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Abstract

In self-driving, GPS is generally considered to have insufficient positioning accuracy

to stay in lane. Instead, many turn to LIDAR localization, but building and main-

taining LIDAR maps can be costly. Another possibility is to use semantic cues such as

lane markings and traffic lights to achieve localization, but these are usually not con-

tinuously visible. This can be remedied by combining semantic cues with GPS to fill

in the gaps. However, due to biases accumulated between mapping and localization,

the live GPS frame can be offset from the semantic map frame, requiring calibration.

In this thesis, we propose a robust semantic localization algorithm that self-calibrates

for the GPS-to-map offset by exploiting common semantic cues. We formulate the

problem using a modified Iterated Extended Kalman Filter, which incorporates GPS

and camera images for semantic cue detection. Experimental results show that the

proposed algorithm achieves decimetre-level accuracy and is robust against sparse

semantic features and frequent GPS dropouts.
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Chapter 1

Introduction

1.1 Background and Motivation

In autonomous driving applications, semantic maps have proven to be an invaluable

component for most self-driving cars. They provide important prior knowledge of

the surrounding environment, including the locations of drivable lanes, traffic lights,

and traffic signs, as well as the traffic rules. This information is crucial for real-time

behavioural planning of the vehicle under various traffic scenarios.

In order to effectively utilize semantic maps, the vehicle must be localized in

the map frame down to decimetre accuracy. This proves to be challenging for the

Global Positioning System (GPS), where even the best corrected version of GPS

is generally considered inadequate in achieving the required accuracy consistently.

Furthermore, GPS suffers from signal dropouts in situations such as inside tunnels

or in dense urban environments. In light of these issues, many self-driving systems

have adopted LIDAR (Light Detection and Ranging) localization methods, which

require the construction of LIDAR maps prior to driving in a certain area. LIDAR

localization has demonstrated great success in satisfying the stringent requirements

of autonomous driving [10, 44, 1], but this comes at the cost of building detailed

geometric models of the world and keeping them up to date solely for the purpose

of localization. Moreover, because the autonomous driving system, and in particular

the planning component, ultimately requires the vehicle’s location with respect to the

1
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Figure 1.1: Vehicle localization using uncalibrated GPS (left) compared to our ap-
proach (right). The red lines are the projected lane boundaries from the semantic
map. Our approach is able to self-calibrate for the GPS-to-map offset and achieve
alignment between the observed lane markings and the projected lane boundaries [4].

semantic map, it requires the additional step of aligning the LIDAR maps with the

semantic maps.

An alternative to LIDAR localization is to directly take advantage of the semantic

maps for localization, which the self-driving vehicle already utilizes for path planning

and behavioural decision making. Through the detection of some common objects

on the road (e.g., in the vehicle’s camera images) such as traffic lights and lane

markings that are also present in the semantic maps, the vehicle location can be

inferred. A major downside of such an approach is that these objects, collectively

termed “semantic cues”, are fairly sparse and not always present in enough numbers

to ensure reliable localization. A potential solution is to adopt a hybrid approach

that combines GPS and semantic cues. However, a new problem arises: the offset

between the semantic map frame and the GPS frame, in which the vehicle position

is reported, must be known accurately before fusing the two sources of information.

This offset is a common issue and emerges because the semantic maps are aligned to

the global frame using GPS data gathered at a different time/day than when the live

drive occurs. Therefore, due to different positioning of the satellites in the sky and

varying atmospheric conditions [22], among other factors, there will be a GPS-to-map

offset requiring calibration such that the GPS frame aligns with the semantic map
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Figure 1.2: System architecture of our proposed localization pipeline. The camera
image is passed through the lane and traffic light detectors. The data association step
finds the correspondences between detection results and the semantic map projected
into the image space. The results of the data association are then fused with GPS
and wheel encoders in a modified IEKF to produce the final localization output.

frame. Usually, such offset is simply corrected by hand on an occasional basis, but

such manual calibration is generally not reliable.

As an illustrative example, aUToronto, the team that won the self-driving com-

petition hosted by SAE International in 2019 [4], experienced an uncalibrated GPS-

to-map offset in the magnitude of a few metres, which was corrected manually just

in time for the competition run, see Figure 1.1.

To address these challenges, we propose a robust localization algorithm that inte-

grates GPS and semantic cues while performing self-calibration of the offset between

the GPS and semantic map frames. By folding the offset into our state estimation, we

can properly fuse the two sources of information while benefitting from both. For this

work, we assume detection of semantic cues using a front-facing monocular camera,

and formulate the localization problem as a modified Iterated Extended Kalman Fil-

ter (IEKF), which improves upon the linearization of EKF. The system architecture

is summarized in Figure 1.2.

The proposed approach has minimal computational impact because GPS is low-

cost to process, and common semantic cues such as lane markings and traffic lights
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are already tracked for the purpose of vehicle behavioural planning, so the added cost

of using them is also low. The result is an accurate and robust self-driving localiza-

tion pipeline that uses GPS to fill in the gaps between sparse semantic observations,

avoids the need for expensive maps specifically for localization, and relies on features

in the environment that are actively maintained and designed to be highly visible.

Experimental results in an urban environment using the Carla simulator [11] as well

as on a real-world dataset collected by aUToronto during the SAE AutoDrive compe-

tition show that we are able to achieve 3 cm lateral and 5 cm longitudinal accuracy

on average, and also maintain similar performance with frequent GPS dropouts.

1.2 Contribution

The main contributions of this thesis are:

1. An online semantic localization algorithm for autonomous vehicles that simul-

taneously self-calibrates for the GPS-to-map offset by incorporating multiple

classes of semantic cues.

2. A novel mathematical formulation of the vehicle localization problem in 3D

space that processes the semantic cue detection results directly in the image

space rather than in bird’s-eye view.

3. A localizer that has minimal computational impact by taking advantage of the

existing infrastructures on the autonomous vehicle, including semantic maps

and detectors of various semantic cues.

4. The addition of wheel encoders to improve the robustness of the localizer against

frequent GPS dropouts.

5. The proposal of a semantic map refinement pipeline that can potentially produce

accurate semantic maps at low cost using satellite images.

The core of this work has previously been published in our paper for the Conference

on Robots and Vision in a condensed manner [39]. It corresponds to the first four
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contributions above. The fifth contribution, on the other hand, is newly conducted

work that involves a semantic map refinement pipeline designed to improve an internal

dataset used in the experiments.

1.3 Overview

The thesis is organized as follows. Chapter 2 summarizes the related work on vehicle

localization. Chapter 3 describes the preprocessing necessary for the semantic cues

before semantic localization can take place. Chapter 4 presents the mathematical

formulation of the semantic localization algorithm. Chapter 5 provides the simula-

tion and experimental results. Finally, Chapter 6 concludes the paper and discusses

possible future work.



Chapter 2

Related Work

2.1 LIDAR Localization

One of the most popular localization approaches in self driving is LIDAR localiza-

tion [13, 17, 12, 23]. By constructing a database of the detailed geometry of the

environment in advance, localization can be achieved using a point cloud registration

algorithm, which matches the LIDAR scans against the database at test time. Be-

cause the localization performance greatly depends on the accuracy of the database

in capturing the ever-changing appearance of the world, the database needs to be

frequently updated. In response, many have developed algorithms that extract fea-

tures that are more invariant to environmental changes in the LIDAR data [46, 18,

26]. More recently, [27] proposed a novel learning-based approach that directly takes

LIDAR point clouds as inputs and learns descriptors for matching in various driv-

ing scenarios. While these methods help mitigate the impact of outdated LIDAR

database, they do not fundamentally address the issue of needing to maintain a sep-

arate database solely for localization.

2.2 Semantic Localization

Semantic localization exploits various common roadside semantic cues present in the

semantic maps to achieve vehicle localization. In contrast to LIDAR localization, this

6
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Table 2.1: List of public self-driving datasets with semantic maps and the semantic
cues that are included.

Available Semantic Cues inside Semantic Map

Dataset
Lane

Markings
Stop Lines

Other
Road Markings

Traffic
Lights

Traffic
Signs

nuScenes (2019) [5] X X × X ×
Lyft Level 5 (2019) [21] X × × X X

Argoverse (2019) [6] ×* × × × ×
*Only has lane centerlines and lane polygons

method conveniently makes use of the same semantic maps already required by the

autonomous vehicle for planning purposes. Therefore, no maintenance of a separate

database of the environment is required. Among the various types of semantic cues,

lane markings are most commonly utilized because they are abundant and provide

important clues that keep the vehicle in the correct lane [14, 15, 7, 40, 34]. However,

since lane markings tend to run parallel to the vehicle heading, the longitudinal

localization accuracy is usually worse than lateral accuracy. Besides lane markings,

other types of semantic cues have been exploited as well, including stop lines [32, 29],

other road markings [20, 45, 35], traffic lights [41, 42], and traffic signs [43, 30, 33, 8].

A common issue that all types of semantic cues suffer from is sparsity. In response,

approaches that combine multiple types of semantic cues have been proposed, most

of which include lane markings in combination with traffic lights or traffic signs [28,

9, 25].

Because until recent years, there is a lack of public self-driving datasets that

provide semantic maps, these prior works had to conduct experiments using internal

datasets and produce their own semantic maps. The map generation process usually

involves a combination of camera and LIDAR data followed by manual annotations.

In the past few years, however, a few self-driving datasets with semantic maps have

emerged. The semantic cues supported by these datasets are summarized in Table 2.1.

The applicability of these datasets for our work is discussed in Section 5.2.

Many of the semantic localization papers referenced in this section have incorpo-



8 CHAPTER 2. RELATED WORK

rated GPS into their localization pipelines, but none of them addressed a possible

offset between GPS and semantic map frames due to reasons discussed above, pre-

sumably because the GPS offset has been manually corrected prior to experiments.

However, as experienced by aUToronto, manual GPS calibration is often unreliable,

and can lead to localization failures [4].

2.3 GPS Calibration with Semantic Cues

In this work, the GPS measurements are regarded as reporting the vehicle position

with respect to a GPS frame, which is at an offset from the semantic map frame.

Alternatively, we can treat the GPS as if it directly reports the vehicle position in

the semantic map frame, but with a systematic bias. Some prior works took this fact

into account when developing their semantic localization pipelines. For instance, [24]

simply modelled the GPS errors as a random constant since the change in the GPS

bias is small. A more sophisticated model utilizing an autoregressive process such

as a random walk was shown by [38] to achieve superior performance compared to

the random constant model, and was similarly adopted by [19] and [37]. All of these

approaches only adopted road markings as the semantic cues. While our approach

is similar in spirit to these papers, there are also notable differences, including the

addition of traffic lights as part of the semantic cues, and their detections using

Convolutional Neural Networks (CNNs).



Chapter 3

Semantic Cue Preprocessing

The positional information of the semantic cues provided by the semantic maps plays

a crucial role in the development of semantic localization. To make use of this informa-

tion, the vehicle must be capable of detecting nearby semantic cues in real time using

onboard sensors. Fortunately, because the semantic cues provide important traffic

information, we can safely assume that such detectors are already in place as part of

the autonomous driving system, thus minimizing the impact on the computational

cost. In this work, we assume the sensor to be a common front-facing camera with

plenty of off-the-shelf CNN image detectors available from which to choose. Lastly,

for the detections to be useful, some calculations have to take place that associate

the detections with the semantic map.

3.1 Semantic Map

The lightweight HD semantic maps are commonly equipped by autonomous vehicles

for planning and navigation. They are often supplied by commercial mapping com-

panies such as HERE and CARMERA, and have become increasingly accessible as

the companies continue to map more regions around the world. The quality of the

semantic map can potentially have a great impact on the performance of the vehicle.

Our semantic localization algorithm utilizes a HD semantic map that consists of

a lane graph and traffic light locations. A lane graph is a set of polylines that defines

9
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Figure 3.1: Example of a semantic map at a road intersection. The black polylines
form the lane graph, and the red points are traffic lights.

all the lane boundaries of the road network. It corresponds to visually distinctive

lane markings as well as road curbs, which can be easily identified in a camera image

by the CNN detector. The traffic lights are treated as point landmarks where the

coordinates of their centres are recorded in the semantic map. Their orientations are

not included. Figure 3.1 illustrates a semantic map with lane graph and traffic lights.

In this work, we assume the semantic map has been provided.

3.2 Traffic Light Detection

Traffic lights always appear sparsely yet regularly at road intersections. They are

crucial to the vehicle’s understanding of the traffic situation surrounding it, and also

provide useful information for longitudinal localization of the vehicle. Given a camera
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Figure 3.2: Example of YOLOv3 traffic light detection. A red bounding box in which
the center point can be extracted is shown around each detection.

image, the traffic light CNN detector outputs bounding boxes that locate all the traffic

lights identified. The centre of each bounding box is then obtained as the observed

point landmark of a traffic light. Since the detector assigns a confidence level to each

bounding box, we can reliably filter out false detections by only keeping bounding

boxes with high confidence scores for localization. In this work, we adopted YOLOv3

for the detection of traffic lights [31]. An example output of YOLOv3 traffic light

detector is shown in Figure 3.2.

Before the traffic light detections can be made useful for localization, a data

association scheme must first be devised to correctly associate the detections in the

camera image with corresponding traffic lights in the semantic map. This is achieved

by first projecting the locations of all nearby traffic lights in the semantic map that are

in front of the vehicle to the image space using the estimated vehicle position. We then
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apply Iterative Closest Point followed by nearest neighbour to obtain the desired data

associations. Detections that have no nearby associations within a certain distance

threshold are identified as outliers and discarded. Figure 3.4 illustrates the results of

the traffic light data association process.

3.3 Lane Marking Detection

Lane markings are one of the most common type of semantic cues that primarily help

with lateral localization of the vehicle to keep it in the correct lane. Given a camera

image, a lane marking CNN detector produces a grayscale mask where the value of

each pixel corresponds to the probability of the pixel being part of a lane marking

in the camera image. A probability threshold is then applied to the grayscale mask

to obtain a binary mask, which classifies each pixel as being part of a lane marking

or not. Because lane makings closer to the vehicle, which corresponds to the bottom

portion of the camera image, are easier to identify than those further away, only the

bottom portion of the mask is retained. The resulting image coordinates of the pixels

classified as lane markings are then evenly subsampled to reduce the computational

burden.

In this work, we adopted the gated shape CNN (GSCNN) lane marking detector

[36] and trained it on the BDD100K dataset [47]. The GSCNN detector captures

lane markings as well as road boundaries from the camera observations, and has a

low rate of false positives. This is preferable over a detector with a low rate of false

negatives because the detection of non-existent lane markings has a greater impact

on the process of data association compared to false negatives. Furthermore, GSCNN

detector is capable of inferring continuous lane boundaries from not just the solid lane

markings, but also the dashed ones. An example of GSCNN lane detector is shown

in Figure 3.3.

The data association process for lane markings also begins by finding all the

lane lines that are close to and in front of the vehicle and projecting them from the

semantic map to the image space using the estimated vehicle position. Next, each
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(a) Camera image (b) Lane detection mask (c) Lane binary mask

Figure 3.3: Example of GSCNN lane detector. The camera image (a) is input into
the detector, which produces the mask (b). A threshold is then applied, resulting in
the binary mask (c). Notice the dashed lane marking on the right still produces a
continuous lane boundary detection.

subsampled lane pixel from the binary mask is matched to the nearest projected

lane line. Lane pixels without nearby matches are treated as outliers and discarded.

Figure 3.4 demonstrates the result of such lane marking matching process. Now, given

all the lane pixels that are matched to a projected lane line, we can fit a straight line

using least squares in the image space. Finally, data association is obtained between

the pairs of fitted lines from lane marking detection and projected lane lines from

the semantic map. Aside from the lane markings that are too distant, those that are

too far to the sides of the ego-lane are also difficult to identify properly by the lane

detector due to the camera view angle. Therefore, to avoid such lane misassociations,

we perform a check on all the fitted lines by computing the intersection between it

and the bottom edge of the image. If the point of intersection is too far outside the

image, the fitted line is discarded.
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Figure 3.4: Data association process of traffic lights and lane markings. The red lines
and points are known positions of semantic cues projected into the image using the
estimated vehicle position; the blue points are semantic cue detections; and the green
lines indicate the matching results. A few incorrect matches of outlier lane pixels can
be observed on the right due to their proximity to a projected lane line as a result of
the camera angle.



Chapter 4

Vehicle Localization

4.1 Problem Setup

We adopt the mathematical notations from [3] and formulate the semantic localization

problem with GPS offset by first discretizing time denoted by subscript k. There are

three reference frames. F−→M is the non-moving frame associated with the semantic

map, F−→V,k is attached to a moving vehicle, and F−→G,k is the GPS frame, which is

at an offset from F−→M . We then have three corresponding transformation matrices

between the frames. TV G,k ∈ SE(3) is the GPS measurement of the pose of vehicle

that is corrupted by noise, TGM,k ∈ SE(3) is the GPS-to-map offset, which needs

to be estimated for self-calibration, and TVM,k ∈ SE(3) is the pose of vehicle with

respect to the semantic map, which we ultimately desire. Figure 4.1 illustrates the

described problem setup.

At time step k, the j-th semantic cue, P j, detected by the onboard camera has

the pixel coordinates, pjI,k ∈ R2, as well as its known location in the map frame,

pjM ∈ R3, obtained from the semantic map. Using TVM,k, we can transform and

project the known location, pjM , to the image space and obtain the reprojection error

for simultaneous localization and GPS-to-map offset calibration.

Given the camera measurements of semantic cues, pjI,k, and their corresponding

locations known in the map, pjM , as well as the GPS measurements, TV G,k, we will

15
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F−→M

Semantic Map Frame

Moving
Vehicle Frame

F−→V,k

F−→G,k

GPS Frame

P j

Semantic
Cues

GPS
Measurement

TV G,k

Estimated
GPS Offset

TGM,k

Estimated
Vehicle Pose

TVM,k
pjM

Known
Locations
in Map

Camera
Observations

pjI,k

Figure 4.1: Definition of reference frames for the localization problem with semantic
cues and offset between GPS and semantic map frames.

estimate the vehicle pose,

TVM,k ∼ N
(
T̄VM,k,ΣVM,k

)
, (4.1)

and GPS-to-map offset,

TGM,k ∼ N
(
T̄GM,k,ΣGM,k

)
, (4.2)

where we assume them to be Gaussians. Their respective means are T̄VM,k and

T̄GM,k ∈ SE(3), and their associated covariance matrices are ΣVM,k and ΣGM,k ∈

R6×6, respectively. Using the technique of perturbation, we can express them as

TVM,k = exp(δξ∧VM,k)T̄VM,k, (4.3)

TGM,k = exp(δξ∧GM,k)T̄GM,k, (4.4)
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where the perturbation terms, δξVM,k, δξGM,k ∈ R6, are zero-mean Gaussians,

δξVM,k ∼ N (06×1,ΣVM,k) , (4.5)

δξGM,k ∼ N (06×1,ΣGM,k) . (4.6)

In addition, the three-dimensional translational and rotational velocities of the ve-

hicle, $k ∈ R6, expressed in the vehicle frame F−→V,k, are also estimated. Similar

to TVM,k and TGM,k, we can also break it down into the mean, $̄k ∈ R6, and the

zero-mean Gaussian perturbation term, δ$k ∈ R6,

$k = $̄k + δ$k. (4.7)

It is important to note that for the sake of the following mathematical formula-

tions, we have independently expressed the states mentioned above. However, these

states are in fact correlated and have to be jointly estimated, which is addressed when

we formulate the IEKF algorithm in Section 4.4.

4.2 Process Models

4.2.1 Vehicle Pose Process Model

We adopt the white-noise-on-acceleration model [2]. By assuming constant vehicle

velocity between consecutive discrete time steps, the process model of the vehicle pose

is

TVM,k = exp(w∧VM)

T$,k−1︷ ︸︸ ︷
exp(∆tk$

∧
k−1) TVM,k−1

= exp(w∧VM)T$,k−1TVM,k−1, (4.8)

where ∆tk = tk − tk−1 is the time interval, and wVM is the zero-mean Gaussian

process noise.

We apply the same perturbation technique as in (4.3) and (4.4) to model T$,k−1 ∼
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N
(
T̄$,k−1,Σ$,k−1

)
:

T$,k−1 = exp(δξ∧$,k−1)T̄$,k−1, (4.9)

where

δξ$,k−1 ∼ N (06×1,Σ$,k−1) , (4.10)

is the zero-mean Gaussian perturbation term.

Next, by substituting the expressions (4.3) and (4.9) into the right-hand side of

the process model (4.8), we have

TVM,k = exp(w∧VM)T$,k−1TVM,k−1

= exp(w∧VM) exp(δξ∧$,k−1) T̄$,k−1 exp(δξ∧VM,k−1)︸ ︷︷ ︸
exp((T̄ $,k−1δξV M,k−1)∧)T̄$,k−1

T̄VM,k−1

= exp(w∧VM) exp(δξ∧$,k−1) exp((T̄ $,k−1δξVM,k−1)∧)T̄$,k−1T̄VM,k−1. (4.11)

If we assume the nominal kinematics to be

T̄VM,k = T̄$,k−1T̄VM,k−1, (4.12)

and compare the right-hand side of the expressions (4.3) and (4.11), then

exp(δξ∧VM,k) = exp(w∧VM) exp(δξ∧$,k−1) exp((T̄ $,k−1δξVM,k−1)∧). (4.13)

Since all wVM , δξV G,k, and δξGM,k−1 are small noise or perturbation terms, we can

approximate the equation (4.13) using Baker–Campbell–Hausdorff (BCH) formula by

keeping the first order terms:

δξVM,k ≈ wVM + δξ$,k−1 + T̄ $,k−1δξVM,k−1

= T̄ $,k−1δξVM,k−1 + δξ$,k−1 + wVM , (4.14)

which is the perturbation kinematics.

Notice that we need to relate T̄$,k−1 and δξ$,k−1 back to $̄k−1 and δ$k−1, which
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are the mean and perturbation of the velocity state vector $k−1. We start with the

substitution made in (4.8),

T$,k−1 = exp(∆tk$
∧
k−1), (4.15)

and substitute in the perturbation expressions (4.7) and (4.9):

exp(δξ∧$,k−1)T̄$,k−1 = exp(∆tk($̄k−1 + δ$k−1)∧)

≈ exp(∆tk(J (∆tk$̄k−1)δ$k−1)∧) exp(∆tk$̄
∧
k−1). (4.16)

If we assume the nominal term to be

T̄$,k−1 = exp(∆tk$̄
∧
k−1), (4.17)

then we are left with

exp(δξ∧$,k−1) ≈ exp(∆tk(J (∆tk$̄k−1)δ$k−1)∧). (4.18)

Comparing the exponents on both sides, we obtain the relationship between the per-

turbation terms δξ$,k−1 and δ$k−1:

δξ$,k−1 ≈ ∆tkJ (∆tk$̄k−1)δ$k−1. (4.19)

We can now substitute the relationships (4.17) and (4.19) back into (4.12) and (4.14)

to arrive at the desired nominal kinematics:

T̄VM,k = T̄$,k−1T̄VM,k−1

= exp(∆tk$̄
∧
k−1)T̄VM,k−1, (4.20)
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and perturbation kinematics:

δξVM,k ≈ T̄ $,k−1δξVM,k−1 + δξ$,k−1 + wVM

≈ exp(∆tk$̄
f
k−1)δξVM,k−1 + ∆tkJ (∆tk$̄k−1)δ$k−1 + wVM . (4.21)

4.2.2 Vehicle Velocity Process Model

The vehicle velocity process model is simply

$k = $k−1 + w$. (4.22)

We again follow the white-noise-on-acceleration model, which breaks it down into the

following:

nominal: $̄k = $̄k−1, (4.23)

perturbation: δ$k = δ$k−1 + w$, (4.24)

where w$ ∈ R6 is the process noise.

It is clear that the process noise of vehicle pose and velocity, wVM and w$, are

correlated. Their joint distribution, as formulated in [2], is

wVM

w$

 ∼ N
 012×1,


1

3
∆t3kQC

1

2
∆t2kQC

1

2
∆t2kQC ∆tkQC


︸ ︷︷ ︸

QV M

 , (4.25)

where the tunable parameter QC ∈ R6×6 is a diagonal matrix with non-zero values

in its first and last diagonal entries corresponding to the vehicle’s translational and

rotational accelerations in the vehicle frame, which are along the x-axis (tangential

to its motion) and about the z-axis (normal to the ground plane), respectively.
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4.2.3 GPS Offset Process Model

The GPS-to-map offset, which very gradually varies over time, is modelled as a ran-

dom walk. This is a convenient way to handle the estimation of such a time-dependent

unknown parameter:

TGM,k = exp(w∧GM)TGM,k−1, (4.26)

where wGM ∼ N (06×1,QGM) is the process noise. We can break it down into the

following nominal and perturbation kinematics:

nominal kinematics: T̄GM,k = T̄GM,k−1, (4.27)

perturbation kinematics: δξGM,k = δξGM,k−1 + wGM . (4.28)

4.3 Observation Models

4.3.1 GPS Observation Model

In this work, a GPS measurement refers to a preprocessed quantity that is a three-

dimensional transformation matrix TV G,k with three degrees of freedom each in po-

sition and orientation. This is the output of commercial GPS-based localization

solutions such as Applanix POS LV, which integrates GPS and IMU information.

The observation model of GPS measurement, TV G,k, is

TV G,k = exp(n∧V G)TVM,kT
−1
GM,k, (4.29)

where the measurement noise is nV G ∼ N (06×1,RV G).

Next, we linearize the observation model. Using the perturbation technique, we
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can express both side of (4.29) as

exp(δξ∧V G,k)T̄V G,k︸ ︷︷ ︸
TV G,k

= exp(n∧V G) exp(δξ∧VM,k)T̄VM,k︸ ︷︷ ︸
TV M,k

[exp(δξ∧GM,k)T̄GM,k︸ ︷︷ ︸
TGM,k

]−1

= exp(n∧V G) exp(δξ∧VM,k)T̄VM,kT̄
−1
GM,k exp(−δξ∧GM,k)

= exp(n∧V G) exp(δξ∧VM,k)

exp((Ad(T̄VM,kT̄
−1
GM,k)(−δξGM,k))

∧)T̄VM,kT̄
−1
GM,k. (4.30)

If we assume the nominal kinematics to be

T̄V G,k = T̄VM,kT̄
−1
GM,k, (4.31)

then we have

exp(δξ∧V G,k) = exp(n∧V G) exp(δξ∧VM,k) exp((Ad(T̄VM,kT̄
−1
GM,k)(−δξGM,k))

∧). (4.32)

Since all nV G, δξVM,k, and δξGM,k are small, we can obtain the following approxima-

tion by applying the BCH formula to (4.32):

δξV G,k ≈ nV G + δξVM,k + Ad(T̄VM,kT̄
−1
GM,k)(−δξGM,k)

= δξVM,k − Ad(T̄VM,kT̄
−1
GM,k)δξGM,k + nV G

=
[
16×6 06×6 −Ad(T̄VM,kT̄

−1
GM,k)

]
︸ ︷︷ ︸

GV G,k

δξk + nV G, (4.33)

where the perturbation terms of the vehicle states and GPS offset are stacked into

δξk =


δξVM,k

δ$k

δξGM,k

 , (4.34)

and GV G,k is the resulting coefficient matrix of the linearized GPS observation model.
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4.3.2 Traffic Light Observation Model

The traffic lights are modelled as point landmarks as described in Section 3.2. The

observation model of the j-th traffic light pixel measurement, pjI,k, can be broken

down into two steps. First, the corresponding known location in the semantic map,

pjM , obtained through data association, is transformed to the camera reference frame:

pjC,k = h(pjM ,TVM,k) = DCTCV TVM,kq
j
M , (4.35)

where pjM is expressed in 4× 1 homogeneous coordinates,

qjM =

pjM

1

 , (4.36)

and TCV ∈ SE(3) is the known constant transformation between vehicle frame and

camera frame. To convert the resulting homogeneous coordinates back to 3× 1, the

projection matrix

DC =


1 0 0 0

0 1 0 0

0 0 1 0

 , (4.37)

is applied. The function h(·) summarizes this coordinate transformation.

Next, we project pjC,k =
[
xjC,k yjC,k zjC,k

]T
to the image space:

pjI,k = DIKC

pjC,k

zjC,k︸ ︷︷ ︸
g(pj

C,k)

+nlight, (4.38)

where

DI =

1 0 0

0 1 0

 , (4.39)

makes the resulting pixel measurement 2×1, and KC ∈ R3×3 is the known camera in-

trinsic matrix. The projection is represented by the function g(·), with the additional

pixel measurement noise nlight ∼ N (02×1,Rlight) that is assumed to be Gaussian.
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The overall observation model combining (4.35) and (4.38) can be summarized as

pjI,k = g(h(pjM ,TVM,k)) + nlight

= g(pjC,k) + nlight. (4.40)

To linearize the the observation model, we first compute the Jacobian matrix of

pjC,k by substituting

TVM,k = exp(δξ∧VM,k)T̄VM,k, (4.41)

into (4.35):

pjC,k = DCTCV (exp(δξ∧VM,k)T̄VM,k)q
j
M

≈ DCTCV (1 + δξ∧VM,k)T̄VM,kq
j
M

= DCTCV T̄VM,kq
j
M︸ ︷︷ ︸

p̄j
C,k

+DCTCV δξ
∧
VM,kT̄VM,kq

j
M

= p̄jC,k + DCTCV (T̄VM,kq
j
M)�︸ ︷︷ ︸

Zj
light,k

δξVM,k

= p̄jC,k + Zj
light,kδξVM,k, (4.42)

where the Jacobian matrix is Zj
light,k =

∂pjC,k
∂TVM,k

∣∣∣∣
T̄V M,k

.

Then, using the chain rule, we work out the linearized observation model. Starting

with (4.40), we have

pjI,k = g(pjC,k) + nlight

≈ g(p̄jC,k + Zj
light,kδξVM,k) + nlight

≈ g(p̄jC,k) + Sjlight,kZ
j
light,kδξVM,k + nlight, (4.43)
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where

Sjlight,k =
∂g

∂pjC,k

∣∣∣∣
p̄j
C,k

= DIKC



1

zjC,k
0

−xjC,k
(zjC,k)

2

0
1

zjC,k

−yjC,k
(zjC,k)

2

0 0 0


p̄j
C,k

. (4.44)

If we express the left-hand side of (4.43) as a mean and a perturbation,

pjI,k = p̄jI,k + δpjI,k, (4.45)

and subtract off the nominal part,

p̄jI,k = g(p̄jC,k), (4.46)

from both sides of (4.43), then we are left with

δpjI,k ≈ Sjlight,kZ
j
light,kδξVM,k + nlight

=
[
Sjlight,kZ

j
light,k 02×6 02×6

]
δξk + nlight. (4.47)

Finally, the coefficient matrix of the linearized observation model is

Gj
light,k =

[
Sjlight,kZ

j
light,k 02×6 02×6

]
. (4.48)

4.3.3 Lane Marking Observation Model

Using the data association process described in Section 3.3, we obtain the lane mark-

ing observations as straight lines in the image space. For the j-th observed lane

marking, the corresponding lane line in the semantic map is defined by two end

points, pjM,1 and pjM,2. We start out similarly to the traffic light observation model
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and transform the two points to the camera frame:

pjC,km =


xjC,km

yjC,km

zjC,km

 = DCTCV TVM,kq
j
M,m, (4.49)

where m = 1, 2, and pjM,m is expressed in 4× 1 homogeneous coordinates,

qjM,m =

pjM,m

1

 . (4.50)

Then, they are projected to the camera image space:

pjI,km =

xjI,km
yjI,km

 = DIKC

pjC,km

zjC,km
. (4.51)

Because the lane markings run mostly parallel to the vehicle trajectory, they offer in-

formation largely in the lateral direction of the vehicle as opposed to longitudinal di-

rection. Therefore, we define the observation model to be the horizontal component of

two pixel coordinates that are on the lane line in the image space, xjk =
[
xj1,k xj2,k

]T
,

which contain no longitudinal information. The pixels are selected to correspond with

two different vertical pixel coordinates, yj =
[
yj1 yj2

]T
, which we can use to solve for

xjk:

xjk =

xjI,k1

xjI,k1

+
xjI,k2 − x

j
I,k1

yjI,k2 − y
j
I,k1

yj1 − yjI,k1

yj2 − y
j
I,k1

+ nlane, (4.52)

where the Gaussian measurement noise is nlane ∼ N (02×1,Rlane).

The overall observation model combining (4.49), (4.51), and (4.52) can be sum-

marized as

xjk =

xj1,k
xj2,k

 =

f(`jM ,TVM,k, y
j
1)

f(`jM ,TVM,k, y
j
2)


︸ ︷︷ ︸

f(`jM ,TV M,k,yj)

+nlane, (4.53)

where `jM = {pjM,1,p
j
M,2} is the known lane line from the semantic map, and f(·)
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projects the lane line, `jM , from semantic map to camera image space given vehicle

pose estimation, then computes the horizontal pixel coordinates given yjm.

Because the linearization process is identical for each xjm,k, m = 1, 2, in xjk of the

observation model, we only need to do the derivation once. From (4.53), we know

that xjm,k is a function of the vehicle pose, TVM,k, so it can be expressed as

xjm,k = f(TVM,k︸ ︷︷ ︸
exp(δξ∧V M,k)T̄V M,k

) + nlane,m

≈ f(T̄VM,k) + Gj
lane,kmδξVM,k + nlane,m, (4.54)

where nlane,m is the component of the measurement noise term nlane.

The coefficient matrix of the linearized observation model, Gj
lane,km, can be ex-

panded using the chain rule as follows:

Gj
lane,km =

∂xjm,k
∂TVM,k

∣∣∣∣
T̄V M,k

=

(
∂xjm,k

∂pjI,k1

∂pjI,k1

∂pjC,k1

∂pjC,k1

∂TVM,k

+
∂xjm,k

∂pjI,k2

∂pjI,k2

∂pjC,k2

∂pjC,k2

∂TVM,k

)∣∣∣∣∣
T̄V M,k

. (4.55)

We now need to derive each term in this expression. The Jacobian matrices,
∂xjm,k

∂pjI,k1

and
∂xjm,k

∂pjI,k2

, can be computed from equation (4.52):

∂xjm,k

∂pjI,k1

=

[(
1−

yjm − y
j
I,k1

yjI,k2 − y
j
I,k1

)
(xjI,k2 − x

j
I,k1)[(yjm − y

j
I,k1)− (yjI,k2 − y

j
I,k1)]

(yjI,k2 − y
j
I,k1)2

]
,

(4.56)

∂xjm,k

∂pjI,k2

=

[
yjm − y

j
I,k1

yjI,k2 − y
j
I,k1

−(xjI,k2 − x
j
I,k1)(yjm − y

j
I,k1)

(yjI,k2 − y
j
I,k1)2

]
, (4.57)
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and
∂pjI,km

∂pjC,km
is the same as in (4.44):

∂pjI,km

∂pjC,km
= DIKC



1

zjC,km
0

−xjC,km
(zjC,km)2

0
1

zjC,km

−yjC,km
(zjC,km)2

0 0 0


. (4.58)

For
∂pjC,km
∂TVM,k

, we start with (4.49) and use the same trick as in (4.42):

pjC,km = DCTCV (exp(δξ∧VM,k)T̄VM,k)q
j
M,m

≈ DCTCV (1 + δξ∧VM,k)T̄VM,kq
j
M,m

= DCTCV T̄VM,kq
j
M,m︸ ︷︷ ︸

p̄j
C,km

+ DCTCV (T̄VM,kq
j
M,m)�︸ ︷︷ ︸

Zj
lane,km

δξVM,k

= p̄jC,km + Zj
lane,kmδξVM,k, (4.59)

where Zj
lane,km =

∂pjC,km
∂TVM,k

is the desired Jacobian matrix.

Lastly, if we express the left-hand side of (4.54) as a mean and a perturbation,

xnkm = x̄jm,k + δxjm,k, (4.60)

and subtract off the nominal solution,

x̄jm,k = f(T̄VM,k), (4.61)

from both sides of (4.54), then we are left with

δxnkm ≈ Gj
lane,kmδξVM,k + nlane,m

=
[
Gj

lane,km 01×6 01×6

]
δξk + nlane,m. (4.62)
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To obtain the coefficient matrix of the linearized observation model for xjk, which

consists of two horizontal pixel measurements, we simply stack them:

Gj
lane,k =

Gj
lane,k1 01×6 01×6

Gj
lane,k2 01×6 01×6

 . (4.63)

4.3.4 Wheel Encoders Observation Model

The onboard wheel encoders provide measurements on vehicle velocities. Specifi-

cally, it measures the vehicle’s longitudinal velocity, vk, and angular velocity, ωk, in

yaw. Wheel encoders are included to improve robustness against GPS dropouts. The

observation model is

$wheel,k =

vk
ωk

 = D$$k + n$, (4.64)

where

D$ =

1 0 0 0 0 0

0 0 0 0 0 1

 , (4.65)

extracts the corresponding vehicle velocities from $k, and the Gaussian noise term

is n$ ∼ N (02×1,R$).

We do not need to linearize the observation model because it is already linear.

Therefore, the derivation of the coefficient matrix is straightforward by substituting

the following two expressions,

$wheel,k = $̄wheel,k + δ$wheel,k, (4.66)

$k = $̄k + δ$k, (4.67)

into the observation model (4.64):

$̄wheel,k + δ$wheel,k = D$($̄k + δ$k) + n$. (4.68)
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After subtracting the nominal kinematics,

$̄wheel,k = D$$̄k, (4.69)

from both sides of the equation, the following remains:

δ$wheel,k = D$δ$k + n$

=
[
02×6 D$ 02×6

]
︸ ︷︷ ︸

G$

δξk + n$, (4.70)

where G$ is the constant coefficient matrix of the wheel encoder observation model.

4.3.5 Pseudo-Measurement Observation Model

In addition to the aforementioned sensor observations, some pseudo-measurements

are also introduced by leveraging the physical constraints of the vehicle, including

the vehicle pose and velocity.

Vehicle Elevation

We take advantage of the fact that the vehicle always stays on the ground, which

is assumed to be the xy-plane of the map frame. Therefore, its elevation is soft-

constrained to zero with respect to the semantic map frame. This effectively reduces

the localization problem down to a 2D space while maintaining the problem formu-

lation in 3D.

For the vehicle elevation, we simply have

zpseudo,k = Dz1T
−1
VM,kDz2 + nz, (4.71)

where

Dz1 =
[
0 0 1 0

]
, (4.72)
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and

Dz2 =


0

0

0

1

 , (4.73)

collectively extract the vehicle elevation from TVM,k. The pseudo-measurement,

zpseudo,k, is always zero, and the Gaussian noise term is nz ∼ N (0, rz), with a small

rz to effectively constraint the vehicle elevation.

As usual, we linearize the observation model utilizing the technique of perturbation

and substitute

zpseudo,k = z̄pseudo,k + δzpseudo,k, (4.74)

TVM,k = exp(δξ∧VM,k)T̄VM,k, (4.75)

into (4.71):

z̄pseudo,k + δzpseudo,k = Dz1(exp(δξ∧VM,k)T̄VM,k)
−1Dz2 + nz

= Dz1T̄
−1
VM,k exp(−δξ∧VM,k)Dz2 + nz

≈ Dz1T̄
−1
VM,k(1− δξ

∧
VM,k)Dz2 + nz

= Dz1T̄
−1
VM,kDz2︸ ︷︷ ︸

z̄pseudo,k

−Dz1T̄
−1
VM,kδξ

∧
VM,kDz2 + nz. (4.76)

The perturbation part is

δzpseudo,k ≈ −Dz1T̄
−1
VM,kδξ

∧
VM,kDz2 + nz

= −Dz1T̄
−1
VM,kD

�
z2δξVM,k + nz

=
[
−Dz1T̄

−1
VM,kD

�
z2 01×12

]
︸ ︷︷ ︸

Gz,k

δξk + nz, (4.77)

and we obtain the coefficient matrix Gz,k for vehicle elevation observation model.
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Vehicle Orientation

In addition to zero vehicle elevation, the assumption also implies that the vehicle’s

roll and pitch are near zero with respect to the semantic map frame.

The observation model of the roll and pitch is a little more complicated. We know

that the vehicle orientation, CVM,k ∈ SO(3), which is part of the current vehicle pose

estimation, TVM,k, contains the information of roll, pitch, and yaw. Rather than

complicating the mathematical formulation in an attempt to isolate roll and pitch for

the pseudo-measurement observation model, we instead keep CVM,k intact and have

the following observation model:

Cpseudo,k = exp(n∧C)C−1
VM,k, (4.78)

where the Gaussian noise term is

nC ∼ N (03×1,RC) , RC =


rc1

rc2

rc3

 . (4.79)

In order to have its roll and pitch be zero, the pseudo-measurement, Cpseudo,k,

takes the form of a rotation matrix that rotates about the z-axis in the semantic map

frame:

Cpseudo,k =


cos θk − sin θk 0

sin θk cos θk 0

0 0 1

 , (4.80)

where θk is the vehicle yaw extracted from the current vehicle orientation estimation

expressed in the map frame, C−1
VM,k = CT

VM,k.

Once again, we express the pseudo-measurement and the current vehicle orienta-

tion estimation in terms of means and perturbations:

Cpseudo,k = exp(δζ∧pseudo,k)C̄pseudo,k, (4.81)

CVM,k = exp(δζ∧VM,k)C̄VM,k, (4.82)
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where the perturbation terms are δζpseudo,k, δζVM,k ∈ R3, and δζVM,k is the last three

elements of δξVM,k ∈ R6. We substitute these two expressions into the observation

model (4.78):

exp(δζ∧pseudo,k)C̄pseudo,k = exp(n∧C)[exp(δζ∧VM,k)C̄VM,k]
−1

= exp(n∧C)C̄−1
VM,k exp(−δζ∧VM,k)

= exp(n∧C) exp((−C̄−1
VM,kδζVM,k)

∧)C̄−1
VM,k, (4.83)

and assume the nominal kinematics to be

C̄pseudo,k = C̄−1
VM,k, (4.84)

then the remaining perturbation terms are

exp(δζ∧pseudo,k) = exp(n∧C) exp((−C̄−1
VM,kδζVM,k)

∧). (4.85)

Since both nC and δζVM,k are small, we can obtain the following approximation

using the BCH formula:

δζpseudo,k ≈ nC − C̄−1
VM,kδζVM,k

= −C̄−1
VM,kδζVM,k + nC

=
[
03×3 −C̄−1

VM,k 03×12

]
︸ ︷︷ ︸

GC,k

δξk + nC , (4.86)

where GC,k is the coefficient matrix of the linearized observation model.

Recall that in order to keep the observation model (4.78) simple, the vehicle

yaw, which should not be part of the pseudo-measurements, has been included in the

formulation. Fortunately, the yaw component can be easily discarded by removing the

last row of GC,k. We will denote the remaining part of the coefficient matrix as G′C,k =

DIGC,k. For the same reason, the covariance component, rc3, which corresponds to

the vehicle yaw, is merely a dummy variable, and the remaining covariance matrix is
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R′C =

rc1
rc2

 . (4.87)

Vehicle Velocity

Besides the vehicle pose, we also assume that the rear wheels do not slip sideways, thus

the lateral vehicle velocity is also near zero. The observation model is straightforward:

vpseudo,k = Dv$k + nv, (4.88)

where

Dv =
[
0 1 0 0 0 0

]
, (4.89)

extracts the lateral vehicle velocity from$k. Again, the pseudo-measurement, vpseudo,k,

is always zero, and the Gaussian noise term is nv ∼ N (0, rv), with a small rv to con-

straint the lateral velocity.

Similar to the wheel encoders, the observation model is linear. So we can go

through the same derivation and obtain the coefficient matrix:

Gv =
[
01×6 Dv 01×6

]
. (4.90)

4.4 Modified IEKF Formulation

4.4.1 Prediction Step

The prediction step follows the standard IEKF formulation by jointly estimating the

vehicle pose, velocity, and GPS offset. Using the derived nominal kinematics models

(4.20), (4.23) and (4.27), we have the linearized predicted means:

ŤVM,k = exp(∆tk$̂
∧
k−1)T̂VM,k−1, (4.91)

$̌k = $̂k−1, (4.92)

ŤGM,k = T̂GM,k−1. (4.93)
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Because the states are correlated, we combine the associated perturbation terms,

δξ̌VM,k, δ$̌k, and δξ̌GM,k, into one perturbation term, δξ̌k ∈ R18, then apply the

perturbation kinematics models (4.21), (4.24) and (4.28):

δξ̌k =


δξ̌VM,k

δ$̌k

δξ̌GM,k



=


exp(∆tk$̂

f
k−1)δξ̂VM,k−1 + ∆tkJ (∆tk$̂k−1)δ$̂k−1 + wVM,k

δ$̂k−1 + w$,k

δξ̂GM,k−1 + wGM,k



=


exp(∆tk$̂

f
k−1) ∆tkJ (∆tk$̂k−1) 0

0 1 0

0 0 1


︸ ︷︷ ︸

Fk−1


δξ̂VM,k−1

δ$̂k−1

δξ̂GM,k−1


︸ ︷︷ ︸

δξ̂k−1

+


wVM,k

w$,k

wGM,k


︸ ︷︷ ︸

wk

= Fk−1δξ̂k−1 + wk, (4.94)

where Fk−1 is the combined Jacobian matrix of the linearized process models (4.8),

(4.22), and (4.26) at time step k − 1, and the combined process noise term is

wk ∼ N

 018×1,

QVM 012×6

06×12 QGM


︸ ︷︷ ︸

Qk

 . (4.95)

Lastly, the predicted joint covariance matrix is

P̌k = E
[
δξ̌kδξ̌

T
k

]
= Fk−1P̂k−1Fk−1

T + Qk. (4.96)

4.4.2 Correction Step

The iterative correction step of the IEKF is modified by replacing it with a batch

optimization formulation with time window size of one (the current time step) [2].
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The cost function to optimize is J = Jv + Jy, where

Jv =
1

2
ev,k

T P̌−1
k ev,k, (4.97)

Jy =
∑
i

1

2
eiy,k

T
Ri−1

eiy,k, (4.98)

are the prior and measurement cost terms, respectively.

Prior Cost Term

The prior errors, ev,k, are computed using the predicted means, ŤVM,k, $̌k, and

ŤGM,k, from the prediction step (4.91), (4.92), and (4.93). This encourages a consis-

tent trajectory that respects the vehicle dynamics between the estimated poses. The

prior errors are

ev,k =


ln(TVM,kŤ

−1
VM,k)

∨

$k − $̌k

ln(TGM,kŤ
−1
GM,k)

∨

 , (4.99)

at the first time step, and

ev,k =


ln(TVM,kT̂

−1
VM,k−1)∨ −∆tk$̂k−1

J (ln(TVM,kT̂
−1
VM,k−1)∨)−1$k − $̂k−1

ln(TGM,kT̂
−1
GM,k−1)∨

 , (4.100)

for the rest of the trajectory [2]. Note that we only update the estimations at the

current time step k, so the quantities at time step k − 1 in the prior errors are

considered constants. Their values are taken from the results of the correction step

at time step k − 1.

Using the prior errors expressed above and the covariance matrix, P̌k, obtained

from the prediction step, we can construct the prior cost term Jv as shown in (4.97).

Next, we seek to linearize the prior errors (4.99) and (4.100) about the operating

point, xop = {T̂VM,op,k, $̂op,k, T̂GM,op,k}. Using BCH approximation and perturba-

tion, the inverse exponential mapping of a transformation matrix T = exp(δξ)T̄op
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can be approximated as

ln(T)∨ ≈ ln(T̄op)∨ + J (ln(T̄op)∨)−1δξ, (4.101)

which leads us to the following approximation:

J (ln(TVM,kT̂
−1
VM,k−1)∨)−1$k

≈ J (ln(T̂op,k,k−1)∨ + J (ln(T̂op,k,k−1)∨)−1δξVM,k)
−1($̂op,k + δ$k)

≈ J −1
k,k−1$̂op,k −

1

2
(J −1

k,k−1δξVM,k)
f$̂op,k + J −1

k,k−1δ$k

= J −1
k,k−1$̂op,k +

1

2
$̂f

op,kJ −1
k,k−1δξVM,k + J −1

k,k−1δ$k, (4.102)

where T̂op,k,k−1 = T̂VM,op,kT̂
−1
VM,k−1 and J k,k−1 = J (ln(T̂op,k,k−1)∨).

Finally, we derive the linearized prior errors at the first time step:

ev,k ≈


ln(T̂VM,op,kŤ

−1
VM,k)

∨

$̂op,k − $̌k

ln(T̂GM,op,kŤ
−1
GM,k)

∨

− Ekδx, (4.103)

where

Ek =


−J −1

k,k−1 0 0

0 1 0

0 0 −J (ln(T̂GM,op,kT̂
−1
GM,k−1)∨)−1

 . (4.104)

For the rest of the time steps,

ev,k ≈


ln(T̂VM,op,kT̂

−1
VM,k−1)∨ −∆tk$̂k−1

J (ln(T̂VM,op,kT̂
−1
VM,k−1)∨)−1$̂op,k − $̂k−1

ln(T̂GM,op,kT̂
−1
GM,k−1)∨

− Ekδx, (4.105)
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where

Ek =


−J −1

k,k−1 0 0

−1
2
$̂f

op,kJ −1
k,k−1 −J

−1
k,k−1 0

0 0 −J (ln(T̂GM,op,kT̂
−1
GM,k−1)∨)−1

 . (4.106)

The perturbation term is

δx =


δξVM,k

δ$k

δξGM,k

 . (4.107)

Measurement Cost Term

The overall measurement cost term Jy is a sum of the cost terms derived from the

sensor measurements, including GPS, semantic cues, wheel encoders, and pseudo-

measurements. For the i-th measurement, eiy,k is the measurement error computed

with the measurement and the operating point, xop = {T̂VM,op,k, $̂op,k, T̂GM,op,k},

and Ri is the associated observation covariance matrix. Depending on the type of

measurement, they each take on one of the following forms:

• GPS (4.29): eiy,k = ln(TV G,kT̂
−1
V G,op,k)

∨,

Ri = RV G,
(4.108)

where

T̂V G,op,k = T̂VM,op,kT̂
−1
GM,op,k. (4.109)

• Traffic Lights (4.40): eiy,k = pjI,k − p̂jI,op,k,

Ri = Rlight,
(4.110)

where

p̂jI,op,k = g(h(pjM , T̂VM,op,k)). (4.111)
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• Lane Markings (4.53): eiy,k = xjk − x̂jop,k,

Ri = Rlane,
(4.112)

where

x̂jop,k = f(`jM , T̂VM,op,k,y
j). (4.113)

• Wheel Encoders (4.64):

eiy,k = $wheel,k − $̂wheel,op,k,

Ri = Rlane,
(4.114)

where

$̂wheel,op,k = D$$̂op,k. (4.115)

• Pseudo-Measurement - Vehicle Elevation (4.71):

eiy,k = zpseudo,k − ẑop,k,

Ri = rz,
(4.116)

where

ẑop,k = Dz1T̂VM,op,kDz2. (4.117)

• Pseudo-Measurement - Vehicle Roll & Pitch (4.78):

eiy,k = DI ln(Cpseudo,kĈ
−1
VM,op,k)

∨,

Ri = R′C ,
(4.118)

where ĈVM,op,k ∈ SO(3) is extracted from T̂VM,op,k, and DI removes the error

term that corresponds to the vehicle yaw, as discussed before when formulating

the observation model (4.78).
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• Pseudo-Measurement - Vehicle Velocity (4.88):

eiy,k = vpseudo,k − v̂op,k,

Ri = rv,
(4.119)

where

v̂op,k = Dv$̂op,k. (4.120)

M-Estimator

In order to minimize the impact of incorrect data association of semantic cues, a

Cauchy M-estimator is deployed [16]. Because the inverse covariance matrix, Ri−1
,

acts as a weighting factor for each semantic cue measurement cost term in (4.98), we

replace it by

Yi
k

−1
= (1 + eiy,k

T
Ri−1

eiy,k)
−1Ri−1

. (4.121)

Given a reasonably well initialized vehicle position, this scheme effectively prevents

localization failures by scaling down the importance of outliers, which produce large

measurement errors, via the associated Yi
k
−1

.

Gauss-Newton Method

The cost function, J = Jv + Jy, is optimized using the standard Gauss-Newton

approach. We start by initializing the operating point, xop = {T̂VM,op,k, $̂op,k,

T̂GM,op,k}, to the predicted means, ŤVM,k, $̌k, and ŤGM,k, from the prediction step.

In each iteration, we first linearize the prior and measurement error terms, ev,k and

eiy,k, about the operating point, xop. The resulting combined prior Jacobian matrix,

Ek, has been derived in (4.104) and (4.106). Similarly, the combined measurement

Jacobian matrix, Gk, is obtained by vertically stacking the Jacobian matrices derived

earlier, which correspond to all the measurements at time step k, including GV G,k,

Gj
light,k, Gj

lane,k, G$, Gz,k, G′C,k, and Gv.

Next, we substitute the linearized error terms into the cost function and set its
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derivative with respect to the perturbation term,

δx =


δξVM,k

δ$k

δξGM,k

 ∈ R18, (4.122)

to zero. This produces the update equation

(Apri + Ameas)δx
∗ = bpri + bmeas, (4.123)

where

Apri = ET
k P̌−1

k Ek, (4.124)

Ameas = GT
kR−1

k Gk, (4.125)

bpri = ET
k P̌−1

k ev,k, (4.126)

bmeas = GT
kR−1

k ey,k, (4.127)

δx∗ is the optimal perturbation, and Rk is a block diagonal matrix that combines all

Ri and Yi
k. Solving for δx∗, we update the operating point as follows:

T̂VM,op,k ← exp((δξ∗VM,k)
∧)T̂VM,op,k, (4.128)

$̂op,k ← $̂op,k + δ$∗k, (4.129)

T̂GM,op,k ← exp((δξ∗GM,k)
∧)T̂GM,op,k. (4.130)

Finally, the results of the correction step, T̂VM,k, $̂k, and T̂GM,k, are output after

convergence or a user-specified number of iterations. If the number of iterations is

limited to one, this IEKF formulation simply becomes an EKF. Note that if the

cost function, J , increases after an update, a backtracking operation is performed by

undoing the update, halving the update step δx∗, then reapplying the update. The



42 CHAPTER 4. VEHICLE LOCALIZATION

corresponding covariance is computed as

P̂k = (Apri + Ameas)
−1, (4.131)

from the last iteration.

4.5 Toy Example

To validate the effectiveness of our IEKF formulation, simulations were conducted

with a simplified setup. First, a real-world vehicle trajectory of around 1 km was

collected and used as the ground truth vehicle localization, TVM,k, in the simulation.

Then, to simulate the semantic cues, we placed some traffic light point landmarks and

lane boundaries along the vehicle trajectory as shown in the top left plot of Figure 4.2.

Based on this simple environment, the remaining information required for the

simulation was generated: the ground truth motion trajectory of the GPS frame,

TGM,k, was initialized at a pose not too far off from the semantic map frame, F−→M ,

and then simulated by performing a random walk; the GPS measurements, TV G,k,

were generated by compounding the simulated TGM,k and TVM,k; the front-facing

camera images were produced by projecting the traffic lights and lane boundaries

into the image space at every time step k along the vehicle trajectory using the

calibration information of a real camera. All the measurements are then injected

with synthetic Gaussian noises. In this toy example, wheel encoders were not included

because they are only necessary when GPS dropouts occur, and we also assume perfect

data association of the semantic cue measurements by recording the correspondences

between the semantic cue positions in the map and their image projections.

A snapshot of the simulation can be seen in Figure 4.2, where the overview of the

vehicle trajectory, the simulated camera view, the current vehicle pose estimation, and

the estimation of GPS-to-map offset are shown. The semantic cues are also visible as

circles (traffic lights) and lines (lane boundaries). The resulting vehicle localization

errors shown in Figure 4.3 indicates that the developed IEKF localization can achieve
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Figure 4.2: A view of the toy example simulation. Top left: the overview of the
simulation, including the entire vehicle trajectory (dashed black line) and semantic
cues represented as circles for traffic lights and solid black lines for lane boundaries.
Note the stretch of trajectory where no lane boundary exists, which impacts the
localization accuracy. Bottom left: the simulated camera view. The blue circle and
quadrilateral are the detected traffic light and lane boundaries; the green ones are
their predicted positions based on the estimated vehicle pose. Top right: the ground
truth GPS frame is in red, blue, and green; the estimated GPS frame is in magenta,
dark green, and cyan. Notice that they are very close, which indicates that the
IEKF formulation is able to correct for GPS-to-map offset as designed. Bottom right:
a zoomed-in view around the vehicle with the semantic cues. Magenta lines and
shadings indicate detections of traffic lights and lane boundaries, respectively, by the
vehicle.

decent performance with lateral errors mostly within 10cm, which is acceptable for

autonomous vehicle navigation.

It is worth mentioning that this toy example was also used to evaluate and decide

between EKF- and UKF-based algorithm during early development of the semantic

localizer, when the correction step was yet to be made iterative. The two versions
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Scenario 1 Scenario 2 Scenario 3
EKF 3.3369 s 2.4323 s 2.2842 s
UKF 132.6152 s 88.7561 s 93.5365 s

Table 4.1: The runtime of vehicle localization algorithms in three different scenarios
of the toy example. EKF-based algorithm is faster than UKF-based algorithm by
orders of magnitude.

of localizer were applied to the toy example, along with two other scenarios con-

sisting of different vehicle trajectories and semantic cue placements. However, as

Table 4.1 shows, because of the sigma point generation process utilized by UKF,

the computational time of the UKF-based localizer was orders of magnitude slower

than EKF-based localizer, making it infeasible for real-time self-driving applications.

Therefore, UKF was eliminated from our consideration, and EKF-based approach be-

came the sole focus of all subsequent development of the localization algorithm from

that point on.
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Figure 4.3: Vehicle localization errors of EKF-based algorithm in the toy example.
The dotted lines form the uncertainty envelope. Note that the lateral error exceeds 10
cm at around time step 800, which corresponds to the stretch of the vehicle trajectory
without any lane boundary.



Chapter 5

Experiments

The proposed semantic localization algorithm was tested in simulations followed

by experiments using real-world datasets. However, significant difficulties were en-

counter when selecting datasets that could be used to reliably evaluate our localization

method. As a compromise, quantitative results are presented based on the simulation,

and anecdotal results gathered from two real-world datasets are shown to validate the

feasibility of our approach in reality.

5.1 Carla Simulation

5.1.1 Simulation Setup and Process

Our localization algorithm was first tested using Carla, an autonomous driving simu-

lator [11]. In particular, the simulations were conducted using the map “Town10HD”,

which offers a photorealistic urban driving environment and a perfect semantic map.

The benefit of using a simulator is the availability of perfect semantic maps and

ground truth, which simplifies the analysis of localization results. Due to Carla not

supporting an offset in GPS measurements, we instead manually injected one with

2 m in both longitude and latitude. The time-dependency of the offset is ignored since

it is negligible in the duration of a simulation run. With this setup, the simulation

data was obtained from roughly 1 km of driving. The vehicle path comparing ground

46
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Figure 5.1: Vehicle path of Carla simulation with total length of roughly 1 km. The
ground truth path is compared with results from uncalibrated GPS and our proposed
approach. One of the turns is zoomed in to show that the estimated path using our
approach very closely overlap with the ground truth path, while the uncalibrated
GPS path significantly diverges from it.

truth with our method and uncalibrated GPS is shown in Figure 5.1.

5.1.2 Parameter Tuning

Our localization pipeline involves numerous parameters, including the outlier distance

threshold in data association, and matrices related to the state estimator. In the

process models, QC is associated with the state covariance of vehicle pose and velocity,

and QGM affects the magnitude of the random walk of GPS frame. The observation

noise parameters consist of RV G, Rlight, Rlane, R$, and Rpseudo = {rz,R′C , rv} that

are associated with GPS, traffic light, lane markings, wheel encoders, and pseudo-

measurements, respectively. These parameters are manually tuned by initializing

them with reasonable values, followed by adjustments to achieve optimal performance

evaluated on a validation dataset generated from Carla.
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Table 5.1: Carla localization accuracy of the proposed IEKF localizer with & without
GPS dropouts. Due to abundance of lane markings, little degradation of lateral and
heading accuracy is observed when GPS dropouts occur.

Experimental Scenarios
No Dropouts GPS Dropouts

Errors Median 95% 99% Median 95% 99%
Longitudinal (m) 0.053 0.145 0.185 0.069 0.370 0.504

Lateral (m) 0.031 0.104 0.172 0.032 0.158 0.270
Heading (rad) 0.004 0.014 0.025 0.004 0.015 0.028

5.1.3 Localization Results

The longitudinal, lateral, and heading localization errors computed using ground

truth are summarized in Table 5.1. Our proposed method achieves highly accurate

results with a median longitudinal error of 0.053 m, a median lateral error of 0.031 m,

and a median heading error of 0.004 radians. When shown as a histogram in Fig-

ure 5.2, we observe that the longitudinal errors have a larger spread than lateral

errors, and the vehicle heading always remains very accurate. This is in line with

our expectations since lane markings, the most abundant type of semantic cues, only

provide lateral and heading corrections. In contrast, longitudinal corrections offered

by traffic lights are only available around road intersections.

GPS Offset Estimation

Being the key motivation for developing the proposed localization algorithm, achiev-

ing accurate estimation of the GPS-to-map offset is crucial. The blue line in Figure 5.3

shows the GPS offset estimation error. Starting from a poor initial guess, our local-

ization algorithm successfully refines the estimates and drops the error down to just

a few centimetres, with no manual calibration required.

GPS Dropouts

To evaluate the robustness of our localization algorithm, we introduced periodic GPS

dropouts lasting for 30 seconds in every 60-second interval, i.e., half of the GPS
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Figure 5.2: Histograms of longitudinal (top), lateral (middle), and heading (bottom)
localization errors of our estimator on Carla simulation comparing scenarios with and
without GPS dropouts.

measurements are lost. Under such conditions, the proposed approach is still able

to achieve accurate estimation of the GPS offset as shown by the orange line in

Figure 5.3, albeit at a slower pace. Furthermore, the localization results are shown

in Figure 5.2 and summarized in Table 5.1. Compared to the scenario without any



50 CHAPTER 5. EXPERIMENTS

Figure 5.3: Euclidean error of GPS-to-map offset estimation of Carla simulation.
By taking advantage of semantic cues, our localization algorithm is able to estimate
the GPS measurement offset with decimetre-level accuracy even with the presence of
periodic GPS dropouts.

GPS dropout, we observe virtually no increase in the median lateral and heading

errors largely due to frequent occurrences of lane markings, which keep the vehicle in

the correct lane. This highlights the importance and effectiveness of lane markings

as a crucial type of semantic cues in semantic localization. On the other hand,

there is a significant decline in performance over the worst case scenario in terms of

longitudinal error, where it increases from 0.185 m to 0.504 m. This can be attributed

to the infrequent appearance of traffic lights, which help with longitudinal localization,

when road intersections are not nearby. In this case, the vehicle can only rely on

wheel odometry for relative localization during GPS dropouts, which accumulates

longitudinal errors. Nevertheless, the localization accuracy is still acceptable for

autonomous driving. This demonstrates the robustness of our proposed approach

against frequent GPS dropouts by leveraging semantic cues.
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Table 5.2: Issues of the public datasets with semantic maps for our experiments.

Dataset Issue
nuScenes [5] Missing GPS data; vehicle trajectories are fragmented

Lyft Level 5 [21] Missing GPS and wheel encoder data
Argoverse [6] Missing traffic light locations; only provides lane centerline

5.2 Mcity Experiment

Unfortunately, the vast majority of the publicly available self-driving datasets do not

provide semantic maps. Those that do all lack other components necessary for our

experiments. For instance, the nuScenes dataset does not provide raw GPS data [5].

Table 5.2 summarizes the datasets with semantic maps and the components they lack

for our experiments. Therefore, to demonstrate real-world feasibility, experiments

were conducted using an internal dataset provided by aUToronto that was collected

during the SAE AutoDrive competition at Mcity, where the incident of uncalibrated

GPS occurred [4]. However, due to the lack of localization ground truth in the dataset

for comparison, this will only serve as anecdotal results to verify the effectiveness of

our approach. No further parameter tuning was made between the Carla simulation

and the real-world experiments. Figure 1.1 provides a side-by-side comparison of a

snapshot of the camera image overlaid with projection of the lane boundaries from the

semantic map, which indicates the estimated location of the vehicle with respect to

the map. Visually, we see that the GPS data is unusable on its own while our approach

is able to self-calibrate for the GPS offset and has the projected lane boundaries well

aligned with the lane markings to achieve accurate localization.

5.3 Boreas Experiment

After the Mcity experiment, a second attempt in real-world testing was made us-

ing another internal dataset that was collected by our laboratory’s vehicle named

“Boreas”. The vehicle is equipped with all the sensors required for our experiment,

and there is a postprocessed vehicle localization solution that we planned to use as
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Figure 5.4: The lane lines (red) from the manually created semantic map for the
Boreas dataset projected to the camera image using the postprocessed localization
solution. The alignment between the projected lane lines and the lane markings is
poor.

the ground truth for our localization results to compare against. However, the dataset

lacked a semantic map. Therefore, we proceeded to make one using satellite images

along the vehicle trajectory. The lane graph as well as the traffic light positions were

all manually created based on the satellite images, and the elevation of traffic lights

were extracted from LIDAR data of Boreas.

5.3.1 Semantic Map Refinement

The quality of the semantic map was evaluated by projecting it to the camera image

space using the postprocessed localization solution and comparing its alignment with

the semantic cues, mainly lane markings. As shown in Figure 5.4, the resulting



5.3. BOREAS EXPERIMENT 53

Camera
Image

Semantic
Map

Vehicle
Localization

Lane
Detection

Image
Projection

Pseudo-
Measurements

Gauss-Newton
Refined

Semantic Map

Data
Association

Figure 5.5: The proposed semantic map refinement pipeline. For each camera frame,
the image is passed through the lane detector, and the semantic map is projected to
the image space using the corresponding vehicle location. The data association step
finds the correspondences between detection results and the semantic map projections.
The results of the data association from all the camera frames are then fused with
pseudo-measurements in a Gauss-Newton algorithm to produce the refined semantic
map output.

alignment was poor, so no proper evaluation of the semantic localization method

could be made using the dataset as it was.

In an attempt to improve the semantic map such that the dataset could become

useful for our experiment, we proposed a semantic map refinement scheme. The

goal is to refine a satellite-based semantic map — mainly the lane graph — so that

it locally aligns with the postprocessed vehicle localization solution in the on-board

camera image space. Keep in mind that not all semantic cues were observed by the

camera in the vehicle path, but we still want their locations in the map to be updated

along with the observed ones in order to preserve their relative positions. This map

refinement scheme could potentially be a cheap method to produce semantic maps

from satellite images.

Map Refinement Process

Given the original semantic map, the postprocessed vehicle localization solution, and

the camera images captured along the vehicle trajectory, we formulate the map refine-

ment process as a batch optimization problem solved through Gauss-Newton method.
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Figure 5.6: Original vs. refined lane graph of a multi-lane road. All of the lane lines,
including those that are not observed by the vehicle, have been updated. Some lane
lines are shifted more than the others depending on the camera observations.

The states to be updated are the positions of the nodes forming the polylines of the

lane graph. They are initialized with the original semantic map input.

For every camera frame captured, the image goes through the same lane detection

and data association process as in Section 3.3, except that the image projection

involves a semantic map that is being updated rather than the vehicle location, which

is a constant input in this algorithm.

To ensure that all the nearby lane lines are updated along with the observed ones,

we introduce two types of pseudo-measurements. The first type applies to every

pair of consecutive nodes belonging to the same lane line. For each pair, the pseudo-

measurement is their difference in coordinates such that the each lane line will largely

preserve its shape after the map refinement. The second type of pseudo-measurement

involves nodes belong to different lane lines. First, the midpoint of every pair of con-

secutive nodes is computed. Next, for each pair of nearby midpoint belonging to two
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(a) (b)

Figure 5.7: Original (red) vs. refined (green) lane lines projected to the camera
image using the postprocessed localization solution. The lane markings identified by
the lane detector are highlighted in green or red depending on the distance to the
vehicle. Compared to the original lane lines, the refined lane lines overlap with the
lane markings more in (a), but less so in (b).

different lane lines, their difference in coordinates becomes the pseudo-measurement.

This helps maintain the relative position between lane lines such that the lane width

can be preserved.

Lastly, all the data association results from the camera frames as well as the

pseudo-measurements are passed into the Gauss-Newton method for iterative updates

until convergence. Figure 5.5 summarizes the described map refinement pipeline.

Map Refinement Results

A sample of the refined semantic map compared to the original can be seen in Fig-

ure 5.6. Unfortunately, after the map refinement, although improvements were made

in terms of map alignment in the camera images, there are still some places where the

projected lane lines do not align with the lane markings well (see Figure 5.7), making

the postprocessed localization solution unreliable as the ground truth. Therefore,

we determined that the Boreas dataset is incapable of quantifying the localization

accuracy of semantic localization method in a meaningful manner. Nevertheless, we

still ran some experiments using the Boreas dataset to gain qualitative insights into
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Figure 5.8: Vehicle path of Boreas experiment with total length of roughly 5 km. The
ground truth path is compared with results from the semantic localizer using either
the original semantic map or the refined one. Various locations along the vehicle path
are zoomed in to show that the performance using the refined map is generally better
than the original map, but there are places where the improvement is minimal.

the semantic localization algorithm. Figure 5.8 illustrates the vehicle path compar-

ing the postprocessed localization solution, i.e., “ground truth”, with the semantic

localizer using either the original semantic map or the refined one. A histogram of

the localization errors is also shown in Figure 5.9. From these figures, we can observe

that generally speaking, the refined semantic map does produce better semantic local-

ization results, especially in the lateral localization, where lane markings are mostly

responsible for.

5.3.2 Qualitative Localization Results

Despite the challenges we encountered in utilizing the Boreas dataset, some qualitative

analysis can still be conducted by treating the postprocessed localization solution as
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Figure 5.9: Histograms of longitudinal (top), lateral (middle), and heading (bottom)
localization errors of Boreas experiment comparing localization results with the orig-
inal map and the refined map.

the ground truth and comparing the semantic localizer’s relative performance under

various experimental scenarios. The following localization results are all generated

using the refined semantic map.

Ablation Study

To observe the localization contribution made by each type of semantic cues, we

repeat the same semantic localization, but with either the lane markings or traffic
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Table 5.3: Boreas localization errors comparing scenarios with both types of semantic
cues present vs. only one type of semantic cues.

Experimental Scenarios
All

Semantic Cues
Only

Lane Markings
Only

Traffic Lights
Errors Median 95% 99% Median 95% 99% Median 95% 99%

Longitudinal (m) 0.213 0.591 0.911 0.219 0.599 0.905 0.393 0.760 0.962
Lateral (m) 0.093 0.355 0.455 0.094 0.338 0.463 0.191 0.574 1.061

Heading (rad) 0.006 0.017 0.026 0.006 0.018 0.025 0.005 0.014 0.022

Figure 5.10: The GPS-to-map offset estimation results when only lane markings
(blue) or traffic lights (orange) are used in the semantic localization. Notice that the
blue lines converge to some relatively constant values faster than orange lines.

lights disabled in the semantic localizer. The localization results are presented in

Table 5.3. As expected, the overall localization accuracy with only lane markings is

better than with only traffic lights, which can be explained by their drastic difference

in the frequency of occurrence. More interestingly, when comparing against the full

semantic localization, there is very little degradation in accuracy for the scenario with

only lane markings, including the longitudinal direction. This can be attributed to

the abundance of lane markings, which allows the estimation of GPS-to-map offset

to quickly converge as shown in Figure 5.10, thus achieving GPS calibration faster

and producing better GPS measurements for more reliable lateral and longitudinal

localization. This also suggests that the lane markings have a disproportionately big

contribution to the semantic localization algorithm compared to the traffic lights.
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Figure 5.11: Histograms of longitudinal (top), lateral (middle), and heading (bottom)
localization errors of Boreas experiment comparing scenarios with and without GPS
dropouts.

GPS Dropouts

The histogram in Figure 5.11 compares the semantic localization performance with

and without GPS dropouts. Similar to the Carla simulation, even with the loss of

half of the GPS measurements, we observe that lateral localization accuracy barely

degrades, while the longitudinal accuracy suffers more due to the relative sparsity of

traffic lights compared to lane markings. Again, this highlights the effectiveness of

utilizing lane markings to keep the vehicle in the correct lane.
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Conclusion and Future Work

6.1 Summary of Contributions

In this thesis, we proposed a method capable of localizing an autonomous vehicle

while self-calibrating for an offset between live GPS and semantic map frames. This is

achieved by using a lightweight semantic map containing locations of lane boundaries

and traffic lights, which are complementary in correcting for lateral and longitudinal

position of the vehicle. These semantic cues are detected via a monocular camera

and integrated with GPS and wheel encoders.

In Chapter 3, we introduced the semantic map as well as the preprocessing steps

of the semantic cues. The semantic map is shown to simply be made up of a lane

graph and positions of sparsely distributed traffic lights, making it very lightweight

compared to a typical LIDAR map. We then discussed the two corresponding classes

of semantic cue: lane markings and traffic lights, which we assumed to be detected by

an on-board camera that is commonplace on self-driving vehicles. The computational

cost-effectiveness of our proposed algorithm was highlighted with the fact that these

common yet crucial semantic cues are most definitely tracked by the self-driving

system already, thus no additional implementation of CNN detectors is necessary.

Lastly, for the proposed localization algorithm to utilize the semantic cues, we outlined

the data association process that corresponds the semantic cue detections with their

known positions in the semantic map.
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In Chapter 4, we laid out the detailed mathematical formulation of our proposed

semantic localization algorithm. We first properly defined the localization problem

for which to solve, which includes the estimation of three quantities: vehicle pose,

velocity, and the GPS-to-map offset. Next, the expression and linearization of the

process models as well as the measurement models were shown. In addition to GPS

and semantic cues, the wheel encoders and some pseudo-measurements pertaining to

vehicle’s physical constraints are also included in the measurement models. Finally,

we deployed a modified IEKF to solve the localization problem. The IEKF is modified

by replacing the iterative correction step with Gauss-Newton method. A toy example

was implemented to validate the developed semantic localizer.

Chapter 5 documents the results of simulations and experiments conducted, part

of which has previously been published in “Self-Calibration of the Offset Between GPS

and Semantic Map Frames for Robust Localization” by Tseng and Barfoot [39]. Our

approach was first evaluated using Carla simulator, which demonstrated robustness

against GPS dropouts in addition to achieving decimetre-level accuracy. We encoun-

tered great difficulties when attempting to conduct real-world experiments. Due to

the nature of our algorithm, semantic map is an integral part of the experiments.

However, few public datasets have semantic maps. We subsequently turned to two

different internal datasets. The first dataset was collected by a vehicle with its GPS

not calibrated to the semantic map, but it is missing a ground truth for performance

analysis. The semantic map of the second dataset lacks the accuracy required for

proper semantic localization, which led to the devising of a map refinement scheme.

But the quality of the refined semantic map was determined to be insufficient still.

Therefore, these experiments only serve to show some qualitative analysis, includ-

ing the real-world feasibility of our approach, as well as the robustness against GPS

dropouts.
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6.2 Future Work

Our proposed semantic localization algorithm currently only utilizes two types of

semantic cues: lane markings and traffic lights. To decrease the gap between semantic

cue observations due to sparsity, other types of semantic cues such as traffic signs and

stop lines can be included as well. In particular, the vehicle’s longitudinal accuracy

is always worse than the lateral accuracy due to the relative sparsity of traffic lights

compared to lane markings. Diversifying the types of semantic cues can also make

the algorithm more robust under various driving environments where particular types

of semantic cues might not exist.

The real-world experiments carried out in Chapter 5 are somewhat unsatisfactory

due to the lack of a comprehensive dataset for a quantitative analysis of the local-

ization performance. The Boreas experiments especially highlight the importance of

an accurate semantic map and its impact on the quality of the semantic localiza-

tion. Even though the proposed map refinement pipeline failed to produce a map

that would enable quantitative analysis of the localization algorithm, it does show

some promise in improving the quality of the semantic maps. Therefore, with further

development and fine-tuning, the map refinement pipeline can potentially achieve its

goal and make the Boreas dataset better suited for our experiments. We can alterna-

tively look for a better dataset to conduct the experiments with. To fully demonstrate

the usefulness of our approach, the dataset needs to contain raw uncalibrated GPS

data, front-facing camera images, wheel encoders, and a high quality semantic map

that has lane graph, traffic lights, and preferably other types of semantic cues. Such

a semantic map can likely be obtained through commercial mapping services upon

request. Additionally, the dataset must have a localization ground truth such that

the projected semantic map closely aligns with all the semantic cues in the camera

images. A possible option is to generate it via a LIDAR-based localization method,

which is capable of highly accurate localization.

If satisfactory experimental results can be obtained through a better dataset, the

next step would be the open-loop and even the closed-loop implementation of the
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semantic localization system on an autonomous vehicle. Another possible direction

of research would be the development of detection and mitigation strategies when

the semantic map disagrees with the observations made by the onboard sensors in

situations such as an outdated map.
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