The Oxford Lectures

A Short Course in State Estimation

Timothy D. Barfoot
University of Toronto

Copyright (© 2024

' UNIVERSITY OF

¥ TORONTO

Course Outline

Lecture 1: Linear-Gaussian Estimation
Lecture 2: Nonlinearities and Lie Groups
Lecture 3: Continuous-Time Estimation

Lecture 4: Beyond MAP — Variational Inference

%

@ UNIVERSITY OF

& TORONTO

' UNIVERSITY OF

¥ TORONTO

Lecture 1: Linear-Gaussian Estimation

A Short Course in State Estimation

Timothy D. Barfoot
University of Toronto

Copyright (© 2024

Lecture Outline

Lecture 1: Linear-Gaussian Estimation
Problem Setup
Bayesian Inference
Maximum A Posteriori
Sparsity
Existence and Uniqueness
Uncertainty

Lecture 2: Nonlinearities and Lie Groups
Lecture 3: Continuous-Time Estimation

Lecture 4: Beyond MAP — Variational Inference

&

UNIVERSITY OF

¥ TORONTO

Why linear-Gaussian?

Assume a spherical cow of uniform
density...

>
VI

...while ignoring the effects of gravity...

5

...in a vacuum.

UNIVERSITY OF

¥ TORONTO

most of the classical results are for linear-
Gaussian systems
we can often find results without approximation

we can get some intuition for real systems by
studying them

“Equation (1.2-9) is a second order, nonlinear, vector,
differential equation which has defied solution in its
present form. It is here therefore we depart from the
realities of nature to make some simplifying

assumptions...”
— Bate et al., Fundamentals of Astrodynamics (1971)

“Linear systems are very important because we can solve

them exactly!”
— Sami Mikhail (heard third hand via Raja Mukherji)

What are the odds? (probability in one slide)

probability density function (PDF) p(x) t

Thrun et al. (2006)

conditional PDF (sensor model) p(ylx)
Bayes' rule (inference) pxly) = 7"(3”[’(‘;1)’(")
p(x) o) = Lo (L= w?
. | | P plalpnso®) = o exp (P)
Gaussian PDF p(x) =N (1, %) = TS P (—3x =)= (x—)
-
m
y
L " 12 Tow Ty o
Jjoint Gaussian PDF px,y)=N ([f} A [
U 1 A -
i E
Gaussian marginalization p(x) = [p(x,y)dy =N (1., Zaz)
v la.y)
ply) ty
Gaussian conditioning pxly) =N (Hr + szg;(y = ty)s B — Eryzﬁlzw) (/
ix z
plz) Pl Ymeas)

UNIVERSITY OF

&
¥ TORONTO

System

— we define our system using the following linear, time-varying

models:
motion model: xp = Ap_1Xp_1+Vvet+twe, k=1...K
observation model: yr = Cpxp+ng, k=0...K

where k is the discrete-time index and K its maximum
— the variables have the following meanings:

system state : x, € RY
initial state : xo € RN ~ N(XO,PO)
input : vi €RY
process noise : wi, € RN ~ N (0,Qq)
measurement : yi € RM
measurement noise : n, € RM ~ NV (0,Ry)

UNIVERSITY OF

% TORONTO

System example

di, = pr + ke

~—— Uk
Y& Cc, —~ ng
Xk

observation model

&

UNIVERSITY OF

¥ TORONTO

1
Pk R pr—1+Tok—1+ §T2(a;€ + wg)

v R vg—1 + T (ag + wy)

pe| _ |1 T |pr—1 1T? 17?2
[UJ —[0 1} [ka—i_[T ap + T Wi

Xk A1 Xp—1 Vi Wi

motion model

What do we know?

— although we want to know the state of the system (at all times),
we only have access to the following quantities, and must base our
estimate, Xy, on just this information:

(i) the initial state knowledge, X¢, and the associated covariance
matrix, PO; sometimes we do not have this piece of information and
must do without

(ii) the inputs, v, which typically come from the output of our
controller and so are known; we also have the associated process
noise covariance, Qy

(iii) the measurements, Yx meas, Which are realizations of the associated
random variables, yi, and the associated covariance matrix, Ry
— we will use (-) to indicate posterior estimates (incorporating

measurements) and (-) to indicate prior estimates (not
incorporating measurements)

&

UNIVERSITY OF

¥ TORONTO

Problem statement

— we define the state estimation problem as follows:

Definition

The problem of state estimation is to come up with an estimate,
Xy, of the true state of a system, at one or more timesteps, &,
given knowledge of the initial state, Xp, a sequence of
measurements, Yo.x,meas, @ sequence of inputs, vi.x, as well as
knowledge of the system’s motion and observation models.

v

— our approach will always be to attempt to come up with not only a
state estimate, but also to quantify the uncertainty in that
estimate

&

UNIVERSITY OF

¥ TORONTO

Batch is best

— we will begin by investigating batch linear-Gaussian techniques
(sometimes called smoothers)

— the batch solution is very useful for computing state estimates
after the fact because it uses all the measurements in the
estimation of all the states at once (hence the usage of ‘batch’)

— a batch method cannot be used online since we cannot employ
future measurements to estimate past states

— recursive state estimators (called filters) can be used online

smoothers use all available information to estimate states

Xk
A
Vf \
X0,Y0,V1,¥Y1,V2,¥2,- -+ s Vk—1,Yk—15Vk, Yk Vk+15 Yk+15- - -, VK, YK
X, f

filters only use past/current information to estimate states

&

UNIVERSITY OF

¥ TORONTO

All roads lead to Rome

— we will set up the batch linear-Gaussian estimation problem using
two different paradigms:

(i) Bayesian inference; here we update a prior density over states
(based on the initial state knowledge, inputs, and motion model)
with our measurements, to produce a posterior (Gaussian) density
over states

(i) maximum a posteriori; here we employ optimization to find the
most likely posterior state given the information we have (initial
state knowledge, measurements, inputs)

— while these approaches are somewhat different in nature, it turns
out that we arrive at the exact same answer for the linear-Gaussian
problem

— this is because the full Bayesian posterior is exactly Gaussian and
so the optimization approach will find the maximum (i.e., mode)
of a Gaussian, and this is the same as the mean

UNIVERSITY OF

¥ TORONTO

A marriage of convenience

— we will combine the initial state knowledge and inputs in the
following way:

V= (X()vVl:K) = (XO,Vl, N 7VK)

since they are both related to our prior knowledge of the state

— we will also define
Y =Yook = (Y0, YK)
to denote all of our measurements and
X = X0k = (X0y .-+, XK)
for our entire state (all timesteps)

&

UNIVERSITY OF

¥ TORONTO

Approach (i): Bayesian inference

— we would like to compute the full Bayesian posterior:

_ pyx, v)p(x|v)
PO =T)

— we will take the two-step approach of building a joint density over
states, inputs, measurements,
p(xy[v) = plylx,v) p(x|v)
S—— Y—~—

observations prior
and then factor it the other way, keeping only the bit we want:
p(x,y|v) = p(xly,v) p(y|v)
SN—— N~
posterior discard

3 UNIVERSITY OF

¥ TORONTO

Prior

— recall our motion model,
Xp = Ap_1Xp1 + Vg + Wy

— in lifted matrix form (i.e., whole trajectory), we can write this as

x=A(v+w)
where w is the lifted form of the initial state and process noise,
and
1
Ao 1
A1Ap Ay 1
A= .
Ak o2--Ay Ag o2---A1 Ag oAy - 1
Ag 1Ay Ag 1---A1 Ag 1Ay -+ Ag 1 1

is the lifted transition matrix, which we see is lower-triangular

UNIVERSITY OF

¥ TORONTO

Prior

— the lifted mean is then
x = FE[x]=FE[A(v+WwW)] =Av
— the lifted covariance is
P =E[(x - E[x])(x - E[x])"] = AQAT
where Q = E[ww’] = diag(Po, Q1, ..., Qxk)

— our prior can then be neatly expressed as

p(x|v) =N (%,P) =N (AV,AQAT)

' UNIVERSITY OF

¥ TORONTO

Measurements

— we now want to compute p(x,y|v) = p(y|x, v)p(x|v)

— we will use the measurement model
yi = Crpxp + ny
— this can also be written in lifted form as
y=Cx+n
where n is the lifted form of the measurement noise and
C =diag (Cy,Cy,...,Ck)

is the lifted observation matrix

&

UNIVERSITY OF

¥ TORONTO

Joint Gaussian

— the joint likelihood of the prior lifted state and the measurements
can now be written as

(x.yv) = N % P pCT
PR yiv) = Cx|’|[CP CPCT+R
where R = E[nn”] = diag(Rg, R, ...,Rk)
— we can factor this according to
p(x,yv) = p(xly, v)p(y|v)

— we only care about the first factor, which is the full Bayesian
posterior

' UNIVERSITY OF

¥ TORONTO

Posterior
— this can be written, using the Gaussian conditioning formula, as
p(xlv,y) = N (% + PCT(CPCT + R) " (y - CX),
P - PCT(CPCT + R)*10P>

— using the Sherman-Morrison-Woodbury identity, this can be
manipulated into the following form:

p(x|v,y) = N((P‘l + CTR_lC)71 (P~ 'x+C"Ry),
%, mean

P!+ CTR—lc)’l)

P, covariance

— we could use this as is, but there is a better way

' UNIVERSITY OF

¥ TORONTO

Posterior
— we can rearrange the mean expression to arrive at

P '+C'"R'C)x=P 'x+C'Rly

P—l

and we see the inverse covariance appearing on the left-hand side
— substituting in X = Av and P~1 = (AQAT) ' = A-TQ 'A!
we can rewrite this as

(ATTQ'A'+C'"RT'C) x=ATTQ v+ C'R Ty

P—l

— or more compactly,
(H'W'H) x=H'"W 'z

==l W= g

UNIVERSITY OF

¥ TORONTO

Approach (ii): maximum a posteriori (MAP)

— instead of computing the full Bayesian posterior, what if we just
tried to find the most likely state of our system given the initial
state knowledge, inputs, and measurements?

— to accomplish this, we could try to solve the following optimization

problem:
X = arg max p(x|y, v)
X

which is to say that we want to find the best single estimate for
the state of the system (at all timesteps), X, given the prior
information, v, and measurements, y

&
UNIVERSITY OF

¥ TORONTO

MAP

— we begin by rewriting the MAP estimate using Bayes' rule:

p(y[x, v)p(x|v)
p(ylv)
= arg mEXp(y|X)p(X|V)

X = argmax p(x|y, v) = arg max
X X

where we drop the denominator because it does not depend on x

— we also drop v in p(y|x, v) since it does not affect y in our
system if x is known (see observation model)

&

UNIVERSITY OF

¥ TORONTO

MAP

— if we assume that all of the noise variables, w;, and ny, for
k=0...K, are uncorrelated, we can use Bayes' rule to factor
p(y|x) in the following way:

K

pylx) = [[pv [xx)

k=0

— furthermore, Bayes' rule allows us to factor p(x|v) as

=

p(x|v) = p(xo | %0) [p(xk [Xk—1, Vi)
k=1

&
UNIVERSITY OF

¥ TORONTO

Negative log likelihood

— to make the optimization easier, we insert the (negative) logarithm
function, which is monotonically decreasing

x = argmin (= In(p(y|x)p(x[v)))
K

— arg m)gn(— Inp(xo| %o) — 3 Inp(xi | x41, Vi)
k=1

K
— > Inp(ys |X/<:)>
k=0

— note, we are now minimizing due to the negative sign, which is
more common in optimization

&

UNIVERSITY OF

¥ TORONTO

MAP

— the component Gaussian densities are given by

1 1 - .
p(xol%0) = —F———=cexp (—5 (x0 — %0)T P, Y(xo — xo))
(27‘(‘)N det Pg
1 1 ’
P(Xk|Xk—1,VE) = —F——————-exp|—7 (X —Ag_1Xp—1 — Vg
(k1. Vi) (2m)N det Qy, (2 (! !)

xQp (X — Ap_1Xp—1 — Vk))

1

p(yrlxr) = \/W €

1 _
w0 (~5 e~ Co)” Ry (i - G

' UNIVERSITY OF

¥ TORONTO

MAP

— the component negative-log densities are given by

1 L 1 .
—Inp(xo|X0) = 5 (x0 — %0)T P, Y (xg — %0) + 5 In ((271')N det P0>

independent of x
1 _
—Inp(xplxp—1,ve) = = (xp—Ap_1xp_1 — Vi)' Q' (xk — Ap_1Xp_1 — Vi)
2

+ % In ((27F)N det Qk)

independent of x

1 _ 1
—Inp(yglxk) = 3 (v& — Crxi)" R (i — Crxi) + 5 In ((QW)M det Rk)

independent of x

3 UNIVERSITY OF

¥ TORONTO

MAP as optimization

— from an optimization perspective, we want to solve the following
problem:
X = arg min J(x)
X

— our cost function is

K
T(x) =D (Jok(x) + Jyx(x)

k=0
with
%(Xo—fio)TPal (Xo—ko) k=0
Jv,k(x) = % (Xk — Ay _1Xp_q1 — Vk)
Xlel (xp — Ap—1Xp—1 —vi) k=1...K
1 _
Jy,k(x) = 5 (yk - Ckxk)T Rk ! (Yk — Ckxk) k=0...K

UNIVERSITY OF

¥ TORONTO

MAP as a factor graph

X0 X1 X2 XK-1 XK
Jv,O(X) Jv,l(x) Jm?(x) Jv,K(X)

Jy0(%) Jy1(x) Jy2(x) Jy,k-1(x) Iy K (%)

K
X = arg rr;in J(x) = arg Hi(inkZ(J”*k(x) +]yk(x))
=0

motion prior measurements

UNIVERSITY OF

¥ TORONTO

MAP as optimization

— we can express our cost function more compactly as

J(x) = = (z—Hx)T W™ (z — Hx)

N |

recalling our definitions from the full Bayesian approach:

bl] v

— we see that J(x) is exactly quadratic in x

' UNIVERSITY OF

¥ TORONTO

MAP as optimization

— since J(x) is exactly a paraboloid, we can find its minimum in
closed form

— simply set the partial derivative with respect to the design variable,
X, to zero:

0J(x)

oxT

=-H'W™!(z-Hx) =0

%
— rearranging we have
H'W 'H)x=H"W 'z
which is the identical linear system we arrived at in the full

Bayesian approach

3 UNIVERSITY OF

¥ TORONTO

What gives?

— why do the full Bayesian and MAP approaches result in the same
linear system if they are trying to do different things?

H'WH)x=H'"W 'z

— the explanation lies in the fact that the full Bayesian posterior is
exactly Gaussian and the mean and mode (i.e., maximum) of a
Gaussian are one and the same

— for nonlinear systems, these two approaches will diverge, because
the posterior will not be exactly Gaussian

3 UNIVERSITY OF

¥ TORONTO

Sparsity

— both our approaches, full Bayesian and MAP, require us to
compute A1

— it turns out this has a beautifully simple form:

A=

1
~Axy 1]

— the sparsity comes from the fact that the system model obeys the
Markov property

3 UNIVERSITY OF

¥ TORONTO

Sparsity
— when we plug A~! into the linear system (via H)
(H'W'H)x=H"W 'z

the left-hand side looks like this:

H'W'H =

where * indicates a non-zero block

— the fact that the LHS is exactly block-tridiagonal means we can
solve for x in O(K) time instead of the usual O(K?) time for

solving linear systems
&

UNIVERSITY OF

¥ TORONTO

Sparsity

— it turns out we can efficiently factor H'W~1H using a sparse

Cholesky factorization into

H'W'H =LL”

where L is a block-lower-triangular matrix called the Cholesky

factor:

L,
Lo

L,
Lo

L,

Lrx_1,x-2

Lx_1
Lr k1

L |

— the decomposition can be computed in O(N3(K + 1)) time

' UNIVERSITY OF

¥ TORONTO

Cholesky solution

— once we have the Cholesky factorization, the solution of our linear
system is straightforward
— forward pass: solve
Ld=H"W !z
for d
— backward pass: solve
L'x=d
for x
— both passes can be done in O(N3(K 4+ 1)) time through
forward /backward substitution owing to the sparse lower-triangular
form of L
— thus, the batch equations can be solved in computation time that
scales linearly with the size of the state

UNIVERSITY OF

¥ TORONTO

Cholesky solution
— at the block level, the forward pass, k =1...K, is

LpLl = L +ALQ Ary
Licidir = au-1— AL1Q vy
Ly L, = —-Qu'Ar
I, = —LpyaLl, i +Q;'+C{R,'Cy
ar = —Lpp_1de_1 +Qp'vi + CLR, 'y

— the backward pass, k=K ...1, is
Li_ %1 = —Li X, + dps

— these are initialized with

I, = P;'+CIR;'Cy
a = Pgi'xo+ C{Ry'yo
X = Li'dg

(% UNIVERSITY OF

¥ TORONTO

Cholesky solution — Rauch-Tung-Striebel smoother

— our Cholesky approach will certainly work, and is appealing
because it follows easily from the batch setup and the
block-tridiagonal sparsity of the LHS

— historically, however, the Rauch-Tung-Striebel (RTS) smoother
equations constitute the canonical form

— the forwards pass of the RTS smoother is called the Kalman filter

— the Cholesky and RTS equations are algebraically equivalent, but
there is quite a lot of algebra needed to show this (see the book)

3 UNIVERSITY OF

¥ TORONTO

RTS smoother
— forward pass (a.k.a., Kalman filter), k=1...K:

Pr; = A aProi Al + Qs
Xpp = Ap_1Xp_1,5+ Vi
. . ~1
K, = Pk7fC£ (CkPk,fcf + Rk)
X = Xp g+ Ki(yie — CrXef)
— backward pass, k=K ...1:
Xp—1 = Xp—1,f+ (qu,ngflP;;}) (X — Xk, f)
Pry = Pris+ <Pk—1,fAz_1P;;;> (Pk - Pk,f)

N . T
x (Pr-1s AT PL))
— these are initialized with 17 kS
Pos = (1-KoCo)Poy, %0 = %o+ Ko(yo— Co%ko)

. Px = Pgy, Xr = XK.f
= UNIVERSITY OF

¥ TORONTO

Take-home message

The full Bayesian and MAP approaches result in the same system
of linear equations because the Bayesian posterior is exactly
Gaussian and the mean and mode (i.e., maximum) of a Gaussian
are one and the same.

H'W H)x=H"W 'z

Either the Cholesky or RTS smoother equations can be used to
solve this system of equations exactly and efficiently. These are
also equivalent to Gaussian belief propagation.

&

UNIVERSITY OF

¥ TORONTO

Take-home message

X0 X1 X2 XK—1 XK
Jv,O(X) Ju1 (x) Jv 2 (%) Jv,K(X)
Jy,0(x) Jy1(x) Jy,2(x) Ty, -1(x) Ty, K (%)

K
% = argmin J(x) = arg min Z (Jv,k (x) + Jy1(x))
k=0

motion prior measurements

(ATTQ AT +C'RT'C)x=ATTQ'v+ C'R Ty

p-1
block-tridiagonal

%

@ UNIVERSITY OF

& TORONTO

Existence and uniqueness

— how do we know there will be a solution to our batch equations?

H'W 'H)x=H'"W 'z

in general, linear systems have 0, 1, or infinitely many solutions

for a unique solution the LHS might be invertible or equivalently
rank (H'W™'H) = N(K +1)

because we have dim x = N(K + 1)
we can drop W~ as long as it's invertible — it is, it's positive
definite by assumption — the test becomes

rank (H?) = N(K + 1)

&
UNIVERSITY OF

¥ TORONTO

Case (i): we have knowledge of the initial state

— we see that
rank HT
1 —-A7 cT
1 —AT cT
= rank 1 cy
_AJI;—l i
1 ct

— is exactly in block-row-echelon form, meaning there are N(K + 1)
‘leading ones’

— this means all the rows are linearly independent so the matrix is
full rank and our solution is unique

— intuitively, the prior already provides a complete solution and the

measurements nudge it

UNIVERSITY OF

¥ TORONTO

Case (ii): no knowledge of the initial state

— it might be that we have no idea about the initial state of the
system
— this removes the first column in H” and our condition becomes

rank HT
—Af | CF
1 AT CcT

= rank 1 cT

A%, o
1 cr

— it's no longer obvious that the solution is unique

&

UNIVERSITY OF

¥ TORONTO

Case (ii): no knowledge of the initial state

— moving the top block-row to the bottom does not change the rank

rank HY
1 -AT cT
1 Cct
AL, -
T ! T C%
_AO ‘ CO

= rank

— again without changing the rank, we can add to the bottom
block-row, AOT times the first block-row, AgAlT times the second
block-row, ..., and AOT . A;(_l times the Kth block-row

&

UNIVERSITY OF

¥ TORONTO

Case (ii): no knowledge of the initial state

— the result of this last step is

rank HT
1 AT cr

1 cr

= rank

ct

CT ATCT ATATCT -

A7 AL Ck

— the upper-left block is full rank, VK, since every row has a

‘leading one’
— all that remains is to determine if the bottom-right block is full
rank:
rank [CI AfCT ATATCY ... Al.--AL_CL]=N

&

UNIVERSITY OF

% TORONTO

Case (ii): no knowledge of the initial state — time-invariant

— if we further assume the system is time-invariant such that for all k&
we have A, = A and C; = C and we make the not-too-restrictive
assumption that K > N, we may further simplify this condition

— the Cayley-Hamilton theoreom says square matrices satisfy their
own characteristic equation, so powers of A greater than or equal
to N can be written as linear combinations of the lower powers

— this let's us keep only the first N block-rows, reducing the test to

(&

CA
rank . =N

cAM-Y
— this is precisely the test for observability — that we can reconstruct

the initial state from a finite number of measurements

&

UNIVERSITY OF

¥ TORONTO

Mass-spring analogy

&

initial state
knowledge plus
inputs ensures
observability

no initial state
knowledge can
be observable

no initial state
knowledge
can also be
unobservable
(in 1D this only
happens with no
measurements)

UNIVERSITY OF

& TORONTO

7

Ju0 Ju1 Ju2 Ju,3
—WAN— 5 W 5 YW 5 YW 5
0 X1 T2 I3
OO | OO OO |4 OO
Ju1 Ju2 Ju,3
#o —VWA—] &1 —VW—] &9 —VWA— &3
O0O|J4: OO O0O0|4 OO
Jz,yl .]1,72 Jm:}
s WA & WAV & WA -

Knowing when we don't know

&

we said at the beginning of the lecture that we'd like to bookkeep
all of the uncertainties in our estimate, but the linear system just
tells us the mean, right?

wrong, we can interpret it in the following way:

(H'W™'H) % = H'W 'z

—_———
- mean - .
inverse information
covariance vector

so the covariance of our estimate is
- -1
P=(H'"W'H)
our (Bayesian) estimate is

p(x|z) =N (5(, f’)

UNIVERSITY OF

¥ TORONTO

Knowing how to know when we don't know

— to see this, we can directly take the expectation of the estimate:

x— (H"W'H) ' H'"W 'z = (H'W 'H)" H'W! (Hx — 2)
———
Ex] s

where s = [W]
n

— in this case we have

P = EB[x-EX)x-EX)"|
— H'WH) 'H'W ! E[ss’] WH (H'W'H)
W

- H'W'H)

&
UNIVERSITY OF

¥ TORONTO

Lecture Summary

— we have looked at how to estimate a whole trajectory using initial
state knowledge, a sequence of inputs, and a sequence of
measurements for linear systems corrupted by Gaussian noise

— our Bayesian method involves solving a linear system of equations
for the mean and also builds the covariance

— we know how to solve this linear system very efficiently by
exploiting the sparsity of the matrices

— we have a test for when the solution is unique

— the batch approach can only be used offline since it is acausal (it
uses future data to estimate past states)

— the forward pass of the RTS smoother is the recursive Kalman
filter, which can be used online

— Lecture 2: Nonlinearities and Lie Groups

&

UNIVERSITY OF

¥ TORONTO

Lecture 2: Nonlinearities and Lie Groups

A Short Course in State Estimation

Timothy D. Barfoot
University of Toronto

Copyright (© 2024

' UNIVERSITY OF

¥ TORONTO

Lecture Outline

Lecture 1: Linear-Gaussian Estimation

Lecture 2: Nonlinearities and Lie Groups
Problem Setup
Gauss-Newton
Sparsity
Lie Groups and Algebras
Perturbations and Optimization
Example: Point-Cloud Alignment

Lecture 3: Continuous-Time Estimation

Lecture 4: Beyond MAP — Variational Inference

&

UNIVERSITY OF

¥ TORONTO

System

— we define our system using the following nonlinear models:

motion model: xx = f(xp_1, VK, Wk), k=1...K
observation model: yr = g(xg,ng), k=0...K

where k is again the discrete-time index and K its maximum
— the variables have the following meanings:

system state : x, € RY
initial state : xo € RN ~ ./\/'(5(0,130)
input : vi € RN
process noise : wi, € RN ~ N (0,Qp)
measurement : yi € RM
measurement noise : n; € RM ~ N (0,Ry)

' UNIVERSITY OF

¥ TORONTO

Nonlinear errors

— we aim to use the MAP approach to state estimation, but now for
nonlinear systems

— we define the errors with respect to the prior and measurements to

be
_ XO_X(L k=0
ev’k(X) B { f(xk—lvvkvo) — Xk, k=1.. K
ey r(x) = yr—8(x%0), k=0...K

— as usual, there is one error term for every measurement, every
input, and one for the initial state knowledge

3 UNIVERSITY OF

¥ TORONTO

MAP cost terms

— the contributions to the objective function are

1 1

Jop(x) = Qewk(X)T W, 1 evk(x)
1 .
Jyp(x) = §ey,k(x)T VVleC ey i (x)

— the overall objective function is then

K
J(X) = (Jv,k:(x) + Jy,k(x))
k=0

— by choosing W, ;. and W, ;. to be the inverse covariances of the
measurement noises, minimizing the objective function is
equivalent to maximizing the joint likelihood of all the data

&

UNIVERSITY OF

¥ TORONTO

MAP as a factor graph

X0 X1 X2 XK-1 XK
Jv,O(X) Jv,l(x) Jm?(x) Jv,K(X)

Jy0(%) Jy1(x) Jy2(x) Jy,k-1(x) Iy K (%)

K
X = arg rr;in J(x) = arg Hi(inkZ(J”*k(x) +]yk(x))
=0

motion prior measurements

UNIVERSITY OF

¥ TORONTO

Stacking things up

— we further define

ev,0(x) ey0(x)
€y, K (X) ey,K(X)

W =diag(W,,W,), W, =diag(Wy0,..., Wy xk),
Wy = dlag (Wy’(), N ,WyJ()

so that the objective function can be written as

J(x) = %'E:(X)TW_1 e(x)

&

UNIVERSITY OF

¥ TORONTO

Standard nonlinear squared error form

— we can further define the modified error term,
u(x) = Le(x)

where LTL = W™! (i.e., from a Cholesky decomposition since W
is symmetric positive-definite)
— using these definitions, we can write the objective function simply
as
7() = yu(x) u(x)

— this is precisely in a quadratic form, but not with respect to the
design variables, x

— due to the nonlinearities, this is typically a nonconvex function,
which can have local minima

UNIVERSITY OF

¥ TORONTO

Gauss-Newton

— the Gauss-Newton optimization method iteratively approximates
the objective function as a quadratic, which can be analytically
minimized at each iteration — result is a local minimization of J(x)

— a ‘short-cut’ to the Gauss-Newton method is to start with a
first-order Taylor expansion of u(x):
)(5}(
X,

op

du(x)
ox

wep + %) ~ i) +

— substituting into J we have
J(Xop + 0X)

<u<xop> + (55

~
~

DN | =

&

UNIVERSITY OF

¥ TORONTO

Gauss-Newton

— minimizing with respect to dx gives

s 5 _ (g + (28] Yox') (2
) (% T

- (2 i - (2

ox
— we apply the update to our initial guess using

)

op

) a(Xop)

Xop Xop

Xop — Xop + 0X*

and iterate to convergence

— modifications such a line search, Levenberg-Marquardt, and
trust-region methods can be used to improve convergence

] UNIVERSITY OF

¥ TORONTO

Maximum a posteriori

— getting back to our specific setup, we recall that
u(x) = Le(x)

with L a constant

— we substitute this into the Gauss-Newton update to see that in
terms of the error, e(x), we have

(H'WH) 6x* = H' W e(xop)

with

and where we have used LTL = W—!

' UNIVERSITY OF

¥ TORONTO

MAP

— at the individual error level, the linearized approximations are:

~ { €,,0(Xop) — 0Xo, k=0

ev,k(xop + JX) ev’k(xop) +Fr_10Xp_1 —0xp, k=1...K

e, k(Xop +0x) =~ eyr(Xop) — Groxg, k=0...K

where

~ Xg — Xop,05 k=0
e'u,k?<xop) ~ { f(x0p7k_1,vk,0)fx0p,k, k=1... K
e, r(Xop) ~ Yi—8Xopk,0), k=0...K
By — 0LV W) q, - 280k
OXp—1 Xop,k—1;Vk,0 Oxy Xop, k0

' UNIVERSITY OF

¥ TORONTO

MAP

— plugging these details into the batch Gauss-Newton equations

we have
5xq
5x1
s

ox = *2

SX ¢

(HTW’lH) ox* = HTW L e(xop)

block-tridiagonal

1
—Fy 1
7F1
1
—Fr_1 1 , e(xop) =
Go
G1
G2
Gk |
. = !’ 7 7 ’ 7
w :dlag(Po,Ql,u.,QK,RO,Rl,..‘,RK)

€y,0(Xop)
ey,1(Xop)

ey, K (Xop)

ey,O("op)
ey.l("op)

ey,K(xop)

— we solve for 6x*, update x,,, and iterate to convergence

3 UNIVERSITY OF

¥ TORONTO

p

Exploiting sparsity

— just as in the linear-Gaussian case, we must solve a large linear
system of equations where the left-hand side is block-tridiagonal —
only now we must do this at each iteration of Gauss-Newton

— we can modify the Cholesky and RTS smoothers to help us solve
this linear system of equations

— if we use the RTS smoother in a single forward and backward pass
where the linearization point is improved at each timestep, this is
referred to as the extended RTS smoother — the forward pass of
this is the extended Kalman filter

— if iterate over the whole trajectory, the RTS smoother can
efficiently implement the full Gauss-Newton method

— there are schemes in-between these two extremes such as the
iterated EKF and sliding-window filters

UNIVERSITY OF

% TORONTO

lterating is key

Gauss-Newton iterates over the entire trajectory, but runs offline and not in constant time
Xp X1 X2 X3 0 Xp—2 Xg-1 X Xg41 Xgy2 0 XK

— I

Sliding-window filters iterate over several timesteps at once, run online and in constant time
X2 X3 0 Xp—2 Xgp-1 Xp Xp41 Xkt+2 0 XK

<>

IEKF iterates at only one timestep at a time, but runs online and in constant time
Xk—2 Xg—1 Xk+1 Xk+2

0000 00000 0

UNIVERSITY OF

% TORONTO

Sliding-window filters

— sliding-window filters are a very common way to strike a nice
balance (accuracy vs. computational cost) between full batch
methods and basic filters:

iterate old window: (xy X1 X2 X3]| X4 X5 Xg

expand window: Cxo X1 Xg X3! X4] X5 Xg

contract window: | Xo(X1 X2 X3 X4 |X5 Xg
iterate new window: Xg 1 2 X3 X4 |X5 Xg

— while there are several variants, most SWFs use marginalization in
the window-contraction step:

[Aw | AL] by
Ao | An AL b, An - ApAg Al AL b1 — Ao Aj'bo
Az Axn Al = | b2 = As Az AL by
Az Asz Al bs Ag Az AL bs
Az Au by Az Ay by
-
HTW-1H sxr HTW-le HTW-'H xt HTW-le

&

UNIVERSITY OF

¥ TORONTO

We still need more tools

— consider the problem of aligning two point-clouds, y; and p;,

— we define our error term for each point as

and our objective function (with no motion prior) as

J(T) — 1 X r 1 M T
()_izwjejej—izwj (v, —Tp;)" (y; — Tpy)
=1 j=1

where w; > 0 are the usual scalar weights

— our state in this problem, T, is the unknown pose between the two
point-clouds

— T is not a typical vector quantity — it has constraints on its form

that we need to account for in the optimization problem

UNIVERSITY OF

¥ TORONTO

Pose

vi

I

— the pose of one reference frame with respect to another has six
degrees of freedom:

— three in translation
— three in rotation
— if we know the pose, {r!", C;,}, we can transform the coordinates
of a point, P, from one frame to another:

i v vi
r = C;,rh’ + 1
UNIVERSITY OF

¥ TORONTO

Transformation matrices

— we can combine the translation and rotation of a pose into a
convenient form called the (4 x 4) transformation matrix:

rfi Gy o] [
1| 10" 1 1
N————
Tiv

— we see that this allows us to easily transform points from one frame
to another in so-called (4 x 1) homogenous point representation:

1
_ -
—_
I

— N e oy

which just has an extra 1 at the bottom
&

UNIVERSITY OF

¥ TORONTO

Transformation matrices

— transformation matrices are 4 x 4 and always have this special

structure:
C r
T lgr]

— they have 16 parameters but only 6 degrees of freedom and
therefore must have 10 constraints

— 6 constraints come from CTC = 1 and the other 4 come from the
fact that the bottom row is always (0,0,0,1)

— we can compound transformation matrices (just like rotation
matrices):
Tiy = TiaTapThy

and the structure always holds (more on this later); order matters

&

UNIVERSITY OF

¥ TORONTO

Matrix Lie groups

— rotation and transformation matrices show up in our kinematic
(i.e., motion) and sensor (i.e., observation) models

— neither behaves like a vector, yet all of our estimation tools
assume the state is a vector

— it turns out that the sets of rotations and poses are not vector
spaces, but another type of mathematical object called matrix Lie
groups

— we will use the rest of this lecture to learn about this in the hope
that it will guide us in the estimation of rotations and poses

— spoiler: we will use properties of the Lie-group structure to
maintain our estimation algorithms as unconstrainted
optimizations

3 UNIVERSITY OF

¥ TORONTO

Special orthogonal group

the set of rotations is called the special orthogonal group:
SO(3) = {C e R¥3|CCT =1,detC =1}

— the CC”T = 1 orthogonality condition is needed to impose 6
constraints on the 9-parameter rotation matrix, reducing the
degrees of freedom to 3

— noticing that
(detC)? = det (CCT) =detl = 1

we have that detC = +1, allowing for two possibilities

— choosing detC = 1 ensures that we have a proper rotation, and
it's this additional property that makes the O(3) orthogonality
group special

&

UNIVERSITY OF

¥ TORONTO

Special Euclidean group

— the set of transformation matrices representing poses is called the
special Euclidean group:

SE(3) = {T = [(S“ ’1“] c R4

CecSO@B3),re]R3}

&

UNIVERSITY OF

¥ TORONTO

Matrix Lie groups

— both SO(3) and SE(3) are matrix Lie groups

— to be a group they must have an operator to combine elements
that satisfies 4 properties: closure, associativity, identity,
invertibility

— to be a Lie group the operator must be ‘smooth’

— to be a matrix Lie group the elements must be matrices and the
operator matrix multiplication

property SO(3) SE(3)
closure Ch Cy e 50(3) T, Ty € SE(3)
= C]CQ S 30(5) =TTy € SE(?))
C; (C2C3) = (C1Cy) C T, (ToT3) = (T1T2) T:
associativity 1 (2:3()310201'; 2) Cs 1(2:%%‘1T2TL 2) T3
identit C,1 € 50(3) T,1 € SE(3)
y =Cl1=1C=C 5T1=1T=T
. L C e SO(3) T € SE(3)
invertibility = Cesom) = T e SE®3)

' UNIVERSITY OF

¥ TORONTO

Lie algebras

— to every matrix Lie group there is associated a Lie algebra, which
consists of a vector space, V, over some field, [F, together with a

binary operation, [, -], called the Lie bracket (of the algebra) that
satisfies four properties:

closure: [X,Y] eV
bilinearity: [aX +bY,Z] = a[X, Z] + b]Y, Z],

[Z,aX +bY| =a[Z,X] + b[Z,Y]
alternating: [X,X] =0

Jacobi identity: [X,[Y,Z]] + [Z,[Y,X]] +[Y,[Z,X]] =0
forall X, Y, ZcVanda,beF

&
UNIVERSITY OF

¥ TORONTO

Lie algebra: rotations

— the Lie algebra associated with SO(3) is given by
vector space: s0(3) = {® = ¢" € R¥3|p € R3, }
field: R
Lie bracket: [‘13‘1, q)g] =P, Py — PP,y
where

" 0 —9¢3 ¢
= |ga| =3 0 —¢1| eRP>3 PR
®3 —¢2 ¢1 0

is the (linear) skew-symmetric operator

&

UNIVERSITY OF

¥ TORONTO

Lie algebra: poses

— the Lie algebra associated with SE(3) is given by
vector space: se(3) = {E =¢" € R*4|¢ € RO}
field: R
Lie bracket: [El, EQ] =E18y — EyEq
where N
An_ Pl _ ¢ p 4x4 3

— this is an overloading of the ()" operator from before to take

elements of RS and turn them into elements of R**%; it is still

linear

' UNIVERSITY OF

¥ TORONTO

This is getting exponentially more complicated

— ok, so the sets of rotation and transformation matrices are matrix
Lie groups: SO(3) and SE(3)

— each one has an associated Lie algebra: so0(3) and se(3)

— so what, where is this all going?!

— to get to the next level of understanding, we need a connection
between the Lie group and Lie algebra

— that connection is the exponential map given by

1 1. 1
eXp(A)=1+A+§A2+§A3+--~:ZEA"

n=0

where A € RM*M is 3 square matrix

UNIVERSITY OF

¥ TORONTO

Exponential rotations

for rotations, we can relate elements of SO(3) to elements of
50(3) through the exponential map:

C—exp ¢/\ :Z

where C € SO(3) and ¢ € R? (and hence ¢" € 50(3))

— we can also go in the other direction (but not uniquely) using
¢ =m(C)’

— the mapping is surjective (or onto), meaning every element of
SO(3) can be generated by at least one element of s0(3)

— the non-unique inverse mapping is due to singularities — in this

case ¢ + 2mm with m any integer produces the same C
&

UNIVERSITY OF

¥ TORONTO

Tangent space

— the vector space of a Lie algebra is the tangent space of the
associated Lie group at the identity element of the group, and it
completely captures the local structure of the group

UNIVERSITY OF

% TORONTO

Exponential poses

— for poses, we can relate elements of SE(3) to elements of se(3),
again through the exponential map:

o0

1 n
T o (€)= 3 1 (€)
where T € SE(3) and ¢ € R® (and hence ¢ € s¢(3))

— we can also go in the other direction (again, not uniquely) using
£=In(T)"

— the exponential map from se(3) to SE(3) is also surjective: every
& € R% maps to some T € SE(3) (many-to-one) and every
T € SE(3) can be generated by at least one & € RS

&

UNIVERSITY OF

¥ TORONTO

Pose change

x Y z
|
~ |
~
~ - Z
N >
& & %,
g By <L 3 i 0
. B a i =
translation &=, &=, | =1,
0 0 0
0 0 0
~
~ ,/g\ p (i\ <=
X/‘ I /5\;(‘
N w <
0 | - X / 0 0
0 ~ A 0 0
rotation &= 3 &= 8 8
0 8 0
0 0 v

— varying each component of £ then using T = exp (sA) to
transform the points comprising the corners of a rectangular prism

&

UNIVERSITY OF

¥ TORONTO

Perturbations

— we now introduce the idea of perturbations

for vectors, we usually perturb like this:
X=_ X 4+ 0x
< =~
‘big" ‘small’

but actually this is an arbitrary choice

in an optimization setting, perturbations are used like this:

X = X + 0x
<~ ~—~
initial guess optimal update

in a probability setting, perturbations are used like this:

X = X + 0x
~— ~—~
deterministic random noise

UNIVERSITY OF

¥ TORONTO

Rotation perturbations

— for rotations, we will perturb like this:

C= 6C C
— ~~

‘small’ ‘big’

— we pick the following perturbation

6C = exp (w/\)

which ensures C is still a valid rotation (by closure)

— this lets us linearize the product of a rotation and point, v:

Cv =dCCv = exp (¢A) Cv~ (1 +¢A) Cv=Cv-— (Cv)/\1b

' UNIVERSITY OF

¥ TORONTO

Rotation perturbations

B - cos ¢ —sind
Cv~Cv— (Cv)" 9= |sind| + | cosd | 66

0 0

sinf cos@

0 0

-

& TORONTO

0
0 C=
00

cosf —sinf 0
0
1

%

C&]

UNIVERSITY OF

Rotation perturbations

&

UNIVERSITY OF

¥ TORONTO

n..u:h“(copv)/\ ¢

Pose perturbations
— for poses, we will perturb like this:

T= 0T _T
— =~
‘small" ‘big’
— we pick the following perturbation
0T = exp (eA)

which ensures T is still a valid pose (by closure)

— can now linearize the product of a pose and homogeneous point, p:

Tp=6TTp=exp(e")Tp~ (1+€")Tp=Tp+ (Tp)Qe

— we have used

A ® ® p]” [l —p"
. €EP=PE, p :[77] :{OT OT]

UNIVERSITY OF

¥ TORONTO

Rotation optimization

— choose a perturbation scheme,

C =exp (’I/JA) Cop

where 1) is a small perturbation applied to an initial guess, Cgyp

— insert this in the function, u(x), to be optimized:

u(Cv) =u (exp (¥") Copv) =~ u ((1 + 9") Copv)
Ou (Copv) ¥ = u(Copv) + 672

~ u(Copv) — x .
x=CopVv

6T

— then pick a perturbation, 1), to decrease the function

UNIVERSITY OF

¥ TORONTO

Rotation optimization: gradient descent

suppose we would like to perform Riemannian gradient descent

in this case, we would pick the perturbation to be of the form

P =—ad

with a > 0 a small step size

we see the function is reduced by taking this step:

u(Cv) —u(Copv) ~ —a 678
>0

retraction: apply the perturbation to update the initial guess,
Cop < exp (—a(s/\) Cop

so that C,, € SO(3) at each iteration; iterate to convergence

UNIVERSITY OF

¥ TORONTO

Rotation optimization: Gauss-Newton

— gradient descent can be quite slow

— let’s look at Gauss-Newton optimization

— suppose we have a general nonlinear, quadratic cost function of a
rotation of the form,

T(©) = 5 3 (tn(Cvy))?

m

where u,,(-) are scalar nonlinear functions and v,, € R? are
three-dimensional points

— we begin with an initial guess for the optimal rotation,
Cop € SO(3), and then perturb this (on the left) according to

C =exp (’l/)/\) Cop

where 1) is the perturbation
&

UNIVERSITY OF

¥ TORONTO

Rotation optimization: Gauss-Newton

— we then apply our perturbation scheme inside each u,,(-) so that

Um (CVip) = U, (exp(¢A)Copvm) = U, ((1 + 7,ZJA) Copvm)

Oum,
m (COPVm)A P

ox x=CopVm

~ Um (CopVim) —
—_———

Bm

6T

m

is a linearized version of w,,(-) in terms of our perturbation, 1)

— inserting this back into our cost function we have

T~ 5 3 (ke + Bn)’

m

which is exactly quadratic in ¥

3 UNIVERSITY OF

¥ TORONTO

Rotation optimization: Gauss-Newton

taking the derivative of J with respect to 1) we have

set the derivative to zero to find the optimal perturbation, 1»*:

(Z amﬁ) == Brnbm

this is a linear system of equations, which we can solve for)"

retraction: apply this optimal perturbation to our initial guess,

Cop < €exp (q,z;*A) Cop.

so that C,p, € SO(3) at each iteration; iterate to convergence

¥ TORONTO

Rotation optimization

u(Cv)

UNIVERSITY OF

TORONTO

Rotation optimization commentary

— we have adapted classic optimization algorithms to work with the
matrix Lie group, SO(3), by exploiting the surjective property of
the exponential map to define an appropriate perturbation scheme

C =exp (7,0/\) Cop

— we are essentially assuming that at each iteration the update, v,
will be small and so have mapped the optimization problem from
the Lie group up into the Lie algebra, so(3)

— this approach has three major advantages:

— we are storing our rotation in a singularity-free format, Cop
— at each iteration we are performing unconstrained optimization
— our manipulations occur at the matrix level

— we get away with this because the perturbation always becomes

very small as we converge to the optimum

&

UNIVERSITY OF

¥ TORONTO

Pose optimization

— the same concepts can also be applied to poses

— suppose we have a general nonlinear, quadratic cost function of a
transformation of the form

J(T) = 5 (un(Tpn)?

m

where u,,(-) are nonlinear functions and p,, € R* are
three-dimensional points expressed in homogeneous coordinates

— we begin with an initial guess for the optimal transformation,
T, € SE(3), and then perturb this (on the left) according to

T = exp (e/\) Top

where € is the perturbation

&

UNIVERSITY OF

¥ TORONTO

Pose optimization
— we then apply our perturbation scheme inside each u,,(-) so that

Um (TPm) = um (exp(e/\)Toppm) A U, ((1 + eA) Toppm)

ou
~ U (Toppm) + L
—_———

8X (T0ppm>® €
Bm

x:Toppm

5T

is a linearized version of w,,(-) in terms of our perturbation, €

— inserting this back into our cost function we have

1

JT) =35> (Ohe+ Bm)’

m

which is exactly quadratic in €

&

UNIVERSITY OF

¥ TORONTO

Pose optimization

taking the derivative of J with respect to € we have

Za (6T e+ Bm)

86T

set the derivative to zero to find the optimal perturbation, €*:

(Z 5m5ﬁ> ==Y Bubm

this is a linear system of equations, which we can solve for €*

retraction: apply this optimal perturbation to our initial guess,
Top < exp (e*A) Top

so that T, € SE(3) at each iteration; iterate to convergence

¥ TORONTO

Point-cloud alignment

— consider the problem of aligning two point-clouds, y; and p;,
which are in homogeneous-point form and j =1...J

— we define our error term for each point pair as

— we define our objective function as

T — 1 M . B 1 M T
(T) =5 wjeje; =5 > wi(y;— Tp;)" (y; — Tpy)
j=1 j=1

where w; > 0 are scalar weights
— we seek to minimize J with respect to T € SE(3); we want to
know the pose between the two point-clouds

&
UNIVERSITY OF

¥ TORONTO

Point-cloud alignment

— we use our SFE(3)-sensitive perturbation scheme
T =exp (€") Top ~ (1 +€") Tqp

where T}, is some initial guess and € is a small perturbation

— inserting this into the objective function we then have

T
© 0
ij(= Zj) — % e) ((yj—zj)—zj e)
where z; = Topp; and we have used that
€' z; = z? €
— the objective function is now exactly quadratic in €

UNIVERSITY OF

% TORONTO

Point-cloud alignment

we can carry out a simple, unconstrained optimization for €

taking the derivative we find

M T
=2 w (-2 == ¢)
j=1

setting this to zero, we have the following system of equations for
the optimal €*:

1 1
of o *x _ o
E wiz? z7 | € = E Wiz -z
w77 w &= 77 (v; = =)
]:1]:1

retraction: apply the optimal perturbation and iterate to
convergence:

Top ¢ exp (€*A> Top

UNIVERSITY OF

% TORONTO

Pose optimization commentary

— we have adapted classic optimization algorithms to work with the
matrix Lie group, SE(3), by exploiting the surjective property of
the exponential map to define an appropriate perturbation scheme

T =exp (e/\) Top

— we are essentially assuming that at each iteration the update, €,
will be small and so have mapped the optimization problem from
the Lie group up into the Lie algebra, se(3)

— this approach has three major advantages:

— we are storing our pose in a singularity-free format, Ty
— at each iteration we are performing unconstrained optimization
— our manipulations occur at the matrix level

— we get away with this because the perturbation always becomes

very small as we converge to the optimum

&

UNIVERSITY OF

¥ TORONTO

Lecture Summary

— we have seen that despite nonlinearities in our motion and
observation models and even state variables that are members of
Lie groups, we can still carry out MAP estimation very similar to
the linear-Gaussian case

— the difference is that we now need to iterate to convergence, which
we do using some variant of Gauss-Newton

— many of the usual algorithms differ only based on which variables
are held fixed and which variables are optimized at each iteration
(e.g., full batch, extended RTS smoother, sliding-window filter,
(iterated) EKF)

— Lecture 3: Continuous-Time Estimation

&

UNIVERSITY OF

¥ TORONTO

Lecture 3: Continuous-Time Estimation

A Short Course in State Estimation

Timothy D. Barfoot
University of Toronto

Copyright (© 2024

' UNIVERSITY OF

¥ TORONTO

Lecture Outline

Lecture 1: Linear-Gaussian Estimation
Lecture 2: Nonlinearities and Lie Groups

Lecture 3: Continuous-Time Estimation
Problem Setup
Motion Prior
GP Regression
Lie Groups
STEAM

Lecture 4: Beyond MAP — Variational Inference

(% UNIVERSITY OF
L>

¥ TORONTO

Motivation

x(t) ~ GP (x(t), P(t,1')) ../D——l>

: tx_1 UK
\B\%Hl
to

ti—
o () =2

measurement times query time

ty

to asynchronous

— there are situations where it is beneficial to think of the robot’s
trajectory as a continuous function of time

— e.g., asynchronous measurements, scanning-while-moving sensors

' UNIVERSITY OF

¥ TORONTO

Two camps

4.
z(t) a0
35
3.0
25
2.0
1.5}
1.0
05
0.0

Parametric methods: Nonparametric methods:

(i) hard to decide what basis functions and how many (i) no need to pick number of basis functions
(ii) don’t encode motion priors explicitly (ii) can encode motion priors explicitly

(iii) computations are typically fast (iii) can be computationally expensive

— two main camps: parametric (e.g., spline) and nonparametric
(e.g., Gaussian process)

— we will explore the latter in this lecture

UNIVERSITY OF

¥ TORONTO

System

— we define our system using the following linear, time-varying

models:
motion model: x(t) = A(t)x(t) + v(t) + L(t)w(t)
observation model: y(tx) = C(tg)x(tx) +n(ty), k=0...

where k is again the discrete-time index and K its maximum
— the variables have the following meanings:

system state : x(t) € RY
initial state : xg € RN ~ N (%0, Py)
input : v(t) e RN
process noise : w(t) €RY ~ GP (0,Q6(t —t'))
measurement : y(ty) € RM

measurement noise : n(ty) € RM ~ N (0,R(ty))

UNIVERSITY OF

¥ TORONTO

Motion prior

— to connect to Gaussian process regression, we will convert our
motion model

X(t) = A()x(t) + v(t) + L(t)w(?)

into a kernel function

— after stochastic integration we have a GP motion prior

x(t) ~GP (rb(t, to)%o + /Lt ®(t,5)v(s)ds,

()
min(t,t’)

B(t, t0)Po@(t',t9)T +/

to

®(t, s)L(s)QL(s) T ®(t', s) ds)

P(t,t)

where ®(t, s) is known as the transition function

@

UNIVERSITY OF

¥ TORONTO

Motion prior
— at the measurement times tg < t1 < --- < tx we have

x ~ N(x, P) = N(Av, AQAT)

kernel matrix

where L
D(t1,t0) 1
B(ta, t B(to,t 1
A= (2 0) (z 1) :

D(tg_1,t0) Pltx_1,t1) P(tx_1,t2) --- 1

B(tg,tg) Bltx,t1) Btg,ta) - B(g,tx1) 1
Xo
A1 "

v=| |, vk=[} ®tnov(s)ds, k=1..K,
VK

Q=diag (P9, Q1, Qs -, Qx), Qi = f/* B(te, s)L(s)QL(s) B(ty,)T ds, k=1...

— this can often be precalculated analytically

%

% UNIVERSITY OF

& TORONTO

Estimate at measurement times

— if we only want to solve at the measurement times, things are
basically identical to the linear-Gaussian case:

% = argmink 3(Av, —x)T ATTQ AT (Av, —x) + 5 (y — Cx)"R! (y — Cx)
M —_—Y

x p-1 x

= (A—TQ—lA—l + CTR—lc) X = A—TQ—lv + CTR—ly

block-tridiagonal

where

X(to) y(to)
x = S, oy = o |, C=diag(C(t),...,C(tk)), R =diag(R(ty),...,R(tk))
*(tK) y(tx)

— only now our motion prior has been constructed from a stochastic
differential equation

&

UNIVERSITY OF

¥ TORONTO

Still a sparse factor graph

motion prior measurements

ATTQ'A '+ C'RT'C)x=ATQ 'v+C'R 'y

p-1
block-tridiagonal

%

@ UNIVERSITY OF

& TORONTO

Querying at other times

— suppose that we'd like to query the trajectory as some other times
TIHh<n<...<Ty

— the joint density between the state (at the query times) and the
measurements (at the measurement times) is written as

X, N X, P PTCT
PUlyl) ™ Cx|’ |cPT R+ CPCT
where

r(fo)} {X(To)} r(m)
56(1«;1() X(’.f«/) ’ *(.TJ)

— using the Gaussian conditioning formula we have

P, = [P(Tj,t_i)}lj, P, = [15(7',,‘,7'7')}”.

plxcly) = N (5 P.CT(CPCT 4+ R) My — Ox), Py, - P,CT(CPCT 1+ R) CPY)

Xr, Mean

P, covariance

' UNIVERSITY OF

¥ TORONTO

Querying at other times

— since we have already solved at the measurement times, we can
use X and P to simplify the solution at the query times:

which are the standard GP interpolation equations

— our inverse kernel matrix, P~1, is block-tridiagonal, so
interpolation is extremely efficient compared to generic GP
regression

&

UNIVERSITY OF

¥ TORONTO

Single query is O(1)

— consider a single query time, tx < 7 < tg41
— we can show that

x(r) = x(7) + [A(r) ®¥(7)] ({ X } B [x(t1,) D

Xt 1 X(tgs1)

B(r,r) = P(r7) + [A(F) ®(r)] ([Apk,k AkakJrl } _ [vp(tk‘tk) Pty trr1) D {A(T);]

Piiik Proigs P(try1,te) Pltesr, ther)

where
A(T) = ®(r, 1) — Qr®(tps1,)T Qply Bltirs, t), ¥ (1) = Qr®(trser,) Qily,

Q= ft: ®(7,5)L(s)QL(s)T®(7,5)" ds

— in other words, we only need to use the posterior solution at the
two measurement times that bracket the query time

(% UNIVERSITY OF
L>

¥ TORONTO

GP regression summary

x(t) ~ GP (x(t), P(t, 1)) o
o t—1 tk
o \B\V%FA
ta
t1 th—1 t
tO asynchronous k X(T) =7
measurement times query time

— solve at the measurement times g < t; < --- < tg in O(K) time
— solve at each query time, 7, in O(1) time

— principled approach to interpolation since we're using the motion
model not some other scheme

— we can also use this GP interpolation to reduce the number of
state variables while accounting for all measurement timestamps —

GP inducing points
' UNIVERSITY OF

¥ TORONTO

Example: white-noise on acceleration prior

— consider the case p(t) = w(t), where p(t) corresponds to position
and w(t) ~ GP(0,Q 6(t —t')) is white noise as before

— we can cast this in the form
x(t) = Ax(t) + v(t) + Lw(t)

by taking

o-Bg]. a-B Y o o

— importantly, the Markovian state is now both position and velocity

— in the absence of measurements to the contrary, this motion prior
tries to keep the velocity constant

&

UNIVERSITY OF

¥ TORONTO

Example: white-noise on acceleration prior

— the transition function for this linear, time-invariant example is

1 Atgpp 11
(ﬁ(tk,tk_l) = |:0 k:f 1 :|

where Atk;k,1 =t — lp—1
— since there is no input, v(t) = 0, the prior becomes

x=Av, P=AQA",

3 YN Q 1Ae2 Q

v=1|.|, Q=diag(Po,Qi....,Qx), Qu=[F 15 2 kL
| Q g(Po, Q1 Qx), Qk AL 1Q Aty—1Q
0

UNIVERSITY OF

% TORONTO

Example: white-noise on acceleration prior

— after solving at the measurement times, the interpolation
equations for t < 7 < ti41 become

1-3a2+2a%)1 T(a—2a+a3)1 (%5 — %)
16(—a +a?)1 (1—4a+3a%)1 ko Tk
(3a? —20%)1 T(-a®>+o®)1] .
* {%6(047042)1 (~20 4 302)1) K41 ~ i)

$:m+v

where

%= ®(r)%, a= 0 € (0,1, T =Atgiig =t — b

— remarkably, the top row (corresponding to position) is precisely a
cubic Hermite polynomial interpolation — bottom row
(corresponding to velocity) is derivative of this

— this falls out of the math for free simply by picking the WNOA
motion prior

UNIVERSITY OF

¥ TORONTO

Example: white-noise on acceleration prior

Ground truth trajectory

¢ Ground truth landmarks
Estimated mean trajectory
¢ Estimated landmarks

. I Estimated covariances

— example continuous-time estimation using only the WNOA motion
prior plus landmark measurements — no odometry!

UNIVERSITY OF

TORONTO

What about 3D?

— we would like to do continuous-time estimation with Lie-group
state variables so we can estimate 3D trajectories

UNIVERSITY OF

]
% TORONTO

Special Euclidean group

— in order to recycle our linear continuous-time tools, we will stitch
together many local GPs

T(trt1)
global variables () 4
T(t)
T(ty) =) 4 &,(t) = In (T(H)T(tx))"
@ (tk) local variable
>
&i(te) =0

— we introduce local variables, &,(t), in the Lie algebra of SE(3)
and then define a WNOA motion prior over these

Ex(t) = wi(t), wi(t) ~GP(0,Q(t — 1)

(% UNIVERSITY OF
L>

¥ TORONTO

Motion prior in Lie algebra

— we reorganize the WNOA motion prior into the requisite form
d Sk(t)} [0 1] [Ek(t)] [0}
- = + Wi (t
7 L) = 0 o] Loni) + 1) <0

——
Vi (t)
— we integrate this stochastically to obtain our kernel function

V() ~ GP(R(t,t)7 (tr), (¢, 1) P (1) @(t, 1) + Q(t — 1))

mean function covariance function

where
1 (¢t—t)

/ g ! / 3 tft/)sQ l(t)2Q ’
(I)(tat):[o 1 }a Qt—1t) 7[%(TI)QQ Q(f_f/Q:| t>t

and 4, (t) and P(t;) are the initial mean and covariance at t = t;,

UNIVERSITY OF

¥ TORONTO

Motion prior in Lie algebra

total prior cost

—1
\] k= 7eu ka' €u.k

prior cost term

4

— build errors and assemble them into MAP cost terms

—In (T(to)Tgl)v k=0
evr = ‘Zb’() - w(to)
U" B (thytr1) (Vi1 (te—1) = Ye—1(te-1))
— (Vi1 (tr) = A1 (tr)) k>0

. — note Qo = Py and Qi =Qty —tg—q) fork=1... K

¥ TORONTO

Motion prior in Lie algebra

total prior cost

K
Jv = Z J’u,k
k=0

€y.k

4 \J k= 7ekak

° prior cost term

— we back-substitute for the errors in terms of the global variables

{— In (T(to)Tal)v} k=0
Ty — w(to)
€y k = (tp — tk—1) w(tp—1) — In (T(tk)T(tk—_ll)*l)V o
w(tp1) — T (1n (T(tk)T(tk,l)*l)v) w (i)

UNIVERSITY OF

% TORONTO

Lie group aside

— we need a few more Lie-group tools at this point

— the SFE(3) Jacobian, J € R%*6 allows us to make the following
approximation when &; small

exp (£€1) exp (£%) ~ exp (5(52)71 & +&)

— the adjoint of a pose, T = Ad(T) € R%*6, is an inner
automorphism operator that allows

(Tx)" = Tx"T!

&

UNIVERSITY OF

¥ TORONTO

Motion prior in Lie algebra

— with these Lie group tools we can perturb our to-be-estimated
state variables according to

A
Ty = eXP(ﬁk)Top,k, WL = Wop,k + Ny
— we then linearize our motion prior errors terms so that

€y k(%) ~ ey k(Xop) + Fr_164-1 — Egey,

where g, = [Ek} and

Uy
BIPRVS!
0 k=0 [-7 (1n (TopoT5")) 0] k=0
1 0 1
1= _ tp —tg—1)1 =
Fi1 | {OPyk,leT()p,k,k 1 (e —te-)1| oo v Bk P o
3% op T optee—1 T opikk—1 1 1S opkkL = k>0
2%op kT op k1 T ophk-1

&

UNIVERSITY OF

¥ TORONTO

Motion prior in Lie algebra

— our quadratic approximation of the motion prior term at our
current guess is therefore

1 T
Jy & 2 (v(%Xop) — F 5X1) Q (eU(XOp) -F 5X1)
where
E
€y,0(Xop) —FE E; ZT
eu i (Xop) Fiu B cx

— this is essentially all we need to carry out MAP estimation via
Gauss-Newton once we incorporate some measurement terms

&

UNIVERSITY OF

¥ TORONTO

STEAM

— let's look at simultaneous trajectory estimation and mapping
— the state to be estimated is now

X = {T07w07"'7TK7wK7p17'”7pM}

~~
X1 X2

which includes poses, generalized velocities, and landmarks, p;

— the measurements at times tg,t1,...,tx are

y = {Y10w--YM07-~7Y1K7~-73’MK}
— each measurement is of the form
vit = s(Tkp;j) + nj, nj, ~ N(0,Rji)

where s(+) is a nonlinear sensor model (e.g., a stereo camera)

UNIVERSITY OF

¥ TORONTO

Landmarks and measurement error term

— our landmarks are in homogeneous coordinates so we perturb

according to
100

0 0

(=)
—_
(==)

where pgp,; is the operating point and ¢ is the perturbation

— the error associated with a measurement is then

ey,jk(x) = ¥jk — s (Txp;)
— all the errors can be stacked up into a tall error vector as

€y,10(Xop)

€y,20(Xop)
ey(Xop) = .

ey, MK (Xop)

UNIVERSITY OF

% TORONTO

Linearizing Tp

— it is worth a small aside to see how to linearize the product Tp

— we insert our various perturbation schemes so that

Tp = exp (GA) Top (pop + DC)
~ (1+€") Top (Pop +DC)

~ Toppop + eATopPOp + TopDC + e/\TopDC
———
very small

~ TopPop + (Toppr)p)@ €+ TopDC

€
= Topp0p+ [(Toppop)o 0 TopD} |:77
<

— then we can use the chain rule to write
€

5 (Tp) ~ 8 (TopPop) + S [(TopPop)” 0 TopD] |7
¢
with S the Jacobian of the sensor model, s(-)

UNIVERSITY OF

% TORONTO

Linearized error term

— our linearized error can then be written as

ey(x) ~ ey(xop) — G1 (5X1 — G2 5X2

Where [Giio] [Gao
G100 G0
& G Go1
e S} : .
1 b : .
Sxi= €|, exo=| "], Gi= G . Gop= Gonn ||
ex Cumr
Gk Gk
G,k | L Govk |

Gk = [Sjk (TopiPop,j)® 0], Gojk=8S;sTopiD, R = diag(Rio,Rao, .., Rusx)

— our quadratic approximation of the measurement term at our
current guess is therefore

Jy(x) ~ % (ey(xop) — G ox1 — Gy 5X2)T R! (ey(xop) —G1x1 — Gy 5)(2)

3 UNIVERSITY OF

© TORONTO

MAP cost

— MAP cost is then J(x) = J,(x) + Jy(x), which can be
quadratically approximated as

J(x) = Jy(x) + Jy(x) = J(Xop) — €(Xop) T WIH 6x + 6xTHTW~IH 6x

et =] o= 0] =[G &) w8 R

— the minimizing perturbation, dx*, is the solution to

with

HTW-H éx* = HTWle(x,p)
— we solve for dx*, then apply the optimal perturbations
Top,k < exp (52A> Top,k'-, Wop,k < TWop,k + 7727 Pop,j < Pop,j + DC;

and iterate to convergence

UNIVERSITY OF

¥ TORONTO

STEAM example

» landmark with

uncertainty
first pose fixed ’ measurement
I-/ I/ .
L ;
. I— /\ / <
RS
SErrr FRAA ARG,
T 7‘7\.7_ =
T'rhe.
P pose with
& uncertainty

.

— with only one landmark measurement per pose, the motion prior is
necessary to solve

UNIVERSITY OF

&
¥ TORONTO

STEAM example

— these continuous-time methods can be used as a sliding-window
filter and run in realtime

UNIVERSITY OF

]
% TORONTO

STEAM sparsity

— the left-hand side in our linear system of equations has the form

FTQ'F !+ GIR'G; GIR!G,

T -1 _
H W H= GIR G, GIR1G,

— this preserves the usual SLAM arrowhead form

— the top-left block is block-tridiagonal
— the bottom-right block is block-diagonal

— a sparse Cholesky decomposition or Schur complement can be
used to solve the linear system efficiently

&

UNIVERSITY OF

¥ TORONTO

STEAM interpolation

landmark with

uncertainty
pose with

uncertainty measurement

Ev4
first pose fixed

zZoom-in showiﬁé J\
interpolated poses o
with uncertainty Je =

— we can still use GP interpolation after the main solve — see book
for details

%

@ UNIVERSITY OF

& TORONTO

Continuum robot example

interpolated_
ates
U

estimated
states

o o o—e—o—

06
25 interpolated
states 4
2 // N » o4
15 s K <. root
5=
1 ™ estimated { LL o 02
05 - states - 7
o rotational
strain
0.5 - w(s)
-
02
15 4
-2
3 04
06
o 2
root

— we simply replace time, ¢, with arclength, s

%

= UNIVERSITY OF

& TORONTO

arclength s tip

we can use these tools to estimate the shape of snake-like robots

Lecture Summary

— we can build useful motion priors starting from physically
motivated stochastic differential equations

— we then reframe estimation as Gaussian process regression

— still very efficient due to our particular motion priors / kernels —
O(K) for main solve, O(1) for a query — reason is the Markov
property

— ideas can be applied even when the state variables are members of
Lie groups

— ideas can be used within a SLAM setup — STEAM

— Lecture 4: Beyond MAP — Variational Inference

&

UNIVERSITY OF

¥ TORONTO

Lecture 4. Beyond MAP — Variational Inference

A Short Course in State Estimation

Timothy D. Barfoot
University of Toronto

Copyright (© 2024

' UNIVERSITY OF

¥ TORONTO

Lecture Outline

Lecture 1: Linear-Gaussian Estimation
Lecture 2: Nonlinearities and Lie Groups
Lecture 3: Continuous-Time Estimation

Lecture 4: Beyond MAP — Variational Inference
Motivation
Variational Inference
Sparsity
Derivative-free
Parameter Learning

] UNIVERSITY OF

¥ TORONTO

L

Motivation

— we have primarily presented an MAP approach to state estimation,
and this certainly has its place

— but, is it possible to do better than that? can we be better
Bayesians?

— consider a one-dimensional example where we get a single disparity
measurement from a stereo camera:

image plane left pinhole

u T
depth

fb
y =

X

disparity

+n, n~N(OR) v-u-v=2 1 0 bm

focal ‘rightpinhole @
length landmark

— if we have a prior on position, p(z) = N (i,P), what is the
Bayesian posterior once we incorporate this measurement?

UNIVERSITY OF

¥ TORONTO

Stereo camera example
— to perform Bayesian inference,

p(ylz)p(z)
p(@lY) = =" gy d

we require expressions for p(y|z) and p(x)

o) =N (2.8) = o (< (1= £)°) . 0le) = (@7) = e (3 - 27

#=20[m], P=9[m’, f=400[pixel]l, b=0.1[m], R=0.09 [pixel’], Zime=22[m], Ymeas = 7=

+ 1 [pixel]

— the Bayesian posterior then looks like this (computed numerically)

3

3 UNIVERSITY OF

© TORONTO

Stereo camera example

clearly the Bayesian posterior is not Gaussian

the MAP solution will find the mode of the Bayesian posterior

03
0.25

— 02

=)

& 0.15

= 04

MAP solution (mode)
i

0.05
0
5

10 15 20 25 30 35

is this what we want? we end up with a —33.0 cm average bias

BN [Eunap) ;q
l
|
I
|
I
|
I
I

.

- . i
0 12 14 16 18 20 22 24 26

we might prefer an algorithm that can estimate the mean of the

posterior if this is the metric we care about
i UNIVERSITY OF

¥ TORONTO

Variational inference

— we could try variational (Bayesian) inference

— find a (Gaussian) estimate, ¢(x), that is ‘closest’ to the Bayesian
posterior, p(x|z), in terms of the Kullback-Leibler divergence

‘mean seeking’ ‘mode seeking’

S

\ Bishop [2006]
B o a(x) S ot p(x|z)

= 7/700 p(x|z)In (1}(X\Z>) dx KL(gllp) = [mv](x)lxl< o) dx
= E, n g =

)
B, ng(x) — np(x]2)] .

KL(pllq)

— we pick the KL divergence on the right since easier to compute

%

@ UNIVERSITY OF

& TORONTO

Gaussian variational inference

— we assume our estimate is Gaussian

4(x) = N (11, 3) = L)T u>)

1
— = exp|-—
v (2m)N|X| (2
— our chosen KL divergence then simplifies to

KL(q||p) = Eq[—Inp(x,2)] — %ln ((27re)N\2]) + Inp(z)

constant

entropy

— dropping the constant term and defining ¢(x) = —Inp(x,2z) we
can define a functional as

Vig) = Blo()] + 5 In (1571

' UNIVERSITY OF

¥ TORONTO

Gaussian variational inference

— our functional is
1
V(g) = Bylo(x)] + 5 n (271))

— the derivatives with respect to the unknown mean, p, and inverse
covariance, X!, are

T~ =[x - W)

o0*V _ _ 1
D~ 2B x-S — BB fo(x)
T = SR w00+ B B 600+ 33

' UNIVERSITY OF

¥ TORONTO

Gaussian variational inference

— with these derivatives we can approximate the functional as

T
15,7 9°V(a) /(q) sy1—1
qm> op+ 50 (duw“) op + tr (51 | 0=)

which we now want to iteratively minimize with respect to
op = p D — p and 651 = (2—1)(%“) _ (2—1)(%)

— clearly we want dp to be the solution to
9V (q) _ {ovw
<3MT3M e o= (out q<i>)
oV (q)

(2—1)(’+1)
— the indicated inverse-covariance update results from setting Z==7
to zero and noticing the equivalence

V) = v 0) + (G

V(0 _ 10V(0) 53-1
D YR Y S S

3 UNIVERSITY OF

¥ TORONTO

Natural gradient descent interpretation

— it turns out this update scheme is equivalent to natural gradient

descent V(o)
_ —1 q
oo =T 90T

where

m ! =L 0
_ _ _ n _
«= [vec (E")] , da= [vec ((52’1)] P9l T ec (‘w(q) » Ta= { 0 l(zZex)

a5t

— importantly, Z,, is the Fisher information matrix for the variational
parameter, o

— NGD is essentially a quasi-Newton method that uses the FIM as
an approximation of the Hessian

&

UNIVERSITY OF

¥ TORONTO

Stein’s lemma to the rescue

— we can then employ Stein's lemma

Ealix - wot] = 2, | 57 |

to clean up the update further so that it becomes

=" = B {%W‘)]
(=M ou = B [32ex)]

where 7 is the iteration index

— this looks just like an MAP update via Newton's method — but
now we have expectations wrapping the derivatives of ¢(x)

&

UNIVERSITY OF

¥ TORONTO

Stereo camera example

— if we return to our stereo camera example, we can compare the
performance of MAP and GVI

— MAP approximates the expectations, E,[-], only at the mean and
as a result does not get to the minimum of V' (q)

UNIVERSITY OF

¥ TORONTO

Stereo camera example

— we can see that GVI also converges to a point where its mean
looks closer to the mean of the true posterior

0.25 :
0.2 i’map 3_: R —p(mly)
2 g == ()
. o — evi A
015 | posterior ;\(mispkf ff?ekf
Q . P PR N zlsgkf
0.1 prior / A : \ “gvi
/ N\ : _xmap
S N N e i
0.05 | y /s Tiekf / g \ T
_- SN
o-—-"--— - L l ~ Mhia_——= -
10 15 20 25 30 35
x

] UNIVERSITY OF

¥ TORONTO

Stereo camera example

— histogram of the errors over many trials shows GVI has an average
error of 0.28 cm whereas MAP was —33.0 cm

0.25 o
X llXNixgw]
0.2

= 0151
o0
8

—

& 0.1r

0.05

10 12 14 16 18 20 22 24 26
igvi

— GVI seems to help remove the bias in this controlled example

UNIVERSITY OF

¥ TORONTO

Can we scale up?

— there are some expectations in our update scheme that look
computationally expensive

0 o2
Eqo(x)], Eq {axiTﬁs(X)} By [mﬂﬂ]
scalar column matrix

— however, if we assume there is some sparsity (in the usual factor
graph way) then our negative log-likelihood decomposes as

B(x) = Y opey dn(x)

do Xo 1 X1 02 X2 XK-1 9K XK
%o ®1 ¥2 PK-1 PK

&

UNIVERSITY OF

¥ TORONTO

Can we scale up?
— our negative log-likelihood decomposes as
G(x) = Tk Or(xk)

— inserting this we see for the first expectation that
Ej¢(x)] = By | L1y ¢k(xk)] = o1 Bolow(xi)] = 34y Byl (xe)]

where the expectations are now only over qx(x;) = N (g, Zkk),
the marginal for the variables involved in ¢y (xx)

— similar simplifications occur for the other two expectations

E, [%d’(x)} =1, PLE, [fgtﬁk(xk)]

")
Eq [axdTax‘b(X)] =i PLE, {W@(xw] Py

where Py, is a selection matrix so that x; = Prx

UNIVERSITY OF

¥ TORONTO

Can we scale up?

— with this simplification of the expectations, we call our scheme
exactly sparse Gaussian variational inference (ESGVI) — we only
need to compute expectations over the marginals associated with
the variables in each factor

— this means that we only need the blocks of the covariance, X,
associated with the non-zero blocks of the inverse covariance, X!

— Takahashi et al. [1973] shows how to compute a set of covariance
entries that is just what we need, plus some extra blocks that
come from fill-in — e.g., Cholesky decomposition £~} = LL”

— finding a variable order that minimizes fill-in is known to be an
NP-hard problem in general

— we piggyback finding the required covariance entries onto the
usual MAP solve, so ESGVI has the same big-O complexity as

MAP, but the expectations still make it slower

UNIVERSITY OF

¥ TORONTO

Fill-in

— typical fill-in ‘+" in for our estimation problems — we efficiently
compute blocks of 32 where L is non-zero

basic sparsity constraint trajectory example SLAM example
(note fill in at (5,3) in L) (6 robot poses) (3 poses, 3 landmarks)
[* * * [% 1 * ok ¥ ok %
* * % K N P
1= * * 51— * ok ok 51— * % * ok ok
* * % K x % *
* * I P *
L * L * k| x % % *
[* [) *
* * * ok
* * * ok %k
L= L= L=
* E 3 L S 3 *
* + * * EE S + %
L * L * % * ok ok + 4+ x

UNIVERSITY OF

¥ TORONTO

Derivative-free version

exploit
factorization
174 —_— Vo + Z 5 Vi
lminimize lminimize
GVI ESGVI
(derivative-free) (derivative-free)
Stein’s Stein’s
lemma exploit lemma
factorization
GVI —_— ESGVI

— we can also use Stein's lemma (opposite direction) at the individual
factor level to compute all the small expectations derivative-free

eg., Fy [;ﬂ(bk(xk)] = 3 By (x5 — py) br ()]
k

— this means we can do batch state estimation without derivatives!

%

% UNIVERSITY OF

& TORONTO

Example: bearing-only SLAM

— we can find challenging estimation cases where GVI outperforms
MAP — the gains are usually small

4~
— — —Ground-truth path
MAP GN path
3 ESGVI deriv-free M=4 path
@ £ O Ground-truth landmark
hor + MAP GN landmark
+ ESGVI deriv-free M=4 landmark

oL
Eqr
>
c
S
= 0r
[}
o
[N

a4k

oL

3 1 1 1 1 1]

-2 0 2 4 6 8 10

position x [m]

%

@ UNIVERSITY OF

& TORONTO

Example: bearing-only SLAM

— we can find challenging estimation cases where GVI| outperforms
MAP — the gains are usually small but measurable

position error x [m]

position error y [m]

E3 0 E) W 0 0 w0 0 10 20
time [s]

MAP GN
0.1 | ——esovi derv-tree

heading error ¢ [rad]

time [s]

%

& TORONTO

@ UNIVERSITY OF

Parameter learning

— an added bonus of this framework is that we can also learn
parameters, 6

— the negative log-likelihood of our data (given the parameters) can
be written as

- Lo () o[(52)

—KL(q||p)<0 V(ql0)

— we can use expectation minimization [Neal and Hinton, 1998]:
— e-step: hold 0 fixed, minimize V(¢|@) w.r.t. ¢
— m-step: hold ¢ fixed, minimize V(¢|0) w.r.t.
— parameters can be anything — measurement covariances,
calibrations, network weights for measurement model

3 UNIVERSITY OF

¥ TORONTO

Example: parameter learning

— we can do unsupervised parameter learning with our full

non-differentiable state estimator

e-step

« forward pass of
lidar scans
through DNNs

* output features +
covariances

* matched
differentiably into
keypoint pairs

* run trajectory
estimator with all
the bells and
whistles (not
differentiable)

UNIVERSITY OF

TORONTO

Vi k41 Vis2 Vi

Ml [(L M

m-step

* trajectory

distribution held
fixed

* backpropagate to

update the
network weights
using standard
deep learning
tools

Example: parameter learning

2w 0 W0 w0 w0 w0 om0 120 200 0 w0 a0 w0 mn oo 1w 2w 0 W0 w0 w0 w0 1000 1200 20 o w0 w0 e o 1w 1w
m m m m

UNIVERSITY OF

TORONTO

Geometric interpretation

— can also view ESGVI through the lens of Bayes space — a
high-dimensional geometric space where entire PDFs can be
viewed as a single vector

p T PK
ﬂm 1

P /[:

j@n EQ\ @ ﬁ@h 1 @‘

o ar

% N
c. 4Kk-—1
q qK

— inference is then iterative projection of the full Bayesian posterior
onto a subspace containing Gaussians (Barfoot and D’Eleuterio,
o 2023)

UNIVERSITY OF

% TORONTO

Po

Lecture Summary

&8

we have seen that Gaussian variational inference can be used to
produce a ‘better’ solution than MAP

we can still exploit sparsity to make ESGVI have the same big-O
complexity as MAP — but compute time is still a large factor slower

we can avoid even computing derivatives by using Stein's lemma
and Gaussian cubature to evaluate expectations

in practice we can run MAP first since it's faster, then refine the
answer with ESGVI for a few iterations

can fold in parameter learning via expectation minimization

there is a way to also enforce that 3 remains positive definite by
exploiting the connection to NGD [Goudar et al., 2022]

although not discussed, can make the ideas work on Lie groups
ESGVI is related to but distinct from Stein variational inference

UNIVERSITY OF

¥ TORONTO

Course Conclusion

looking for next steps?

estimation, solvers:
— general overview (Thrun et al., 2006; Barfoot, 2024)
— incremental smoothing and mapping (iISAM2) (Kaess et al., 2012)
— certifiably optimal estimation (Yang and Carlone, 2022)

Lie groups:
— invariant EKF (Bonnabel et al., 2008)
— equivariant EKF (Mahony and Trumpf, 2021)

variational inference:

— Stein variational inference (Liu and Wang, 2016; Maken et al.,
2022)

] UNIVERSITY OF

¥ TORONTO

References

Barfoot, T. D., State Estimation for Robotics, Cambridge University Press, 2nd edition, 2024.

Barfoot, T. D. and D'Eleuterio, G. M. T., “Variational Inference as Iterative Projection in a Bayesian Hilbert Space with
Application to Robotic State Estimation,” Robotica, 41(2):632-667, 2023.

Bishop, C. M., Pattern Recognition and Machine Learning, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

Bonnabel, S., Martin, P., and Rouchon, P., “Symmetry-preserving observers,” IEEE Transactions on Automatic Control,
53(11):2514-2526, 2008.

Boumal, N., An introduction to optimization on smooth manifolds, Cambridge University Press, 2023.

Goudar, A., Zhao, W., Barfoot, T. D., and Schoellig, A. P., “Gaussian Variational Inference with Covariance Constraints
Applied to Range-Only Localization,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robot
Systems (IROS), Kyoto, Japan, 2022.

Kaess, M., Johannsson, H., Roberts, R., lla, V., Leonard, J. J., and Dellaert, F., “iSAM2: Incremental Smoothing and
Mapping Using the Bayes Tree,” IJRR, 31(2):217-236, 2012.

Liu, Q. and Wang, D., “Stein variational gradient descent: A general purpose bayesian inference algorithm,” Advances in
neural information processing systems, 29, 2016.

Mahony, R. and Trumpf, J., “Equivariant filter design for kinematic systems on lie groups,” IFAC-PapersOnlLine,
54(9):253-260, 2021.

Maken, F. A., Ramos, F., and Ott, L., “Stein particle filter for nonlinear, non-Gaussian state estimation,” IEEE Robotics
and Automation Letters, 7(2):5421-5428, 2022.

Rasmussen, C. E. and Williams, C. K. |., Gaussian Processes for Machine Learning, MIT Press, Cambridge, MA, 2006.

Takahashi, K., Fagan, J., and Chen, M.-S., “A Sparse Bus Impedance Matrix and its Application to Short Circuit Study,”
in Proceedings of the PICA Conference, 1973.

Thrun, S., Burgard, W., and Fox, D., Probabilistic Robotics, MIT Press, 2006.

Yang, H. and Carlone, L., “Certifiably optimal outlier-robust geometric perception: Semidefinite relaxations and scalable
global optimization,” IEEE transactions on pattern analysis and machine intelligence, 45(3):2816-2834, 2022.

UNIVERSITY OF

& TORONTO

	Lecture 1: Linear-Gaussian Estimation
	Problem Setup
	Bayesian Inference
	Maximum A Posteriori
	Sparsity
	Existence and Uniqueness
	Uncertainty

	Lecture 2: Nonlinearities and Lie Groups
	Problem Setup
	Gauss-Newton
	Sparsity
	Lie Groups and Algebras
	Perturbations and Optimization
	Example: Point-Cloud Alignment

	Lecture 3: Continuous-Time Estimation
	Problem Setup
	Motion Prior
	GP Regression
	Lie Groups
	STEAM

	Lecture 4: Beyond MAP – Variational Inference
	Motivation
	Variational Inference
	Sparsity
	Derivative-free
	Parameter Learning

