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Probabilistic state estimation for robotics is a field that has matured a lot in recent

years. Yet the performance of modern estimators is still heavily dependent on robot

model parameters that can be difficult to determine from first principles. While it may

be sufficient to hand tune these parameters, this is often time consuming or simply

impossible due to the sheer number of unknown parameters. In this thesis, we investigate

methods for learning parameters based on data, to come up with the parameter values

most suitable for the particular robot and sensor. We first develop a novel continuous-

time motion prior trained with data to improve an existing continuous-time estimation

framework. We then provide a detailed investigation into parameter learning within

a Gaussian variational inference setting using Expectation Maximization. We validate

our work on various trajectory estimation problems using a 36 km long vehicle dataset

collected as part of this work.
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Notation

F−→a
A reference frame for a three-dimensional coordinate system

SE(3) The special Euclidean group, a matrix Lie group used to represent poses

se(3) The Lie algebra associated with a member of SE(3)

Ta,b A matrix in SE(3) that transforms vectors from frame F−→b
to frame F−→a

Tk Short form for Tk,i, a matrix in SE(3) that transforms vectors from F−→i
,

the inertial frame, to F−→k
, the frame representing the pose at time tk

exp(·∧) A Lie algebra operator mapping from se(3) to SE(3)

ln(·)∨ A Lie algebra operator mapping from SE(3) to se(3)

(·)f An operator associated with the adjoint of an element from the Lie alge-

bra for poses

J (·) The left Jacobian of SE(3)

J k+1,k Short form for J (ln(Tk+1,k)
∨)

p(a) The probability density of a.

p(a | b) The probability density of a given b.

N (µ,Σ) A normal distribution with mean µ and covariance Σ.

GP(µ,K(t, t′)) A Gaussian process with mean function µ and covariance function K(t, t′)

xk The value of a quantity x at timestep k.

xk,k+1 The set of values of x at timesteps k and k + 1, or {xk,xk+1}

1 The identity matrix.

0 The zero matrix.
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Chapter 1

Introduction

1.1 Background & Motivation

In mobile robotics, it is crucial for a robot to maintain an estimate of its state as it

moves throughout and interacts with its environment. The field of state estimation is

concerned with tackling this problem and is a key ingredient in enabling any autonomous

navigation. For instance, a self-driving car without information about its location in a

map or relative to features such as lane markings, would render attempts at achieving

any level of autonomy futile. A key area of research that greatly advanced the field was

probabilistic robotics. Critical to probabilistic robotics is the idea of incorporating un-

certainty into estimation and control, enabling robustness in many real-world situations

[49].

However, in many cases, there are still parameters or hyperparameters that must be

tuned as these can greatly affect the performance of state estimation algorithms. For

some problems, it may be sufficient to hand tune parameters but in other cases, it is

simply impossible due to the number of parameters involved or the time that would be

required to do so. Adhering to the paradigm of a probabilistic framework, it is essential

that model parameters are selected in such a way to ensure that not only is the mean of

our models realistic but that our uncertainty quantification is realistic as well.

Borrowing from the field of machine learning, there are learning methods that are

based on finding parameters that maximize the log likelihood of the data. Much of this

2



Chapter 1. Introduction 3

research has focused on data expressed in a vectorspace, or in Rn. With robots moving

and rotating through three dimensional space, our data is no longer within this set,

instead lying on a Lie group, in particular the special Euclidean group SE(3).

In this thesis, we look to methods for training parameters based on data to come up

with the best parameter values suited for the particular robot. Our methods continue

to function with typical robot states, including poses that are in SE(3). In the first

part of this thesis, we focus on using a data-driven approach to improve a continuous-

time estimation framework that has been widely used in the past [8, 4, 3, 48]. This

is achieved by introducing a novel continuous-time motion prior, whose parameters we

then learn from data. We show that using our novel motion prior allows for greater

flexibility to learn a good prior from data and thus is able to outperform previously

used continuous-time motion priors in several experimental state estimation problems.

However, our method of parameter learning requires (noisy) observations of the full state.

This is often an unrealistic assumption and so in the second part, we explore parameter

learning within a novel state estimation framework, Exactly Sparse Gaussian Variational

Inference (ESGVI) [6] and show how to achieve a robust extension (outlier rejection).

1.2 Related Work

1.2.1 Continuous-Time Estimation

It is common for state estimation in robotics to be carried out in discrete time, which

is an approximation of the robot’s continuous-time trajectory. This approximation is

sufficient in many cases, but there are situations when it is inadequate. Examples include

using continuous scanning-while-moving sensors (e.g., rolling-shutter camera or scanning

laser rangefinder), or high-rate asynchronous sensors. In both these cases, the naive

discrete approach of including a state at every measurement time can be expensive. Many

people have attempted to address this problem by using ad-hoc assumptions about the

smoothness of the trajectory in order to use a smaller number of discrete states and infer

motion in between. One such example is using cubic splines as in [11] and [60].
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However, the specific interpolation scheme chosen encodes certain assumptions about

the robot motion that may not be accurate. By explicitly formulating the problem in

a continuous-time framework, the need to make these often arbitrary smoothness as-

sumptions is eliminated. Smoothness can be built into the estimation exactly using a

continuous-time motion prior, thus gaining the ability to incorporate measurements at

any time along the trajectory without introducing additional states at those measurement

times. Furthermore, continuous-time techniques benefit from the advantage that poste-

rior estimates can be queried at any time along the trajectory, not just at measurement

times.

Tong et al. [51, 50] showed that batch continuous-time estimation can be carried out

by representing the trajectory as a Gaussian process (GP). Barfoot et al. [8] extended

the GP approach to STEAM, using a class of linear time-invariant (LTI) stochastic

differential equations (SDEs). This resulted in an inverse kernel matrix that is exactly

sparse, making the solution more computationally efficient. Anderson and Barfoot [3]

extended this work in SE(3) to enable continuous-time estimation of bodies undergoing

translations and rotations in three-dimensional space using a white-noise-on-acceleration

(WNOA) prior. Tang et al. [48] further extended this by using a white-noise-on jerk

(WNOJ) prior in SE(3). STEAM has been used in applications such as motion planning

[38], crop monitoring [16], and visual teach and repeat [53].

Both WNOA and WNOJ models are commonly used in target tracking [34, 24, 36, 26].

These models incorporate assumptions about the motion of the target that may not

be realistic but are attractive due to their simplicity. When white-noise models are

insufficient, Markov process models are used where the control input is modelled as a

Markov process instead of a white-noise process. One example is the Singer acceleration

model [45].

Another way to view modelling is through the use of latent-force models, which com-

bine mechanistic and data-driven approaches [2]. In latent-force models, typically an

overly simplistic mechanistic model of the system is used but augmented with latent

forces represented as a GP. The idea is that when training latent-force models through

data, the GP can model interactions not captured by the mechanistic model. Thus the
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GP must be rich enough to fully learn these interactions. In the case of the WNOA and

WNOJ prior, the GP used is simply a white-noise process, which struggles with represen-

tational power. Thus tuning the hyperparameters of WNOA and WNOJ models alone

do not give the model enough flexibility to learn a good representation through data.

Hartikainen and Särkkä [20] show how Gaussian process regression models can be

restated as linear-Gaussian state space models. In particular, they show that the Matérn

family of covariance functions can be exactly reformulated as a SDE with white noise.

Furthermore, these Gaussian process latent force models can be reformulated as a single

linear SDE driven by white noise [21], which has the form of priors in which we are

interested.

1.2.2 Parameter Learning

In the domain of parameter learning, the most common approach is to find parameters

that maximize the likelihood of the data. One way to do this is to directly maximize the

likelihood function with respect to the parameters [56, 29, 30]. This can be a difficult

problem to solve, particularly when the model depends on missing or unobserved vari-

ables. In this case, an indirect approach can be taken by introducing a latent state to

the problem, which can be estimated alongside of the parameters. This is known as Ex-

pectation Maximization (EM), an iterative algorithm that alternates between optimizing

for a distribution over the latent state and the parameters.

Past work has shown how to estimate all the parameters of a linear dynamical sys-

tem using EM, with Kalman smoothing in the E-step to update states and calculating

analytic equations for parameter updates in the M-step [44]. There have also been meth-

ods that attempt parameter learning for nonlinear systems with EM. Ghahramani and

Roweis [19] learn a full nonlinear model using Gaussian Radial Basis Functions (RBFs) to

approximate the nonlinear expectations that would otherwise be intractable to compute.

This method was applied to learn a simple sigmoid nonlinearity. Other methods approx-

imate the required expectation using particle smoothing [43] or sigmapoint smoothing

[29, 30, 17]. These methods, however, do not learn a full nonlinear model, but only

learned parameters of a mostly predefined model (e.g., calibration parameters), and were
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tested only in simulation.

Unlike all these other methods, we use ESGVI within the EM parameter learning

framework, which is a more general method not limited to problems with a specific

factorization of the joint likelihood between the data and the latent state (e.g., smoothing

problems with a block-tridiagonal inverse covariance). We also demonstrate a practical

application of parameter learning by estimating the parameters of our motion prior and

measurement noise models in a batch estimation framework.

While we are interested in batch estimation, previous work has investigated learning

the noise model parameters of filters. Abbeel et al. [1] learn the noise model parameters of

the Kalman Filter offline. However, these parameters are assumed to be static and do not

vary with time. One popular area of study that handles changing covariances is Adaptive

Kalman Filtering, where the measurement covariance is updated in an online fashion

based on the statistics of the measurement innovation [37, 23, 59]. The measurement

covariance in these cases is updated based solely on the data seen during inference,

whereas our method will incorporate a prior.

Ko and Fox [27] use Gaussian processes to represent measurement models (mapping

from state to observation) and motion models (mapping from state and control input

to change in state) and show how to incorporate them in a filter estimation framework.

Their method focuses on using GPs (a non-parametric model) whereas the method we

present in Chapter 3 allows for learning the parameters of arbitrary models. In this thesis,

our use of GPs is different in that we use them to represent continuous-time trajectories

(mapping from time to state). We then learn the hyperparameters of our GP motion

prior. While their initial method required groundtruth of the states, Ko and Fox [28]

extended their work by jointly estimating the latent state and GP hyperparameters using

conjugate gradient descent and provide analytic gradients in terms of the kernel matrix.

They then use the estimated latent state as training data for their GP models as in [27].

Our use of Expectation Maximization instead of a direct log likelihood optimization

approach allows us to learn parameters of arbitrary models since direct optimization

may not always be possible.

Recent methods take advantage of deep neural networks (DNNs) to learn the robot
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noise models [12, 35, 41] but in many cases require groundtruth to train the DNN. We

bypass this requirement by simultaneously estimating a distribution over the latent state.

Barfoot et al. [6] show how to learn a constant covariance using ESGVI through

EM but do not demonstrate it in practice. Our main contributions compared to [6] is

demonstrating parameter learning for a specific application and learning time-varying

covariances by introducing an Inverse-Wishart (IW) prior over our covariances, which

enables outlier rejection. As an alternate method for outlier rejection, Chebrolu et al.

[15] use EM to learn a tuning parameter for M-estimation but treat their latent variables

as point estimates. The IW distribution has been used as a prior over covariances before,

but the parameters were assumed to be known [55]. We seek to learn at least some of

the parameters of the prior.

1.3 Contributions

The main contributions of this thesis are:

• The derivation of a richer continuous-time motion prior on SE(3) and a principled

method for training its hyperparameters with (noisy) observations of the full state.

The work on this topic resulted in the following publication:

Jeremy N Wong, David J Yoon, Angela P Schoellig, and Timothy D Barfoot. A

Data-Driven Motion Prior for Continuous-Time Trajectory Estimation on SE (3).

IEEE Robotics and Automation Letters, 5(2):1429–1436, 2020.

• A detailed investigation of parameter learning in the absence of groundtruth as

part of ESGVI, in addition to a robust extension of ESGVI for outlier rejection.

The work on this topic resulted in the following publication:

Jeremy N Wong, David J Yoon, Angela P Schoellig, and Timothy D Barfoot. Varia-

tional Inference with Parameter Learning Applied to Vehicle Trajectory Estimation.

IEEE Robotics and Automation Letters, 5(4):5291–5298, 2020.



Chapter 2

A Data-Driven Prior on SE(3)

2.1 Introduction

Current formulations of continuous-time estimation employ either a white-noise-on-acceleration

(WNOA) [3, 38, 58] or white-noise-on-jerk (WNOJ) [48, 39] motion prior, which assume

the prior mean is constant velocity or constant acceleration, respectively. Tang et al. [48]

showed that the WNOJ prior can be formulated so that its mean matches the mean of

any WNOA prior. However, the two motion priors will always have different covariances

as seen in Figure 2.1(a) (other than the trivial case when both have a covariance of 0).

Integral to any probabilistic estimation framework is the notion of uncertainty, captured

through covariances. As such, in keeping with the idea that models consist of both a

mean and a measure of uncertainty, the WNOA and WNOJ prior are two non-overlapping

sets of models. Thus the explicit choice of either one of these priors is limiting and we

argue that it is much more principled to learn the parameters of a richer motion prior

based on data.

With this in mind, we derive a motion prior that represents latent accelerations as a

Gaussian Process (GP) with a Matérn covariance function and learn the hyperparameters

of this GP from noisy groundtruth data. Our derivation starts by transforming the GP

into a stochastic differential equation (SDE), which we show to be equivalent to the

Singer acceleration model [45]. This motion prior can represent but is not limited to

both WNOA and WNOJ trajectories as seen in Figure 2.1(b).

8
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(a) WNOA & WNOJ samples (b) Singer samples

Figure 2.1: (a) While the white-noise-on-jerk prior can be formulated such that its mean
matches that of any white-noise-on-acceleration prior, their covariances can never be the
same. (b) The Singer prior is a richer prior that can represent but is not limited to both
types of trajectories.

We then show that on a real world lidar test dataset with over 20 km of driving, our

motion prior outperforms the WNOA and WNOJ priors, which have also been properly

trained using groundtruth data. The contribution of this chapter is two-fold. The first

is a principled method for hyperparameter training of continuous-time motion priors

in SE(3). This opens up the possibility of using far richer motion priors with more

parameters. This leads to the second part of the chapter, the derivation of a new richer

data-driven motion prior.

Using latent-force models in state estimation has been done before but in a discrete-

time estimation framework and where the states were limited to be in Rn [22, 42, 52].

Regarding hyperparameter training for Gaussian process models, it is usually carried

out by minimizing the negative log likelihood of data given some parameters, but this

approach has only been carried out in Rn [54, 4].

To the best of our knowledge, the derivation we present in this chapter is the first

attempt at modelling the trajectory using a latent-force model with a Matérn covariance

in the context of continuous-time trajectory estimation on SE(3) and using a data-driven

approach to estimate its parameters.
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2.2 Overview of STEAM

In this section, we first provide the problem setup and overview of the Simultaneous Tra-

jectory Estimation and Maping (STEAM) framework. STEAM is an estimation frame-

work that given a collection of factors involving an unknown set of discrete states, solves

for the continuous posterior state estimate. In the original STEAM formulation using a

WNOA prior, the state trajectory we wish to estimate is

x(t) = {T(t),$(t)}, (2.1)

where T(t) is a pose expressed as a transformation matrix and $(t) is the body-centric

velocity. Thus the set of discrete states involved in our optimization problem is

x = {T1,$1, . . . ,TK ,$K}, (2.2)

where we have K knots in our continuous-time trajectory with a single knot being defined

as the state xk at time tk, or x(tk).

Factors usually come from either a set of measurements or from a continuous-time

motion prior, the key component that allows us to generate a continuous-time posterior

trajectory. Each of the factors make up a term in the negative log likelihood cost function

that is minimized by STEAM with respect to the states. We are taking the Maximum A

Posterior estimation approach where we find the single best estimate of the state given

the measurements and the motion prior. The general form of the cost function with the

prior and measurement cost terms is as follows:

J(x) =
∑
k

Jk︸ ︷︷ ︸
prior

+
∑
j

Jj︸ ︷︷ ︸
measurement

. (2.3)

The optimal state estimate is then

x̂ = arg min
x
J(x). (2.4)
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The optimization is solved using Gauss-Newton with an SE(3) perturbation scheme [5, 7]

to update the states:

Top,k ← exp(δξ∧k )Top,k,

$op,k ←$op,k + δ$k,
(2.5)

where (·)op is the operating point. If all we cared about was estimating the state at all our

discrete knot times, this approach would offer no advantage over the usual discrete-time

approach to batch state estimation. However, combining the discrete set of posterior

states with an interpolation scheme that is specific to the particular motion prior used

results in a continuous-time trajectory estimate.

The measurement terms are specific to the sensors on the robot. In this chapter, we

will be focusing only on the motion prior side of the estimation problem. Each prior cost

term has the form

Jk =
1

2
eTkQ−1

k ek. (2.6)

The formulation of the prior error terms, ek, and covariances, Qk, is dependent on the

specific prior used. In the next section, we review the existing WNOA and WNOJ

continuous-time motion priors before moving onto our new formulation.

2.3 Existing Continuous-Time Motion Priors

In this section, we first go over the details of the existing WNOA and WNOJ motion

priors used in STEAM. In order to ensure that estimation can be done efficiently, we

are interested in motion priors from a class of linear time-invariant (LTI) stochastic

differential equations (SDEs) of the form

γ̇(t) = Aγ(t) +Bu(t) +Lw(t),

w(t) ∼ GP(0,Qcδ(t− t′)),
(2.7)

where γ(t) is the state at timestep t, u(t) is a known input, and w(t) is a zero-mean,

white-noise GP with power spectral density matrix, Qc. If u(t) = 0, the solution for the
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mean function is

γ̌(τ) = Φ(τ, tk)γ̌(tk), (2.8)

where γ̌ is the prior mean, and Φ(τ, tk) is the state transition function from timestep

tk to timestep τ . We use GP priors because of their rich mathematical connection to

motion models and the propagation of uncertainty is well understood.

2.3.1 WNOA Prior for SE(3)

The WNOA prior originally used by STEAM is defined as follows:

Ṫ(t) = $(t)∧T(t)

$̇ = w′(t), w′(t) ∼ GP(0,Q′cδ(t− t′)),
(2.9)

where T(t) is the pose expressed as a transformation matrix, $(t) is the body-centric

velocity and the operator, ∧, transforms an element of R6 into a member of Lie algebra,

se(3). The state is

x(t) = {T(t),$(t)}. (2.10)

The SDE in (2.9) is nonlinear and so cannot be cast into the form of (2.7), but [3] defines

the local state variables

ξk(t) = ln(T(t)T−1
k )∨, tk ≤ t ≤ tk+1 (2.11)

ξ̇k(t) = J (ξk(t))
−1$(t). (2.12)

These local variables can be used to define a sequence of local priors where the prior

at each knot is a LTI SDE in the form described in (2.7) with

γk(t) :=

ξk(t)
ξ̇k(t)

 , A =

0 1

0 0

 , B = 0, L =

0

1

 . (2.13)

This local prior is a good approximation of the global non-linear prior when ξk(t) is small

or when velocity is near constant.
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The error term from (2.6) for the WNOA prior is [3]

ek =

ln(Tk+1,k)
∨ − (tk+1 − tk)$k

J −1
k+1,k$k+1 −$k

 , (2.14)

while the covariance and inverse covariance is [8, 3]

Qk =

1
3
∆t3kQc

1
2
∆t2kQc

1
2
∆t2kQc ∆tkQc

 and Q−1
k =

12∆t−3
k Q−1

c −6∆t−2
k Q−1

c

−6∆t−2
k Q−1

c 4∆t−1
k Q−1

c

 . (2.15)

2.3.2 WNOJ Prior for SE(3)

The WNOJ prior from [48] estimates the global state

x(t) = {T(t),$(t), $̇(t)}, (2.16)

where $̇(t) is the body-centric acceleration. Using the idea of local pose variables, [48]

defines a sequence of local priors as a LTI SDE in the form of (2.7):

γk(t) :=


ξk(t)

ξ̇k(t)

ξ̈k(t)

 A =


0 1 0

0 0 1

0 0 0

 , B = 0, L =


0

0

1

 . (2.17)

The relationship between ξk(t) and ξ̇k(t) and global state variables are shown in Equa-

tions (2.11) and (2.12). The relationship between ξ̈k(t) and global state variables as

shown in [48] is

ξ̈k(t) ≈ −
1

2
(J (ξk(t))

−1$(t))f$(t) + J (ξk(t))
−1$̇(t), (2.18)

where the approximation holds as long as ξk(t) is small.
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The error term from (2.6) for the WNOJ prior is [48]

ek =


ln(Tk+1,k)

∨ − (tk+1 − tk)$k − 1
2
(tk+1 − tk)2$̇k

J −1
k+1,k$k+1 −$k − (tk+1 − tk)$̇k

−1
2
(J −1

k+1,k$k+1)f$k+1 + J −1
k+1,k$̇k+1 − $̇k

 , (2.19)

while the covariance and inverse covariance is

Qk =


1
20

∆t5kQc
1
8
∆t4kQc

1
6
∆t3kQc

1
8
∆t4kQc

1
3
∆t3kQc

1
2
∆t2kQc

1
6
∆t3kQc

1
2
∆t2kQc ∆tkQc

 (2.20)

and

Q−1
k =


720∆t−5

k Q−1
c −360∆t−4

k Q−1
c 60∆t−3

k Q−1
c

−360∆t−4
k Q−1

c 192∆t−3
k Q−1

c −36∆t−2
k Q−1

c

60∆t−3
k Q−1

c −36∆t−2
k Q−1

c 9∆t−1
k Q−1

c

 . (2.21)

2.4 Latent-Force Model GP Prior

In the new motion prior that we derive, we represent the latent accelerations that the

robot undergoes in each of its six degrees of freedom as a GP with a Matérn covariance

function:

ξ̈k(t) ∼ GP(0,Kv(t, t
′)). (2.22)

For our prior, we choose v = 1
2
, which yields the exponential covariance function defined

as

K1/2(t, t′) = σ2 exp(−`−1|t− t′|), (2.23)

where `, the length-scale and σ2, the variance, are diagonal matrices in R6×6, with each

diagonal term representing one of the six degrees of freedom.

Following the approach of [20], we can express the GP representing acceleration as
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the SDE

...
ξ k(t) = −αξ̈k(t) + w(t),

w(t) ∼ GP(0,Qcδ(t− t′)),
(2.24)

where α = `−1 and Qc = 2ασ2.

Now following the approach of [21], the model can be augmented to form a joint

model in the form of (2.7) that includes the states ξk(t) and ξ̇k(t):

γk(t) :=


ξk(t)

ξ̇k(t)

ξ̈k(t)

 A =


0 1 0

0 0 1

0 0 −α

 , B = 0, L =


0

0

1

 . (2.25)

The global state remains the same as in (2.16).

Our new motion prior now includes length-scale and variance as hyperparameters

embedded in α and Qc, respectively. This allows much greater flexibility in our motion

prior compared to the previous WNOA and WNOJ formulations that did not have a

tunable length-scale parameter. In fact, WNOA and WNOJ are special cases of this

motion prior. WNOA is the case when length-scale approaches 0, meaning accelerations

are uncorrelated. WNOJ is the case when length-scale approaches ∞, meaning that

accelerations are correlated to accelerations at all other times.

This particular parameterization of the motion prior collapses to the exact form of

the Singer acceleration model in [45]. As such, we will be referring to this prior as the

Singer prior. In this work, we chose this particular Matérn covariance function but we

could potentially use other covariance functions that have more representational power.
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2.4.1 Prior Error Term

The state transition function is

Φ(t, tk) = exp(A∆tk)

=


1 ∆tk1 (α∆tk − 1 + exp(−α∆tk))α

−1

0 1 (1− exp(−α∆tk))α
−1

0 0 exp(−α∆tk)

 . (2.26)

Using Equations (2.11), (2.12) and (2.18), the local state variables can be written in

terms of global state variables as

γk(tk) =


0

$k

$̇k

 , γk(tk+1) =


ln(Tk+1,k)

∨

J −1
k+1,k$k+1

−1
2
(J −1

k+1,k$k+1)f$k+1 + J −1
k+1,i$̇k+1

 . (2.27)

Now in terms of global state variables, the prior error term is

ek = γk(tk+1)−Φ(tk+1, tk)γk(tk) =


ep

ev

ea

 , (2.28)

where

ep = ln(Tk+1,k)
∨ − (tk+1 − tk)$k −C1$̇k,

ev = J −1
k+1,k$k+1 −$k −C2$̇k,

ea = −1

2
(J −1

k+1,k$k+1)f$k+1 + J −1
k+1,k$̇k+1 −C3$̇k,

(2.29)

and we have defined

C1 = α−2(α(tk+1 − tk)− 1 + exp(−α(tk+1 − tk))),

C2 = α−1(1− exp(−α(tk+1 − tk))),

C3 = exp(−α(tk+1 − tk)).

(2.30)
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The covariance matrix can be computed as

Qk(t) =

∫ ∆tk

0

exp(A(∆tk − s))LQcL
T exp(A(∆tk − s))T ds

=


2ασ2 0 0

0 2ασ2 0

0 0 2ασ2




Q11 Q12 Q13

QT
12 Q22 Q23

QT
13 QT

23 Q33

 ,
(2.31)

where

Q11 =
1

2
α−5(1− e−2α∆tk + 2α∆tk +

2

3
α3∆t3k − 2α2∆t2k − 4α∆tke

−α∆tk),

Q12 =
1

2
α−4(e−2α∆tk + 1− 2e−α∆tk + 2α∆tke

−α∆tk − 2α∆tk +α2∆t2k),

Q13 =
1

2
α−3(1− e−2α∆tk − 2α∆tke

−α∆tk),

Q22 =
1

2
α−3(4e−α∆tk − 3− e−2α∆tk + 2α∆tk),

Q23 =
1

2
α−2(e−2α∆tk + 1− 2e−α∆tk),

Q33 =
1

2
α−1(1− e−2α∆tk).

2.4.2 Querying the Trajectory

Because the prior we formulated is in continuous time, we now have the advantage of

being able to interpolate for a state estimate at any given time. Suppose we have states

at times tk and tk+1 but want to query the state at time τ where tk < τ < tk+1. This can

be done using the results from [3]:


ξk(τ)

ξ̇k(τ)

ξ̈k(τ)

 = γk(τ) = Λ(t)γk(tk) + Ω(t)γk(tk+1), (2.32)
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where Λ(τ) ∈ R18×18 and Ω(τ) ∈ R18×18 are [8]

Λ(τ) = Φ(τ, tk)−Ω(τ)Φ(tk+1, tk),

Ω(τ) = Qk(τ)Φ(ti+1, τ)TQk(tk+1)−1.
(2.33)

Using the relationship between the local and global state variables, we have that

Tτ = exp(ξk(τ))∨Tk,

$τ = J (ξk(τ))ξ̇k(τ).
(2.34)

2.5 Hyperparameter Training

We developed a method for hyperparameter training from data in SE(3). Even after

applying this principled method of choosing hyperparameters for our WNOA and WNOJ

priors, we found that these priors were limiting in the type of trajectories that could be

accurately represented. As such, we proposed a new motion prior in Section 2.4 that has

more representational power, but more parameters. The larger number of parameters

greater highlights the importance of a principled hyperparameter training method, which

we show how to do for SE(3) in this section. We show the hyperparameter training

method for the Singer prior but the WNOA and WNOJ priors were also trained with

data in a similar way.

The standard approach for hyperparameter training is to minimize the negative log

likelihood of the data given the parameters [54, 4]:

− log p(y|Qc,α) =
1

2
(y − x̌)TP−1(y − x̌)− 1

2
log |P|+ n

2
log 2π, (2.35)

P = P̌(Qc,α) + σ2
n1, (2.36)

where y is a stacked vector of groundtruth measurements with additive noise N (0, σ21),

x̌ is a stacked vector of the mean function evaluated at the groundtruth measurement

times and P̌ is the covariance matrix associated with x̌ and generated using the hyper-

parameters, Qc and α.
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This cost function in this form does not lend itself nicely to training since our states

are no longer vectors, but are in SE(3). However, we can instead write the objective

function of the prior in factor form as

− log p(y|Qc,α) =
1

2
eTQ−1e +

1

2
log |Q|+ n

2
log 2π, (2.37)

where e is a stacked vector of error terms from (2.28) composed with the groundtruth

measurements and Q is the block-diagonally stacked Qk terms from (2.31).

By making this simple modification to the objective function, we are able to train

hyperparameters in SE(3) with noise-free groundtruth measurements. However, the pro-

cess of incorporating noisy groundtruth measurements in SE(3) is slightly more involved.

We must incorporate the noise coming from the measurements to obtain a new value of

Q to be used in the objective function in (2.37), otherwise the noise in the measurements

will be attributed to the process noise, thus inflating the estimate of Qc.

Incorporating noise into the error equations and taking the approximation that pro-

cess noise, measurement noise, and timesteps are small, we see that

epk ≈ εpk+1
− εpk − (tk+1 − tk)εvi −C1εak + ξpk , (2.38)

evk ≈ εvk+1
− εvk −C2εak + ξvk , (2.39)

eak ≈ εak+1
−C3εak + ξak , (2.40)

where 
εpk

εvk

εak

 = N

0,


Rk
pp Rk

pv Rk
pa

Rk
vp Rk

vv Rk
va

Rk
ap Rk

av Rk
aa


 (2.41)

is the noise on the measurements at timestep k and
ξpk

ξvk

ξak

 = N

0,


Qk
pp Qk

pv Qk
pa

Qk
vp Qk

vv Qk
va

Qk
ap Qk

av Qk
aa


 (2.42)
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is the process noise between timestep k and k + 1.

We now have that

Cov(epk , epk) = Rk+1
pp + Rk

pp + C1R
k
aaC

T
1 + (tk+1 − tk)Rk

pv

+(tk+1 − tk)Rk
vp + (tk+1 − tk)2Rk

vv + Qk
pp,

Cov(epk , evk) = (tk+1 − tk)Rk
vv + C1R

k
aaC

T
2 + Rk+1

pv + Rk
pv + Qk

pv,

Cov(epk , eak) = C1R
k
aaC

T
3 + Qk

pa,

Cov(evk , evk) = Rk
vv + Rk+1

vv + C2R
k
aaC

T
2 + Qk

vv,

Cov(evk , eak) = C2R
k
aaC

T
3 + Qk

va,

Cov(eak , eak) = C3R
k
aaC

T
3 + Rk+1

aa + Qk
aa,

Cov(epk+1
, epk) = −Rk+1

pp − (tk+2 − tk+1)Rk+1
vp ,

Cov(epk+1
, evk) = −(tk+2 − tk+1)Rk+1

vv −Rk+1
pv ,

Cov(epk+1
, eak) = −C1R

k+1
aa ,

Cov(evk+1
, epk) = −Rk+1

vp ,

Cov(evk+1
, evk) = −Rk+1

vv ,

Cov(evk+1
, eak) = −C2R

k+1
aa ,

Cov(eak+1
, eak) = −C3R

k+1
aa .

Putting this all together, we arrive at the final expression for Q in our objective function

from (2.37) when our groundtruth measurements are noisy:

Q =


Σ1,1 ΣT

2,1

Σ2,1 Σ2,2 ΣT
3,2

Σ3,2
. . . . . .

. . .

 , (2.43)
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where

Σi,j =


Cov(epi , epj) Cov(epi , evj) Cov(epi , eaj)

Cov(epi , evj)
T Cov(evi , evj) Cov(evi , eaj)

Cov(epi , eaj)
T Cov(evi , eaj)

T Cov(eai , eaj)

 . (2.44)

Because our final expression for Q is block-tridiagonal, we are still able to exploit sparsity

in hyperparameter training when evaluating our cost function.

2.6 Toy Example Simulation

2.6.1 Hyperparameter Training

In this section, we validate our hyperparameter training method on a simple simulated

toy example. We start by randomly sampling 100 trajectories from a WNOA prior with a

known power spectral density matrix, Qc. Our state is position and velocity. In our first

experiment, we use noise-free measurements of the groundtruth state as training data to

try and learn a Qc value. We sample another 100 trajectories as our test data and overlay

the covariance bounds calculated from the learned Qc to see if it is consistent with the

groundtruth test data. In Figure 2.2, we show these plots for both position and velocity

for a single dimension. The coloured lines are the sampled states while the thick dashed

red lines are the 3σ covariance bounds, which are dependant on the learned Qc value.

Based on the calculated covariance bounds, we can see that our learned Qc matches the

data quite well.

In reality, groundtruth measurements are corrupted by some noise due to imperfect

sensors. In our second experiment, we add zero mean Gaussian noise with a standard

deviation of 0.0001 to our position and velocity measurements of the groundtruth states.

We compare naively learning Qc without accounting for the noise in the groundtruth mea-

surements to our training method accounting for noisy measurements. In Figure 2.3(a),

we can see that for the naive training method, Qc is significantly overestimated as the

noise from the measurements is being attributed to the process noise. We then learn Qc

using our new training method, where we account for noisy measurements and show the
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Figure 2.2: Position and velocity samples (coloured lines) overlaid with the 3σ covariance
bounds (dashed red lines) calculated based on the learned value of Qc.

results in Figure 2.3(b). As can be seen, we are able to learn a Qc value that is consistent

with our groundtruth data, even with noisy measurements.

We conduct another experiment where we see how increasing measurement noise af-

fects the quality of hyperparameter training for both the WNOA and WNOJ priors. We

again compare training with and without taking the measurement noise into considera-

tion. To make comparison easier, we define the following error metric:

Normalized Error =
‖Qclearn −Qctrue‖F
‖Qctrue‖F

, (2.45)

where Qclearn is the learned value of Qc, Qctrue is the true value of Qc, and ‖X‖F is

the Frobenius norm of X. Figure 2.4 shows how the normalized error in our learned Qc

value increases with increasing noise on measurements for both methods with a WNOA

prior. Figure 2.5 shows the exact same plot but with a WNOJ prior. We see that not

accounting for noise in measurements has a big impact on our ability to accurately learn

Qc.

2.6.2 Flexibility of Singer Prior

In this section, we will again be working with sampled trajectories from motion priors

with a known Qc value. We have shown that we are able to learn suitable parameters
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Figure 2.3: Comparison of sampled states (coloured lines) overlaid with the 3σ covariance
bounds (dashed red lines) calculated based on the learned value of Qc for the cases (a)
when we don’t account for measurement noise and (b) when we account for measurement
noise.
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Figure 2.4: Comparison of errors in Qc when training with noisy measurements for
WNOA.
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from data when we know what kind of prior the data was sampled from. In the real

world, robot trajectories are not generated from these kinds of priors. As such, we want

to ensure that our selected prior is appropriate for many different types of motions.

To get a taste of what this may look like before actually moving onto using real world

robot data, we will show the results for training a WNOJ prior on data sampled from a

WNOA prior and vice versa. The results are shown in Figure 2.6 where the left column

is trajectories sampled from a WNOA prior and the right column is trajectories sampled

from a WNOJ prior. Each row represents one of the models (WNOA, WNOJ or Singer)

we wish to fit to the sampled data (WNOA or WNOJ). If the learned model fits the data

well, the 3σ covariance bounds should be consistent with the sampled data. Due to the

fact that the WNOA and WNOJ are two different models, we see that we are unable to

achieve a good model fit even when training with data. We then show that the Singer

prior is able to represent both types of trajectories.

2.7 Experimental Validation

To evaluate our motion priors, we will be working with a dataset consisting of 36 km

of driving with both Velodyne VLS-128 lidar data and groundtruth from an Applanix

POS-LV system. The experimental setup also includes hardware time synchronization

between the lidar and the POS-LV system. The test vehicle used for the dataset collection

is shown in Figure 2.7.

The dataset consists of the 16 km long Route A, shown in Figure 2.8(a), and the

20 km long Route B, shown in Figure 2.8(b). Each of the three motion priors were

trained using the method from Section 2.5 with the POS groundtruth data from Route

A. Table 2.1 shows the number of parameters for each model along with the number of

iterations it took for hyperparameter training to converge. While the Singer model takes

the most iterations to converge, hyperparameter training is a procedure with an upfront

cost that only needs to be done once for each robotic platform before live operation.
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Figure 2.6: The Singer model is able to represent trajectories sampled from both a
WNOA and WNOJ prior.
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Figure 2.7: The Buick test vehicle used for data collection. The vehicle is equipped with
a Velodyne VLS-128 lidar, and an Applanix POS-LV system.

(a) Route A (b) Route B

Figure 2.8: (a) 16 km long training route. (b) 20 km long test route.

Table 2.1: Number of parameters compared with number of iterations to convergence
for each of the three motion priors.

Prior WNOA WNOJ Singer
# of Parameters 6 6 12

# of Iterations to Convergence 26 48 178
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2.7.1 Lidar Localization

We perform lidar localization as a batch trajectory optimization using each of the three

trained motion priors on Route B, our 20 km long test trajectory. We use data from

one of the runs along Route B to create a map of the area and then use a different run

of Route B to perform lidar localization against the previously created map. We obtain

6-DOF pose estimates along with their covariances at 10 Hz from a lidar-only localization

pipeline provided by Applanix. Because this pipeline is a commercial product that has

been vigorously validated internally, we can assume that the covariance estimates are

reasonable. We treat the pose estimates from lidar localization as pose measurements in

our continuous-time estimator where we incorporate one of our motion priors. To ensure

a fair comparison, all aspects of the estimator except for the motion prior are kept the

same. An overview of this test procedure is shown in Figure 2.9.

Motion Prior

STEAM Framework

Pose measurements

Continuous-time 
trajectory

WNOJWNOA Singer

Query trajectory at 
ground truth time 

stamps

Ground truth

Run 1 Run 2

Applanix lidar map 
creation

Lidar data

Applanix lidar localization 
pipeline

ErrorsCompare

or or

Figure 2.9: Overview of the lidar localization test procedure where one run of Route
B is used to create a high-definition lidar map while a seperate run is used to localize
against that map.
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Table 2.2: Translational errors evaluated on lidar localization along Route B for the
three motion priors and the reduction in error achieved by the Singer prior.

Seq. no.
WNOA

(m)
WNOJ

(m)
Singer
(m)

Reduction in error
from WNOA

Reduction in error
from WNOJ

0 0.0690 0.0729 0.0677 1.85% 7.01%
1 0.0888 0.0892 0.0835 5.95% 6.34%
2 0.4071 0.3984 0.3999 1.76% -0.38%
3 0.1947 0.1683 0.1667 14.36% 0.93%
4 0.2868 0.2686 0.2655 7.43% 1.17%
5 0.5703 0.5474 0.5471 4.07% 0.05%
6 0.3292 0.2850 0.2863 13.03% -0.45%
7 0.2207 0.2224 0.2146 2.74% 3.50%
8 0.1115 0.1182 0.1126 -0.95 4.77%
9 0.0979 0.1050 0.0979 -0.02% 6.73%

overall 0.2376 0.2275 0.2242 5.64% 1.47%

Since part of evaluating a motion prior is the quality of interpolation, we also in-

terpolate at the groundtruth timesteps since they occur more frequently than the lidar

localization pose measurements. This also allows us to directly calculate localization

errors.

We break down the test trajectory into 10 sequences and evaluate the performance of

lidar localization on each of the sequences. The translational errors are shown in Table

2.2 where we see that the Singer prior results in an overall reduction of error by 5.64%

compared to WNOA and 1.47% compared to WNOJ. The errors in longitudinal velocity

are shown in Table 2.3, where we see that the Singer prior results in an overall reduction

of error by 22.18% compared to WNOA and 2.32% compared to WNOJ.

Because the pose measurements we obtain from lidar localization are reliably accurate

relative to groundtruth, we perform another experiment where we decrease the frequency

at which we receive pose measurements from lidar localization but use the same motion

prior hyperparameters trained from groundtruth measurements every 0.1s. In our new

experiment, instead of receiving pose measurements every 0.1s from lidar localization,

we increase measurement dropout to 1s and all the way up to 5s. The results from this

experiment are shown in Figure 2.10. With a 5s measurement dropout, the Singer prior

has a 29.57% reduction in translational error compared to WNOA and 67.89% compared
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Table 2.3: Longitudinal velocity errors evaluated on lidar localization along Route B for
the three motion priors and the reduction in error achieved by the Singer prior.

Seq. no.
WNOA
(m/s)

WNOJ
(m/s)

Singer
(m/s)

Reduction in error
from WNOA

Reduction in error
from WNOJ

0 0.2561 0.1794 0.2010 21.53% -12.04%
1 0.1585 0.1123 0.1216 23.26% -8.25%
2 0.1656 0.1341 0.1332 19.57% 0.65%
3 0.1590 0.1109 0.1120 29.55% -1.04%
4 0.1427 0.1342 0.1157 18.88% 3.75%
5 0.2279 0.1477 0.1452 36.31% 1.69%
6 0.2484 0.1642 0.1505 39.42% 8.35%
7 0.1655 0.1733 0.1744 -5.34% -0.59%
8 0.1370 0.1744 0.1371 -0.05% 21.39%
9 0.1988 0.1511 0.1565 21.28% -3.59%

overall 0.1860 0.1482 0.1447 22.18% 2.32%
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Figure 2.10: Estimation errors for each of the three priors as measurement dropout is
increased.

to WNOJ. The Singer prior also decreased longitudinal velocity error by 7.25% for WNOA

and 15.38% for WNOJ.

While the WNOJ prior outperforms the WNOA prior and is closely comparable to

the Singer prior without measurement dropout, Figure 2.10 shows it is not robust to

increasing measurement dropout. This is because when the model chosen to represent

trajectories cannot sufficiently represent the true model, hyperparameter training is more

sensitive to the frequency of the groundtruth measurements. The trained parameters

work the best when the frequency of the groundtruth training data is close to the fre-

quency of the measurement test data. It was noted in [48] that the WNOJ prior is



Chapter 2. A Data-Driven Prior on SE(3) 31

more sensitive to the hyperparameters chosen than the WNOA prior, which is consistent

with our findings that the effect of measurement dropout on the WNOA prior is not as

pronounced.

It is well known that if a model is too expressive, it may overfit to the training data

and generalize poorly to new data. However, while the Singer model is more expressive, it

is capable of a better fit to typical vehicle trajectories without overfitting to the training

data. As a result, we see that the Singer model is able to maintain its performance

advantage over the WNOA prior. Thus another advantage of the Singer prior over

the WNOJ prior is that it is more robust to the frequency of measurements, which is

desirable in a continuous-time estimation framework where the measurement frequency

of the estimator does not need to be known beforehand.

As stated in Section 2.4, the WNOA prior assumes accelerations are uncorrelated with

time while the WNOJ prior assumes that accelerations are correlated to accelerations at

all other times. Both these assumptions are unrealistic because typical robot maneuvers

will have accelerations correlated for a certain period of time (such as a car executing

a turn). As such, the Singer prior allows the length-scale of acceleration to be adjusted

based on what we learn from data.

Figure 2.11 shows a curved portion of sequence 5 with a 4s measurement dropout,

where dotted red lines indicate the boundary at which the estimate of the car would

cross the lane markings. We see that the Singer model is able to keep the estimate

within the lane markings while both the WNOA and WNOJ estimates deviate outside of

the markings for a short period of time. Taking a look at Figure 2.12, which shows the

estimated velocities for another section of sequence 5 with a 4s measurement dropout, we

can see how the velocity estimates are much better using the Singer prior as the peaks

are better matched to the groundtruth. These peaks represent changes from acceleration

to deceleration, which occur frequently in urban driving scenarios. The WNOA prior

struggles the most to capture these motions while the Singer prior does the best.
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Figure 2.11: The estimator using the Singer prior keeps the estimates within the lane
boundaries while the WNOA and WNOJ estimates deviate outside.
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Figure 2.12: The estimator using the Singer prior is able to better capture the peaks in
longitudinal velocity which represent changes in acceleration.

2.7.2 Lidar Odometry

We also evaluate our continuous-time motion priors with their trained hyperparameters

on Route B, using the lidar-only odometry implementation from [47] and [48]. In this

approach, a sliding-window is used rather than a batch optimization, where each window

contains a reference point cloud consisting of 3 individual point clouds (where each is a

single revolution of the lidar) and 2 target point clouds we are trying to align. We make

use of the continuous-time interpolation scheme to handle point cloud motion distortion.

We choose not to use the KITTI dataset because the point clouds have already been
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Table 2.4: Percent translation errors evaluated on lidar odometry along Route B and
the reduction in error achieved by the Singer prior.

Seq.
no.

WNOA
WNOJ
(with
patch)

WNOJ
(without
patch)

Singer
Reduction
in error

from WNOA

Reduction
in error

from WNOJ
(with patch)

Reduction
in error

from WNOJ
(without patch)

0 3.26% 3.23% 3.18% 3.13% 4.14% 3.10% 1.54%
1 2.89% 2.86% 2.85% 2.87% 0.71% -0.20% -0.52%
2 2.41% 2.39% 2.43% 2.41% 0.08% -0.74% 0.90%
3 2.26% 2.25% - 2.28% -0.95% -1.34% -
4 2.37% 2.40% - 2.39% -0.83% 0.31% -
5 2.45% 2.40% 2.41% 2.38% 2.75% 0.66% 0.91%
6 2.56% 2.62% 2.57% 2.57% -0.65% 1.77% -0.01%
7 3.37% 3.33% 3.34% 3.34% 0.72% -0.33% -0.10%
8 3.57% 3.48% 3.48% 3.53% 1.23% -1.39% -1.30%
9 3.21% 3.17% - 3.22% -0.10% -1.50% -

overall
(without
3,4,9)

2.929% 2.901% 2.894% 2.890% 1.35% 0.39% 0.14%

overall 2.834% 2.812% - 2.811% 0.82% 0.03% -

processed by the dataset authors to compensate for motion distortion.

Because of numerical instabilities, the WNOJ estimator in [48] required a patch that

reverted to using a WNOA prior for a single window if any abnormalities were detected,

such as a sudden increase in acceleration. We run lidar odometry with and without

the patch and report results for both. Table 2.4 shows the average percent translation

errors over path segments of lengths 100, 200, . . . , 800 meters for each sequence, the same

evaluation metric used in the KITTI odometry benchmark [18]. The WNOJ estimator

without the patch failed for sequences 3, 4, and 9. Excluding these sequences, overall,

the Singer prior decreases error by 1.35% from the WNOA prior and 0.14% from the

WNOJ prior without the patch.

Figure 2.13 shows the lidar odometry estimates for each of the motion priors for

sequence 2, where the estimates for the WNOJ prior are without the patch. It can be

seen that the estimator with the Singer prior reduces drift compared to the other two

priors, most notably in the z direction.

We observe that the improvements in estimator accuracy with our lidar odometry
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Figure 2.13: 3D plot of odometry estimates for sequence 2 show that the estimator using
the Singer prior is able to reduce drift in the z direction.

experiment are not as significant compared to our lidar localization experiment. One

major difference is that in lidar odometry, while the hyperparameters of the motion

prior were trained in a principled way, the measurement covariances of the point cloud

alignment, which are also hyperparameters of the estimator, were hand-picked. On the

other hand, the pose measurements in lidar localization obtained from the Applanix

pipeline have covariances attached, which were estimated in a principled manner.

It should be noted that the estimator using the Singer prior is able to run on all

sequences without any patches, showing its increased robustness. On all sequences, the

Singer prior decreases error overall by 0.82% from the WNOA prior and maintains a very

similar performance as the WNOJ prior, which used the patch.

2.8 Summary

In this chapter, we showed that a continuous-time trajectory estimator in SE(3) using

a Singer prior trained with data outperforms the existing white-noise-on-acceleration

and white-noise-on-jerk priors, also trained with data. It also exhibits more robustness

compared to the WNOJ prior in the presence of extended measurement dropouts. This

is because our hyperparameter training method allows us to use richer priors with more

parameters to better fit the type of trajectories that our robot undergoes.

One limitation of the work in this chapter is we made the assumption that we have
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noisy groundtruth measurements of our entire state for the hyperparameter training

procedure. However, on some robotic platforms, this groundtruth may not be possible

to collect. In the next chapter, we focus on a general method for parameter learning in

a Gaussian variational inference setting where we no longer require observations of our

full state.



Chapter 3

Parameter Learning without

Groundtruth

3.1 Introduction

Probabilistic state estimation is a core component of mobile robot navigation. While the

estimation machinery is reasonably mature, there are robot model parameters that are

difficult to determine from first principles and vary with each new platform and sensor.

In the previous chapter, we showed that we could learn robot model parameters when we

had noisy but complete observations of the full state. However, this is information is often

not available or difficult to collect. Our vision is to develop a learning framework that

allows the deployment of a robot with arbitrary sensors onboard, and have it learn the

model parameters required for estimation (and planning/control) solely from the sensor

data. This can be viewed as a form of nonlinear system identification, although we will

approach the problem using modern machine learning techniques.

In this chapter, we show that we can learn the parameters of a nonlinear system

in concert with a nonlinear batch state estimation framework, namely Exactly Sparse

Gaussian Variational Inference (ESGVI) [6]. ESGVI exploits the fact that the joint like-

lihood between the observed measurements (data) and the latent state can be factored,

which provides a family of scalable state estimation tools starting from a variational

inference objective. To extend this to parameter learning, we use Expectation Maxi-

36
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mization (EM). In the E-step, we fix all model parameters and optimize a bound on the

data log-likelihood, the so-called negative Evidence Lower Bound (ELBO); this is equiv-

alent to ESGVI latent state inference. In the M-step, we hold the latent state estimate

fixed and optimize the ELBO for the parameters. Our method is general and applicable

to any nonlinear system identification problem, even when the factorization of the joint

likelihood has cycles (e.g., Simultaneous Localization and Mapping (SLAM)). Barfoot

et al. [6] hint at the ESGVI extension to parameter learning, but do not demonstrate it

in practice.

Our demonstration of parameter learning focuses on robot noise models. The noise

models of the motion prior and observed measurements are often assumed to be known

or tuned by trial and error. The previous chapter demonstrated parameter learning for

vehicle motion priors, but required accurate and complete (i.e., observation of the com-

plete latent state) groundtruth. However, often times, collecting such groundtruth is not

possible or extremely expensive. We demonstrate the ability to learn these noise models

from only noisy measurements. If groundtruth is available, we treat it simply as another

(noisy) measurement that can be included in the framework. We also demonstrate that

an Inverse-Wishart (IW) prior over the time-varying measurement covariances, using a

Maximum A Posteriori (MAP) treatment in the variational setting, achieves outlier re-

jection in both parameter learning and latent state inference. We then demonstrate our

parameter learning method on a real-world lidar dataset and a pose graph optimization

problem created from a front-end pose graph SLAM algorithm. We show that our pa-

rameter learning method is able to handle both noisy measurements and outliers during

training and testing.

In summary, the main contribution of this chapter is a detailed investigation and

experimental demonstration of parameter learning as part of ESGVI. Our application

focuses on trajectory estimation, where we show nonlinear system identification using

noisy measurements, without groundtruth. We also show that we can achieve a robust

extension of ESGVI (with an outlier rejection scheme) by placing an IW prior on our

measurement covariances. We also show comparable trajectory estimation performance

between learning parameters with and without groundtruth.
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3.2 ESGVI with Parameter Learning

3.2.1 Variational Setup

In this section, we give an overview of ESGVI [6]. We begin with the maximum-likelihood

problem for the given data, z, which is expressed as

θ? = arg max
θ

p(z|θ), (3.1)

where θ represents the parameters of our system that we wish to learn.

We define the loss that we wish to minimize as the negative log-likelihood of the data

and introduce the latent state, x. Applying the usual EM decomposition results in

L = − ln p(z|θ) =

∫
q(x) ln

(
p(x|z,θ)

q(x)

)
dx︸ ︷︷ ︸

≤ 0

−
∫
q(x) ln

(
p(x, z|θ)

q(x)

)
dx︸ ︷︷ ︸

upper bound

, (3.2)

where we define our approximate posterior as a multivariate Gaussian distribution, q(x) =

N (µ,Σ). We now proceed iteratively in two steps, the expectation step (E-step) and the

maximization step (M-step)1.

As commonly done in the EM framework, in both the E-step and the M-step, we

optimize the upper bound term in (3.2), which is also known as the (negative) Evidence

Lower Bound (ELBO). Using the expression for the entropy, −
∫
q(x) ln q(x)dx, for a

Gaussian and dropping constants, the upper bound term is written as the loss functional

of ESGVI,

V (q|θ) = Eq[φ(x|θ)] +
1

2
ln
(
|Σ−1|

)
, (3.3)

where we define φ(x|θ) = − ln p(x, z|θ), Eq[·] is the expectation conditioned on the

distribution q(x), and |·| is the matrix determinant. We drop z in the notation for

convenience as our expectation is over x.

Taking the derivatives of the loss functional with respect to µ and Σ−1, Barfoot et

1We are working with the negative log-likelihood so we are technically applying Expectation Mini-
mization, but the acronym stays the same.
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al. [6] developed a Newton-style iterative optimizer to update our estimate of q(x). We

summarize the optimization scheme here as

(
Σ−1

)(i+1)
=

K∑
k=1

PT
kEq(i)k

[
∂2φk(xk|θ)

∂xTk ∂xk

]
Pk, (3.4a)

(
Σ−1

)(i+1)
δµ = −

K∑
k=1

PT
kEq(i)k

[
∂φk(xk|θ)

∂xTk

]
, (3.4b)

µ(i+1) = µ(i) + δµ, (3.4c)

where superscript i is used to denote variables at the ith iteration. We have exploited

the factorization of the joint log-likelihood into K factors as

φ(x|θ) =
K∑
k=1

φk(xk|θ). (3.5)

For generality we have each factor, φk, affected by the entire parameter set, θ, but in

practice it can be a subset. Pk is a projection matrix that extracts xk from x (i.e.

xk = Pk x). The marginal of q associated with xk is

qk(xk) = N (Pkµ,PkΣPT
k ). (3.6)

Critical to the efficiency of the ESGVI framework is the ability to compute the required

marginals in (3.4a) and (3.4b), without ever constructing the complete (dense) covariance

matrix, Σ. A sparse solver based on the method of Takahashi et al. [46] is used to achieve

this in [6].

The expectations in (3.4a) and (3.4b) can be approximated using Gaussian cubature

samples (e.g., sigmapoints) of the marginal posterior. Importantly, approximating the

expectations at only the mean of the posterior is equivalent to the MAP batch optimiza-

tion with Newton’s method. Barfoot et al. [6] also provide a derivative-free optimization

scheme with only Gaussian cubature.

In the M-step, we hold q(x) fixed and optimize the upper bound for the parameters,
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θ. We can optimize for θ by taking the derivative of the loss functional as follows:

∂V (q|θ)

∂θ
=

∂

∂θ
Eq[φ(x|θ)]

=
∂

∂θ
Eq

[
K∑
k=1

φk(xk|θ)

]
(3.7)

=
K∑
k=1

Eqk

[
∂

∂θ
φk(xk|θ)

]
. (3.8)

In the last step, the expectation reduces from being over the full Gaussian, q, to the

marginal associated with the variables in each factor, qk. We can then set the derivative to

zero and isolate θ for a critical point, formulating an M-step. If isolation is not possible,

we can use the gradient in (3.7) for a partial M-step, which is known as Generalized

Expectation Maximization (GEM) [9].

3.2.2 Alternate Loss Functional

In the E-step, we hold θ fixed and optimize q(x) for the best possible Gaussian fit.

Barfoot et al. [6] present an alternate, Gauss-Newton-style loss functional for when the

negative log-likelihood takes the form

φ(x|W) =
1

2

(
e(x)TW−1e(x)− ln(|W−1|)

)
, (3.9)

where θ is now a covariance matrix, W. With Jensen’s inequality [25] and dropping the

second term since W is a constant in the E-step, we can write

Eq[e(x)]TW−1Eq[e(x)] ≤ Eq
[
e(x)TW−1e(x)

]
. (3.10)

Motivated by this relationship, we can define a new loss functional for the E-step as

V ′(q) =
1

2
Eq[e(x)]TW−1Eq[e(x)] +

1

2
ln(|Σ−1|), (3.11)
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which is a conservative approximation of V (q), appropriate for mild nonlinearities and/or

concentrated posteriors. The alternate loss functional is simpler to implement in practice

as it does not require the second derivative of the factors2. Also note how evaluating the

expectation only at the mean of the posterior is equivalent to MAP Gauss-Newton.

3.3 Parameter Learning for Robot Noise Models

3.3.1 Constant Covariance

Barfoot et al. [6] outline parameter learning (M-step) for constant covariance noise

models, which we summarize here. Our loss functional is

V (q|W) = Eq[φm(x|W)] +
1

2
ln
(
|Σ−1|

)
, (3.12)

where we use φm to denote a factor involving a measurement error term with a constant

covariance. This expression is similar to (3.9), but we can exploit the factorization of

φm(x|W) to write:

φm(x|W) =
K∑
k=1

φmk (xk|W) (3.13)

=
K∑
k=1

1

2

(
ek(xk)

TW−1ek(xk)− ln(|W−1|)
)
,

where the K factors (in practice, it could be a subset) are affected by the unknown

parameter W, a constant covariance matrix. Evaluating the derivative, as shown in

(3.7), with respect to W−1 and setting to zero for computing a minimum results in the

optimal W to be

W =
1

K

K∑
k=1

Eqk
[
ek(xk)ek(xk)

T
]
, (3.14)

2Another alternative is the derivative-free optimization scheme with cubature sampling, at the cost
of requiring more cubature samples (i.e., more computation). A derivative-free scheme for the alternate
loss functional is also possible [6].
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which can be approximated with Gaussian cubature if the error functions, ek(xk), are

nonlinear. This method guarantees that the learned covariance is always positive definite.

Alternatively, we can choose to linearize ek(xk) at the posterior marginal, qk =

N (µk,Σk), resulting in the following M-step:

W ≈ 1

K

K∑
k=1

Eqk
[
(ek(µk) + Ek δxk) (ek(µk) + Ek δxk)

T
]

=
1

K

K∑
k=1

(
ek(µk)e

T
k (µk) + EkΣkE

T
k

)
, (3.15)

where

Ek =
∂ek(xk)

∂xk

∣∣∣∣
xk=µk

. (3.16)

3.3.2 White-Noise-On-Acceleration Prior on Latent State

We next demonstrate parameter learning for the situation where the covariance of a factor

is indirectly estimated through another quantity. Consider the example of a white-noise-

on-acceleration (WNOA) motion prior on the latent state, where the parameter we wish

to estimate is the power-spectral density matrix, Qc [8]. More specifically, let us study

the application of the prior in SE(3) [3], which we recall from Chapter 2 is defined as:

Ṫ(t) = $(t)∧T(t),

$̇ = w(t), w(t) ∼ GP(0,Qcδ(t− t′)),
(3.17)

The state at time tk is xk = {Tk,$k}, and similarly, xk,k+1 is the state at two consecutive

times, tk and tk+1.

We express the factors of our loss functional from (3.3), but with only WNOA prior

factors denoted as φp, for simplicity:

φp(x|Qc) =
K−1∑
k=1

φpk(xk,k+1|Qc) (3.18)

=
K−1∑
k=1

1

2

(
eTp,kQ

−1
k ep,k + ln|Qk|

)
,
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where ep,k is the WNOA error term defined in (2.14). We can decompose the covariance

of the prior, Qk, into two factors,

Qk = Q∆t ⊗Qc, Q−1
k = Q−1

∆t ⊗Q−1
c ,

Q∆t =

1
3
∆t3 1

2
∆t2

1
2
∆t2 ∆t

 , Q−1
∆t =

12∆t−3 −6∆t−2

−6∆t−2 4∆t−1

 ,
where ⊗ is the Kronecker product. Solving for the derivative with respect to Qcij , the

(i, j) matrix element of Qc, we have

∂V (q|θ)

∂Qcij

=
1

2
tr

(
K−1∑
k=1

Eqk,k+1
[ep,ke

T
p,k](Q

−1
∆t ⊗ 1ij)

)
− 1

2
(K − 1)dim(Q∆t)Qcij , (3.19)

where qk,k+1 is the marginal posterior at two consecutive times, tk and tk+1. Setting the

derivative to zero, the optimal estimate of our parameter is then

Qcij =
tr
(∑K−1

k=1 Eqk,k+1
[ep,ke

T
p,k](Q

−1
∆t ⊗ 1ij)

)
dim(Q∆t)(K − 1)

. (3.20)

As explained for (3.14), the expectation in (3.20) can be approximated with Gaussian

cubature or linearization.

3.3.3 Inverse-Wishart Prior on Covariance

We further extend covariance estimation by incorporating a prior over measurement

covariances. Instead of treating the measurement covariance as a static parameter, we

treat it as a random variable and place an IW prior on it. We then learn some of the

parameters of the prior. In order to do so, we redefine our joint likelihood as

p(x, z,R) = p(x, z|R)p(R), (3.21)
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where now we also include the covariances, R = {R1,R2, . . .RK}, as random variables.

We also redefine our posterior estimate to be

q′(x) = q(x)s(R), (3.22)

a product between a Gaussian q(x) and a posterior distribution for the covariances, s(R).

The upper bound term in the EM decomposition of (3.2) can now be written as

−
∫ ∫

q(x)s(R) ln

(
p(x, z|R)p(R)

q(x)s(R)

)
dx dR. (3.23)

We define the posterior over the covariances as

s(R) = δ(R−Υ), (3.24)

where δ(·) is the Dirac delta function (interpreted as a probability density function) and

Υ = {Υ1,Υ2 . . .ΥK} is the set of optimal covariances. The upper bound now simplifies

to

−
∫
q(x) ln (p(x, z|Υ)p(Υ)) dx +

∫
q(x) ln q(x) dx +

∫
s(R) ln s(R)dR︸ ︷︷ ︸
indep. of Υ

,

where we have abused notation and written p(R = Υ) as p(Υ), and similarly will later

write p(Rk = Υk) as p(Υk). We view our selection of the delta function as a convenient

way of showing how we can approximate a Gaussian distribution for the trajectory and a

MAP approximation of the covariances in a single variational framework. The last term

is the differential entropy of a Dirac delta function, and because it is independent of our

variational parameter, Υ, we choose to drop it from our loss functional even though it

approaches negative infinity.

We assume p(Υ) factors as p(Υ) =
∏K

k=1 p(Υk). We apply an IW prior over our

covariances by defining

p(Υk) =
|Ψ|ν/2

2
νd
2

Γd( ν
2

)
|Υk|−

ν+d+1
2 exp

(
−1

2
tr(ΨΥ−1

k )

)
, (3.25)
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where d is the dimension of Υk, Ψ ∈ Rd×d > 0 is the scale matrix, ν > d−1 is the degrees-

of-freedom (DOF), and Γd(·) is the multivariate Gamma function. The IW distribution

has been used as a prior over covariance matrices before, which led to outlier rejection

at inference [5, 40], but the parameters of the prior were assumed to be known. We

choose to estimate the scale matrix parameter Ψ and leave the degrees-of-freedom ν as

a metaparameter.

Now we define our factors as

− ln (Υ) =
K∑
k=1

− ln p(Υk)

=
K∑
k=1

φwk (Υk|Ψ) = φw(Υ|Ψ), (3.26)

where φw is the factor for the Inverse-Wishart prior. Dropping constant terms, the loss

functional can finally be written as

V (q′|Υ,Ψ) =
K∑
k=1

Eqk [φmk (xk|Υk) + φwk (Υk|Ψ)] +
1

2
ln
(
|Σ−1|

)
, (3.27)

where

φmk (xk|Υk) =
1

2

(
ek(xk)

TΥ−1
k ek(xk)− ln(|Υ−1

k |
)
, (3.28)

φwk (Υk|Ψ) = −α− 1

2
ln |Υ−1

k | −
ν

2
ln |Ψ|+ 1

2
tr(ΨΥ−1

k ), (3.29)

with α = ν + d+ 2.

In the E-step, we hold Ψ fixed and optimize for Υk, which we accomplish by taking

the derivative of the loss functional as follows:

∂V

∂Υ−1
k

=
1

2
Eqk
[
ek(xk)ek(xk)

T
]
− 1

2
αΥk +

1

2
Ψ. (3.30)
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Setting the derivative to zero,

Υk =
1

α
Ψ +

1

α
Eqk
[
ek(xk)ek(xk)

T
]

(3.31)

=
α− 1

α

(
Ψ

α− 1

)
︸ ︷︷ ︸
IW mode

+
1

α
Eqk
[
ek(xk)ek(xk)

T
]
,

where we see the optimal Υk is a weighted average between the mode of the IW distribu-

tion and the optimal static covariance estimate from (3.14) at a single marginal factor.

Since our E-step in ESGVI is already iterative, we can seamlessly extend it by applying

(3.31) as iteratively reweighted least squares (IRLS).

In the M-step, we hold Υ fixed and optimize for Ψ, which we accomplish by taking

the derivative of the loss functional as follows:

∂V

∂Ψ
=

K∑
k=1

(
−ν

2
Ψ−1 +

1

2
R−1
k

)
. (3.32)

Setting the derivative to zero,

Ψ−1 =
1

Kν

K∑
k=1

Υ−1
k . (3.33)

Applying (3.31) in the E-step and (3.33) in the M-step, we found that our optimza-

tion scheme was still ill-posed, and our covariance estimates tended toward the positive-

definite boundary (i.e., the zero matrix). We propose constraining the determinant of Ψ

to be a constant β, which can be thought of as constraining the volume of the uncertainty

ellipsoid of the corresponding measurements to be fixed. We accomplish this by scaling

the latest Ψ update as follows:

Ψconstrained ←
(
β |Ψ|−1

) 1
d Ψ. (3.34)

We then rely on the noise models of other factors (e.g., the motion prior) to adapt to our

selection of β during training.
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3.4 Experimental Validation

To evaluate our parameter learning method, we will be working with the vehicle dataset

collected and used in Chapter 2. Recall that the dataset consists of 36 km of driving,

with Velodyne VLS-128 lidar data and an Applanix POS-LV positioning system. There

are two sources of 6-DOF vehicle pose measurements. The first is from the POS-LV

system, which we treat as groundtruth. The second is from a lidar localization system

from Applanix, which localizes the lidar data to a prebuilt high-definition map.

We use Route A, our 16 km long training set, to learn the parameters of our noise

models. For inference, we perform a batch trajectory optimization on Route B, our

20 km long test set, using the learned noise model parameters of our motion prior and

measurements. These results are discussed in Sections 3.4.1-3.4.3.

In Section 3.4.4, we also evaluate our method on the publicly available Bicocca 25b

dataset from [33], which provides a set of odometry and loop closure constraints (rep-

resented as a pose graph) created from a bag of words place recognition system run on

data collected during the Rawseeds project [14]. We use our method to jointly learn the

covariances of the loop closure constraints in addition to the optimized trajectory.

3.4.1 Experiment A: Training With and Without Groundtruth

In Experiment A, our first experiment, we only use the lidar localization measurements

to learn our model parameters (training without groundtruth). As a benchmark, we also

learn another set of model parameters where we additionally include groundtruth poses in

our training (training with incomplete groundtruth). This is different from the previous

chapter where the training method required groundtruth of the entire state (training with

complete groundtruth), which for our problem setup is pose and body-centric velocity.

Additionally, in that chapter, the measurement covariances were assumed to be known

and not learned.
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The loss functional corresponding to this experiment is

V (q′|Υ,Ψ,Wgt,Qc) = Eq′ [φp(x|Qc) +φm(x|Wgt) +φm(x|Υ) +φw(Υ|Ψ)] +
1

2
ln
(
|Σ−1|

)
,

(3.35)

where φp(x|Qc) are the WNOA prior factors, φm(x|Wgt) are the groundtruth factors

(when available), and φm(x|Υ) and φw(Υ|Ψ) are the lidar measurement factors with an

IW prior over the covariances. See (3.18) for the definition of φp(x|Qc) and (3.13) for

the definition of φm(x|Wgt) and φm(x|Υ). For the definition of φw(Υ|Ψ), see (3.26) and

(3.29).

The WNOA error function (required for φp) is shown in (2.14), and the error function

for pose measurements (required for φm) is defined as

em,k = ln(TkT
−1
meas,k). (3.36)

The estimation problem in this experiment can be represented by the factor graph

in Figure 3.1, where we can train with or without the groundtruth factors, which are

shown inside the dashed box. For the sake of conciseness in our notation, we denote

φp(xk−1,k|Qc) as φpxk−1,k|Qc
, φm(xk|Wgt) as φmxk|Wgt

, φm(xk|Υk) as φmxk|Υk
, and φw(Υk|Ψ)

as φwΥk|Ψ.

We choose to fix the parameters to ν = 6 and β = 1 and learn the parameters Ψ, Wgt

(when groundtruth is available), and Qc. For both sets of learned parameters, we then

perform trajectory estimation on our test set, where we only use the lidar localization

measurements with our learned covariance model and our learned motion prior.

Figure 3.2 shows the error plots where we have trained without groundtruth for our

estimated x, y, and z positions, along with their 3σ covariance envelopes. As can be

seen, the errors consistently remain within the covariance envelopes. We do, however,

note that our estimator appears to be underconfident. We believe that this is a result

of our decision to constrain |Ψ| = β = 1 in order for our training method to work in

practice. This decision is analogous to fixing the volume of the covariance ellipsoid to be

constant. In doing so, we relied on the learned covariance of the motion prior to adjust
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x1 x2 xK

Υ1 Υ2 ΥK

φpx1,2|Qc

φmx1|Υ1
φmx2|Υ2

φmxK |ΥK

φwΥ1|Ψ φwΥ2|Ψ φwΥK |Ψ

φmx1|Wgt
φmx2|Wgt

φmxK |Wgt

Figure 3.1: Factor graph for our vehicle estimation problem in Experiment A. White
circles represent random variables to be estimated (vehicle state x and measurement
covariances Υ). Small black dots represent factors in the joint likelihood of the data
and the state. Binary motion prior factors, φpxk−1,k|Qc

, depend on parameter Qc. Unary

groundtruth pose factors (if available), φmxk|Wgt
, depend on parameter Wgt. Factors

φmxk|Υk
and φwΥk|Ψ are for applying an Inverse-Wishart prior over our measurement pose

covariances, Υ, and depend on parameter Ψ. We are able to learn parameters Qc and
Ψ, even without groundtruth factors (factors inside dashed box).

Figure 3.2: Experiment A - Error plots (blue lines) along with the 3σ covariance envelopes
(gray background) when parameters are trained without groundtruth.

relative to the measurement covariances. The posterior mean is unaffected by this choice

but not the posterior covariance.

Table 3.1 shows the resulting mean translational errors from both training methods on
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Table 3.1: Experiment A - Comparison of translational errors on test set between train-
ing with complete groundtruth, with incomplete groundtruth, and without groundtruth
(GT). We note that the first column, our previous work, did not learn the measurement
covariances.

Seq
no.

Trained with
complete GT [56]

(m)

Trained with
incomplete GT

(m)

Trained
without GT

(m)
0 0.0690 0.0720 0.0717
1 0.0888 0.1003 0.0925
2 0.4071 0.4148 0.4106
3 0.1947 0.1908 0.1847
4 0.2868 0.2866 0.2820
5 0.5703 0.5592 0.5549
6 0.3292 0.3014 0.2965
7 0.2207 0.2248 0.2230
8 0.1115 0.1151 0.1199
9 0.0979 0.1026 0.0997

overall 0.2376 0.2368 0.2335

all test sequences. We also include the results from our previous work where we trained

using complete groundtruth for comparison.

While we achieve very similar errors across all training methods, the benefit is that

we now do not require any groundtruth. Neither of the three training methods seem to

outperform the others. We believe this is because our lidar localization measurements

are quite accurate relative to groundtruth [56].

To further validate our method and show that we can indeed train with noisy mea-

surements, we decided to artificially add additional noise to the measurements, where the

noise statistics are unknown to the training process. We use the following SE(3) pertur-

bation scheme [5, 7] to inject noise into the position portion of our pose measurements:

Tnoisy = exp(ξ∧)Tmeas, (3.37)

where

ξ =

ξ1:3

0

 , ξ1:3 ∼ N
(
0, σ2I

)
. (3.38)

We vary σ from 0.25 m to 1 m, injecting the same amount of noise into the test
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measurements and training measurements.

Table 3.2 shows how our test errors change with increasing noise on measurements

in both our training and test set. While measurement error increases significantly, up

to over 1.6 m, we are still able to achieve translational errors of below 0.5 m on our

estimated trajectory. This shows that we are still able to learn reasonable parameters of

our system even without any groundtruth and quite noisy measurements.

Table 3.2: Experiment A - Analysis of how increasing noise on measurements affects the
parameter learning method. Even with measurement errors of over 1.6 m, the errors on
the estimated trajectory are under 0.5 m.

Measurement errors (m) Estimated trajectory errors (m)
0.2407 0.2335
0.5010 0.2909
0.8653 0.3289
1.2481 0.3936
1.6383 0.4566

3.4.2 Experiment B: Training and Testing With Measurement

Outliers

In Experiment B, we show that estimating time-varying covariances for each of our mea-

surements with an IW prior results in outlier rejection. We artificially introduce outliers

in our training and test set using the following method. With 5% probability, we apply

the following perturbation to the actual pose measurement:

Toutlier = exp(ξ∧)Tmeas, (3.39)

with

ξ ∈ R6 ∼ U(−200, 200). (3.40)

Figure 3.3 shows an example of the measurement outliers on sequence 3 of our test set.

We now seek to compare the performance between the cases where we have treated the

measurement covariance, W, as a static parameter to be learned, and where we have
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Figure 3.3: Experiments B & C - Measurement outliers (purple) overlaid with the
groundtruth trajectory (blue) on sequence 3 of the test set. Background image from
Google Maps.

treated the measurement covariance at each time as a random variable and learn the

parameter, Ψ, of the IW prior.

The loss functional corresponding to the static measurement covariance is

V (q′|W,Qc) = Eq′ [φp(x|Qc) + φm(x|W)] +
1

2
ln
(
|Σ−1|

)
, (3.41)

whereas for the IW prior on the measurement covariances, the loss functional is

V (q′|Υ,Ψ,Qc) = Eq′ [φp(x|Qc) + φm(x|Υ) + φw(Υ|Ψ)] +
1

2
ln
(
|Σ−1|

)
. (3.42)

Table 3.3 shows the resulting translational errors on our test trajectory. We can see

that without the IW prior, the estimation framework fails to reject outliers, resulting in

an overall translation error of above 5 m. However, using the IW prior, we see that the

error is only 0.2365 m. When we did not have any outliers at all in our data, the error

was 0.2335 m (Table 3.1), meaning the average translational error on our test set only

increased by 0.003 m.
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Table 3.3: Experiment B - Translational errors using a static measurement covariance
compared to using an IW prior when we have outliers in both our training and test set.

Seq no. Static W (m) IW Prior (m)
0 6.1976 0.0773
1 5.8371 0.0979
2 5.3652 0.4125
3 5.1217 0.1860
4 5.5186 0.2807
5 5.4780 0.5563
6 6.3936 0.3004
7 5.6898 0.2274
8 6.3717 0.1233
9 6.8032 0.1036

overall 5.8776 0.2365

From this experiment, we can see that using the IW prior allows for the handling of

outliers in both training and testing due to our ability to estimate measurement covari-

ances.

3.4.3 Experiment C: Training Without and Testing With Mea-

surement Outliers

In Experiment B, we included outlier measurements in both the training and test set

and saw that the IW prior allows us to achieve comparable errors to the case with no

outliers. To see if this still holds even when we do not see any outliers in training, in

Experiment C we train without any outliers but test with outliers. As the only difference

between Experiment B and Experiment C is that we now train without any outliers, the

loss functionals remain the same.

Table 3.4 shows that the resulting translational errors are again very high when we

simply learn a static measurement covariance, but that we can still achieve reasonably

low errors when learning the parameters of our IW prior. By incorporating the IW prior

instead of learning a static measurement covariance, we decrease error from above 6 m

to 0.2355 m. Compared to the error of 0.2335 m when there are no outliers in our test

set (Table 3.1), we see an increase in error of only 0.002 m with the IW prior. This

experiment shows that we can indeed still benefit from the outlier rejection scheme that
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Table 3.4: Experiment C - Translational errors using a static measurement covariance
compared to using an IW prior when we have outliers in our test set but not in our
training set.

Seq no. Static W (m) IW Prior (m)
0 7.3504 0.0731
1 6.0754 0.0948
2 5.5771 0.4096
3 5.8157 0.1873
4 5.5503 0.2826
5 6.3057 0.5554
6 7.1858 0.2995
7 6.0332 0.2256
8 9.3079 0.1224
9 8.1237 0.1046

overall 6.7325 0.2355

comes with using an IW prior even when there are no outliers in our training set.

Comparing the results from Experiments B and C, we see that in both cases, incor-

porating the IW prior helps to reject outliers in the test set, regardless of whether there

were any outliers in the training set. While errors for the static measurement covariance

were similarly poor in both experiments, we note that the concentration of the errors

are different as shown in Figure 3.4. What we see is that when we train without any

outliers (Experiment C), the errors are concentrated where the outliers are in the test

set. This result is unsurprising given that no outliers were seen in training, which in

turn is reflected in our learned noise model parameters. When we train with outliers

(Experiment B), the errors still peak around the outliers, but are more spread out over

the entire trajectory. Regardless of this difference, we can see that using the IW prior is

robust to both cases and still results in low translational errors.

3.4.4 Bicocca Dataset

We also evaluate on the Bicocca 25b real world dataset from [33] (github.com/ylatif/rrr.git)

which provides a set of odometry constraints and loop closure constraints by running a

front-end SLAM algorithm using the bag of words place recognition system from [13]

on data collected during the Rawseeds project [14]. By varying the minimum confidence
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Figure 3.4: Experiments B & C - Translational errors for the static covariance method on
a portion of the test set containing measurement outliers when training with and without
outliers (Experiments B and C, respectively).

parameter (α−) of the place recognition algorithm from 0 to 1 in increments of 0.025, [33]

created 41 different datasets where the number of loop closures ranged from 23 to 446.

Each dataset is represented as a pose graph that must be optimized. For our work, we

will use two of these datasets with α− = 0.45 (no clear false loop closures) and α− = 0.15

(many clear false loop closures).

In the first dataset, we use α− = 0.45 which results in 137 loop closures as shown in

Figure 3.5. The trajectory plotted from only odometry is shown in blue while the loop

closures are shown in red.

We optimize the pose graph using 3 methods:

1. Our proposed framework using the IW prior on loop closure covariances and learn-

ing the parameter Ψ of our prior

2. Our proposed framework learning a static covariance W for all loop closure con-

straints

3. No covariance learning
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Figure 3.5: Odometric trajectory (blue) and loop closures (red) for a minimum confidence
parameter of 0.45.

Table 3.5: Average Trajectory Error (ATE) as calculated by the Rawseeds Toolkit.

IW prior (m) Static W (m) No covariance learning (m)
α− = 0.45 0.9094 0.9871 0.9968
α− = 0.15 2.3292 11.9059 29.4418

We show the results using these methods in Figure 3.6. Table 3.5 shows the Average

Trajectory Error (ATE) as calculated by the Rawseeds Toolkit. We see that all three

methods result in very similar estimates for α− = 0.45. This is because visually inspecting

the loop closures from Figure 3.5, we can see that none of them are clear outliers.

We then test on a dataset with α− = 0.15, which results in 350 loop closures shown

in Figure 3.7. It is known that this value of the minimum confidence parameter results in

many false loop closures and is the same value used in [32] to test robustness of estimation

algorithms to false loop closures. We can see from Table 3.5 that the false loop closures

have a negative effect on the optimization without any covariance learning. Learning a

static covariance helps improve the estimates a bit more, but with the IW prior, we are

able to obtain a much better trajectory estimate as seen in Figure 3.8.
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Figure 3.6: Resulting trajectory estimates for dataset with minimum confidence param-
eter of 0.45.
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Figure 3.7: Odometric trajectory (blue) and loop closures (red) for a minimum confidence
parameter of 0.15.
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Figure 3.8: Resulting trajectory estimates for dataset with minimum confidence param-
eter of 0.15.

3.5 Summary

In this chapter, we presented parameter learning for ESGVI. Our parameter learning

method does not need groundtruth, and is robust to noisy measurements and outliers.

This is desirable because in many cases, we do not have a way of obtaining accurate

groundtruth of robot trajectories. The implication of our work is that we now have a

framework for estimating robot parameters based solely on whatever sensors are available.

We first experimentally demonstrated our method on a 36 km vehicle dataset where

we show parameter learning for a trajectory estimation problem. We obtain comparable

trajectory estimates even when learning parameters with increasingly noisy measure-

ments and without observations of the full state. The ability to perform parameter

learning without observations of the full state was a key limitation from Chapter 2 that

was addressed in this chapter. We are also able to handle artificially introduced outlier

measurements by placing placing an Inverse-Wishart prior on measurement covariances

and estimating them alongside the latent trajectory. Lastly, we demonstrated our method

on a pose graph optimization problem with real outliers from false loop closures.



Chapter 4

Conclusions and Future Work

4.1 Summary of Contributions

In the first part of our work, we showed how continuous-time trajectory estimation can

be improved through the motion prior used. Instead of arbitrarily choosing a motion

prior and its parameters, we developed a novel motion prior that can represent more

types of trajectories. With these richer motion priors comes more parameters that must

be tuned. We therefore also introduced a hyperparameter training method that uses data

to select the hyperparameters most suitable for the particular robot. We show on a lidar

localization and lidar odometry experiment, that by simply choosing a more appropriate

prior and parameters, we can improve estimation.

Our parameter learning method required observations of the full state. This is often

impractical for real world problems. Thus in the second part of our work, we show

parameter learning within the Exactly Sparse Gaussian Variational Inference (ESGVI)

framework. This enables us to use Expectation Maximization to learn model parameters

with incomplete measurements of the state by alternating between estimation of the

latent trajectory and finding the best parameters. We also show that outlier rejection

can be achieved by estimating time-varying measurement covariances with an IW prior,

whose parameters we also learn.

59
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4.2 Future Work

A main portion of our work aimed at estimating proper parameters, including covariances.

However, in the lidar odometry experiment we performed in Chapter 2, we did not have

a principled way to choose the measurement covariances for our point cloud alignment.

In the future, we can explore better methods to identify these measurement covariances

to improve our estimator. Examples of work that estimate the covariance associated with

point cloud alignment include [10] and [31]. This will be an important part of improving

state estimation when point clouds are involved.

In modelling the trajectories, regardless of the continuous-time motion prior, we have

represented each of the six pose variables as its own GP where there are no correlations

between pose variables. However, this may not be the case as there can be correlations

between them. As such, we could try to learn the parameters Qc and α without con-

straining them to be diagonal matrices. The new latent force model prior we derived

represented latent accelerations as a Matérn covariance function with v = 1/2, which

we showed was equivalent to the Singer acceleration model. Another extension would

be to explore the use of other covariance functions and then perform hyperparameter

training to estimate their parameters. Using methods from Chapter 3, this can be easily

done without having to manually work out the covariance of error terms as was done in

Chapter 2.

We could also consider incorporating control input data when training our motion

prior to be able to better capture the dynamics of the robotic system.

In estimating time-varying covariances with the IW prior in Chapter 3, we still as-

sumed two parameters to be known: ν, the DOF parameter for the IW distribution, and

β, the determinant constraint on the scale matrix, Ψ. For future work, we will investigate

how to also learn ν and eliminate the need to constrain the determinant of Ψ to be a

constant, β.

In this thesis, we chose to mostly learn the noise model parameters as a useful practical

application of our framework. However, ESGVI can be used to learn entire robot models

that are represented by rich modelling techniques, such as DNNs.
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Trajectory Estimation as Exactly Sparse Gaussian Process Regression. In RSS.

Citeseer, 2014.

[9] C M Bishop. Pattern Recog. and Machine Learning. Springer, 2006.

[10] Silvère Bonnabel, Martin Barczyk, and François Goulette. On the Covariance of

ICP-based Scan-matching Techniques. In American Control Conference, pages 5498–

5503. IEEE, 2016.

[11] Michael Bosse and Robert Zlot. Continuous 3D scan-matching with a spinning 2D

laser. In ICRA, 2009, pages 4312–4319. IEEE, 2009.

[12] Martin Brossard, Axel Barrau, and Silvère Bonnabel. Ai-imu dead-reckoning. IEEE

Transactions on Intelligent Vehicles, 2020.
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