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2013

This thesis consists of two major parts united by the common theme of path/action

planning for a mobile robot. Part I presents the Second Opinion Planner (SOP), and

Part II presents a new paradigm for navigating, growing, and planning on a Network

of Reusable Paths (NRP). Path/action planning is common to both parts in that the

planning algorithm must choose the terrain assessment or localization technique at the

path-planning stage.

There are many terrain-assessment algorithms, and they follow the trend of low-

fidelity at low-cost and high-fidelity at high-cost. Using a high-cost, high-fidelity method

on all the raw terrain data can drastically increase a robot’s total path cost (cost of

driving, planning, and doing the terrain assessment). The Second Opinion Planner is

a path-planning algorithm that uses a hierarchy of terrain-assessment methods, from

low-fidelity to high-fidelity, and seeks to limit high-cost assessment to areas where it is

beneficial. The decision to assess some terrain with a higher-fidelity, higher-cost method

is made considering potential path benefits and the cost of assessment. SOP provides a

means to triage large amounts of terrain data. The system is demonstrated on simulated

path-planning problems and in real terrain from an experimental field test carried out

on Devon Island, Canada. The SOP plans are quite close to the minimum possible cost.

Growing a network of reusable paths is an approach to navigation that allows a mo-

bile robot to autonomously explore unmapped, GPS-denied environments. This new

paradigm results in closer goal acquisition (through reduced localization error) and a
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more robust approach to exploration with a mobile robot, when compared to a classic

approach to guidance, navigation, and control (GN&C). A NRP is a simple Simulta-

neous Localization And Mapping (SLAM) system that can be shown to be a physical

embodiment of a Rapidly-exploring Random Tree (RRT) planner. Simulation results are

presented, as well as the results from two di↵erent robotic test systems that were tested

in planetary analogue environments.

NRP also o↵ers benefits to planetary exploration missions. NRP allows a rover to be

used for the parallel investigation of multiple sites of scientific interest. This dramatically

increases the number of sites that can be investigated in a short time, as compared to a

serial approach to exploration. Two mock missions were carried out at planetary analogue

sites. The first was a purely robotic Lunar sample-return mission, and the second made

use of a robotic astronaut-assistant using a network of reusable paths.
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Chapter 1

Introduction to Path/Action

Planning

Mobile robots have been very successful in Lunar and Mars exploration (e.g., the Mars

Exploration Rovers [3, 4, 5, 6, 7, 8, 9], the Sojourner rover [10, 11, 12], and the Lunokhod

rovers [13, 14]), and they are expected to continue to aid in our visits to, and investigations

of, these and other neighbors in our solar system (e.g., the Mars Science Laboratory [15],

a Mars sample-return mission [16]). In order for the next generation of rovers to achieve

these objectives, mission controllers must be able to e�ciently operate them in natural

terrain. Figure 1.1 shows a mobile robot being used during field trials in natural terrain

at a planetary analogue site near the Haughton Crater in Nunavut, Canada. Such field

tests provide valuable insights into what is necessary for robust and e↵ective planetary

exploration, and lessons and feedback from these types of tests have driven the develop-

ment of the systems and new capabilities that are presented in this work. Many of these

capabilities necessary for planetary exploration, and all those presented in what follows,

also have applications on Earth. These applications include disaster response [17, 18],

mining [19, 20], agriculture [21, 22], transportation [23, 24], logistics [25], security [26],

and more.

There are many di↵erent types of autonomous capabilities, though primarily this

work addresses the capability to do autonomous traversal; the problem of getting from

point A to point B in a single command cycle. Previous missions, such as those that

1
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Figure 1.1: A mobile robot being used during field trials in natural terrain at a planetary
analogue site near the Haughton Crater in Nunavut, Canada.

used the Lunokhod rovers in the 1970s [13, 14] (see an example rover in the left image

of Figure 1.2), e↵ectively used tele-operation to travel significant distances (Lunokhod 1

traveled 10.5 km in 322 Earth days, and Lunokhod 2 traveled approximately 37 km in

about 120 Earth days). However, there are many cases where limited communication

windows or communication delays either prevent tele-operation outright, or make the

process unusably slow.

Consider the very successful rover-based exploration missions to Mars. The commu-

nication delay between Earth and Mars is on average 20 minutes. In 1997, the Sojourner

rover [10, 11, 12], as part of the Mars Pathfinder mission, completed short traverses that

could be either (i) entirely specified by operators on Earth (i.e., a blind drive), or (ii) de-

fined by setting a nearby goal position for the rover to attempt to reach. The rover could

use onboard sensors to detect obstacles in front of itself and it could then turn to avoid

and maneuver past these hazards. In total, Sojourner traveled approximately 100m in

83 Martian days. The Sojourner flight spare is shown in the foreground of the right image

of Figure 1.2.

The Mars Exploration Rovers (MERs), Spirit and Opportunity, have capabilities
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Figure 1.2: Rovers used for Lunar or Mars exploration. The Lunokhod I rover is in the left
photograph, and in the right photograph are the flight spare for the Sojourner rover (middle),
a Mars Exploration Rover (MER) test rover (left), and a Mars Science Laboratory (MSL) test
rover (right). Lunokhod 1, a tele-operated Lunar rover, was 2.3m in length. Sojourner was
0.65m in length, the MERs are 1.6m in length, and the MSL, currently en route to Mars, is
3m in length. Photo credits: left, Lavochkin Association; right, NASA/JPL-Caltech.

beyond those of Sojourner. The onboard terrain assessment and path planning allowed

them to better detect and plan around nearby obstacles in order to seek autonomously

a desired position. A mid-mission software upgrade further improved their autonomous

capabilities [9]. Combined, the MERs traveled over 42 km between 2004 and early 2012,

and at the time this dissertation was written, Opportunity continued to explore.

The Mars Science Laboratory (MSL) [15], Curiosity, builds upon the heritage of

previous missions. MSL arrived on Mars in August of 2012, and it is expected to travel

between 5-20 km during its mission. A MSL test rover, the flight spare of the Sojourner

rover, and a MER test rover, are shown together in Figure 1.2.

Autonomy is a desirable improvement upon teleoperated systems when it enables

more e↵ective or more e�cient use of the vehicle, or when it allows the robot to perform

tasks that would be otherwise impossible.

There are currently many very capable mechanical chassis, and a great number of

di↵erent sensors available to a robot. In advanced mobile robots there is typically a

sophisticated software system that maps the inputs from these sensors to the commands

sent to the vehicle actuators. However, there are no software systems that have been

able to exploit robustly and reliably the full capabilities of these vehicles in natural,

unrehearsed terrain. For example, the MERs have used short, manual driving commands
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Figure 1.3: A typical guidance, navigation, and control (GN&C) system for a mobile robot.
The navigation system uses sensor data to determine the pose of the robot. The pose is then
used by the guidance system and the control system. The guidance system sets goal positions and
then generates safe plans to those goals using onboard terrain assessment and path planning.
The control system then sends commands to the vehicle actuators in order to track those plans
according to feedback from the navigation system.

and limited obstacle avoidance during most of the driving [8]. We can consider this as

the software limiting the autonomy. Thus, this work seeks to improve the autonomy of

mobile robots by improving the onboard software, and we seek to improve the onboard

software by improving the underlying algorithms.

The software discussed above, is the guidance, navigation, and control (GN&C) sys-

tem of an autonomous mobile robot, as shown in Figure 1.3. Each block may contain

a set of algorithms, that as a whole, take sensor measurements as inputs and deter-

mine appropriate commands to send to the vehicle actuators in order to seek the desired

objective.

The navigation system (also known as the localization system) is responsible for deter-

mining the pose (position and orientation) of the vehicle relative to some useful reference

frame. For example, a terrestrial robot might filter signals from the Global Positioning
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System (GPS) as the vehicle moves, and from that it might estimate the vehicle’s po-

sition and orientation. However, GPS is not available on Mars or the Moon, and even

in many situations on Earth (e.g., underground, urban canyons, forests, indoors). Ac-

cordingly, other techniques must be used, and there are many techniques from which to

choose. Some use dead-reckoning from a single sensor or set of sensors (e.g., visual odom-

etry [27], wheel odometry). Many navigation systems fuse measurements from several

sensors in order to improve the localization estimate [28, 29, 30, 31]. Simultaneous Lo-

calization And Mapping (SLAM) [32, 33, 34, 35, 36, 37, 38, 39, 40, 41] techniques create

and maintain a map of the environment and provide a localization estimate relative to

that map. A robot may be able to use a number of localization techniques, and each

of these techniques will have its own strengths and weaknesses. For example, there is

typically a trade-o↵ between accuracy and computational cost.

The localization estimate is used by both the guidance system and the control system.

The control system uses the reference path (e.g., a sequence of poses) or the reference

trajectory (e.g., a sequence of pose and time pairs) given in the plan, and the current

localization estimate. It then determines the commands to send to the vehicle actuators.

This system is responsible for tracking the plan that is given by the short-range guidance

system. This action is commonly known as path tracking or trajectory tracking.

The guidance system can be divided into two parts: long-range guidance and short-

range guidance. Respectively, these can be thought of as strategic and tactical guidance.

The role of the long-range guidance system is to determine the points or poses (commonly

referred to as goals or waypoints) that the robot should attempt to reach. The makeup

of this system can vary greatly. For example, it may be a large team of people who

review many data sources (e.g., orbital imagery or panoramic photos taken onboard the

robot) to identify desired scientific targets and set rover poses to allow investigation of

those targets. Or, it may be an onboard system that is able to identify targets of interest

autonomously [42, 43]. The exact nature of the system is not relevant in the scope of

this work, the only requirement is that the long-range guidance system must provide

waypoints to the short-range guidance system.

The short-range guidance system then uses this goal along with the current estimated
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pose (from the navigation system) to create a safe path plan from the current pose to the

goal. The short-range guidance system has two main elements: terrain assessment and

path planning. The terrain-assessment system creates a traversability map that, at the

most basic level, marks where the robot can and cannot safely drive (more sophisticated

maps may try to capture the uncertainty and/or cost of traversal). The path planner

then uses this map to plan a safe path from the current pose to the goal. There are many

techniques for both terrain assessment [44, 45, 46, 4, 47, 48] and path planning [49, 50,

51, 52, 53]. Many of which are discussed in further detail later in the context of specific

parts of this work. Again, these methods each have their own strengths and weaknesses.

Terrain assessment, for example, can be conducted using a variety of techniques, and

there may be many available to a robot. One of the contributions of Part I of this

dissertation is to show that the use of a particular terrain-assessment technique can have

a significant impact on the operational e�ciency of a mobile robot.

This work is motivated by recognizing that there are many di↵erent terrain assessment

and localization systems available to an autonomous robot. An individual robot may have

a variety of techniques that can be applied to solve each problem. For example, the MERs

were manually commanded to use wheel odometry or visual odometry for localization [8].

However, if a robot is able to decide when to use a particular method, the autonomy of

the system can be increased, and that means there is an opportunity for the robot to be

operated more e�ciently. Some previous works have created di↵erent operational modes

within the GN&C system [54], while others have relied on the path planner to decide

when to use the di↵erent capabilities [55, 48]. We, too, look to the planner to make these

decisions. Thus, not only does the planner have the task of finding a safe and e�cient

path to the goal, but it must also select the appropriate terrain assessment or localization

method. We call this path/action planning for a mobile robot.

The remainder of this work is divided into two parts. The parts are united under

the theme of path/action planning for a mobile robot, but neither part is exclusively

path/action planning. Both parts put a strong emphasis on field tests (test locations are

shown in Figure 1.4). Each of the two parts may be read independently of the other.

The necessary background for each is included in the appropriate context.
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Figure 1.4: Field-test locations, in Canada, of the Second-Opinion Planner and the concept
of using a network of reusable paths.

Part I uses terrain assessment as an action. Chapter 2 begins by recognizing that

there are many terrain-assessment algorithms, and they follow the trend of low-fidelity

at low-cost, and high-fidelity at high-cost. Using a high-cost, high-fidelity method every-

where can drastically increase a robot’s total path cost (the sum of the cost of driving,

planning, and doing the terrain assessment). This part presents the Second-Opinion

Planner (SOP) [56, 57]. The SOP provides an approach to decide which parts of the raw

terrain data to process with which assessment methods. It is a path-planning algorithm

that uses a hierarchy of terrain-assessment methods, from low-fidelity to high-fidelity,

and seeks to limit high-cost assessment to areas where it is beneficial. The decision to

assess some terrain with a higher-fidelity, higher-cost method is made considering po-

tential path benefits and the cost of assessment. SOP provides a means to triage large

amounts of raw terrain data. The system is demonstrated on simulated path-planning

problems and in real terrain from an experimental field test carried out on Devon Island,

Canada [58] (see Figure 1.4). In those tests the robot drove approximately 9.8 km. The

SOP plans are quite close to the minimum possible cost. Chapter 3 details the system

used in the field trials. The three main contributions of Part I are:

1. the identification of the cost of terrain assessment as an important element in the

cost of a path,
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2. a path-planning framework (SOP) that considers the cost of terrain assessment

during path planning, and

3. results from field trials of a demonstration system using the SOP framework.

Part II considers the localization method to be an action, and in Chapter 4, introduces

the concept of a Network of Reusable Paths (NRP) [59, 60]. NRP is an approach to

navigation that allows a mobile robot to autonomously explore unmapped, GPS-denied

environments. This new paradigm, when compared to that used a classic GN&C system,

results in closer goal acquisition (through reduced localization error) and it is a more

robust approach to exploration with a mobile robot. Simulation results are presented

along with the results from two di↵erent robotic test systems that were tested in planetary

analogue environments (Chapter 5). In these two tests, the vehicles traveled a total of

more than 14.4 km. The first test was carried out in Sudbury, Ontario, and used a robot

equipped with a stereo camera. The second was carried out in the Mistastin impact

structure near Mistastin Lake in Northern Labrador. That test used a lighting-invariant

system where the robot was equipped with a high-framerate lidar. These test locations

are also shown in Figure 1.4. NRP can be thought of as a simple SLAM system that

provides many benefits of the more computationally costly approaches to SLAM. The

planning algorithm makes NRP into a physical embodiment of the popular Rapidly-

exploring Random Tree (RRT) planning algorithm [51, 61]. The three main contributions

of Chapters 4 and 5 are:

1. the development of the concept of a network of reusable paths,

2. a path-planning algorithm that uses a network of reusable paths in order to seek

distant goals in unknown terrain, and

3. results from field tests of two robots using a network of reusable paths to seek distant

goals in planetary analogue environments.

NRP also o↵ers benefits in planetary exploration missions. Chapter 6 shows how

NRP allows a rover to be used for the parallel investigation of multiple sites of scientific

interest [62, 63]. Parallel exploration can dramatically increase the number of sites that

can be investigated in a short time. Two mock missions were carried out at planetary
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analogue sites [64, 65, 66]. The first was a purely robotic Lunar sample-return mis-

sion where the robot drove approximately 3.9 km. The second benefited from a robotic

astronaut-assistant using a network of reusable paths. In the second mission, the rover

drove approximately 8.2 km. In Chapter 6, we emphasize three points:

1. NRP allows a robot to return to a previously visited position with a single command,

2. this allows for parallel exploration of scientific sites, and

3. parallel exploration allows for an e�cient down-selection process to identify key

samples for return to Earth.

This dissertation concludes with Chapter 7. There we finish with final remarks re-

garding path/action planning, and an overview of the specific contributions that have

been made as part of this work.



Part I

Terrain Assessment as an Action

10



Chapter 2

Path Planning with

Variable-Fidelity Terrain Assessment

The next wave of planetary exploration is going to include rovers that need to travel

great distances without constant supervision by Earthbound operators [15]. In the case

of Mars exploration, the rover will require greater onboard autonomy that will allow it

to move beyond its sensing horizon many times between command cycles from Mission

Control [15]. It is therefore imperative to limit the time when the terrain assessment and

short-range motion planning are under direct control by operators on Earth.

There may be many terrain-assessment methods available to a mobile robot, ranging

from simple methods that can run onboard and in real-time [67], to more complex simu-

lations that include vehicle kinematics and terrain properties [46, 47]. These simulations

can often run onboard, but typically not in real-time. Most costly is a call home to ask

for human intervention, and this is how much of the Mars Exploration Rovers’ (MERs)

operations have been carried out [68, 69, 8]. The trend to all these terrain-assessment

methods is low fidelity at low cost, and high fidelity at high cost, where we consider

fidelity to be a measure of how closely the assessment method is able to model the costs

of driving over any patch of ground. The cost can be measured according to any one

of many metrics (e.g., time, distance, energy expenditure/gain, risk, wear), but in order

to make a meaningful comparison between di↵erent paths, one must express all costs in

a common set of units. Other requirements may be better handled as constraints. For

11
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Figure 2.1: Mobile robots can operate in terrain of varying di�culty. Some areas are easily as-
sessed (as in the top image), while others require more advanced methods before the traversability
can be determined (bottom image).

example, if there is insu�cient available solar flux, which may be used to generate power,

the region is assessed to be an obstacle. In what follows, we choose to use time as the

path cost, and compare costs in units of seconds. Di↵erent applications may benefit from

alternative cost measures.

We can recognize that not all terrain requires a sophisticated assessment to determine

traversability. For instance, plane-fit methods, such as those used on the MERs [4], can

confidently classify smooth, flat ground as traversable, and tall cli↵s as not drivable. This

is an example of a low-fidelity assessment method, as it is only accurate in limited types

of terrain. The di�culty arises when the rover must decide whether or not it can pass

over and into areas that are cluttered or steep; these areas often contain some of the most

rich and accessible scientific clues that can be used to improve our knowledge of the site.

The challenging regions include areas where geological forces and meteor impacts have
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naturally excavated the terrain to reveal many targets of scientific interest.

The next robotic explorers may have many ways of determining terrain traversability,

but there will always be a trade-o↵ between the cost of terrain assessment (for instance,

computational or communication time) and the fidelity of the assessment method. We

can also see that there is a fundamental relationship between path planning and terrain

assessment; the path depends on the traversability of the terrain and, ideally, only the

regions on the path that will be driven need to be assessed.

In this part, we present a modular path/action-planning framework, the Second Opin-

ion Planner (SOP) [56, 57], that uses a suite of terrain-assessment algorithms, limiting

the application of the most costly (but most capable) methods only to regions that may

be on the optimal path and that require a high-fidelity terrain assessment. This can be

thought of as a triage system for the large amounts of raw terrain data that are collected

by the robot. Phrased another way, the robot is collecting a large amount of raw terrain

data, and SOP provides a way to choose how to optimally process the data. The three

main contributions of this part are:

1. the identification of the cost of terrain assessment as an important element of the

cost of a path,

2. the development of a path-planning framework that considers the cost of terrain

assessment during path planning, and

3. results from field trials of a demonstration system using the new framework.

The work in this part is primarily applicable to slow-moving robots with limited

onboard computational resources and limited communication abilities. The example we

use are rovers for planetary surface exploration. Indeed, robots that can quickly move

beyond their sensing horizon will be more limited by the quantity and quality of terrain

data (due to occlusions and limited sensor range) rather than the available onboard

processing. Similarly, robots with powerful onboard computers will not have the same

practical need to ration their computational power.

This part is organized as follows: Section 2.1 presents some related work, followed by

the SOP path/action-planning framework in Section 2.2. In the SOP framework there

are two major components: (i) a hierarchy of terrain-assessment methods, and (ii) the
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planning framework itself. In Section 2.2.1 we discuss the objective of the assessment

hierarchy. Two example hierarchies are presented at later points: (i) a hierarchy for

simulated fractal terrain (in Section 2.3.1), and (ii) a proof-of-concept hierarchy devel-

oped for, and tested on, real data from field trials on Devon Island, Nunavut, Canada

(Chapter 3). In Section 2.2.2 we present the theoretical foundations of the SOP frame-

work before discussing the SOP algorithm itself in Section 2.2.3. Results are presented

in Section 2.3. Details of the field system, as well as lessons from the field test, are given

in Chapter 3.

2.1 Work Related to Path Planning and Terrain As-

sessment

The path planner has the task of finding an e�cient route to a goal location (scientific

target, waypoint, etc.), if such a path exists. In order to do this, the planner must know

the parts of the surrounding terrain that the robot can pass through, as well as the costs;

the planner therefore has an inherent dependence on the terrain-assessment capabilities.

In what follows, we will focus on the planning aspect of this problem, acknowledging

that there is a variety of appropriate terrain-assessment techniques, but not mentioning

specifics other than those used in the test systems.

Some of the graph-based planning techniques are of particular note. A graph is a

set of states (nodes) connected by edges. In the typical rover path-planning context,

the states represent the locations in the world at which a robot might exist, while the

edges contain the associated cost of driving between two adjacent states. The start state

corresponds to the current position of the robot, and the goal state is the desired robot

position. The A* planning algorithm [49] is an intuitive, optimal planner, and when it

is applied to a static, completely known graph, the performance is quite good. However,

when the graph is unknown or changing, the A* algorithm is not suitable as it must

completely replan after graph updates. The Dynamic A*, or D* algorithm [70, 71], is

designed to function e�ciently with changing graphs. The algorithms make local repairs

to the path as the graph is updated, and thereby maintain an optimal path according to
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the known terrain model.

The D* family of algorithms has been extended and used in a variety of applications

[72, 73, 74, 75, 76]. A state-lattice path planner, built upon the D* Lite algorithm [52],

can ensure that a path is kinematically feasible (i.e., the planned turn radius is greater

than or equal to the minimum capable by the chassis). Another such extension is Field

D* [77]. Field D* allows for more direct trajectories by planning a path through the

edge connecting two states, and then using linear interpolation to determine the path

costs. This algorithm has been deployed successfully on the MERs [5, 9]. All these

methods require each edge weight to be a non-negative scalar, but the specific method of

calculating this weight, often referred to as the edge cost, will depend on the application.

Terrain assessment is used to find this edge cost. Some common approaches in robotics

measure cost based on time, distance, or energy.

One approach to the problem of automatically switching between two di↵erent terrain-

assessment methods has been developed in the Terrain Adaptive Navigation (TANav)

system [48]. TANav is designed for operation in areas where the robot may experience

unpredictable wheel slippage. The initial method of assessment is done in two steps:

(i) detect geometric obstacles using a plane-fit technique, and (ii) visual terrain clas-

sification that leads to slip prediction. Terrain is identified as definitely traversable,

definitely not traversable, or uncertain. The path is planned on a goodness map (where

goodness is a measure to quantify the traversability) created by the initial level of assess-

ment, and if the path goes through an uncertain region the second level of assessment,

High-Fidelity Traversability Analysis (HFTA), is used to determine the cost of traveling

over that section. The cost of using the HTFA is never considered, though it is ac-

knowledged that it is significantly more computationally expensive than the less-capable

assessment method. Similarly, Ingrand et al. [54] have developed a framework to improve

the autonomy of planetary rovers, allowing the rover to select between two onboard nav-

igation modules (flat or rough terrain navigation), though again, the cost of using the

more capable terrain-assessment method is not considered.

Perception-guided path planning (PG2P) [78] is presented as a hybrid approach be-

tween navigation (to a desired goal position) and exploration (of the environment). The
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intent is to acquire sensor measurements of the most relevant areas when considering how

to reach the desired goal position. The system was tested in simulation where it o↵ered

improvements in cluttered environments. The algorithm determines where to drive the

robot in order to collect the next sensor measurement, but rather than being done in

an exploration context, this is done in the context of seeking a goal location beyond the

sensing horizon. PG2P deals with data collection, it does not consider the case where

there are multiple terrain-assessment methods available to the robot, and that these as-

sessment methods follow the trend of low cost for low-fidelity assessment, and high cost

for high-fidelity assessment.

The work of Nabbe and Herbert [55] also deals with planning beyond the sensor

horizon or through areas where insu�cient data have been collected. This probabilistic

framework uses the current map of the environment, the goal location, and the sensing

constraints, to find when and where to look in order to maximize the usefulness of po-

tential sensor measurements. When determining a path, the cost of acquiring data is

considered and the various outcomes (traversable, obstacle) are simulated using a predic-

tion of the most likely terrain configuration. This prediction is based on the surrounding

visible terrain. The system was tested in simulation and in field tests. Like PG2P, this

technique provides an answer to the questions of when to look and where to look, but not

which of the available terrain-assessment methods should be used on the large amounts of

raw terrain data that are collected.

In our framework, we consider the cost of terrain assessment (not the cost of percep-

tion) during path planning in order to decide which of the available terrain-assessment

methods to use (but not where and when to acquire more sensor data). Thus, SOP is

carrying out path/action planning with terrain assessment as the action. In practice,

SOP could be used in conjunction with one of the above techniques. This would allow

the system to decide where and when to collect data, and then SOP would decide which

terrain-assessment method should be used with the data.

The PAO* algorithm for planning with hidden state introduces the idea of pinch points

[79]. Pinch points are areas of uncertain traversability that may have a significant impact

on the optimal path. Again, the option of conducting a deeper assessment, with a more
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Increasing terrain roughness, slope, density of obstacles, etc.

The highest-fidelity assessment method cannot 
return an uncertain result. Any terrain that cannot be 
conclusively assessed is assumed to be an obstacle.
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Viable (definitely traversable)

Uncertain (requires higher-fidelity assessment)

Obstacle (definitely not traversable)

Figure 2.2: A generic terrain-assessment hierarchy with an optional mid-fidelity, mid-cost
terrain-assessment method is shown. The cost of using the method increases with fidelity. In-
creasing fidelity results in conclusive assessment on a greater fraction of all possible terrain
(reducing the size of the uncertain region). When not confident of an assessment, a method will
return uncertain and a higher-fidelity assessment is needed for a conclusive assessment. In the
case of the highest-fidelity method in the hierarchy, any inconclusive results are assumed to be
obstacles. All methods are consistent with methods above them in the hierarchy.

capable assessment method, is not considered. The expectation is that the robot visits

the pinch point (or gets close enough to measure it) in order to determine traversability.

To the best of our knowledge, there are no path-planning frameworks, other than

the Second Opinion Planner [56, 57], that explicitly account for the cost of terrain as-

sessment during path planning, though there are some that consider the cost of percep-

tion [78, 55] during path planning. There are also some that select among the available

terrain-assessment methods, but without considering the cost associated with using an

assessment method [48, 54].

2.2 The Second Opinion Planner (SOP)

This section presents the Second Opinion Planner (SOP) [56, 57]. First, we discuss the

hierarchy of terrain-assessment methods that is used in the theoretical foundations of

SOP, and then the SOP algorithm itself.
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2.2.1 A Hierarchy of Terrain-Assessment Methods

We conjecture that it is possible to have a hierarchy of terrain-assessment methods as

shown in Figure 2.2. For illustrative purposes we later use two examples of two-level

hierarchies, but in practice there can be more than two assessment methods as long as

they are ordered by increasing cost and fidelity. The cost must be a non-negative scalar1.

It is possible that some of these assessment techniques may not actually take place in

real-time onboard the robot. For example, manual assessment during a Mars exploration

mission might involve having the rover send sensor data to Earth, where operators would

make and then return a traversability judgment. This cannot be done in real-time due

to the inherent communication delay.

The structure of the hierarchy is such that at the bottom is the low-cost, low-fidelity

method. This method uses all the available data and the output must be a cost graph.

Conclusive assessment results in an area being viable or an obstacle. The assessment must

be able to mark uncertain areas (areas where the method cannot confidently ascertain

if the terrain is traversable or an obstacle) and give the corresponding edges in the cost

graph a probability of being an obstacle. Some possible approaches to determine this

probability are: (i) through empirical data collected at analogue test sites (an example

of this method is presented in Chapter 3), or (ii) machine learning techniques (we did

not try this).

The high-fidelity assessment method is at the top of the hierarchy, and it is the

highest-cost method. The idea is for the planner to prudently use this method only in

areas that: (i) are labeled uncertain by the low-fidelity method, and (ii) potentially lie on

the optimal path. An important assumption that we make is that the assessment methods

are consistent. For example, a high-fidelity assessment on an area deemed traversable

by the low-fidelity method must also find the area to be traversable. Additionally, by

design, the higher levels in the assessment hierarchy are able to assess a greater fraction

of all possible terrain, as shown in the right of Figure 2.2.

1If multiple cost metrics are used (e.g., by di↵erent assessment methods or as a way to measure the
cost of a particular assessment technique), there must be a way to combine them into a single positive
scalar. An example would be to use a weighted linear combination of the various metrics.
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The fundamental method of assessment can be di↵erent at each level in the hierarchy.

For example, envision a hierarchy with plane-fit terrain assessment at the bottom. The

middle level uses simulation of the vehicle kinematics, dynamics, and local trajectory

generation given the current terrain model. The highest level is manual assessment where

the robot sends available terrain data and vehicle telemetry (e.g., stereo imagery, point

clouds, tilt, power) to human operators who make the traversability judgment. Di↵erent

levels in the hierarchy may even use di↵erent data as part of the assessment process: a

stereo camera or a lidar (Light Detection And Ranging), or full field of view data versus

high-resolution, targeted photos or scans of an area under consideration.

We can consider the extreme cases of how the two methods may be used. If the high-

fidelity terrain assessment is not used on any of the terrain, the result is a long path,

as we only allow paths through terrain deemed definitely traversable by the low-fidelity

method. If the high-fidelity assessment is used on all the terrain, the robot will spend a

huge amount of time processing, and the shorter path will unlikely be worth the e↵ort.

Therefore, we require a method to select where to use the high-fidelity terrain assessment.

We propose that this decision be made by the planner itself.

2.2.2 Theoretical Foundations of the SOP

We have already established that not all terrain need be assessed with the same level of

fidelity in order to determine whether or not it can be successfully traversed by a mobile

robot. This suggests the use of a framework that judiciously uses expensive techniques.

The Second Opinion Planner is a modular path/action-planning framework that uses a

hierarchy of terrain-assessment methods and a path planner in an e�cient package.

We use a graph-based planning paradigm, where a graph is a set of states, V , and

edges, E. An individual state, v, corresponds to a pose in the world where the robot

may exist, while an edge, e identifies two states between which the robot can drive, along

the associated cost, w(e) (also referred to as the edge weight). An edge can be one of

three types: viable, uncertain or obstacle. Viable edges can be traversed for a known

cost, and obstacle edges cannot be traversed, giving them an e↵ective weight of infinity.

We will omit obstacle edges from graphs and plots. Uncertain edges have an unknown
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cost (possibly infinite), but the actual cost may be determined by using a higher-fidelity

assessment method. Of course, assessing an edge at higher fidelity incurs an additional

cost. The start state corresponds to the current location of the robot and the goal state

is the desired location.

SOP attempts to reduce the total path cost by considering the cost of high-fidelity

terrain assessment. In order to write this explicitly, let EP be a path through the graph.

EP is a sequence of connected n edges such that, EP = (e1, ...en). The cost of assessing

the terrain corresponding to an edge is ca(e). We can then write the total cost of the

path as

Cp(Ep) =
nX

i=1

w(ei) +
nX

i=1

ca(ei) + cplanning. (2.1)

This is the cost of driving each edge,
Pn

i=1 w(ei), the cost of doing the terrain assessment

for each edge,
Pn

i=1 ca(ei), and the cost of carrying out the path planning, cplanning. Other

approaches only consider the cost of driving.

Determining the Distance Matrices

Consider a high-resolution graph, GH := (VH , EH), that encodes traversability informa-

tion, for all the visible terrain, based on the low-fidelity terrain-assessment results. The

states, VH , and the edges, EH are defined as

VH := VL [ VH�L, and EH := EC [ EU , (2.2)

where EC is the set of edges with known weight, w(e) (where e is an individual edge), and

EU is the set of edges with uncertain weight. These disjoint sets contain all the edges in

the graph GH . The lumped state set, VL, is the set of states consisting of the start state,

vS, the goal state, vG, and all states touched by at least one edge in EU . The remaining

states, VH�L, are the states of VH that are not in VL (i.e., those touched only by edges

in EC).

In what is to follow, the all-pairs-shortest-paths (APSP) problem is a mental tool

useful in the theoretical development of SOP. The APSP problem can be solved using a

number of methods [80, 81, 82], but in the implementation of SOP we do not solve the
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APSP problem completely, thus we will not elaborate upon these algorithms. The APSP

concept allows us to begin developing the theory by considering all paths the robot may

take to the goal, and then develop a technique that computes only a smaller set of paths

that contain the best path. Consider the APSP solution to GH stored in the matrix

DH , which we will call the high-resolution distance matrix (note that in general DH is

not actually completely computed). A distance matrix contains the shortest-path cost

between all states, thus, the entry at the i

th row of the j

th column is the cost of the

shortest path from state vi to state vj. One can also maintain the sequence of edges

(i.e., the path from vi to vj) that are used to calculate the cost, and this path might

later be driven by the robot. The operation to create the distance matrix for the graph

is represented by a state-lumping operator, denoted by L, acting on the graph and the

states that are to be included. We introduce another distance matrix, the lumped-edge

distance matrix, DL, which can be constructed in a similar manner to DH , but starting

with VL instead of VH :

DH := L(GH , VH), and DL := L(GH , VL). (2.3)

As VL ✓ VH , all path weights contained in DL are also in DH . This means that an

equivalent method of finding DL is to take the relevant information from DH . This can

be done by using a projection matrix P , which is determined based on the set of lumped

states, VL. The P operator is introduced to represent this operation:

DL = PDHP
T = P(DH). (2.4)

The lumped-edge distance graph, GL, is just another way of representing DL, where the

cost of an edge connecting two states is given by the corresponding entry in DL. For

example, the cost of the path that connects state i to state j is the entry at the intersection

of the row corresponding to the ith state and the column for the jth state. This is written

as D(i, j).
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Assessing Edges of Uncertain Weight

Uncertain edges cannot be traversed and are therefore assigned a näıve weight of infinity,

as are edges representing obstacles. However, the weight of uncertain edge may be

determined by assessment with a higher-fidelity method. The assessment operator, A,

denotes the process of updating a distance matrix by reassessing the edge, e(va, vb),

connecting states va and vb. Therefore, DH is updated as

D

0
H = A(DH , e). (2.5)

Updating the Lumped-Edge Distance Matrix

If the size di↵erence between VH and VL is large, which it will be if the number of

uncertain edges is relatively low, it is highly desirable to be able to update DL directly.

Recomputing and projecting DH , or lumping an updated GL with the updated VL, are

both ine�cient and computationally expensive.

Theorem 2.1. P and A commute (P �A = A�P), therefore, DL can be updated directly.

Proof. The weight being updated, w0(e), byA, always decreases but remains non-negative.

The weight is associated with an edge, e(va, vb), that joins states va and vb in VL where

VL ✓ VH , so

D

0
L = A(DL, w

0(e)) = A(P(DH), w
0(e)). (2.6)

Let �(vx, vy) be the weight of the lowest cost path from vx to vy for every pair of vertices

(vx, vy) in VL so that,

�(vx, va) + w

0(va, vb) + �(vb, vy) < �(va, vb). (2.7)

Then update the weight according to,

�

0(vx, vy) = �(vx, va) + w

0(va, vb) + �(vb, vy). (2.8)

This guarantees D0
L represents the true lowest-weight paths. Since taking the alternate
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GH DL

L(GH , VL)

A(DL, EA)

D0
L D(n)

L

DH D0
H D(n)

H

P

A(DL, e)

A(DH , e)L(GH , VH)
P P

It is possible to incorporate multiple results
from high-fidelity assessment directly into the
lumped-edge distance matrix.

The lumped-edge distance matrix,
DL, can be extracted from the high-
resolution distance matrix, DH , by
using the projection opertator P.

Edge-lumping generates
a distance matrix con-
taining the solution to
the All-Points Shortest-
Path problem for a sub-
set of states in the graph.

Figure 2.3: A summary of the available operators, their commutativity and the option for
batch updates to the lumped-edge distance matrix, DL. The lumping operator, L operates on
the high-resolution graph, GH , to solve the all-points shortest-path problem between a subset of
states. In the figure we show lumping with VH (all the states in GH), and lumping with VL,
which is a subset of VH . The assessment operation, A, updates a distance matrix with new edge-
assessment results. The projection operation, P, creates DL from the high-resolution distance
matrix, DH . The figure illustrates that we can lump using VL and perform updates directly on
the result, DL. This is equivalent to, and more e�cient than, calculating and updating DH .

approach yields

D

0
L = P(A(DH , (x, y))), (2.9)

and also guarantees that lowest weight paths are represented; P and A commute.

The commutativity can be seen as part of Figure 2.3. It is also desirable to be able to

directly update DL with the results from multiple high-fidelity assessments of uncertain

edge weights. Let EA be the set of n edges, of the form e(va, vb), that are to be reassessed.

Since only uncertain edges can be updated, EA ✓ EU . Instead of updating DL with each

edge weight individually to get D(n)
L , where superscript (n) denotes the n

th update, the

A operation can directly produce D

(n)
L . This leads to the following theorem.

Theorem 2.2. Batch updates to DL are possible, allowing results of multiple edge as-

sessments to be incorporated simultaneously.

Proof. Consider theA operator being invoked multiple times where EA = {e1, e2, . . . , en}:

D

(n)
L = A(· · · A(A(DL, e1), e2) · · · , en). (2.10)

The update process is extended to handle multiple updates in the following way. Perform

individual updates, as before, for all edges in the set EA, and return the final updated

distance matrix. The assessment operator, A, then operates on the entire set of edges
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and the update to DL is written as

D

(n)
L = A(DL, EA). (2.11)

Batch updates are then possible because assessments can be carried out one after another

without other operations. To simplify notation we write an update as D0
L, regardless of

the number of edge-weight updates.

Selecting Appropriate Edge Weights to Reassess

Potential improvements to the path/action plan can be detected by checking if the total

path weight from start to goal is improved if uncertain edges are traversable. Uncertain

edges are assigned a heuristic minimum possible cost, h (i.e., h bounds the true cost from

below), augmented by the cost of the next-highest-fidelity terrain-assessment method,

ca. The distance matrix, DL, which contains the solution to the APSP problem, is then

updated using these new weights. If the path weight from start to goal in the updated

lumped-edge distance matrix, D0
L, is less than that in DL, then the possibility of path

improvements cannot be ruled out. This allows us to state the following theorems.

Theorem 2.3. If after reassessment of all uncertain edges contained in the potentially

improved path, the total path cost is equal to D

0
L(vS, vG)�

P
ca (i.e., all uncertain edges

found to have the heuristic cost), then the shortest path from the start to the goal has

been found.

Proof. By definition, the heuristic h(va, vb) is an underestimate of the true edge weight,

w(va, vb), between states va and vb, if such an edge exists. So h(va, vb)  w(va, vb). If

upon higher-fidelity assessment the true edge weight is equal to the heuristic value, then

h(va, vb) = w(va, vb). If by using h the edge is found to lie on the shortest path, then

that is the minimum cost path using the actual edge weights since the minimum weights

of all uncertain edges were assumed when finding the shortest path.

The order that uncertain cells are reassessed (if more than one high-fidelity assessment

is necessary) influences the number of assessments and therefore the cost of the path and
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Figure 2.4: Two paths from the start, S, to the goal, G. The näıve path contains only viable
edges as determined by the low-cost, low-fidelity terrain assessment. The cost of traveling this
path is cn. The optimistic path contains uncertain edges that must be found to be viable according
to the high-fidelity assessment before the path can be traversed. The optimistic path may also
contain viable edges with a cumulative cost of cy. The uncertain edges, ex, have a heuristic
lower bound weight, wx, and a probability of being an obstacle, px.

terrain-assessment combination. We can select the appropriate order for uncertain edge

assessments by using the following theorem.

Theorem 2.4. Assuming there is a potential path improvement that uses more than one

uncertain edge, a minimum average path cost occurs when high-fidelity assessment of m

edges is ordered according to

p1 � p2 � · · · � pm�1 � pm, (2.12)

where pi is the probability that the i

th edge that is assessed at the next level of fidelity, is

an obstacle.

Proof. Consider two potential paths as shown in Figure 2.4. The näıve path only contains

viable edges as determined by the low-fidelity terrain assessment. The cost of the näıve

path is cn. The optimistic path contains m uncertain edges and may contain viable edges.

The optimistic path is so named since all uncertain edges must be viable according to

the next-highest-fidelity assessment method for the path to be traversable. The cost of

driving the optimistic path (not considering the cost of assessment) is cp, and the set of

uncertain edges on the optimistic path is ER.

Take any two uncertain edges in the optimistic path, ei and ej, from ER and assume

all the other uncertain edges in the optimistic path have been assessed as viable. We

have a choice: (i) assess ei first, or (ii) assess ej first. The average cost of (i) is ci and
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the average cost of (ii) is cj:

ci = ca + picn + (1� pi) (ca + pjcn + (1� pj)cp) , (2.13)

cj = ca + pjcn + (1� pj) (ca + picn + (1� pi)cp) , (2.14)

where pi and pj are the respective probabilities that edges ei and ej are obstacles. In

each case the cost is constructed by considering the cost of terrain assessment at the

next level of fidelity and the probability that the näıve path must be taken if one of

the assessments finds the terrain to be not traversable. These costs are constructed

by assuming the robot must take the näıve path if either of the uncertain edges is an

obstacle. Additionally, if the first assessment is an obstacle, the second assessment will

not be carried out. Assuming pi � pj,

ci � cj = ca(pj � pi)  0, (2.15)

ci  cj. (2.16)

Therefore it is less costly, on average, to assess ei first and assess ej later, and only if

necessary. Through repeated application of this argument, the assessment order that

yields the lowest average cost is,

e1, e2, . . . en�1, en, where, p1 � p2 � · · · � pm�1 � pm. (2.17)

This concludes the proof.

Note that this ordering is only carried out when the näıve path is more costly than

the optimistic path, including the cost of assessment. Also, if only one uncertain edge

is in the optimistic path, then that edge is the first (and only) one to be assessed using

the high-fidelity, high-cost terrain assessment. Finally, we can see that if pm is wrong

(perhaps the model of the probability is inaccurate), the system will continue to function,

since this property is only used when assessing a set of edges that are part of a potential

path improvement, and not in searching for a potential path improvement.
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1. Gather raw 
sensor data

2. Assess terrain 
at low fidelity

3. Create high-
res. graph

4. Simplify high-
res. graph

5. Look for path
improvements

6. Reassess 
uncertain arcs

7. Update
the graph

Terminate if no 
improvements exist

Terminate if all assessments 
are as expected

Pipeline:

Data products:

Sensor data Low-fidelity 
terrain assessment 

GH GL Pessimistic  vs. 
optimistic GL

Assessment 
results

Updated GL

(i) Fractal terrain

(ii) Simple example

Examples:

Figure 2.5: The pipeline view of the Second-Opinion Planner algorithm with examples showing
the data product at each step: (i) on the top is an example using simulated fractal terrain
(using the same terrain map as in Figure 2.6), and (ii) the bottom shows a simple case to better
illustrate the steps of the algorithm. The start and goal states, corresponding to the current and
desired positions of the robot, are shown as green and red circles or S and G, respectively. Gray
areas are viable, yellow areas are uncertain, and red areas are obstacles. Each stage is a major
step of the SOP algorithm and the images are representations of the data product created at
each step.

2.2.3 The Second-Opinion Planner Algorithm

The SOP algorithm is given in Algorithm 1, and a pipeline view is shown in Figure 2.5.

There are two examples: (i) a case using simulated fractal terrain on the top, and (ii) on

the bottom, a simple case that more clearly shows the steps. Step 1 of the pipeline is

to gather raw sensor data (line 1 in Algorithm 1). Step 2 is to use the data to assess

the terrain using the low-fidelity assessment method (line 2 in Algorithm 1). The result

is a map where all regions are either known or uncertain. The known areas are either

viable (traversable) or an obstacle. Step 3 is to use the low-fidelity assessment results

to create a high-resolution cost graph, GH , where edges are viable or uncertain (line 3

in Algorithm 1). The edges have cost of traversal, w(e), which is a function of the

traversability criteria used by the assessment technique. Each uncertain edge also has



Chapter 2. Planning with Variable-Fidelity Terrain Assessment 28

Algorithm 1 The Second-Opinion Planner (SOP) algorithm.

1: Gather raw terrain data, R
2: Low-fidelity assessment data, S, where S = LowFidAssessment(R)
3: GH = GraphFromAssessments(S)
4: GL = L(DL)
5: while GL contains uncertain edges do
6: EP = FindOptimisticPath(GL)
7: EA = ExtractUncertainEdges(EP )
8: if EA = {} then
9: return EP

10: end if
11: for ei in EA do
12: if w

0(ei) > h(ei) then
13: break
14: end if
15: end for
16: if for each ei in EA, w0(ei)  h(ei) then
17: return EP

18: end if
19: D

0
H = A(DH , EA)

20: end while
21: return EP = {}

probability, p > 0, of being an obstacle. For the viable edges, p = 0. In this version

of the framework, we discretize the terrain as regular, square cells such that GH is an

eight-connected graph. This is an implementation detail, and not a fundamental part

of the SOP algorithm. As long as the output of the low-fidelity assessment method is a

graph with viable or uncertain edges, the method will work within the SOP framework.

Step 4 is to simplify the high-resolution graph, GH , to create a graph that can be used

to both speed up re-planning and to look e�ciently for potential path/action improve-

ments (line 4 in Algorithm 1). The simplified graph is the lumped-edge distance graph,

GL, and it contains the subset of states connected by paths of uncertain cost, plus the

start and goal. The edges between the states of GL are the edges of uncertain cost and

the edges representing the cost to travel between the states along edges of known cost

in GH . As part of this step, we find the shortest path from the start to the goal, going

through only viable edges and states, we call this the näıve path. This path contains
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edges EP and its cost is cn, where,

cn :=
X

ei2EP

w(ei). (2.18)

A large GL can greatly increase the computational e↵ort required to run SOP. There-

fore, at many points in the algorithm we take steps to keep GL small. For example, at

this point, during the construction of GL, we use cn as an upper limit when deciding the

states and edges to include. The minimum cost of using an edge must be less than cn,

and the minimum cost of using an edge from state va to vb is

h(vS, va) + h(va, vb) + ca + h(vb, vG), (2.19)

where h(va, vb) is the heuristic minimum cost of traversing the edge, and ca is the cost

of terrain assessment at the next level of fidelity. The minimum possible cost of getting

to va from the start state, vS, is h(vS, va). Similarly, the minimum cost of traveling from

the edge to the goal state, vG, is h(vb, vG). We use the Euclidean distance between states

va and vb for the heuristic distance, h(va, vb). If a state other than the start or goal is not

directly connected by an uncertain edge, it is not added to GL. In the tests that were

carried out in this part, we have assumed a näıve path always exists. The cost of the

näıve path is used as an upper limit of the cost of the paths that are considered in GL,

this allows states that are not useful to be left out of GL. If the näıve path does not exist

in practice, GL will contain more states and the computation will be more taxing, but

the planner will still find a path, if a path exists. This case is discussed in more detail

at the end of this section.

Step 5 has the planner look for path improvements (lines 6 and 7 in Algorithm 1). To

understand this step, consider the two extreme cases of what GL may represent: (i) the

pessimistic GL, where all the uncertain edges are not traversable, or (ii) the optimistic

GL, where all the uncertain edges are traversable at the minimum heuristic cost plus the

cost of carrying out the terrain assessment at the next-higher-level of fidelity. This allows

one to compare the start-to-goal path cost in the optimistic GL (the optimistic cost) to

that in the pessimistic GL (the pessimistic cost). If the optimistic cost is less than the
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pessimistic cost, then there are uncertain edges that may be part of the optimal path

and terrain-assessment combination. Stated in an alternative manner: if the start-to-

goal path cost changes when the planner is allowed to plan through uncertain regions,

there must be uncertain regions that are on the optimistic optimal path. If there are no

improvements available, the algorithm terminates (lines 8 to 10 in Algorithm 1).

The pessimistic start-to-goal path cost is available in the pessimistic distance matrix.

It is the entry corresponding to the start and goal states,DL(vs, vg). To find the optimistic

path, we can use the pessimistic GL and the uncertain edges to find the start-to-goal entry

in the optimistic DL. Recall that DL is a representation of the graph GL, where the states

correspond to the rows and columns of DL, and the cost of the edge connecting state vi to

state vj is the value of entry DL(vi, vj). The uncertain edges (with edge cost augmented

by ca) can be added to the pessimistic GL and the planner can find a path from vs to vg

on this new graph. The path is the optimistic start-to-goal path. If this is di↵erent than

the pessimistic GL path, there are uncertain edges that could yield path improvements.

Step 6 is to actually reassess the uncertain edges in the optimistic path (in order

of decreasing p) using the terrain-assessment method at the next-higher-level of fidelity.

The result is that we now know the actual cost of the reassessed edge. If the reassessment

result is that the edge is traversable at the heuristic cost (as hoped for in the optimistic

DL), then the shortest path has been found. If an edge is assessed as an obstacle,

the reassessment is immediately stopped, even if there are other assessment requests

pending, since the optimistic path is now not traversable. Figure 2.5 shows a high-fidelity

assessment that uses a higher-resolution map with local planning, this is an example of

one method of high-fidelity assessment that may be used. In Algorithm 1 Step 6 is shown

in lines 11 to 18.

When necessary, step 7 is executed to update the graph GL with the traversability

costs of the reassessed edges (line 19 in Algorithm 1). We then return to step 5 and the

planner can again look for further improvements. The planner will continue to seek a

second opinion on pieces of terrain until the assessment costs outweigh the possible path

benefit or until no uncertain edges remain (line 5 in Algorithm 1).

Let us return to the case where the näıve path does not exist. In our implementation,
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the planner will always find a path, if one exists. This is guaranteed by the algorithms

used in the implementation and remains true even when there is no näıve path. The case

where no näıve path is present is easy to detect, and therefore could allow one to use a

di↵erent architecture (i.e., not SOP) when this is the case. However, one could also just

allow SOP to continue. Consider the case where all the terrain is marked uncertain by

the low-fidelity method (i.e., no obstacles, no viable sections), the search space for the

high-fidelity assessments will include all the connected, uncertain edges. Therefore, the

planner will continue requesting high-fidelity terrain assessments until either a viable path

is found, or all possibilities have been exhausted and no path is found. From a di↵erent

perspective, the näıve path is simply the backup plan, and the heuristic based on the

cost of this backup plan indicates when the planner should give up on more high-fidelity

assessments and just use the näıve path.

2.3 Results of the Second-Opinion Planner

The Second-Opinion Planner has been tested on both simulated fractal terrain, and

using real terrain data collected at a planetary analogue site on Devon Island, Nunavut,

Canada (the location of the test site is shown in Figure 1.4). The results are presented

here. In both of these tests, the planner had access to a large amount of raw terrain data

that could be used for terrain assessment, but the cost of processing all the data at the

highest-fidelity (and highest-cost) would have been prohibitive. SOP provided a method

to select which assessment method to use with which data.

2.3.1 Tests of SOP on Simulated Fractal Terrain

We generated fractal terrain [83] (a planner test method similar to that of Stentz [70]) to

test the performance of the algorithm and to compare it to other methods. Each terrain

model is 1008⇥1008 pixels, with each pixel value encoding to the local terrain height (as

a floating-point number). The low-fidelity terrain-assessment method divided the terrain

model into coarse, square cells that are 21 pixels per side. The traversability of a cell was

estimated based on the roughness (variance of the height) of the pixels in the cell. There
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were two roughness thresholds: (i) a limit below which a cell was definitely traversable,

and (ii) a limit above which the cell was an obstacle. If the roughness was between

the two thresholds, the cell was deemed uncertain. The states in the high-resolution

graph corresponded to the centers of the cells used for the low-fidelity assessment. In the

test system, the edges were based on an 8-connected graph. These edges were added if

the associated states were not obstacles, and if the di↵erence between the mean heights

was below the maximum step threshold. If both cells were viable, the edge was viable;

otherwise, the edge was marked as uncertain. The probability that an edge was an

obstacle was modeled using a function based on the roughness (similar to the function

used in Chapter 3).

The high-fidelity assessment operated on an uncertain edge in the high-resolution

graph. The pixels associated with the edge were grouped into square cells of three pixels

per side. This means the coarse cells used in the low-fidelity assessment were broken into

a grid of 7 ⇥ 7 smaller cells. A local cost graph was created using the same method as

the low-fidelity assessment, except there was no uncertain option, since the high-fidelity

method was at the top of the assessment hierarchy. On the local cost graph, we searched

for a path from the tail to the head of the uncertain edge. Superficially, this may appear

similar to multi-resolution path-planning techniques [84, 85, 86]. However, this is purely

a result of the choice for the high-fidelity method in the assessment hierarchy. SOP is able

to use a variety of high-fidelity assessment methods, and these do not necessarily need

to be higher-resolution versions of the low-fidelity assessment methods. In this section,

one should take the example high-fidelity assessment as a placeholder for some arbitrary

method with a given cost of assessment. With this, one can predict the performance of

an assessment hierarchy that has similar scaling between the underlying costs.

Figure 2.6 shows a low-fidelity assessment with a detailed look at two examples of

high-fidelity assessment. A SOP path plan is also shown. It is an improvement over the

näıve path plan. The SOP plan went through uncertain cells that required assessment

using the high-fidelity terrain-assessment method.

In our tests we positioned the start and goal in locations near to those shown in the

example, allowing slight adjustments if the start or goal was situated on an obstacle or
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Naïve path cost: 1 500.6 s

SOP cost: 1 203.8 s

Edge reassessed as an 
obstacle using high-fidelity 

terrain assessment

1 189.7 s driving
9 @ 1.0 s = 9.0 s assessing

4.9 s planning

Start

Goal

Edge reassessed as 
traversable using high-

fidelity terrain assessment

1 500.6 s driving

Low-fidelity terrain assessment

Figure 2.6: A sample SOP plan on simulated fractal terrain. In the center is the low-fidelity
terrain assessment with the resulting paths and high-fidelity terrain-assessment locations. The
näıve path (dashed) goes through only viable regions (grey) while the SOP path (solid) crosses
through areas that were uncertain (yellow) according to the low-fidelity assessment. High-fidelity
assessments of edges that were found to be obstacles are red while viable edges are green. Sample
high-fidelity assessments of an obstacle and traversable edge are shown on the left and right,
respectively. Note that a single cell in the low-fidelity terrain assessment corresponds to seven
cells in the high-fidelity assessment.

uncertain cell. Additionally, if there was not a näıve path (i.e., all certainly traversable

edges) from the start to the goal, the map was not used. We ran the SOP algorithm

on 1089 fractal terrain maps and compared the results with the alternative options that

are described later. The results are summarized in Figure 2.7 and Table 2.1. Table 2.1

provides the average and standard deviation of the costs across all the maps for three

di↵erent values for the cost of high-fidelity terrain assessment. The total cost is broken

down into the three main components: (i) path length, (ii) number of high-fidelity as-

sessments, and (iii) planning time. We also provide a total-time cost that combines the

three components by assuming a driving speed and time for each high-fidelity assess-

ment. The contributions to the total cost must all be expressed in the same units. In

our examples we have used units of seconds. The total cost is then just a weighted linear

combination of the distance, number of assessments, and the planning time, as seen in

Table 2.1. The speed of the robot was 1 pixel/s, and three cases are considered with

di↵erent costs of assessment, ca: (1) 0.03 seconds/assessment, (2) 3.5 second/assessment,
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Figure 2.7: Total cost using di↵erent values for the cost of high-fidelity terrain assessment,
ca. The total cost is the combination of the time to drive the path, carry out any high-fidelity
terrain assessments, and do any planning operations. The methods considered are: (i) low-
fidelity assessment used everywhere, (ii) high-fidelity assessment used on all uncertain edges,
(iii) high-fidelity assessment applied to the uncertain edges in GL, (iv) the cost of assessment
is not considered during planning, (v) the Second-Opinion Planner, and (vi) the best possible
case which is a fortuitous lower bound created if high-fidelity assessment is only carried out
on uncertain edges on the final path (this is not achievable in practice because the final path
is not known in advance). Cases (i), (ii) and (iv) can be calculated for any ca but the other
methods require simulation; thus the markers correspond to results from a batch of simulations
at a particular value of ca. In all, 19 values of ca were used on 1, 089 fractal terrain maps for
a total of 20 691 tests.

and (3) 100 seconds/assessment, and we can see that this cost had a dramatic influence

on the choices made by the SOP algorithm. The tests were carried out on one core of

an Intel R�CoreTM2 Duo 2.4 GHz processor with 3 GB of RAM. The average distance

between the start and the goal is 959 pixels with a standard deviation of 32.6 pixels.

The conditions for the simulations could represent many possible robot systems de-

pending on the scale of the terrain pixels. On the relatively large scale, we may have a

robot that uses a coarse resolution for terrain assessment (e.g., 1m) and therefore trav-

els relatively quickly, given the scaling (i.e., 1 pixel/s), this leads to a ground-speed of

1m/s. This would mean the goal was approximately 959m from the start position. For a

smaller scale, consider a robot that uses a finer resolution for terrain assessment, 0.05m

cell resolution, and that therefore travels 0.05m/s. With this scaling, the goal would be
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Table 2.1: Results for three cases corresponding to three di↵erent values of the cost of as-
sessment, ca. Case 1, 2 and 3 use high-fidelity assessment costs of 0.03, 3.5 and 100 sec-
onds/assessment respectively. The methods are as in Figure 2.7. This table presents the aver-
age cost of each contribution and case over all 1 089 fractal terrain maps and gives one stan-
dard deviation in parentheses. The value from the lowest-cost planner in each case (excluding
method (vi), which is not possible a priori) is shown in bold.

Path Length High-Fid. Planning Cost of Cost of Cost of
(pixels) Assess. (#) Time (s) Case 1 (s) Case 2 (s) Case 3 (s)

(i) Low-fidelity 1 253.23 0.029 1 253.2 1 253.2 1 253.2
(±177.3) (±0.0079) (±177.3) (±177.3) (±177.3)

(ii) High-fidelity-all- 1 146.9 1 843.9 0.031 1 202.2 7 600.7 185 540
uncertain (±111.3) (±118.9) (±0.0091) (±110.9) (±419.0) (±11 876)
(iii) High-fidelity-on-useful

Case 1: ca = 0.03 s 1 146.9 893.0 0.046 1 173.9
(±111.3) (±459.8) (±0.012) (±120.4)

Case 2: ca = 3.5 s 1 146.9 876.0 0.046 4 228.1
(±111.3) (±468.9) (±0.013) (±1 717.1)

Case 3: ca = 100 s 1 146.9 556.0 0.045 56 843
(±111.3) (±639.8) (±0.013) (±64 074)

(iv) Ignoring cost of 1 146.9 15.4 0.031 1 147.4 1 200.8 2 685.9
assessment (±111.3) (±12.3) (±0.0091) (±111.5) (±135.0) (±1 279.3)
(v) Second-Opinion Planner

Case 1: ca = 0.03 s 1 146.9 8.7 4.7 1 151.5
(±111.3) (±7.2) (±4.6) (±113.5)

Case 2: ca = 3.5 s 1 147.0 7.1 4.6 1173.2
(±111.4) (±5.6) (±4.6) (±120.1)

Case 3: ca = 100 s 1 220.8 0.29 2.2 1249.1
(±142.2) (±0.94) (±3.4) (±169.7)

(vi) Best possible
Case 1: ca = 0.03 s 1 146.9 4.8 1 147.1

(±111.3) (±2.9) (±111.3)
Case 2: ca = 3.5 s 1 147.0 4.4 1 162.1

(±111.4) (±2.8) (±113.3)
Case 3: ca = 100 s 1 220.8 0.21 1 242.1

(±142.2) (±0.69) (±152.9)

approximately 47.95 m away. These distances correspond to the common ranges available

for lidar (LIght Detection and Ranging) sensors.

In Figure 2.7 and Table 2.1, the low-fidelity assessment case employed the low-fidelity

assessment method everywhere and planned on the resulting graph without allowing the

path to traverse uncertain edges (i.e., the path was the näıve path). As we would expect,

the path length was relatively long, and the path length was the major factor in the total

cost. The high-fidelity-all-uncertain assessment case began with the same graph, but

then used the high-fidelity assessment method on all the uncertain edges. The result was

that the path taken was the shortest possible path, but there was a huge cost associated

with carrying out all the high-fidelity assessments. In the high-fidelity-on-useful case,

the high-fidelity assessment was only carried out on the smaller set of uncertain edges
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included in GL. The result was again the shortest possible path, but with fewer high-

fidelity assessments than the high-fidelity-all-uncertain case. The number of assessments

varied with ca because ca was a factor in the selection of the states and edges to include in

DL. For ignoring the cost of assessment, the cost of high-fidelity terrain assessment was

neglected during planning. Therefore the planner would plan along uncertain edges if that

was the shortest path. There was no consideration for the eventual cost of assessment that

would be incurred; this method is most similar to the TANav framework [48] mentioned

previously. In all these cases the cost of planning was negligible.

SOP, on average, found the lowest-cost combination of path and terrain assessment,

or it was quite close for all cases. It was only slightly more costly at low ca, where the

planning overhead increased the time taken by 2 to 6 seconds. Of course, if the high-

fidelity terrain assessment were this cheap it would have been used as the low-fidelity

method, allowing for even more capable methods higher in the assessment hierarchy.

The SOP costs were 1151.5 s, 1173.2 s, and 1249.1 s, this corresponds to improvements of

101.7 s (8.12%), 80.0 s (6.38%), and 4.1 s (0.33%) for cases 1, 2 and 3 respectively. SOP

used the shortest path most of the time and used very few high-fidelity assessments,

though clearly to good e↵ect. The cost of planning was small but not insignificant.

SOP o↵ered an advantage over the other options shown, finding what was quite close to

the minimum possible path/assessment combination. The best possible path/assessment

combination would have been to only assess uncertain edges that were on the final path,

but it was impossible to know in advance if an edge would turn out to be an obstacle or

traversable after high-fidelity assessment. The best-possible curve is shown and it acts

as a theoretic lower bound of achievable performance.

From Figure 2.7 we can see that there was a range of ca where SOP clearly outper-

formed the other methods. The width of this range depends on the sensor range (the

size of the map), since as the map gets bigger there would be cases where even higher-

cost high-fidelity methods may be used wisely. Additionally, the curve depends on the

speed and computational resources of the robot. Further important relationships may

also arise when considering the actual robot system. This implies that the performance

can benefit from good design, though SOP can o↵er improvements even if the choice of
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terrain-assessment methods is constrained.

Looking critically at the results, there are some opportunities for improvement. The

planning time can be reduced with a more e�cient implementation, and it is dependent

on the computing resources. The number of assessments may be also be reduced by

moving away from an optimistic model and making better use of the probability that an

edge is an obstacle. In fact, the desire for this ability strongly influenced the development

of the fundamental SOP elements, namely, the use of the distance matrices, which allow

the system to retain the ability to consider many alternatives at once. In contrast,

the path length cannot be appreciably reduced since it is already quite close to the

theoretical minimum. Further improvements are going to be relatively small, and in

practice, only noticeable on large maps where the cost of high-fidelity terrain assessment

is quite significant relative to the driving speed.

2.3.2 Real-World Results

SOP has also been used on real-world data with a proof-of-concept terrain-assessment

hierarchy. The hierarchy is described in Chapter 3 and the results are shown here. The

planning tests were run o✏ine using the data collected in the field. The data collection,

using the robot shown in Figure 2.1, was part of field trials held in July 2009 on Devon

Island, Nunavut, Canada. For a primary guidance sensor, the robot was equipped with a

forward-looking planar laser rangefinder (SICK) with a 180� field of view, mounted on a

pan-tilt unit (PTU). Localization was provided using visual odometry from a rear-facing

stereo camera. A di↵erential GPS (DGPS) was used to record ground-truth position.

Inclinometers in the front and rear body sections provided roll and pitch measurements

for the SICK and PTU, and for the DGPS antenna. We also took long-range lidar scans

(with a range of a couple hundred meters to over a kilometer) of the traverse site using

an Optech ILRIS-36D. The driving data from the robot, along with the long-range scans

of the traverse site, were used to create an assessment hierarchy that used the long-range

lidar data. This allowed for SOP to be used to plan paths on other long-range scans, and

those results are shown here. Further descriptions of the robot and the terrain-assessment

hierarchy are presented in Chapter 3.
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Table 2.2: Planning results using 10 long-range scans collected from Devon Island, Nunavut,
Canada. Comparison planners are as described in Figure 2.7. The value from the lowest-cost
planners (excluding method (vi), which is not possible a priori) is shown in bold for each test.

Start-to- (i) Low-fid. (ii) High-fid.- (iii) High-fid.- (iv) Ignoring- (v) SOP (vi) Best
Scan goal dist- path cost all-uncertain on-useful cost-of-assess. path possible

ance (m) (s) path cost (s) path cost (s) path cost (s) cost (s) path cost (s)
1 272.0 931.6 55 725.9 51 674.7 803.5 749.6 722.3
2 169.7 405.7 7 619.7 13 147.9 383.3 382.4 375.6
3 128.1 619.1 17 516.1 32 708.1 594.8 554.4 551.7
4 210.0 459.7 15 220.6 26 466.9 535.9 439.9 429.5
5 570.1 1 122.4 54 146.9 77 504.6 1 313.4 1 151.0 1 100.4
6 344.4 818.0 32 923.7 47 567.1 768.2 691.6 661.8
7 116.6 460.3 82 184.3 35 194.6 346.3 347.5 338.3
8 164.0 518.2 35 764.4 26 037.3 486.1 471.8 469.6
9 240.2 741.2 29 322.0 49 641.3 837.9 628.9 603.9

10 216.3 1 114.0 29 841.6 58 432.1 1 420.8 1 108.0 1 106.5

Table 2.2 contains the results from 10 distinct long-range lidar scans. The start and

goal locations were selected so that there was a näıve path and potential for improvements

that go through uncertain regions. The methods are as defined in Figure 2.7 with the

cost of high-fidelity terrain assessment set to 20 s/assessment.

Figure 2.8 presents a more detailed look the results from scan 1. Here we contrast

the results of SOP (right) with neglecting the cost of high-fidelity terrain assessment at

the planning stage (left). In this case, SOP did not select the shortest driving distance

path, but instead, a compromise between driving time and time spent carrying out high-

fidelity terrain assessment. SOP found a shorter path (according to total time) than

any other method, including the näıve path, where only low-fidelity terrain assessment is

used. Figure 2.9 shows two more SOP plans (scan 7 on the left and scan 5 on the right)

using data collected during field trials.

SOP is not guaranteed to find the lowest cost path in any particular case (only on

average). In certain cases (such as scan 5) the SOP cost can be higher than the näıve

path. This situation typically arises when a great number of high-fidelity assessments

return as obstacles. Over the course of these 10 tests, on average, SOP found plans that

were 89.78% the cost of the näıve path, and 89.65% the cost of ignoring cost of assessment

during planning. SOP o↵ers improvements of approximately 10% over the other methods

considered. Also note that, on average over these tests, using high-fidelity methods while

ignoring the associated high cost is more costly than solely using the low-cost, low-fidelity
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StartStart

Goal

Goal

High-fid. assess. result is viable
High-fid. assess. result is obstacle
Naïve path 

High-fid. Assessments:
8 @ 20 s/assess. = 160 s

Driving time:  643.4 s
Planning time:       0.1 s

Total cost:    803.5 s

High-fid. Assessments:
5 @ 20 s/assess. = 100 s

Driving time:  644.9 s
Planning time:    4.7 s

Total cost:    749.6 s

Path neglecting cost of high-
fidelity terrain assessment

Path using SOP with
ca = 20 s/assessment

Driving time:   931.6 s 
Total cost:    931.6 s

Naïve path

High-fidelity assess. 
result is viable

High-fidelity assess. 
result is obstacle

Uncertain cell  (low-fid. assess.)

Obstacle cell

Viable cells High to low cost

Figure 2.8: A detailed look at the results from scan 1. On the left is the result if the cost
of high-fidelity terrain assessment (ca = 20 s/assessment) is ignored during planning. On the
right is the SOP plan on the same terrain. In both cases the path cost was lower than that of
the näıve path. However, even though the driving time on the left was less, the total time was
greater than the total SOP time.

Figure 2.9: Additional SOP results for scan 7 (left) and scan 5 (right). The parameters and
the legend are the same as in Figure 2.8. In scan 7 the SOP path cost was 347.4 s compared
to the low-fidelity path cost of 460.3 s. In scan 5 those same costs were 1 151.0 s and 1122.4 s,
respectively.
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terrain assessment and driving longer paths. It is important to account for the cost of

terrain assessment in cases where use of high-fidelity assessment is frequent, or the cost

becomes significant. We would expect that with a di↵erent hierarchy, more tailored to

the particular system (as predicted by Figure 2.7), the improvement over neglecting the

cost of terrain assessment would be more pronounced.

2.4 Conclusions

The Second-Opinion Planner (SOP) is a path/action-planning framework that considers

the cost of terrain assessment in the planning process. It attempts to limit the use of

high-cost, high-fidelity terrain assessments to areas that can result in a lower cost path

(including the cost of assessment). SOP provides a means to triage the large amounts

of raw terrain data that are collected by the robot. In this chapter, we presented the

motivation for SOP, the SOP algorithm proper, and the results of SOP field tests. More

specifically the three main contributions of this part are:

• the identification of the cost of terrain assessment as an important element in the

cost of a path,

• the SOP path/action-planning framework which considers the cost of terrain as-

sessment during path planning, and

• results from field trials of a demonstration system using the SOP framework.

In support of these contributions, we have presented the theory behind the framework

and the results of using the Second-Opinion Planner framework on both simulated fractal

terrain and real-world data collected at a Mars analogue site on Devon Island, Nunavut,

Canada. Included in this, we demonstrated a proof-of-concept implementation of a two-

level terrain-assessment hierarchy using real sensor data, and verified that the assump-

tions in this hierarchy are plausible. While some further improvements are possible,

the SOP plans are already quite close to the minimum possible cost. Details of the

development of the real-world assessment hierarchy are given in Chapter 3.



Chapter 3

A Real-World Terrain-Assessment

Hierarchy

A primary goal of the field trials was to show, by creating a real-world example, that our

assumptions on the existence of a terrain-assessment hierarchy are reasonable. In order

to do this, we collected performance data (speed, number of stops) for the robot, shown

in Figure 2.1, traveling through a variety of terrain at a planetary analogue site near the

Haughton Mars Project base camp (near Haughton Crater) on Devon Island, Nunavut,

Canada. We also took long-range lidar scans of these areas using an Optech ILRIS-36D.

The onboard short-range guidance system allowed the robot to travel hundreds of

meters and avoid local obstacles. The guidance system operated in two main modes.

In mode one (push-broom), the robot would drive straight at the goal with the SICK

laser rangefinder angled forward and down to look a short distance ahead (0.5 � 2m

depending on the robot’s speed) to detect hazards. If a hazard was detected, the robot

would slow down, and if necessary, stop. If a stop was required, the robot would reverse

along its track a short distance. It was necessary for the vehicle to back up because the

obstacle detection range was short and the vehicle could only make large radius turns.

When an obstacle was detected directly in front of the vehicle, it needed to back o↵

in order to get the space necessary for an avoidance maneuver. We chose to have the

vehicle back up along its inbound path because there was no rear-facing hazard detection

and we knew the path was safe since the robot just drove it. Note that this realization

41
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(ii) Detected an obstacle (x)! Stopped, 
reversed along track. Entered mode 2.

(iii) In mode 2, acquired a scan and assessed 
the surroundings. Planned a path around 
visible obstacles and followed the path.

Start

Goal

Waypoint

(iv) Switched back to mode 1 
at the data horizon

Preplanned path

Repeated at each obstacle 
on the track

Actual track

Mode 1:  Pushbroom
- Safely drive into unknown terrain
- Fast, but not very capable

Mode 2:  Stop-and-stare
- Avoid local obstacles
- Slow, but can go more places

high-speed (0.75 m/s)
mid-speed (0.5 m/s)
low-speed (0.35 m/s)

(i) In mode 1, followed path (straight at the 
waypoint) at a safe speed, watched for obstacles.

Figure 3.1: A typical scenario showing the high-level operations of the short-range guidance
system that was onboard the test robot. The robot was given a long-range plan consisting of
a set of waypoints and a goal (shown in light blue). The robot had two guidance modes and
automatically switched between them. In this example the robot did the following: (i) in mode
one, it drove straight to the next waypoint until, (ii) it detected an obstacle on the path. The
robot automatically stopped and then reversed along its track and entered mode two. (iii) In
mode two the robot acquired a detailed scan of the terrain and used a plane-fit terrain assessment
technique [67] to detect obstacles. It then planned a path to the next waypoint and drove that
path. (iv) When the robot reached the sensing horizon of the previous scan it automatically
changed back into mode one and drove straight at the next waypoint. These steps were repeated
as necessary when obstacles were detected.

directly inspired the development of a network of reusable paths [59, 60], as presented in

Part II, and more details about the lessons learned in these field experiments are given

in Section 3.2. Once the vehicle had backed up, it entered the second mode. In mode

two (stop-and-stare), the robot was stationary while acquiring a detailed (and therefore

large) three-dimensional scan of the surrounding area using the SICK laser rangefinder

on a pan-tilt unit. A plane-fit method, similar to Morphin [67], was used to assess the

terrain and a path was planned around any visible obstacles. Once beyond the data

horizon of the sensor, typically 20 m, the system automatically returned to mode one.

A sample scenario is shown in Figure 3.1. The first mode was fast but could only allow

the robot to go over flat, smooth terrain; the second mode was slow but could allow the

robot to negotiate much more complicated areas.
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Total of
17.2 km

9.8 km of driving data (21 traverses)8.4 km of checkout and calibration (16 traverses)

View from site of long-range 
scan 1 (2 long-range scan sites)

– high-speed (0.75 m/s)
– mid-speed (0.5 m/s)
– low-speed (0.35 m/s)

x – site of obstacle detection
Scans decimated to 1%

x (m)

y 
(m

)

Site of 
scan 2

Figure 3.2: Raw data collected during Devon Island field trials, July 2009. Nearly 10 km of
driving data was collected over a variety of terrain. The robot’s speed was recorded (tracks are
colored accordingly) and so are all sites of obstacle detection while driving in mode one (shown
as red ‘x’). Two long-range lidar scans were taken of the traverse area.

3.1 A Real-World Assessment Hierarchy

Figure 3.2 contains a summary of the performance data and long-range scans that were

collected. We acquired two long-range lidar scans of the traverse area. After calibration

and check-out, we collected 9.8 km of driving data over 21 traverses, and this is shown

colored according to speed. A red ‘x’ marks a location where the robot encountered an

obstacle and had to switch into mode two. We also used the information from the local

stop-and-stare scans to get more data points from areas where the robot did not drive,

but according to the onboard sensors, it could have, or could not have, driven.

The objective was to tie the driving data to the long-range lidar data so that we could

build a classifier to predict the driving cost of moving from one cell to an adjacent cell

using only the long-range lidar data. The ground-truth localization data were only used

for design and validation of the system. When in operation, the SOP architecture did
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– high-speed (0.75 m/s)
–mid-speed (0.5 m/s)
– low-speed (0.35 m/s)

x – unavoidable obstacle
o – avoidable obstacle

Uncertain

Definitely viable D
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Probability of 
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obstacle

Figure 3.3: The method to determine terrain costs and obstacle probabilities is shown. On the
left, the mode one and two obstacle and driving data have been assigned to 10⇥10 m cells based
on DGPS. Obstacles that were detected have been classified as: (i) unavoidable obstacles where
the entire cell was not traversable (black ‘x’), and (ii) avoidable obstacles where a cell could
have been traversed by taking a path that avoided local obstacles but remained inside the cell.
Other cells the robot visited are colored according to the average driving speed. Each cell also
had a point cloud from the long-range lidar scan. On the right, a plane has been fit to each cell
and the points from the left plot have been placed according to the logarithm of the plane’s slope
and roughness. A strong trend is visible and a classifier has been made creating regions where a
contained cell is either viable, obstacle or uncertain. In the uncertain region the probability that
a cell might be an unavoidable obstacle was modeled by projecting the fraction of unavoidable
obstacles (from the ground truth driving data) onto a line.

not need, or use, the ground-truth data. The traverse area was divided into 10 m⇥ 10 m

cells and the speed data and obstacle encounters were assigned to cells using Di↵erential

GPS (DGPS) data collected on the robot. The long-range lidar data were registered

into the DGPS frame using the procedure outlined by Carle [87] to obtain ground-truth

position and orientation. The points were divided into the same 10 m⇥ 10 m cells as the

driving data. This information was used to validate that the terrain-assessment methods

accurately predicted terrain traversability.

In the left of Figure 3.2, the obstacle encounters have been categorized as one of two

types: (i) avoidable obstacles that could have been avoided while staying within the cell
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(a magenta ‘o’), and (ii) unavoidable obstacles where the entire cell was unsafe (a black

‘x’). Each cell was scanned at least once with the long-range lidar, and these data were

used in a plane-fit terrain assessment, where a single plane was fit to all the data in

the cell, and the log of the maximum slope and residual were recorded. A strong trend

emerged when plotting the speed and obstacle encounters using the associated slope and

residual (right of Figure 3.3), and a simple classifier was created to filter cells into viable,

uncertain and obstacle categories based on the slope and residual of the plane. Within

the uncertain region, the probability that a particular slope/roughness pair might be

an unavoidable obstacle was modeled and predicted by looking at the distribution of

the population when projected onto a line that gave a high between-class variance (top

right of Figure 3.3). Online calculation of the probability was inexpensive: the operations

consisted of (i) the projection onto the line, and (ii) a table look-up to find the probability

given the projection distance along the line.

Unsupervised machine learning techniques may also be useful for modeling the obsta-

cle probability. In that case, the system could use the driving-time safety checks (e.g.,

roll, pitch, slip detection, or the push-broom check in this system) as feedback to the

online learning system. The data for the classifier presented in this section were collected

in a similar way, though the classifier was created o✏ine. Since the robot was able to

detect and stop before these immediate hazards, the system was able to make assessment

mistakes safely. We commanded the robot to go into questionable terrain so that we

could collect the traversability data.

The high-fidelity method must be able to detect the unavoidable obstacles in the

uncertain region by determining whether it is possible to move from an adjacent cell

into an uncertain cell. For this system, we used the same terrain-assessment and path-

planning system that made up mode two (stop-and-stare) of the guidance system onboard

the robot. The high-fidelity assessment method used the point clouds from the head and

tail of an edge with a much finer resolution plane-fit assessment method (0.91 m cells) to

plan a path. The system could have used entirely di↵erent assessment paradigms, had

they been available. Figure 3.4 is a graphical view of the terrain-assessment hierarchy

used in the SOP tests. The classifier that was part of the low-fidelity terrain assessment
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Slope and roughness from the low-fidelity  
terrain assessment are used in the classifier.

Low-fidelity, low-cost terrain assessment High-fidelity, high-cost terrain assessment

Assessment Result

Assessment Result

Figure 3.4: A view of the real-world terrain-assessment hierarchy that was used in the SOP
tests. On the left is the classifier that was used as part of the low-cost, low-fidelity terrain
assessment. The terrain was classified using the position of the logarithm of the slope and
roughness of a plane fit to the data. High-cost, high-fidelity terrain assessment (shown on
right) yielded the same result in the viable and obstacle regions, and gave further information
in the uncertain region. In the uncertain region the high-fidelity assessment method was able to
identify viable terrain that could be safely traversed. The high-fidelity terrain assessment was
consistent with the low-fidelity method and was quite accurate when compared to the ground
truth traversability.

is on the left. The low-fidelity method is completely described when this classifier is

combined with the method of modeling the probability of an obstacle (as shown in the

upper right of Figure 3.3). On the right is a visualization of the higher-resolution, high-

fidelity assessments acting on example cells. For the low-fidelity assessment the log of

the slope and roughness of a cell was used to classify it as viable, uncertain, or obstacle.

Using the high-fidelity terrain assessment on the same cell yielded consistent results. In

the obstacle region, the high-cost, high-fidelity terrain assessment found all cells to be

obstacles and this was consistent with the measured data. In the viable region, almost all

cells were classified as viable using the high-fidelity terrain assessment, except one, though

in this case the cell was actually traversable. Similarly, there were cases for cells in the

uncertain region that were actually traversable, but that were identified as obstacles by
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the high-fidelity terrain assessment. This was expected, since the high-fidelity method

used here did not fully exploit the capabilities of the chassis and it was conservative

where it might otherwise have been uncertain. Of more concern is the case where the

high-fidelity assessment classified an uncertain cell as traversable when the traverse data

claims it was an obstacle. This particular error could be a result of poor data in either

the traverse data or the long-range lidar scan, or it could be genuine. In any case, it is

possible that terrain will be assessed as viable when, in truth, the terrain is an obstacle.

This emphasizes the requirement that a robot must have a safety layer while driving (also

necessary in the case of poor path tracking or localization drift). With an appropriate

safety layer, the robot would still be safe, and as long as this error rate is small (and it

is in this hierarchy), we assume and expect that the system will still be successful. This

would be an important consideration in the design of an assessment hierarchy, but it is

beyond the scope of this proof-of-concept system.

3.2 Important Lessons from the Field

Field tests provide an opportunity to gain unique insight into both the expected, and

unexpected, interactions between vehicle and environment. These realizations can then

lead to improved designs. During the course of the SOP field tests we observed behavior

that led us to have a major shift in how we envision robust and capable mobile robots.

During the development of our test system, it eventually became clear that the vehicle

could not reliably turn on the spot, in rough terrain, with the payloads it was carrying.

We decided to allow only large-radius, sweeping turns, in order to simplify the path-

tracking control system. However, this led to another problem; now the vehicle was not

nimble enough to get around obstacles that it detected directly in front of itself. Since

we had already eliminated the option of turning on the spot, it was clear that the vehicle

was going to need to back up in order to give itself additional space to turn. The vehicle

was able to drive in reverse, but it had no rear-facing sensors for obstacle detection

and the vehicle blocked the terrain directly behind it from the view of the planar laser

rangefinder on the PTU (i.e., the primary source of terrain data). We were trying to solve
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the problem of guaranteeing safety, or at least having a reasonable expectation of safety,

while the vehicle essentially drove blind in reverse. We considered the option of merging

multiple scans from the stop-and-stare system and letting the vehicle drive backwards

in areas the terrain assessment deemed traversable, but this also had many situations

where it would not work since the stop-and-stare scans could be quite sparse and we had

no expectation that the scans would overlap. Adding more sensors was not an attractive

option at that late stage in the development. The only solution that had a manageable

amount of work was to have the vehicle retrace its steps (i.e., back out along its path).

The fact that the robot had driven over the terrain once seemed like a strong indication

that it could do it again, and the platform was quite good at being able to physically

drive a path both forwards and backwards.

So the system was modified to keep the last part of the track in memory where it was

able to use that information to back up. The backing up was done using visual odometry,

a dead-reckoning system, for localization feedback. Therefore, the localization estimate

would accumulate error even as the vehicle backed up, and it would drift from the actual

previous track, and the safety assumptions were no longer valid. In order to prevent this,

we kept conservative limits on how far the vehicle could reverse (approximately 5�10m).

During the field tests, it became apparent that being able to back up arbitrarily long

distances would o↵er great benefits. For example, the rover would be able to return home

at any time, meaning that it would not get lost. Also, it would be able to escape cluttered

dead-ends, even when they were too tight to allow a turn. However, this arbitrarily long

repeat could not be done purely using visual odometry, because the localization error

would grow the entire time and the robot would eventually drift from repeating its path.

During the same field trial another test was being conducted by a member of our lab.

This was a test of Visual Teach and Repeat (VT&R) [2]. Visual teach and repeat is a

localization and mapping system that allows a robot to repeat a previously driven route.

In the experiments on Devon Island, the robot was manually driven along a long route.

While it was driving, it would record stereo images. Once the route was taught, a batch

operation was carried out on all the images and the result was a path with a sequence of

local maps attached along it. To repeat the route, the system simply followed each local
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path in sequence while localizing against the appropriate local map. The result was that

the system could reliably repeat arbitrarily long paths that had been previously driven.

Seeing this visual-teach-and-repeat capability, particularly when contrasted against

the challenges that a mobile robot experiences, motivated the work in Part II of this

dissertation. We recognized that by extending the simple chain of maps in visual teach

and repeat to work on an arbitrary network of local maps, and by allowing the robot to

teach itself new paths as it was autonomously driving into new terrain, we could create a

robust new navigation strategy that overcame many of the challenges with autonomous

goal-seeking. The result was a network of reusable paths, and this is discussed next.
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Localization Method as an Action
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Chapter 4

The Development of a Network of

Reusable Paths

We are concerned with navigating mobile robots in large-scale, unstructured, three-

dimensional environments, without prior maps, and using only onboard sensors. This

scenario is widely applicable indoors, underground, underwater, in urban canyons, in

forests, and on other planets. There are many good techniques for navigating a robot

when both the robot’s position and a map of all the obstacles are known. In unmapped

environments and with no global positioning, the situation becomes extremely challenging

and, in a sense, is the fundamental problem of mobile robotics. Exploration is comprised

of three issues: localization, mapping, and planning (see Figure 4.2). Creation of a unify-

ing exploration framework, that is e�cient enough to deal with all three of these issues

simultaneously and online for large-scale, unstructured, three-dimensional environments,

is an open problem in mobile robotics. The first steps toward such a framework are pre-

cisely what are presented here. This chapter presents previous work on the development

and testing of the concept of a Network of Reusable Paths (NRP) [59, 60]. Figure 4.1

shows a robot operating on a NRP during field tests. In Chapter 5, we present the

extensive hardware experiments that make use of two real visual-teach-and-repeat imple-

mentations1. Chapter 6 discusses how NRP can be used in planetary exploration [62, 63].

1A video of a robot using a network of reusable paths to reach a distant waypoint is available at:
http://youtu.be/0NmpSBA1XQM. More related videos are available at: www.youtube.com/utiasASRL
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Figure 4.1: A robot operating on a network of reusable paths in Sudbury, Ontario, Canada.

In this chapter, we take the position that the most important measure of success when

attempting to reach a desired location is not the path length or time taken, but instead

how close the robot is to that location at the end of the traverse. This is di↵erent from

most path-planning paradigms (including the one in Part I of this dissertation). Some

path planners look for an optimal path (according to the map representation) [50, 77, 52],

and others, a path that is good enough given the available planning resources [51, 88, 89].

However, planning for minimal distance or time, and planning for minimum uncertainty

can be conflicting e↵orts [90].

4.1 Introduction

To build a complete exploration system, we must consider the three main issues noted

previously. The following discussion first considers the available localization methods,
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Figure 4.2: Exploration is comprised of three main issues: localization, mapping and planning.
Adapted from Makarenko, et al. [1]

which leads to the desire to use a purely relative approach to map-building for localization,

terrain traversability, and setting waypoints (target positions, goals). We later use these

ideas to build a system that does planning for real robots in unstructured terrain.

The primary motivator for this work has been mobile robots for planetary exploration.

However, the approach we use may have a more general application to robots without

access to real-time global localization and with only local (myopic) sensing. Global

localization, such as from the Global Positioning System (GPS), orbital observation, or

fixed infrastructure, is not always available. In particular, GPS is unavailable indoors,

underwater (beyond a few meters), underground, under dense foliage (a tree canopy), and

on other planets. It also fails to work in areas of significant topological relief (e.g., steep

terrain, urban canyons) due to multi-path e↵ects. Myopic sensors are common onboard

robots (e.g., cameras, lidar, sonar, radar, bumpers, etc.), and without global localization

they must be relied upon for localization in addition to terrain assessment. Typically,

these systems do not have access to a complete and accurate map of the environment

a priori, thus they must build and maintain a map, as well as report their localization

relative to the map.

Thus, one can consider many potential areas beyond planetary exploration where this

work may be useful, some of these include:
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1. A search and rescue or disaster response scenario where the environment is un-

known a priori and the robot may operate in buildings and rubble, which makes it

impossible to rely on GPS.

2. A forestry scenario where the robot operates under dense tree-cover.

3. A system for use in an underground mine where there is no fixed infrastructure

(that is intended specifically to enable localization).

4. A underwater monitoring and repair scenario where the robot operates more than

a few metres below the surface.

4.1.1 Classes of Localization Methods

The Global Positioning System (GPS) is an example of absolute localization. Absolute

localization methods have bounded error accumulation. However, GPS is not always

available (e.g., space exploration, urban canyons, indoors), and other options such as

direct observation by satellite, radio triangulation [91], or matching local terrain geometry

to orbital imagery [87, 91], all take time and computational resources that make them

unsuitable for real-time use.

In contrast, relative localization methods, such as visual odometry [27] and wheel

odometry, typically give low-uncertainty estimates of pose transformations over short

distances. However, all such dead-reckoning techniques su↵er from unbounded error

growth as a function of traversal distance. Unfortunately, this growth is often super-

linear, mostly due to orientation errors [92], and the influence of these errors can be

detrimental when attempting to reach a distant goal. The robot may think it is at the

goal when it is still quite far. Improved versions of visual odometry [31], or techniques

that add an absolute orientation measurement [93], may reduce the error growth to

linear, but this may remain problematic over very long distances (e.g., when doing vast-

scale exploration through unknown terrain), or when certain sensing modalities are not

possible (e.g., no visible sun for a sun sensor, or no stars visible to the star tracker, or

no magnetic field for a compass).

The primary reason exploration is di�cult is that the exploring entity, be it robot

or other, has only local sensing abilities. Directions of travel must be chosen before the
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Figure 4.3: Classes of localization: absolute, relative, and Simultaneous Localization And
Mapping (SLAM). SLAM includes visual teach and repeat. The robot started on the left, moved
to the right, and then backed up along the path to a point in the middle. Absolute localization
(e.g., GPS) has bounded error, but this type of localization is not always available. Relative
localization incurs error growth on the outbound and return legs. Simultaneous Localization and
Mapping (SLAM), including visual teach and repeat, a type of SLAM, has only error growth
when entering new terrain. When repeating a previous path the error is rolled back.

whole environment has been observed. This leads to dead ends, forcing retreat to an

earlier position. With only relative localization, the pose error will grow during retreat,

in addition to the outbound trip, as in the middle of Figure 4.3.

There are, however, techniques that lie somewhere between the absolute and relative

localization classes. Simultaneous Localization And Mapping (SLAM) systems build and

maintain a map of the environment and report localization relative to that same map.

These fundamental tasks were identified by Chatila and Laumond [94] as early as 1985.

Shortly after, Smith, Self, and Cheeseman [95] presented a stochastic map representation

to capture explicitly the uncertainty in the spatial relationships of interest that were

contained in the map. In that system, the locations of objects in the map were reported

with respect to the world reference frame (a single privileged coordinate frame). Much of

the early progress also used a single privileged coordinate frame, and a thorough review

of these works is done by Durrant-Whyte and Bailey [32, 33].

There have been many improvements upon single-coordinate-frame SLAM. Most of

these have been attempts to reduce the large computational cost that is experienced

when the map is scaled to the size necessary for a robot traveling reasonably long dis-
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tances. These approaches include using submaps [40, 96, 97], hybrid metric-topological

SLAM (atlases) [37, 98, 99], hierarchical SLAM [38], manifold maps [100], and skeleton

graphs [101], amongst others.

Howard [100] introduced the idea of embedding a robot path in a higher-dimensional

manifold map such that a single physical location could be represented by multiple points

in the map. This avoids the need to make the map consistent in a single privileged

coordinate frame and, importantly, retains the path driven by the robot. Sibley et al. [41]

take a relative approach to bundle adjustment that uses a pose graph built of relative

transformations between poses (and landmarks). This greatly improves the e�ciency of

the SLAM system as it emphasizes making the map locally, not globally, consistent. It

allows for arbitrarily large maps, includes loop closure, and also retains the path of the

robot. Sibley et al. [41] have also suggested the idea of planning on a relative map once

it has been constructed, but do not carry out planning during the SLAM process.

A common element of the successful approaches to scaling up the SLAM problem has

been allowing for the use of multiple local reference frames. It is interesting to see that

there have long been arguments against trying to build a globally consistent map (for

localization or traversability) in some privileged coordinate frame. Brooks [102] suggested

a relative approach as early as the 1980s. These ideas extend beyond representing the

pose of the vehicle or the landmarks used for localization. A relative approach is also

useful for expressing local traversability maps and distant waypoints.

4.1.2 Visual Teach and Repeat

Visual-teach-and-repeat (VT&R) systems [2, 103], can also be thought of as carrying out

SLAM, though perhaps not in a way that is immediately recognized. These systems

allow robots to drive arbitrarily long distances without the use of GPS along previously

established routes (typically the path is first driven manually in order to teach the route).

In these systems, a chain of small maps is attached along the robot’s path (estimated

using visual odometry) during a teaching phase (i.e., it is simultaneously mapping and

localizing); to repeat the route, the robot simply localizes against each small map in

sequence as it drives (i.e., localization). In this way, the pose estimate will accumulate
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error only during the teach pass. At any time the robot can return to a previous point on

the path, and the pose error will essentially return to what it was when that section was

taught. This is shown at the bottom of Figure 4.3. Visual teach and repeat remembers

the path that was traveled, and the case for doing so is strong; knowing that the robot

has already successfully driven the path is strong evidence that the path is traversable.

There are other approaches to teach and repeat. One makes use of a planar laser

rangefinder for underground mining applications [20]. Another example uses an omni-

directional camera [104], and still others use di↵erent techniques that provide a similar

teach-and-repeat function [105, 106, 107, 108, 109, 110].

The capability of the system of Furgale and Barfoot [2] has been demonstrated

through 32 km of autonomous driving in both an urban setting and a planetary analogue

environment in the Canadian High Arctic. During these tests, the paths were taught

manually by the operator using a handheld controller while walking near the rover, the

paths were then autonomously repeated. The system, making use of a stereo camera,

often performed so well that it repeated the path in its own tracks. It autonomously

drove all but a few tens of metres of the desired 32 km of paths (< 0.4% of distance

traveled).

A key to this high rate of autonomy is that the robot was frequently able to localize

against the taught map. Figure 4.4 is reproduced from Furgale and Barfoot [2], and it

shows the ability of the system to localize against the taught map when the pose of the

camera during repeat was subject to deviations, both lateral and in orientation, from

the pose of the camera in the teach pass. The local maps consisted of a cloud of SURF

features that were extracted from the stereo camera images during the teach pass (an

example from the current system, shown in Figure 4.5, is discussed later in this section).

In Figure 4.4, the mean inlier feature count (a higher count means lower localization

uncertainty) drops as the pose of the camera deviates from the nominal pose. This shows

that in order to localize successfully against the taught map, the robot must closely return

the sensor to the pose from which the map was taught. This makes sense intuitively, as

the appearance of the scene changes when perceived from di↵erent places. Thus, in order

to localize successfully and frequently along the sequence of local maps, the robot should
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Figure 4.4: An investigation into the ability of stereo-camera-based VT&R to localize against
the taught map (by matching currently observed features to the taught features) subject to trans-
lation and orientation deviations from the taught pose. Figure reproduced from Furgale and
Barfoot [2]

return, as closely as possible, along the original path. The localization against the map

is more reliable when the robot travels along the original path.

Many SLAM systems rely on large-scale loop closure, where the robot is tasked to

recognize the same scene from two di↵erent vantage points, in order to do batch pose

refinements. VT&R instead attempts to solve only the more simple case of small-scale

loop closure, where the robot must recognize the same scene from nearly the same pose.

This small-scale loop closure has a low computational cost and a high rate of success.

A lighting-invariant extension to this work, using a high-framerate lidar [103], has

been developed to address one of the major challenges of the stereo-camera-based sys-

tem [111], namely, appearance changes due to changing lighting conditions can make

it challenging, or impossible, to localize against the map when revisiting places. This
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Figure 4.5: Sample images from the visual-teach-and-repeat system onboard the test robot.
Visual teach and repeat allows a robot to repeat arbitrarily long, previously driven routes. On
the left is an image from the current position, and in the middle is the same image overlaid
with the currently tracked visual landmarks (SURF features). The right image is from the initial
(teach) pass when the robot first visited that position and added it to the network of reusable
paths. The pairs of points in the right image show the matches between the current and taught
visual landmarks. These matches are used to estimate the current pose relative to the local map.
All of these images come from the left camera of the stereo camera pair.

system allows for operation in complete darkness, making it suitable for exploration of

permanently shadowed regions such as those at the Lunar South Pole.

Two real-world visual-teach-and-repeat systems are used in this work. Both of these

systems are based on the work of Furgale and Barfoot [2]. The first system uses a

stereo camera (this is essentially the second version of the one created by Furgale and

Barfoot [2]), and the second system uses a high-framerate scanning lidar [103]. Three

images from the stereo-camera-based system are shown in Figure 4.5. In the figure, the

robot is in the process of repeating a path. The left image shows the current image that

was just captured by the camera. The center shows the same image with the currently

visible features (SURF features) superimposed. The right image is the one that was used

when teaching the route (i.e., the image from which the map of the visual landmarks was

derived). It shows the correspondences between the visual landmarks in the map and

the features that are visible in the current frame. All images are from the left camera

of the stereo pair. The geometry and the uncertainty of these point matches are used

to calculate the current pose relative to the map. As in the original version of VT&R,

random sample consensus (RANSAC) [112] is used to reject outlying point matches, and

if insu�cient matches are found, the robot will simply rely on visual odometry for short

distances (i.e., it will follow the estimated path using dead-reckoning) until the currently
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visible features again substantially match the features in the map. These techniques

increase the robustness to changes in the scene and minor deviations from the path.

In these systems, the path is stored as a chain of vehicle poses connected by relative

pose transformations determined by visual odometry. Attached to each pose is a local

map of the visual landmarks observed at that vehicle pose. To repeat a path, the robot

drives along the path defined by the poses and localizes against each local landmark-map

in sequence. When a robot uses VT&R to reverse along a previous path, the localization

error and uncertainty are rolled back to what they were when the route was taught. Other

single-coordinate-frame SLAM systems also inherently allow the localization uncertainty

to roll back (as expressed in the base SLAM frame) as the robot returns to previously

observed areas. However, many of these SLAM systems silently forget the actual track

of the vehicle, and the track is very useful (SLAM systems that use a pose graph do store

the path). In contrast to the other approaches to SLAM, the VT&R approach has only a

small computational overhead in addition to that of visual odometry. This is largely due

to the use of relative coordinates and the fact that we make no attempt at loop closure as

our map does not ever need to make sense in a global frame (although our map substrate

is compatible with incorporating large-scale loop closure, if desired). This low overhead

is beneficial since many robots, particularly those rovers used for planetary exploration,

lack the computational resources to carry out other types of SLAM.

A major contribution of this chapter comes from recognizing that we can extend

visual teach and repeat, from using a simple chain of local maps, to an arbitrary network

of local maps. The result is a network of reusable paths [59, 60], and there are three

major benefits that come from reusing paths:

1. Traversability: Since the path has been driven, it is likely that it can be driven again.

2. Localizability: Since the robot is returning to a previous pose, it is very likely that

the appearance of the scene will be similar and the robot will be able to localize

against the map.

3. Rolling-back localization error: Since the localization error is rolled back when re-

versing along the path, dead ends do not have any influence on the accumulated

localization error at the goal.
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We believe that exploration is still an open problem in mobile robotics; there are few

examples of tightly coupled localization, mapping, and planning, for large-scale, unstruc-

tured, three-dimensional environments, particularly without using GPS. The challenge

remains to find an e�cient autonomous exploration technique appropriate to online, real-

world use. This part does not address all of these aspects, but it does lay the foundation

for future works.

4.1.3 Seeking a Goal in Unknown Terrain

Consider the classic scenario of a robot seeking a distant goal (or waypoint) location

(defined relative to its start location) through unknown terrain. To do this well in

a single reference frame, in large-scale, unstructured, three-dimensional environments,

using existing robotic tools, we could try to combine (i) a sophisticated (single-coordinate

frame) SLAM system to build a landmark map and localize (as we drive into cul-de-sacs

and retreat), (ii) a sophisticated terrain-assessment system to build an globally consistent

obstacle map from the SLAM localization, and (iii) a sophisticated path-planning system

to generate smooth collision-free kinematically feasible trajectories on the obstacle map.

The problem with this paradigm, is that all of these techniques are computationally very

expensive, yet they are all necessary to create a working system.

By contrast, we show that by extending visual teach and repeat to systems that use

a network of reusable paths, and coupling NRP with a path planner that can choose to

either (i) drive on the known network of reusable paths (including in reverse to backtrack

out of cul-de-sacs), or (ii) drive into unknown terrain (and therefore add to the known

network of reusable paths), results in a navigation framework with the following desirable

properties:

1. Sophisticated localization/mapping (i.e., detecting and closing loops) is helpful, but

only simple visual odometry and the ability to remember landmarks (relative to a

path) is necessary.

2. Sophisticated terrain assessment for obstacle detection/mapping is helpful, but only

simple terrain sensing (e.g., a bumper) is necessary.
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3. Sophisticated path planning to generate smooth collision-free kinematically feasible

trajectories is helpful, but only the simple ability to randomly branch from the known

NRP is necessary.

We believe this approach (continuing the trend away from building maps in a single

privileged coordinate frame, and adding the concept of growing a network of reusable

paths) enables computationally e�cient, accurate, and robust navigation of mobile robots

in real-world environments.

The remainder of this chapter is as follows: Section 4.2 presents some background. In

Section 4.3 we develop how to use and plan on a network of reusable paths. Simulations

are presented in Section 4.4. We detail two sets of field tests in Chapter 5, which also

includes a discussion on the performance of NRP.

4.2 Review of Planning for Reduced Localization Un-

certainty

This review addresses three approaches to planning under localization uncertainty. These

methods attempt to improve the performance metric with which we are concerned; that

is, they attempt to reduce the distance the robot is from the true goal at the end of the

traverse.

The first approach is to consider localizability during path planning. One method

is to plan a path and then check that there are su�cient landmarks along that path

for the robot to localize [113]. Coastal planning [114] brings the test for localizability

into the planning step so that landmark visibility is considered during planning. How-

ever, this imposes a significant preprocessing cost for any potential terrain that may be

considered [115].

The second approach is to consider where the robot may actually drive by trying

to anticipate possible localization drift. Particle-based Rapidly-exploring Random Trees

(RRT) [116] and robust planning [117] both enable path planning that accounts for

accumulation of error in the pose estimate as the robot drives a path. This helps avoid

collisions even when the robot is unable to track the desired path because the relative
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pose estimate has deteriorated.

The third, and final approach mentioned here, is planning in belief space [115, 118].

Gonzalez et al. [115] present a resolution-optimal path planner that models pose un-

certainty. The method puts an uncertainty constraint on the goal and then looks for a

low-cost (in time, distance) path to the goal. In e↵ect, the footprint of the robot increases

with distance along the planned path, therefore, the planner prefers open areas when the

pose uncertainty is large. This reduces the chance that the robot will encounter a known

obstacle, even when the localization estimate drifts from the true pose. The approach

allows for intermittent use of GPS, so a path may divert to an area with GPS in order to

reset the localization error to near zero. The environment is assumed to be known. More

recently, belief road maps [119] o↵er a more e�cient way of planning in belief space after

incurring an initial preprocessing cost.

The problem is that these solutions do not scale computationally, or, due to the large

upfront costs, they are better suited to cases in which the robot plans many times on

the same map, rather than exploration problems where a robot is regularly entering

previously unvisited areas. We take an approach that avoids much of the computational

burden by using a navigation strategy that makes use of a network of reusable paths.

This allows a robot to plan based on how it has done, rather than considering all the

possible outcomes of how it may do.

4.3 Using a Network of Reusable Paths

This section presents our main contribution, the network of reusable paths. First, we

lay out the assumptions we make about the robot and the environment (Section 4.3.1).

Then, we introduce the concept in a sample scenario (Section 4.3.2) in order to provide

some intuition into the paradigm. Next, we give the high-level algorithm (Section 4.3.3)

in order to set up the definition of the network structure (Section 4.3.4) and the path

planning algorithm (Section 4.3.5). Terrain assessment is incorporated in Section 4.3.6.
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4.3.1 Assumptions About the Mobile Robot

Two assumptions are made about the robot:

1. The robot is able to detect and stop before hazards, e.g., bumper, rollover detection.

More sophisticated terrain assessment can also be incorporated, if available.

2. The robot can always travel along a previous route, in both directions, but with the

same orientation. This is enabled by using a visual-teach-and-repeat system (and

therefore implicitly assuming the local appearance of the scene does not change, this

in turn leads to the assumption that the geometry of the scene is static). Recovery

in the event that this is not possible is an important consideration. However,

with the visual-teach-and-repeat system considered, this failure is rare (< 0.4% of

distance traveled, and if the requirement is that the robot be able to travel in at

least one direction, the failure rate is even lower [2]) so the simplification is justified

at this stage. There are typically two ways that this assumption is broken [111]:

(a) The appearance of the scene changes such that the system cannot localize

against the map.

(b) The path cannot be reversed (for example after sliding down a steep hill or

going down a high step), or the traversability of the path changes so that it is

no longer traversable, (e.g., the path becomes blocked).

4.3.2 Sample Scenario

Returning to the scenario of seeking a goal in unknown terrain, a basic version of our

proposed network-of-reusable-paths framework could combine (i) visual teach and repeat

(on a network of reusable paths) for localization/mapping, (ii) a very simple terrain-

assessment method (e.g., a crude safety monitor to check for an obstacle directly ahead

or danger of rollover using an inclinometer), and (iii) a very simple path planner (e.g., go

to a random location on the known network of reusable paths and then drive a random

path into unknown terrain). Because NRP allows the robot to return along all or part

of its outbound path when dead ends are encountered, it will never become hopelessly

lost and it will only incur growth of localization error along the best route it finds to
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Figure 4.6: A simple scenario using the network-of-reusable-paths paradigm to navigate from
the start, S, to a desired end position or goal, G. In the top, the robot has a plan that uses the
network of reusable paths to backtrack before breaking o↵ into previously untraveled territory.
In the bottom the robot has made it to the goal. The red arrows show the sequence of where the
robot drove. Localization error at the goal is only accumulated along the green path.

the goal. Swapping in more sophisticated component technologies is compatible with

the framework, and it would undoubtedly help the robot find the goal more quickly;

however, the critical point is that high accuracy and robustness are achievable using

relatively simple and computationally e�cient techniques within the NRP framework.

Let us consider the sample scenario in Figure 4.6. The robot used the NRP paradigm

to navigate into unknown terrain. The robot began at the start, S, and a desired position

(a goal), G, was defined relative to this initial pose. The robot began with no knowledge

of the terrain and all obstacles were out of sensing range, so the robot simply drove a

straight line path toward the goal. It stopped when it detected an obstacle. It then

backed up, and went around to its left until it encountered another obstacle. This is the

scene at the top of Figure 4.6. The planner was then able to reuse the previous network

of reusable paths to backtrack, and roll back the localization error, before attempting the
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Figure 4.7: High-level algorithm for operating on a network of reusable paths.

new plan around to the right. Before the robot reached the goal, it detected one more

obstacle and created another new plan. In this example, the robot has only accumulated

localization error along the green path from the start to the goal, despite having driving

much farther.

4.3.3 The High-Level Algorithm

Consider a robot tasked with reaching a distant goal through unknown terrain. The

network of reusable paths paradigm is used in the construction of a high-level algorithm

for seeking that distant goal. The algorithm, as shown in Figure 4.7, has three steps that

are repeated until the robot reaches the goal: (i) plan a path using the known network

and the available terrain data, (ii) according to the plan, drive along the existing network,

and (iii) according to the plan, drive into new areas and add to the network of reusable

paths until the path is complete or an obstacle is encountered. In order to complete these

steps we must have a definition of the mathematical structure underlying a network of

reusable paths, so that the robot can localize on the network, add to the network, attach

local terrain assessment data, and plan paths along and o↵ the network.

4.3.4 The Network Structure

The NRP is represented by a graph, G, that consists of a set of nodes, V , and a set of

edges, E. This is shown in Figure 4.8. Each node represents a previous pose, and the
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Figure 4.8: Definition of the key components of the graph structure used in a network of
reusable paths. There is no privileged coordinate frame, everything is relative.

node contains the local visual-landmark-map (used by VT&R) associated with that pose.

All poses are relative, with the estimated mean transformation, T, and the associated

covariance matrix representing uncertainty, Q, stored at an edge connecting two nodes.

The actual transformation, T, is unknown. The relative transformation and uncertainty

between any two connected nodes can be found by compounding the relative transforms

(and uncertainties) along a chain joining the two. The result is a graph similar to the

paradigm of Sibley et al. [41], in that there is no privileged coordinate frame; everything

is relative.

Taken together, the nodes and edges are the paths the robot has previously taken;

based on existing VT&R capabilities, we assume that these paths (and subsets) can be

repeated exactly, in either direction, with the robot in the same orientation as the initial

(teach, mapping) pass. Additional information can be stored at the edges or the nodes

(e.g., terrain assessment data, absolute localization, localization in other frames, sensor

data). The goal, G, is designated as a point in one of the reference frames at a node,

called the goal definition node, xgd. This is not necessarily the initial robot pose, x0, or

the current robot pose, xr.

There is also a cost for each of the edges in the graph. With this cost in place, we

can construct a minimum spanning tree of the connected graph by using a graph-search

technique [49, 120]. The minimum spanning tree is later used during planning. Note that

the test systems presented in these chapters are restricted to a network that is a tree

(i.e., no loop closure); however, the concepts that we describe apply equally to arbitrarily
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connected networks

With this structure in place, we can construct the following rather simple theorem

about the localization error. Though somewhat obvious, it nonetheless is fundamental

to the performance of NRP and captures the basic benefit of using a purely relative

approach to exploration. A visual showing the implications of the theorem and the

associated remarks is shown in Figure 4.9.

Theorem 4.1. The localization error at node xb is only due to contributions along the

chain of poses that connects xb to the node from which the localization is expressed, xa.

Proof. A minimum spanning tree can be constructed from the network. With this tree

structure, there is exactly one cycle-free path between any two nodes. The path from

node, a, to a di↵erent node, b, is a sequence of N nodes

Pb,a = (xp1 , . . . , xpN ) (4.1)

where xa = xp1 and xb = xpN . The transformation to the node xpN from the node xp1 , is

then composed of all the transformations, in sequence, on the path so

TpN ,p1 = TpN ,pN�1 . . .Tp2,p1 . (4.2)

Similarly, the estimated transformation is

TpN ,p1 = TpN ,pN�1 . . .Tp2,p1 . (4.3)

The error transformation is

eTpN ,p1 = TpN ,p1T�1
pN ,p1

. (4.4)

The error depends only on the transformations along the path that connects xa to xb.

This theorem leads to two related and important remarks. The first states that the

final localization error depends only on the final path to the waypoint; therefore dead

ends do not influence the localization error at the waypoint. The second shows that
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Figure 4.9: Characteristics of the localization error when using a network of reusable paths.
The localization error at a node is only due to the errors in the transformations at the edges
that connect the node used as the localization base frame, and the node under consideration.
This means the localization error at the goal is only accumulated on the final path to the goal
from the goal definition node, and that localization error is rolled back when reversing along a
previous route.

localization error is rolled back when reversing along a previous path, and when the

robot revisits a node, the error is reverted to what it was when that node was taught.

Remark 4.1. The localization error at the node closest to the goal, xw, is accumulated

along the final path through the network from the goal definition node, xgd, to xw.

Remark 4.2. When localizing against a node, xp, the localization error, with respect to

the localization base frame at node xb, reverts to what was experienced when xp was added

to the network (with the addition of the error currently experienced in the localization

against node xp).

4.3.5 Path Planning using a Network of Reusable Paths

The planning problem, given such a network of reusable paths, is to find a low-localization-

uncertainty path to the goal, if such a path exists. The goal could be on or o↵ the existing

network. In this work, we assume that the uncertainty grows monotonically with distance

traveled when using dead-reckoning (thus the pose error tends to grow only when new

paths are added to the network), we therefore use distance as a proxy for uncertainty.
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For pre-driving planning, we use a path planner that is based on a Rapidly-exploring

Random Tree (RRT) [51, 61]. The original RRT algorithm is shown in Algorithm 2. The

configuration space, X , is the space of all possible vehicle configuration states (this work

uses the vehicle pose). The configuration space is divided into an obstacle region, Xobs,

and a free region, Xfree, such that,

X = Xobs [ Xfree. (4.5)

In the original RRT algorithm, the tree used in planning (a graph, G, of states, V ,

connected by edges, E, such that G = (V,E)) is initialized as the set of states containing

only the current state, xinit, and the empty set of edges. It then carries out the next

steps for K iterations:

1. First, select a random state, xrand, from the set of configurations states, X (some

approaches select only from the free states, Xfree [53, 121]), using the RandomState()

function. Note that by occasionally selecting xrand  xgoal the growth of the tree

can be biased toward the goal.

2. Second, use the Nearest() function to find the state, xnearest, in V , that is nearest

to xrand.

3. Third, use the Steer() function to select a kinematically feasible edge, enew, that

extends from xnearest to a new state, xnew.

4. Finally, check if any part of enew intersects with Xobs. If enew does not encounter

an obstacle, then add xnew and enew to the tree contained in G.

The final path to the goal can be extracted from G by choosing the state in the tree that

is closest to the goal, and then traveling back along the tree to the initial state. A robot

using the RRT planning algorithm would then drive the extracted path.

There are several notable methods for improving the practical performance of RRTs

in path planning. The work of Urmson and Simmons [122] biases the growth of the

tree through lower-cost regions. Ferguson and Stentz [123] show an anytime-planning

approach that uses many RRTs that share information to quickly create an initial plan,
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Algorithm 2 An outline of the Rapidly-exploring Random Tree (RRT) algorithm [51,
61].

1: V  {xinit}; E  {;}; G = (V,E)
2: for k = 1 to K do
3: xrand  RandomState(X )
4: xnearest  Nearest(G, xrand)
5: xnew, enew  Steer(xnearest, xrand)
6: if ObstacleFree(enew) then
7: G  G [ (xnew, enew)
8: end if
9: end for
10: return G

Algorithm 3 An outline of the RRT-based NRP planning algorithm.

1: GT  MinimumSpanningTree(G, xgd)
2: for k = 1 to K do
3: xrand  RandomState(X )
4: xnearest  Nearest(GT , xrand)
5: xnew, enew  Steer(xnearest, xrand)
6: if ObstacleFree(enew) then
7: GT  GT [ (xnew, enew)
8: end if
9: end for
10: return GT

and then improve the cost of the path while time permits. Howard et al. [121] present a

model-based trajectory generation approach to state-space sampling that enables better

planning in cluttered or highly constrained environments. Recently, an optimal extension

to RRTs, called RRT* [53], has been developed. The relationship between NRP and

RRT* is explored in Section 5.4.

The steps of the algorithm for pre-driving planning, on a network of reusable paths,

are shown in Figure 4.10, and alternatively in Algorithm 3. These two views show the

same algorithm for planning a path. Once the plan is created, the robot drives the path

according to the algorithm in Figure 4.7. The RRT algorithm shown in Algorithm 2 is

slightly modified in the NRP planning approach. First, instead of initializing the tree

with just the initial state (and no edges), we use a minimum spanning tree, GT , created

from the network of reusable paths, G, and rooted at the goal definition node, xgd. The

other di↵erence is that instead of sampling a random state from the free configuration
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Figure 4.10: An RRT-based path planner that uses a network of reusable paths.

space, we sample a random state from the entire configuration space, because we do

not have a globally consistent map of the obstacle region. We do not assume that the

entire traversability map is known a priori, or that the current map is globally consistent.

Therefore, we do not build a global traversability map and we cannot know Xobs. We

would argue that in practice no robot doing exploration truly knows Xobs, but this is

typically not captured by the planning algorithms in the literature. Not knowing Xobs

also has implications for using the ObstacleFree() function, and this problem is addressed

in Section 4.3.6.

We can now step through the algorithm according to the numbering in Figure 4.10.

First, in step (i), from the network, G, we can create a minimum spanning tree, GT ,

rooted at the goal definition node, xgd. The metric we have used to find the spanning

tree is the Euclidean distance, meant to roughly represent pose uncertainty. We assume
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that GT connects xgd to xr; these may be the same node. The tree is then used as the

substrate for path planning. More specifically, it is the initial tree for the RRT. In the

case of a new network (i.e., there are no existing reusable paths), the initial tree consists

solely of the current node.

The core RRT is contained within steps (ii) through (iv). Step (ii) is to propose a

target state. Sometimes it may sample the goal; this biases the growth of the tree toward

the goal. Step (iii) is to find the node on the tree that is closest to the target state.

Step (iv) is to safely extend the tree, if possible, from the closest node, toward the

target state. The candidate extension is a new node, connected to the previously closest

node in the network by an edge that respects the kinematic constraints of the robot (we

set a limit on the minimum turn radius). Terrain assessment is used to determine the

safety of a candidate extension. If the segment is safe, the node and edge are added to

the tree, and these may be used in later tree extensions or as part of the plan.

If the tree does not extend to the goal (or to within some threshold distance from the

goal), the algorithm returns to step (ii). Once the tree reaches the goal, the algorithm

moves to step (v), which is to extract the path from the tree. The path is extracted in

two parts: (i) the path that reuses the existing network (i.e., from the current point on

the network to the point where the new plan departs the existing network), and (ii) the

section that goes into new terrain.

4.3.6 Terrain Assessment

Now we return to the problem of terrain assessment (the ObstacleFree() function). In

the NRP paradigm, the system uses terrain assessment data stored relative to nodes in

the network. For a single path segment, there may be many nodes that contain relevant

relative-assessment information. Merging multiple assessments can lead to many practical

problems (discussed in Section 5.3.1), so we never merge any assessment data; we never

build a monolithic map in some privileged coordinate frame. Given that we have many

local maps of assessment data, instead of a global map, the system must select and check

the most appropriate terrain assessment data, and safely and robustly resolve conflicts

in traversability interpretations.
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Figure 4.11: A network of reusable paths with local terrain assessment data stored at the
nodes. Candidate edge extensions proposed during planning are checked against topologically
nearby assessment data. The order that these nearby assessments are checked is determined
according to the weighted distance as calculated in equation 4.6. If no data are close enough, as
measured along the network, then the candidate edge is accepted by default.

The theme of reduced localization uncertainty applies in this domain as well. We want

to use the most complete, most accurately localized assessment data, when planning the

rover path. In an attempt to rank them, we give the assessment data at each node a

priority score, ds. The score is a linear combination of the topological distance along the

network, dt, and the range, dr, to the segment in the assessment data frame. Thus,

ds = ↵dt + dr, (4.6)

where ↵ is a weighting. The assessments are then checked in the order of increasing score

(i.e., lowest-score assessment data is used first). The checks are made until a threshold

number of checks have su�cient data for an assessment of the proposed segment, and

these checks show the terrain to be traversable. If too many of the local maps indicate the

segment is not traversable, the candidate extension is discarded. Otherwise the segment

is accepted and may become part of the planned path. Figure 4.11 shows four examples

of candidate segments. Candidate segment (i) has no nearby assessment data, so it is

assumed to be traversable. Segment (ii) is checked against the nearby assessment data

A, but there are no data at the segment location, so again, this segment is assumed

traversable. Segments (iii) and (iv) do have nearby assessment data that are at the
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proposed segment positions. Segment (iii) will be checked against data from A, B and

C, while segment (iv) is checked against C and A, in that order.

Most planning systems expect a complete and accurate traversability map of the

configuration space (i.e., the robot actually has X ) by having a perfect traversability map

(and possibly a perfect model of the robot). However, this is very often not available,

particularly a priori. Here, the robot has an estimate, X̄ , of the map, and this estimate

is constructed of N local, estimated submaps, X̄i, (i is the map index), where N � 0

(there may be many submaps at a single node in the network). This can be thought of

as

X̄ = {X̄1, . . . X̄N}. (4.7)

Tying the assessment data to an individual node, in the node’s reference frame, makes

it easy to abstract the concept of what constitutes terrain assessment. For example,

one might include: availability of power, availability of communications, or ability to

localize, in addition to the terrain roughness, step and slope. The planner does not

require knowledge of the source of the assessment information. If additional data are

needed for a certain type of assessment procedure, then those data, too, would be stored

at the node and the terrain assessment method would access them as needed in order to

respond to the assessment requests.

4.4 Simulations Comparing the Performance of NRP

to that of a Benchmark Robot

We have carried out simulations of a robot navigating in fractally generated terrain.

Using those simulations, we compared the performance of the robot using the network-

of-reusable-paths navigation paradigm to a benchmark system made of the same basic

components (minus the ability to reuse a previous path), and to a system that has prior

knowledge of the entire terrain map. Here we first discuss the simulation setup, before

discussing the results.
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4.4.1 Simulation Setup

This section covers four parts: (i) how the terrain is generated and the basic robot model,

(ii) the benchmark navigation system, (iii) the network-of-reusable-paths navigation sys-

tem, and (iv) a system that uses a priori terrain data to plan a path.

Terrain Generation and Robot Model

We generated fractal terrain [83] that was modeled as a square, three-dimensional eleva-

tion map, with 513 pixels per side. The terrain sensor onboard the simulated robot was

modeled after a finite-range sensor (with a 40-pixel range) such as a lidar, mounted at a

fixed height above the terrain. Terrain occlusions were modeled based on the geometry

of the visible terrain and the perspective of the sensor. The sensor was able to be pointed

in any direction.

The terrain assessment at a pose was based on a disk-shaped robot model that used the

elevation variance and maximum step height of the terrain within the robot footprint.

The planner treated areas with no data, or insu�cient data, in the same way that it

treated areas that were found traversable according to the terrain assessment (i.e., the

planner was optimistic).

The robot also had a driving-time safety layer that monitored the safety of the terrain

either directly in front or behind the robot, depending on the direction of travel. This

means the robot was allowed to safely travel in either the forward or reverse direction.

The turning radius of the robot was constrained. The path planner and vehicle model

would not allow turns tighter than a particular radius (5 pixels). We used a unicycle

model for the robot, and added zero-mean Gaussian noise to the relative translation and

rotation at each time step. E↵ectively, this meant the pose estimate would drift from the

true pose.

The Benchmark System

The benchmark system would plan a path and then follow that path until it encountered

an obstacle. It would then acquire a scan of the terrain and merge the resulting assessment

data with a window of assessments from previous scans (up to 15 scans) to build a
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traversability map that the RRT-based path planner could use to find a path to the goal.

The window approach allowed the rover to forget assessments that might have caused the

planner to wrongly believe it was trapped. The path plan was always created from the

current pose of the robot. If no path was found, the robot would forget all assessments,

except for the last one, and attempt to create a new plan. If it was still unable to find

a path, it reported that it was stuck. The benchmark system simply used odometry for

localization, and did not have the ability to reuse old paths. This meant localization

error and uncertainty were incurred along the entire path driven by the robot.

The Network-of-Reusable-Paths Navigation System

The NRP approach used the current network to seed the RRT-based path planner. As in

the benchmark system, it would drive the planned path until an obstacle was encountered.

It would then stop and acquire a scan and add the resulting local assessment map to the

network. The terrain traversability was checked against the nearby scans within a certain

distance threshold. The robot was always able to return along its previous paths so it

was not possible for it to get stuck. The two core assumptions about the robot are listed

in Section 4.3.1.

Planning with A Priori Terrain Data

In a third system, we allowed the same path planning algorithm that was used in the

benchmark system to use all the terrain data to plan a path. It is unlikely that a real

robot doing exploration would have access to all the terrain data a priori. Figure 4.12

shows the resulting paths on an example map. It is worth noting that it is not only

doubtful that the robot would have access to all the terrain data; it is also doubtful that

the robot would be able to follow these paths without stopping and replanning. The

plans may go through small openings, and with localization drift, the robot would be

unlikely to make it through on the first attempt. This a priori method provides an upper

bound on the achievable performance.
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Figure 4.12: The a priori path plans generated when the planner had access to all the terrain
data. The plans are not all the same because an RRT-based planner was used.

4.4.2 Simulation Results

On 25 terrain maps, we carried out a total of 6077 simulations of the benchmark, the

network-of-reusable-paths navigation system, and the planner with the a priori terrain

data. In an individual test of the benchmark or NRP systems, the robot was permitted

to take up to 350 scans before it gave up and the scenario timed out. A summary of

whether the robot found the goal, got stuck or exceeded the maximum iterations, is

shown in Table 4.1. The first thing that is apparent is that the NRP approach reports

that it had found the goal in almost every scenario (only 0.8% of all cases exceed the

maximum allowable iterations). The benchmark, by contrast, often gets stuck (in 18.5%

of all cases) or exceeds 350 iterations (in 5% of all cases). From the perspective of

robustness of finding the goal, the NRP system performed better.

We compare two performance metrics in Table 4.2. The first is the localization error

at the end of the traverse. This is measured as the distance between the estimated goal

location and the actual goal location. The NRP approach is substantially better in this

regard, incurring, on average, only 16% the localization error of the benchmark. This

is because it only accumulates error along the best path found to the goal through the

network. It is conceivable that the benchmark system could do better with a better path
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Table 4.1: Summary of times the robot found the goal, got stuck, or exceeded the maximum
number of iterations (350) for the benchmark and network-of-reusable-paths navigation systems.
The rate of each event is given in parentheses. A total of 6077 simulations were carried out.

Found Goal Stuck Exceeded Max Iterations
Benchmark 4649 (0.765) 1123 (0.185) 305 (0.05)
Network of reusable paths 6029 (0.992) 0 (0.0) 49 (0.008)

Table 4.2: A summary of the performance metrics: localization error and number of terrain
scans. A terrain scan is acquired when the robot stops (due to encountering an obstacle on the
path) and gathers a scan of the surrounding area. The number of terrain scans is calculated
in several ways: (i) completely ignoring the cases where the the benchmark got stuck, (ii) the
benchmark statistics are calculated using the number of scans the robot took before getting stuck,
and (iii) assuming benchmark cases where the robot got stuck as having the maximum number of
scans (350). The number of scans collected for the network-of-reusable-paths system is calculated
the same in each case and these values are consistently lower than the benchmark system.

Localization Number of Number of Number of
error (pixels) terrain scans (i) terrain scans (ii) terrain scans (iii)

Benchmark 102.42± 102.42 95.16± 61.33 86.75± 50.4 143.81± 69.16
Network of 16.4± 16.4 59.47± 34.9 59.47± 34.9 59.47± 34.9
reusable paths
Ratio 0.16 0.62 0.69 0.41
(NRP/Benchmark)

planner, localization system or terrain assessment, but the NRP system uses the same

basic components, and only adds the ability to repeat paths. A summary of localization

errors, for many simulations on a single terrain map, is shown in Figure 4.13. The NRP

tests (green) are much closer to the actual goal (red) than those of the benchmark (blue).

Two examples of the comparison between the NRP and the benchmark system are

shown in Figure 4.14. The top is an example in simple terrain and it is used purely for

illustrative purposes. This test is not included in the results. The bottom comparison is

representative of the simulations carried out. It shows the start and goal locations, and

the approximate density of obstacles (in gray). In both cases, the two approaches began

navigating in the same way; it was only after detecting obstacles that the plans di↵ered.

The localization error at the goal (as seen by the di↵erence between the estimated track
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Figure 4.13: Summary of the localization errors for many simulations on a single fractal
terrain. These points are the estimated goal locations when the robot believed it was close
enough to the goal. The benchmark is in blue and the network-of-reusable-paths approach in
green. The goal location is red.

in blue, and the ground-truth track in gray) was less when using the network-of-reusable-

paths approach.

The other metric was the number of terrain scans collected. A terrain scan was

acquired when the robot stopped (due to encountering an obstacle on the path) and

gathered a scan of the surrounding area. In the benchmark system the resulting as-

sessment data were incrementally added to the global traversability map. In the NRP

approach, the resulting local assessment map was attached to the node where the robot

collected the scan. The fact that the benchmark system often got stuck, while the NRP

approach did not, makes a direct comparison of this metric somewhat less obvious. We

have therefore shown it in three di↵erent ways where we (i) compare the number of terrain

scans when completely ignoring the cases where the benchmark system became stuck,

(ii) use the number of scans the benchmark system acquired before becoming stuck, and

(iii) assume that when the benchmark system got stuck, it took the maximum number

of local assessment maps (350). The number of terrain scans collected by the NRP sys-

tem was calculated in the same way in all cases. The NRP approach was better in this
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Figure 4.14: A comparison between the benchmark and network-of-reusable-reusable-paths
approaches in simple terrain (top) and cluttered terrain (bottom). The NRP approach (left)
is an improvement over the benchmark (right) when comparing the number of scans and the
localization error at the end of the path.

measure as well, with between 41% to 69% the number of local assessment maps of the

benchmark, depending on the calculation method.

Table 4.3 shows the resulting path lengths for the a priori planner and the two test

systems. These are the distances along which the robot accumulated localization error.

The a priori paths and the benchmark lengths are simply the distance the robot traveled,

while the NRP lengths are the distances along the final start-to-goal paths through the

network. The NRP approach results in distances that are nearly the same as that of the



Chapter 4. The Development of a Network of Reusable Paths 82

Table 4.3: The distances along which the robot accumulated localization error for the a priori
planner as well as the benchmark and NRP systems.

Path length (pixels)
Benchmark 2499.9± 113.2
Network of reusable paths 576.5± 45.3
Using a priori terrain data 560.8± 140.8

a priori planner (within error bounds). As, expected, it is as if the NRP system takes

the a priori path, without having access to the a priori terrain data. We expect that

given an optimal planner, we would find that the NRP approach takes the optimal path

without access to a priori terrain data. This is an area of further research (Section 5.4).

4.5 NRP Development Systems

The field systems are presented in the next chapter, but during the development of those

systems, we also tested and refined NRP on other robotic platforms. The first used a Pi-

oneer 3-AT robot using a Hokuyo laser rangefinder for a simple bumper. Dead-reckoning

was done using wheel odometry and a Vicon motion capture system was used for the

teach-and-repeat capability. This system is shown in Figure 4.15, and the experiments

done with this system2 have been presented by Stenning and Barfoot [59].

Figure 4.16 shows the Pioneer 3-AT equipped with a stereo camera3. This was the

second iteration of the NRP software and it incorporated many lessons from the first test

system. This software is very similar to that used in the field trials that have followed.

4.6 Summary

This chapter has presented the development of a network of reusable paths, and a path

planner that can choose to use reuse previously driven paths. Through theory and

simulation we have shown many of the benefits of the NRP approach that is built upon

2A video of one of these tests is available at: http://youtu.be/C0J5lWX3xnM
3A video of this system is available at: http://youtu.be/ULwo3pX5f4M
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Figure 4.15: A time-lapse view of the first NRP robot seeking a goal (red dot on right) from
the start (robot in bottom left). This system, and the associated experiments, are described by
Stenning and Barfoot [59].

Figure 4.16: The stereo-camera-equipped Pioneer 3-AT robot. This robot was used as a devel-
opment platform for the field robots that are presented in the next chapter.
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two assumptions (see Section 4.3.1): (i) being able to detect and stop before hazards,

and (ii) being able to repeat a previously driven path. The next chapters show how a

robot can use a network of reusable paths in outdoor, unstructured terrain.

We believe that growing a network of reusable paths as the map substrate in a nav-

igation framework represents a fundamental paradigm shift within mobile robotics that

will allow computationally e�cient, accurate, and robust performance in real-world con-

ditions.



Chapter 5

A Network of Reusable Paths in the

Field

Two sets of field tests were carried out with a robot using a network of reusable paths

(the locations are shown on the map in Figure 1.4). The first set used a robot equipped

with a stereo camera as the primary sensor, and the second set used a robot equipped

with a high-framerate lidar. These tests were carried out in conjunction with mock Lunar

exploration mission scenarios conducted in the Sudbury impact crater in Canada [62, 66]

and the Mistastin impact structure in Northern Labrador, Canada [64, 65]. Chapter 6

discusses how NRP was used in those missions.

Section 5.1 describes the stereo-camera-equipped robot. The architecture of the

GN&C system was common to the two robot configurations, this is discussed in Sec-

tion 5.1.1. The test setup is presented in Section 5.1.2 before giving the results from

the stereo-camera-based tests in Section 5.1.3. The high-framerate lidar system and the

corresponding results are presented in Sections 5.2 and 5.2.1, respectively.

5.1 The Stereo-Camera-Equipped Robot

The robot, equipped with a stereo camera, is shown in Figure 5.1. The robot base,

a robuROC6 made by Robosoft SA, is approximately 1.8m long and 0.9m wide. The

primary guidance and navigation sensor is a stereo camera that is on the front of the

85
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Figure 5.1: The field robot equipped with a stereo camera. The robot base, a robuROC6 made
by Robosoft SA, is approximately 1.8m long, 0.9m wide. The Point Grey Bumblebee XB3 stereo
camera is 1.1m above the ground. There are inclinometers in each of passively articulated body
segments. Di↵erential GPS was used for the ground-truth localization, the base station was
located at the base camp.

vehicle, about 1.1m above the ground. The stereo camera was used for the visual-

teach-and-repeat system that was the second version of that presented by Furgale and

Barfoot [2]. The sparse feature point cloud (i.e., the visual landmarks) was also used by

the terrain-assessment system to identify areas that were not safely traversable. There

were inclinometers in the three body segments of the robot. These body segments could

passively articulate relative to each other to allow the system to conform to the terrain.

The di↵erential GPS was used only for the ground-truth localization and was not used

for any of the autonomous navigation.

5.1.1 The Guidance, Navigation, and Control System

The high-level guidance, navigation, and control (GN&C) architecture is shown in Fig-

ure 5.2. In this architecture, we can see all the elements present in the generic GN&C

diagram shown in Figure 1.3. The Graph Navigation element is the visual-teach-and-
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Figure 5.2: GN&C architecture of the field robots that makes use of a network of reusable
paths. The safety layers were turned on by the state machine, as appropriate. These safety
layers provided local terrain assessment data to the planner, and could ask the vehicle to stop,
slow down, or even try to boost the speed (in the case of a stall). The Graph Navigation system
maintained the graph structure of the network of reusable paths. These data were shared with
the planner. The planner created a plan based on the current network and the assessment data
stored at the nodes of the network.

repeat system for use on a network of reusable paths (rather than a single path). It

carried out localization and mapping by adding new local maps to the graph as the robot

drove into new terrain, and it reported the pose of the vehicle relative to a node in the

graph (the frame in which localization is reported often changed to best suit the task),

at approximately 8-10Hz in the stereo-camera-based system. The path tracker used the

current pose to track the plan. The speed of the robot varied from 0.25m/s to 1.0m/s,

depending on the roughness terrain and the curvature of the path.

The safety layers had two main roles: (i) provide terrain assessment data to the

planner and (ii) ensure that the vehicle was safe as it drove. Not all safety layers were

active at all times, the Point Cloud, Rollover, Slip, Stall and Manual safety layers were
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Figure 5.3: An Rviz visualization of an example sparse-stereo point cloud and the resulting
first-phase terrain assessment. The point cloud was from the point features used for stereo-based
visual teach and repeat. Cells identified in red have been flagged as containing strongly vertical
terrain. The green cells show areas that appeared to be locally flat, and their mean height was
recorded. These data were used in the second phase of the assessment.

active only when the robot was driving into new terrain (adding to the network, teaching).

The Graph Health layer was active only when the robot was repeating a previous part

of the network.

The Point Cloud safety layer looked ahead on the path to detect potential geometric

hazards. This terrain assessment was done in two phases. The first phase took place

immediately after the point cloud was captured. Rviz, a visualization environment pro-

vided by Robot Operating System (ROS) [124], was used to visualize a point cloud and

the resulting first-phase assessment from the stereo camera in Figure 5.3. ROS was used

extensively in these systems. The point cloud was transformed into a gravity-aligned

frame (i.e., the vector aligned with the acceleration due to gravity was in the negative

z-direction) with the x-direction straight in front of the vehicle. The cloud was then

divided into square cells that were significantly smaller than the vehicle footprint (in

this case, 0.5m by 0.5m). Cells that contained a large change in elevation were robustly

identified and flagged (they are marked red in the Rviz visualization). The process was

quite similar to that used by Thrun et al. [23]. Cells that were not flagged appeared to be

locally flat and the mean height of the points was recorded. If there were not su�cient

data in a cell (this system required a minimum of five points), then no check was made

(note how some areas of the cloud do not have a corresponding green or red cell). These
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assessment data were forwarded to the path planner where they were available to be used

in the second phase of assessment when planning later paths.

The second phase of the assessment was done on demand, meaning, only for certain

potential movements. The safety layer used the second phase assessment to look forward

along the current path, and it would stop the vehicle if a hazard was detected. The

planner used the second phase terrain assessment on candidate path segments. The

second phase fitted a plane to the cells in the robot’s footprint and then slid that footprint

along a candidate path segment. The segment was considered to be not viable if at any

point the footprint contained a flagged cell. If there were no flagged cells in a footprint,

a plane was then fit to the mean heights and the x- and y- positions of the cells. The

magnitudes of the roll, pitch, step, and roughness were then checked against a set of

thresholds. If any measure exceeded the threshold, the segment was not viable (this is

similar to the Morphin algorithm [67]). If the Point Cloud safety layer detected a segment

that was not viable, it stopped the vehicle, and if the robot had not reached the goal,

a new plan was created. The Point Cloud safety layer would also slow the vehicle in

challenging areas that did not quite meet the obstacle thresholds.

The other safety layers (with the exception of the Graph Health) can be conceptual-

ized as bumpers. Triggering a bumper would send an obstacle assessment to the planner

and stop the path tracker. The Rollover layer monitored the inclinometers in each pod

to ensure the vehicle did not tip. It also protected against self-collision (so that payloads

did not hit each other). The Rollover layer would slow the vehicle in challenging areas

where obstacle thresholds were not met. The Slip layer would trigger when the relative

motion estimates from visual odometry and wheel odometry di↵ered significantly. The

Stall layer would trigger when neither visual odometry nor wheel odometry believed there

was su�cient motion given the control inputs. The stall condition first triggered an at-

tempt to boost the speed of the path tracker (provide a bit more power to the wheels). It

added an obstacle to the map if the boost was unsuccessful. The Manual layer allowed a

human observer to insert an obstacle into the network at the current position. This was

necessary for certain classes of obstacle that could not reliably detected (e.g., overhangs

that were above the camera field of view, but that could still hit payloads on the vehicle).
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It can be thought of as a placeholder for more advanced hazard detection systems.

The Graph Health layer controlled only the speed of the robot, it would slow the

vehicle if Graph Navigation was having di�culty localizing to the map. Reducing the

speed would reduce motion blur in the images. If the vehicle drove along the previous

path for too far without localizing against the map, the Graph Health layer would stop

the robot and continue to attempt to localize without running the risk of driving into

unsafe terrain. The vehicle was allowed to continue once the localization was reacquired.

In practice, this also allowed human operators the opportunity to return the robot to the

path manually.

5.1.2 Test Description

Individual tests were started from various initial poses in order to have the robot en-

counter a variety of terrain. Waypoints (goals) were defined as points relative to the

initial position (the first node in the network). Two variations were used: (i) the robot

had a single distant waypoint and a second waypoint at the initial position (to cause the

robot to return after finding the goal), and for the stereo-camera-equipped robot, (ii) five

distant waypoints were given, plus a sixth waypoint at the initial pose (again, to return

to the start after visiting the goals).

5.1.3 Results from Stereo-Camera-Based NRP

The results of using the stereo-camera-equipped robot are given in Tables 5.1, 5.2 and 5.3.

Table 5.3 gives a summary of all the tests. The robot drove a total of 11.10 km, while

creating 4.79 km of networks (43.2%). This means that 6.31 km (56.8%) of driving was

repeating previous paths.

Figures 5.4, 5.5 and 5.6 take a closer look at test 21. Videos of test 91 and test 212

are available online. In test 21, the goal was set 62m straight ahead of the start position

and the robot had no prior knowledge of the terrain. The robot autonomously found the

distant waypoint and then returned to the start position. Figure 5.4 gives an overview

1A video of test 9 is available at: http://youtu.be/
2A video of test 21 is available at: http://youtu.be/0NmpSBA1XQM
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Figure 5.4: The sequence of events in test 21 for the stereo-camera-equipped robot. The distant
waypoint was set 62m straight ahead of the initial starting position. The robot had no prior
knowledge of the terrain. Initially it tried to go straight to the goal, it then planned several paths
that went to the left before it found that way, too, was blocked. The robot then found the path
to the right and after avoiding a few more obstacles it reached the waypoint and then returned
to the start position, all completely autonomously.

of the test, showing the terrain and the network of reusable paths.

Figure 5.5 gives a snapshot, as an Rviz visualization, into the internal state of the

system as it was seeking the distant waypoint. We can see the path that the robot was

following when it detected an obstacle ahead (the thick blue line is the path that reused

the existing network, the thick red line is the path into new terrain). Also shown is the

state of the RRT tree (gray) with the best path found so far (yellow). The network, in the

stereo camera frame, is shown in light blue along with a selection of node identification

numbers.

A top-down view of test 21 is shown in Figure 5.6. This figure emphasizes just how

sparse the terrain data were, yet the robot still reached the distant waypoint. The vehicle

legend in the bottom right corner shows the field of view of the stereo-camera-based Point

Cloud safety layer, along with the minimum turning radius of the vehicle. The remarkable

thing is that the system worked reliably, even though the obstacle detection range was

very short in relation to the vehicle maneuverability, and the assessment data were very
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Figure 5.5: An Rviz visualization of the internal state of the rover localization and guidance
systems during test 21. The thick blue and red lines are the previous plan (i.e., repeat existing
network, the blue section, and drive forward into new terrain, along the red section). However,
an obstacle was detected (see the assessment overlaying the most recent point cloud) along the
red path so the vehicle stopped and the robot is now re-planning. The yellow path is the best
path found so far. The gray tree is the current state of the RRT. The network is drawn in light
blue with node identification numbers drawn above branch points and at the ends of branches.

sparse. In this test, the robot encountered 28 obstacles (17 ranged and 11 rollover). For

all the tests that were carried out with this system, the average range of a Point Cloud

safety layer obstacle was 3.4m, and the max range was 5m. This figure also shows how

we measured the values in Tables 5.1-5.3.

Table 5.1 provides the results from attempting to reach a single distant waypoint in

unknown terrain and then returning to the start pose (the initial node in the network).

The range-to-waypoint is the absolute distance to the distant waypoint from the start

point. The estimated-final-range-to-waypoint and the actual-final-range-to-waypoint are

respectively the robot’s estimated and actual range to the distant waypoint when ei-

ther the robot thought it was within the capture threshold (25m for tests 1-7, 10m for

tests 8-13, and 7m for tests 14-23) or when the waypoint was aborted. The distance-to-

goal-from-start-on-network is the distance along the network from the waypoint capture

or abort point, plus the final distance to the goal. The total-network-length is the cu-

mulative distance of all the paths in the network, and the total-distance-traveled is the

total distance the robot drove, including the return to the start. The last two columns
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Figure 5.6: An overhead view of test 21 for the stereo-camera-equipped robot. Along the
way the robot encountered 28 obstacles (17 ranged, 11 rollover). The average ranged-obstacle
detection range was 3.4m, the maximum range was 5m. These ranges are significantly less
than the minimum turning radius of the vehicle. There are not many terrain assessment data
that are collected by the robot, yet the robot autonomously reached the goal and then returned
to the start. See the supplementary media for a movie of this test.
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Table 5.1: Results of tests 1-21 where the stereo-camera-equipped mobile robot used NRP to
seek a single waypoint and return to the start. The range-to-waypoint is the absolute distance
to the distant waypoint from the start point. The estimated-final-range-to-waypoint and the
actual-final-range-to-waypoint are respectively the robot’s estimated and actual range to the
distant waypoint when either the robot thought it was within the capture threshold or when the
waypoint was aborted. The distance-to-waypoint-from-start-on-network is the distance along
the network from the waypoint capture or abort point, plus the final distance to the goal. The
total-network-length is the cumulative distance of all the paths in the network, and the total-
distance-traveled is the total distance the robot drove, including the return to the start. The last
two columns indicate if the robot believed it had reached the distant waypoint and if the robot
successfully returned to the start. Two sets of statistics are given. The first is for all 21 tests,
the second is for only the 18 tests where the robot believed it had reached the distant waypoint.
Tests 9 and 21 (bold) are shown in videos in the supplementary media.
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1 90.1 10.9 5.6 7.4 92.5 235.2 496.9 Yes Yes
2 133.1 22.9 20.7 2.9 118.4 180.4 259.9 Yes Yes
3 73.8 10.3 3.8 8.5 83.6 102.9 220.1 Yes Yes
4 129.4 64.4 55.1 11.9 143.6 200.3 557.9 No Yes
5 200.0 24.9 12.1 19.7 235.5 568.2 1,293.0 Yes Yes
6 206.9 111.7 99.1 12.8 103.1 240.7 542.4 No Yes
7 230.5 149.8 142.8 8.3 303.9 543.6 1,364.7 No Yes
8 73.5 9.0 5.3 7.7 75.6 129.2 270.0 Yes Yes
9 80.0 9.1 6.6 2.7 94.4 162.8 338.4 Yes Yes

10 73.8 7.0 3.6 5.6 84.4 118.6 246.3 Yes Yes
11 82.0 7.7 5.1 2.4 86.5 109.2 222.0 Yes Yes
12 72.2 4.2 2.9 1.4 85.4 81.4 164.8 Yes Yes
13 54.9 9.8 9.0 1.5 50.3 50.3 101.1 Yes Yes
14 103.8 1.3 4.5 4.6 111.6 149.1 319.7 Yes Yes
15 114.9 0.9 4.2 5.0 147.2 248.9 523.5 Yes Yes
16 65.8 1.4 0.9 2.3 70.8 131.6 273.8 Yes Yes
17 44.0 6.2 5.7 0.5 48.8 109.3 228.7 Yes Yes
18 50.0 2.6 3.2 1.0 65.4 139.4 390.4 Yes Yes
19 67.0 6.5 6.5 0.5 70.4 144.1 298.5 Yes Yes
20 67.0 6.8 6.5 0.2 71.2 143.0 298.5 Yes Yes
21 62.0 0.2 1.0 0.8 68.2 187.1 408.1 Yes Yes

Total 2,075.7 467.5 404.4 107.8 2,210.7 3,975.5 8,818.8 18/21 21/21
Mean 98.8 22.3 19.3 5.1 105.3 189.3 419.9 0.857 1.000

Total when 1,508.9 141.6 107.4 74.7 1,660.1 2,990.8 6,353.7 18/18 18/18
reached goal
Mean when 83.8 7.9 6.0 4.1 92.2 166.2 353.0 1.000 1.000
reached goal



Chapter 5. A Network of Reusable Paths in the Field 95

Table 5.2: Results of a stereo-camera-equipped mobile robot on a network of reusable paths
attempting to seek five waypoints and return to the start. Tests 22 and 23 had the robot navigate
to five distant waypoints in unknown terrain, and then return to the start position. All waypoints
were reached and the robot returned to the start in both tests. The columns are as in Table 5.1.
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22 345.1 701.5
a 72.2 2.2 2.1 0.1 85.0 Yes Yes
b 54.9 0.3 1.6 1.3 84.3 Yes Yes
c 103.8 1.2 4.6 5.8 148.4 Yes Yes
d 114.9 0.9 7.5 7.9 174.7 Yes Yes
e 65.8 3.6 1.3 2.3 72.8 Yes Yes
23 472.5 1,584.1
a 54.9 0.7 1.6 1.1 62.2 Yes Yes
b 65.8 1.5 1.8 2.1 76.1 Yes Yes
c 114.9 1.1 4.4 5.5 170.5 Yes Yes
d 72.2 2.6 3.2 1.0 92.7 Yes Yes
e 103.8 4.4 4.8 2.9 148.3 Yes Yes

Total 823.1 18.5 32.9 29.9 1,115.0 817.6 2,285.6 10 of 10 10 of 10
Mean 26.6 0.6 1.1 1.0 36.0 408.8 1,142.8 1.000 1.000

Table 5.3: Summary of all results of a stereo-camera-equipped mobile robot on a network of
reusable paths attempting to autonomously seek waypoints and return to the start. Two sets of
means and totals are given. The first is for all 31 distant waypoints, the second is for only the
28 waypoints the robot believed it had reached. The columns are as described in Table 5.1.
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Total 2,898.8 486.0 437.3 137.6 3,325.7 4,793.1 11,104.4 28/31 31/31
Mean 93.5 15.7 14.1 4.4 107.3 208.4 482.8 0.903 1.000

Total when 2,332.0 160.1 140.3 104.5 2,775.1 3,808.4 8,639.3 28/28 28/28
reached goal
Mean when 83.3 5.7 5.0 3.7 99.1 190.4 432.0 1.000 1.000
reached goal
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indicate if the robot believed it had reached the distant waypoint, and if the robot suc-

cessfully returned to the start. Of the 21 single waypoints (not including instructions

to return to the start), the robot reached 18 (0.857 success rate). In all 21 tests the

robot successfully returned to the start. In the cases where the robot failed to reach the

waypoint, a human operator made a judgment to return home after letting the attempt

to reach the goal continue for an extended period of time. This can be thought of as a

timeout on a waypoint. The incomplete waypoints were all physically reachable, but they

were distant, and through areas that were di�cult for accurate visual odometry (fine,

repetitive texture), which led to faster growth of the localization error, and in some cases

made the estimated goal position drift into an unreachable place. Two sets of cumulative

and mean statistics for the tests are at the end of the table. The first are for all 21 tests,

the second are for only those tests where the robot believed it had reached the goal.

Table 5.2 gives the results for the scenario where the robot was given five waypoints

(the same points were used in each test, but the sequence was in a di↵erent order, see

Figure 5.8) and then directed to return to the start. The columns are the same as in

Table 5.1. All the waypoints were reached and the robot returned to the start in both

tests.

Figure 5.7 shows an overview of test 23. The robot was told to seek five waypoints,

in unknown terrain, and then return to the start. The estimated position of the network

is the black line. As the network extends farther from the start, the localization drift

becomes apparent. The true network position is shown by the blue line. The localization

error was rolled back by reversing along a previous path and did not necessarily continue

to accumulate as the robot moved to seek new waypoints. The shapes of the networks

from tests 22 and 23 are compared in Figure 5.8. In these tests, the same waypoints were

visited, but in a di↵erent order. We expect that the final path to any individual waypoint

would have converged to be the same in both tests, if the NRP planner were optimal. Of

course, a practical system may attempt to trade o↵ time for accuracy by penalizing the

time taken to repeat a previous path. This is a consideration for later works.

Occasionally, it was necessary to intervene with an experiment. The interventions

are listed in Table 5.4. As mentioned in Section 5.1.1, the obstacle interventions are a
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Figure 5.7: An overhead view of test 23, where the robot was told to seek five distant waypoints,
in the order a through e, and then return to the start.

placeholder for a missing method of terrain assessment. Interventions of this type might

have been avoided by using more sophisticated terrain assessment algorithms, or sensors

with a wider field of view. The other interventions were necessary because the robot was

unable to localize against the map while repeating a path (usually because the appearance

of the scene had changed from when the path was added to the network). However, in

each of these localization failures the robot successfully completed the path on the second
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Figure 5.8: The shape of the network in test 22 (green) compared to that of test 23 (black).
The two tests had the same set of waypoints, but in di↵erent orders. If the planner were optimal
we expect that the final path to each waypoint would be the same, regardless of the order in which
the robot was told to seek that waypoint.

attempt (after being manually driven backward along the path). This suggests that if

the robot had been able to automatically reverse and re-attempt to drive the path in

question, no intervention would have been necessary. We can look to some recent work

by Churchill and Newman [125] for one way of providing this capability. They present an

approach to lifelong navigation that would aid in building paths that are more robust to

appearance changes in the scene. Essentially, one could consider this system to always be

automatically teaching new visual landmarks and/or localizing using existing landmarks,

as necessary. This capability is a consideration for later works.

Figure 5.9 shows how localization error grows with the distance traveled from the

frame in which the localization is reported. The error is measured in the frame at the

start of the network (the goal definition frame). The error tends to grow as the robot

travels farther from the start. The error is measured in three ways: at the top is the
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Table 5.4: Manual interventions in the tests using the stereo-camera-equipped robot. In the
reposition interventions an operator sent commands to the robot for the purpose stated in the
description of the intervention. In the obstacle interventions an operator manually added an
obstacle at the robot’s position.

Test Intervention Description of intervention
number type

4 Reposition

Map localization was lost for just over 3m (the distance threshold to stop)
while repeating a previous path on uniformly textured gravel that had
dried out in the sun over the course of the experiment (i.e., the appearance
had changed from dark to light and there were not many distinct visual
landmarks). The robot stopped but could not match to the map. The
operator took control of the robot and returned it to a section where
it could localize against the map. The robot then re-attempted, and
successfully completed, the di�cult section without further intervention.

18 Reposition

A section of the network had a significant lateral slope. During the course
of the experiment the robot repeated this section multiple times (forward
and reverse along a 5m section) and the vehicle accumulated a lateral
error of about 50 cm (the slope was likely beyond what the path tracker
could handle reliably). The localization failed to match to the visual-
landmark map so the robot stopped. The operator manually returned the
robot to the path, the localization match was re-acquired, and the
experiment continued.

22 Obstacle
Four manual obstacles were added when the robot came near some large,
overhanging heavy equipment (a gravel conveyor that was not in use).

23 Reposition

The test was carried out in the early evening a few hours before sunset, so
the lighting was starting to change. The robot was repeating a previous
path but it was having di�culty because the appearance had changed due
to the changing lighting conditions. At that point, several people on all-
terrain vehicles and dirt bikes approached the robot and entered the frame
of the camera and the map localization was lost. The robot stopped and
the people moved but the robot could not re-localize. The operator moved
the robot to a previous point and let it try the section again, at which
point the robot successfully drove the path and no further interventions
were necessary.

absolute range-error in xyz, the middle is the absolute range-error in just the x- and

y-dimensions (what we care about most), and the bottom shows the z-component of

the error. Test 23 is drawn in red to better show the network structure of the test; the

network is just mapped into the distance-error space. This emphasizes that the error

rolls back as the robot reverses along the path toward the goal definition node. One can

speculate how the error would grow if dead reckoning were used throughout; however,

this information is not available. With NRP, the error contribution is only due to the

dead-reckoning error on the final path to the goal, whereas other (non-SLAM) systems
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Figure 5.9: Localization error versus distance along the network for tests 1-23 using the stereo-
camera-equipped robot. Note the network structure of the of the tests. Test 23 is highlighted
in red to better show the detail. The ground-truth localization was measured using di↵erential
GPS.

will accumulate errors along the entire traverse path.

The z-component has a significant contribution to the overall localization error. The

estimated pitch of the vehicle had a negative bias (e.g., the vehicle tended to estimate

that it was pitching upward) whose magnitude seemed strongly correlated to the visual

appearance of the terrain that the vehicle was in, making calibration before the field

trials unsuitable. Lambert [126] does a deeper analysis of this visual-odometry bias.

5.2 The Lidar-Equipped Robot

The stereo-camera-equipped robot was limited to operating in similar lighting conditions

throughout a test, because a change in the lighting conditions changed the appearance

of the scene and made localizing against the map di�cult or impossible. To solve this
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Figure 5.10: The Autonosys-equipped robot in the Mistastin impact structure in Northern
Labrador, Canada.

Figure 5.11: Example intensity image (left). Each pixel of the intensity image also had a
corresponding range. Example assessment from the Autonosys-lidar point cloud (right). The
point cloud had many more points than in the stereo camera system, allowing for more of the
terrain to be assessed.

problem, a lighting-invariant system was created that makes use of a high-framerate

lidar [103, 111]. Field test results from this system are presented next.

The high-framerate lidar used in these field tests was made by Autonosys Inc. The

robot, with the Autonosys lidar, can be seen in Figure 5.10. Again, a di↵erential GPS was

mounted on the top of the sensor, but these data were only used for the ground-truth

localization. The robuROC6 platform was again used, but with the di↵erent sensor

configuration. The framerate of the lidar was approximately 2Hz, and therefore the

maximum speed of the robot was reduced to 0.5m/s.
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Table 5.5: Results of a Autonosys-equipped mobile robot on a network of reusable paths at-
tempting to seek a distant waypoint and return to the start. Most waypoints were reached (14
of 16) and the robot returned to the start in all tests. The columns are as in Table 5.1.
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1 50.0 0.6 1.2 1.7 54.7 65.1 160.0 Yes Yes
2 44.7 0.5 3.3 3.2 50.5 64.1 165.9 Yes Yes
3 45.0 0.3 0.4 0.7 46.7 63.1 152.9 Yes Yes
4 45.0 23.0 23.2 0.2 45.1 59.2 138.0 No Yes
5 50.0 7.3 6.0 1.3 57.3 138.8 411.9 Yes Yes
6 50.0 0.2 2.7 2.7 52.4 141.3 395.0 Yes Yes
7 45.0 1.1 2.4 2.3 45.9 51.6 123.3 Yes Yes
8 45.0 0.1 2.0 2.0 45.9 60.4 147.0 Yes Yes
9 45.0 1.7 1.8 0.2 61.2 76.0 182.4 Yes Yes
10 45.0 2.2 0.9 1.4 65.6 111.8 274.0 Yes Yes
11 45.0 0.7 0.8 1.5 47.9 52.3 129.3 Yes Yes
12 45.0 7.5 8.0 1.6 46.6 99.4 337.5 Yes Yes
13 50.0 1.2 1.6 2.2 53.3 69.4 162.0 Yes Yes
14 50.0 1.9 3.8 3.7 51.7 56.4 133.7 Yes Yes
15 50.0 1.7 1.9 3.6 58.4 76.2 200.5 Yes Yes
16 50.0 20.2 21.5 1.4 64.1 82.7 198.5 No Yes

Total 754.7 70.2 81.6 29.8 847.3 1,267.8 3,312.0 14 of 16 16 of 16
Mean 47.2 4.4 5.1 1.9 53.0 79.2 207.0 0.875 1.000

Total when 659.7 27.0 36.9 28.2 738.1 1,125.9 2,975.5 14 of 14 14 of 14
reached goal
Mean when 47.1 1.9 2.6 2.0 52.7 80.4 212.5 1.000 1.000
reached goal

An example intensity image (used for visual landmark detection and matching [103])

is shown in the left of Figure 5.11. The point cloud used by the Point Cloud safety layer

was much more dense than in the stereo camera tests. The points were subsampled based

on volume, and filtered to remove outliers. The filtering removed incorrect points that

would arise when the laser spot measured the edge of an object and averaged the range

with the background range. The assessment, shown in the right of Figure 5.11, detected

locally flat terrain out to 10m, and locally vertical terrain out to 20m, with a higher
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Table 5.6: Manual interventions in the tests using the lidar-equipped robot. In the reposition
interventions, an operator sent commands to the robot for the purpose stated in the description
of the intervention. In the obstacle interventions, an operator manually added an obstacle at the
robot’s position. In traction interventions the operator did something to help the wheel traction.

Test Intervention Description of intervention
number type

4 Obstacle
An obstacle was manually added to prevent the robot from driving into a
pool of water.

8 Traction
Pushed down on a wheel to aid in wheel traction over a wet, mossy rock
while repeating a path with a tight turn.

10
Obstacle,
Traction

Three manual obstacles were added to prevent the robot from attempting
to drive across a small stream. While repeating a path up a wet hill, the
operator pressed down on the rear segment of the robot to improve the
wheel traction.

11 Obstacle
A manual obstacle was added when the robot was experiencing wheel-slip
in a wet, mossy area. Once the obstacle was added the robot backed out
and continued the test without further intervention.

12
Reposition,
Traction

The robot was returning along a path that made a turn while going up a
slope. However, the robot was unable to reverse the maneuver on the first
attempt. It drifted from the path and did not match against the map for
just over 1m (the distance threshold for these tests), so it stopped. The
operator returned the robot to a previous point on the path and let it
attempt the di�cult section again, this time while pressing down on the
front segment of the robot to provide more wheel traction.

15 Traction
Pushed down on a wheel to aid in wheel traction over a wet, mossy rock
while repeating a path up a hill.

vertical threshold used for the region beyond 10m. This allowed obvious obstacles to be

detected from a significant distance.

5.2.1 Results from Lidar-Based NRP

The results from the tests of lidar-based NRP are in Table 5.5. The robot successfully

reached 14 of the 16 distant waypoints and it successfully returned to the start in all the

tests. It drove a total of 3.31 km, creating a cumulative network length of 1.27 km.

Figure 5.12 shows an overview of test 5. This test was done in complete darkness,

emphasizing the lighting invariance of the Autonosys-based visual-teach-and-repeat tech-

nique. The rover was asked to seek a distant waypoint that was 50m straight ahead. As

before, the robot had no prior knowledge of the terrain. It successfully avoided many

obstacles and arrived within the waypoint capture threshold (8m for all tests). The robot
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Figure 5.12: An overview of test 5 when using the lidar-equipped robot to navigate to a distant
waypoint and return to the start. Note how much more terrain data are available to the planner
than in the case of the stereo-camera system. This is due to the increased point cloud range (see
the legend in the bottom right). The area was strewn with rocks (the scattered red cells) that
were not traversable by the robot. Also note that this test was done at night, in total darkness.

then returned to the start position. The Autonosys lidar allowed for much more terrain

data to be used in the Point Cloud safety layer and when planning new paths. However,

the localization estimate was much more uncertain than the stereo-camera system, mean-

ing that seeking more distant goals in a single command cycle was troublesome. Further

work, including motion compensation, is underway to address this issue [127, 128, 129].
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Figure 5.13: Localization error versus distance along the network for the tests using the
Autonosys-equipped robot. Note the network structure of the individual test that is highlighted
in red. This is from test 5.

In these tests, manual interventions (listed in Table 5.6) were primarily necessitated

due to the traction performance of the vehicle, or because there was a lot of standing water

that was deemed an unnecessary risk for the robot (it was unclear if it would always stop

in time). Again, the water hazard might be addressed by adding an additional safety layer

to the system. The traction problem would typically mean the robot stopped moving

along the path and it would spin a single wheel. This was a low-level hardware issue with

the vehicle that could not be changed (ideally, power would be routed to the wheels that

were not slipping). Instead, we pushed down on the wheel that was spinning, thereby

allowing it to generate more traction. This could be thought of as a vehicle design issue,

but it also indicates that sometimes a path is not drivable in both directions (this breaks

our second assumption about the robot). At least two options are then available: either

make the safety layers more strict to reduce the frequency of this error, or make use of

single-direction paths. These are considerations of later works.

The growth of the localization error versus distance traveled is plotted in Figure 5.13,
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similar to the stereo-camera plots in Figure 5.9. Test 5 is highlighted in red and the

network structure is visible. Again, we see a trend of superlinear error growth with

distance traveled, but this time over much shorter distances. Similarly to the stereo

camera system, we see a significant vertical drift (bottom axes of Figure 5.13). The

high-frequency noise on the error is due to the back and forth continuous scanning of

the sensor. As mentioned, no attempt was made to compensate for this motion at this

stage. Instead, the camera (operating at about 2Hz) was modeled as capturing the whole

frame simultaneously. This is a major simplification, but it is interesting to see that the

system still worked. Again, one can speculate on what the error would grow to if the

robot were dead-reckoning all the time and never using a network of reusable paths. It

would still have to back up out of dead ends, and back up from nearby obstacles, and

the localization error would drift during those maneuvers.

5.3 Discussion

This section presents a discussion on the performance achieved using NRP. First, we

identify the challenges in robust, autonomous exploration (Section 5.3.1), next, we show

how NRP can be thought of as a physical embodiment of an RRT (Section 5.3.2). Finally,

we attempt to present an intuitive explanation for the improved performance of NRP

when compared to other approaches to GN&C (Section 5.3.3).

5.3.1 Challenges in Robust, Autonomous Exploration

Even though we take localization error as the primary criterion for measuring success, we

can also look at the other challenges that are faced in autonomous traverses by a mobile

robot. Many of these challenges are avoided in the NRP approach.

Map merging, for example, can result in artifacts that are exacerbated by localization

error. Yet, most systems require maps to be merged in order to express the terrain

traversability in a single frame for planning. Using NRP, we have thus far avoided any

map merging, instead using many topologically close (i.e., nearby along the network)

local-assessment maps during planning. A local assessment map is created from data
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Figure 5.14: Challenges in map merging include the potential for getting stuck if the map does
not capture the scale of the obstacles. In this example, if map data are forgotten as new data
are added (i.e., the robot only keeps the data from the last six scans), the robot will be stuck
going back and forth on the inside of the obstacle and the robot will not reach the goal.

at a single sensor pose. This has avoided many of the problems encountered when local

maps are incrementally added to the current, global map. For example, when adding new

assessment data to a global map the robot can encounter false steps when the elevation

is not correct, real openings can be closed o↵ in the map when the merging overlaps the

maps by too much, or false openings can appear when merging does not have enough

overlap between maps. The robot will typically forget distant or old data to avoid these

problems from building up over long distances. However, this can lead to the robot

getting trapped when it cannot build a traversability map large enough to capture the

obstacle that needs to be avoided. As in Figure 5.14, consider the case where the robot

is trying to get past a large semicircular obstruction; if it does not build a large enough

map it may become stuck in an endless cycle going back and forth on the inside of the

curve because it keeps forgetting about what it has already seen (also, consider what is

happening to the localization estimate while the robot attempts this traverse). As was

shown, these problems are avoided by using the NRP approach.

Another challenge arises when considering the problem of point turns. Not all vehicles

are capable of such a maneuver (the robot used in our field trials was not able to turn on

the spot). Even those robots that can turn on the spot can be operating in terrain where

such a maneuver is impossible (stability concerns, or a tight area with a robot that is

longer than it is wide). Once in these tight spots, it can be di�cult to find a path that
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can back the vehicle out, and when a robot does not have complete sensor coverage (and

many common robots fall into this category), it can become unsafe to reverse blindly into

terrain that is believed safe. However, using NRP allows a robot to reverse along the

inbound path, even when it cannot see the terrain into which it is driving (in reverse).

5.3.2 A Physical Embodiment of an RRT

Next, we show that the proposed system (with some conditions) is a physical embodiment

of an RRT, and that it could be made to be a physical embodiment of any planning

algorithm that incrementally builds a spanning tree rooted at the goal definition node.

What we mean here is that the world is serving as its own map, and the planner is

operating in the world, not a virtual map; this is enabled by the ability to repeat paths

using VT&R.

We wish to show that the proposed NRP system is a physical embodiment of an RRT

so that we can claim the same properties of an RRT. One such property is that an RRT

is probabilistically complete, meaning that when a path exists, the probability of finding

that path goes to 1 as the number of iterations goes to infinity [51].

Let us consider a simple and ideal NRP system. The only method of terrain assess-

ment is to actually attempt to drive a piece of terrain, but this assessment is error-free (a

perfect bumper, and let us use ‘bumper’ with a little latitude on the meaning). Addition-

ally, because an RRT planner assumes perfect localization, we, too, use that assumption;

as in the assumptions about the robot, we assume a perfect visual-teach-and-repeat sys-

tem.

Theorem 5.1. In the absence of localization error, a ideal NRP system using a perfect

bumper for terrain assessment is a physical embodiment of an RRT (i.e., where the world

is its own map).

Proof. When using NRP, all steps in Algorithm 2 (from Section 4.3.5) are either identical

to the case of virtual planning, or the steps have physical implementations. Thus, NRP is

a physical embodiment of an RRT. Consider line 1, the network is a graph, thus all these

elements make up the actual network. Lines 2 and 3 have no change in implementation.
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In line 4 the robot not only calculates the nearest node on the tree, it also travels to

that node (recall the robot can travel anywhere on the network). Lines 5� 7 are carried

out simultaneously as the Steer() function is implemented by actually having the robot

attempt to drive from xnearest, and the ObstacleFree() function is evaluated by the terrain

assessment while the robot drives into new terrain. The network is grown any time the

robot is driving into new terrain, therefore the traversable part of the new segment is

added to the network.

There is a further generalization of the notion of physical embodiment. Consider the

NRP system we used in our real-world tests; it created and then operated on a tree of

paths (i.e., no loop closure, no cycles, no adding a second inbound edge to an already

existing node). In fact, this system was maintaining a spanning tree of all the nodes

on the graph, and we can therefore extend the set of planners that can be physically

embodied to include any planning algorithm that incrementally builds a spanning tree

from the point where the goal is defined.

An RRT is one example, but one could also consider a system that uses a breadth-

first or depth-first search, if a suitable graph representation of the state space were given

(e.g., an eight-connected graph, a state lattice [52]). Note that the practical requirement

that the network be a single tree (i.e., no cycles), containing the goal-definition node

(this can be thought of as the start) rather than the goal itself, precludes the use of

certain algorithms such as RRT-Connect [51]. This requirement is to avoid the problem

of expressing all of the assessment data in a single global coordinate system.

Unfortunately, none of the spanning-tree planning algorithms are optimal with respect

to path cost [61]. This raises the question: what is required to allow for optimal planning

on a network of reusable paths? This line of questioning is the subject of future work

and the preliminary discussions are in Section 5.4.

5.3.3 Breaking a Vicious Cycle

We can look at the interactions between localization, mapping, and planning, to gain

insight into the improved performance experienced when using a network of reusable

paths, compared to a system using a classic approach to GN&C. The top of Figure 5.15
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Figure 5.15: A vicious cycle arises in the classic approach to GN&C (top). Using a network
of reusable paths breaks that cycle (bottom). In classic GN&C the localization uncertainty grows
with each movement, the localization is used to create a global map of the recently observed ob-
stacles so localization errors lead to poor quality maps. Poor quality maps lead to poor plans
which then lead to longer distances being traveled, and again, greater localization uncertainty.
A system using a network of reusable paths experiences less localization error, as error is ac-
cumulated along the network back to the goal definition node. No global map of assessments is
made, thus avoiding the map merging problems. This leads to better path plans and less distance
traveled. Finally the cycle is broken because paths that are not useful do not contribute to the
final localization error. The robot rolls back error as it reverses along the network.

attempts to capture the detrimental interactions between these elements in a classic

approach to GN&C. We can think of it as a vicious cycle. Localization error tends to grow

with distance traveled, then this larger localization error introduces more inconsistencies

into the single-frame map containing all (or just the recent) terrain assessments. This

poor map might include phantom obstacles (false positives) and non-existent openings

(false negatives). When this map is used for planning, the result will be a poor path

plan. Then, because the poor plan will either be longer than necessary, or impossible
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and thus require a new plan, the robot will end up driving farther. This results in even

more accumulated localization error, and the cycle reinforces itself.

A system using a network of reusable paths breaks this vicious cycle. Less localization

error is accumulated, and no attempt is made to make a single frame holding multiple

local terrain assessment maps. All potential segments are instead transformed into the

frame of the local assessment and the problems associated with map-merging are avoided.

The result is a higher quality path plan because there is a reduction in the number of

map errors, therefore, the vehicle travels a shorter distance. Additionally, the cycle is

actually broken because the final localization error is only accumulated along the final

path to the goal from the goal definition node on the network. This means that paths

that are not useful do not contribute to the final localization error (e.g., dead ends have

no lasting impact).

5.4 Future Work

One focus of our future e↵orts will be to incorporate other planning paradigms into the

network of reusable paths approach. For example, two additional capabilities are required

in order to embody some types of optimal path-planning algorithms: (i) the cost of an

edge must be considered, and (ii) the system must be able to update the edge connections

between states when a lower-cost path is found.

The edge cost is easily added by measuring the experienced cost (e.g., time, distance,

power, growth of localization uncertainty), and it is interesting to note that this is es-

sentially the actual edge-cost, rather than the predicted edge-cost used in other map

representations and path planners.

Updating edge connections requires the visual-teach-and-repeat system to be able to

do loop closure, and this is one of the next logical abilities to add to the NRP system.

This would eliminate the restriction that the network is a tree (which was the case in

our tests so far, even though the algorithm works on arbitrary networks as well). We

could, for example, still create a minimum spanning tree of the network if we have some

restrictions on what constitutes a valid edge cost (non-negative scalar), and thus use
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Algorithm 3 (from Section 4.3.5). It would also allow for the use of algorithms that can

be thought of as constructing a minimum spanning tree, or a connected graph of nodes

where the edges can be updated. These algorithms include: Dijkstra’s algorithm [120],

A* [49], RRG [53], and RRT* [53]. If the network of reusable paths were built upon one

of these optimal planning algorithms, then the final path to the goal would be optimal

(in the same way that the planner is optimal). Note that the requirement that it be

a connected graph containing the goal definition node precludes D*-like algorithms, as

those algorithms build and maintain a spanning tree from the goal itself, which is not

always part of the existing network.

There are two other motion planning approaches that should be mentioned as they

appear similar to RRTs; these are planning using generalized Voronoi diagrams [130],

and planning using a Probabilistic Roadmap (PRM) [131]. Unlike the RRT approaches,

the Voronoi-based approaches do not explicitly account for the limited vehicle kinematics

(such as a minimum turning radius). A PRM can incorporate vehicle kinematics; how-

ever, neither of these approaches incrementally construct the graph from a single point,

making them unsuitable for embodiment using this method and it also unclear how they

could plan to reuse paths in the same manner as the RRT.

The ability to repeat a previous path is fundamental to a physical embodiment of the

above path planners. It is interesting to note that by creating a physical embodiment of

the planning algorithm, the planner is able to use the actual costs to find the lowest-cost

path to the goal. It also allows the planner to use the actual vehicle kinematics

In each of our tests, the robot successfully returned to the start, but this is unlikely

to always be the case. Later systems may need the ability to do path repair. This ability

seems to share many similarities with the ability to do loop closure. Another option

would be to monitor the teaching system and avoid driving into areas where the robot

would be unable to later localize. We have done preliminary testing of a safety layer that

monitored the number of local landmarks that were being added to the map when driving

into new terrain. It added obstacles to the map when the landmark count was too low.

Mitigating localization failures is an active area of development. Further challenges, and

our approach to meeting them, are discussed by Barfoot et al. [111].
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5.5 Conclusions

In the last two chapters, we have extended visual teach and repeat to a network of

reusable paths. Using NRP for seeking distant waypoints has advantages over other

approaches. These advantages include reduced localization error and greater robustness.

From a localization perspective, NRP allows the path planner to plan based on how the

robot has done.

This simple SLAM system achieves many of the benefits of a single-coordinate-frame

SLAM system for the goal seeking problem, but at relatively low computational cost.

Localization error and uncertainty only accumulate along the best path found to goal,

even without a priori knowledge of the terrain. The result is that the system behaves as

a physical embodiment of a rapidly-exploring random tree.

In this chapter, we presented two sets of field trials carried out at planetary analogue

sites. The vehicle traveled a total of more than 14.4 km in these two tests. The first

test used a robot equipped with a stereo camera, and the second was a lighting-invariant

system where the robot was equipped with a high-framerate lidar. In these tests we saw

that the two assumptions (see Section 4.3.1) that were made, being able to stop before

obstacles and always being able to repeat previous paths, are generally reasonable. Much

of the future work will be focused on how to deal with the breakdown of the second

assumption, (e.g., what happens when the appearance or the traversability of a path

changes, and what happens if a path is not reversible).

These experiences have yielded insights into both what works, and what needs im-

provement in the next iteration. Using a network of reusable paths is a promising ap-

proach to navigation and planning for a mobile robot, and we expect to continue devel-

oping the concept in the years to come.



Chapter 6

Exploration using a Network of

Reusable Paths

The Mars Exploration Rovers (MERs) have driven over 42 km, visiting many sites of

scientific interest along the way. The exploration strategy for each rover was serial in

the sense that scientific objectives were completed at one site before departing for the

next. This means the robot remained in place while mission controllers decided which

measurements to collect [68, 69]. Figure 6.1 shows the traverse map for the Spirit MER

as of sol 2555. Note that many of the sites that were visited were near each other, and

on several occasions the rover would roughly follow its previous track to return near to

a previous position. Returning along a previous route could take several sols and many

command cycles.

The coming decades will see sample-return missions to both Mars and the Moon.

Here, we advocate for a planetary exploration strategy that allows sites of interest to be

studied in parallel, rather than in series. We believe this better supports the overarching

aims of sample-return missions, as a methodical down-selection process may be e�ciently

employed to identify the key specimens to be returned to Earth. We show that by using

a Network of Reusable Paths (NRP) [59, 60] a rover can revisit places of scientific interest

and thus allow the study of sites in parallel [62, 63]. This new approach was field tested

in a mock Lunar sample-return mission conducted near the Sudbury impact crater in

114
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Figure 6.1: Traverse map at sol 2555 for the Mars Exploration Rover, Spirit. Credit: OSU
Mapping and GIS Laboratory, NASA/JPL/Cornell/University of Arizona.

Canada1, and in a mock mission in the Mistastin impact structure in Northern Labrador,

Canada, where the robot was used as an astronaut assistant [64, 65, 66]. The robot drove

a total of 3.9 km and 8.2 km in these tests, respectively. The test locations can be seen in

Figure 1.4. In this chapter, we emphasize three points from our previous work [62, 63]:

1. NRP allows a robot to return to a previously visited position with a single command,

2. this allows for parallel exploration of sites of scientific interest, and

3. parallel exploration allows for an e�cient down-selection process to identify key

samples for return.

We discuss how NRP can be used in planetary surface exploration in Section 6.1, and

in Section 6.2 we present the mock sample-return mission. Section 6.3 is a brief overview

of the astronaut-assistant scenario. In Section 6.4, we identify other uses of NRP, and in

Section 6.5 we identify challenges to be expected when doing planetary exploration using

NRP, along with some future works.

1A video showing an overview of this mission is available at: http://youtu.be/kJQdo6guglE
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Figure 6.2: A methodical down-selection process is enabled by using a network of reusable
paths. There are a decreasing number of samples at lower levels to accommodate the higher
resource usage per sample.

6.1 A Network of Reusable Paths for Planetary Sur-

face Exploration

In the sample-return scenario, NRP allows for a methodical down-selection process as

shown in Figure 6.2. This process is possible because the robot can return to any previ-

ous position, and therefore tasks and waypoints can be defined relative to any previous

position. In a sense, this allows the instructions to be parallel, in that in a sequence of

complex steps, each step is not defined relative to the predicted end-point of the previous

step. Instead, NRP encourages setting short-range, parallel objectives that can be reli-

ably completed in a single command cycle and then built upon in later command cycles

once mission controllers have reviewed the resulting telemetry.

Consider the example network in Figure 6.3. Here, there are three sites of interest

that are being investigated in parallel. While operators on Earth discuss a decision on

where to sample at site A, they can send the robot to site B and then C to collect imagery

before returning to site A. Then, while the robot is sampling at site A the mission team

can use the data from Site B and C to select another potential sampling site. The rover

does not need to loiter at a particular site of interest until all the work there is done. It

is able to leave and return.

In this way, the mission team can use a methodical approach to selecting the most

promising samples to return to Earth. As in Figure 6.2, a great deal of data about the
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Figure 6.3: A simple network of reusable paths is shown in black. The robot can return to
any point on the network and can grow the network into new areas. To go from site B to C,
the rover reuses the previous paths by traveling through junction 3 and then 2, before going to
site C.

area are collected, at many sites in parallel, using imagery and stando↵ measurements.

Scientists then use these data to identify targets for contact measurements. The robot

returns to the selected sites and carries out the contact measurement tasks. Scientists use

the results of the contact measurements to select the best candidates for sampling. Again,

the robot returns to previous points, this time to collect samples. Once the samples are

collected the scientists can determine the key samples to be returned to Earth. The

rover can return the selected samples to the lander/ascent vehicle on the network with

one command.

Many variations on these ideas are possible, and more of these options are discussed in

Section 6.3 and 6.4. In the above example the benefit is that mission operators have the

flexibility to e�ciently delay sampling decisions pending a more thorough investigation

of the data already on Earth. This can dramatically improve the e�ciency of the system.

In practice we found it to be as though there were multiple rovers with o↵set command

cycles.
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6.2 A mock Lunar sample-return mission using NRP

The mock Lunar sample-return mission was conducted near the impact crater in Sudbury,

Ontario, Canada. This was one of three missions [64] we conducted that were funded

by the Canadian Space Agency. In this section, we give a brief overview of the mission,

discuss the robot configurations that were used, and then present details of the mission

time line, with an emphasis on the parallel exploration made possible by NRP.

6.2.1 Mission Overview

The field test was a robotic Lunar analogue mission in support of future sample-return

missions to the Moon (and Mars), with a target of the South Pole Aitken basin. The

primary objectives of the mission were to perform: (i) an in situ investigation of geology

in a Lunar analogue environment, and (ii) an investigation of the formation processes

and resource potential of impact crater(s).

The mission scenario lasted two weeks, with two di↵erent rover configurations (see

Figure 6.4). For an overview of the mission operations, see Moores et al. [66]. Command

cycles were nominally two hours in length and communication was only available during

a window at the beginning and end of the cycle. Instructions were sent to the robot at

the beginning of the cycle and telemetry was sent back at the end. This meant that there

was very little time to review the results from the previous command cycle before the

instructions for the next were sent.

In the first week, 24 command cycles were carried out, creating a network with 0.23 km

of paths while driving a total of 1.0 km. The second week had 19 command cycles, a

0.44 km network and 2.92 km of total driving (3.9 km in total in the two weeks). Of the

17 samples that were collected and returned to the lander, ten were selected as the sample

retention set (i.e., the samples that would have been returned to Earth for analysis). An

overview at the end of the second week is shown in Figure 6.6.
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Figure 6.4: The robot as it was in the week-one configuration (left) and the week-two config-
uration (right).

Figure 6.5: The ground station software was used by mission control to plan rover paths and
to check rover telemetry. It allowed operators to plan a path relative to any of the lidar scans,
and it allowed the lidar scans to be aligned to give a higher quality model of the area.

6.2.2 Rover Configurations

The mock mission used two di↵erent robot configurations, as shown in Figure 6.4. The

week-one configuration is on the left, and the week-two configuration is on the right. In

both, the robot used a stereo camera as the primary sensor for adding to, and repeating

paths on, the network of reusable paths. The vehicle, a robuROC6 made by Robosoft SA,
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had three passively articulated body segments. All the primary guidance, navigation, and

control (GN&C) sensors and software were onboard the vehicle, but there were scientific

sensors and tools that were not integrated with the vehicle.

In week one, the configuration favored onboard scientific capabilities over mobility.

The vehicle had only simple GN&C capabilities. The stereo camera used for NRP was

at the back of the vehicle, facing backwards. None of the other onboard sensors were

integrated into the rover GN&C. The robot would turn and drive directly toward the

current waypoint with only simple safety monitoring. If an obstacle was detected, the

robot would stop and attempt to reach the next waypoint in the sequence of closely

spaced waypoints. The CBRN Crime Scene Modeler (C2SM), made by MDA, was on

the front of the robot. A ground-penetrating radar (GPR) was pulled behind the robot

(and removed when the vehicle was repeating a path in reverse). Panoramic imagery

was obtained using a DSLR camera on a GigaPan pan-tilt unit. Also available, but

not onboard the robot, were a hand-held Raman spectrometer, an XRF spectrometer,

and a drill used to obtain core samples. We had an Optech ILRIS-36D lidar that was

located at the lander (see the first-week configuration in Figure 6.6). A GPS antenna was

located near the stereo camera; however, GPS was only used to measure the ground-truth

localization, and it was not available during the scenario.

In week two, the configuration favored mobility over sensor integration. The GPR

and C2SM were not used, instead, the lidar was mounted on the front of the vehicle, and

on top of that, a forward-facing stereo camera that was used for NRP. The onboard lidar

allowed for many local scans to be taken. The rover GN&C was more sophisticated. The

robot used the stereo camera, inclinometers in each segment of the vehicle, and wheel

odometry to identify hazards. Onboard planning let the robot plan to avoid detected

hazards. The planner was able to reuse the existing network, as well as plan paths into

previously untraveled terrain [59, 60]. In these tests we used a di↵erential GPS for the

ground-truth localization, and again, the resulting data were not available to the robot

or mission controllers during the tests.

In both weeks, mission control created traverse plans and reviewed the rover telemetry

by using the ground station software (see Figure 6.5). In the second week, when the lidar
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Figure 6.6: An overview of the network of reusable paths (the black line) at the end of the
sample-return mission. NRP allowed the robot to return to any position that was previously
visited. This meant that mission control could delay analysis or sampling decisions at one site,
and still continue to carry out operations at other sites. At the end of week two, the total length
of the network of reusable paths was 440m, and by then the robot had driven a total of 3 920m.
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Figure 6.7: An overview of the command cycles carried out in the first and second weeks of
the mission. The type and quantity of the tasks that were done at each site are shown in the
squares below the command cycle. A total of 24 command cycles were carried out in the first
week, and 19 command cycles were carried out in the second week.

was onboard the rover, the ground station could also be used to manually tie together

multiple lidar scans rather than relying on the dead-reckoning localization from the visual

odometry onboard the rover. Controllers could define waypoints relative to any point of

the network. There was no privileged coordinate frame that all waypoints had to be set

in, and the waypoints did not need to be from the robot’s current position. Typically,

waypoints were defined relative to a lidar scan.

6.2.3 Results from the Mock Mission

As this chapter is about the use of NRP, rather than this specific mock mission, we omit

further details about the scientific sensors, sampling methods, and the resulting findings.

Instead, we limit the presentation of results to those that are pertinent to this discussion,

namely, traverses to and between sites of interest and, broadly, the tasks that were carried

out at those sites, as those tasks fit into the down-selection process.

An overview of all the command cycles in the mission is shown in Figure 6.7. The
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main sites of interest are color-coded at the top. Many of these sites had more than one

distinct pose that was visited, these poses are distinguished by a unique number (i.e., M1

is a unique pose at the Merlin outcrop). In the overview we can see that in the first week,

the rover spent the first three command cycles at the landing site. In the first command

cycle, it took a panoramic image, a lidar scan, and observed the terrain using C2SM. The

second cycle was used to collect two detailed panoramic images. The third cycle was used

to collect another panoramic image, take two measurements using C2SM, and collect a

sample of the material at the landing site. In the fourth cycle, the robot approached the

Merlin outcrop and collected panoramic imagery and stando↵ measurements. At this

point we begin to see the pattern of parallel exploration. In the fifth and sixth cycle

the robot visited other sites and collected imagery and stando↵ measurements, before

returning to the Merlin outcrop. While the robot was there, mission control reviewed

the data from Arthur and Percival and planned future tasks for when the robot returned

to these sites.

In command cycle 19 of week one, the robot attempted to reach an observation point

near the Arthur outcrop (later visited in cycle 3 of week two), but it became briefly stuck

in soft soil. In cycle 20, the rover collected imagery to aid in determining what had

happened. The next command cycle was to back up and observe the point where the

rover became stuck, and then attempt a similar traverse, which again, the robot could

not complete due to soft soil.

At the end of the first week we marked the rover wheel positions at the sites of interest

and manually drove the robot to teach it a new network that reached those same physical

locations. This was necessary as the significantly di↵erent camera location (now pointed

forward rather than reverse) changed the appearance of the scene and the paths could

not have been recognized. The two networks, and the shared sites of interest, are shown

in Figure 6.8.

Figure 6.6 gives an overview of the mock mission at the end of week two. Multiple

long-range lidar scans are displayed in di↵erent colors. The network of reusable paths is

shown in black. Figure 6.9 takes a more detailed look at command cycles 2 through 5

in the second week. This is an example of parallel exploration. In the even-numbered
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Figure 6.8: The week-one network was manually retaught for the new camera configuration
in week two. Key points of scientific interest were kept in the new network.

cycles, the rover was exploring in the bottom right of the map. In the odd-numbered

cycles the rover was exploring in the upper right. Mission controllers reviewed the even-

cycle data during the odd cycles, and had instructions ready for the robot at the beginning

of the next command cycle. In this case, it was as if there were two robots exploring

two di↵erent areas. With a serial approach, it would take three cycles to explore each

individual branch (one where the rover did not move while mission controllers reviewed

the telemetry and waited for the next communication window), and in order to begin

exploration of the second branch, the rover would need another two or three command

cycles to return to nearby the lander. Thus, in a serial approach, the same exploration

might be expected to take 8 or 9 command cycles, rather than 4 (100% to 125% more

cycles to explore the same two areas).

We have attempted to determine how many command cycles the entire mission would

have needed had a serial exploration strategy been used. We began by estimating how

many command cycles the robot would take at each site. For example, we estimated that

the Merlin outcrop would have taken 8 � 9 command cycles to investigate to the same

degree. This range comes from assuming the rover sits idle for one cycle while mission

control reviews data and waits for the next communication window. So, one cycle as in

week one, cycle 4, then an additional cycle idle, then 4.5� 5 cycles as in week one, cycles
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Figure 6.9: Parallel exploration was done between the odd and the even command cycles. In
cycle 2 of week two, the robot collected a lidar scan and panoramic imagery. In cycle 3 the
robot was sent to another area to collect more data while mission control reviewed the data
from cycle 2. In cycle 4 the robot reused the network to return to the end point of cycle 2 and
continue exploring while the data from cycle 3 were reviewed.
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6 � 10, then another cycle idle, then 0.5 � 1 cycle as in week two, cycle 10. Following

this example, and including getting stuck and returning to the lander, we get 63 � 75

command cycles to do the same work as done in 43 (47% to 77% more cycles). Recall

that without NRP, it is unlikely that the robot could have returned to the lander in a

single cycle; if we discount the cycles the robot spent at the lander, we get 35 cycles for

NRP, and 56� 64 cycles for the serial approach (60% to 83% more cycles).

Considering that many of the parallel techniques were being developed and refined

during the mock mission, we expect that further operator experience will only increase

the improvements made possible by NRP. It should be noted that the length of the

command cycle has a strong influence on the e�ciency improvement that can be achieved.

For example, we predict that even more parallel exploration could have been done if the

command cycles were longer (or the robot was faster).

6.3 A Robotic Astronaut-Assistant using a Network

of Reusable Paths

To this point our discussion has primarily focused on the application of NRP to purely

robotic sample return. However, we have also done a second mission scenario using a

robot as an astronaut assistant [64]. As this was a mock mission, the astronaut role was

not filled by a real astronaut, but instead by a person familiar with both the geology

and engineering concerns of the mock mission (for ease of reading we refer to this person

as simply the astronaut). This scenario is briefly discussed and some of the beneficial

techniques for using the robot are highlighted.

6.3.1 Overview of the Astronaut-Assistant Scenario

The robot was at times manually operated by a mock astronaut on site (as seen in

Figure 6.10), and at other times it was operated in the same way as described earlier in

this chapter. This allowed the system to e�ciently leverage the expertise of the astronaut

in order to reach sites of interest quickly, and then let the astronaut leave while mission

control remotely operated the rover. The rover was equipped with a high-framerate
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Figure 6.10: The robot being operated as an astronaut assistant. The mock astronaut was able
to take manual control of the robot, or let it be controlled by operators on Earth.

Autonosys lidar (as in the field trials in Chapter 5) that allowed for lighting-invariant

operations. Over the course of the scenario (which consisted of eight days of operations),

the robot traveled over 8.2 km. The network that was created was 1.25 km in length, and

of that length, 0.92 km were taught by the astronaut manually driving the robot. The

remaining 0.33 km was added using the same technique as in the Sudbury mission (i.e.,

mission control set waypoints relative to the network and the robot used the onboard

planning and terrain assessment to attempt to reach them). This means that of the

8.2 km that were driven, approximately 7.3 km were driven autonomously.

6.3.2 Techniques for E�cient use of the Robotic Assistant

One of the abilities that first made the NRP robot attractive as an astronaut assistant

was that it allowed for some of the best aspects of manned and robotic exploration to be

used simultaneously. It allowed us to combine the astronaut’s valuable ability to identify

interesting areas quickly and respond to unexpected discoveries, with the robot’s ability

to carry heavier loads and operate for long periods of time.

For example, the astronaut would identify a site of interest, and drive the robot to

that site, thereby teaching the robot precisely where to go. The astronaut could do this

for many places, and without stopping to take any extended measurements at any of
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the sites. The robot could then return, under the direction of mission controllers, and

continue with the methodical down-selection process. In the mean time, the astronaut

would do other tasks such as explore sites that might be inaccessible to the robot, or the

astronaut would eat, sleep, or return to base.

As we carried out the operations, there were further refinements to the techniques

that were used to operate the robot. For instance, the astronaut would instruct the rover

to return to a previous point on the network (or possibly to a waypoint o↵ the network,

though this was not done during any of our tests) and while the rover did the traverse

the astronaut would scout the area for other targets to investigate and plan the path for

the rover.

We also saw how the astronaut and the robot could complement each other when

traveling into new areas. The robot could carry heavy loads (e.g., equipment for sam-

pling, or the samples themselves) and the astronaut could modify terrain to let the rover

pass more easily (e.g., the astronaut could fill in a hole or move a rock that made the

path more di�cult than necessary). This terrain modification was not limited solely to

modifying the traversability; the astronaut could also place localization aids. These aids

could be rocks with a distinctive appearance in an area that was sparse in visual land-

marks. Alternatively, the astronaut could have carried something with which to paint

distinctive marks. This is essentially the same as making cairns or placing markers to

act as landmarks for a trail that would otherwise be di�cult to follow.

6.4 Other applications of NRP

NRP can also be used to extend the window for many types of opportunistic investiga-

tions. For example, if the robot were to drive past an interesting site, but the site was

not identified as interesting until much later, the robot can at a later time, with a single

command, return precisely to that previous position. In essence, it provides an insurance

policy against leaving a site before all science can be extracted from the data. It also

allows for operations during communications blackouts.

NRP could o↵er benefits for crewed ground vehicles as well. It could allow the vehicle

to return astronauts quickly to previous sites, and in the same way as in the astronaut-
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assistant scenario, newly driven paths would be added to network as they were driven.

This then provides what could be a very valuable safety system for the astronauts; using

NRP, the vehicle could automatically return the crew to the base in the event of an

emergency. A similar safety system could also benefit purely robotic systems both in

planetary exploration and in terrestrial applications. In fact, we can look to the use of

robots in the response to the Fukushima-Daiichi accident [132, 133] to see a potential

application. In preparation for use in the reactor buildings, the Quince robot was modified

to use a physical cable for communication rather than the original wireless control, which

would not function in the heavily shielded and high-radiation environment. However,

during operation this cable failed and communication with the robot was lost. The robot

has not yet been recovered. However, one might imagine a NRP robot having a simple

rule that would command the robot to return to base if communication is unexpectedly

lost for a long duration. It is possible that had Quince used NRP and had this simple

behaviour, it may have been quickly recovered, repaired, and re-deployed. A planetary

rover might have similar rules for certain failure conditions, such as: (i) in the event of

a prolonged communications outage, automatically return to the last site of successful

communication, (ii) in the event of low power reserves and no overriding command (for

solar powered robots), automatically return to the last point of high power-generation,

or more generally (iii) in the event of certain types of failures of anomalies, automatically

return to the last known safe-hold spot and await further commands.

NRP can be used for other applications as well. For example, a work-site mapping

scenario [134, 135] has also been carried out2. In this, NRP was used onboard the robot

as part of the GN&C system. A photo from this test is shown in Figure 6.11.

The image in Figure 6.11 shows the distinctive tracks left by a robot using NRP. Even

though the robot has driven these paths many times, the surrounding soil is relatively

undisturbed. NRP allows a robot to reduce its environmental impact because it reuses

the paths that it has already driven. This may be an important consideration for future

missions as it might aid in the protection of the natural sites, and it might help protect

the integrity of the data that are collected at those sites.

2A video from these tests is available at: http://youtu.be/APGswfxKqEw
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Figure 6.11: NRP has been used for work site mapping [134, 135]. This is a photo of a test
conducted at the Canadian Space Agency’s Mars Emulation Terrain. The network of reusbale
paths is visible as tracks in the soft soil.

6.5 Challenges and Future Work

One of the byproducts of using NRP is that the robot tends to travel a greater distance

in a shorter time span. This raises two questions: (i) is there su�cient power available to

do this additional driving, and (ii) is the additional wear due to more driving compatible

with the mission lifetime? Both of these concerns are addressed in rover design. The

question of power largely disappears when sources other than solar are used (for example,

an onboard reactor). In cases of operation in permanently shadowed regions, such as at

the Lunar South Pole, the use of solar power is likely not viable anyway. Even in cases of

limited power, it is likely that parallel exploration can be useful by scaling the problem

to something that fits within the power budget. Outcrop characterization is one such

scenario (see site A in Figure 6.3). In this case the rover might move along the base of

an outcrop and collect imagery at many points. It would then return to specific points

and continue the down-selection process. In this scenario the rover may only move a

few meters between sites of interest, but these di↵erent sites would give di↵erent vantage

points and allow the rover to reach a larger area in less time.
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The additional wear could be factored into the design of the rover, or the parallelism

could, as above, be scaled to fit within the desired reliability requirements. This scaling

is a trade o↵ available to mission controllers.

It should also be noted that NRP o↵ers benefits beyond parallel exploration, such as

more accurate goal acquisition and more robust navigation [59, 60], and being able to

return to a previous point with one command. These benefits remain even when parallel

exploration is not carried out. There are cases in previous missions where having the

ability to return automatically to a previously visited point may have saved the opera-

tors from the slow process of manually sending incremental movement commands (see

Figure 6.1). It seems that similar situations will arise with the Mars Science Laboratory

(MSL). At the time of writing, the rover is attempting to reach the Glenelg destination

(see Figure 6.12). The name Glenelg is a palindrome, so chosen because the next des-

tination for the rover is almost in the direction directly opposite from the landing site

(to the left in the image). This will likely necessitate that MSL return along its out-

bound path. It is possible that many command cycles and many sols of driving could be

eliminated (leaving more time available for scientific tasks) if the rover had the ability

to automatically return along this previous paths to return to a previous point. NRP

allows just that.

We also need to consider the question of what happens when the vehicle is not able

to repeat a path. In all of our testing, this has happened only rarely, and by using a

lighting-invariant sensor such as a high-framerate lidar, we can eliminate the inability to

localize due to lighting changes or lack of illumination [103, 111]. Additionally, in the

case of transient appearance change (e.g., change in the lighting), the robot can simply

remain stationary until the conditions return to ones that make the scene appear as

when it was taught. This was done as part of mock ground-ice prospecting mission to

Mars [136], which used VT&R. However, there will still be cases where the appearance

of the scene changes, or the traversability of a previous path changes, and this leads to

the desire to be able to repair paths; this is an area of ongoing future work.
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Figure 6.12: The Mars Science Lab approaching Glenelg. The destination after Glenelg is
in the direction the almost completely opposite from the landing site. NRP could allow MSL
to return quickly and autonomously to a previous point, rather than having the robot receive
incremental commands to manually retrace its path. This would leave more time available for
scientific tasks. Credit: NASA/JPL-Caltech/University of Arizona

6.6 Conclusions

A network of reusable paths o↵ers a new approach to planetary surface exploration using a

mobile robot. NRP has many benefits in the context of robust autonomous navigation [59,

60]. It also allows mission-level improvements by allowing parallel exploration of multiple

scientific targets, and it inherently includes sample return and the ability to carry out

operations during communication blackouts. During the sample-return analogue mission,

this capability enabled nearly twice as many sites to be visited within the mission time

frame. Such a capability would be extremely useful for sample-return missions to the

Moon or Mars, and likely, many other missions that might make use of a mobile robot.



Chapter 7

Final Remarks

The works in this thesis have been presented under the unifying theme of path/action

planning for a mobile robot. Path/action planning is an approach that allows a robot to

use the onboard planner to decide when to employ a specific GN&C technique from the

suite of available GN&C techniques. This final chapter presents a summary of the main

contributions in this dissertation. Following that, we identify the main areas that o↵er

promising directions for future works.

7.1 Summary of Contributions

The following is a summary of contributions made in this thesis. The Second-Opinion

Planner (which was published in the proceedings of a full-paper refereed conference [56]

and a journal article [57]) is a path/action-planning framework that makes use of a

hierarchy of terrain-assessment techniques. These techniques range from low fidelity at

low cost, to high fidelity at high cost. SOP is a method to decide which assessment

method to use with specific data from the large amount of raw terrain data that are

collected by the robot. In Part I, the SOP algorithm was developed and then tested in

simulation and on data from a robot driving more than 9.8 km in a planetary analogue

site. The work on SOP o↵ered the following three main contributions:

1. the identification of the cost of terrain assessment as an important element in the

cost of a path,

133
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2. a path-planning framework (SOP) that considers the cost of terrain assessment

during path planning, and

3. results from field trials of a demonstration system using the SOP framework.

Part II presented a network of reusable paths (which was first published in the pro-

ceedings of a full-paper refereed conference [59], and has been submitted for publication

as a journal article [60]). In the NRP work, the planner was able to use either of two

localization methods: dead-reckoning through visual odometry, or matching against pre-

vious local maps through visual teach and repeat. A network of reusable paths is a

simple SLAM system, that when combined with the proposed RRT-based path planner,

can become a physical embodiment of an RRT. NRP allows for more robust operations

and reduced localization error at the goal because pose error is only accumulated along

the final path from the goal definition frame to the goal.

As part of the NRP contributions, we presented two sets of field trials carried out

at planetary analogue sites. The first used a robot equipped with a stereo camera; the

second used a robot equipped with a high-framerate lidar. The vehicle traveled a total

of more than 14.4 km in these two tests.

The field trials were carried out during the same deployments as two mock Lunar

exploration missions [62, 63]. NRP o↵ers a new paradigm to planetary exploration that

allows for parallel science investigations. In the first mock mission, the rover drove a

total of 3.9 km on two networks with a total length of approximately 0.7 km. Using

NRP allowed for nearly twice as many sites of interest to be visited in the same time as

compared to a serial approach to exploration. In the second mock mission, the rover drove

a total of 8.2 km on a single network with a length of over 1.2 km. The results from the

first mock mission have been accepted to appear as part of conference proceedings [63].

The contributions associated with NRP, as presented in Part II, are as follows:

1. the development of the concept of a network of reusable paths,

2. an RRT-based path-planning algorithm that uses a network of reusable paths in

order to seek distant goals in unknown terrain,

3. two examples of field robots that used NRP to seek distant goals in natural terrain,
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4. the introduction, made possible by NRP, of the concept of parallel exploration of

sites of interest (as NRP allows the robot to return to any previously visited point),

5. the development and field testing of multiple approaches to parallel exploration with

a mobile robot, including those that made use of variable autonomy,

6. the identification of a methodical down-selection process that is enabled by parallel

exploration.

7.2 Future Work

Further development of the Second-Opinion Planner may be at the point of diminishing

returns. SOP is already quite near the theoretically best possible performance. There

are opportunities for improvements to the SOP implementation, and beyond that, the

option for a probabilistic formulation. In fact, many of the design decisions made in

the development of SOP were done considering a later probabilistic extension of the

framework.

The development of the concept of a network of reusable paths, however, has led to

many potential follow-on investigations and improvements. The most promising of these

are listed below.

1. The ability to do path repair. This would allow the robot to recover in this event

that a path becomes untraversable. Path repair also appears to share common aims

with loop closure.

2. The ability to do batch pose estimation to refine the pose estimate of the nodes in

the network. For instance, by adding absolute orientation measurements relative to

the network (e.g., from inclinometers, sun sensors, or star trackers), the robot may

be able to seek more distant goals because the purely relative localization estimate

will not deteriorate as rapidly. This ability may also be desired by operators who

wish to see a globally consistent map of the environment, even though such a map

is never needed by the robot.

3. A physical embodiment of an optimal path-planning algorithm. Some promising

candidates are an embodiment of an RRG or RRT*. We predict that given an
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optimal planner, the final path to the goal would be the optimal path.

4. NRP using an underlying teach-and-repeat capability that is adaptive so that it is

automatically learning new paths and landmarks as necessary. The use of distinct

operation modes in VT&R simplified the implementation and made the initial

tests possible, but the distinct modes ultimately lead to problems when trying, but

failing, to repeat previous paths.

5. Better human-robot interfaces that leverage the possible cooperation between the

operator and the robot. NRP has been demonstrated to o↵er a very promising

interaction between the operator and the robot. This has only seen preliminary

development and it is likely that further refinements can be made.

6. Further development of NRP for mission scenarios. Other exploration and ex-

ploitation missions may benefit from the abilities of NRP.
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