.2.2. Specifically, if

path-tracking errors are below (above) a threshold, control inputs are below (above)

a threshold, and (or) there are a sufficient (insufficient) number of matched features

in a certain section, the speed in that section is increased (decreased, respectively).

Using tuned values for increasing and decreasing the scheduled speed, γ1 > 0, γ2 > 0,

respectively, and thresholds, λL ≥ 0, λH ≥ 0, λω > 0, and λfeat ≥ 3, the scheduler follows

rules to generate the suggested speeds for each path vertex:

v
(j+1)
sugg,i =



v
(j)
sched,i+γ1 if (|e(j)L,i| < λL) ∧ (|e(j)H,i| < λH) ∧ (|ω(j)

cmd,i| < λω) ∧ (c
(j)
feat,i > λfeat),

v
(j)
sched,i−γ2 if (|e(j)L,i| > λLλdb) ∨ (|e(j)H,i| > λHλdb)∨

(|ω(j)
cmd,i| > λωλdb)∨(c

(j)
feat,i < λfeat/λdb),

v
(j)
sched,i otherwise.

(4.2)

Effectively, the automated speed scheduler identifies sections of the path where the system

can tolerate higher speeds and sections where it cannot, thus balancing the trade-off

between speed, path-tracking errors, and vision-based localization reliability. We use

λdb > 1 to produce a deadband where the speed at a vertex is neither increased nor

decreased. After generating suggested speeds for all path vertices in the next trial,
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isolated increases are then pruned to encourage a smooth speed profile (Figure 4.2). An

isolated increase occurs when too few path vertices in a section of the path are eligible

for increased speeds. For the first trial, the scheduled speed at all vertices in the path is

set to a fixed speed, v
(1)
sched,i = vinit.

4.2.4 A Priori Speed and Acceleration Constraints

The final step in our experience-based speed scheduler is to incorporate a priori con-

straints on linear speed, acceleration, and deceleration. Firstly, the robot has a known

actuator-based linear speed constraint. In addition, the robot must respect speed limits

for safety, particularly during key sections of the path such as the start and end of the

path. The combination of actuator and safety constraints results in a set of speed limits,

Vmax = (vmax,1, . . . , vmax,N),

as shown in Figure 4.2. These speed limits are applied to the suggested scheduled speed,

v
(j+1)
sugg,i ← min (v

(j+1)
sugg,i, vmax,i). (4.3)

Finally, we limit the acceleration and deceleration to account for robot capability and

safe operation. The scheduled speed must satisfy the acceleration and deceleration con-

straints, amax > 0 and amin < 0, respectively, at every path vertex,

v
(j+1)
sched,i ← min

(
v
(j+1)
sugg,i, (4.4)√(

v
(j+1)
sugg,i−1

)2
+ 2 di−1,i amax,√(

v
(j+1)
sugg,i+1

)2
− 2 di,i+1 amin

)
,

where di,j is the distance between two path vertices, xd,i and xd,j,

di,j =
√

(xd,j − xd,i)2 + (yd,j − yd,i)2. (4.5)

The resulting speed schedule satisfies all a priori speed and acceleration constraints, and

also takes into account localization and path-tracking performance requirements.
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4.3 Experimental Results

4.3.1 Overview

The speed-scheduling algorithm presented in Section 4.2 was tested in two experiments

with 10 trials each, resulting in over 4 km of testing in outdoor environments. The test

vehicle (Figure 4.1) was manually taught the two paths including sharp turns, a variety

of slopes, and a variety of surfaces. Both paths were taught at the DRDC Experimental

Proving Grounds in Suffield, Alberta, Canada. The resulting speed schedules varied in

speed from 0.5 m/s to 2.0 m/s.

4.3.2 Tuning Parameters

The speed scheduler was set to maintain matched feature counts greater than 30, heading

errors less than 10◦, lateral errors less than 15 cm, and commanded angular velocities

less than 1.0 rad/s. The speed scheduler increments, γ1 and γ2, were set to increase a

scheduled speed by 0.2 m/s or decrease a scheduled speed by 0.24 m/s. The vehicle speed

was limited to 0.4 m/s during the start and end segments, and 2.0 m/s otherwise. Finally,

the vehicle acceleration was limited to 0.2 m/s2 and the vehicle deceleration was limited

to -0.05 m/s2. Parameter settings were manually tuned in runs separate from the results

section considering knowledge of the robot’s sensor and actuator limits. The scheduling

algorithm then maximized the speed along a path while respecting these limits.

4.3.3 Results

During the first experiment, the vehicle travelled the desired 100-m-long path (Figure 4.3)

10 times, resulting in 1 km of testing. During the first four trials, the number of matched

features, path-tracking errors, and desired angular speeds were all within the specified

limits. As a result, the scheduled speed was increased equally for all path vertices except

those near the start and end of the path (Figure 4.4). In the fifth trial, the path-tracking

error began limiting the scheduled speed at 50 m along the path (Figure 4.5). In general,

the path-tracking errors coincided with the path slopes and curvatures. Finally, as the

speed of the vehicle increased, the number of matched features decreased. However, the

reduction in matched features was not high enough to limit the speed of the vehicle.
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Figure 4.3: The path for the first experiment was approximately 100 m long and included
gravel and grassy terrain. The path included slope angles up to 10◦, side-slope angles up
to 10◦, and path curvatures up to 0.2 m−1.
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Figure 4.4: The speed scheduler maximizes speed while taking into account experience
based on the vision system, path-tracking errors, and control inputs (Figure 4.5). Dur-
ing the 10th trial, the slowest scheduled speed occurs at around 50 m when the lateral
path-tracking error is largest. The strategic increases in scheduled speed resulted in a sig-
nificantly reduced travel time by the 10th trial. Once the speed schedule had converged,
variations in the travel time were due largely to non-repeatable disturbances affecting
the vehicle speed and path-tracking errors.

During the second experiment, the vehicle travelled a 375-m-long path 10 times,

resulting in over 3 km of testing. As in the first experiment, the number of matched fea-

tures, path-tracking errors, and commanded angular speeds were all within the specified

limits for the first few trials resulting in a rapid increase in scheduled speeds (Figure 4.7).

In this case, we were able to initialize the vehicle at a relatively safe speed of 0.5 m/s

and the speed scheduling algorithm was able to autonomously reduce the travel time

significantly (Figure 4.7).
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Figure 4.5: Experiment 1 Matched Features and Path-tracking Errors vs Distance: The
number of matched features in trial 10 were reduced due to motion blur and variations in
lighting relative to the first trial. However, the scheduled speed was not affected by the
number of matched features or the heading errors. On the other hand, increased speed
resulted in increased lateral path-tracking errors, which ended up being the common
cause of limited speed.

4.4 Discussion

The algorithm proved to make appropriate decisions with respect to the localization

system and path-tracking errors. In retrospect, however, it may have been possible

to estimate the available speed increase more accurately by regressing from experience,

including more than just the previous trial. This may have increased the speed increments

during early trials. Furthermore, it may be useful to maintain experience as a function

of time. For example, it is quite common for vision-based localization systems operating
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Figure 4.6: The path for the second experiment was approximately 375 m long and also
included gravel and grassy terrain. The path included slope angles up to 10◦, side-slope
angles up to 15◦, and path curvatures up to 0.2 m−1.
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Figure 4.7: Experiment 2 Scheduled Speed vs Distance: During the second experiment,
the experience-based speed scheduler generated a profile ranging from 0.5 m/s to 2.0 m/s
after 10 trials. During the first four trials, the number of matched features, path-tracking
errors, and commanded angular speeds were all within the specified limits resulting in a
significant decrease in travel time.

outdoors to experience periodic lighting changes affecting the reliability of the system to

localize. In such a case, one could imagine the system anticipating a poorly lit section of

a path as a function of time-of-day and slowing down in advance. This may be especially

beneficial for a system that does not repeat a path frequently enough to see the lighting

change gradually.

4.5 Conclusion

In summary, this chapter presents an automated speed scheduler for path-repeating mo-

bile robots. The novelty in the work is the incorporation of previous experience when com-
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puting a speed schedule. Specifically, the algorithm collects localization, path-tracking,

and control-input experience then generates a speed schedule for the next trial in two

broad steps. First, the algorithm suggests a new speed profile based on the collected

experience and the previous speed schedule. Second, the algorithm limits the suggested

profile based on a priori speed and acceleration limits. The algorithm was implemented

and tested on a large DMRV in two experiments with 10 trials each, resulting in over

4 km of driving. The algorithm proved to be effective at maximizing the robot speed

while taking into account limits that are very difficult to predict in advance, such as

those imposed by vision-based localization systems.



Chapter 5

Learning-based Nonlinear Model

Predictive Control

5.1 Introduction

In this chapter, we present Learning-based Nonlinear Model Predictive Control (LB-

NMPC) for a path-repeating mobile robot operating in challenging outdoor terrain1.

The work was inspired by our previous work with ILC. While ILC is computationally

appealing for real-time, large-scale applications since the feedforward signal is computed

offline, we found through practical work that anytime learning and generalization are

key requirements for flexible learning-based mobile robot operation in large-scale, off-

road environments.

To enable anytime learning, the proposed LB-NMPC algorithm is based on a fixed,

simple robot model and a learned disturbance model. Disturbances represent measured

discrepancies between the a priori model and observed system behavior. As a result,

experiences for the disturbance model can be collected anytime the algorithm has access

to control inputs and accurate state estimates and thus can predict and measure the robot

behavior. The algorithm may even gather experiences when the robot is under manual

control and the localization algorithm provides state estimates. To enable generalization,

disturbances are modelled as a Gaussian Process (GP) based on previous experience as a

function of state, input, and other relevant variables. Modelling disturbances as a GP also

enables the algorithm to learn complex model discrepancies without prior information.

1Associated video at http://tiny.cc/RobotLearnsDisturbances

43
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DMRV ROC6 Clearpath Husky
Mass 600 kg 150 kg 50 kg
Size (LW) 2m x 1.5m 1.5m x 0.5m 0.9m x 0.6m
Steering Ackermann Steering Skid Steering Skid Steering

Figure 5.1: Robots used to demonstrate the effectiveness of the learning controller. De-
spite significant differences in robot mass, wheel base, kinematics, and actuator designs,
the algorithm uses the same nominal model for all three robots and learns disturbances
over trials in order to accurately track desired paths.

Effectively, the goal is to use real-world experience to construct an accurate, low-

uncertainty disturbance model instead of preprogramming accurate analytical models

that are generally difficult to derive. Accurate mobile robot process models are typically

difficult to derive a priori since (i) the terrain is often not known ahead of time, (ii)

robot-terrain interaction models often do not exist, and (iii) even if such models did

exist, finding model parameters is cumbersome. By providing the ability to learn anytime

and to generalize from experience, the algorithm enables flexible and useful mobile robot

operation in large-scale, outdoor environments. This work represents the first example

to our knowledge of LB-NMPC applied to an autonomous mobile robot. The LB-NMPC

algorithm also forms the basis for the remaining learning-based controllers presented in

this thesis (Chapters 6 and 7).

Model Predictive Control (MPC) is a control framework that uses a process model

directly. The current control action is obtained by solving, at each sampling instant, a

finite-horizon optimal control problem using the current state of the plant as the initial

state (Rawlings and Mayne, 2009). Kühne et al. (2005), Klančar and Škrjanc (2007), and
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Xie and Fierro (2008) present MPC-based mobile robot controllers based on kinematic

models and show results for robots travelling on smooth, flat surfaces. Howard et al.

(2009) demonstrate MPC on a large-scale, outdoor robot navigating intricate paths.

Finally, Peters and Iagnemma (2008) demonstrate MPC for a mobile robot where the

process model includes effects such as tire deformation, wheel-terrain interaction, and

suspension compliance. However, in each of these examples, the controllers are based on

a priori models and, in some cases, rely on parameters whose determination in practice

is challenging. In this work, our NMPC algorithm is based on a fixed nominal model

and a learned, non-parametric disturbance model. This reduces the need for accurate a

priori process models and parameter-specific observers while maintaining the benefits of

MPC such as predictive behavior and constraint handling.

Unlike controllers based on fixed models, controllers using learned models gather

data over time, incrementally constructing accurate approximations of the true system

model. In this work, we model disturbances as a GP based on input-output data from

previous trials. This approach enables both model flexibility and consistent uncertainty

estimates (Rasmussen, 2006). For example, Kocijan et al. (2004) combine a GP model

and MPC for the control of a simulated pH neutralization process. They represent the

full dynamics of the system by a GP model trained on 400 observations of the chemical

system. MPC is applied to control the system based on the offline-identified GP model

(i.e., no online learning). While their work was restricted to offline simulation, our al-

gorithm is used for real-time path-tracking and learns from trial to trial. Sparse GP

approximations are one approach to enable fast, online GP evaluation, and do so by dis-

carding some training points and keeping only ‘inducing inputs’, also known as ‘support

points’ (Quiñonero-Candela and Rasmussen, 2005). An alternative are Local GP (LGP)

methods, as implemented in this work, which enable online operation by dividing the GP

input space into smaller subspaces and generating an LGP for each subspace (Rasmussen

and Ghahramani, 2002; Snelson and Ghahramani, 2007). For example, Nguyen-Tuong

et al. (2009) and Meier et al. (2014) focus on achieving online operation and use LGP

models to approximate the inverse dynamics of manipulator arms. Unlike these two

examples where many LGP models are generated for operation, we rapidly compute a

single LGP model at every time-step based on a sliding window of learned data and

use NMPC to enable predictive control. Finally, robustness of learning controllers is a

large unanswered question. Aswani et al. (2013) focus on developing a safe and robust

LB-MPC for linear systems. The approach provides guarantees on safety and robustness
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GP-based
Disturbance Model

Mobile Robot
zk

a g(a)

Vision-based
Path Localizer

Nonlinear Model
Predictive Control

LB-NMPC

uk

xd,k

x̂k

Speed Schedule

vsched,i

vertex i

Figure 5.2: The LB-NMPC algorithm is composed of two parts: (i) the path-tracking
NMPC algorithm that includes a nominal process model, and (ii) the GP-based Distur-
bance Model. During the first trial, the algorithm relies solely on the nominal process
model to guide the vehicle along the desired path, xd. In subsequent trials, the NMPC
algorithm uses the disturbance model as a correction to the nominal model at states, a,
to be defined in Section 7.2.1. Dashed lines indicate that the signals x̂k and uk update
the model. For experimental results, we combine the LB-NMPC algorithm (Section 7.2),
an experience-based speed scheduler (Chapter 4), and the vision-based VT&R system.

by ensuring that the computed optimal control keeps the nominal model stable when

it is subject to uncertainty. In this work, we do not explicitly consider the robustness

of the controller but focus on the practical application of LB-NMPC to mobile robots.

This requires continuous operation from the first trial and representation of complex

disturbances by the learned model.

5.2 Mathematical Formulation

5.2.1 Nonlinear Model Predictive Control

At a given sample time, the NMPC algorithm finds a sequence of control inputs that

optimizes the plant behaviour over a prediction horizon based on the current state. The

first input in the optimal sequence is then applied to the system, resulting in a new

system state. The entire process is repeated at the next sample time for the new system

state. In traditional NMPC implementations (Rawlings and Mayne, 2009), the process

model is specified a priori and remains unchanged during operation. In this work, we

augment the process model with a disturbance model generated from experience in order

to compensate for effects not captured by the fixed process model, such as environmental

disturbances and unknown dynamics (Figure 5.2).
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Full-State Feedback Control

Consider the following nonlinear, state-space system:

zk+1 = ftrue(zk,uk), (5.1)

with observable system state, zk ∈ Rn, and control input, uk ∈ Rm, both at time k. In

this work, the true system is not known exactly and is represented by the sum of an a

priori model and an experience-based, learned model,

zk+1 =

a priori model︷ ︸︸ ︷
f(zk,uk) +

learned disturbance model︷ ︸︸ ︷
g(zk,uk). (5.2)

The models f(·) and g(·) are nonlinear process models: f(·) is a known nominal process

model representing our knowledge of ftrue(·), g(·) is an (initially unknown) disturbance

model representing discrepancies between the nominal model and the actual system be-

havior. In practice, disturbances are modelled as a GP (Section 5.2.2). The system is

further assumed to be Markovian, thus the processes f(·) and g(·) involve only states

from the current time.

As previously mentioned, the objective of the NMPC algorithm is to find a set of

controls that optimizes the plant behaviour over a given prediction horizon. To this end,

we define the cost function to be minimized over the next K time-steps as

J(u) = (zd − z)TQ (zd − z) + uTR u, (5.3)

where Q ∈ RKn×Kn is positive semi-definite, R ∈ RKm×Km is positive definite, u is

a sequence of control inputs, u = (uk, . . . ,uk+K−1), zd is a sequence of desired states,

zd = (zd,k+1, . . . , zd,k+K), and z is a sequence of predicted states, z = (zk+1, . . . , zk+K),

obtained from (5.2) when applying u,


zk+1

zk+2

...

zk+K

 =


f(zk,uk) + g(zk,uk)

f(zk+1,uk+1) + g(zk+1,uk+1)
...

f(zk+K−1,uk+K−1) + g(zk+K−1,uk+K−1)


= h(zk,u). (5.4)
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Weighting on the state in (5.3) begins at time k+1 since the state at time k can no longer

be affected by the control input. Also, by requiring R to be positive definite, inputs are

guaranteed to be finite. Further restrictions on control inputs or states are commonly

imposed using constraints when solving for the optimal control input (Diehl et al., 2009).

Since both our process model and disturbance model are nonlinear, the minimum of

J(u) must be found iteratively using a nonlinear optimization technique. In this work, we

use unconstrained Gauss-Newton minimization (Nocedal and Wright, 1999) to solve the

nonlinear least-squares problem. We begin by linearizing (5.4) around an initial guess for

the optimal control input sequence, ũ, with u = ũ + δu. A good initial guess for ũ is the

sequence of optimal inputs calculated in the previous time-step. For the first time-step,

we use ũ = 0. Now with zk representing the current pose of the robot, z̃ representing a

sequence of states obtained from (5.4) when applying ũ, and z = z̃ + δz, we find

z ≈ z̃ + H δu, (5.5)

where H is the block-Jacobian of (5.4) with respect to u,

H =
∂h(zk,u)

∂u

∣∣∣∣
zk,ũ

. (5.6)

Evaluating this involves computing partials of f(·) and g(·). In the case of f(·), we

have an analytical model and in the case of g(·), the derivatives are tractable so long

as an appropriate kernel function is chosen for use in the Gaussian process model (see

Section 5.2.2).

Substituting z = z̃ + H δu and u = ũ + δu into (5.3) results in J(·) being quadratic

in δu,

J(u) = (zd − z̃− δz)TQ (zd − z̃− δz) + (ũ + δu)TR (ũ + δu) (5.7)

≈ (zd − z̃−H δu)TQ (zd − z̃−H δu) + (ũ + δu)TR (ũ + δu). (5.8)

We can find the value of δu that minimizes J(·) by solving

∂J(u)

∂δu
= 0 (5.9)
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for δu, and compute the control input about which (3) is linearized in the next iteration,

ũ← ũ + δu. (5.10)

After iterating to convergence, we apply the first element of the resulting optimal control

input sequence for one time-step, and start all over at the next time-step.

Partial-State Feedback Control

Consider the following system, covering most robotic systems, where the dynamics cas-

cade into the kinematics:

kinematics: xk+1 = fx,true(xk,vk) (5.11)

dynamics: vk+1 = fv,true(vk,uk), (5.12)

with system state, zk = (xk,vk), representing pose, xk ∈ Rnx , and velocity, vk ∈ Rnv ,

separately, and control input, uk, all at time k. By substituting vk = fv,true(vk−1,uk−1)

into (5.11), we can write

xk+1 = f
′
true(xk,vk−1,uk−1). (5.13)

Now, if we assume that our a priori model represents the robot kinematics with vk = uk

(i.e., the a priori model assumes robot dynamics are negligeable), and that the true

process, f
′
true(·), can be represented by the sum of our a priori and learned models, we

find

xk+1 =

a priori model︷ ︸︸ ︷
f(xk,uk) +

learned model︷ ︸︸ ︷
g(xk,vk−1,uk,uk−1︸ ︷︷ ︸

ak

), (5.14)

with disturbance query state, ak ∈ Rp,

ak = (xk,vk−1,uk,uk−1). (5.15)

In other words, in order to capture the dynamics of the system, the disturbance query

state, ak, is now required to include historic states. We can further define the corre-
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sponding cost function to be

J(u) = (xd − x)TQx (xd − x) + uTR u, (5.16)

where Qx ∈ RKnx×Knx is positive semi-definite, R and u are as in (5.3), xd is a sequence

of desired states, xd = (xd,k+1, . . . ,xd,k+K), x is a sequence of predicted states, x =

(xk+1, . . . ,xk+K), andK is the given prediction horizon length. The state, xk, and learned

model, g(·), are now of reduced dimension, nx ≤ n, while still capturing both unknown

disturbances and unmodelled dynamics. This approach enables a user to provide a simple

a priori model with few parameters, if any. Further, the derivation suggests that the

approach is applicable to processes with even higher-order dynamics by continuing to

add historic states to the disturbance dependency.

5.2.2 Gaussian Process Disturbance Model

We model the disturbance, g(·), as a GP, which is a function of a disturbance dependency,

a. The model depends on disturbance observations collected during previous trials, rep-

resenting attempts at achieving a control objective, such as tracking a path from start to

finish. At time k, we use the estimated poses, x̂k and x̂k−1, from the VT&R vision-based

localization system, and the control input, uk−1, to isolate (5.14) for ĝ(ak−1),

ĝ(ak−1) = x̂k − f(x̂k−1,uk−1). (5.17)

We collect observations for all sample times in a trial and organize the data from trial j

into a set of data pairs, D(j) =
{

(a0, ĝ(a0)), . . . , (ak, ĝ(ak)), . . . , (aNj−1, ĝ(aNj−1))
}

, where

N (j) is the number of time-steps it took to travel the length of the path during trial j,

and ak is as defined in (5.15). After j trials we have multiple datasets, D(1), . . . ,D(j),

that we combine into a single database, D, with N = N (1) + · · ·+N (j) observations. We

also drop the time-step index, k, on each data pair in D, so that when referring to aD,i or

ĝD,i, we mean the ith pair of data in the superset D. Note that there is no requirement

that N (j) = N (j−1) as the system simply collects observations as they occur for the length

of time that it takes to complete a trial. Moreover, all experiences are treated equally

as observations of the underlying unmodelled disturbance. In fact, the system collects

experience data whenever it moves while repeating the desired path. As a result, the

system does not require identical initial or terminal conditions, or speed schedules.



5.2. Mathematical Formulation 51

In this work, we train a separate GP for each dimension in g(·) ∈ Rn to model

disturbances as the robot travels along a path. This approach makes the assumption

that disturbances are uncorrelated. For simplicity of discussion, we will assume for now

that n = 1 and denote ĝD,i by ĝD,i. The learned model assumes a measured disturbance

originates from a Gaussian process model,

ĝ(aD,i) ∼ GP (0, k(aD,i, aD,i)) , (5.18)

with zero mean and kernel function, k(aD,i, aD,i), to be defined. We assume that each

disturbance measurement is corrupted by zero-mean additive noise with variance, σ2
n,

so that ĝD,i = gD,i + ε, ε ∼ N (0, σ2
n). Then a modelled disturbance, g(ak), and the N

observed disturbances, ĝ = (ĝD,1, . . . , ĝD,N), are jointly Gaussian,[
ĝ

g(ak)

]
∼ N

(
0,

[
K k(ak)

T

k(ak) k(ak, ak)

])
, (5.19)

where k(ak) = [k(ak, aD,1), k(ak, aD,2), . . . , k(ak, aD,N)], and K ∈ RN×N with (K)i,j =

k(aD,i, aD,j). In our case, we use the Squared-Exponential (SE) kernel (Rasmussen, 2006),

k(ai, aj) = σ2
f exp

(
− 1

2
(ai − aj)

TM−2(ai − aj)

)
+σ2

n δij, (5.20)

where δij is the Kronecker delta, that is 1 if and only if i = j and 0 otherwise, and

the constants M, σf , and σn are hyperparameters. The SE kernel function is an exam-

ple of a Radial Basis Function (Rasmussen, 2006) and is commonly used to represent

continuous functions based on dense data. Further, the SE kernel is continuously and

analytically differentiable, enabling the rapid computation of derivatives for the Gauss-

Newton optimization algorithm. In our implementation with ak ∈ Rp, the constant M is

a diagonal matrix, M = diag(m), m ∈ Rp, representing the relevance of each component

in ak, while the constants, σ2
f and σ2

n, represent the process variation and measurement

noise, respectively. Finally, we have that the prediction, g(ak), of the disturbance at an

arbitrary state, ak, is also Gaussian distributed,

g(ak)|ĝ ∼ N
(

k(ak)K
−1ĝ , k(ak, ak)− k(ak)K

−1k(ak)
T

)
. (5.21)

In this work, we only make use of the predicted mean value of disturbances. However,
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in later work, the predicted variance is used as an indication of the uncertainty in the

learned model for robust NMPC formulations. Finally, we include further detail on the

storage and retrieval of observations for online operation in Section 5.3.2.

5.2.3 Gaussian Process Hyperparameter Selection

Having defined the NMPC algorithm and disturbance model, g(ak), it remains to define

the source of the hyperparameters, M, σ2
f , and σ2

n. Solving for optimal hyperparame-

ters is not currently a real-time process in our experiments. As such, we assume that

a suitable set of hyperparameters has been determined prior to each trial based on pre-

vious experience (i.e., from previous trials). For the first trial, when the robot has no

experience, the predicted disturbance is zero. Given a set of experiences, we find the

optimal hyperparameters offline by maximizing the log marginal likelihood of collected

experiences using a gradient ascent algorithm (Rasmussen, 2006). In order to avoid local

maxima, the algorithm is repeated several times, initialized with different initial values,

and the set of hyperparameters resulting in the greatest likelihood is selected.

5.2.4 Illustrative Example

In this section, we highlight the benefits of LB-NMPC and present an illustrative example

comparing: (i) fixed feedback control, (ii) non-learning NMPC, and (iii) LB-NMPC.

Consider the following process model:

zk+1 = α zk + ∆t β uk + ∆t dk, (5.22)

with system state, zk ∈ R, control input, uk ∈ R, and time-dependent disturbance,

dk ∈ R, shown in Figure 5.3. Further, α, β ∈ R are unknown constants. In simulation,

they are 0.99 and 0.5, respectively. The goal is to track a sequence of desired states,

zd,k, as shown in green in Figure 5.3, which is known to the example controllers prior to

starting. The feedback controller uses a simple feedback law,

ufb,k = kfb (zd,k − zk). (5.23)
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Figure 5.3: Compared to both simple feedback control (red) and MPC (black), LB-
NMPC (blue) is able to anticipate and reduce errors caused by changes in the desired
state and unmodelled disturbances.

Both the NMPC and LB-NMPC controllers assume a nominal process model,

zk+1 = zk + ∆t uk, (5.24)

a prediction horizon, K = 10, and a cost function (5.3), with Q = 10×1 and R =

0.01×1, where 1 is the identity matrix. The LB-NMPC algorithm also includes a learned

disturbance model, as described in Section 5.2.1, such that the complete system model

used by the LB-NMPC algorithm is

zk+1 = zk + ∆t uk + g(zk, uk, k). (5.25)

In this simple example, the disturbances are a function of time (5.22) and hence the

learned disturbance is a function of time, k. However, in practice, we assume disturbances

are time-invariant (5.14).

As expected, the feedback controller is incapable of anticipating errors caused by
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either changes in desired state, zd,k, or disturbances, dk (Figure 5.3). On the other

hand, the NMPC controller (without a learned model) enables some amount of predictive

control to reduce tracking errors due to changes in desired state. However, tracking errors

are not cancelled completely because the NMPC algorithm does not have the correct

process model. Finally, the LB-NMPC algorithm exploits its previous experience to

predict and compensate for both changes in the desired state and unknown disturbances

not anticipated by the a priori process model.

5.3 Implementation

5.3.1 Robot Model

In this work, robots are modelled as unicycle-type vehicles (Figure 3.4) with state

(5.14), xk = (xk, yk, θk). At every time-step, the VT&R localization algorithm pro-

vides the position of the robot, xk, relative to the nearest desired pose by Euclidean

distance (Figure 5.2). The robots have two control inputs, their linear and angular ve-

locities, uk = (vcmd,k, ωcmd,k). Prior to each trial, scheduled path speeds are optimized by

the experience-based speed scheduler (Chapter 4). Then the commanded linear velocity,

vcmd,k, is constrained to the scheduled speed for the jth trial at the nearest path vertex,

vcmd,k = v
(j)
sched,i, leaving only the angular velocity, ωcmd,k, for the NMPC algorithm to

optimize considering (5.16).

When the time between control signal updates is defined as ∆t, the resulting nominal

process model employed by the NMPC algorithm is

f(xk,uk) = xk+∆t


cos θk 0

sin θk 0

0 1

uk, (5.26)

which represents a simple kinematic model for our robot; it does not account for dynamics

or environmental disturbances. We use the same a priori model for all robots in our

experiments, despite them being quite different in scale (Figure 5.1).

The velocity state variables are vk = (vact,k, ωact,k), which represent the actual linear

and rotational speeds of the robot. These will differ from the commanded ones, uk,

owing to the fact that the robots we are working with have underlying control loops

that attempt to drive the robot at the commanded velocities. However, the combined
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dynamics of the robot and these rate controllers are not modelled. We allow the LB-

NMPC algorithm to learn these dynamics, as well as any other systematic disturbances,

based on experience.

In order to build and query the learned model, g(·), throughout the prediction

horizon, we require all of the quantities in (5.15): ak+i = (xk+i,vk−1+i,uk+i,uk−1+i),

i = 0 . . . K−1. We know uk+i and uk−1+i, as these are commanded inputs. We initially

obtain the robot position from our vision-based localization system, xk = x̂k, then from

our system model (5.14), xk+i+1 = f(xk+i,uk+i) + g(ak+i). Finally, we compute the

velocity state variables, vk−1+i = (vact,k−1+i, ωact,k−1+i), based on the computed robot

positions,

vact,k−1+i =

√
(xk+i − xk−1+i)2 + (yk+i − yk−1+i)2

∆t
,

ωact,k−1+i =
(θk+i − θk−1+i)

∆t
.

Since x̂k and x̂k−1 come from our vision-based localization system, we are able to initialize

the predictive controller with accurate velocity estimates with respect to the ground

regardless of situations with large amounts of wheel slip.

5.3.2 Managing Experiences

In order to ensure the LB-NMPC algorithm is executed in constant computation time,

our implementation requires the ability to use a subset of the observed experiences

when computing a disturbance. Similar to work by Nguyen-Tuong et al. (2009) and

Meier et al. (2014), we employ a local model. However, unlike their work, we use a

single sliding local model. As experiences are collected, they are stored in bins, Di,l,
by path vertex, i, and commanded velocity, l = bvcmd,k/vbinc, where vbin represents

the velocity discretization and b·c represents the floor function. When the number of

experiences in a bin exceeds a threshold, cbin, the oldest experience in the bin is dis-

carded. Then, when computing a control input at the ith vertex, a ‘local’ dataset is cre-

ated, drawing experiences from bins at nearby path vertices and commanded velocities,

D = {Da,b| a ∈ {i−cvertex, . . . , i+cvertex}, b ∈ {l−cvelocity, . . . , l+cvelocity}}. Thus, models

are effectively assembled on demand rather than precomputing hundreds of local models,

enabling a constant-time algorithm independent of path length or deployment time.
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Husky Robot

Gravel Piles

30-m-long Path
Start / End

Figure 5.4: The first and second experiments were conducted inside the University of
Toronto Institute for Aerospace Studies (UTIAS) MarsDome on gravel, sand, and loose
dirt. The 30-m-long path, shown here, was used for the first experiment. In all experi-
ments, the nominal unicycle model used in our LB-NMPC algorithm included no prior
information on wheel-terrain interactions or robot dynamics.

5.4 Experimental Results

5.4.1 Overview

We tested the LB-NMPC algorithm in three different experiments involving three sig-

nificantly different mobile robots (Figure 5.1) and paths with dirt, gravel, sand, grass,

inclines, and side slopes. This resulted in over 3 km of learning-enabled path-tracking in

outdoor, off-road environments. The three tests demonstrate the algorithm’s effective-

ness at reducing path-tracking errors with only cursory prior knowledge of the robot’s

behaviour (i.e., that it could be treated as a unicycle robot, Section 5.3.1). Details on

the tuning parameters are presented in Section 5.4.2.

The first experiment (Section 5.4.3) demonstrated the algorithm’s ability to learn

unmodelled environmental disturbances. We tested on a 30-m-long path including slopes,

dusty ground, and loose gravel surfaces (Figure 5.4). The robot was a 50 kg, four-wheeled

Clearpath Husky robot travelling at a desired speed of 0.4 m/s (i.e., the automated speed

scheduler was disabled for the first experiment). With a 0.5 m wheelbase, Husky robots
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are relatively small and agile skid-steered mobile robots. As such, the path included

slope angles up to 15◦, side-slope angles up to 15◦, and path curvatures up to 1 m−1.

The second experiment (Section 5.4.4) demonstrated the algorithm’s ability to inter-

polate and extrapolate from previous experience. We used a 150 kg, six-wheeled ROC6

robot (Figure 5.1) learning to drive at a range of scheduled speeds over 20 trials on a

60-m-long path. Like the Husky, the ROC6 robot is a skid-steered platform. However,

the ROC6 is heavier and longer, with a 1.5 m wheelbase, and is better suited to operate

in more open terrains at higher speeds. Scheduled speeds for each trial were provided by

the automated scheduler presented in Chapter 4. The scheduler used matched features,

path-tracking errors, and control inputs from previous trials to determine safe speeds for

the next trial.

Finally, the third experiment (Section 5.4.5) further demonstrated the algorithm’s

ability to learn disturbances due to robot design. Whereas the first two experiments

involved skid-steered robots, this experiment used a 600 kg, Ackermann-steered DMRV

robot (Figure 5.1). Traditional path-tracking controllers would represent the robot using

a bicycle model (Figure 5.5) with steering angle, δcmd,k, and linear velocity, vcmd,k, as

control inputs. However, in this work, the LB-NMPC algorithm treats the Ackermann-

steered robot as a unicycle robot with linear and angular velocity commands, vcmd,k and

ωcmd,k, respectively. The robot then converted these velocity commands to a steering

angle, δcmd,k,

δcmd,k = tan−1
(
Lωcmd,k

vcmd,k

)
, (5.27)

where L is defined as the wheelbase of the Ackermann-steered robot. The robot learned

to drive at a range of scheduled speeds over 10 trials on a 100-m-long path. Like ex-

periment 2, the scheduled speeds for each trial, vsched,k, were generated using the same

automated speed scheduler as was used in the second experiment (Chapter 4).

ωcmd,k

vcmd,k δcmd,k

L

Figure 5.5: Here we show the relationship between steering angle of an Ackermann-
steered robot, δcmd,k, and the linear and angular velocities, vcmd,k and ωcmd,k, respec-
tively. In experiment 3, we used the LB-NMPC algorithm for path-tracking on a 600 kg,
Ackermann-steered mobile robot.
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The first and second experiments were performed in the University of Toronto Insti-

tute for Aerospace Studies (UTIAS) MarsDome in Toronto, Ontario, Canada (Figure 5.4).

The third experiment was performed at the Defence Research and Development Canada

(DRDC) Experimental Proving Grounds in Suffield, Alberta, Canada. In all experi-

ments, the controller described in Section 5.2 was implemented and run in addition to

the VT&R software (Chapter 2) on a Lenovo W530 laptop with an Intel 2.6 Ghz Core

i7 processor with 16 GB of RAM. The camera in all tests was a Point Grey Bumblebee

XB3 stereo camera. The resulting real-time localization and path-tracking control sig-

nals were generated at approximately 10 Hz. As previously mentioned, hyperparameter

selection is currently an offline process, taking up to 5 minutes in the later trials of an

experiment when the system had accumulated approximately 5000 experiences. Since

GPS was not available, the improvement due to the LB-NMPC algorithm was quantified

by the localization of the VT&R algorithm.

5.4.2 Tuning Parameters

The performance of the system was adjusted using the NMPC weighting matrices Qx and

R, the experience management parameters, and the speed scheduler gains and thresholds.

The weighting matrices for each test were selected in advance ranging from roughly a 3:1

ratio weighting path-tracking errors and control inputs for the 50 kg Husky to a 1:1 ratio

for the 600 kg DMRV robot. The increased weighting on the control inputs for the heavier

robots was selected to ensure controller stability at higher speeds. Local GP models were

generated based on a sliding window of size, cvertex = 5 and cvelocity = 1, where velocities

were discretized by vbin = 0.25 m/s. The maximum number of experiences per bin, cbin,

was set to 4, resulting in local models based on up to 180 experiences. Finally, the speed

scheduler parameters we used are shown in Table 5.1.

γ1 γ2 λL λH λfeat λω λdb
Experiment 1 N/A N/A N/A N/A N/A N/A N/A
Experiment 2 0.15 0.1 0.15 m 10◦ 30 1.0 rad/s 1.1
Experiment 3 0.2 0.15 0.15 m 10◦ 30 1.0 rad/s 1.1

Table 5.1: Scheduler gains and thresholds. The scheduler was not used in experiment 1.
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Figure 5.6: The path for the first experiment was approximately 30 m long and included
sandy and gravel terrain. The path included slope angles up to 10◦, side-slope angles up
to 15◦, and path curvatures up to 1.2 m−1.
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Figure 5.7: The maximum and Root-Mean-Square (RMS) path-tracking errors in exper-
iment 1 are reduced significantly within the first few trials. Since MPC is an optimal
controller balancing path-tracking errors and control input, we do not expect the path-
tracking errors to be eliminated completely.

5.4.3 Experiment 1: Learning to Follow a Path with a Fixed

Speed Schedule

In the first experiment, the 50 kg Husky robot autonomously travelled the length of a

30-m-long path for 20 trials at a fixed speed of 0.4 m/s resulting in 600 m of travel (Fig-

ure 5.6). In Figure 5.7, we show plots of the maximum and Root-Mean-Square (RMS)

path-tracking errors vs. trial number. By disabling the speed scheduler for experiment 1,

the learned model was allowed to converge. As a result, the LB-NMPC algorithm suc-

cessfully reduced the maximum lateral and heading errors by roughly 75% in the first
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Figure 5.8: He we show the experiment 1 lateral and heading path-tracking errors,
e
(j)
L and e

(j)
H , and the commanded angular velocity, ω

(j)
cmd. The model-based approach to

learning allows for generalization from previous experience and thus rapid reductions in
path-tracking errors over trials.

few trials, then maintained these errors for the next 15 trials. However, even after many

trials, the maximum and RMS errors continued to vary. We suspect that these changes

were due mainly to evolving path conditions (e.g., ruts, dirt piles) and our experience

management scheme, that enables real-time computation and changing disturbances by

forgetting experiences over time. Figure 5.8 shows plots of path-tracking errors and an-

gular control input vs. distance along the path. The plots show the difference between

the first trial, when the learned model has no experience from which to draw, and the

20th trial, when the learned model has a significant amount of experience from which

to draw. The heading and lateral errors, eH and eL, respectively, reached their peaks
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in trial 20 around 14-22 m along the path where the path pitched forward, rolled to the

right, and turned to the right. This section also corresponded to the largest changes in

control input between the first and last trial.

5.4.4 Experiment 2: Learning to Follow a Path at Increasing

Speeds

In the second experiment, the 150 kg ROC6 robot autonomously travelled the length of

a 60-m-long path at a range of scheduled speeds over 20 trials to demonstrate the ability

of the algorithm to interpolate and extrapolate from learned experiences (Figure 5.9).

In this experiment, speeds were automatically scheduled using the experience-based al-

gorithm presented in Chapter 4. Figure 5.10 shows plots of the overall travel time,

maximum path-tracking errors, and RMS path-tracking errors vs. trial number. The

LB-NMPC algorithm reduced the lateral and heading errors by roughly 50% over the

course of the 20 trials while learning disturbances at speeds ranging from 0.35 to 1.0 m/s.

For trials 16 through 20, the speed scheduler was disabled and instead the speed was

Figure 5.9: The second and third experiments focused on the algorithm’s ability to learn
unmodelled robot dynamics. Here we show the skid steered ROC6 robot driving at
0.6 m/s with learning enabled. The white line shows the desired trajectory (tire tracks),
the red line shows a trajectory with learning disabled, while the dashed blue line shows
a trajectory with learning enabled and reduced path-tracking errors.
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Figure 5.10: Here we show the reduction in maximum and RMS lateral and heading
path-tracking errors vs. trial. Unlike the first experiment, the scheduled speeds for each
trial were adjusted throughout the second experiment resulting in a range of travel times
when tracking the loop-shaped, 60-m-long path.

set to a fixed value of 0.6 m/s. Unlike the ILC algorithm presented in Chapter 3, the

LB-NMPC algorithm maintains a model including all learned experiences and thus is

able to maintain low tracking errors through interpolation and extrapolation.

Figure 5.11 shows plots of path characteristics, scheduled speeds, and VT&R matched

features vs. distance along the path. The path for the second experiment was mainly

on level ground but included path curvatures up to 0.5 m−1, suiting the capabilities of

the ROC6 robot. The speed scheduler (Chapter 4) determined where along the path

the system could tolerate higher speeds using experience from previous traversals, thus

minimizing the travel time in sequential trials. In some sections of the path (e.g., at

∼22 m), the system took up to 3 trials before safely increasing the scheduled speed.

This does not necessarily mean the learned model in these sections had converged, but

only that the path-tracking errors, the matched feature counts, and the control inputs

were within the specified limits for the speed scheduler (Section 5.4.2). In general, the

speed schedules resulted in the robot learning to drive the path faster, increasing speeds

from 0.35 to 1.0 m/s. Sections of the path with poor lighting and high curvature, such
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Figure 5.11: The test path for experiment 2 was mainly on level ground, but included
path curvatures up to 0.5 m−1. Here we also show the scheduled speeds, v

(j)
sched, for trials

1 through 20, and the VT&R matched feature counts, c
(j)
feature, for trial 15.

as at 10, 20, and 40 m along the path, had relatively low VT&R matched features. In

these sections, the speed scheduler suggested increased speeds, though not as high as

sections with good lighting and low curvature, such as at 15 or 30 m along the path.

Further, with learning enabled and reduced path-tracking errors, the average number

of matched features was increased from 38.33 to 55.77. Since the VT&R localization

algorithm depends on matching features between the live-view and teach-pass view, an

increase in matches tends to result in an increase in the localization reliability for the

vision-based mapping and localization system.
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Figure 5.12: Here we show the learned values for the heading rate disturbance (i.e., the
third element of g(·)) vs. commanded speed and distance along the path. Above 0.8 m/s,
40 m along the path (blue ellipse), there is very little data and the model is untrustworthy
(Figure 5.13).

Figure 5.12 shows the learned model output vs. distance along the path and com-

manded speed. As previously mentioned, we model disturbances as a GP based on

input-output data collected during previous trials. Even though our system collects dis-

crete measurements of the underlying disturbance function, it is able to continuously

interpolate and extrapolate from the data. In this way, we are able to maximize the in-

formation extracted from all gathered experience. In the second experiment, the system

had collected roughly 20,000 observations for the learned model, retaining only 5,000

observations after 20 trials based on our experience management scheme.

Furthermore, by modelling disturbances as a GP, we are able to model both the mean

and uncertainty of model discrepancies. For example, the system was unable to travel

faster than 0.8 m/s at 40 m along the path due to the path’s curvature. As a result,

the system was not able to collect experience above 0.8 m/s for this section of the path

and the resulting modelled disturbance is close to zero with relatively high uncertainty

(Figure 5.13). However, the focus of our work on LB-NMPC was to investigate a real-time

learning-based controller capable of generalization and as such, the algorithm presented

here does not make use of the modelled uncertainty. As will be shown in Chapters 6

and 7, we can leverage the ability to predict the mean and uncertainty of disturbances

in order generate high-performance, robust learning-based controllers.
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Figure 5.13: Modelled disturbances, g(·) = (g1(·), g2(·), g3(·)), for vcmd = 0.9 m/s. With
no experience above 0.8 m/s, 40 m along the path, the modelled disturbance is zero and
relatively uncertain.

5.4.5 Experiment 3: Learning to Follow a Path at Increasing

Speeds with an Ackermann-steered Robot

In the third experiment, the 600 kg Ackermann-steered robot autonomously travelled

the length of a 100-m-long path demonstrating the ability of the disturbance model to

learn kinematics and dynamics of a significantly different mass and robot design (Fig-

ure 5.14). Figure 5.15 shows plots of the overall travel time, and maximum and RMS

path-tracking errors vs. trial number. As in experiment 2, this test also used the speed

scheduler presented in Chapter 4 to compute time-optimal schedules based on experience.

Thus, as path-tracking errors were reduced by the learning-based controller, the sched-

uler increased the speed until the maximum allowed speed. Specifically, the LB-NMPC

algorithm reduced the lateral and heading errors by more than 50% over the course of

the 20 trials while learning disturbances at speeds ranging from 0.5 to 1.2 m/s.
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Figure 5.15: Over the course of 10 trials, the LB-NMPC algorithm reduced the lateral
and heading path-tracking errors by over 50%, while simultaneously learning to drive
at faster speeds around the desired path. The desired speeds were provided by the
automated speed scheduler (Chapter 4).

Figure 5.16 shows plots of path characteristics, scheduled speed and path-tracking

errors vs. distance along the path. The path included turns at 30, 48, and 75-95 m

along the path that also corresponded with the locations on the path that took the most

number of trials to reach the maximum allowed speed. While handling increased speeds,

the LB-NMPC algorithm also reduced path-tracking errors over the course of the 10

trials.

This last experiment highlighted the need for work on controller robustness. Between

85 and 90 m along the path, in all trials of experiment 3, the results showed a sharp change

in path-tracking errors. For example, in trial 1, the VT&R state estimate produced a
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step-change in lateral path-tracking error of ∼25 cm in a single time-step (Figure 5.16).

In reality the robot made no such movement. This artificial motion estimate was trig-

gered by what Furgale and Barfoot (2010) called a ‘teach pass failure’, resulting in a

discontinuity in the state estimate during relocalization. In this case, the LB-NMPC al-

gorithm treated the side-step as a modelling error and learned to turn in anticipation of
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Figure 5.16: The path for the third experiment formed a large loop with turns at 30, 45,
and 75 m along the path. As in experiment 2, the robot learned to drive the path at a
range of speeds, from 0.5 to 1.2 m/s, generated by the automated speed scheduler. At
around 50 m along the path, it took three trials before path-tracking errors were reduced
sufficiently such that the scheduled speed could be increased.
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the (artificial) disturbance, thereby causing subsequent (real) path-tracking errors. While

practical state estimation algorithms should avoid providing faulty estimates, the stakes

are higher with learning algorithms that are capable of inadvertently incorporating such

outlier measurements into the learned model and then acting on incorrect data. This is

one motivation for our experience management scheme, which forgets experiences over

time.

5.5 Discussion

The ILC algorithm presented in Chapter 3 offered an efficient and effective method of

improving path-tracking through experience. It satisfied two of our desired qualities.

Namely, it offered the opportunity for real-time inputs over long-distance paths since

the feedforward signal is computed offline. However, the algorithm is not well suited

to flexible mobile robot operation since only a single feedforward signal can be main-

tained. In this chapter, we presented LB-NMPC, a learning-based algorithm capable

of providing real-time control over long-distance paths, anytime learning, and general-

izing from learned data. In this way, the algorithm is able to maximize the value from

training time relative to the ILC algorithm. However, as shown in experiment 3, the

algorithm leaves three open questions: (i) controller robustness, (ii) the tradeoff between

exploration exploitation, and (iii) convergence rates.

In general, our LB-NMPC algorithm is initialized with a known nominal model and

learns the discrepancies between the known model and the actual robot behavior. There-

fore by its very structure, the augmented process model used by our NMPC algorithm

has varying levels of uncertainty while learning. Controller robustness, i.e. the capability

of a controller to stabilize a system in spite of model uncertainty, is an open question for

learning controllers in general (Schaal et al., 2010). In this work, we do not explicitly con-

sider the robustness of the controller but focus on the practical application of LB-NMPC

to mobile robots. However, having established the effectiveness of the LB-NMPC algo-

rithm at reducing control errors with few a priori assumptions, Chapters 6 and 7 focus on

techniques to leverage the uncertainty estimates provided by our GP-based disturbance

model in robust control frameworks.

In Chapter 3, experimental results were presented based on ILC where a single speed

was selected prior to each trial manually. This led to the development of the experience-

based speed scheduler in Chapter 4 that produces a speed schedule for each trial (i.e.,
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a desired speed for each vertex along the path based on previous tracking errors and

localization reliability). In this work, the use of the automated speed scheduler effectively

begins to address the exploration vs. exploitation problem. Specifically, the algorithm

chooses when to exploit known experiences to reduce tracking errors and when to schedule

higher speeds to explore new states. However, future work might focus on determining

how much to increase speeds. More over, an effective strategy to improve performance

might also involve exploring a variety of path offsets, such as a specific (safe) level of

tracking error, in order to improve the model of robot behavior around the path.

Finally, determination of convergence rates is also an open problem in model-based

learning controllers (Nguyen-Tuong and Peters, 2011). Unlike techniques such as Iter-

ative Learning Control (Bristow et al., 2006; Ahn et al., 2007), which assume identical

initial conditions and desired trajectories for all trials in order to make claims on conver-

gence rates, model-based learning controllers, such as the work presented here, address a

more general problem trying to learn with arbitrary initial conditions, paths, and speed

schedules. This enables a more flexible robot use since it is able to learn more than

one path at more than one speed. However, it also presents essentially a sporadic ap-

proach to learning, in that it is not guaranteed when or if a state will be revisited for

continued learning. Furthermore, convergence rates are complicated by the evolution of

the environment caused by the robot’s activity. For example, repeating the same path

caused ruts to form which resulted in a change in the disturbances affecting the nominal

process model. This was also a motivation in using only the most recent observations

(Section 5.3.2).

5.6 Conclusion

In summary, the major contribution in this chapter is a Learning-based Nonlinear Model

Predictive Control (LB-NMPC) algorithm for a path-repeating, mobile robot negotiat-

ing large-scale, GPS-denied, outdoor environments. The goal is to reduce path-tracking

errors using real-world experience instead of pre-programming accurate analytical mod-

els of wheel-terrain interaction, terrain topography, or robot dynamics. The LB-NMPC

controller is based on a fixed, simple process model and a learned disturbance model.

Disturbances effectively represent measured discrepancies between the given nominal

model and the observed system behaviour. Modelling disturbances as a GP enables the

algorithm to learn complex nonlinear model discrepancies and to generalize to novel situ-
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ations. Unlike our work on ILC where learned signals were indexed only by the distance

along a desired path, here disturbances are modelled as a function of the system state

(i.e., pose and velocity) and input, enabling the system to learn disturbances for many

paths and speed schedules. Furthermore, we present a novel approach where disturbance

predictions are computed based on a sliding window of training data. This enables real-

time operation over long-distance paths. Localization for the controller is provided by

an on-board, Visual Teach & Repeat mapping and navigation system.

Three experiments on three significantly different robots, including over 3 km of travel

on challenging paths, demonstrated the system’s ability to handle unmodelled terrain and

robot dynamics, and also to interpolate and extrapolate from learned disturbances. In

the second and third experiments, the experience-based speed scheduler addressed the

classic exploration vs. exploitation trade-off balancing speed, path-tracking errors, and

localization reliability. Effectively, the speed scheduler greedily increased the scheduled

speed wherever it could, a bias towards exploration and quick decreases in travel time.

The LB-NMPC approach proved to be flexible and effective at reducing path-tracking

errors and increasing the reliability of the localization system. Even beginning with

only the simple unicycle model, the algorithm was capable of being deployed to multiple

platforms where it learned to reduce vehicle- and trajectory-specific path-tracking errors

using experience.



Chapter 6

Robust Min-Max Learning-based

Model Predictive Control

6.1 Introduction

In this chapter, we present a robust Min-Max LB-NMPC (MM-LB-NMPC) algorithm

for a path-repeating mobile robot. Previously, we presented LB-NMPC as an algorithm

capable of providing real-time control inputs over long-distance paths while enabling

anytime learning and generalization from learned experiences. However, in completing

the experimental work, we identified controller robustness as a fourth desired quality for

mobile robot learning-based controllers. In practice, the LB-NMPC algorithm begins

with a simple a priori model and learns model discrepancies between the known model

and reality. For practical operation, learning-based algorithms should guarantee con-

troller robustness throughout the learning process since the learned model will be quite

uncertain at times.

Robust control maintains stability and performance for a fixed amount of model

uncertainty but can be conservative since the model is not updated online. Learning-

based control, on the other hand, uses data to improve the model over time but is not

typically guaranteed to be robust throughout the process. In this work, we present a

extension to our LB-NMPC algorithm. The goal is to merge the best of both worlds:

robust, conservative control reducing worst-case tracking errors during initial trials when

model uncertainty is high, converging to optimal control during later trials when model

uncertainty is reduced. We leverage recent work on robust MPC where the cost function is

modified to optimize for plausible scenarios as opposed to the nominal predicted sequence.

71
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Figure 6.1: A Clearpath Husky robot autonomously negotiating challenging terrain with
side slopes, inclines, and variable wheel traction. In practice, simple vehicle models rarely
represent reality and limit the performance and stability of model-based, path-tracking
controllers. In this work, we present a robust learning-based controller that automatically
transitions from robust to optimal control throughout the process of learning to track a
path.

Min-Max MPC maintains controller stability despite model uncertainty by alter-

ing the performance function to optimize for worst-case scenarios (Witsenhausen, 1968;

Campo and Morari, 1987). The Min-Max approach was further developed by Scokaert

and Mayne (1998). Bemporad et al. (2003) and Kerrigan and Maciejowski (2004) present

algorithms that reduce the computation time of Min-Max MPC. However, these examples

require a priori assumptions of bounded disturbances with uniform distributions, likely

representing conservative estimates of the true probability distributions. In an effort to

reduce conservativeness, Raimondo et al. (2009) present a nonlinear Min-Max algorithm

that separates state-dependent and state-independent disturbances. We also employ a

Min-Max approach. However, as opposed to these examples, our approach models dis-

turbances as a GP and as a result we consider worst-case scenarios bounding the nominal

3σ confidence region. Moreover, we use learning to reduce uncertainty over time, thereby

smoothly transitioning from conservative, robust control to optimal, high-performance

control using experience. This work represents the first example, to our knowledge, of

MM-LB-NMPC.

In the case that disturbances are not bounded, but rather are described by a known

probability distribution, Scenario MPC considers a finite set of randomly sampled se-

quences (Blackmore, 2006; Matsuko and Borrelli, 2012). For example, Schildbach et al.
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(2014) propose an approach where the performance function is optimized considering all

sampled disturbance sequences simultaneously. In order to ensure that the algorithm is

computationally tractable, they exploit a key structure of the optimal control problem

leading to a substantial reduction of the problem dimension. Moreover, they provide

insights into the practice of a posteriori outlier sample removal that typically occurs

after the outcome of all samples has been observed. However, Scenario MPC relies on a

(typically) large number of randomly sampled state sequences over the prediction horizon

in order to adequately represent future behavior. Calafiore and Fagiano (2013) leverage

recent results in optimization to provide an explicit link between the number of required

samples and the probability of success. In our work, we assume disturbances are normally

distributed and use a Sigma-Point Transform (Julier and Uhlmann, 2004) to predict the

mean and uncertainty of future robot behavior. This represents the first work to our

knowledge to use a Sigma-Point Transform to predict the mean and uncertainty of state

sequences for MM-MPC. Unlike Scenario MPC, our algorithm relies on a small number

of worst-case scenarios bounding the nominal 3σ confidence region. The resulting al-

gorithm is an efficient and effective extension from our LB-NMPC algorithm, enabling

robust control with relatively little increase in computation time.

Like our previous work on LB-NMPC, the robust MM-LB-NMPC algorithm is based

on a simple a priori process model and a learned, non-parametric disturbance model.

Disturbances are also modelled as a Gaussian Process (Rasmussen, 2006) based on pre-

vious experience as a function of state, input, and other relevant variables. However, in

this work we predict both the mean and uncertainty of disturbances affecting the a priori

process model. As mentioned, we use a Sigma-Point Transform to efficiently compute the

mean and variance of the nominal predicted sequence given the two-component, learned,

stochastic model. The MM-LB-NMPC cost function is then optimized for the worst-case

sequence bounding the nominal 3σ confidence region. As the learned model becomes

less uncertain with experience, worst-case sequences transition towards accurate nominal

sequences resulting in optimal control. Finally, we demonstrate the robust, learning con-

troller on a 50 kg Clearpath Husky robot and show reductions of worst-case path-tracking

errors by up to 30% and a clear transition from robust control towards optimal control

with only a 5% increase in computation time.
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6.2 Mathematical Formulation

NMPC finds a sequence of control inputs that optimizes the plant behavior over a predic-

tion horizon based on the current state. The first control input in the optimal sequence

is then applied to the system, resulting in a new system state. The entire process is

then repeated at the next sample time for the new system state. In traditional NMPC

implementations, the process model is specified a priori and remains unchanged during

operation. In Chapter 5 we presented LB-NMPC, where we augmented a simple pro-

cess model with the mean of an experience-based disturbance model. Effectively, the

controller used experience to reduce path-tracking errors, compensating for effects not

captured by the simple process model. In this work, we incorporate both the disturbance

mean and uncertainty into the NMPC algorithm by modifying the cost function to opti-

mize for worst-case scenarios, resulting in an efficient robust extension that reduces the

worst-case errors (Figure 6.2).

6.2.1 Min-Max Nonlinear Model Predictive Control

Consider the following stochastic, learned process model,

xk+1 =

a priori model︷ ︸︸ ︷
f(xk,uk) +

learned model︷ ︸︸ ︷
g(ak) , (6.1)

with a normally distributed system state, xk ∼ N (x̄k,Σk), xk ∈ Rn, disturbance depen-

dency, ak ∈ Rp, and control input, uk ∈ Rm, all at time k. The models f(·) and g(·)
are nonlinear models: f(·) is a simple, a priori vehicle model and g(·) is an (initially

unknown) disturbance model representing discrepancies between the nominal model and

the actual system behavior. As in Chapter 5, disturbances are modelled as a Gaussian

Process (Section 5.2.2), thus g(·) is normally distributed, g(·) ∼ N (µ(·),Σgp(·)). In

our previous work, we showed that g(·) could be used to learn higher-order dynamics

by including historic states in the disturbance dependency. However, for simplicity, we

assume for now that ak = (x̄k,uk).

As previously mentioned, the goal of NMPC is to find a set of controls that optimizes

the plant behavior over a given prediction horizon. To this end, we define the cost
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Figure 6.2: The controller is composed of two components: (i) the robust, path-
tracking, Min-Max NMPC algorithm, and (ii) the GP-based Disturbance Model, pro-
viding experience-based disturbance estimates.

function to be minimized over the next K time-steps as

J(x̌,u) = (xd − x̌)TQ (xd − x̌) + uTR u, (6.2)

where Q is positive semi-definite, R is positive definite, u is a sequence of inputs, u =

(uk, . . . ,uk+K−1), xd is a sequence of desired states, xd = (xd,k+1, . . . ,xd,k+K), and x̌ is

a sequence of predicted states, x̌ = (x̌k+1, . . . , x̌k+K). In our work on LB-NMPC, the

objective was optimized for the mean of the nominal predicted sequence, x̌ = x̄, where

x = (xk+1, . . . ,xk+K) is a sequence of uncertain predicted states, and x̄ is the sequence

of mean values based on x. In this work, the objective is optimized for the worst-case

sequence given the uncertainty in the learned model. Specifically, we define 2n worst-

case scenarios, x̌{l}, l = 1 . . . 2n, as sequences bounding the nominal 3σ confidence region.

Finally, the optimal control sequence is given by

uopt = arg min
u

max
l
J(x̌{l},u). (6.3)

The addition of the ‘max’ in (6.3) is the extension from our work on LB-NMPC: the

algorithm now takes into account the worst-case boundary sequence, limiting the worst-

case errors and guaranteeing stability for large model uncertainties. Moreover, there is

an automatic transition as uncertainty decreases, from robust control with an uncertain

model, to optimal control with a rich and accurate model.
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Algorithm 1: MM-LB-NMPC

Data: x̂k, xd, and uinit

Result: uopt

1 initialization: ũ = uinit;
2 while ‖δu‖ > α do
3 Compute x given ũ and (6.1);
4 Compute boundary sequences;
5 Find worst-case boundary sequence;
6 Linearize (6.2) around worst-case sequence and solve for δu;
7 Update control, ũ← ũ + δu;

Since both our process model and disturbance model are nonlinear, the optimal con-

trol sequence, uopt, is found iteratively (Algorithm 1) using a nonlinear optimization

technique. In this work, we use unconstrained Gauss-Newton minimization (Nocedal

and Wright, 1999).

At each time-step, we begin with the current state, xk = x̂k, provided by the vision-

based localization system, and an initial guess for the optimal control input sequence, ũ,

such as the sequence of optimal inputs computed in the previous time-step (Algorithm 1,

Step 1). We then use a Sigma-Point Transform (Section 6.2.2) to compute the nominal

sequence (Algorithm 1, Step 3),
xk+1

xk+2

...

xk+K

 =


f(xk,uk) + g(xk,uk)

f(xk+1,uk+1) + g(xk+1,uk+1)
...

f(zk+K−1,uk+K−1) + g(xk+K−1,uk+K−1)


= h(xk,u), (6.4)

where the predicted states, xk+i, i = 1 . . . K, include both mean and uncertainty. Dur-

ing situations when the robot has little experience, such as during the first trial, the

uncertainty of predicted sequences will be relatively high. As the robot collects experi-

ence, uncertainty will be reduced. We then compute 2n worst-case sequences bounding

the nominal 3σ confidence region (Algorithm 1, Step 4). Assuming for now n= 3, and
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defining σk+i = (
√

Σk+i(1, 1), . . . ,
√

Σk+i(3, 3)), and

Γ
{1}
sign = diag(1, 1, 1), Γ

{5}
sign = diag(−1, 1, 1),

Γ
{2}
sign = diag(1, 1,−1), Γ

{6}
sign = diag(−1, 1,−1),

Γ
{3}
sign = diag(1,−1, 1), Γ

{7}
sign = diag(−1,−1, 1),

Γ
{4}
sign = diag(1,−1,−1), Γ

{8}
sign = diag(−1,−1,−1),

(6.5)

then x̌
{l}
k+i = x̄k+i + Γ

{l}
sign 3σk+i, i = 1 . . . K. The worst-case scenario is then determined

by evaluating the cost of each boundary sequence (Algorithm 1, Step 5),

l∗ = arg max
l
J(x̌{l}, ũ). (6.6)

We now linearize the cost function (6.2) considering the current solution, u = ũ + δu,

and the worst-case scenario,

x̌ = x̌{l
∗} + δx

≈ x̌{l
∗} + H δu, (6.7)

where H is the block-Jacobian of (6.4) with respect to u,

H =
∂h(xk,u)

∂u

∣∣∣∣
x̂k,ũ

. (6.8)

Substituting (6.7) and u = ũ + δu into (6.2) results in J(·) being quadratic in δu (Algo-

rithm 1, Step 6). We can find the value of δu that minimizes J(x̌,u), update our control

input (Algorithm 1, Step 7),

ũ← ũ + β δu, (6.9)

and iterate to convergence, ‖δu‖ < α, with tuned value, α. In this approach to solving

the min-max optimization problem, the step-size β must be carefully selected so as to

minimize chatter caused by switching between scenarios. Finally, in accordance with

NMPC, we apply the resulting control input for one time-step and start all over at the

next time-step.
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Figure 6.3: Here we show the lateral 3σ boundaries of the mean sequence. Since our
model uncertainty is normally distributed, we use a Sigma-Point Transform to compute
the mean and uncertainty of a predicted state sequence. However, unlike Scenario MPC,
where many scenarios are sampled in order to find boundary sequences (red), the Sigma-
Point Transform efficiently estimates the 3σ confidence region (dashed blue).

6.2.2 Sigma-Point Transform

In our previous work, the cost function is optimized based on the mean of the nominal

state sequence. In this work, the cost function is optimized for the worst-case sequence

bounding the nominal 3σ confidence region. Since the system state, xk, is normally dis-

tributed and the process model (6.1) is nonlinear, we use a Sigma-Point Transform (Julier

and Uhlmann, 2004) to iteratively predict the nominal state sequence, x, given u and

an initial state with known mean and uncertainty, x̂k ∼ N (x̄k,Σk), (Figure 6.3). At

a high level, the approach is to compute a set of Sigma Points representing the state

distribution at time k. We then pass the Sigma Points through the nonlinear process

model and recompute the state distribution for time k + 1. As a result, we define an

initial state, zk = (x̄k,µ(ak))∈R2n, representing the mean state and disturbance at time

k. We also define the corresponding uncertainty, Pk = diag(Σk,Σgp(ak)). We compute

4n+1 sigma points, Zk,i = (Xk,i,Mk,i), where Xk,i and Mk,i are the sigma points of xk

and µ(ak),

Zk,0 = zk (6.10)

Zk,i = zk +
√

2n+ γ coli Sk, i = 1 . . . 2n (6.11)

Zk,i+2n = zk −
√

2n+ γ coli Sk, i = 1 . . . 2n (6.12)

where SkS
T
k = Pk with Sk derived from the Cholesky decomposition of Pk, coli Sk is the

ith column of Sk, and γ is a tuning parameter. The sigma points are then passed through
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the nonlinear model,

Xk+1,i = f(Xk,i,uk) +Mk,i, i = 0 . . . 4n, (6.13)

where f(·) is our a priori vehicle model. Finally, we combine the sigma points into the

predicted mean and uncertainty,

x̄k+1 =
1

2n+ γ

(
γ Xk+1,0 +

1

2

4n∑
i=1

Xk+1,i

)
(6.14)

Σk+1 =
1

2n+ γ

(
γ (Xk+1,0 − x̄k+1)(Xk+1,0 − x̄k+1)

T

+
1

2

4n∑
i=1

(Xk+1,i − x̄k+1)(Xk+1,i − x̄k+1)
T

)
. (6.15)

This process is repeatedK times, until the complete nominal sequence, x, is computed. In

this way, the 3σ confidence region accounts for uncertainty arising from both localization

and modelling.

6.3 Implementation

The work presented in this chapter is an extension of the insights and work presented

in Chapter 5. As in LB-NMPC, disturbances are modelled as a GP enabling anytime

learning and generalization from learned experiences (Section 5.2.2). However, in this

work we compute both the mean and uncertainty of disturbances affecting the nominal

process model. This represents only a small increase in computation time since the

expensive data products required to compute the uncertainty, namely the inverse of the

Gram matrix, K−1, are already generated in computing the mean disturbance. Moreover,

when modelling disturbances as a GP, it is necessary to reduce computational complexity

by carefully selecting support points. As a result, we continue to use the experience

management scheme presented in Section 5.3.2. Robots are also modelled as unicycle-

type vehicles (5.26) with position, xk = (xk, yk, θk), calculated relative to the nearest

path vertex by Euclidean distance, and velocity, vk = (vact,k, ωact,k) (Figure 3.4). The

commanded linear velocity is set to a desired speed leaving only the angular velocity,

ωcmd,k, for the NMPC algorithm to choose. However, unlike previous work, experimental

results for the MM-LB-NMPC algorithm are based on a single speed (i.e., we do not use
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the automated speed scheduler presented in (Chapter 4). Finally, we continue to use

an extended disturbance dependency in practice, ak = (x̄k, v̄k−1,uk,uk−1), enabling the

algorithm to learn higher-order disturbances in addition to kinematics. In practice, we

approximate v̄k based on mean states,

v̄act,k−1 =

√
(x̄k − x̄k−1)2 + (ȳk − ȳk−1)2

∆t
, (6.16)

ω̄act,k−1 =
(θ̄k − θ̄k−1)

∆t
. (6.17)

Effectively, this represents the same underlying model and disturbance dependency as

included in LB-NMPC (Chapter 5). This reflects our goal of building on and improving

the previous work by accounting for model uncertainty in the optimization process.

6.4 Experimental Results

6.4.1 Overview

We tested the MM-LB-NMPC algorithm using a 50 kg Clearpath Husky robot travelling

at 0.5 m/s on a short, demonstrative path (Figure 6.4). The controller described in

Section 6.2 was implemented and run in addition to the VT&R software (Chapter 2) on

a Lenovo W530 laptop with an Intel 2.6 Ghz Core i7 processor with 16 GB of RAM. The

camera used for localization was a Point Grey Bumblebee XB3 stereo camera. Since GPS

was not available, the improvement due to the MM-LB-NMPC algorithm was quantified

by the localization of the VT&R algorithm. The resulting real-time localization and

path-tracking control signals were generated at approximately 10 Hz.
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Figure 6.4: The test path for the MM-LB-NMPC algorithm. A short, demonstrative
path was selected to highlight the improvements due to the Min-Max algorithm.
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Figure 6.5: Here we show the procession of model uncertainty (e.g, the maximum heading
rate disturbance uncertainty), predicted costs, and maximum lateral error over several
trials. The plots show the automatic transition between robust control, when uncertainty
is high and maximum errors are reduced significantly, to optimal control, when model
uncertainty is low and the controller finds a balance between errors and control inputs.

6.4.2 Tuning Parameters

The performance of the system was primarily adjusted using the NMPC weighting ma-

trices, Q and R. We selected a 3:3:1 ratio balancing heading errors, position errors, and

control inputs. Otherwise, the prediction horizon, K=10, and the convergence criterion,

α= 0.01, were selected to enable online operation. The Sigma-Point scaling parameter,

γ=2, was selected to enable accurate prediction of mean and uncertainty.

6.4.3 Results

Over five trials, the 50 kg Husky robot autonomously travelled the 13-m-long path (Fig-

ure 6.4) and successfully reduced the worst-case lateral and heading errors by up to 30%.
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Figure 6.5 highlights the procession from robust control, when model uncertainty was

high, to optimal control, when the system had acquired experience and model uncer-

tainty was reduced. In practice, the learned model uncertainty never goes to zero due to

measurement noise. As a result, the MM-LB-NMPC algorithm shifted towards optimal

control but ultimately struck a balance between robust and optimal control over time.

Finally, the algorithm reduces errors due to non-repetitive noise, such as measurement

noise, that the learning algorithm is incapable of predicting.

The measured disturbance affecting the heading rate of the robot peaked at approx-

imately 0.5 rad/s, representing nearly 50% of the commanded input 7 m along the path

(Figure 6.6). The general trend observed is that path-tracking errors were reduced over

the entire path (Figure 6.7). However, the errors were not cancelled completely due to the

optimality of the NMPC algorithm, which balances tracking errors and control inputs.
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Figure 6.6: Modelled disturbances, g(·) = (g(1)(·), g(2)(·), g(3)(·)), during the first, second,
and fifth trials. As the algorithm gathers experience, the model uncertainty decreases
and model accuracy increases.
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Figure 6.7: Tracking errors and commanded inputs vs. distance during the first, second,
and fifth trials. Reducing errors when model uncertainty is high (i.e., trial 1) is important
for controller stability and perspective-dependent, vision-based localization algorithms.
As model uncertainty decreases, the MM-LB-NMPC algorithm naturally transitions to-
wards an optimal control, balancing tracking errors and control inputs.

In general, the Min-Max algorithm incurred an increase in computation time of only

5%. This confirms our selection of a Sigma-Point Transform (Section 6.2.2) as an efficient

method of predicting the 3σ confidence region without resorting to generating a large

number of scenarios.

6.5 Discussion

The LB-NMPC algorithm presented in Chapter 5 offered a flexible method of improving

path tracking through experience. It satisfied three of our desired qualities. Namely, it

offered real-time control inputs over long-distance paths while enabling anytime learn-

ing and generalization from learned experiences. In this chapter, we extend our work
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on LB-NMPC to address model uncertainty. Specifically, we showed how worst-case

path-tracking errors can be reduced by optimizing for worst-case predicted scenarios.

However, experimental work with the algorithm highlighted two opportunities for fu-

ture work. Firstly, the robust learning-based controller continues to rely on a priori

scheduled speeds. Ideally, the learning-based controller would be capable of optimally

adjusting the robot speed as a reflection of model uncertainty, localization performance,

and other real-time inputs. This would further improve the robustness of the overall

system. Secondly, the reduction in worst-case path-tracking errors was indirectly chosen

based on our choice of 3σ noise estimates and tuning of the MPC cost function. Ideally,

an engineer would be provided with the ability to provide specific tracking error limits in

relation to the local environment or localization algorithm. For example, mobile robots

operating in open fields can generally tolerate relatively higher lateral tracking errors

than robots operating in dense forests, where the robot must track the desired path as

closely as possible in order to avoid collisions. As a result, Chapter 7 focuses on robust

constraints in an efforts to guarantee controller stability and integrate with on-board

guidance and navigation algorithms.

6.6 Conclusion

In summary, this chapter presents a novel, robust Min-Max Learning-Based Nonlinear

Model Predictive Control (MM-LB-NMPC) algorithm. The MM-LB-NMPC algorithm

offers an effective method of simultaneously exploiting and decreasing model uncertainty

to improve controller performance and guarantee stability. We derive an efficient and

robust extension to the LB-NMPC algorithm, altering the performance objective to op-

timize for the worst-case scenario. The algorithm uses a simple a priori vehicle model

and a learned disturbance model. Disturbances are modelled as a Gaussian Process (GP)

based on experience collected during previous traversals as a function of system state,

input and other relevant variables. Furthermore, the novelty in this work also includes

the efficient prediction of the mean and uncertainty of state sequences considering the

learned model using a Sigma-Point Transform. Finally, worst-case scenarios are defined

as sequences bounding the 3σ confidence region.

Experimental results are provided from tests with a 50 kg Clearpath Husky robot on

a demonstrative path. The results show reductions in maximum lateral and heading

path-tracking errors by up to 30% and a clear transition from robust control reduc-
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ing worst-case errors, when the model uncertainty is high, to optimal control balancing

tracking errors and control inputs, when model uncertainty is reduced. Furthermore,

the algorithm requires only a 5% increase in computation time relative to the learning

algorithm. Leveraging this work, our future work focuses on using the 3σ confidence

region to provide safety guarantees and real-time speed scheduling.



Chapter 7

Robust Constrained Learning-based

Model Predictive Control

7.1 Introduction

In this chapter, we present a Robust Constrained LB-NMPC (RC-LB-NMPC) algorithm

for a path-repeating mobile robot1. Previously, we presented MM-LB-NMPC in order

to reduce worst-case tracking errors compared to the unconstrained, non-robust LB-

NMPC algorithm. The NMPC cost function was altered to optimize for the worst-case

predicted sequence. However, the Min-Max approach does not provide a direct tuning

knob to guarantee a specific level of tracking errors (the only tuning inputs are the MPC

weights). In general, MPC is a powerful algorithm capable of computing optimal inputs

while seamlessly addressing state and input constraints (Rawlings and Mayne, 2009).

State constraints may represent physical obstacles or localization limits and as a result

constraint satisfaction is tantamount to safety. However, system models used in practice

are often uncertain and thus constraint satisfaction is difficult to guarantee in general.

Robust Constrained MPC (RC-MPC) is an active area of research and accounts for

model uncertainty when considering state and input constraints (Mayne, 2014). The

approach applies tightened constraints to nominal predictions at each time-step such

that all plausible predicted sequences satisfy the given constraints considering a fixed

estimate of model uncertainty. For example, Marruedo et al. (2002) present a robust

constrained algorithm considering a nonlinear process model where tightened constraints

1Associated video at http://tiny.cc/RobotLearnsRobustly

86
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Figure 7.1: State constraints for mobile robots frequently represent physical obstacles and
as a result constraint satisfaction is required for safety. We present a Robust Constrained
Learning-based Nonlinear MPC algorithm to guarantee constraint satisfaction while im-
proving performance through learning. The algorithm is tested on a 900 kg Clearpath
Grizzly travelling up to 2.0 m/s on off-road paths with tight constraints.

are computed offline, prior to operation. Pin et al. (2009) extend the work of Marruedo

et al. (2002), computing tightened constraints online and enabling reductions in conser-

vatism in the case that uncertainties are state-dependent. However, the uncertainty of

predicted sequences given a sequence of control inputs can be quite conservative since

future localization updates are not taken into account by the so-called open-loop trajec-

tories. In parallel, Chisci et al. (2001) and Langson et al. (2004) propose Tube MPC for

linear systems, a robust constrained algorithm solving for a sequence of control policies

in an effort to account for future localization updates and reduce conservatism. Mayne

et al. (2011) later extend Tube MPC to nonlinear systems. In practice, González et al.

(2011) and Farrokhsiar et al. (2013) present applications of Tube MPC to mobile robots.

However, Tube MPC is generally conservative since the models are not updated online.

As a result, the fixed models often include a significant amount of uncertainty in order

to account for unmodelled effects.

In this work, we investigate a Robust Constrained LB-NMPC (RC-LB-NMPC) algo-

rithm for a path-repeating mobile robot operating in challenging outdoor terrain. The

goal is to leverage robust constraints to guarantee stability throughout the learning pro-

cess. The algorithm computes optimal angular and linear speeds at every time-step such

that all plausible predicted sequences satisfy the given constraints considering a learned

model. During initial trials when model uncertainty is high, the algorithm produces

conservative, low-speed inputs. The algorithm then produces high-performance inputs

during later trials when model uncertainty is reduced through learning. As a result, this

work represents the only learning-based algorithm presented in this thesis to compute
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vcmd = vmax vcmd < vmax vcmd = vmax

Uncertain Model Reduced Uncertainty

Desired

Path

Path

Bounds
3σ Confidence Region

Exceeds Path Bounds

Uncertain Model Robust

Constraints

Learning

Figure 7.2: The predictive controller optimizes both the linear and angular velocities
over a prediction horizon such that the 3σ confidence region is contained within the path
bounds. (Left) At full speed with an uncertain model, the controller cannot guaran-
tee constraint satisfaction throughout the prediction horizon. (Center) As a result, the
controller selects slower, more conservative inputs. This is typical behavior of robust
controllers that do not update model uncertainty over time. (Right) Over successive
trials, learning then reduces model error and uncertainty and the controller is able to
guarantee constraint satisfaction at the maximum allowed speed.

optimal linear speeds at every time-step, effectively representing real-time speed schedul-

ing. Ideally, the incorporation of robust constraints in real-time also provides a direct

mechanism for guidance or navigation algorithms to contribute state and input limits

considering the current operating environment or nearby obstacles. However, we leave

such integration work to future research.

Like our previous work on LB-NMPC and MM-LB-NMPC (Chapters 5 and 6), the

algorithm is based on a fixed a priori model and a learned disturbance GP-based model

enabling the prediction of the mean and uncertainty of disturbances. Furthermore, the

algorithm also uses a Sigma-Point Transform to compute the mean and variance of pre-

dicted sequences given the two-component, learned model. However, as in existing re-

search on robust constrained algorithms, we apply restricted constraints to the mean

predicted sequence such that the 3σ confidence region is contained within the desired

constraints (Figure 7.2). Aswani et al. (2013) also propose a RC-LB-MPC algorithm

with a bounded, learned model. However, they use computationally expensive reachabil-

ity analysis to compute restricted constraints. As a result, our algorithm enables future

integration work handling constraints provided by guidance or localization algorithms in

real-time. Finally, we present extensive experimental results including over 5 km of travel

by a 900 kg skid-steered robot at speeds up to 2.0 m/s showing constraint satisfaction and

performance improvements over time.
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Figure 7.3: The RC-LB-NMPC algorithm is composed of two parts: (i) the robust con-
strained, path-tracking NMPC algorithm based on an a priori process model, and (ii)
the GP-based disturbance model. During the first trial, the RC-NMPC algorithm relies
solely on the a priori process model to follow the desired path, xd, considering the nom-
inal inputs, ud. In later trials, the RC-NMPC algorithm uses the disturbance model as a
correction to the a priori model. Dashed lines indicate that the signals update the model.
In practice, our system combines the RC-LB-NMPC algorithm with localization from the
vision-based VT&R system (Furgale and Barfoot, 2010) for off-road path tracking.

7.2 Mathematical Formulation

At a given sample time, NMPC finds a sequence of control inputs that optimizes the

plant behavior over a prediction horizon based on the current state. The first input in

the optimal sequence is then applied to the system. The entire process is repeated at the

next sample time for the new system state. In Chapter 6, we presented MM-LB-NMPC,

where we reduced worst-case errors by optimizing the NMPC cost function for worst-case

sequences. In this work, we limit worst-case errors by applying robust constraints to the

nominal predicted sequence (Figure 7.3).

7.2.1 Robust Constrained Nonlinear Model Predictive Control

Consider the following stochastic, learned process model,

xk+1 =

a priori model︷ ︸︸ ︷
f(xk,uk) +

learned disturbance model︷ ︸︸ ︷
g(ak), (7.1)

with observable system state, xk ∼ N (x̄k,Σk), xk ∈ Rn, disturbance dependency,

ak ∈ Rp, and control input, uk ∈ Rm, all at time k. The models f(·) and g(·) are
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straints, emax,k and emin,k, and the predicted sequence uncertainty, σk. As the predicted
state becomes more uncertain, the robust constraints are increasingly restricted in order
to guarantee that the 3σ confidence window, and thus the true state as well, are contained
within the given constraints.

nonlinear process models: f(·) is a known process model representing our knowledge of

ftrue(·) and g(·) is an (initially unknown) disturbance model representing discrepancies

between the a priori model and the actual system behavior. Disturbances are modelled

as a GP (Section 5.2.2), thus g(·) is normally distributed, g(·) ∼ N (µ(·),Σgp(·)). Pre-

viously, we showed that g(·) could be used to learn higher-order dynamics by including

historic states in the disturbance dependency (Chapter 5). However, for simplicity, we

assume for now that ak = (x̄k,uk).

As previously mentioned, the goal of NMPC is to find a set of controls that optimizes

the plant behavior over a given prediction horizon. We define the cost function to be

minimized over the next K time-steps as,

J(x̄,u) = (xd − x̄)TQ (xd − x̄) + (ud − u)TR (ud − u), (7.2)

where Q ∈ RKn×Kn is positive semi-definite, R ∈ RKm×Km is positive definite, xd =

(xd,k+1, . . . ,xd,k+K) is a sequence of desired states, x = (xk+1, . . . ,xk+K) is a sequence

of uncertain predicted states, x̄ is the sequence of mean values based on x, ud =

(ud,k, . . . ,ud,k+K−1) is a sequence of desired inputs, and u = (uk, . . . ,uk+K−1) is a se-

quence of inputs. Since we now optimize for both angular and linear speeds in order to

achieve constraint satisfaction, we use desired inputs to specify the a priori scheduled

speed for the robot. Linear speeds can be scheduled prior to driving according to knowl-
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edge of place-specific path characteristics such as roughness or localization reliability (i.e.,

Experience-based Speed Scheduling as presented in Chapter 4).

We also define 2Kn probabilistic state constraints representing upper and lower track-

ing limits (Figure 7.4),

p(emax,k+i − ek+i > 0) > l

p(ek+i − emin,k+i > 0) > l

 i = 1 . . . K, (7.3)

where ek+i = xd,k+i − xk+i is the predicted tracking error, emax,k+i and emin,k+i, are

upper and lower tracking limits, respectively, p(A) represents the probability of the event

A, l is a desired confidence level, and the inequalities are evaluated component-wise.

We then compute robust deterministic limits, ěmax,k+i = emax,k+i − ασk+i and ěmin,k+i =

emin,k+i+ασk+i, given the predicted uncertainty, σk+i = (
√

Σk+i(1, 1), . . . ,
√

Σk+i(n, n)),

and apply them to the mean predicted states,

ěmax,k+i > ēk+i > ěmin,k+i, i = 1 . . . K, (7.4)

where ēk+i = xd,k+i− x̄k+i, and the inequalities are evaluated component-wise. Typically,

α = 3 is chosen representing a confidence level of approximately 0.997. In the case that

the predicted uncertainty is larger than the given tracking limits, the system is set to

stop and request a user input. For example, if the vision-based localization becomes lost,

the state uncertainty will likely exceed the given constraints.

In addition, we consider 2Km actuator constraints,

umax,k+i > uk+i > umin,k+i, i = 0 . . . K − 1, (7.5)

where umax,k+i and umin,k+i are defined by the actuator limits, and the inequalities are

evaluated component-wise. Finally, we define the complete set of inequality constraints,

ci(x̄,u) > 0, i = 1 . . . 2K(n + m), composed of both robust state (7.4) and input con-

straints (7.5).

Considering the current estimated system state, x̂k, the process model, the con-

straints, and the cost function, we define the following constrained optimization problem,
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{xopt,uopt} = arg min
x,u

J(x̄,u) (7.6a)

subject to x̄k+i+1 − f(x̄k+i,uk+i)− µ(ak+i) = 0, i = 0 . . . K−1, (7.6b)

ci(x̄,u) > 0, i = 1 . . . nc, (7.6c)

where the equality constraints are used to enforce the process model, and nc = 2K(n +

m). We approximate the inequality constraints by introducing a slack variable, w =

(w1, . . . , wnc), and a logarithmic barrier term (Boyd and Vandenberghe, 2004),

{xopt,uopt,wopt} = arg min
x,u,w

J(x̄,u)− η
nc∑
i=1

log(wi) (7.7a)

subject to x̄k+i+1 − f(x̄k+i,uk+i)− µ(ak+i) = 0, i = 0 . . . K−1, (7.7b)

ci(x̄,u)− wi = 0, i = 1 . . . nc, (7.7c)

where η is a small positive scalar adjusted towards zero throughout the optimization

process. Finally, we use Lagrange methods (Boyd and Vandenberghe, 2004) to solve

(7.7) and define the Lagrangian, L(s),

L(s) = J(x̄,u)−
K−1∑
i=0

λTi (x̄k+i+1 − f(x̄k+i,uk+i)− µ(ak+i))

−
nc∑
i=1

γi(ci(x̄,u)− wi)− η
nc∑
i=1

log(wi), (7.8)

where λi ∈ Rn, s = (x̄,u,w,λ,γ), λ = (λ0, . . . ,λK−1), and γ = (γ1, . . . , γnc). Consider-

ing the necessary condition for optimality, ∇L(s) = 0, we employ Newton’s method and

iteratively linearize about an initial guess, s = s̃ + δs,

∇L(s) ≈ ∇L(s̃) +
∂∇L(s)

∂s

∣∣∣∣
s̃

δs, (7.9)

solve for the value of δs such that,

∇L(s̃) +
∂∇L(s)

∂s

∣∣∣∣
s̃

δs = 0, (7.10)
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Algorithm 2: RC-LB-NMPC

Data: x̂k, xd, ud, and sinit
Result: xopt,uopt,wopt

1 initialization: s̃ = sinit;
2 while ‖δs‖ > η do
3 Compute x using a Sigma-Point Transform (Section 6.2.2) given ũ and (7.1);
4 Compute robust constraints;
5 Linearize ∇L(s) = 0 around s̃ and solve for δs;
6 Update s̃, s̃← s̃ + β δs;

and compute an updated value for s̃,

s̃← s̃ + β δs, (7.11)

where β is selected at each iteration such that wi > 0, i = 1 . . . nc. A good initial

guess for s̃ can be drawn from the previous time-step. After iterating to convergence

(Algorithm 2), we apply the first element of the resulting optimal control input sequence

for one time-step, and start all over at the next time-step.

7.3 Implementation

7.3.1 Learning-based Controller

The work presented in this chapter is an extension of the insights and work presented

in Chapters 5 and 6. As in LB-NMPC, disturbances are modelled as a GP enabling the

prediction of the mean and uncertainty of model discrepancies (Section 5.2.2). Our work

on both LB-NMPC and MM-LB-NMPC showed that modelling disturbances as a GP en-

ables consistent estimates of the mean and uncertainty of disturbances. Moreover, when

modelling disturbances as a GP, it is necessary to reduce computational complexity by

carefully selecting support points. As a result, we continue to use the experience manage-

ment scheme presented in Section 5.3.2. We also leverage the work presented in Chapter 6

and use a Sigma-Point Transform to efficiently predict state sequences (Section 6.2.2).

However, unlike our work on MM-LB-NMPC, here we use the predicted uncertainty to

compute robust constraints in order to provide guarantees on constraint satisfaction. Fi-

nally, we continue to model robots as unicycle vehicles (Section 5.3.1) with the same

disturbance dependency, ak = (x̄k, v̄k−1,uk,uk−1), as used in Chapter 6. With these
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fundamental building blocks, the RC-LB-NMPC algorithm represents a learning-based

algorithm capable of real-time inputs over long-distance paths, anytime learning, and

generalization while guaranteeing constraint satisfaction in spite of model uncertainty.

7.3.2 Localization-delay Compensation

This work also includes efforts to mitigate the effect of delayed localization. In practice,

state estimates are provided by the path localizer in real-time (i.e., we require a minimum

of 10 Hz). However, since the localization algorithm is the product of a sequence of steps,

the state estimate based on a stereo-pair can be delivered up to 0.5 s after a stereo image-

pair was acquired. Let time k represent the current time and suppose the RC-LB-NMPC

receives the state estimate x̂k−D at time k (i.e., D represents the number of time-steps

required to compute a state estimate based on an image-pair). Effectively, the algorithm

collects historic inputs, {uk−D, . . . ,uk−1}, then uses the state estimate, x̂k−D, and the

learned model to estimate the state mean and uncertainty at time k,

x̂k−D+1 = f(x̂k−D,uk−D) + g(âk−D),

x̂k−D+2 = f(x̂k−D+1,uk−D+1) + g(âk−D+1),

...

x̂k = f(x̂k−1,uk−1) + g(âk−1).

(7.12)

Effectively, we account for changes in both the mean and uncertainty since the stereo

image-pair was captured. In this way, we seamlessly integrate with localization systems

and allow for variation in computation time. For example, under normal operation when

state estimates are provided in a timely fashion, the localization-delay compensation

accurately propagates the state for smooth operation. In the case that localization fails to

provide any state estimates, the algorithm becomes increasingly uncertain of the current

state of the robot until the RC-LB-NMPC algorithm is unable to guarantee constraint

satisfaction and stops the robot. While it does not represent a significant breakthrough,

the ability of the RC-LB-NMPC modelling and prediction framework to compensate

for localization delay represents a simple extension and another benefit of our work on

creating a flexible, learned model capable of generalization.
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Start / Finish

Desired Path

Figure 7.5: Testing culminated in the third experiment where the path, shown here,
was defined around the University of Toronto Institute for Aerospace Studies (UTIAS)
campus. The 900-m-long path passed in between trees and structures and over vegetation,
pavement, inclines, and side-slopes. In all experiments, the nominal unicycle model
used in our RC-LB-NMPC algorithm included no prior information on wheel-terrain
interactions or robot dynamics. (Imagery: Google)

7.4 Experimental Results

7.4.1 Overview

We tested the RC-LB-NMPC algorithm on a 50 kg Clearpath Husky and a 900 kg Clearpath

Grizzly in three different experiments with many different surface materials and topogra-

phies. This resulted in over 5 km of path tracking by the RC-LB-NMPC algorithm.

The first and second experiments (Sections 7.4.3 and 7.4.4) compared unconstrained

LB-NMPC, Constrained LB-NMPC (C-LB-NMPC), and the proposed RC-LB-NMPC

algorithm. The three variants solved the same optimization problem (7.6) with the fol-

lowing two exceptions. First, state constraints (7.4) were disabled for the LB-NMPC al-

gorithm. Second, the C-LB-NMPC algorithm included only non-robust state constraints
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(i.e., α = 0 when computing (7.4)). The third experiment (Section 7.4.5) thoroughly

tested the RC-LB-NMPC algorithm over the course of five trials on an outdoor 900-m-

long path involving pavement, dirt, sand, grass, inclines, and side slopes (Figure 7.5). The

three experiments demonstrate the presented algorithm’s ability to guarantee constraint

satisfaction while improving performance through learning.

In all experiments, the controller described in Section 7.2 was implemented and run

in addition to the VT&R software (Chapter 2) on a Lenovo W530 laptop with an Intel

2.6 Ghz Core i7 processor with 16 GB of RAM. The camera in all tests was a Point Grey

Bumblebee XB3 stereo camera. The resulting real-time localization and control signals

were generated at approximately 10 Hz. Since GPS was not available, the improvements

due to the RC-LB-NMPC algorithm were quantified by the localization provided by the

VT&R algorithm.

7.4.2 Tuning Parameters

The performance of the system was adjusted using the NMPC weighting matrices Q and

R, the confidence level, l, and the experience management parameters. The weighting

matrices were selected in advance with a 25:1:10 ratios weighting path-tracking errors,

angular control inputs, and linear control inputs for the 50 kg Husky and a 25:5:10 ratio

for the 900 kg Grizzly robot. The increased weighting on the Grizzly inputs was selected

to ensure controller stability at higher speeds. The selected confidence level was l = 0.997,

resulting in α = 3 (i.e., three standard deviations). As in previous chapters, local GP

models were generated based on a sliding window of size, cvertex = 5 and cvelocity = 1, where

velocities were discretized by vbin = 0.25 m/s. The maximum number of experiences per

bin, cbin, was set to 4 resulting in local models based on up to 180 experiences.

7.4.3 Experiment 1: Indoor Algorithm Comparison

The first experiment compared three algorithms (LB-NMPC, C-LB-NMPC, and RC-LB-

NMPC) over three trials using a 50 kg Clearpath Husky robot on an indoor, flat, concrete

surface (Figure 7.6). Since the concrete did not develop tire ruts and the lighting did not

change over the course of the experiment, these results provide a clear comparison of the

algorithms.
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Figure 7.6: (Left) The desired path and (Right) the 50 kg Clearpath Husky at the start
of the experiment 1 path. The smooth concrete floor and constant lighting providing
identical path conditions for all trials.
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Figure 7.7: The maximum tracking errors and travel times vs. trial for the three com-
pared algorithms in experiment 1. The RC-LB-NMPC algorithm results in constraint
satisfaction at the cost an increased travel time (i.e., slower average speed).

We show the maximum tracking errors and travel times vs. trial in Figure 7.7. With-

out state constraints, the LB-NMPC algorithm incurs the largest tracking errors in the

first trial, decreasing in later trials through learning. By adding constraints, the C-LB-

NMPC algorithm reduced the errors during the first trial, but was overconfident and

failed to satisfy the lateral constraints. On the other hand, the RC-LB-NMPC algorithm

resulted in increased travel time relative to the other algorithms when the model was

uncertain (i.e., during the first trial), but provided constraint satisfaction throughout all

trials. Figure 7.8 shows tracking errors and control inputs vs. distance along the path

for all trials. The LB-NMPC and C-LB-NMPC algorithms showed lateral constraint

violations at 7, 16, and 24 m along the path (i.e., the turns) in the first trial. The RC-

LB-NMPC algorithm avoided such constraint violations partly by lowering the speed to

approximately 0.5 m/s throughout the path. This speed represents roughly half of the
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Figure 7.8: Tracking errors and commanded inputs vs. distance during the first, second,
and third trials of experiment 1. The RC-LB-NMPC algorithm automatically reduces
speed in order to meet lateral and heading constraints during the first trial. As model
uncertainty is reduced through learning, the RC-LB-NMPC algorithm naturally increases
speed and thus performance.



7.4. Experimental Results 99

maximum speed possible by the Husky robot. The ability of the RC-LB-NMPC algo-

rithm to optimally compute the linear and angular speeds of the robot in real-time while

robustly meeting constraints represents one of the advantages of this algorithm. In prac-

tice, control algorithms must be capable of reacting robustly to given state constraints in

tandem with scheduled speeds. This experiment also shows how the RC-LB-NMPC algo-

rithm produces optimal results similar to the unconstrained algorithm after the learned

model has collected experience. In this way, the RC-LB-NMPC algorithm behaves conser-

vatively when the learned model is uncertain, and optimally when the model uncertainty

has been reduced through learning.

7.4.4 Experiment 2: Off-road Algorithm Comparison

The second experiment once again compared the three algorithms (LB-NMPC, C-LB-

NMPC, and RC-LB-NMPC). However, in this experiment, we tested with a 900 kg

Clearpath Grizzly robot on a more challenging and realistic 90-m-long, off-road path

(Figure 7.9) in the University of Toronto Institute for Aerospace Studies (UTIAS) Mars-

Dome. In this experiment, the Grizzly was limited to 2.0 m/s considering path roughness.

Since the path was on loose material and the Grizzly is quite heavy, significant ruts de-

veloped over the course of the experiment resulting in evolving disturbances from trial
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Figure 7.9: (Left) Lateral constraints outlining the experiment 2 path along with the
RC-LB-NMPC actual path and speed (trial 10). The RC-LB-NMPC algorithm optimally
selects angular and linear speeds in real-time considering the given constraints. (Right)
The 900 kg Clearpath Grizzly at the start of the path. The off-road path, higher speeds,
and heavy robot results in more challenging conditions for the algorithms.
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Figure 7.10: The maximum tracking errors and travel times vs. trial from experiment 2.
Of the three algorithms, RC-LB-NMPC is the only one to respect constraints in all trials
at the cost of higher travel time.

to trial. In this situation, we rely on the uncertainty of the learned model to capture

the effect of the evolving disturbances, and only the RC-LB-NMPC algorithm uses the

learned uncertainty to guarantee constraint satisfaction. We show the maximum tracking

errors and travel times vs. trial in Figure 7.10. Without state constraints, the LB-NMPC

algorithm results in the fastest travel time and also the highest lateral errors of the first

trial. During later trials, the errors are reduced through learning with no notable changes

in travel time. By adding constraints, the C-LB-NMPC algorithm reduced the errors dur-

ing the first trial but still failed to satisfy the lateral constraints. As with experiment 1,

the RC-LB-NMPC algorithm resulted in constraint satisfaction throughout all trials and

decreased travel time through learning. This confirmed our goal of providing guaranteed

constraint satisfaction while improving performance through learning. Figure 7.11 shows

tracking errors and control inputs vs. distance along the path for trials one, two, and

ten. Without constraints, the LB-NMPC algorithm resulted in the highest speeds and

errors. The constraints led the C-LB-NMPC algorithm to reduce speeds in general but

the algorithm was overconfident and exceeded limits during each trial. Specifically, the

turn at 65 m is an example where significant ruts developed causing wheel slip. Since the

RC-LB-NMPC algorithm robustly incorporated learned model uncertainty, the algorithm

successfully passed through this section during each trial. Figure 7.12 shows measured

and predicted disturbances used by the RC-LB-NMPC algorithm. The most complex

disturbances affected the angular state of the robot, g(3).
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Figure 7.11: Tracking errors and commanded inputs vs. distance during the first, second,
and tenth trials of experiment 2. The most challenging turn occurred at 60 m along the
path, where significant ruts developed in the loose gravel.
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Figure 7.12: Modelled disturbances, g(·) = (g(1)(·), g(2)(·), g(3)(·)), during the first, sec-
ond, and tenth trials. As the algorithm gathers experience, the model uncertainty de-
creases and model accuracy increases.

7.4.5 Experiment 3: Field Test

Finally, the third experiment thoroughly tested the RC-LB-NMPC algorithm on a 900-

m-long, off-road path repeated five times (Figures 7.5 and 7.13). The third path covered

a wide range of surfaces including grass, dirt, pavement, side slopes, and inclines while

passing through trees, solid structures, and dense foliage. Once again, we tested with

a 900 kg Clearpath Grizzly robot limited to 2.0 m/s considering the path roughness.

We show that over the course of the experiment, the RC-LB-NMPC algorithm met

constraints and improved performance over sequential trials (Figure 7.14). Moreover,

the experiment shows that the algorithm as formulated was able to consistently deliver

control input updates at 10 Hz despite the relatively large dataset gathered over the course

of the five trials. Specifically, the learned model had accumulated over 25,000 experiences

by the fifth trial, relying on the experience management scheme to extract up to 180
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Figure 7.14: The maximum tracking errors and travel times vs. trial for experiment 3.
Tracking errors met the given constraints while learning reduced the travel time by almost
50%.

relevant experiences at any given time-step. Tracking error and velocity distributions

from trials one and five show that over the course of the experiment, the lateral error

distribution widens but continues to fit within the limits (Figure 7.15). We do not

expect the tracking errors to go to zero since the RC-LB-NMPC algorithm is an optimal

control algorithm, balancing tracking errors and control inputs subject to the constraints.

Finally, Figure 7.16 shows tracking errors and control inputs vs. distance along the path

for trials one, two, and five. The first trial is representative of a conservative, non-learning

RC-NMPC algorithm: without experiences, the mean predicted disturbance is zero but
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Figure 7.15: Error and velocity distributions for trials one and five of experiment 3.
Learning resulted in a relatively wider distribution of lateral errors as the algorithm
became more confident.

high uncertainty, capturing the wide range of possible disturbances. After just one trial,

the learned model has collected enough experience to significantly reduce uncertainty and

increase performance. Modelling disturbances as a GP enables efficient interpolation and

extrapolation from data collected during previous trials.

7.5 Discussion

In general, this work combines concepts of RC-MPC and machine learning in a practical

and flexible way. With respect to the robust constraints, there are two main opportuni-

ties. First, obstacle avoidance (i.e., the ability to optimally deviate slightly from a desired

path) using an accurate, learned process model could be of benefit to mobile robots. As

previously mentioned, one key benefit of our algorithm is that disturbances and robust

constraints are computed in real-time. In practice, the controller could incorporate con-

straints provided by both the guidance and navigation algorithms to further improve

overall system safety and reliability. Second, conservativeness of robust algorithms is an

on-going topic for MPC research in general. As can be seen in the results of the RC-LB-

NMPC algorithm presented in Chapter 7, the tracking errors remain relatively far from

the actual constraints. Reductions in conservativeness will allow for increases in perfor-

mance of practical robots. Also, one of our key requirements for real-time operation is

the ability to rapidly identify relevant experiences for our local disturbance model.
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Figure 7.16: Tracking errors and commanded inputs vs. distance during the first, second,
and tenth trials of experiment 3. Results in the first trial mimic that of a non-learning
RC-NMPC algorithm with high model uncertainty representing all possible disturbances
and thus conservative inputs.
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7.6 Conclusion

In summary, this chapter presents a Robust Constrained Learning-based Nonlinear Model

Predictive Control (RC-LB-NMPC) algorithm for a path-repeating, mobile robot oper-

ating in challenging off-road terrain. In Chapter 5, we demonstrated unconstrained LB-

NMPC, where tracking errors were reduced using real-world experience instead of pre-

programming accurate analytical models. In Chapter 6, we presented MM-LB-NMPC

where the mean and uncertainty of state sequences were predicted using a Sigma-Point

Transform. The work presented in this chapter represents a major contribution of this

thesis, combining the real-time, GP-based disturbance model with efficient state sequence

prediction, and state and input constraints. The resulting algorithm computes optimal

linear and angular speeds at every time-step such that all plausible predicted sequences

satisfy the given constraints considering a learned model whose uncertainty is decreasing

over time.

The RC-LB-NMPC algorithm uses a fixed, simple robot model and a learned, non-

parametric disturbance model. Disturbances represent measured discrepancies between

the a priori model and observed system behavior. We use a Sigma-Point Transform to

efficiently compute the mean and variance of predicted state sequences given the two-

component, learned, stochastic model. Finally, we apply restricted constraints to the

mean predicted sequence such that the 3σ confidence region is contained within the de-

sired constraints. We provide extensive experimental results comparing unconstrained

LB-NMPC, constrained LB-NMPC, and the RC-LB-NMPC algorithm using two signif-

icantly different robots and over 5 km of off-road travel. The results show that during

initial trials when model uncertainty is high, the algorithm produces conservative, low-

speed inputs. The algorithm then produces safe, high-performance inputs during later

trials when model uncertainty is reduced through learning.



Chapter 8

Summary and Future Work

8.1 Summary of Contributions and Publications

In conclusion, we have investigated learning-based control for autonomous mobile robots

in this thesis. Practical mobile robots operating in off-road terrain require techniques to

mitigate the effects of surface materials, terrain topography, and complex robot dynamics.

In practice, finding representative a priori models for off-road effects is challenging since

(i) the terrain is often not known ahead of time, (ii) robot-terrain interaction models

often do not exist, and (iii) even if such models did exist, finding model parameters is

cumbersome. In this work, we propose to use experience to improve path tracking.

We began with the goal that the controller be capable of real-time operation over

long-distance paths. As a result, we investigated Iterative Learning Control (ILC), a

learning-based algorithm where feedforward control inputs are computed offline, prior to

operation, based on tracking errors from previous trials. The contributions associated

with Chapter 3 include:

1. A learning-based algorithm using vision-based localization enabling high-performance

operation in off-road environments without the need for external infrastructure,

2. A learning-based algorithm for mobile robots comprised of ILC in parallel with a

feedback controller enabling path completion during the first trial and improved

performance thereafter,

3. A novel formulation where feedforward commands are indexed by distance enabling

the robot to track the desired path at a safe speed during the first trial, with

increased speed during later trials,
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4. The first experimental results for ILC on challenging, off-road paths including over

700 m of travel by two significantly different skid steered robots.

The publication associated with this chapter is:

• Ostafew, C., Schoellig, A. P., and Barfoot, T. D. (2013). Visual Teach and Re-

peat, Repeat, Repeat: Iterative Learning Control to Improve Mobile Robot Path

Tracking in Challenging Outdoor Environments. In Proceedings of the International

Conference on Intelligent Robots and Systems, pages 176-181.

Based on experimental testing of our work on ILC, we determined that anytime learn-

ing and the ability to generalize from learned experiences is necessary in enabling flexible,

learning-based behavior for mobile robots. Moreover, we also found an opportunity to use

experience to compute time-optimal speed schedules for any given trial. As a result, in

Chapters 4 and 5, we presented an automated speed scheduler and Learning-based Non-

linear Model Predictive Control (LB-NMPC). The contributions associated with these

chapters include:

1. A novel speed scheduler incorporating path-tracking experience, localization expe-

rience, and a priori speed and acceleration limits,

2. The first LB-NMPC algorithm for mobile robots where an a priori process model is

augmented with an experience-based disturbance model. The resulting controller

compensates for effects not captured by the fixed process model, such as environ-

mental disturbances and unknown dynamics,

3. A novel approach where disturbances are modelled as a Gaussian Process (GP),

and predictions are computed based on a sliding window of training data. This

allows for real-time operation over long paths, anytime learning, and the ability to

generalize from experience,

4. Extensive experimental results on three significantly different robots with over 7 km

of travel on off-road paths.

The publications associated with these chapters are:

• Ostafew, C., Collier, J., Schoellig, A.P., and Barfoot, T. (2014a). Speed Daemon:

Experience-Based Mobile Robot Speed Scheduler. In Proceedings of the Conference

on Computer and Robot Vision, Best Robotics Paper Award, pages 56-62.
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• Ostafew, C., Schoellig, A.P., and Barfoot, T. (2014b). Learning-Based Nonlinear

Model Predictive Control to Improve Vision-Based Mobile Robot Path-Tracking in

Challenging Outdoor Environments. In Proceedings of the International Conference

on Robotics and Automation, pages 4029-4036.

• Ostafew, C., Collier, J., Schoellig, A. P., and Barfoot, T. D. (2015a). Learning-

based Nonlinear Model Predictive Control to Improve Vision-based Mobile Robot

Path Tracking. Journal of Field Robotics, 33 (1): 133-152.

Finally, based on our work with LB-NMPC, we determined that in addition to real-

time control over long-distance paths, anytime learning, and the ability to generalize

from experience, the learning-based algorithm should also provide robust control inputs.

Specifically, the learning algorithm begins with an uncertain, nominal process model and

learns an accurate, low-uncertainty model based on experience. As a result, we presented

Min-Max LB-NMPC and Robust Constrained LB-NMPC in Chapters 6 and 7 in order

to guarantee stability throughout the learning process in spite of model uncertainty. The

contributions associated with these chapters include:

1. The first example of efficient prediction of the mean and uncertainty of state se-

quences considering a learned model using a Sigma-Point Transform,

2. A novel Min-Max LB-NMPC (MM-LB-NMPC) algorithm combining the GP-based

learned model, efficient prediction of state sequences using a Sigma-Point Trans-

form, and an alteration to the NMPC performance function to optimize for the

worst-case scenario,

3. A novel Robust Constrained LB-NMPC (RC-LB-NMPC) algorithm combining the

GP-based learned model, efficient prediction of state sequences using a Sigma-Point

Transform, and state and input constraints.

The publications associated with these chapters are:

• Ostafew, C., Schoellig, A., and Barfoot, T. (2015b). Conservative to Confident:

Treating Uncertainty Robustly Within Learning-based Control. In Proceedings of

the International Conference on Robotics and Automation, pages 421-427.

• Ostafew, C., Schoellig, A. P., and Barfoot, T. D. (2016). Robust Constrained

Learning-based NMPC Enabling Reliable Mobile Robot Path Tracking. Interna-

tional Journal of Robotics Research, To Appear.



110 Chapter 8. Summary and Future Work

Finally, efforts towards experimental validation of Guidance, Navigation, and Control

frameworks in general also led to a number of publications. These contributions include

the application of the framework for a human-guided exploration task, and lighting-

resistant VT&R. These were published as follows:

• Berczi, L.-P., Ostafew, C., Stenning, B., Barfoot, T., Jones, E., Tornabene, L.,

Osinski, G., and Daly, M. (2014). Place Revisiting and Teleoperation for a Sample-

Return Mission Control Architecture. In Proceedings of the International Sym-

posium on Artificial Intelligence, Robotics, and Automation in Space, Montreal,

Canada.

• Paton, M., MacTavish, K., Ostafew, C., and Barfoot, T. D. (2015). It’s Not

Easy Seeing Green: Lighting-resistant Stereo Visual Teach & Repeat using Color-

Constant Images. In Proceedings of the International Conference on Robotics and

Automation, pages 1519-1526.

8.2 Future Work

In this thesis, we focused on developing the primary building blocks enabling real-time,

flexible, learning-based control for mobile robots. The work culminated in the RC-

LB-NMPC algorithm capable of learning from experience while guaranteeing stability

throughout the learning process. As discussed in Chapter 5, two opportunities for fu-

ture work include the analysis of convergence rates and the exploration vs. exploitation

problem as discussed in Chapter 5. Moreover, we presented the opportunities for obsta-

cle avoidance and reductions in the conservativeness of the RC-LB-NMPC algorithm in

Chapter 7. In addition to the insights provided throughout the thesis, there are other

opportunities for future work stemming from both improvements to the individual com-

ponents and to the overall algorithm.

In order to enable real-time control of the GP-based algorithms, we employed an

experience-management scheme. The approach created local models at every time-step

based on relevant experiences and discarded older experiences in order to keep the total

number of experiences manageable. Improvement of the learned model represents a sig-

nificant opportunity for future work. For example, further research into the selection of

support points is likely to improve modelling accuracy and reduce computation time by

requiring fewer experiences in each local model. Moreover, the approach of discarding
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experiences precludes the possibility of long-term evolution of robot-terrain interactions

due to changes in weather or season. Finally, one could also investigate the ability to man-

age mislearning. Mislearning occurs when the model incorporates an outlier disturbance

estimate and could perhaps be identified under an experience management scheme.

With respect to the overall concept of learning-based control, Jordan and Mitchell

(2015) present a survey of recent trends and prospects for machine learning. Specifically,

they highlight the opportunity and need for further research into team-based learning.

The goal is to identify effective methods of transferring data between robots such that

any improvements found by one robot can be shared by all robots in a team. Team-based

learning is a growing topic studying various methods of transferring data between robots

such that any improvements found by one robot can be shared by all. As opposed to

our experiments demonstrating a single robot tracking a single path, one could imagine a

large network of paths with many robots improving performance collectively and safely.

Finally, there is an opportunity for further work on generalization from experiences. In

this work, we assume disturbances are place-specific and generalize locally (i.e., from

experiences collected at nearby locations and similar speeds). However, future work

could be focused on removing the place-specific assumption and generalizing from path

to path based on speed or path qualities, like curvature.

These possibilities for future work will further enable robust, safe, life-long learning

for practical mobile robots.
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