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Lidar sensors are used extensively in mobile robotics applications. As a moving-while-

scanning sensor, motion estimation from lidar alone is challenging since the point-clouds

measured are motion distorted. We develop a continuous-time lidar odometry pipeline

based on the simultaneous trajectory estimation and mapping (STEAM) framework.

Though accurate, there are biases in the estimator that cause the odometry to drift over

time. This thesis presents two approaches for bias reduction. First, a learning-based

approach is developed, which trains a model using prior data. The model takes in point-

cloud information and outputs the predicted biases. The predicted biases are then applied

as a correction to improve the odometry. Next, we show that a source of estimator bias

occurs when the motion model cannot sufficiently represent the underlying trajectory.

We derive a novel white-noise-on-jerk motion model, and show that it outperforms the

white-noise-on-acceleration motion model in the existing STEAM framework.
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Notations

F
~
a A vetrix representing a reference frame in three dimensions

(·)f An operator associated with the adjoint of an element from

the Lie algebra for poses

(·)� An operator associated with the measurement Jacobian term

(·)∧ An operator associated with the Lie Algebra for rotation and

poses

(·)k The value of a quantity at timestep k

(·)k1:k2 The value of a quantity from timestep k1 to timestep k2

(̄·) The current best estimate of a quantity

A This font is used time-invariant system quantities

(̌·) A prior quantity

(̂·) A posterior (estimated) quantity

RM×N The space of real M ×N matrices

0 A zero matrix

1 An identity matrix

n A normal vector in three dimensions

p This font is used for quantities that are real vectors of RM×1

Sk A point-cloud with end time at tk

Tb,a A matrix in R4×4 which transforms vectors from F
~
a to F

~
b.
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GP(µ(t),κ(t− t′) A Gaussian process with mean µ(t) and covariance κ(t− t′)

se(3) The Lie Algebra associated with a member of SE(3)

‖(·)‖ The norm of a vector

Ad(·) An operator producing the adjoint of an element from Lie

Group

p This font is used for quantities that are real scalars

SE(3) The special Euclidean group, a matrix Lie group used to rep-

resent poses
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Chapter 1

Introduction

1.1 Background and Motivation

Mobile robots rely on sensors such as lidar or camera for accurate motion estimation.

Lidars have several advantages over cameras, in that they are unaffected by lighting

condition, and have a larger field-of-view. In lidar-based odometry, scan-matching asso-

ciates point-cloud data measured along a trajectory to a common reference frame, and

computes an estimate for the trajectory.

The performance of odometry is crucial to tasks in autonomous navigation, such as

mapping and localization. For lidar-based mapping, the performance of odometry directly

influences the quality of the map, as drift in lidar odometry can cause the generated

point-cloud map to be misaligned. For localization against the map, estimates from

lidar odometry can act as an initial condition for localization. Furthermore, in a route-

following system, the accuracy of lidar odometry dictates how well the robot can follow

its path without a successful localization.

Lidar-only odometry is challenging for a number of reasons, among them is the prob-

lem of motion distortion. As a moving-while-scanning sensor, a lidar takes point measure-

ments continuously as it travels through the environment, resulting in the point-clouds

produced being motion distorted. This is analogous to a bad rolling-shutter camera.

Moreover, a typical lidar sensor such as the Velodyne HDL-64 can measure more than

100, 000 points in one revolution over the span of just 0.1s, making the problem of lidar-

based motion estimation highly expensive computationally.

To address these challenges, we develop a lidar-only odometry algorithm that handles

motion distortion by using state-of-the-art techniques for continuous-time trajectory esti-

mation. Our odometry algorithm is carefully designed to have good accuracy while being

capable of running in real-time on a CPU. The performance of the odometry algorithm is

1



Chapter 1. Introduction 2

demonstrated by our high ranking on the popular KITTI odometry leader board [16]. It

was observed, however, that the odometry still exhibits consistent biases when evaluated

on various real-world datasets.

In an effort to reduce bias in motion estimation, we explore ideas that seek to learn a

bias correction based on training data with ground truth, where the learned bias correc-

tion is applied to improve the odometry estimates. Specifically, machine learning models

that use Gaussian process (GP) regression and convolutional neural networks (CNNs)

are studied.

While we can gain reasonable improvements to odometry accuracy with learning-

based methods, it is important to understand fundamentally what might be causing

the biases in the estimator. With this in mind, we conduct a theoretical analysis on

our continuous-time trajectory estimation framework, and show that a bias can appear

when the white-noise-on-acceleration (WNOA) motion prior we use does not sufficiently

represent the underlying trajectory. Towards the end of this thesis, we derive a white-

noise-on-jerk (WNOJ) motion prior, and demonstrate that it outperforms the WNOA

prior on simulated datasets resembling urban driving scenarios.

1.2 Related Work

Lidar-based motion estimation is a well-studied subject in robotics. Most existing lidar

estimation methods are variants of the Iterative Closet Point (ICP) algorithm, for which

Pomerleau et al. [34] provides a comparative study. Other approaches to point-cloud

alignment include the use of Renyi’s Quadratic Entropy (RQE), such as the work in [45],

[40], and [23].

Extensive past efforts were made in the context of improving lidar-based motion

estimation. Segal et al. [37] developed the Generalized ICP (GICP) by combining point-

to-point ICP and point-to-plane ICP into a single framework. Serafin et al. [38] developed

the Normal Iterative Closest Point (NICP) algorithm by considering both the normal

and the local surface information for each point, and showed an overall improvement over

GICP. Variants of the Normal Distribution Transforms (NDT) algorithms were developed

as alternatives to ICP [24], [42], where the point-cloud is discretized and represented by

a combination of normal distributions. Magnusson et al. [25], [26] compared NDT and

ICP algorithms, and showed NDT is generally more accurate and may converge faster.

The state-of-the-art lidar estimation method, LOAM [49], achieves accurate and efficient

scan-matching by having two algorithms (odometry and mapping) running in parallel.

Odometry runs at a higher frequency to estimate the velocity of the sensor and unwrap
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the motion-distorted point-clouds, while mapping runs at a lower frequency but with

higher fidelity to cancel the drift in odometry.

Other than using improved scan-matching algorithms, the performance of motion esti-

mation can also be enhanced by choosing keypoints that are stable and provide sufficient

constraints to the problem. LOAM selects keypoints on planes and edges. Sefarin et al.

[39] used segmentation to extract keypoints on lines and planes after removing ground

points, and showed an improvement in the estimated trajectory than the commonly used

NARF keypoints [41].

Our method of learning a bias correction using GP regression seeks to relate the

geometry of point-clouds to estimation accuracy. With the same starting point, Gelfand

et al. [17] showed that in point-to-plane ICP, points with normals perpendicular to a

direction provide no constraints to that direction. Similarly, Zhang et al. [48] showed

the lack of geometric structures can lead to degeneracy, making the estimation problem

ill-conditioned in certain directions.

Various techniques for reducing bias in motion estimation have been proposed. Vega-

Brown et al. [46] improved state esimation by predicting for an adaptive covariance

matrix rather than using a fixed one. Farboud-Sheshdeh et al. [14] also applied a bias

correction to an estimator, but their method does not learn the correction from training

data. Rather, by quantifying how bias increases with measurement noise, the work

in [14] is able to compute a corrected estimate for a hypothetical noise-free scenario.

Peretroukhin et al. [32] reduced drift in visual odometry (VO) by using Convolutional

Neural Networks (CNN) to infer sun direction. Related to our work on learning a bias

correction is the method proposed by Hidalgo-Carrió et al. [19], in which a GP model was

used to predict for errors in wheel odometry, which is part of a simultaneous localization

and mapping (SLAM) system. Results in [19] show that by selecting image frames for

VO adaptively based on the predicted errors in wheel odometry, the estimated trajectory

did not lose significant accuracy while using much less image frames than selecting image

frames non-adaptively.

Finally, this thesis is mostly concerned with continuous-time trajectory estimation.

Early work on continuous-time estimation represented the trajectory using temporal ba-

sis functions [15]. Tong et al. [44] later developed methods where trajectory estimation is

done using GP regression. Barfoot et al. [5] showed the introduction of a continuous-time

prior results in the estimation being exactly sparse GP regression, which can be done

efficiently. Finally, Anderson and Barfoot [3] extended continuous-time trajectory estima-

tion using sparse GP regression to SE(3), and introduced a white-noise-on-acceleration

motion prior. Applications of and further work on continuous-time estimation in SE(3)
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as GP regression were explored by Boots et al. in [11], [10], and [28].

1.3 Contributions

This thesis has made the following main contributions:

• An accurate and efficient continuous-time lidar-only odometry algorithm capable

of handling motion-distorted data. Work in this section contributed towards the

publication in [27]

• Learning-based methods for reducing bias in lidar-only estimation. Work in this

section resulted in the publication in [43]

• The derivation of a white-noise-on-jerk motion model to serve as a substitution to

the existing white-noise-on-acceleration motion model

1.4 Overview

Chapter 2 describes the details of the lidar-only odometry pipeline we developed. Chapter

3 shows evaluations of our odometry algorithm on different real-world datasets, and shows

how our odometry solution is biased. We demonstrate the use of learning-based methods

for reducing bias in lidar-only motion estimation in Chapter 4. In Chapter 5 we conduct

a theoretical analysis on SE(3) estimation, identify a cause for the bias, and derive a new

motion prior for continuous-time estimation. Finally, in Chapter 6 we give concluding

remarks and discuss future work.



Chapter 2

Lidar-only Motion Estimation

2.1 Continuous-time Trajectory Estimation in SE(3)

2.1.1 Motivation

A scanning lidar is moving continuously along the trajectory and we are sampling the

points discretely, causing the point-cloud to be motion distorted. Therefore, we can-

not treat all points in a full revolution as being measured simultaneously at a discrete

timestep, as many discrete-time estimation techniques do. More importantly, we cannot

assume they are acquired from a single pose of the lidar.

A naive approach would be to add a pose variable to the state vector for each point

measured, and solve all pose variables together. This is impractical, since a typical Velo-

dyne sensor can scan more than 100, 000 points in a full revolution, imposing a tremen-

dous computational burden. Instead, we treat the trajectory we wish to estimate as a

continuous-time trajectory, and solve the trajectory estimation problem using Gaussian

process regression. This allows us to solve for sensor poses at discrete timesteps (known

as knot times of the continuous-time trajectory), which are typically chosen as the end-

times of sensor revolutions, but query the pose at any time along the continuous-time

trajectory using standard GP interpolation.

There have been similar techniques where poses at discrete timesteps are kept in the

state vector, while poses in between two adjacent discrete timesteps are interpolated,

as discussed in Section 1.2. However, these techniques often make ad-hoc assumptions

about the motion of the sensor in between two adjacent timesteps in order to carry out

the interpolation. In fact, the estimation problem we face is unobservable, as there is no

other information constraining the motion between discrete timesteps.

Our approach adds a GP prior to the optimization problem. The introduction of a

5



Chapter 2. Lidar-only Motion Estimation 6

motion prior allows us to use GP interpolation, which provides a principled approach for

querying the state without having to choose any ad-hoc assumption about the motion of

the sensor.

2.1.2 Optimization Problem

For continuous-time trajectory estimation, we follow the framework of simultaneous tra-

jectory estimation and mapping (STEAM) as in [3]. Under this set-up, the cost function

of the optimization problem consists of measurement terms, and a WNOA motion prior.

However, for lidar odometry we do not keep landmarks as part of the state vector, as we

are only interested in estimating the trajectory of the sensor.

Let z to be a collection of all state variables:

z = {$0,T1,$1, . . . ,TK ,$K}, (2.1)

where we use Tk to denote Tk,0 for simplicity. Tk ∈ SE(3) transforms vectors from

reference frame F
~

0 to F
~
k. Here F

~
k is a reference frame associated with time tk, where

each timestep tk is a knot time of the continuous-time trajectory. $k is the body-centric

velocity associated with timestep tk. See Section 2.6 for a discussion on choosing knot

spacing for the continuous-time trajectory.

Given z, we wish to solve the following optimization problem:

ẑ = arg min
z
J(z), (2.2)

If using L2 cost, the full objective function we wish to minimize is

J = Jprior + Jmeas

=
∑
i

1

2
eTi Q−1

i ei +
∑
j

1

2
gTj R−1

j gj,
(2.3)

where gj is a measurement error term, ei is a prior error term, and Rj and Qi are the

corresponding covariance matrices. If a point lies on a planar surface, we can formulate a

point-to-plane measurement term by setting the inverse covariance matrix using surface

normals:

R−1
j = βnnT , (2.4)

where β is a scalar coefficient, and n is the surface normal vector associated with the

point. In practice we slightly inflate the diagonal terms of R−1
j to avoid having a singular
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matrix.

We use a WNOA motion prior. For this prior, the inverse covariance matrix can be

determined as

Q−1
i =

[
12∆t−3

i Q−1
c −6∆t−2

i Q−1
c

−6∆t−2
i Q−1

c 4∆t−1
i Q−1

c

]
, (2.5)

where Qc is the power spectral density matrix, which is a hyperparameter in our algorithm

[6].

Define block quantities of stacked error terms:

e =


e1

...

eM

 , g =


g1

...

gM

 . (2.6)

For standard Gauss-Newton techniques, we need to linearize the error terms with respect

to our state at the current operating point, zop,

e ≈ eop + Eε, g ≈ gop + Gε, (2.7)

where ε is a vector of perturbations to our state,

ε =
[
δ$T

0 δξT1 δ$T
1 . . . δξTN δ$T

N

]T
. (2.8)

Here ξ ∈ R6 is a vectorspace representation of pose, computed by taking the log-map of

SE(3) [7]:

δξi = ln(δTi)
∨, (2.9)

where the operator (·)∨ converts a 4 × 4 member of the Lie algebra, se(3), to ξ =[
ρT φT

]T
∈ R6 [7], [6]. Moreover, E and G are the prior and measurement Jacobians:

E =
∂e

∂z

∣∣∣
zop
, G =

∂g

∂z

∣∣∣
zop
. (2.10)

At each iteration of Gauss-Newton, setting ∂J
∂ε

T
= 0, we arrive at the following system

of linear equations:

Aε = b,

A = ETQ−1E + GTR−1G,

b = −ETQ−1eop −GTR−1gop.

(2.11)
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We can solve for the optimal perturbation ε∗ (e.g., using Cholesky decomposition), and

apply the update to the state variables using the following perturbation schemes:

Top,i ← exp(δξ∧i )Top,i, (2.12)

$op,i ←$op,i + δ$i. (2.13)

In (2.12) we have made use of the exponential map, where (·)∧ converts ξ ∈ R6 to

a member of se(3) [7], [6]. It should be noted that while the pose perturbations are

vectors, δξ ∈ R6, we keep the optimal pose as SE(3) matrices, Top ∈ SE(3). This choice

guarantees the pose representation is singularity-free, provided that the perturbations ε

are small at each iteration of Gauss-Newton.

2.1.3 Error Terms and Jacobians

To formulate error terms for the motion prior, we follow the approach of local pose

variables in [3]. This results in a motion prior error term between timesteps tk+1 and tk

as

ek =

[
ln(Tk+1,k)

∨ − (tk+1 − tk)$k

J −1
k+1,k$k+1 −$k

]
. (2.14)

The prior error Jacobian evaluated at the current best estimate is

Ek =
[

∂ek
∂δξk,0

∂ek
∂δ$k

∂ek
∂δξk+1,0

∂ek
∂δ$k+1

]
=

[
−J −1

k+1,kT k+1,k −(tk+1 − tk)1 J −1
k+1,k 0

−1
2
$f

op,k+1J −1
k+1,kT k+1,k −1 1

2
$f

op,k+1J −1
k+1,k J −1

k+1,k

]
,

(2.15)

where J k+1,k is the left Jacobian of SE(3) [6] evaluated at the current operating point,

J k+1,k = J
(

ln
(
Top,k+1T

−1
op,k

)∨)
. T k+1,k is the adjoint of SE(3) ([6]), with T k+1,k =

Ad(Top,k+1T
−1
op,k).

For lidar-based motion estimation, we choose the following measurement error equa-

tion:

gop,j = D(p−Tτq), D =

1 0 0 0

0 1 0 0

0 0 1 0

 , (2.16)

where p is a homogeneous point measured at time τ, and q is its matched point measured

previously, expressed in the reference frame associated with time t0. D ∈ R3×4 is a

projection matrix.
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The measurement error Jacobian at the current best estimate can be evaluated as

Gj =
∂ gj
∂ δξτ

∣∣∣
zop

= −D(Top,τq)�, (2.17)

where the (·)� operator maps a homogeneous point in R4 to a matrix in R4×6, as defined

in [7]: 
u1

u2

u3

1


�

=


1 0 0 0 u3 −u2

0 1 0 −u3 0 u1

0 0 1 u2 −u1 0

0 0 0 0 0 0

 . (2.18)

2.1.4 Querying the Trajectory

As discussed in 2.1.1, we can query for a pose and velocity at any time along the trajectory

using GP interpolation equations. In fact, the pose in the measurement error equation in

(2.16) is Tτ , but Tτ does not need to be a pose we keep as part of our state z. Suppose

z contains Tk, $k, Tk+1, and $k+1, and that tk ≤ τ ≤ tk+1, then we can interpolate for

Tτ and $τ using the interpolation equations as derived in [3] and [4]. Again, this allows

us to take into account the fact that the sensor travels continuously along the trajectory

as it takes point measurements, and that the sensor pose is different at the measurement

time of each point.

2.2 Keypoint Extraction

Our lidar odometry algorithm takes in point-clouds as inputs, where each point-cloud is

typically assembled by combining all points acquired in a full revolution of the sensor. For

a Velodyne HDL-64E lidar, more than 100,000 points can be measured in a revolution,

resulting in point-clouds that are very dense. Rather than operating directly on the raw,

dense point-clouds, we choose to downsample the point-clouds, or extract keypoints, prior

to pose estimation.

There are two main motivations for downsampling the point-clouds. First and most

importantly is the computational cost. Processing all points in a dense point-cloud

for motion estimation is extremely expensive. As discussed in section 2.3, the cost of

point matching is super-linear to the number of points even when we use an efficient

implementation such as a k-d tree. Therefore, it is highly challenging to have real-

time performance on a CPU while retaining high solution accuracy when all points in

a dense point-cloud are used for motion estimation. As such, in order to guarantee
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real-time performance while not making significant sacrifices on estimation accuracy,

we downsample the point-clouds such that approximately 5% of points are kept and

successively used in point matching and motion estimation.

The second motivation for downsampling is that not all points in a point-cloud have

the same noise characteristics. Some points have a more noisy range return than other

points. Our hope is that, by using prior knowledge of how noise characteristics relate

to the geometry of the surface on which each point lies, we can select an informed

downsampling strategy to filter out points that we think are more noisy.

We develop two strategies for downsampling. The first strategy looks at the nor-

malized intensity value, and the second strategy looks at a measure of planarity of the

surface on which a point lies.

Assuming Lambertian reflectance, the intensity value of a point, I, is inversely pro-

portional to r2 [21], where r is the range of the point. We define normalized intensity to

be Ir2. The relationship between intensity return and geometry is illustrated in Figure

2.1.

Figure 2.1: Relationship between intensity, lidar constant, surface material, incidence angle, and range.

To determine whether a point lies on a planar surface, similar to [39], we look at the

eigenvalues of the covariance matrix of its k-nearest neighbours. This computation is

performed using the open-source registration library libpointmatcher [34]. The eigenval-

ues are sorted such that λ1 is the smallest and λ3 is the largest. If a point is on a planar

surface, then λ1 will be much smaller than λ2 and λ3.

A point may be selected as a keypoint if it satisfies either of the following two condi-

tions:

• Its normalized intensity is greater than a threshold:

Ir2 > εI
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• λ1 is much smaller than λ2 and λ3, which we denote using the following ratio

between the eigenvalues:

λ1+λ2+λ3
λ1

> εp

As shown in Figure 2.1, Ir2 varies linearly with cos(α), where alpha is the incidence angle.

Therefore by selecting points with large values of Ir2, we are automatically rejecting

points with large incidence angles, which are known to have noisy range returns [18].

Moreover, since the lidar constant Klidar and material property ρ(λ) stays invariant for

the same sensor and surface, in terms of geometry, Ir2 is only a function of the incidence

angle α. For each point observed by the sensor, its corresponding α will not change

significantly across an interval of a few tenths of a second. Therefore, points with high

values of Ir2 in one revolution of the sensor will also likely to have high values of Ir2 in

the subsequent revolution. This ensures that downsampling by Ir2 results in a strategy

that finds stable keypoints.

We can formulate point-to-plane measurement terms as in (2.4) for points on planar

surfaces. In our downsampling strategy, point-to-plane measurement terms are formu-

lated for keypoints satisfying the second condition.

Again, to achieve real-time performances, the thresholds εI and εp are chosen such

that approximately 5% of points are kept as keypoints and used for odometry. Ground

points are ignored when selecting points on planar surfaces; points are treated as ground

points based on their z coordinate and surface normal direction. Two conditions are set

for selecting keypoints, so that even in environments lacking planar structures, a sufficient

number of keypoints can still be selected using the first condition. Figure 2.2 shows a

dense point-cloud comparing against its downsampled version. As shown in Figure 2.1,

much of the useful structures in the scene such as walls are kept in the downsampled

point-clouds, while most of ground points are rejected.

As discussed more in detail in section 3.1, we evaluate our odometry algorithm against

the publicly available KITTI dataset [16]. Using the downsampling strategy described in

this section, our odometry algorithm reported a translational error of 1.13% on the first

11 sequences of the KITTI dataset. Keeping everything else the same but using random

downsampling to 5% of points, our odometry algorithm reported an error of 1.69% on the

same sequences. Intuitively, our informed downsampling strategy outperforms random

downsampling with the same computational cost.
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Figure 2.2: Raw, dense point-cloud (left) and downsampled point-cloud (right). The points are
downsampled based on their normalized intensity and planarity.

2.3 Finding Point Matches

Similar to standard Iterative Closest Point (ICP) methods, our lidar odometry pipeline

is iterative. At the beginning of each iteration, given two downsampled point-clouds, we

find point matches based on Euclidean distance to the nearest neighbour. Point matching

is handled through the library libnabo [2], which implements an efficient nearest-neighbor

search using k-d trees. The best case complexity for building a k-d tree is O(n log(n)),

where n is the number of points, while the best case for searching a k-d tree is O(log(n)).

As such, the cost of point matching is super-linear with the number of points in the

point-cloud. Given the matched pair of points, we build the measurement error terms

as in (2.16), solve for an optimal perturbation ε∗ using Gauss-Newton, and update the

trajectory. In the next iteration, given the updated trajectory estimates, we will then

recompute the point-matches. The matching and optimization process is repeated until

convergence.

Prior to point-matching, the two downsampled point-clouds need to be expressed

in the same reference frame given the current best estimate of the trajectory. Stan-

dard, discrete-time ICP algorithms typically treat all points in a full revolution as being

measured at the exact same timestep, and thus sharing the same sensor pose. These

techniques make the ad-hoc assumption that the point-clouds are rigid, but this is not

true as point-clouds from a moving-while-scanning lidar are motion-distorted. Since we

treat the underlying trajectory as continuous-time, when transforming a point-cloud to



Chapter 2. Lidar-only Motion Estimation 13

another reference frame, we query for a pose transform for each point given its timestep,

rather than assuming all points share the same pose transform. Therefore, unlike stan-

dard, discrete-time ICP algorithms, we do not make the same ad-hoc assumption about

point-clouds being rigid, but rather handle the inherent motion distortion explicitly.

Figure 2.3 shows a flowchart for our continuous-time odometry. The lidar completes a

full revolution between timesteps tk−1 and tk to produce point-cloud Sk, while it completes

another full revolution between timesteps tk and tk+1 to produce point-cloud Sk+1. To

perform trajectory estimation, we first express the two point-clouds in the same reference

frame, by querying for a pose transform for each point. Given the two point-clouds

expressed in the same reference frame, we find matched pairs of points, build cost terms,

update the trajectory, and iterate. Upon convergence we have the posterior estimates

{T̂i, $̂i}. It should be noted that our odometry algorithm has two loops of iterations.

There is an outer-loop of iterations for point matching, while within each iteration of

point matching, there is an inner-loop of iterations for Gauss-Newton steps to solve for

ε∗.

2.4 Sliding-window Optimization

For each timestep tk contained in z, we have an associated pose and velocity, Tk and $k,

except for t0 where we only have $0. Define each state at tk to be the pose and a velocity

at tk contained in z, {Tk,$k}. As a middle ground between solution accuracy (batch op-

timization) and computational speed (single-frame optimization), we use sliding-window

optimization [6]. Sliding-window optimization iterates over a window of time-steps and

slides this window along to allow for constant-time implementation. The optimization

window slides forward by one state when state variables in the current window converge.

Please refer to [6] for more details on sliding-window optimization.

We define locked states as states that are no longer updated by the mini-batch op-

timization, and unlocked states as ones that are perturbed at each iteration of Gauss-

Newton. Furthermore, we can combine point-clouds measured across multiple revolutions

into a single point-cloud, and use the combined point-cloud to perform point matching

and construct measurement terms.

Figure 2.4 shows a sliding window consisting of two locked states (shown in black) and

two unlocked states (shown in grey). The blue dots represent measurement terms, where

the black dots represent prior terms between adjacent states. On the top diagram in

Figure 2.4, the states associated with tk+1 and tk+2 are locked states in the optimization

window. The point-clouds associated with the locked states are Sk+1 with tk+1 as the
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Figure 2.3: Flowchart of the continuous-time odometry pipeline. The triangles represent states, and
the blue boxes represent processes in the pipeline. Since we use a continuous-time pipeline, we do not
assume all points in Sk or Sk+1 are measured at the same lidar pose.

7

Figure 2.4: Sliding-window optimization, where the window consists of two locked states (black) and
two unlocked states (grey). The blue dots are binary motion prior terms between adjacent states. The
black dots are measurement terms.
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end-time, and Sk+2 with tk+2 as the end-time. We can combine Sk+1 and Sk+2 into a

single point-cloud, which we denote as S′. There are two point-clouds associated with the

unlocked states in this window, namely point-cloud Sk+3 with end-time tk+3 and Sk+4

with end-time tk+4. We match Sk+3 and Sk+4 against S′, and build measurement terms

with the point matches.

The mini-batch optimization will compute updates to the unlocked states associated

with tk+3 and tk+4, namely {Tk+3,$k+3,Tk+4,$k+4}. When we add a new knot to the

trajectory at time tk+5, as shown by the bottom diagram in Figure 2.4, the optimization

window slides forward by one state. Now Tk+3 and $k+3 will no longer be updated, but

a new unlocked state associated with tk+5 is added to the optimization window.

Up to a certain point, the solution accuracy for sliding window optimization increases

for larger window size, at the expense of an increased computational cost. For our lidar

odometry algorithm, we typically choose a window size of three locked states and two

unlocked states, as this is the largest optimization window our algorithm can afford to

solve while maintaining real-time performance.

2.5 Robust Cost Functions

Outliers in lidar-only motion estimation can result from different sources, such as incor-

rectly matched pairs of points, points on dynamic objects, or points with large incidence

angles having noisy range returns. Outlier points typically have high residual errors in

motion estimation, as shown in Figure 2.5. Outliers are handled through robust cost func-

tions in the odometry algorithm, which downplay their weights in the overall objective

function.

The cost functions we analyzed are L2, Cauchy, Geman McClure, and dynamic co-

variance cost functions. See [22] for a thorough comparison of cost functions in state

estimation. Keeping all other parameters the same, we evaluated each cost function on

the first 11 sequences of the KITTI dataset. Table 2.1 shows the equation and resulting

error on KITTI for the cost functions studied.

In Table 2.1, u is the whitened error norm:

uj =
√

gTj R−1
j gj. (2.19)
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Figure 2.5: Outliers such as points landing on dynamic objects can result in high residual error after
the point-clouds are aligned. Points with high residual errors are labelled in red, while points with low
residual errors are labelled in blue.

Table 2.1: Error evaluated on the training sequences of KITTI for each cost function

cost function equation error(%)

L2 1
2
u2 15.6

Cauchy 1
2

ln(1 + u2) 2.35

Geman McClure 1
2

u2

1+u2
1.13

dynamic covariance
1
2
u2 if u ≤ 1,

2u2

1+2u2
− 1

2
otherwise

1.20
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2.6 Knot Spacing

As described previously in the chapter, knots are state variables stored at discrete

timesteps used for representing the underlying continuous-time trajectory. For paramet-

ric representations of the trajectory, proper knot spacing is required to model smoothness,

and decisions concerning knot spacing have direct impact on the fidelity of the model [4].

The work by Dubé et al. [13] is an example of designing appropriate knot spacing for

using spline function to represent the trajectory. An advantage of the GP representation

over parametric representation is that less micromanagament regarding knot spacing is

needed, as the trajectory smoothness is handled through the continuous-time prior dis-

tribution [4]. Therefore, for our odometry algorithm, which represents the trajectory as

a Gaussian process, we simply need to choose a knot spacing that allows for real-time

performance, but not one that is too large to over-smooth the trajectory.

One particular choice of knot spacing for lidar-based odometry is to add a knot to the

trajectory for every sensor revolution. Under this choice, we would add a corresponding

pose and velocity pair to the collection of all state variables z, for every revolution of the

sensor:

z = {$0,T1,$1, . . . ,TN ,$N}, (2.20)

where we have state variables at each timestep tn, with tn corresponding to the end time

of the nth revolution of the sensor, and N is the total number of sensor revolutions in the

data sequence. This approach requires the odometry to process data collected by every

single revolution of the sensor.

While processing every scan available would be ideal as the odometry is utilizing

all measurement information available, it is nevertheless expensive to do so. To reduce

computational effort, instead of adding a new knot for every revolution of the sensor,

we choose the knot spacing adaptively. For our odometry algorithm, adding a new knot

with knot time tk to the trajectory is essentially adding Tk and $k to the collection of

state variables z.

We add new knots based on our estimates of the current body-centric velocity of the

sensor. Define a translation threshold λρ, a rotation threshold λθ, and a time thresh-

old λt. Let tm be the current latest knot time of the continuous-time trajectory, with

corresponding state variables Tm and $m. Further, let $m =
[
$T

m,ρ $T
m,θ

]T
, where

$m,ρ ∈ R3 and $m,θ ∈ R3 are the translational and rotational components of $m, re-

spectively. For each new sensor revolution with end time tk and tk > tm, we add a new

knot at tk to the end of the trajectory if tk satisfies any of the following conditions:

• The robot has moved translationally greater than a threshold from the last knot:



Chapter 2. Lidar-only Motion Estimation 18

tk − tm > ‖λρ‖
‖$m,ρ‖

• The robot has moved rotationally greater than a threshold from the last knot:

tk − tm > ‖λθ‖
‖$m,θ‖

• Some period of time has elapsed since the last knot:

tk − tm > λt

The first two conditions ensure that the knots are not spaced too far apart in terms

of distance or orientation, to avoid over-smoothing the trajectory. The third condition

guarantees that we are consistently adding new knots to the trajectory even when our

estimates of the current velocity is inaccurate, or if the vehicle has no motion. In our

odometry pipeline, λρ is chosen to be 4m, λθ is chosen to be 0.1rad, while λt is chosen

to be 0.3s, such that adjacent knots are no more than 300ms apart.

Again, since we use a continuous-time approach, we can still query the trajectory at

any timestep regardless of our choice for knot spacing. We are, however, introducing

additional smoothing to the trajectory if we choose a sparser knot spacing, as illustrated

in Figure 2.6.

8

Figure 2.6: Trajectory with tighter knot spacing (top) vs. trajectory with sparser knot spacing (bot-
tom). When the knots at tk+2 and tk+3 are removed from the trajectory, we are essentially introducing
additional smoothing between tk+1 and tk+4.

2.7 Parameters of the Odometry Algorithm

See Table 2.2 for the list of parameters in our lidar odometry algorithm. The power

spectral density matrix, Qc, is tuned on the training sequences of the KITTI odometry

benchmark, as explained in Section 3.1.
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Table 2.2: Parameters in the lidar odometry algorithm

Parameter Description Value

Qc
Power spectral density matrix

for WNOA prior


0.1 0 0 0 0 0
0 0.01 0 0 0 0
0 0 0.1 0 0 0
0 0 0 0.001 0 0
0 0 0 0 0.001 0
0 0 0 0 0 0.01


εI

Threshold for downsampling
based on normalized intensity

97th percentile of Ir2

of all points in a dense point-cloud

εp
Threshold for downsampling

based on planarity
97th percentile of λ1+λ2+λ3

λ1

of all points in a dense point-cloud

λρ
Translational threshold for

adding knots
4m

λθ
Rotational threshold for

adding knots
0.1rad

λt
Time threshold for

adding knots
0.3s

2.8 Software and System Implementation

The lidar odometry algorithm is implemented in C++. OpenMP was used to parallelize

the construction of cost terms. As mentioned previously, we use libpointmatcher [34]

for surface normal computation and libnabo [2] for point matching. Our lidar odometry

algorithm is capable of running in real-time on a Lenovo ThinkPad P90 laptop, without

having to use GPUs.

We have implemented a lighter version of the odometry algorithm on the Robot

Operating System (ROS), which is used to demonstrate live lidar-only motion estimation

on our mapping vehicle equipped with a Velodyne sensor, shown in Figure 2.7. The

lighter version of the odometry software implements frame-to-frame optimization on the

live data stream, and uses a knot spacing the same as the spinning frequency of the

lidar (0.1s for a Velodyne HDL-64E). To ensure online performance, we always terminate

the processing the current point-cloud within 100 milliseconds, so the system is ready

for processing the next point-cloud. During operation, the algorithm runs on a laptop

mounted inside the mapping vehicle, which is connected to the Velodyne sensor via an

Ethernet connection.
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Velodyne
HDL-64E Lidar

Applanix POS

Figure 2.7: Our Buick Encore mapping vehicle, equipped with a Velodyne HDL-64E lidar and Applanix
POS system.

2.9 Summary

In this chapter we described the details of the lidar odometry algorithm we developed.

Specifically, our algorithm performs continuous-time trajectory estimation using lidar as

the only sensor, and the estimation is done in an iterative fashion, where matched pairs

of points are found at the beginning of each iteration to build measurement cost terms

for the objective function. On top of measurement cost terms, the objective function also

contains motion prior cost terms, as in the set-up of simultaneous trajectory estimation

and mapping (STEAM).

To reduce the computational cost, we downsample the point-cloud prior to motion

estimation, rather than operating directly on the raw, dense point-clouds. We use an

informed downsampling approach based on normalized intensity and surface planarity.

The lidar odometry algorithm operates using sliding-window optimization, and handles

outliers with robust cost functions. Finally, we use an adaptive scheme to choose the knot

spacing in order to reduce computational cost, but avoid over-smoothing the trajectory.
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Evaluation on Lidar Datasets

3.1 KITTI Dataset

Our lidar odometry pipeline is evaluated on the publicly available KITTI odometry

benchmark [16]. The KITTI odometry dataset contains 39.2km of Velodyne data di-

vided in 22 sequences, covering scenes including city, residential, highway, and campus.

The lidar data as given in the KITTI odometry dataset have been post-processed by

the dataset authors to compensate motion distortion. Sequences 0-10 are the training

sequences, where the ground truth trajectories are available to users, while sequences

11-21 are the test sequences where the ground truths are not publicly available. The

benchmark reports a translational error as a percentage of distance over path segments

of 100, 200, . . . , 800 meters. Submissions are ranked on the KITTI leader board based on

the average translational error on the test sequences.

The hyperparameter Qc for our algorithm is tuned to achieve the smallest error over

the 11 training sequences, shown in Table 2.2. The results on the training sequences are

shown in Table 3.1. We have a total error of 1.26% on the 11 test sequences, and ranked

3rd on the leader board among lidar-only methods at the time of submission.

In general, our algorithm has decent accuracy, with error on many sequences less than

1%. Examples of the estimated trajectory compared against ground truth trajectory are

shown in Figures 3.1 and 3.2. As shown, the estimated trajectory aligns closely to the

ground truth trajectory from a top-down perspective for these sequences.

However, in some sequences the estimated trajectory demonstrates a pronounced bias,

particularly in the directions of translational z (ρ3), roll (φ1), and pitch (φ2). This causes

the estimated position of the vehicle to drift away from the ground truth, usually in the

negative z direction. Examples of sequences where the biases are clearly observable are

shown in Figures 3.3 and 3.4. Such sequences usually have higher translational errors.

21
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Table 3.1: Odometry errors before and after the correction for sequences 0 to 10 of the KITTI dataset

Sequence no. Number of frames Translational error(%)
0 4541 1.5465
1 1101 2.2232
2 4661 0.9862
3 801 0.7296
4 271 0.6206
5 2761 0.6064
6 1101 0.5013
7 1101 0.6795
8 4071 1.0585
9 1591 0.9478
10 1201 1.7572

Total 1.1288

Figure 3.1: Top-down view of the estimated trajectory (blue) vs. ground truth trajectory (red) for
sequence 3 of KITTI.
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Figure 3.2: Top-down view of the estimated trajectory (blue) vs. ground truth trajectory (red) for
sequence 7 of KITTI.

Figure 3.3: Top-down view (left) and 3D view (right) of the estimated trajectory (blue) vs. ground
truth trajectory (red) for sequence 1 of KITTI.
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Figure 3.4: Top-down view (left) and 3D view (right) of the estimated trajectory (blue) vs. ground
truth trajectory (red) for sequence 10 of KITTI.

3.2 University of Toronto Campus Dataset

A dataset was collected using our test vehicle (Figure 2.7) along different routes around

the University of Toronto (U of T). This resulted in 7 sequences of Velodyne data over

18km of traversal. Similar to the KITTI dataset, 6 DOF ground truth is available for

the University of Toronto campus dataset, where the ground truth is obtained using

an Applanix POS system. However, unlike the KITTI dataset, we do not process the

point-clouds to compensate motion distortion, but rather rely on our continuous-time

estimation framework, as described in Chapter 2, to account for the effect of motion

distortion. For consistency, we evaluate the odometry error in the same fashion as KITTI,

where a translational error is reported as a percentage of distance travelled over path

segments of length 100, 200, . . . , 800 meters.

The odometry errors are shown in Table 3.2. In general the errors are slightly greater

than the results for the KITTI dataset, mostly due to the fact that the point-clouds have

not been post-processed to compensate for motion distortion.

Examples of estimated trajectory compared against ground truth trajectory are shown

in Figures 3.5 and 3.6. From the 3D view plots in Figures 3.5 and 3.6, the biases in ρ3,

φ1, and φ2 are also clearly visible in the estimated trajectories for this dataset.
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Table 3.2: Odometry errors before and after the correction for the University of Toronto campus
dataset

Sequence no. Number of frames Translational error(%)
0 5000 1.6748
1 5000 1.9166
2 6000 1.6252
3 6000 2.2462
4 3000 2.1262
5 6600 1.5629
6 7650 1.7962

Total 1.8146

Figure 3.5: Top-down view (left) and 3D view (right) of the estimated trajectory (blue) vs. ground
truth trajectory (red) for sequence 1 of the University of Toronto campus dataset.
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Figure 3.6: Top-down view (left) and 3D view (right) of the estimated trajectory (blue) vs. ground
truth trajectory (red) for sequence 6 of the University of Toronto campus dataset.

Table 3.3: Odometry errors before and after the correction for the University of Toronto campus
dataset

Sequence no. Distance(m) Translational error(%)
0 17097 1.5887
1 7493.8 2.3229
2 35012 2.3449

Total 2.1180

3.3 Applanix Dataset

A dataset was collected in areas near Applanix Corporation in Richmond Hill, Ontario,

North of Toronto, using the same mapping vehicle as in Figure 2.7. A total of 60.4km of

data was collected, divided into three sequences. While the University of Toronto campus

dataset features the same sensor suite as the Applanix dataset, the campus dataset only

features well-structured, urban environments while driving at less than 50km/h. The

Applanix dataset, however, includes driving in suburbs and rural areas, which lack useful

geometry and structure. Moreover, a large portion of the Applanix dataset was collected

while driving at more than 70km/h, with parts on the highway as fast as over 100km/h.

As such, the Applanix dataset constitutes a much more challenging dataset than the

University of Toronto campus dataset.

The odometry errors are shown in Table 3.3. Again, the errors are higher than the U

of T campus dataset, because the dataset was collected in more challenging environments

while driving at a faster speed.
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Example plots of the estimated trajectory compared against ground truth are shown

in Figures 3.7 and 3.8. It can be seen that the estimated trajectory exhibits biases in roll

and pitch more significantly than in the KITTI dataset or the U of T campus dataset.

Figure 3.7: Top-down view (left) and 3D view (right) of the estimated trajectory (blue) vs. ground
truth trajectory (red) for sequence 0 of the Applanix dataset.

Figure 3.8: Top-down view (left) and 3D view (right) of the estimated trajectory (blue) vs. ground
truth trajectory (red) for sequence 1 of the Applanix dataset.



Chapter 3. Evaluation on Lidar Datasets 28

3.4 Discussion

Our odometry algorithm is reasonably accurate as demonstrated by evaluation on mul-

tiple datasets, including motion-distorted datasets, and datasets with post-processed

measurements to remove motion distortion. The accuracy of our odometry algorithm is

lower for datasets where the vehicle undergoes high speed, aggressive motion.

Our odometry algorithm exhibits significant bias, particularly in the directions of z,

pitch, and roll. Such bias can be seen in all types of data, whether motion-distorted or

not. The main goal for this thesis is thus to explore methods to reduce the bias in our

estimator and improve the solution accuracy. The next two chapters discuss ideas for

reducing bias in estimation.



Chapter 4

Learning-based Methods for Bias

Correction

4.1 Motivation

In Chapter 3 we have shown that our lidar odometry algorithm consistently produces a

bias mostly in the negative z direction, when evaluated on real-world data. In Chapter

2 we showed various methods for improving the accuracy of state estimation which we

already implemented, such as finding stable and low-noise keypoints, choosing a larger

sliding-window size, and using robust cost functions. While these design decisions all

resulted in an improvement in solution accuracy, they do not eliminate the issue of bias

in the estimator.

Given that the bias in the odometry is somewhat systematic, our hope is that using

training data with ground truth, we can predict for the bias on test data, and apply the

predicted bias as a correction to improve the odometry. This chapter therefore explores

methods that seek to learn a bias correction for lidar-only motion estimation.

Two approaches to learning-based methods are explored. In Section 4.2 we use a

Gaussian process model for the learning, while in Section 4.3 we look at using deep

learning with convolutional neural networks (CNNs). Specifically, for the GP approach

we choose inputs to the model based on the geometry of the point-cloud, as we believe

estimator biases are related to the geometry in the point measurements. Also, it should

be noted that the GP model for learning the bias is different and separate from the GP

regression in the lidar odometry algorithm.

29
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4.2 Gaussian Process Regression

4.2.1 Odometry Error Evaluation

We define a frame as a full sweep (360◦) of the lidar, and we query our continuous-

time trajectory for each frame. For a data sequence, this results in N queried poses,

T1,T2, . . . ,TN , where N is the number of frames.

To evaluate odometry errors we define a window of κ frames. For each frame τ, where

τ ≥ κ, we calculate the relative pose change from frame τ −κ, and compare that against

ground truth to compute an error:

Todom,τ,τ−κ = Todom,τT
−1
odom,τ−κ, (4.1)

Tgt,τ,τ−κ = Tgt,τT
−1
gt,τ−κ, (4.2)

Terr,τ,τ−κ = Tgt,τ,τ−κT
−1
odom,τ,τ−κ, (4.3)

where Todom is pose estimated by lidar odometry, Tgt is the ground truth pose, and Terr

is the odometry error. We evaluate the odometry error for τ = κ, κ+ 1, . . . , N.

Rather than always evaluating pose change from the previous frame, Tτ,τ−1, we eval-

uate Tτ,τ−κ and leave κ as a parameter of choice. This is due to the high frame rate

of the sensor. The Velodyne lidar spins at 10 Hz, therefore Tτ,τ−1 is the pose change of

the sensor over 0.1 seconds, corresponding to a very short section of the trajectory. The

imprecision in GPS measurements might make ground truth over such a short trajectory

section noisy.

For the error to be a valid output of a GP model, we convert Terr ∈ SE(3) to a

vectorspace representation:

ξerr,τ,τ−κ = ln(Terr,τ,τ−κ)
∨, (4.4)

where ξerr,τ,τ−κ ∈ R6 is the vectorspace representation of the error. The operator (·)∨

converts a 4× 4 member of the Lie algebra, se(3), to ξ =
[
ρT φT

]T
∈ R6 [7], [6], where

ρ =
[
ρ1 ρ2 ρ3

]T
, and φ =

[
φ1 φ2 φ3

]T
. We can convert ξerr,τ,τ−κ back to SE(3) via

the exponential map:

Terr,τ,τ−κ = exp(ξerr,τ,τ−κ
∧), (4.5)

where (·)∧ converts ξ ∈ R6 to a member of se(3) [7], [6].
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4.2.2 Applying Learned Correction

Given odometry estimates from new data, for each frame k ≥ m, we predict for the

odometry error between frames k and k − m, which we denote by ξ∗err,k,k−m. We then

apply the predicted errors as corrections to the estimates, by converting the predicted

error from vectorspace back to SE(3) using (4.5). We assume the error is accumulated

uniformly from frame k−m to k, as shown in Algorithm 1. The prediction and correction

step is applied to the poses for frames k = m,m+ 1, . . . , N, where N is the total number

of frames.

Algorithm 1 Applying correction to odometry

1: Let Tcorr,m−1 = Todom,m−1

2: for k = m,m+ 1, . . . , N do
3: predict for odometry error ξ∗err,k,k−m
4: δξ∗err = 1

m
ξ∗err,k,k−m

5: δT∗err = exp(δξ∗err
∧)

6: Todom,k,k−1 = Todom,kT
−1
odom,k−1

7: Tcorr,k,k−1 = δT∗errTodom,k,k−1

8: Tcorr,k = Tcorr,k,k−1Tcorr,k−1

9: end for

Shown in Algorithm 1, Todom,k is the pose for frame k before applying the correction,

and Tcorr,k is the pose for frame k after correction is applied. In practice, m is set

between 2 to 20. The majority of odometry errors for our odometry algorithm are in the

directions of z (ρ3), pitch (φ2), and roll (φ1), while our algorithm is relatively accurate in

the directions of x (ρ1), y (ρ2), and yaw (φ3) (see Figure 4.1 for the coordinate system

our odometry algorithm uses). Therefore, we only make predictions and corrections in

3-DOF for z, pitch, and roll.

Since we only make predictions in z, pitch, and roll, we have

ξ∗err =
[
0 0 e∗ρ3 e∗φ1 e∗φ2 0

]T
. (4.6)

4.2.3 GP Model

GP models offer a principled approach for learning from noisy observations, and are

much easier to design and cheaper than some of the other machine learning techniques

such as CNNs. Gaussian processes have been widely used in robotics, such as in terrain

assessment [8], building occupancy grid maps [30], and trajectory estimation [3]. Again,

it should be noted that the GP model for bias correction we present here is separate and
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Figure 4.1: The coordinate system used by our odometry algorithm. Roll, pitch, and yaw are rotations
about the x, y, and z axes, respectively.

different from the GP regression we use for trajectory estimation, which is presented in

Chapter 2 of this document.

We wish to predict the odometry error, ξerr, which is a vector in R6. While there

are methods to handle GP regression with vector outputs, for simplicity we model each

degree of freedom (DOF) of ξerr separately. In other words, we fit a separate model for

each element of the 6-DOF error vector.

For n observations in a dataset, we have n D-dimensional inputs

X =
[
x1 x2 . . . xn

]T
, where xi ∈ RD, and X ∈ Rn×D. We also have n scalar outputs

y =
[
y1 y2 . . . yn

]T
, where y ∈ Rn. Let f be the underlying relation between input

and output, but the observations are noisy. Therefore we have yi = f(xi) + ε, where ε is

the noise, which we assume to be Gaussian with variance σ2
n. In our problem, the inputs

xi are features derived from geometry of the point-clouds. The scalar output yi is an

element of the error vector ξerr, as shown in Section 4.2.4.

Given X and y, to make predictions f∗ on new data X∗, the predictive distribution

for Gaussian process regression [36] can be formulated as

p(f∗|X,y,X∗) ∼ N (̄f∗, cov(f∗)), (4.7)

f̄∗ = K(X∗,X)[(K(X,X) + (σn)2I)]−1y, (4.8)

cov(f∗) = K(X∗,X∗)−K(X∗,X)[(K(X,X) + (σn)2I)]−1K(X,X∗), (4.9)

where f̄∗ is the mean prediction and cov(f∗) is the variance. K(X,X) ∈ Rn×n is the kernel

matrix with Kij = k(xi,xj), where k(·, ·) is the kernel function. We use the squared
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exponential kernel function with a separate length scale for each input dimension [36]:

k(xi,xj) = σ2
f exp

(
−1

2
(xi − xj)

TM(xi − xj)

)
, (4.10)

where M ∈ RD×D is a diagonal matrix with entries l−2
1 , . . . , l−2

D , and l1, . . . , lD are the

characteristic length scales for each of the D input dimensions. σf is the signal standard

deviation, and σn is the noise standard deviation.

Θ = {l1, . . . , lD, σf , σn} form the set of hyperparameters for the GP model. Define

the log marginal likelihood [36]:

ln p(y|X,Θ) = −1

2
yTK−1

y y − 1

2
ln|Ky|−

n

2
ln 2π, (4.11)

where Ky = K(X,X) + (σn)2I. In practice the hyperparamters Θ are chosen by maxi-

mizing the log marginal likelihood in (4.11) with respect to Θ.

4.2.4 Input Features

In Gaussian process regression, model selection is the process of making choices about

the details of the model. For our problem, model selection involves choosing the input

to the model, as well as setting the hyperparamters (4.11).

Choosing correct inputs for the GP model is crucial to its predictive capabilities.

However, this is a non-trivial task if the output of the model is error in odometry. The

method in [19] used orientation angles, speed and position of joints, measurements of

gyroscopes, and IMU measurements as inputs to model errors in wheel odometry. Se-

lecting inputs is less obvious in our situation, however, as we do not have measurements

from any sensors other than the lidar. In our method, the inputs are selected based on

high-level features derived from the geometry of points in a point-cloud. We show that

we can achieve significant reduction in odometry error, using only inputs derived from

the point-clouds and no other measurements.

We fit a GP model to each DOF of odometry error. This requires choosing a set of

input features for each element of the error vector ξerr we wish to model.

z and pitch

We use the same input to predict for errors in z and pitch. For z, the output of the GP

model is

eρ3 =
[
0 0 1 0 0 0

]
ξerr, (4.12)
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and for pitch:

eφ2 =
[
0 0 0 0 1 0

]
ξerr. (4.13)

Our choices for candidate input features are inspired by the work in [17], where the

authors argue that in an ICP problem, the distribution of normal vectors affects how

well-constrained the solution is in each degree of freedom. A number of input features

based on the distribution of surface normals were tested, and we selected input features

based on evaluation on the training sequences of the KITTI benchmark, as described in

Section 4.2.5. Here we present our final choice for input features, which resulted in the

greatest reduction in odometry errors after applying correction on the KITTI training

sequences, among all input features tested.

For the 3 × 1 normal vector n =
[
nx ny nz

]T
, we sum each component of the

normal over all points lying on planar surfaces to form our 3-dimensional input feature,

and normalize by the number of points. Points not on planar surfaces are ignored, since

their normal estimates are noisy. If the downsampled point-cloud associated with frame i

has M points, in which P of them are on planar surfaces, then the input can be calculated

as

xi =
1

M

[
P∑
p=1

‖np,x‖
P∑
p=1

‖np,y‖
P∑
p=1

‖np,z‖
]T
, (4.14)

where n =
[
np,x np,y np,z

]T
is the normal for point p.

roll

We discretize the downsampled point-cloud into 16 equally spaced “slices” based on

azimuth, as shown in Figure 4.2. A drawing of a car is included for reference. For

each “slice”, we calculate the number of points on planar surfaces with normal vector

pointing in the z-direction, and normalize by the total number of points. This forms our

16-dimensional input. The output of the GP model for roll is

eφ1 =
[
0 0 0 1 0 0

]
ξerr. (4.15)

4.2.5 Results on the Lidar Datasets

Evaluating on KITTI Training Sequences

We use the first 11 sequences of the KITTI dataset for selecting the best input features

since ground truth is available. To evaluate how well a specific set of inputs predict the
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Figure 4.2: We divide the point-cloud into 16 “slices” based on azimuth. For each “slice”, we calculate
the number of points with normals in the z-direction and normalize. This forms our 16-dimensional
input xi for roll.

odometry error, we use cross-validation on the training data. Specifically, we leave 1

sequence out as the validation sequence, and fit the model on the other 10 sequences.

The fitted model is used to make predictions on the unseen validation sequence, and the

predictions are used to correct for the odometry estimates of the validation sequence.

We cross-validate by repeating this process for every sequence, such that we have the

corrected odometry estimates for all 11 sequences. The KITTI benchmark evaluates

percentage errors across path segments of lengths 100, 200, . . . , 800 meters, and an average

over all path segments is computed. A total error averaged over path segments evaluated

for all 11 sequences is also reported. The total error before and after the correction are

used to quantify the improvements from applying the learned bias correction.

The training is done offline using the Gaussian Process Regression tool of the MAT-

LAB Statistics and Machine Learning Toolbox [1]. To set the hyperparameters, the log

marginal likelihood in (4.11) is maximized with respect to the hyperparameters using

gradient-based optimization.

We have experimented with a number of input features for predicting odometry errors

in z, pitch, and roll. The set of input features resulting in the greatest reduction in total

odometry errors were selected, namely the input features shown in Section 4.2.4. Using

these input features, the odometry error before and after the correction on the first 11

sequences of KITTI are shown in Table 4.1. Examples showing improvements to the

trajectory are shown in Figures 4.3 and 4.4. The corrections improved the odometry

for 8 of the 11 sequences. Over all 11 sequences, the error is reduced from 1.13% to

1.03%, accounting for a 9% reduction. The prediction and correction steps cost only 10s

of computational time, which is approximately 0.5% of the total computational time.
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Figure 4.3: 3D plots of odometry estimates for sequence 10: uncorrected odometry estimates (black)
vs. corrected odometry estimates (blue) when compared against ground truth (red). The corrections
brought noticeable improvements over z and pitch.

Figure 4.4: 3D plots of odometry estimates for sequence 10: uncorrected odometry estimates (black)
vs. corrected odometry estimates (blue) when compared against ground truth (red). The corrections
brought noticeable improvements over z and pitch.
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Table 4.1: Odometry errors before and after GP correction for sequences 0 to 10 of the KITTI dataset.

Sequence
no.

Number
of frames

Uncorrected
odometry error (%)

Corrected
odometry error(%)

0 4541 1.5465 1.427
1 1101 2.2232 1.9627
2 4661 0.9862 0.8613
3 801 0.7296 0.8381
4 271 0.6206 0.4802
5 2761 0.6064 0.5316
6 1101 0.5013 0.4106
7 1101 0.6795 0.7579
8 4071 1.0585 1.0007
9 1591 0.9478 1.0023
10 1201 1.7572 1.3501

Total 1.1288 1.0294

Evaluating on KITTI Test Sequences

Sequences 11-21 are the test sequences of KITTI, and ground truth is unavailable for these

sequences. For evaluating against the 11 test sequences, we fit a model using all training

sequences 0-10 with input features described in Section 4.2.4. The predicted error is

applied as a correction to each of sequences 11-21. Figure 4.5 shows the odometry error

over all test sequences before and after the correction. Our method showed significant

reduction in odometry error for path segments of all lengths from 100m to 800m. The

improvement is more pronounced the longer the path segment. For path segments of

800m, the error is reduced from 1.51% to 1.30%, equivalent to a 14% reduction.

The total error over all path segments for all test sequences was reduced from 1.26%

down to 1.16%, accounting for an 8% reduction. Our odometry algorithm is accurate

even before applying any corrections, ranking 3rd on the KITTI leader board at the time

of submission among methods that use lidar only. Our uncorrected result currently ranks

4th among lidar-only methods as our corrected result now ranks 3rd. In fact, the top two

methods for lidar only algorithm either performs SLAM (IMLS-SLAM), or has a map-

ping algorithm running in parallel to cancel the drift in odometry (LOAM). In contrast,

our (uncorrected) method is strictly only odometry, and does not use loop closures or a

second estimation algorithm to reduce the drift. By predicting errors using GP regres-

sion and applying them back as a bias correction, we achieved significant performance

improvements over an already accurate odometry algorithm.
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Figure 4.5: Error before and after correction on the KITTI test sequences. Our method produced
improvements for path segments of all lengths between 100 to 800 m. Specifically, for path segments of
800m, the odometry error decreased from 1.51% to 1.30%, resulting in a 14% improvement.

Evaluating on University of Toronto Campus Dataset

Here we evaluate our GP learning approach on the University of Toronto Campus Dataset,

introduced in Section 3.2. First, we attempted to fit a model using the training sequences

of KITTI, and predict for odometry corrections on the University of Toronto campus

dataset. However, this did not improve the odometry due to the considerable differences

between the two datasets, including different calibration parameters for the Velodyne

sensor, different systems for obtaining ground truth, and whether the lidar data is post-

processed. Rather, we use cross-validation among sequences of the University of Toronto

campus dataset to demonstrate the effectiveness of our method on this dataset. For each

sequence, we leave it out as validation sequence and fit a model on the other 6 sequences,

and the fitted model is used to make predictions on the unseen validation sequence. We

do, however, use the same input features as selected by evaluating on the KITTI training

sequences (Section 4.2.4), as opposed to choosing another set of input features specifically

for the University of Toronto campus dataset.

The odometry errors before and after the correction are shown in Table 4.2. The

corrections improved 6 out of the 7 sequences, while the total error is reduced from

1.81% to 1.56%, accounting for a 14% reduction in odometry errors. Figure 4.6 shows

plots of the odometry estimates for sequence 2 before and after the correction is applied.

Before the correction, the estimated path does not overlap with itself when the vehicle

travelled back to a street it has been before. This bias is eliminated after the correction

is applied.
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Table 4.2: Odometry errors before and after the correction for the University of Toronto campus
dataset

Sequence
no.

Number
of frames

Uncorrected
odometry error (%)

Corrected
odometry error(%)

0 5000 1.6748 1.2696
1 5000 1.9166 1.3305
2 6000 1.6252 1.2102
3 6000 2.2462 1.9529
4 3000 2.1262 1.9334
5 6600 1.5629 1.7260
6 7650 1.7962 1.6395

Total 1.8146 1.5598

before correction after correction

Figure 4.6: 3D plots of odometry estimates for sequence 2 of the University of Toronto campus
datasets from the same perspective. Black is odometry before correction and blue is odometry after
correction. Left: due to errors, odometry does not overlap when the vehicle travels back to a path it has
been before (circled). Right: after applying the correction, the odometry estimate overlaps well when
the vehicle travels back to the same path.
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4.3 Convolutional Neural Networks

4.3.1 Overview

So far, when using GP regression for learning a bias, the input features to the GP

model have been hand-picked. A natural extension to this work is therefore to apply

convolutional neural networks (CNNs) for learning the bias correction, where the features

are learned at each layer of the network, rather than hand-picked.

Recently, a number of works have been proposed on using deep learning for end-to-end

visual odometry [47], visual-inertial odometry [9], and lidar odometry [29]. While deep

learning does offer an alternative approach to the motion estimation problem, the results

of these methods are typically much less accurate when compared against state-of-the-art

classical estimators. As such, we do not seek to replace well-studied classical estimators

with learning-based motion estimators.

The problem of quantifying bias from sensor measurements, however, is a task suitable

for deep learning methods. There could be many unknown sources of bias in the estimator

related to sensor measurements, and it is challenging to analytically quantify all of them,

or to hand pick features to regress all sources of bias. We seek to utilize the best of both

worlds, where we use classical state estimators for motion estimation, but we apply deep

learning on top of the classical estimator to learn its biases.

Related to our approach is the work in [33], which learns a bias correction for visual

odometry. In [33], the stereo images used for visual odometry are also used as inputs to

a CNN, which outputs the predicted biases from the input images. For lidar odometry,

the inputs to the estimator are 3D point-clouds. While deep learning methods using 3D

points as inputs have been proposed [35], for simplicity we create 2D range images from

the 3D point-clouds, and apply standard 2D image convolutions.

Given a 3D point-cloud with range, azimuth, and elevation, we discretize the point-

cloud into a 360 × 64 grid to form a 2D range image. The horizontal axis of the grid is

the azimuth angle from −180◦ to 180◦, the vertical axis is the elevation spaced based on

the lidar’s vertical field of view. The pixel value in each grid (pixel) is the average range

of all points in that grid. If there are no points in a grid, the pixel value is set to be zero.

The horizontal grid spacing (image resolution) is chosen to be 360 since the point-cloud

is measured with a full 360◦ revolution, while the vertical grid spacing (resolution) is

chosen to be 64 since the Velodyne HDL-64E has 64 lasers with different elevation.

An example of generating a 2D range image from a 3D point-cloud is shown in Figure

4.7. Figure 4.7 shows the result conversion using dense point-clouds for better visual-

ization. However, since our odometry algorithm runs on downsampled point-clouds, in
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practice we create range images on the downsampled point-clouds, rather than the dense

point-clouds.

Figure 4.7: A 3D point-cloud with points colored by range (top), and the corresponding 2D range
image (bottom)

4.3.2 Training and Testing

We follow the same notations as our GP approach, where we denote the predicted error

as ξ∗err or T∗err, and the ground truth error as ξerr or Terr. In our GP approach, we learned

the error for one degree of freedom at a time, where the output of the model is an element

of ξ∗err. Since CNNs are capable of producing vector outputs, we aim to predict the entire

vector-space error ξ∗err ∈ R6.

For CNN, we need to define a loss function that the network seeks to minimize. We
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define the loss using the same approach as in [33]:

L =
1

2
g(ξ∗err)

TΣ−1g(ξ∗err), (4.16)

g(ξ∗err) = ln
(

exp
(
ξ∗
∧

err

)
T−1

err

)∨
, (4.17)

where Σ is an empirical covariance computed over the training set,

Σ =
1

N − 1

N∑
i=1

(ξerr − ξ̄err)(ξerr − ξ̄err)
T , ξ̄err =

1

N

N∑
i=1

ξerr. (4.18)

The errors in the translational degrees of freedom in ξerr are usually an order of magni-

tude larger than the rotational degrees of freedom. Computing an empirical covariance

balances the translational and rotational components in the loss term.

We evaluate our method on the KITTI training set. One sequence from the 11

sequences is the test sequence that we wish to correct the odometry for, while another

sequence is selected as validation sequence, used for terminating the training when the

network exhibits over-fitting. We train the model using the other 9 sequences over 30

epochs. At the end of each epoch, the trained model makes prediction on the validation

sequence and computes a validation loss using Equation (4.16). The training terminates

either upon reaching 30 epochs, or when the validation loss increases after an epoch, which

signals the beginning of over-fitting. Finally, the trained model makes prediction on the

test sequence, where the predicted errors are applied as corrections to the odometry of

the test sequence.

To apply the predicted errors as pose corrections, we follow the methodology as in [33],

where the pose corrections are constructed as cost terms, and applied to the estimated

trajectory through a pose graph relaxation optimization. This has the advantage over

our correction method for using GP models in Section 4.2.2, in that we no longer need

to explicitly assume the error is accumulated uniformly within a short time interval.

In our experiments, we arbitrarily selected sequence 5 as the validation sequence.

When sequence 5 is used as the test sequence, we arbitrarily selected sequence 0 as the

validation sequence. The final results on the corrected odometry for each sequence of the

KITTI training set are shown in Section 4.3.4.
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4.3.3 Model Architecture

A number of network architectures were explored and the overall performance on the

KITTI training set is evaluated for each architecture. Our experiments show that the

DenseNet architecture [20] greatly outperforms the other architectures tested for our

application. Specifically, we used the DenseNet-121 architecture as described in detail in

[20]. In terms of software implementation, the model was trained on PyTorch [31], which

offers built-in implementations for the DenseNet architectures.

An advantage of CNN over GP regression is that the training time does not neces-

sarily increase super-linearly with input dimensions. As a result of this limitation in the

GP case, each input was derived from a single point-cloud, as there was no obvious way

to combine inputs from multiple point-clouds without increasing the input dimension. In

the CNN approach, we can stack multiple range images together along a dimension and

combine them into a single tensor input. This allows the model to learn the error accu-

mulated over a window of frames, while taking into account of any temporal correlation

between adjacent frames.

We have chosen a window size of 8 frames for our approach. It should be noted that

the window size here is merely a parameter for learning the error, and needs not to be

the same as the window size used by our sliding-window odometry algorithm. Assuming

the estimated trajectory from odometry has knots spaced at timesteps {t0, t1, t2, . . . , tN},
where for each knot time tk there is a corresponding point-cloud Sk with end time at tk.

To predict for the error accumulated from tk to tk+7, we have a total of 8 point-clouds with

end times at tk, tk+1, . . . , tk+7. After the range images are created for each point-cloud,

they are stacked across the third dimension to produce a tensor of dimension 360×64×8,

as illustrated by Figure 4.8. This forms the input to the model.

Figure 4.8: A 360× 64× 8 tensor range image used as input to the CNN model.
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Table 4.3: Odometry errors before and after CNN correction for sequences 0 to 10 of the KITTI
dataset.

Sequence
no.

Number
of frames

Uncorrected
odometry error (%)

Corrected
odometry error(%)

0 4541 1.5465 1.4653
1 1101 2.2232 1.5235
2 4661 0.9862 0.8222
3 801 0.7296 0.4520
4 271 0.6206 0.3530
5 2761 0.6064 0.5434
6 1101 0.5013 0.3257
7 1101 0.6795 0.6015
8 4071 1.0585 1.0560
9 1591 0.9478 0.9591
10 1201 1.7572 1.1609

Total 1.1288 1.0050

4.3.4 Results

The results of our CNN approach is evaluated on the KITTI training set, shown in Table

4.3. In general, the results are slightly better than the GP approach. We did not validate

the CNN approach on other datasets due to time constraints.

4.4 Summary

In this chapter we explored methods to predict for odometry error given information on

the point-clouds measured by the sensor. The key underlying assumption behind our

methods is that the bias in motion estimation is correlated with the geometry of point-

clouds. Specifically, the learning was done using a GP regression approach and a deep

learning approach.

When using GP regression, our model takes in low-dimensional features derived from

the geometry of point-clouds as inputs, and outputs a specific degree of freedom of the

error. For the deep learning approach, we use a CNN which takes in a tensor of stacked

range images as input, and outputs the 6-DOF error vector. Both methods successfully

improved the odometry on the KITTI training set. The GP approach was also tested

on the KITTI test set, and a dataset collected around the University of Toronto campus

which has motion-distorted point-clouds.

The biggest limitation to our approach of learning a bias correction is that the training

data has to sufficiently represent the test data. We found, for example, that a model

trained using the KITTI training set did not improve the odometry for the University of
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Toronto campus dataset. In the next chapter we will investigate more generic methods

for reducing bias which do not require prior training data.



Chapter 5

Theoretical Analysis of Motion

Estimation in SE(3)

5.1 Overview

So far we have demonstrated methods for learning a bias correction for our estimator,

using either Gaussian process regression or convolutional neural networks. While these

methods can bring considerable improvements to the estimation accuracy when there

are sufficient training data, they reveal little on the root cause of biases in an estimator.

Although the tuned hyperparameters of a GP model give information on the correlation

between a specific input feature and the bias, we still lack a fundamental understanding

of which aspect of the state estimator is the root cause of bias. Another limitation of our

learning approach is that the training data needs to sufficiently represent the test data,

which is not always the case.

In this chapter we instead focus on the theoretical aspects of continuous-time motion

estimation, and think about how we can redesign the estimator for a potential improve-

ment in accuracy and reduction in bias. In Section 5.2 we show algebraically that when

using a white-noise-on-acceleration motion prior in the presence of acceleration, an in-

teraction between the prior terms and the point-to-point measurement terms induces a

bias to the estimation. With this in mind, we explore the idea of a white-noise-on-jerk

motion prior, which is more suitable for motion estimation in scenarios that we know will

have accelerations, such as in urban driving.

46
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5.2 Interaction Between Prior and Measurements

Here we show that when the motion prior cannot sufficiently describe the underlying

trajectory, the estimator will produce a bias as a result of the interaction between the

measurement term and the prior term in the overall objective function.

Consider a very simple estimation problem with only one pose and one velocity as state

variables. The robot, initially stationary, travels fromF
~

0 at timestep t0 toF
~

1 at timestep

t1 under constant acceleration. Suppose the robot takes a single point measurement q

at t0, and measures p at t1, where p is a point match of q. Our goal is to estimate T1

and $1 using the point pair as well as a WNOA motion prior. Our state is

z = {T1,$1} (5.1)

To keep the problem as simple as possible, let there be motion only in the direction of ρ1,

so the robot is travelling forward. We also assume t1− t0 = 1 for simplicity. Suppose the

robot is initially stationary at t0, but has constant acceleration in the DOF of ρ1 from t0

to t1. Using standard kinematics, we can define the following ground truth quantities:

ξgt,1 =
[

1
2
a(t1 − t0)2 0 0 0 0 0

]T
,

Tgt,1 = exp
(
ξ∧gt,1

)
,

$gt,1 =
[
a(t1 − t0) 0 0 0 0 0

]T
,

(5.2)

where a is the acceleration in ρ1. As shown in (5.2), the ground truth motion only occurs

in the ρ1 direction, but we wish to solve the problem using SE(3) estimation in 6-DOF,

without explicitly constraining the solution to any particular degree of freedom. We run

Gauss-Newton for one iteration to solve for the perturbations. To do so, we can build

the measurement error term as

g = D(p−Top,1q), (5.3)

where Top,1 is the current operating point. Since we are only running Gauss-Newton for

one iteration, the operating points are essentially the initial conditions. The measurement
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Jacobian can be evaluated as

∂ g

∂ δξ1

∣∣∣
zop

= −D(Top,1q)�

=

−1 0 0 0 −z y

0 −1 0 z 0 x

0 0 −1 −y x 0

 , (5.4)

where Top,1q =
[
x y z 1

]T
. There is also a prior term between t0 and t1, which can

be evaluated as

e =

[
ln
(
T−1

op,1

)∨
J −1

1,0$op,1

]
, (5.5)

where$0 = 0 since we assumed the robot is initially stationary. The prior error Jacobian

can be evaluated as

E =

[
−J −1

1,0T 1,0 −1 J −1
1,0 0

−1
2
J −1

1,0T 1,0 −1 1
2
$f

op,1J −1
1,0 J −1

1,0

]
. (5.6)

Given g,G, e, and E, we can build the linear system Aε = b, and solve for the optimal

perturbation ε∗ as in Equation (2.11). When doing so, we make the further simplification

that Q−1 = 1 and R−1 = 1. For the sake of argument, we do not use a zero measurement

covariance, even though we assumed the measurements are noise-free.

If the state variables are initialized at the ground truth poses and velocities, and the

measurement is noise-free, we have

Top,1 = Tgt,1,

g = 03×1.
(5.7)

Note that since there is constant acceleration between t0 and t1, the motion in this simple

problem cannot be sufficiently modelled by a zero-acceleration-mean assumption. As a

result, the prior error term eop does not evaluate to 012×1 even when all state variables

are set to be the ground truth.

Solving for ε∗ analytically in terms of scalar variables {x, y, z, a}, and extracting the
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perturbation to each individual state variable, we have

δξ1 =
1

m



−1
4
a
(

(a2 − 4x)2 + 32(y2 + z2 + 1)
)

ay(a+ 4x)

az(a+ 4x)

0

8az

−8ay


, (5.8)

where m = (a2 − 4x)2 + 16(y2 + z2 + 2).

Right away, we can make the observation that our simple problem results in per-

turbations to degrees of freedom where there is no motion, namely ρ2, ρ3, φ2, and φ3.

Moreover, the perturbation to these degrees of freedom depend on
[
x y z

]T
, which is

the Cartesian coordinate of the transformed point, Top,1q.

Now, consider a different case, where instead of having a point measurement, the

robot is somehow able to measure its pose directly. For this case, the measurement error

equation is

g = ln
(
Top,1T

−1
meas,1

)∨
, (5.9)

where Tmeas,1 is the pose measurement. The measurement Jacobian can then be calcu-

lated as
∂ g

∂ δξ1

∣∣∣
zop

= J (g)−1. (5.10)

Again, if we initialize at ground truth, and the measurement is noise-free, we have

g = 03×1,

∂ g

∂ δξ1

∣∣∣
zop

= 16×6.
(5.11)

We make the same assumptions as before, and use the same prior error term and Jacobian

for a WNOA prior as in Equations (5.5) and (5.6). Building the linear system Aε = b

as usual and solve for ε∗ analytically, we now have

δξ1 =
[
−3

8
a2 0 0 0 0 0

]T
. (5.12)

Equation (5.12) shows that under a different measurement model, we no longer have

perturbations in directions other than ρ1, even if there is acceleration in the ground

truth motion between t0 and t1.
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5.2.1 Observation

When there is acceleration in the trajectory segment considered, then the underlying

trajectory cannot be sufficiently represented by a WNOA motion model. As a result,

the measurement error terms and the prior error terms cannot both converge to zero

(even when assuming the measurements are noise-free). Intuitively, assuming we have

sufficient inlier measurements to estimate the trajectory with high accuracy, the prior

terms in the objective function ends up pulling the estimated trajectory away from the

ground truth. Most importantly, the result in (5.8) shows that, the optimal solution ε∗

to Aε = b involves distributing the error in one degree of freedom to other degrees of

freedom, effectively creating a bias to those degrees of freedom.

The perturbation to the other degrees of freedom is a function of the Cartesian coor-

dinates of the point measurements. Given a ground truth trajectory constrained to the

plane z = 0, the presence of point measurements out of the plane z = 0 may ‘push’ the

estimated trajectory out of the plane. This effect is a result of the interaction between

the point measurement terms and the prior terms in the Gauss-Newton update scheme.

Specifically, the interaction comes from the presence of x, y, and z in the measurement

Jacobian as in (5.4). If a different measurement model is used where the measurement

Jacobian is not a function of the point coordinates, such as in (5.10), then this effect of

interaction disappears, as shown in (5.12).

Results in (5.8) are derived assuming there is only one point measurement with Carte-

sian coordinate
[
x y z

]T
. A similar argument can be made for a point-cloud with cen-

troid at
[
x y z

]T
. Assuming all point-pairs have equal weight in the objective function,

if the centroid of the point-cloud is not at the origin, then motion estimation will result

in a bias to certain degrees of freedom when the prior cannot sufficiently represent the

underlying trajectory.

Consider a typical real-world dataset collected with a Velodyne lidar mounted on the

top of a vehicle, such as in Figure 2.7. The measured points will have x and y coordinates

more or less symmetrical about zero, since we can have point measurements in front and

behind the vehicle, as well as to the left and to the right of the vehicle. However, as a

result of the mounting height of the sensor, as well as the elevation angles of each laser

in a Velodyne lidar, it is likely that the z centroid of a measured point-cloud will be

negative. This will result in biases to ρ3 and φ2 when the vehicle experiences acceleration

in ρ1, as shown previously.
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5.2.2 Verification Using Simple Problems in Simulation

Translational Acceleration

Here we verify results shown in Section 5.2 experimentally using simple problems in

simulation. Consider a short trajectory segment with knot times {t0, t1, . . . , tN}. The

robot is stationary at t0, and has constant body-centric acceleration $̇ in ρ1 from t0 to

tN . We can define the following ground truth state quantities:

$gt,0 = 06×1,

$̇ =
[
aρ1 0 0 0 0 0

]T
,

$gt,k = ∆tk:0$̇,

Tgt,k = exp
(1

2
∆t2k:0$̇

∧
)
.

(5.13)

The robot takes point measurements at each discrete timestep tk, where points measured

at t1, t2, . . . , tN are matched to points measured at t0. We assume point matching is

perfect and the measurements are noise-free. We aim to estimate the trajectory using

sliding window optimization, where the objective function consists of measurement terms

and WNOA prior terms, as usual.

For our simple problem, we have chosen N = 10, ∆tk:k−1 = 0.1s, and aρ1 = 3m/s2.

The Cartesian coordinates of the measured points are generated from a uniform random

distribution. To demonstrate the effects of the interaction between the measurement

terms, the points are generated such that their z coordinates are not symmetrical about

zero. The x, y, z coordinates of each point are generated such that they have the following

range:

x ∼ (−20m, 20m),

y ∼ (−20m, 20m),

z ∼ (−20m, 0m).

(5.14)

Finally, we can define an error at the end of the trajectory segment:

Terr,N = Tgt,NT̂−1
N ,

ξerr,N = ln(Terr,N)∨,
(5.15)

where T̂N is the posterior estimate of TN . Using the same notation as in Equations (4.12)
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and (4.13), we can look at the error in each DOF of ξerr,N . Define

ξerr,N =
[
eρ1 eρ2 eρ3 eφ1 eφ2 eφ3

]T
. (5.16)

While the ground truth motion takes place on the plane z = 0, the estimated trajectory

will not be constrained to the plane since we have point measurements out of the plane,

as explained in Section 5.2. 10, 000 runs of the simple simulated problems are carried

out, and a histogram distribution for each DOF of ξerr,N is shown in Figure 5.1. Other

than eρ1 , the error distribution is not symmetrical about zero for eρ3 and eφ2 , suggesting

we have a positive bias in these degrees of freedom in the estimation. The results here

are in accordance with results derived in Equation (5.8), which shows the perturbation

to ρ3 and φ2 are functions of the z coordinate of point measurements, when there is

acceleration in ρ1.

Error distribution for each DOF
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Figure 5.1: Error distribution for each DOF of ξerr,N with 10,000 simulated runs. Points have z
coordinates between -20m and 0.

We can repeat this simple experiment using points with z ∼ (0, 20m), while keeping

the range for x and y coordinates the same. The distribution of ξerr,N over 10, 000

runs using points with z ∼ (0, 20m) is shown in Figure 5.2. It can be seen that while

the distribution for eρ1 stays the same, the distribution for eρ3 and eφ2 are essentially

mirrored about zero comparing to Figure 5.1, where we now have a negative bias in these
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degrees of freedom.

Error distribution for each DOF
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Figure 5.2: Error distribution for each DOF of ξerr,N with 10,000 simulated runs. Points have z
coordinates between 0 and 20m.

A more intuitive visualization would be to compare the final estimated z position of

the robot at tN as seen from F
~

0, for point measurements with different z coordinates.

This is shown in Figure 5.3. It can be seen in Figure 5.3 that for this simple problem,

although the underlying trajectory takes place on the plane z = 0, we have a positive bias

in the estimated z position of the robot if we use point measurements above the plane,

and a negative bias in the estimated z position if we use point measurements below the

plane.

Rotational Acceleration

A robot in motion may also encounter rotational, or angular body-centric acceleration.

Here we repeat the experiment for the case where the robot accelerates into a turn about

its z− axis. The robot is moving forward at t0 with a body-centric velocity $0 in ρ1,

and has constant body-centric acceleration $̇ in φ3 from t0 to tN . We can define the
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Figure 5.3: Estimated z position of the robot at tN when the motion has acceleration in ρ1, using
point measurements with z coordinates ∼ (−20m, 0) (left) and point measurements with z coordinates
∼ (0, 20m) (right)

following ground truth state quantities:

$gt,0 =
[
vρ1 0 0 0 0 0

]T
,

$̇ =
[
0 0 0 0 0 aφ3

]T
,

$gt,k = ∆tk:0$̇,

Tgt,k = exp

((
∆tk:0$gt,0 +

1

2
∆t2k:0$̇

)∧)
.

(5.17)

We have chosen vρ1 = 1m/s, and aφ3 = 0.3rad/s2. Similarly, 10,000 runs of the simple

estimation problem are simulated each for points with z coordinates greater than zero

and less than zero. The distribution for the final estimated z position of the robot is

shown in Figure 5.4. It can be seen that the bias in the estimated z position when we

have rotational acceleration is also dependent on the Cartesian coordinates of points.

5.2.3 Verification Using CARLA Dataset

To further verify our theory regarding the interaction between prior and measurement

terms, we look at data generated from a more realistic simulation environment using the

CARLA simulator [12]. Our implementation of the CARLA simulator produces motion-

distorted point-clouds in urban driving scenarios with a resolution similar to that of a

Velodyne HDL-64E sensor. Figure 5.5 shows an example of a point-cloud measured by

the simulated Velodyne lidar.
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Figure 5.4: Estimated z position of the robot at tN when the motion has acceleration in φ3, for using
point measurements with z coordinates ∼ (−20m, 0) (left) and point measurements with z coordinates
∼ (0, 20m) (right)

Figure 5.5: A 3D point-cloud generated using the CARLA simulator colored by range. Objects shown
in the scene include the exterior of walls and buildings, cars, billboards, and more.
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A particular advantage of using simulated data is that we have access to sensor data

that are noise-free and perfectly calibrated. This helps us isolate certain potential sources

of bias. Without the presence of sensor noise and calibration error, any biases that still

exist are primarily caused by inherent limitations of the state estimator. We argue that

the inherent estimator limitations are largely contributed by the fact that our motion

prior cannot sufficiently describe the underlying trajectory in certain cases. This in turn

causes an interaction between the prior terms and the measurement terms that induces

biases to the estimated motion.

A dataset with approximately 6 minutes of driving was collected. The simulated

world has a perfectly flat ground plane, thus the ground truth z position of the vehicle

stays at zero throughout the entire dataset. Similar to driving a car in real world, the

simulated motion has translational acceleration when the car speeds up or slows down,

and angular acceleration when the car enters or exits from a turn. A top-down view of

the estimated trajectory and the ground truth trajectory of the vehicle is shown in Figure

5.6. A 3D view of the estimated trajectory compared to the ground truth is shown in

Figure 5.7. The bias in roll and pitch in the estimated trajectory can be seen in Figure

5.7, as the estimated trajectory clearly drifts out of the plane z = 0.

Figure 5.6: Top-down view of the estimated trajectory (blue) vs. ground truth trajectory (red) for a
dataset generated using CARLA.
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Figure 5.7: 3D view of the estimated trajectory (blue) vs. ground truth trajectory (red) for a dataset
generated using CARLA.

To demonstrate the dependence of bias on the Cartesian coordinates of point mea-

surements, we have artificially added a +10m offset to the z coordinate of all points

measured, and repeated the estimation keeping everything else the same. We also ex-

perimented with adding a −10m offset to the z coordinate of points and repeated the

estimation again. The effect of adding a constant offset to measurements is equivalent to

shifting the estimation frame by an opposite offset. The results are shown in Figure 5.8.

Figure 5.8: 3D view of the estimated trajectory using original point coordinates (blue), estimated
trajectory when the z coordinates of points are offset by +10m (green), and estimated trajectory when
the z coordinates of points are offset by −10m (orange).

As shown in Figure 5.8, the behaviour of estimator bias changes drastically when the
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Cartesian coordinates of point measurements are shifted by a constant offset. When a

positive offset is added to the z coordinates of points, biases in roll and pitch result in

the estimated positions of the vehicle having a consistent downward drift. On the other

hand, when a negative offset is added, the biases result in the estimated positions having

a consistent upward drift.

Again, since the point-clouds are motion-distorted, a motion prior is needed to solve

the lidar-only trajectory estimation problem. However, it can be shown easily that if

the measurement terms alone are sufficient to estimate the motion, such as a typical

visual SLAM problem using a global shutter camera, a shift in the estimation frame

will not cause the estimated motion to drastically drift towards a particular direction.

When WNOA prior terms are used in the optimization problem, and the underlying

trajectory cannot be sufficiently treated as zero acceleration, the interaction between

prior and measurement terms create biases to the estimated motion that depend on the

coordinates of point measurements.

5.3 Derivation of a White-Noise-On-Jerk Prior

5.3.1 Motivation

In section 1.1 we explained why it is essential to introduce a motion prior in lidar-only

estimation. So far we have used a white-noise-on-acceleration motion prior, namely one

where the prior mean encourages constant velocity. However, for a large number of

outdoor robotic applications, such as estimating the motion of a car in urban driving

scenarios, we know the motion will contain acceleration. This is against the fundamental

assumption of a WNOA motion prior. Moreover, we have shown in section 5.2 that such

violation causes an interaction between the prior terms and the measurement terms,

which in turn creates an unwanted bias.

In this section we redesign the motion prior altogether. We derive a white-noise-on-

jerk motion prior, where the prior mean encourages constant acceleration. Our hope

is that a WNOJ prior is more suitable for describing motion which we know contains

non-zero acceleration.

5.3.2 A Class of Exactly Sparse GP priors

Our goal is to employ a class of GP priors that leads to an efficient formulation and a

simple solution [5] [6]. This class of GP priors is based on linear time-invariant (LTI)
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stochastic differential equations (SDEs) of the form

γ̇(t) = Aγ(t) +Bu(t) +Lw(t),

w(t) ∼ GP(0,Qcδ(t− t′)),
(5.18)

where γ(t) is the state, u(t) is a known exogenous input, and w(t) is a zero-mean, white-

noise GP with power spectral density matrix, Qc. If u(t) = 0, then for the mean function

we have the simple solution

γ̌(τ) = Φ(τ, tk)γ̌(tk), (5.19)

where γ̌ is the prior mean, and Φ(τ, tk) is the state transition function. We can write

the prior covariance as

P̌ = FQFT , (5.20)

where

F =



1

Φ(t1, t0) 1

Φ(t2, t0) Φ(t2, t1) 1
...

...
...

. . .

Φ(tK−1, t0) Φ(tK−1, t1) Φ(tK−1, t2) . . . 1

Φ(tK , t0) Φ(tK , t1) Φ(tK , t2) . . . Φ(tK , tK−1) 1


, (5.21)

and

Q = diag(P̌0,Q1,Q2, . . . ,Qk), (5.22)

with

Qk =

∫ ∆tk:k−1

0

exp(A(∆tk:k−1 − s))LQcL
T exp

(
A(∆tk:k−1 − s)T

)
ds. (5.23)

WNOA GP Prior for SE(3)

In SE(3), a physically-motivated GP prior is the following SDE:

Ṫ(t) = $(t)∧T(t),

$̇(t) = w′(t), w(t) ∼ GP(0,Qcδ(t− t′)),
(5.24)

As shown before, the state is

z(t) = {T(t),$(t)}. (5.25)
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However, it can be seen that the SDE in (5.24) is nonlinear, and therefore cannot be cast

into the form of (5.18) and solved efficiently [3]. Instead, [3] defines a local pose variable:

ξi(t) = ln
(
T(t)T−1

i

)∨
, ti ≤ t ≤ ti+1 (5.26)

which is a function of the global pose variables. Using local variables, [3] defines a

sequence of local priors that can be cast into a LTI SDE of the form in (5.18), with

γi(t) =

[
ξi(t)

ξ̇i(t)

]
, A =

[
0 1

0 0

]
, L =

[
0

1

]
, (5.27)

where γi(t) is defined as the local state. Under this formulation, we have white-noise on

the second derivative of ξi(t), i.e. ξ̈i(t) = w(t). Furthermore, we have the following [3]:

ξ̇i(t) = J (ξi(t))
−1$(t). (5.28)

The state transition function can be computed as in [6],

Φ(t, ti) = exp(A∆ti) =

[
1 ∆ti1

0 1

]
, (5.29)

and the inverse covariance matrix is [7] [3]

Qi(t)
−1 =

[
12∆t−3

i Q−1
c −6∆t−2

i Q−1
c

−6∆t−2
i Q−1

c 4∆t−1
i Q−1

c

]
, (5.30)

where ∆ti = t − ti. As shown in Equation (2.3), the objective function consists of mea-

surement and prior error terms. In terms of local pose variables, the prior error can be

computed as

ei = γi(ti+1)− γ̂i(ti+1)−Φ(ti+1, ti)(γi(ti)− γ̂i(ti)), (5.31)

where the local state variables are defined as [3]

γi(ti) =

[
0

$i

]
, γi(ti+1) =

[
ln(Ti+1,i)

∨

J −1
i+1,i$i+1

]
. (5.32)

Using the relationship between local and global state variables, the prior error term for

the WNOA prior can be expressed as in Equation (2.14) [3].
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In terms of local state variables, we can interpolate for the state as [3]

γi(τ) = Λ(t)γi(ti) + Ω(t)γi(ti+1), ti ≤ τ ≤ ti+1, (5.33)

where Λ(τ) ∈ R12×12 and Ω(τ) ∈ R12×12 are [5]

Λ(τ) = Φ(τ, ti)−Ω(τ)Φ(ti+1, ti),

Ω(τ) = Qi(τ)Φ(ti+1, t)
TQi(τ)−1.

(5.34)

Again, using our knowledge on the relationship between local and global state variables as

in (5.32), we can re-formulate (5.33) using global state variables. While interpolating for

the body-centric velocity at an arbitrary time might be of interest to certain applications,

for lidar-only odometry we are mainly interested in pose interpolation:

Tτ = exp
(
(Λ12(τ)$i + Ω11(τ) ln(Ti+1,i)

∨ + Ω12(τ)J −1
i+1,i$i+1)∧

)
Ti, (5.35)

where we have

Ω(τ) =

[
Ω11(τ) Ω12(τ)

Ω21(τ) Ω22(τ)

]
, Λ(τ) =

[
Λ11(τ) Λ12(τ)

Λ21(τ) Λ22(τ)

]
. (5.36)

5.3.3 Transition Function and Covariance Matrix

Instead of modelling the acceleration as a zero-mean, white-noise Gaussian process as in

the case of a WNOA prior [3], we now explicitly estimate the following state:

x(t) = {T(t),$(t), $̇(t)}, (5.37)

where $̇(t) ∈ R6 is the body-centric acceleration.

Extending the idea of local pose variables as presented in Section 5.3.2, we can define

a sequence of local white-noise-on-jerk priors as a LTI SDE in the form of (5.18):

γi(t) :=

ξi(t)ξ̇i(t)

ξ̈i(t)

 A =

0 1 0

0 0 1

0 0 0

 , L =

0

0

1

 . (5.38)

We now have white-noise on the third derivative (jerk) of ξi(t),
...
ξ i(t) = w(t), where

w(t) ∼ GP(0,Qcδ(t− t′)).
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For the WNOJ prior, the state transition function is now

Φ(t, ti) = exp(A∆ti) =

1 ∆ti1
1
2
∆t2i1

0 1 ∆ti1

0 0 1

 . (5.39)

For the covariance matrix at time tk, we have

Qk =

∫ ∆tk:k−1

0

exp(A(∆tk:k−1 − s))LQcL
T exp

(
A(∆tk:k−1 − s)T

)
ds

=

∫ ∆tk:k−1

0

1 (∆tk:k−1 − s)1 1
2
(∆tk:k−1 − s)21

0 1 (∆tk:k−1 − s)1
0 0 1


0

0

1

Qc

×
[
0 0 1

] 1 0 0

(∆tk:k−1 − s)1 1 0
1
2
(∆tk:k−1 − s)21 (∆tk:k−1 − s)1 1

 ds

=

∫ ∆tk:k−1

0


1
4
(∆tk:k−1 − s)4Qc

1
2
(∆tk:k−1 − s)3Qc

1
2
(∆tk:k−1 − s)2Qc

1
2
(∆tk:k−1 − s)3Qc (∆tk:k−1 − s)2Qc (∆tk:k−1 − s)Qc

1
2
(∆tk:k−1 − s)2Qc (∆tk:k−1 − s)Qc Qc

 ds

=


1
20

∆t5k:k−1Qc
1
8
∆t4k:k−1Qc

1
6
∆t3k:k−1Qc

1
8
∆t4k:k−1Qc

1
3
∆t3k:k−1Qc

1
2
∆t2k:k−1Qc

1
6
∆t3k:k−1Qc

1
2
∆t2k:k−1Qc ∆tk:k−1Qc

 .

(5.40)

The inverse covariance matrix is

Q−1
k =

 720∆t−5
k:k−1Q

−1
c −360∆t−4

k:k−1Q
−1
c 60∆t−3

k:k−1Q
−1
c

−360∆t−4
k:k−1Q

−1
c 192∆t−3

k:k−1Q
−1
c −36∆t−2

k:k−1Q
−1
c

60∆t−3
k:k−1Q

−1
c −36∆t−2

k:k−1Q
−1
c 9∆t−1

k:k−1Q
−1
c

 . (5.41)

Figure 5.9 shows trajectories sampled from a white-noise-on-jerk prior distribution where

the prior mean is constant-acceleration, compared with trajectories sampled from a white-

noise-on-acceleration prior distribution where the prior mean is constant-velocity. We

argue that the WNOJ prior is more suitable for representing motion with non-zero ac-

celeration trajectory sections, such as in urban driving.



Chapter 5. Theoretical Analysis of Motion Estimation in SE(3) 63

0 1 2 3 4 5 6 7 8 9

x(m)

-5

-4

-3

-2

-1

0

y
(m

)

           White-Noise-On-Jerk Prior

prior mean

sampled trajectories

0 1 2 3 4 5 6 7 8 9

x(m)

-5

-4

-3

-2

-1

0

y
(m

)

                 White-Noise-On-Acceleration Prior

prior mean

sampled trajectories

Figure 5.9: Existing formulations of STEAM use a white-noise-on-acceleration motion prior (right),
which have trouble representing trajectories with non-zero acceleration, such as in the motion of a
vehicle in urban driving. We propose a white-noise-on-jerk motion prior (left), which is more suitable
for representing these types of trajectories.

5.3.4 Motion Prior Error Term

In local pose variables, the prior error term is the same as in (5.31). We wish to then

express the prior error in terms of T,$, and $̇. The relationship between ξi(t) and ξ̇i(t)

and global state variables are shown in Equations (5.26) and (5.28). To express ξ̈i(t) in

terms of global state variables, we have

ξ̈k(t) =
d

dt
(ξ̇k(t)) =

d

dt
(J (ξk(t))

−1$(t))

=
d

dt
(J (ξk(t))

−1)$(t) + J (ξk(t))
−1$̇(t).

(5.42)

We can write J −1 as a power-series expansion:

J −1 =
∞∑
n=0

Bn

n!
(ξf)n = B0 +

B1

1!
ξf +

B2

2!
(ξf)2 +

B3

3!
(ξf)3 + · · · , (5.43)

where the coefficients, Bn, are the Bernoulli numbers. The operator (·)f is defined as [6]

xf =

[
u

v

]f
=

[
v∧ u∧

0 v∧

]
. (5.44)

It can be shown easily that d
dt

(u∧) = u̇∧ for u ∈ R3, and d
dt

(xf) = ẋf for x ∈ R6.

Therefore, the time derivative is

d

dt
(J −1) =

B1

1!
ξ̇f +

B2

2!
(ξ̇fξf + ξfξ̇f) +

B3

3!

(
ξ̇f(ξf)2 + ξfξ̇fξf + (ξf)2ξ̇f

)
+ · · · .

(5.45)
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As it turns out, we cannot express d
dt

(J −1) nicely in terms of J −1 or J , which are

familiar terms with which to work. We thus resort to making the approximation that

J −1 ≈ 1− 1
2
ξf. Under this approximation, we have

d

dt
(J −1) ≈ −1

2
ξ̇f, (5.46)

and

ξ̈k(t) =
d

dt
(J (ξk(t))

−1)$(t) + J (ξk(t))
−1$̇(t)

≈ −1

2
ξ̇k(t)

f$(t) + J (ξk(t))
−1$̇(t)

= −1

2
(J (ξk(t))

−1$(t))f$(t) + J (ξk(t))
−1$̇(t).

(5.47)

In terms of T,$, and $̇, our local state variable is

γk(t) =

ξk(t)ξ̇k(t)

ξ̈k(t)

 =

 ln
(
T(t)T−1

k

)∨
J t,k$(t)

−1
2
(J −1

t,k$(t))f$(t) + J −1
t,k$̇(t)

 , (5.48)

moreover, by definition, we have

γk(tk+1) =

 ln(Tk+1,k)
∨

J −1
k+1,k$k+1

−1
2
(J −1

k+1,k$k+1)f$k+1 + J −1
k+1,k$̇k+1

 , γk(tk) =

 0

$k

$̇k

 , (5.49)

where we made use of the identity xfx = 0. Using (5.31) and the relationship between

local and global state variables, the prior error term is

ek =

ln(Tk+1,k)
∨ − (tk+1 − tk)$k − 1

2
(tk+1 − tk)2$̇k

J −1
k+1,k$k+1 −$k − (tk+1 − tk)$̇k

−1
2
(J −1

k+1,k$k+1)f$k+1 + J −1
k+1,k$̇k+1 − $̇k

 . (5.50)

Suppose we assume the trajectory has zero acceleration (which is assumed by a prior

mean that is constant-velocity), $̇i = $̇i+1 = 0, and also make the assumption that

J −1
i+1,i$i+1 ≈ $i+1. In this case, the last component in (5.50) becomes zero, and the

first two components become identical to the WNOA prior as in (2.14); we have essentially

recovered the prior error equation for the WNOA prior.
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5.3.5 Motion Prior Jacobian

Let ek ∈ R18 =
[
eTk1 eTk2 eTk3

]T
. Using results from [4], it is straightforward to compute

the Jacobian for ek1 and ek2 , it then remains to compute the Jacobian for ek3 . Define a

dummy variable e′ = −1
2
(J −1

b,a$b)
f$b. Linearizing about an operating point, we have

e′ ≈ −1

2

(
J (ξop,b,a + J −1

b,aδξb,a)
−1($op,b + δ$b)

)f
($op,b + δ$b), (5.51)

here we made the approximation that ln(Tb,a)
∨ ≈ ln(Top,b,a)

∨ + J −1
b,aδξop,b,a, as usual.

Results in [4] show that

J (ξop,b,a +J −1
b,aδξb,a)

−1($op,b + δ$b) ≈ J −1
b,a$op,b +

1

2
$f

op,bJ −1
b,aδξb,a +J −1

b,aδ$b. (5.52)

Therefore, we have

e′ ≈ −1

2
(J −1

b,a$op,b +
1

2
$f

op,bJ −1
b,aδξb,a + J −1

b,aδ$b)
f($op,b + δ$b)

= −1

2

(
(J b,a$op,b)

f +
1

2
($f

op,bJ −1
b,aδξb,a)

f + (J −1
b,aδ$b)

f

)
($op,b + δ$b)

= −1

2

(
(J b,a$op,b)

f +
1

2
$f

op,b(J −1
b,aδξb,a)

f − 1

2
(J −1

b,aδξb,a)
f$f

op,b + (J −1
b,aδ$b)

f

)
($op,b + δ$b)

≈ −1

2

(
(J −1

b,a$op,b)
f$op,b + (J −1

b,a$op,b)
fδ$b −$f

op,bJ −1
b,aδ$b −

1

2
$f

op,b$
f
op,bJ −1

b,aδξb,a

)
,

(5.53)

where we rearranged using SE(3) identities and dropped higher-order terms. Further-

more, by examining (5.52), it is straightforward to see that

J −1
b,a$̇b ≈ J −1

b,a$̇op,b +
1

2
$̇f

op,bJ −1
b,aδξb,a + J −1

b,aδ$̇b. (5.54)

Therefore, we have the following derivatives:

∂ ek3
∂ δξk+1,k

=
1

4
$f

op,k+1$
f
op,k+1J −1

k+1,k +
1

2
$̇f

op,k+1J −1
k+1,k, (5.55)

∂ ek3
∂ δ$k+1

= −1

2
(J −1

k+1,k$op,k+1)f +
1

2
$f

op,k+1J −1
k+1,k, (5.56)

∂ ek3
∂ δ$̇k

= −1, (5.57)
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∂ ek3
∂ δ$̇k+1

= J −1
k+1,k. (5.58)

Finally, we make note of the approximation δξb,a ≈ δξb − T b,aδξa. Therefore we have

Ek =
[
ET
k1

ET
k2

ET
k3

]T
, with

Ek1 =
[
∂ ek1
∂ δξk

∂ ek1
∂ δ$k

∂ ek1
∂ δ$̇k

∂ ek1
∂ δξk+1

∂ ek1
∂ δ$k+1

∂ ek1
∂ δ$̇k+1

]
=
[
−J −1

k+1,kT k+1,k −(tk+1 − tk)1 −1
2
(tk+1 − tk)21 J −1

k+1,k 0 0
]
,

(5.59)

Ek2 =
[
−1

2
$f

op,k+1J −1
k+1,kT k+1,k −1 −(tk−1 − tk)1 1

2
$f

op,k+1J −1
k+1,k J −1

k+1,k 0
]
,

(5.60)

Ek3 =



(
−1

4
$f

op,k+1$
f
op,k+1J −1

k+1,kT k+1,k − 1
2
$̇f

op,k+1J −1
k+1,kT k+1,k

)T
0

−1(
1
4
$f

op,k+1$
f
op,k+1J −1

k+1,k + 1
2
$̇f

op,k+1J −1
k+1,k

)T(
−1

2
(J −1

k+1,k$op,k+1)f + 1
2
$f

op,k+1J −1
k+1,k

)T(
J −1

k+1,k

)T



T

. (5.61)

5.3.6 Querying the Trajectory Mean

We start from the same interpolation equation using local state variables (5.33). For the

WNOJ prior, the interpolation coefficients Λ(τ) and Ω(τ) can be computed from (5.34),

using Φ ∈ R18×18 and Qi ∈ R18×18 from (5.39) and (5.40).

Substituting with global state variables for the WNOJ prior using (5.49), the pose

interpolation equation is

Tτ = exp
(

(Λ12(τ)$i + Λ13(τ)$̇i + Ω11(τ) ln(Ti+1,i)
∨ + Ω12(τ)J −1

i+1,i$i+1

+ Ω13(τ)(−1

2
(J −1

i+1,i$i+1)f$i+1 + J −1
i+1,i$̇i+1))∧

)
Ti, (5.62)

where ti < τ < ti+1, and

Ω(τ) =

Ω11(τ) Ω12(τ) Ω13(τ)

Ω21(τ) Ω22(τ) Ω23(τ)

Ω31(τ) Ω32(τ) Ω33(τ)

 , Λ(τ) =

Λ11(τ) Λ12(τ) Λ13(τ)

Λ21(τ) Λ22(τ) Λ23(τ)

Λ31(τ) Λ32(τ) Λ33(τ)

 . (5.63)

Again, if we assume that $̇i = $̇i+1 = 0, and J −1
i+1,i$i+1 ≈ $i+1, the terms with

coefficients Λ13 and Ω13 become zeros. Similar to the case with the prior error term, we
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can essentially recover the pose interpolation equation for the WNOA prior as in (5.35).

Defining ∆t = tk+1−tk, ∆τ = τ−tk and ∆τ ′ = tk+1−τ. Without needing to compute

the full coefficient matrices Ω(τ) and Λ(τ), the smaller matrices Ωij(τ) and Λij(τ) in

(5.62) can be computed efficiently as

Λ12(τ) =
∆τ∆τ ′3

∆t4
(tk+1 − 4tk + 3τ)1, (5.64)

Λ13(τ) =
∆τ 2∆τ ′3

2∆t3
1, (5.65)

Ω11(τ) =
∆τ 3

∆t5
(t2k − 5tktk+1 + 3tkτ + 10t2k+1 − 15tk+1τ + 6τ 2)1, (5.66)

Ω12(τ) =
∆τ 3∆τ ′

∆t4
(tk − 4tk+1 + 3τ)1, (5.67)

Ω13(τ) =
∆τ 3∆τ ′2

2∆t3
1. (5.68)

Finally, we need the Jacobian of the interpolated pose Tτ with respect to the perturbation

to each state variable, in order to update the state variables appropriately in Gauss-

Newton. Since we have Tτ = Tτ,kTk, using the product rule and chain rule, we can

write

∂ ξτ
∂ δξk

≈ ∂ ξτ,k
∂ δξk

+ T τ,k
∂ ξk
∂ δξk

=
∂ ξτ,k
∂ δξk

+ T τ,k,

(5.69)

∂ ξτ
∂ δξk+1

≈ ∂ ξτ,k
∂ δξk+1

+ T τ,k
∂ ξk

∂ δξk+1

=
∂ ξτ,k
∂ δξk+1

.

(5.70)

Making use of results from Section 5.3.5, the interpolation Jacobians can be calculated

as
∂ ξτ
∂ δξk

= − ∂ ξτ,k
∂ δξk+1,k

T k+1,k + T τ,k, (5.71)

∂ ξτ
∂ δ$k

= Λ12(τ)J τ,k, (5.72)

∂ ξτ
∂ δ$̇k

= Λ13(τ)J τ,k, (5.73)

∂ ξτ
∂ δξk+1

=
∂ ξτ,k

∂ δξk+1,k

, (5.74)
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∂ ξτ
∂ δ$k+1

= Ω12(τ)J τ,kJ −1
k+1,k −

1

2
Ω13(τ)J τ,k

(
(J −1

k+1,k$op,k+1)f −$f
op,k+1J −1

k+1,k

)
,

(5.75)
∂ ξτ

∂ δ$̇k+1

= Ω13(τ)J τ,kJ −1
k+1,k, (5.76)

where the intermediate partial derivative
∂ ξτ,k

∂ δξk+1,k
can be evaluated as

∂ ξτ,k
∂ δξk+1,k

= Ω11(τ)J τ,kJ −1
k+1,k +

1

2
Ω12J τ,k$

f
op,k+1J −1

k+1,k

+
1

4
Ω13(τ)J τ,k$

f
op,k+1$

f
op,k+1J −1

k+1,k +
1

2
Ω13(τ)J τ,k$̇

f
op,k+1J −1

k+1,k.

(5.77)

Although tedious, Equations (5.71) to (5.77) are exact to first order. Where appropriate,

further approximations may be made to speed up the computation.

5.4 Comparison Between WNOJ Prior and WNOA

Prior

5.4.1 Simulation Set-up

To compare between the WNOJ prior and the WNOA prior, we created a simulation

environment resembling a simplified problem of a vehicle driving in city blocks, while

estimating its pose using point measurements.

The simulation world is a 1000m × 1000m space, made up of 10 × 10 blocks, where

each block is a square with 100m on each side. At t0, the vehicle spawns at a random

intersection, facing a random direction among East, West, North, and South. The vehicle

then travels a random path constrained within the 10 block-by-10 block world. Examples

of two trajectories generated by the simulation is shown in Figure 5.10.

There are a number of stops randomly located at certain intersections, marked by the

red diamonds in Figure 5.10. The trajectory of the vehicle is designed to behave with

the following characteristics:

• The vehicle will either drive forward, turn left, or turn right at each intersection

• The vehicle has a higher probability of choosing to drive forward than taking a turn

• When initiating a turn, the vehicle will first slow down to come to a full stop. It

will then accelerate into a turn, followed by decelerating out of the turn
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• When the vehicle drives forward through an intersection with a stop, it will slow

down to come to a full stop, and then speed up to its cruise speed

• When the vehicle drives forward through an intersection without a stop, it will

drive through with a constant velocity

• Other than needing to speed up or slow down because of taking a turn, or the

presence of a stop, the vehicle drives forward with a constant velocity

Figure 5.10: Simulated trajectories of driving in city blocks. The starting location is marked by a red
dot.

The simulated trajectory is therefore either piece-wise constant-acceleration (slowing

down or speeding up while driving forward, or when taking a turn), or constant-velocity
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at cruise speed while driving forward. Moreover, the cruise speed is chosen to be 20m/s,

while the turning radius is 10m.

There are rectangular structures within each block resembling buildings. The on-

board sensor of the vehicle measures 3D points on the surfaces of the buildings, which

can be used to estimate the trajectory of the vehicle. Examples of point measurements

are shown in Figure 5.11. The small blue points are all points available on the surface

of buildings in the 4 nearest blocks, while the red points are the points measured after

taking into account of sensor range and occlusion. Each building has a certain height,

while Figure 5.11 shows a top-down view, every blue or red point in Figure 5.11 is in

fact several points with the same x and y coordinates but different z coordinates stacked

together.

0 100 200 300 400 500 600 700 800 900 1000

East/West(m)

0

100

200

300

400

500

600

700

800

900

1000

N
or

th
/S

ou
th

(m
)

0 100 200 300 400 500 600 700 800 900 1000

East/West(m)

0

100

200

300

400

500

600

700

800

900

1000

N
or

th
/S

ou
th

(m
)

Figure 5.11: Points available on nearby buildings are shown as small blue points, while the points
measured are shown as red points. Every point shown in plot are a number of points with the same x
and y coordinates but different z coordinates stacked together.

The sensor measures points at intervals of 0.1s, to resemble the Velodyne sensor. The

knots in the continuous-time trajectory are also spaced 0.1s apart. We have point mea-

surements every 0.3s. Furthermore, we simulated both motion-distorted measurements,

and non-distorted measurements where all points are collected at the same timestep.

The trajectories are solved using point measurements along with either a WNOA prior

or a WNOJ prior. The results are evaluated against ground truth. Given sample trajec-

tories from training data, we can solve for the best hyperparameter Qc by maximizing

the log-likelihood as shown in [4]. We generate a large number of trajectory sequences

as the training set, which we use to tune Qc for both the WNOA prior and the WNOJ

prior. The tuned hyperparameter is then used in estimation for trajectory sequences in
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the test set.

For simplicity, we simulate the sensor to directly measure the Cartesian coordinates of

points, rather than return a range and azimuth as real-world laser sensors. We keep the

point measurements noise-free, and we assume we have perfect correspondences, therefore

we do not need to perform nearest-neighbor search to find point matches. Moreover, we

use a sliding-window style estimation, where the window size is chosen to be two.

5.4.2 Results

As discussed previously, we evaluated using both motion-distorted measurements and

non-distorted measurements. For each type of measurements we estimate the trajectory

using both the WNOA motion prior and the WNOJ motion prior.

For distorted measurements, we need to interpolate the pose associated with each

point measurement given its associated time. When using a WNOJ prior, Equation

(5.62) is the pose interpolation equation used. When using a WNOA prior, we perform

pose interpolation using (5.35).

For non-distorted measurements, we do not need pose interpolation since measure-

ments are collected simultaneously at a knot time, but we still use prior error terms. In

this case, the motion prior error terms are used to constrain the trajectory at timesteps

without measurements, and to act as a trajectory smoother.

As a comparison baseline for distorted measurements, we also attempt to solve the

trajectory using only measurement terms (ie. no prior). As such, we are essentially doing

discrete-time estimation, where we make the ad-hoc assumption that all points in a scan

are collected at the same timestep.

Ten test trajectory sequences are evaluated, where the total distance travelled in each

sequence is more than 1.3km. A comparison table of the odometry errors for the different

scenarios is shown in Table 5.1. In can be seen that in our simulated problem, the WNOJ

prior always outperforms the WNOA prior, as it offers a more appropriate representa-

tion of the underlying trajectory. Furthermore, the error reduction from switching from

WNOA prior to WNOJ prior is more significant when we have distorted measurements.

Examples of the estimated trajectory compared against ground truth for distorted

measurements are shown in Figure 5.12. It can be seen from Figure 5.12 that the esti-

mated trajectory using a WNOJ prior is visibly more aligned to the ground truth.
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Figure 5.12: Simulated trajectories of driving in city blocks. The starting location is marked by a red
dot.
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Table 5.1: Odometry errors for measurements with and without motion distortion, solved using WNOJ
prior and WNOA prior

sequence
no.

WNOJ no
distortion (%)

WNOA no
distortion (%)

WNOJ
distorted (%)

WNOA
distorted (%)

discrete-
time (%)

1 0.0151 0.1068 0.0935 0.2432 0.6686
2 0.0083 0.0744 0.0668 0.2367 0.5024
3 0.0098 0.0998 0.0766 0.2639 0.6583
4 0.0085 0.0916 0.0769 0.2461 0.5833
5 0.0089 0.0836 0.0852 0.2419 0.5790
6 0.0082 0.0733 0.0684 0.2133 0.4968
7 0.0118 0.1036 0.0976 0.3343 0.7192
8 0.0155 0.1068 0.0677 0.1974 0.7328
9 0.0112 0.0922 0.0712 0.1912 0.6211
10 0.0124 0.1103 0.0918 0.3180 0.7293
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Figure 5.13: Estimated z position of the vehicle when using WNOA prior (black) and WNOJ prior
(red), with sequence 1 on the left and sequence 8 on the right. The WNOJ prior results in noticeably
smaller z bias than the WNOA prior.
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5.4.3 Estimator Bias

The simulation is generated where the z position of the vehicle is constrained to be

zero. However, due to bias in the estimator, the estimated z position of the vehicle

will not necessarily be zero, as discussed in Section 5.2. The simulated measurements

are noise-free, and we have perfect point correspondences, therefore the only source of

estimator bias comes from the motion prior not able to describe the underlying trajectory.

Examples of the estimated z position of the vehicle are shown in Figure 5.13.

It can be seen that there is a greater bias when the estimator uses a WNOA prior,

than when it uses a WNOJ prior. This is due to the WNOJ prior being more appropriate

for representing the underlying trajectories, which are piece-wise constant-acceleration

or constant-velocity. There is still bias, though, even when the estimator uses a WNOJ

prior, as shown in Figure 5.13. This is due to the simulated trajectory being only piece-

wise constant-acceleration, but not constant-acceleration throughout. In other words,

there are places where the acceleration undergoes a non-smooth change, such as the

instant where the vehicle begins to speed up.

A simple experiment has been done where we do not use a prior at these places where

there is a sudden change in acceleration, while the prior is used everywhere else along the

trajectory. In this case, the estimated z position of the vehicle is zero along the entire

trajectory when we use a WNOJ prior, since the motion prior now matches with the

underlying trajectory at everywhere it is being used.

5.5 Summary

In this chapter we explored the theoretical aspects of SE(3) estimation, and how we can

improve the estimator from a mathematical and algorithmic perspective. We showed

analytically that when a WNOA prior is used while the underlying trajectory has accel-

eration, the interaction between the prior term and the measurement terms will induce

a bias in the estimation, even towards degrees of freedom without any motion.

The highlight of this chapter is in Section 5.3, where we derive a WNOJ motion prior.

Specifically, our estimation pipeline now contains body-centric acceleration, $̇, as part

of the state vector. Theoretically, continuous-time estimation using a WNOJ prior is

more suitable for scenarios where the sensor undergoes frequent changes in velocity, such

as a car in traffic. For these scenarios, we expect a smaller estimator bias when we use

a WNOJ prior, than using a WNOA prior.

We then proceeded to develop a simulation environment, which simulates simple
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problems of estimating motion while driving in city-blocks. The simulated trajectories

are piece-wise constant-acceleration or constant-velocity. After performing estimation

using both types of motion priors, we have shown that the WNOJ prior is superior as it

produces greater accuracy and smaller bias.



Chapter 6

Conclusion and Future Work

6.1 Summary of Contributions

The first contribution of this thesis is the development of a real-time, accurate lidar

odometry pipeline, which utilizes previous work on simultaneous trajectory estimation

and mapping (STEAM) [3]. Our lidar odometry algorithm is capable of handling motion-

distorted point-cloud data in a principled way, and has been tested to produce reasonably

accurate results on large amounts of lidar datasets. Specifically, at the time of submission,

our lidar odometry algorithm ranked #3 on the KITTI odometry benchmark among lidar-

only methods. It remains the most accurate lidar-only method that is strictly odometric

(ie., does not use mapping) on the KITTI leader-board at the writing time of this thesis.

Our work on lidar odometry contributed towards the publication in [27].

Evaluation on datasets shows that, however, our pipeline exhibits bias in certain

degrees of freedom, causing the odometry to drift over time. With this in mind, the

rest of this thesis explores ideas for reducing drift in lidar-based motion estimation. In

Chapter 4 we showed two methods for learning a bias and applying the learned bias as a

correction to odometry. The first method uses GP regression, and requires choosing hand-

picked features from the geometry of point-clouds as inputs to the model. The second

method uses deep learning, and takes in 2D range images converted from 3D point-clouds

which are passed through a CNN. Both methods resulted in overall improvements to the

odometry after applying the learned bias correction. This work has led to the publication

in [43].

Methods shown in Chapter 4 need prior training data, and most importantly, require

the training data to be sufficiently representative of the test data. In Chapter 5 we

focused on more generic methods for reducing bias from a mathematical and algorithmic

perspective. We performed theoretical analysis of SE(3) estimation, and showed a source

76
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of bias results from the motion prior not being able to describe the underlying trajectory.

The majority of Chapter 5 centres around the derivation and evaluation of a novel WNOJ

motion model, as an alternative to the existing WNOA motion model used in STEAM.

We argue that the WNOJ model is more appropriate for trajectories containing rapid

changes in velocity. Our argument is evaluated in a simulated environment for simple

estimation problems in urban driving scenarios.

6.2 Future Work

Our lidar odometry algorithm currently uses CPU only. A potential extension would

be to enable GPU implementation, which may allow us to afford more refined solutions

while maintaining real-time performances.

In Chapter 4 we showed that for our method of learning a bias correction, a model

trained on the KITTI training data did not improve the odometry on the U of T dataset,

due to the differences in measurements between the two datasets. An extension would be

to train a model across a large number of different datasets, and evaluate whether a larger

and more diverse training set can make the model generalize better. A future work to our

deep learning approach (Section 4.3) would be to utilize recent network architectures that

take in 3D point-clouds as inputs. This reduces the necessity to convert 3D point-clouds

into 2D range images, and avoids any loss of information which may happen during this

process.

The WNOJ motion model derived in Section 5.3 has only been evaluated in simple

simulations. Therefore, an obvious next step would be to evaluate our new motion prior

on real-world lidar datasets, and compare against results obtained using the existing

STEAM framework with the WNOA motion model. Moreover, our derivation relies on

a number of approximations, with Equation (5.46) being an example. A future work is

therefore to come up with exact derivations rather than approximate derivations where

possible. Finally, our derivation of the WNOJ prior follows the idea of local pose variables

as in [3], whereas there is a different way for deriving a motion prior shown in [6].

Therefore, an interesting extension would be to derive the WNOJ motion model using

an alternative approach, and compare against results presented in this thesis.
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