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Abstract

Visual Teach & Repeat (VT&R) achieves long-range and long-term autonomous path following

through visual topometric mapping and localization. The system requires only a stereo camera for

sensing, making it well-suited for many mobile robot applications involving GPS-denied environ-

ments. In this thesis, we present VT&R3, a new version of VT&R that generalizes its underlying

teach and repeat navigation framework to work with lidar, radar, and possibly any rich sensor.

We develop lidar and radar topometric mapping and localization pipelines that enable lidar/radar-

based teach and repeat. We further extend the lidar pipeline with the ability to detect obstacles in

changing environments, making obstacle avoidance during path following possible. We validate our

pipelines through extensive evaluation using real-world datasets, including runtime analysis showing

their online operation capability. Our results demonstrate surprising accuracy and robustness of

lidar localization across varying weather and seasonal conditions, while radar localization remains

competitive and has advantages in computation and storage requirements.
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Chapter 1

Introduction

1.1 Motivation

Autonomous navigation based on the teach and repeat framework has shown to be a viable solution

for many mobile robot applications in transportation, mining, and planetary exploration. The idea is

to constrain the robot to navigate along a set of human-taught paths, simplifying general navigation

to path following and thereby avoiding challenging terrain assessment and path planning problems

in unstructured environments. A particularly successful implementation of this framework is the

Visual Teach & Repeat (VT&R) system developed at the Autonomous Space Robotics Laboratory

(ASRL) [1]. The system connects all taught paths into a large (kilometer-scale) network where

the robot navigates freely via accurate (centimeter-level) path following. It handles unstructured

and changing environments with a demonstrated operational window of multiple months in natural

outdoor scenarios. Most impressive is that the system can achieve such long-range and long-term

operational capability using a single stereo camera for sensing.

In this thesis, we continue to exploit the potential of teach and repeat navigation through an ar-

chitectural re-design of VT&R focusing on generalizability. Today’s mobile robots are equipped with

various sensors (camera, lidar, radar, IMU, etc.). Relying on a single stereo camera is an impressive

feature of VT&R but also prevents the system from taking advantage of other sensor modalities.

Switching to a new sensor or sensor suite requires different algorithms to solve problems such as

mapping and localization, but the navigation framework inherently generalizes to any sensor/robot

combination. The primary goal of this thesis is to design a new teach and repeat system on top of

VT&R that reflects the generalizability of its underlying framework, enabling easy adaptation to a

wide variety of sensor/robot combinations.

A major benefit of having such a system is that it accelerates the development and evaluation of

new solutions to problems related to teach and repeat navigation. Previously, localization issues arose

in the long-term operation of VT&R, leading to a large amount of work improving the robustness

of visual localization under significant appearance changes [2, 3, 4]. Safety concerns in collaborative

environments motivated research on terrain assessment preventing the robot from running into

humans during autonomous path following [5, 6]. The secondary goal of this thesis is to look into

similar problems while using a lidar or radar as the primary sensor instead of a stereo camera. Our

work towards this goal demonstrates the generalizability improvement of the re-designed system

1



CHAPTER 1. INTRODUCTION 2

and, more importantly, gets VT&R ready for new robots and use cases.

1.2 Contributions

The contributions of this thesis are:

Visual Teach & Repeat 3 (VT&R3): our newest version of VT&R with a complete software up-

grade and architectural re-design towards generalizability. VT&R3 inherits the key feature of its

predecessor, VT&R2 [1], in using a single stereo camera for teach and repeat navigation. It addition-

ally provides standardized interfaces for state estimation and global/local planning that allow easily

adding new algorithms for use with alternative sensor/robot combinations. VT&R3 has already been

used in multiple publications [7, 8, 9] and is open-source at https://github.com/utiasASRL/vtr3.

Radar & Lidar Topometric Mapping and Localization: a topometric mapping and localization

pipeline using data from a lidar or radar, using VT&R3’s state estimation interface. The pipeline

is capable of performing radar-only, lidar-only, or cross-modal radar-to-lidar localization. The per-

formance of all three variants is evaluated and compared using our public available Boreas dataset

[10], resulting in the following paper:

Keenan Burnett, Yuchen Wu, David J Yoon, Angela P Schoellig, and Timothy D Barfoot.

“Are We Ready for Radar to Replace Lidar in All-Weather Mapping and Localization?”

arXiv:2203.10174, 2022.

Lidar Map Maintenance and Obstacle Detection: an extension to the lidar-only topometric mapping

and localization pipeline with 1) a map maintenance module that produces clean and up-to-date

lidar maps in changing environments and 2) an obstacle detection module that labels points from

live lidar scans as belonging to obstacles or not. The proposed methods for both map maintenance

and obstacle detection are validated using real-world datasets. The extended pipeline will be used

by VT&R3 to enable obstacle avoidance during path following when using a lidar as the primary

sensor.

The details of each contribution will be presented in Chapter 2, 3 and 4, respectively. A conclusion

of the presented work and discussion on future directions will be given in Chapter 5.

https://github.com/utiasASRL/vtr3


Chapter 2

Visual Teach & Repeat 3

In this chapter, we present the main contribution of this thesis: Visual Teach & Repeat 3, a mobile

robot navigation system implementing the teach and repeat navigation framework, designed to be

used by various sensor/robot combinations. We start this chapter with a review of the VT&R devel-

opment history that provides the relevant background information. We then explain the core idea

of VT&R3 in representing the environment with a multi-experience topometric map. An overview

the VT&R3 system is presented afterward, followed by more detailed descriptions of its main com-

ponents.

2.1 History

2.1.1 The Predecessor of VT&R

Early autonomous navigation systems related to the teach and repeat framework can be found in

the work of Matsumoto et al. [11] and Howard [12]. In [11], the teach pass is called a recording

run, during which the robot records a sequence of camera images and the relational information

suggesting how to move from one image to the next. The robot can then repeat the path by matching

against these images and leveraging the relational information. Howard [12] introduced manifold

map, which can be seen as a form of the topometric map later used by VT&R. The advantages of

using such a representation for incremental mapping (i.e., path teaching) and retro-traversing (i.e.,

path repeating) were discussed and demonstrated.

The VT&R system originates from the work by Marshall et al. [13, 14] in developing an au-

tomated system for the “load-haul-dump” (LHD) cycle of under tramming vehicles. The system

operates in three steps: teaching, route profiling, and playback. In the teaching step, the vehicle is

manually driven on the desired route and logs data from onboard sensors (front and rear laser range

finders, a hinge angle encoder, and a drive shaft encoder). Then, route profiling is performed offline

using the logged data to generate a path profile, a speed profile, a pause profile, and a sequence

of local maps along the path represented by overlapping occupancy grids. After that, the system

can play the route profile back autonomously. An UKF-based localizer and a feedback linearization

controller work together to compute and reject lateral and heading errors, allowing the robot to

follow the profiled path accurately at the desired speed.

The system was deployed on multiple LHD vehicles and tested extensively in real underground

3
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mine environments. It demonstrated superior performance along straight but narrow passages com-

pared to human operators. Path tracking error was reported to be less than 50cm and 0.1rad in all

test sequences.

2.1.2 Visual Teach & Repeat 1

The encouraging results from [14] led to the development of VT&R1 presented by Furgale and

Barfoot [15] in 2010, which is a complete navigation system capable of long-range path following in

nonplanar terrain using a stereo camera as the only sensor. VT&R1 works similarly to [14]: online

data collection along the desired path followed by offline map generation, after which the path

can be repeated autonomously. The main difference lies in the algorithm employed for mapping

and localization in order to work with a stereo camera and nonplanar terrain, where VT&R1 uses a

SURF variant of the stereo visual odometry algorithm. The local maps generated by VT&R1 consist

of triangulated SURF features as 3D landmarks instead of occupancy grids, allowing localization to

be performed in 3D. Local maps are topologically connected to form a hybrid topological/metric

representation (a.k.a. a topometric map) of the environment. The same controller in [14] is used,

which operates on the approximated ground plane of each local map. Furgale and Barfoot [15]

envisioned VT&R1 being used for planetary exploration tasks and thereby tested the system at a

Mars analog site on Devon Island in the Canadian High Arctic. Over 32 km of testing was reported,

with 99.6% of the distance traveled completed autonomously.

The significance of VT&R1 lies in its demonstration and promotion of using overlapping locally

consistent maps to achieve long-range autonomy. However, its practicality is limited due to the

inability to support long-term operation. The visual features extracted from the stereo images were

found to be highly susceptible to environment appearance changes, which led to a rapid increase

in localization failures as the time gap between path teaching and repeating increases. The is-

sue was partially addressed by interleaving frame-to-frame odometry and frame-to-map localization

during path repeating so that odometry carries the robot forward over areas with poor localization.

Nonetheless, the operational window of VT&R1 is limited to a few hours. Besides that, the manda-

tory offline map generation step causes extra inconveniences in working with the system. Addressing

these limitations and inconveniences is the primary motivation for developing VT&R2.

2.1.3 Visual Teach & Repeat 2

VT&R2 came out in 2017 with significant improvements in long-term operation capability and

ease of use. Its development also led to several publications. The improvements over VT&R1 are

summarized as follows.

Building Network of Paths

VT&R2 inherits the hybrid topological/metric mapping approach from VT&R1 but represents the

map as a relative pose graph [16] with metric information associated to vertices. Map building occurs

online instead of offline, allowing a path to be repeated immediately after its initial demonstration.

Each taught path is a chain of poses in the graph that can be connected to other paths on both

ends. Path teaching can thus be split into multiple sessions where each session introduces a new

path branching off and optionally merging into the existing paths. Path following has shown to be
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smooth across the branching and merging points [17], meaning that the robot can seamlessly repeat

paths built from multiple sessions. As a result, the relative pose graph structure can be viewed as a

large-scale network of traversable paths, where the robot can autonomously navigate to any location

in the network. A graphical user interface was also developed to simplify the process of 1) teaching

new paths while connecting them to the existing network and 2) specifying the goal locations to

which the robot should navigate.

Long-Term Visual Localization

The problem of localization failure due to environment changes is addressed in VT&R2 via two algo-

rithmic improvements to VT&R1’s visual localization pipeline: Multi-Channel Localization (MCL)

[18] and Multi-Experience Localization (MEL) [4].

Multi-Channel Localization (MCL) should more precisely be described as a localization frame-

work with the idea of fusing localization information from multiple sources into a single estimation

problem in a tightly coupled way. A channel is a stream of information used to localize the robot.

In VT&R2, it explicitly refers to a stream of stereo images that come from a single stereo cam-

era and has passed through some transformation (e.g., RGB-to-grayscale, RGB-to-color-constant).

The visual localization pipeline in VT&R1 is adapted to perform independent feature extraction

and tracking for each channel and then fuse the data correspondences from all channels for state

estimation. VT&R2 uses two instantiations of this framework: a light-resistant variant using color-

constant images [3] and a duo-stereo variant using two stereo cameras facing forward and backward

[2], respectively. The light-resistant variant adds one more channel for each camera that operates

on the color-constant transformed image of its output. Color-constant transformation makes as-

sumptions about the sensor and the environment and can produce an image whose observed color

is largely independent of the varying illumination. The duo-stereo variant adds extra channels to

handle inputs from a second stereo camera. It uses the increased field of view to get more visual

features for localization. The MCL framework has been shown to extend the operation window of

VT&R1 from a few hours to multiple days.

Multi-Experience Localization (MEL) uses additional views of the same path from repeat passes

to handle gradual appearance change of the environment. An experience is a collection of envi-

ronment information obtained from a single teach or repeat pass. In VT&R2, the environment

information consists of only the visual features and their 3D locations. A multi-experience exten-

sion of the relative pose graph, termed Spatial-Temporal Pose Graph (STPG), is developed to store

extra experiences from repeat passes and metrically relate them to the privileged experience from

the teach pass. Through the STPG, the live experience can be matched against all past experiences

simultaneously to solve a single estimation problem. These additional experiences are expected to

capture the environment’s appearance change and increase the chance of successful localization.

To limit the otherwise unbounded computation cost of MEL, VT&R2 implements two algorithms

to select a subset of experiences deemed most relevant to the live experience. The first algorithm

computes Bag of Words (BoW) descriptors in addition to the visual features for each experience,

whose similarity comparison can be performed very fast and used to select the most relevant expe-

riences [19]. The second algorithm borrows the collaborative filtering technique from recommender

systems, which intuitively selects experiences with the most similar feature matching history to the

live experience [20]. VT&R2 with MEL is capable of operating across seasonal changes as long as
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sufficient experiences exist to bridge the appearance gap.

Place-Dependent Terrain Assessment

Terrain assessment is introduced in VT&R2 to ensure safe path repeating. While general terrain

assessment in an unstructured, outdoor environment is challenging, VT&R2 exploits the fact that

the robot never leaves previously driven paths, thereby reformulating terrain assessment as a change

detection problem. The traversability ahead of the robot is determined by its geometric similarity

to previous views collected at the same place, and any significant change will cause the robot to

stop and require human intervention. The algorithm was initially presented in [5] and later refined

in [6]. Specifically, the incoming stereo images are processed into point clouds and converted to

2D feature grid maps. In [5], each map cell contains the average height of points in this cell,

and the cell-wise height difference determines the similarity. In [6], the cells instead contain the

distribution of points modeled by a Mixture-of-Gaussian to account for overhanging vegetation and

ground surface roughness. This algorithm produces accurate terrain assessment results in a highly

cluttered environment where general assessment approaches typically produce many false positives

(i.e., traversable terrain is considered not traversable) and lead to overly conservative behavior.

Learning-Based Path Tracking

VT&R2 switches to a learning-based MPC path tracking algorithm that effectively uses past track-

ing experiences to reduce tracking error and increase tracking speed. This algorithm was initially

proposed in [21] and later extended in [22] with the addition of worst-case tracking error estimation

and constraint satisfaction. Its idea is to split the robot model in MPC into two parts: a fixed, a

priori kinematic model and a learned disturbance model that captures environment disturbances

and robot dynamics. The disturbance model is represented by a Gaussian Process trained on pre-

vious tracking experiences as a function of robot state, input, and other relevant variables. Using

a Gaussian Process enables interpolating the learned disturbances with uncertainty, which is the

key to predicting future states and generating worst-case scenarios. At each control iteration, the

nominal state sequence is predicted using a sigma-point transform, and the worst-case scenarios

are defined as sequences bounding the 3σ confidence region. A constrained optimization problem

is then formulated and solved to find the control input ensuring that the worst-case tracking error

stays below a specified limit. This algorithm demonstrated robust and accurate path tracking along

difficult off-road paths in combination with VT&R2’s high-performance visual localizer.

An extended field test of VT&R2 was conducted in 2016 at an untended gravel pit in Sudbury,

Canada [1]. During the test, the system repeatedly traversed a 5km network of paths over 11 days

(Figure 2.1), accumulating over 140km of autonomous driving with an autonomy rate of 99.6%.

This high autonomy rate over long-range and long-term operation proved VT&R2’s suitability and

maturity even for industrial-grade applications. It was eventually offered by Clearpath Robotics as

a general-purpose navigation package for their UGVs.
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Figure 2.1: An orthomosaic map of the 5 km network of paths at the Ethier Sand and Gravel in
Sudbury, Ontario, Canada, constructed during VT&R2 field testing. Image credit: Paton et al. [1]
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2.1.4 Moving Forward

The success of VT&R2 did not mark the end of its development. There have been many other

works centered around VT&R2, which either proposed algorithmic improvements or attempted to

deploy VT&R2 on sensor-robot configurations other than stereo cameras and ground vehicles. For

example, alternative visual localization algorithms have been proposed, including place-and-time-

dependent feature descriptors [23], direct methods that rely on whole-image registration [24], or

an end-to-end deep neural network from supervised training [25]. Guo and Barfoot [26] proposed

an algorithm solving a robust variant of the Canadian Traveler Problem (CTP), which can be

applied to VT&R2 for planning on the network of paths to minimize the risk of localization failure

and path obstruction. Extensions to VT&R2’s learning-based path tracker were presented in [27]

and [28], which learn multiple disturbance models to account for varying robot dynamics under

different conditions and select the most similar ones at runtime. A monocular camera version of

VT&R2 was developed in [29], which leverages a local ground planarity assumption to obtain the

scale information. Besides that, VT&R2 was also successfully deployed on a multirotor UAV for

emergency return under GPS failure [30]. However, although these algorithms and deployments bring

valuable contributions to VT&R2, they are unfortunately never added to the official codebase and

eventually abandoned during post VT&R2 development. Our learned lesson is that, despite being

successful in many aspects, VT&R2 suffers from poor generalizability to new algorithms and sensor-

robot configurations. It is, in particular, missing the necessary interfaces that draw a boundary

between the generic navigation algorithms and the tasks specific to the teach and repeat framework,

such as constructing the network of paths and system state transitions.

VT&R2 is also not the only implementation of the teach and repeat framework in recent years.

Other vision-based implementations have been presented in [31, 32, 33, 34] for evaluating various

visual localization techniques dealing with appearance and viewpoint changes. However, most of

these implementations do not build a network of paths, operate in a 3D environment, or even

perform accurate metric localization. The maturity of these systems is not comparable to VT&R2.

A lidar-based teach and repeat system is developed in [35], which is most similar to VT&R2 except

that it uses ICP-based point cloud registration for odometry, mapping, and localization. Using a

lidar sensor makes their system inherently robust to lighting changes, and the increased Field of View

(FOV) allows the system to deviate from the reference path for obstacle avoidance. Unfortunately,

their system is not open-source, and its development was discontinued after last use in [36]. More

recently, Baril et al. [37] also developed a lidar teach and repeat system similar to that in [35] and

used it to study the robustness of lidar localization to dense vegetation and snow precipitation and

accumulation.

Overall, the teach and repeat navigation framework has demonstrated its value for both academic

research and industrial applications. However, what is currently missing is an implementation that

fully exploits its potential. VT&R2 comes close to meeting this requirement but does not generalize

well to new algorithms and sensor-robot configurations. The implementation is also too old to use

modern robotics tools, e.g., ROS2 and powerful machine learning libraries. Therefore, as presented

in this thesis, VT&R3 is developed to fill these gaps. VT&R3 re-designs VT&R from the ground up

to work with the newest software and hardware. It inherits the main features from VT&R2 without

being restricted to a specific set of algorithms and sensor-robot configurations. This is achieved by

re-formulating the estimation, planning, and control problems in VT&R to be more generic and
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defining interfaces that separate them from teach and repeat navigation logics. The generalizability

of VT&R3 will be demonstrated in Chapter 3 and 4.

So far, VT&R3 has been used in [8, 9] that uses GPS for odometry and relative localization,

and in [7] that uses deep-learned visual features for localization across extreme change lighting

conditions. Several partners, such as Defence Research and Development Canada (DRDC) and

Clearpath Robotics, are also integrating VT&R3 into their own systems.

2.2 The Main Idea: Multi-Experience Topometric Map

This section presents the enabling idea of VT&R3: using a multi-experience topometric map to rep-

resent its operating environment. This representation allows VT&R3 to 1) incrementally construct

a large-scale network of connected, traversable paths from multiple teach passes, 2) metrically relate

additional views of the paths from repeat passes to their respective initial views using relative SE(3)

transformations, and 3) operate freely with any combination of sensors and algorithms for mapping

and localization. It can be viewed as a generalization to the VT&R2 STPG data structure, and the

differences are highlighted below.

2.2.1 Relative Pose Graph as the Topometric Map

F−→k1 F−→k2Tk2k1

F−→m1
F−→m2

Tk1m1

Figure 2.2: This figure illustrates VT&R3’s topometric map structure. F−→k are frames of vertices

(black triangles), and F−→m are frames of local maps (dotted ellipses). Each edge (solid line) stores the

relative transformation between the two frames of its connected vertices (e.g., Tk2k1). Each vertex is
also associated with its spatially closest local map and stores the map-to-vertex transformation (e.g.,
Tk1m1

). Note that both vertex-to-vertex and map-to-vertex transformations can have an associated
covariance matrix representing the uncertainty of the transformation.

At its core, VT&R3 follows VT&R2 to use a relative pose graph as its topometric environment

representation. Each vertex in graph defines a local reference frame, which is referred to as a vertex

frame, and each edge stores the relative SE(3) transformation (with uncertainty [38]) between the

frames of its linked vertices. In addition, each vertex has an associated local map that serves as a

metric representation of its vicinity. The local maps define their respective reference frames with

known relative transformation to all vertex frames with which they are associated. Note that this is

different from VT&R2, where a one-to-one association between vertices and local maps is required,

and the local maps must be expressed in the vertex frame. These restrictions from VT&R2 are

relaxed so that one local map can be used by multiple vertices, allowing VT&R3 to generate sparsely

distributed local maps of larger size without losing dense robot pose information along the path.

Furthermore, VT&R3 has no restriction on what to store in the local maps, while VT&R2 only allows
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point-based, sparse visual features. Figure 2.2 depicts the VT&R3 relative pose graph structure and

its association between vertices and local maps.

2.2.2 The Multi-Experience Extension

Exp. 1 (Teach)

Exp. 2 (Repeat)

Exp. 3 (Repeat)

Exp. 4 (Repeat)

Figure 2.3: This figure illustrates VT&R3’s multi-experience pose graph structure. Each row of
vertices represents an experience. The initial experience (bottom row) comes from a teach pass,
while additional experiences come from repeat passes. Intra-experience edges (solid line) connect
vertices from the same experience, and inter-experience edges (dashed line) connect vertices from
different experiences.

The notion of experience [39] arises naturally in a teach and repeat navigation framework. Since

VT&R3 operates by alternating between teaching a new path and repeating an existing segment of

the taught paths, each individual teach or repeat pass can be considered as adding a new experience

to the topometric map, which results in a new chain of vertices in the pose graph as shown in

Figure 2.3. The multi-experience extension to the pose graph, which used to be called STPG in

VT&R2, keeps track of the respective experience of each vertex and distinguishes two types of edges:

temporal edges link vertices from the same experience, and spatial edges link vertices from different

experiences. This multi-experience extension is kept unchanged in VT&R3, except that temporal

and spatial edges are renamed to intra-experience and inter-experience edges, respectively, to avoid

confusion.

2.2.3 Privileged vs Non-Privileged Submap

Given a multi-experience topometric map built from several teach and repeat passes, the submap

that contains all teach experiences is considered as the privileged submap, which forms the network

of paths demonstrated to the robot. Planning and localization during repeats are both performed

using this submap. The non-privileged submap, on the other hand, consists of all experiences from

repeat passes and is used to provide additional views of the taught paths in a multi-experience

localization framework.

Privileged Submap Construction

The privileged submap is constructed incrementally by repeatedly branching off from and optionally

merging into the existing submap. From the pose graph perspective, each teach pass adds a new

chain to the graph that connects to the existing graph on one or both ends. Figure 2.4a shows the

construction process of one teach pass, divided into three stages: Branch, Extend, and Merge.

Branch: prior to each teach pass (except the first one), a local window of vertices from the

existing privileged submap should be specified as candidates for a branching point. When the teach
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Existing Graph

Localization
Candidates

Localization
Candidates

1) Branch 3) Merge

2) Extend

New Chain

(a) Privileged Submap Construction (Teach Pass)

localization
candidates

Existing Graph

Target
Vertex

2) Follow

New Chain

1) Localize

(b) Non-Privileged Submap Construction (Repeat Pass)

Figure 2.4: This figure illustrates the construction of (a) the privileged submap and (b) the non-
privileged submap during each of the teach and repeat passes, respectively. Each teach pass is
divided into three stages: Branch, Extend, and Merge, while each repeat pass is divided into two
stages: Localize and Follow. Vertices and edges are colored according to the stage at which they are
added to the graph. See Section 2.2.3 for more details.

pass begins, a new vertex is added to the graph immediately, initializing the new chain. Inter-

experience localization is then performed to determine the robot’s relative SE(3) transformation to

the spatially closest candidate using its associated local map. The result adds an inter-experience

edge linking the new vertex to the closest candidate. Once this process is completed, the Branch

stage ends, and the user can start driving the robot to extend the new chain.

Extend : while a new path is being taught, the robot’s motion to the most recently created vertex

is constantly estimated using a platform-specific odometry & mapping algorithm. A new vertex is

appended to the end of the chain whenever the robot’s motion exceeds a specified threshold. The

SE(3) transformation on the intra-experience edges as well as local maps are both outputs from the

odometry & mapping algorithm.

Merge: the newly taught path may be merged back into the privileged submap to form a loop

closure if the robot has traveled close to an existing location of the submap. Merge is similar to

Branch where inter-experience localization is performed to determine the robot’s spatially closest

vertex from a list of user-specified candidates. Upon successful localization, an inter-experience

edge linking the latest vertex from the current chain to the closest vertex is added to the privileged

submap.

Note that the merging stage is optional, but the branching stage is currently non-skippable to

ensure that the privileged submap is always connected.
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Non-Privileged Submap Construction

The non-privileged submap can be seen as chains attached to the privileged submap, each constructed

from one repeat pass. Assuming that a path to repeat is given as a chain of vertices from the

privileged submap, the non-privileged submap construction can be divided into two stages: Localize

and Follow, as shown in Figure 2.4b.

Localize: is essentially the same as the Branch stage above, where the robot is localized against a

list of candidate vertices around the initial vertex of the repeat path. Successful localization results

in the first inter-experience edge being added to the graph, connecting the new chain to the repeat

path. VT&R3 then takes over the control of the robot to start following the path.

Follow : vertices and intra-experience edges are created from odometry & mapping similar to the

Extend stage above. In the meantime, inter-experience localization constantly runs to determine

the robot’s pose with respect to the repeat path. Each successful localization either adds or refines

the inter-experience edge connecting the latest vertex in the extending chain to its spatially closest

vertex from the repeat path. The Follow stage ends when the robot reaches the target vertex, which

is the end of the path.

Note that there is no problem extending a non-privileged chain across the branching and merging

points in the privileged submap.

2.3 System Overview

State
Estimation
(Section 2.4)

Local
Planning

(Section 2.6)

Global
Planning

(Section 2.5)

Task
Planning

(Section 2.7)

VT&R3 Navigation SystemSensor Inputs

User Inputs

Navigation
Information

VT&R3 GUI
(Section 2.8)

Control
Commands

Diagnosis

VT&R3
Safety Monitor

Safe Commands

Figure 2.5: This figure provides a diagram overview of the VT&R3 system. At high level, VT&R3
has three components: VT&R3 Navigation System, VT&R3 GUI, and VT&R3 Safety Monitor. The
navigation system can be divided further into four modules: state estimation, global planning, local
planning, and task planning.

An overview of the VT&R3 system is shown in Figure 2.5. At a high level, it can be divided into

three components: a navigation system, a graphical user interface, and a safety monitor.

The navigation system is the heart of VT&R3. It is a C++ program that employs a suite

of state estimation, planning and control algorithms to complete tasks involved in the teach and

repeat navigation framework. During execution, it receives sensory data from the robot’s onboard

sensors, exchanges information with the graphical user interface for visualization and accepting user

commands, and sends control commands with diagnostics to the safety monitor. Communication

between the navigation system and other components is done via the ROS2 middleware that defines
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a secure and low-latency message-passing interface built on the Data Distribution Service (DDS)

communication standard. Thanks to the strong ecosystem and community support of ROS2, VT&R3

can be deployed on various sensor-robot platforms for a wide range of applications.

Multiple modules exist in the navigation system to further split the tasks of state estimation,

planning, and control. Each module defines its interface to communicate with other modules. Mes-

sage passing through the interface is done via conventional C++ approaches, i.e., memory copy,

references/pointers. During execution, each module runs in a separate software thread, while some

modules may spawn more threads internally or dedicate some work to GPU for improved perfor-

mance. The specific tasks of each module are detailed in Section 2.4-2.7.

The graphical user interface is a single-page web application that provides convenient tools for

non-expert users to interact with the navigation system. Its server-side program (a.k.a the backend)

is written in Python, and the client-side program (a.k.a the frontend) is written in JavaScript. The

backend serves as a message converter to bridge the communication between the navigation system

and the frontend. User inputs to the frontend are sent to the backend using WebSocket, a bi-

directional real-time communication protocol built on a TCP connection. The backend converts the

user inputs to ROS2 messages and publishes them to the navigation system. Meanwhile, incoming

ROS2 messages from the navigation system pass reversely to the frontend. The main functionalities

of the frontend are detailed in Section 2.8.

The safety monitor is an optional but recommended component for VT&R3. It runs as an

independent process to ensure safe operation of the robot in case of system failure. The safety

monitor should always inspect outcoming control commands from the navigation system before

being sent to the robot. VT&R3 comes with a few template safety monitor implementations in C++

that can perform safety checks based on velocity limits and robot localization status. However, the

specific functionalities of the safety monitor are platform and application dependent and thereby

not discussed in this chapter.

2.4 State Estimation

In VT&R3, there are two state estimation problems to solve: an odometry & mapping problem

and an inter-experience localization problem. As discussed in Section 2.2.3, odometry & mapping is

used to construct new chains in VT&R3’s multi-experience topometric map during both teach and

repeat passes; inter-experience localization is required to determine the robot’s pose metrically with

respect to the repeat path during repeat passes while also connect a newly demonstrated path to

the existing network via branching and merging during teach passes.

As mentioned earlier in Section 2.1.4, although there are numerous solutions to both problems

with new algorithms constantly developed, few use a relative pose graph as the underlying data

structure [16, 40]. Instead, many estimation algorithms prefer using a global map. Such differences

lead to extra complexities in their integration into the VT&R system. To this end, the VT&R3 state

estimation module defines a standard interface that exchanges information commonly producible by

all kinds of odometry & mapping and localization algorithms regardless of their internal mechanisms.

It then transforms the information into what is needed for VT&R map construction so that all extra

complexities are handled in one place and hidden from the algorithm developers.

Furthermore, the state estimation module constructs a data processing pipeline that can par-
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allelize the odometry & mapping process and the inter-experience localization process with most

concurrency issues taken care of. It also leverages an asynchronous multi-thread execution model

for additional time-insensitive tasks, such as pose graph optimization and local map maintenance.

The number of processing threads and amount of parallelization are both configurable, allowing

VT&R3 to scale flexibly with the available computation resources of the host system.

2.4.1 State Estimation Interfaces

Odometry & Mapping

The odometry & mapping interface requires its specialization to produce the following information

from a sequence of sensor data:

1. a processing result flag fO
s indicating whether the current sensor data is processed successfully;

2. a vertex creation flag fv indicating whether a new vertex F−→k+1 should be appended to the

current chain;

3. an SE(3) transformation T̂rk (optionally with uncertainty) between the current robot frame

F−→r and the robot frame at the just-created vertex F−→k;

4. if fv is true, then a local map for the new vertex F−→k+1 and the map-to-vertex tranformation

Tk+1,m.

The above information can be obtained from both global and relative odometry & mapping. By

decoupling vertex frames and local map frames, this interface generalizes to both kinds of algorithms.

For pure relative algorithms, such as VT&R2 visual odometry, the vertex frame F−→k coincides the

map frame F−→m with one-to-one association, so that T̂rk comes directly from camera frame-to-frame

registration. For global algorithms, the map frame F−→m is initialized at the beginning and kept fixed.

In this case, performing frame to map registration results in an estimate of T̂rm. T̂rk thereby can

be obtained by

Trk = TrmT−1
km. (2.1)

The vertex creation flag should be set to true when Trk exceeds a specified threshold, and the local

metric map can be a cropped version of the global map centered at the robot. An example is given

in Figure 2.6, assuming that a global map is cropped periodically to be local maps, and the vertices

are associated with their closest local maps, respectively.

F−→k−3 F−→k−2 F−→k−1 F−→k F−→rTk,k−1 T̂rk

F−→m−1 F−→m

Tkm

Figure 2.6: This figure shows an example of the pose chain and its relation to local maps during
odometry & mapping, assuming the employed algorithm creates vertices more frequently than local
maps. F−→r is the moving robot frame, F−→k are vertex frames, and F−→m are local map frames. Note
that odometry & mapping is performed during both teach and repeat passes so that this chain can
become either privileged or non-privileged part of the overall topometric map.

Upon each return from the odometry & mapping interface, the state estimation module caches
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the result and sends T̂rk and fO
s to the GUI and system monitor as live robot state updates and

diagnostic information, respectively. If fv is true, a new vertex with frame F−→k+1 is appended to

the current chain. By default, F−→k+1 is same as F−→r at vertex-creation, so that the newly appended

vertex is connected to its predecessor with Tk+1,k = T̂rk. The new vertex and edge are marked

privileged if the system is in teach phase or non-privileged otherwise. After that, a vertex-creation

callback is invoked with the new vertex instance passed as an argument for local map association

and saving.

Inter-Experience Localization

Given 1) sensor input that has passed through odometry & mapping, 2) a target vertex F−→l with its

associated local map and 3) an initial guess Ťrl, the inter-experience localization interface asks its

specialization for a flag fL
s indicating whether the localization is successful and a refined vertex-to-

robot transformation T̂rl. As discussed in Section 2.2.3, inter-experience localization is required at

the Branch and Merge stage of the teach pass, and is required throughout the repeat pass. A suc-

cessful localization (i.e., fL
s is true) always results in the addition or refinement of an inter-experience

edge in the pose graph. The resulting edge is marked privileged or non-privileged, depending on the

current operating phase. It requires some explanation on how the target vertex F−→l and the initial

guess Ťrl are obtained.

Repeat Path
(Privileged)

F−→l′ F−→l

New Chain
(Non-Privileged)

F−→k′ F−→k F−→rT̂rk

Ťrl T̂rl

Figure 2.7: This figure shows the relevant pose graph structure during the Follow stage of a repeat
pass. F−→r is the moving robot frame, F−→k and F−→k′ are vertex frames of the current extending chain,
and F−→l and F−→l′ are vertex frames from the repeat path, which are from the privileged pose graph.
F−→k′ is the latest vertex frame that has been successfully localized to a vertex on the repeat path, F−→l′ .
F−→l is the spatially closest vertex from the repeat path to F−→r. An estimate of the transformation

from F−→l to F−→r, Ťrl, is generated by compounding transformations through F−→m′ , F−→k′ , and F−→k.

The employed inter-experience localization algorithm may use Ťrl as both an initial guess and a
prior to compute the a refined estimate T̂rl.

Branch, Merge and Localize: a sequence of connected vertices are specified as candidates for

localization. Until localization is successful (i.e., fL
s is returned true), all candidates are passed

through the interface iteratively with Ťrl simply set to identity. Once fL
s is returned true, the next

candidate, which is supposed to be spatially closest to the robot, is selected by leveraging the refined

transformation T̂rl and traversing through the pose graph edges that connect the candidates (see

Figure 2.4). For example, assuming the previous candidate F−→l′ has been localized successfully with

result T̂rl′ , the initial estimate for the next candidate F−→l will be

Ťrl = T̂rl′Tl′l. (2.2)

Follow : all vertices along the repeat path are considered candidates for localization. The next
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target vertex is chosen by leveraging the last successful localization result, the latest odometry

estimate, and traversing through the pose graph edges, which is illustrated in Figure 2.7. Given the

pose graph in Figure 2.7, the initial estimate is

Ťrl = TrkTkk′Tk′l′Tl′l. (2.3)

If localization is successful, an edge between the vertex of F−→l and the latest vertex of the current

branch, F−→k, is added if not exist, and the transformation on edge is set to

T̂kl = T̂−1
rk T̂rl. (2.4)

2.4.2 Pipeline and Parallelization

Data
Preprocessing

Odometry
& Mapping

Inter-Exp.
Localization

Worker 1

Worker 2

Input 1 Input 2

Task Queue Async. Task Executor

task

time

thread
data pass to tasks in the next module of the pipline

data pass to asynchronous tasks

Figure 2.8: This figure illustrates the data processing pipeline and parallelization scheme of VT&R3’s
state estimation module. Time-sensitive tasks run on three dedicated threads for data preprocessing,
odometry & mapping, and inter-experience localization, respectively. An asynchronous task executor
is developed for time-insensitive tasks where the tasks are queued and executed later via a thread
pool.

Processing Time-Sensitive Tasks

The data processing pipeline and its parallelization are presented in Figure 2.8. The pipeline consists

of three modules: Preprocessing, Odometry & Mapping, and Inter-Experience Localization, each

running on a dedicated thread. The second and third modules perform exactly as was described

in Section 2.4.1. The Preprocessing module is prepended for potentially time-consuming tasks that

can be separated from Odometry & Mapping, such as feature extraction from raw images or point

clouds. With this setup, at most three sensor frames can be processed in parallel on a multi-core

processor.
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It is worth mentioning that this design of parallelization does not introduce any concurrency

issues owing to the following guarantees:

1. the sensor input passes through each module sequentially, so it is never accessed by more than

one thread at a time;

2. each of the three modules runs on its dedicated thread so that the resulting change to the pose

graph from each module always happens sequentially;

3. Odometry & Mapping and Inter-Experience Localization of different inputs may run in parallel

but never simultaneously access the same part of the pose graph.

For 3), note that Odometry & Mapping only adds vertices and intra-experience edges to the current

branch. In contrast, Inter-Experience Localization only constructs inter-experience edges linking

existing vertices.

The Data Preprocessing and Odometry & Mapping module should generally run at least as fast

as the frame rate of the sensor to provide the most frequent updates to the robot’s state. Inter-

Experience Localization during path following may otherwise run slower if short-term odometry

is accurate enough for the robot to follow the reference path. For example, VT&R2 performs

localization only when a new vertex is created. In VT&R3, all modules run as frequently as possible

by default but may choose to drop the present frame based on any criterion. An input frame is also

discarded if it arrives at a module that is still busy with the previous one. Data buffers of arbitrary

size are optionally added before each module to allow frames to be queued when the next module

is not ready. The buffer helps avoid frame dropping due to slight run-time variations. However,

one should note that if a module constantly runs slower than the sensor frame rate, the buffer will

eventually get filled up so that either the pipeline throttles or the older frames are dropped.

Processing Time-Insensitive Tasks

While odometry & mapping and inter-experience localization are the two essential tasks of VT&R

that have real-time requirements, there are many tasks for which a reasonable delay is acceptable.

Examples of such tasks include: 1) local pose graph refinement such as sliding-window bundle

adjustment in VT&R2, 2) local map maintenance such as dynamic object classification and removal

from a point cloud map (Chapter 4), and 3) disk IO tasks such as saving or pre-loading local maps.

To handle these time-insensitive tasks, VT&R3 provides an asynchronous task executor to which

a task of any kind can be submitted for execution via a pool of threads apart from the three

dedicated threads for the data processing pipeline, also depicted in Figure 2.8. A unique id of

the task is assigned upon submission, which may be used by subsequent tasks to specify as a

prerequisite. Cyclic dependencies are prevented by design because only submitted tasks can be

specified as prerequisites. Moreover, each task can specify a priority level at submission. The task

executor internally uses a dependency graph to track task priorities and prerequisites. Whenever a

worker thread is free, it will pick up the highest priority task that has all prerequisites satisfied. A

bound on the number of queued tasks can also be specified. When the bound is reached and a new

task is submitted, the lowest priority task or one of the tasks that recursively depends on it will be

dropped.

Note that, although using the asynchronous task executor is a convenient and scalable way of

handling time-insensitive tasks, there are two caveats to be aware of:

1. latency : it is currently impossible to guarantee a task’s execution within a specific time after
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submission. If the submitted tasks require more computation resources than is available, low-

priority tasks will be queued forever and discarded.

2. concurrency : it is currently impossible to mark two or multiple tasks as mutually exclusive,

i.e., only one task among them can be executed at a time. Tasks that access shared resources

should thereby handle concurrency issues themselves.

2.5 Global Planning

V0

V1

V2

Repe
at

Pat
h

Figure 2.9: This figure shows an example of VT&R3’s global planning problem. V0 is the current
closest vertex to the robot. V1 and V2 are user-specified vertices to visit in order during the repeat
pass. The employed global planning algorithm should return an ordered list of vertices (blue) that
starts at V0, passes through V1, and ends at V2, which forms the repeat path and is sent to the state
estimation module.

Since the robot is restricted to navigate along previously taught paths, global planning in VT&R

amounts to finding the minimum-cost path under certain metrics between two vertices in the pose

graph of the privileged submap. At the beginning of each repeat pass, a specialized global planning

algorithm is invoked through an interface with 1) the closest vertex to the robot, V0, 2) a list of

vertices to be visited sequentially V1, ..., VK−1, and 3) access to the privileged subgraph. It should

then return a chain of connected vertices from the subgraph that starts from V0, passes through

V1, ..., VK−1 iteratively, and ends at VK . An example demonstrating the expected input and output

when K = 2 is shown in Figure 2.9. The returned chain is then sent to the state estimation module

as the repeat path shown in Figure 2.7.

The default global planning method in VT&R3 uses breadth-first search, which can be viewed as

finding the optimal path using the same metric from which the graph is constructed. The returned

path minimizes the total distance traveled when vertices are added with roughly constant linear

and angular spacing. Note that the search is not directional, which assumes that any path in the

network can be repeated in both directions, i.e., in the same and reversed direction it is taught.

Additionally, VT&R3 allows one to specify cost on edges using arbitrary heuristics and pro-

vides an implementation of Dijkstra’s algorithm for convenience. For vision-based multi-experience

localization in VT&R2, two edge costs that have been found particularly useful are time-since-last-

traversal and time-of-day similarity.
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2.6 Local Planning

F−→k
Repeat Path

F−→r

Trk

Planned Path

Figure 2.10: This figure illustrates VT&R3’s local planning problem. F−→r is the moving robot frame

with an estimated transformation from the spatially closest frame F−→k along the repeat path (Trk),
which is constantly updated by the state estimation module. The employed algorithm should plan
a local path and compute the corresponding control commands that drive the robot to stay close to
the repeat path while, optionally, avoiding obstacles and untraversable terrain.

As shown in Figure 2.10, local planning in VT&R refers to finding the optimal local path under

certain criteria and the corresponding control signals, given the repeat path, the current robot pose

with respect to the path, and optionally local terrain and obstacle information. The state estimation

module provides the current robot pose as a relative transformation between the current robot frame

and the closest vertex frame in the repeat path. Local terrain information is optionally produced

as byproducts of the state estimation module. VT&R3 has no restriction on the representation of

terrain or obstacle information as long as the local planning algorithm can consume it.

Regarding implementation, the local planning module runs on a standalone thread during the

Follow stage of the repeat phase. Communication between the state estimation module and the local

planning module is done via a shared memory buffer due to its asynchronous nature. Specifically,

the robot state and terrain information is typically updated at the sensor’s frame rate while retrieved

at the local planning rate required by the robot. The module constantly invokes the selected local

planning algorithm through an interface with access to the shared memory. It then returns the

control signal to be applied to the robot.

The current default local planning is an adapted version of the Time Elastic Band (TEB) local

planner [41], which uses the TEB approach for time-optimal nonlinear model predictive control in

SE(2). At each control iteration, the closest vertex frame is used as the planning frame in which

the planned trajectory will be represented. A local window of the repeat path is transformed into

the planning frame using the relative transformation on edges. This window starts with the nearest

vertex ahead of the robot and ends with a vertex up to a certain distance away. After that, both

the robot and the transformed repeat path segment are projected into the horizontal plane of the

planning frame and passed into the TEB planner. The current algorithm does not consider any

terrain or obstacle information, so the trajectory is optimized to stay on the repeat path.

2.7 Task Planning

Task planning refers to the problem of structuring and controlling the switching between different

tasks performed by the navigation system, triggered by certain events such as user commands and

robot state changes. VT&R3 addresses this problem using a 2-level Hierarchical Finite State Machine

(HFSM) as shown in Figure 2.11. At the higher level, it defines three states: Idle, Teach and Repeat.
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Teach and Repeat are considered super-states since each of these contains multiple sub-states. One

can notice that, except for Plan, these substates match exactly the different stages of the submap

construction process previously described in Section 2.2.3, which suggests what tasks are performed

at each substate. Plan is dedicated to global planning (Section 2.5), which computes the repeat

path from user-specified target vertices. The associated tasks of each sub-state have been detailed

in the previous sections.

A HFSM is chosen due to its modularity and simplicity in both interpretation and implementa-

tion. The downside is that HFSM is not a flexible and extensible solution for task planning compared

to its alternatives, such as Behavior Trees [42]. However, since VT&R3 is designed specifically for

teach and repeat navigation, the system states and behaviors are not expected to change across dif-

ferent applications. Therefore, the task planning module does not provide any interface for altering

the HFSM or replacing it with other solutions.
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Figure 2.11: This figure shows the state transition diagram of VT&R3’s HFSM, which is used for
task planning. Normally, a complete teach pass should sequentially go through Branch, Extend, and
optionally Merge. A complete repeat pass should go through Plan, Localize, and Follow. Additional
state transitions are added to handle localization failures, resulting in early exiting.
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2.8 The Graphical User Interface

The VT&R3 graphical user interface is designed to provide intuitive means for the user to interact

with the system. A screenshot of the interface is shown in Figure 2.12. Its main components and

their functionalities are as follows.

Teach & Repeat
Pass Manager

Network of Paths

Robot Marker

Figure 2.12: This figure shows a screenshot of the VT&R3 GUI, with the main components high-
lighted. See Section 2.8 for the details of each component.

2.8.1 The Network of Paths

The polylines in Figure 2.12 display the network of paths constructed so far. It is built from the pose

graph of the privileged submap by first relaxing the graph in a global frame and then projecting it

vertically to 2D. The user can use this visualization to specify 1) the repeat path, 2) the window for

loop closure, and 3) the robot’s nearest vertex. In addition, a tiled map is displayed in the background

allowing the user to associate vertices to their real-world location. However, the network and the

tiled map must be manually aligned because GPS is not required and is usually not used for VT&R3

operation. The GUI provides a convenient way to align the two by adjusting the network’s relative

location, orientation, and scale to the tiled map, with more details in the online wiki.

2.8.2 The Robot Marker

The robot marker, shown as an arrowhead in Figure 2.12, indicates the robot’s current pose relative

to the network. The marker is semitransparent when the robot is not metrically localized to the

network and turns solid after successful localization. When the system is in Idle state, the user

can change the robot’s topological location by dragging the marker to the desired location on the

https://github.com/utiasASRL/vtr3/wiki/Launching-VTR3
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network of paths (see the online wiki). During path repeating, the location and orientation of the

robot marker are constantly updated to reflect the live robot state as estimated by VT&R3.

2.8.3 The Teach & Repeat Pass Manager

The teach & repeat pass manager is a floating window located at the left of the GUI screen, as

shown in Figure 2.12. It displays the current active teach or repeat pass and a list of queued passes

to be executed afterward. New passes can be added using the pass submission pane at the bottom.

Teach Pass

Figure 2.13 shows the GUI states through out a teach pass. As soon as a teach pass becomes

active, the VT&R3 system enters the Branch state where the robot is metrically localized to a local

window of vertices centered at its current nearest vertex. Upon successful localization, the robot

marker turns solid, and the system transitions into the Extend state, suggesting that the user can

start driving the robot.

Localized

(a) Branch (b) Extend

(c) Merge (Window Selection) (d) Merge (Confirmation)

Figure 2.13: VT&R3 GUI states throughout a teach pass. (a) The robot marker turns from semi-
transparent to solid after localization. (b) A new path is extended from the branching point. (c)
The user initiates a merge and choose the localization window. (d) The user confirms the merge
result by clicking the green arrowhead.

When the robot has been driven close to an existing area of the network, the user can initiate

the Merge process (Figure 2.13c). A small region close to the robot should be selected and sent to

the system as candidate vertices for localization. Successful localization pops up a green arrowhead

https://github.com/utiasASRL/vtr3/wiki/Launching-VTR3
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marker (Figure 2.13d) suggesting the estimated robot pose relative to the selected region. The user

can then click on the arrowhead to confirm the result. The pose estimate is constantly updated,

allowing the user to make minor adjustments before they are satisfied with the result. Once con-

firmed, the VT&R3 system switches back to Idle state, and the privileged pose graph is relaxed

with the new loop closure constraint and then re-projected on the GUI.

Repeat Pass

(a) Waypoints Selection (b) Path Repeating

Figure 2.14: VT&R3 GUI states throughout a repeat pass. (a) The user specifies the waypoints to
be visited. (b) VT&R3 plans a path through the waypoints and starts repeating the path.

Adding a repeat pass requires the user to specify a list of vertices to be visited in order, which

can be done by simply clicking on the network polylines (Figure 2.14a). An arbitrary delay can be

specified before or after the execution of each repeat pass, which is useful when the robot needs to

stop at different places to perform other tasks. Once a repeat is added, no further action from the

user is required since all the system state transitions happen automatically during the repeat pass.

2.9 Summary

In summary, we presented Visual Teach & Repeat 3 (VT&R3) in this chapter that is designed to

meet the primary goal of this thesis, namely, a teach and repeat system that reflects the gener-

alizability of the underlying framework for easy adaptation to various sensor/robot combinations

(Section 1.1). VT&R3 achieves this goal by re-formulating the estimation, planning, and control

problems involved in teach and repeat navigation to be more generic and defining interfaces that

separate framework specific logics from sensor/robot dependent algorithms. VT&R3 also takes ad-

vantage of the popular ROS2 library, which enables safe, reliable and efficient communication with

any ROS2-enabled sensors and robots. VT&R3 is an open-source project under permissive licensing

at https://github.com/utiasASRL/vtr3.

We mentioned that VT&R3 has been used in [8, 9] exploring the use of GPS for odometry and

relative localization. These works demonstrate the benefit of VT&R3’s generalizable implementation

in that it immediately allows using a different sensor or fusing multiple sensors (e.g., GPS and stereo

camera in [8]) for teach and repeat navigation. In Chapter 3 and 4, we will futher take advantage of

VT&R3 to develop and evaluate navigation algorithms using a radar/lidar as the primary sensor.

https://github.com/utiasASRL/vtr3


Chapter 3

Lidar & Radar Topometric

Mapping and Localization

In this chapter, we present the second contribution of this thesis: a lidar/radar topometric mapping

and localization pipeline leveraging VT&R3’s state estimation interface described in Section 2.4.

Our pipeline can be configured to perform radar-only, lidar-only, or cross-modal radar-to-lidar lo-

calization. We conduct an extensive comparison between these three variants using a public dataset

and present our findings on the accuracy and robustness of each variant across varying seasonal and

weather conditions.

3.1 Introduction

Many autonomous driving companies leverage detailed semantic maps to drive safely. These maps

may include the locations of lanes, pedestrian crossings, traffic lights, and more. In this case, the

vehicle no longer has to detect each of these features from scratch in real-time. Instead, given the

vehicle’s current position, the semantic map can be used as a prior to simplify the perception task.

However, it then becomes critical to know the pose of the robot within the map with sufficient

accuracy and reliability.

Dense lidar maps can be built using offline batch optimization while incorporating IMU measure-

ments for improved local alignment and GPS for improved global alignment [43]. Highly accurate

localization can be subsequently performed by aligning a live lidar scan with a pre-built map with

reasonable robustness to weather conditions [44, 45]. Vision-based mapping and localization is an al-

ternative that can be advantageous in the absence of environment geometry. However, robustness to

large appearance changes (e.g., lighting) is a difficult and ongoing research problem [7]. Radar-based

systems present another compelling alternative.

Models of atmospheric attenuation show that radar can operate under certain adverse weather

conditions where lidar cannot [46, 47]. These conditions may include heavy rain (>25mm/hr), dense

fog (>0.1g/m3), or a dust cloud (>10g/m3). Existing literature does not describe the operational

envelope of current lidar or radar sensors for the task of localization. Prior works have assumed

that lidar localization is susceptible to moderate rain or snow, necessitating the use of radar. In

this chapter, we attempt to shed some light on this topic by comparing the performance of three

24
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topometric mapping and localization pipelines developed using VT&R3’s state estimation interface

(Section 2.4). These pipelines perform radar-only, lidar-only, and cross-modal radar-to-lidar local-

ization, respectively. We compare these pipelines across varying seasonal and weather conditions

using our publicly available Boreas dataset [10].

3.2 Related Work

Automotive radar sensors now offer range and azimuth resolutions approximately on par with me-

chanically actuated radar. It is possible to replace a single 360-degree rotating radar with several

automotive radar paneled around a vehicle [48]. Each target will then enjoy a relative (Doppler)

velocity measurement, which can be used to estimate ego-motion [49]. However, recent work [50,

51] seems to indicate that the target extraction algorithms built into automotive radar may not

necessarily be optimal for mapping and localization. Thus, sensors that expose the underlying sig-

nal data offer greater flexibility since the feature extraction algorithm can be tuned for the desired

application.

Extracting keypoints from radar data and subsequently performing data association has proven

challenging. The first works to perform radar-based localization relied on highly reflective objects

installed within a demonstration area [52, 53]. These reflective objects were thus easy to discriminate

from background noise. Traditional radar filtering techniques such as Constant False Alarm Rate

(CFAR) [54] have proven to be difficult to tune for radar-based localization. Setting the threshold too

high results in insufficient features, which can cause localization to fail, while setting the threshold

too low results in a noisy radar point cloud and a registration process that is susceptible to local

minima.

Several promising methods have been proposed to improve radar-based localization. Jose and

Adams [55] demonstrated a feature detector that estimates the probability of target presence while

augmenting their SLAM formulation to include radar cross section as an additional discriminating

feature. Chandran and Newman [56] maximized an estimate of map quality to recover both the

vehicle motion and radar map. Rouveure et al. [57] and Checchin et al. [58] eschewed sparse feature

extraction entirely by matching dense radar scans using 3D cross-correlation and the Fourier-Mellin

transform. Callmer et al. [59] demonstrated large-scale radar SLAM by leveraging vision-based

feature descriptors. Mullane et al. [60] proposed to use a random-finite-set formulation of SLAM

in situations of high clutter and data association ambiguity. Vivet et al. [61] and Kellner et al.

[49] proposed to use relative Doppler velocity measurements to estimate the instantaneous motion.

Schuster et al. [62] demonstrated a landmark-based radar SLAM that uses their Binary Annular

Statistics Descriptor (BASD) to match keypoints. Rapp et al. [63] used Normal Distributions

Transform (NDT) to perform probabilistic ego-motion estimation with radar.

Cen and Newman [64] demonstrated low-drift radar odometry over a large distance that inspired a

resurgence of research into radar-based localization. Several datasets have been created to accelerate

research in this area including the Oxford Radar RobotCar dataset [65], MulRan [66], and RADIATE

[67]. We have recently released our own dataset, the Boreas dataset1, which includes over 350km of

data collected on a repeated route over the course of 1 year.

More recent work in radar-based localization has focused on either improving aspects of radar

1https://www.boreas.utias.utoronto.ca/

https://www.boreas.utias.utoronto.ca
https://www.boreas.utias.utoronto.ca/
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odometry [68, 69, 70, 71, 72, 73, 50, 74, 75, 76, 77], developing better SLAM pipelines [78, 79, 80],

or performing place recognition [81, 82, 83]. Barnes et al. [71] trained an end-to-end correlation-

based radar odometry pipeline. Barnes and Posner [72] demonstrated radar odometry using deep

learned features and a differentiable SVD-based estimator. In [74], we quantified the importance

of motion distortion in radar odometry and showed that Doppler effects should be removed during

mapping and localization. Subsequently, in [75], we demonstrated unsupervised radar odometry,

which combined a learned front-end with a classic probabilistic back-end.

Alhashimi et al. [77] present the current state of the art in radar odometry. Their method builds

on prior work by Adolfsson et al. [76] by using a feature extraction algorithm called BFAR to add a

constant offset b to the usual CFAR threshold: T = a · Z + b. The resulting radar point clouds are

registered to a sliding window of keyframes using an ICP-like optimizer while accounting for motion

distortion.

Other related work has focused on localizing radar scans to satellite imagery [84, 85, 86], or

to pre-built lidar maps [87, 88]. Localizing live radar scans to existing lidar maps built in ideal

conditions is a desirable option as we still benefit from the robustness of radar without incurring

the expense of building brand new maps. However, the global localization errors reported in these

works are in the range of 1m or greater. We demonstrate that we can successfully localize live radar

scans to a pre-built lidar map with a relative localization error of around 0.1m.

In this work, we implement topometric mapping and localization following the VT&R strategy.

No GPS or IMU measurements are used. Hong et al. [80] recently compared the performance of

their radar SLAM to SuMa, surfel-based lidar SLAM [45]. On the Oxford RobotCar dataset [65],

they show that SuMa outperforms their radar SLAM. However, in their experiments, SuMa often

fails partway through a route. Our interpretation is that SuMa losing track is more likely due to an

implementation detail inherent to SuMa itself rather than a shortcoming of all lidar-based SLAM

systems. It should be noted that Hong et al. did not tune SuMa beyond the original implementation,

which was tested on a different dataset. In addition, Hong et al. tested SuMa using 32-beam lidar,

whereas the original implementation used a 64-beam lidar. Furthermore, Hong et al. only provide

a qualitative comparison between their radar SLAM and SuMA in rain, fog, and snow, whereas

our work provides a quantitative comparison across varying weather conditions. In some of the

qualitative results they presented, it is unclear whether SuMa failed due to adverse weather or

due to geometric degeneracy in the environment, which is a separate problem. Importantly, our

results seem to conflict with theirs by showing that lidar localization can operate successfully in

even moderate to heavy snowfall. Although, it is possible that topometric mapping and localization

is more robust to adverse weather since it uses odometry to obtain a very good initial guess/prior

for localization to a map constructed in nominal weather.

3.3 Methodology

3.3.1 Pipeline Overview

As shown in Figure 3.1, our radar/lidar topometric mapping and localization pipeline leverages

VT&R3’s state estimation interface and its pipeline and parallelization scheme, which has been

detailed in Section 2.4. Readers are referred to Section 2.4.1 for the desired input/ouput of the



CHAPTER 3. LIDAR & RADAR TOPOMETRIC MAPPING AND LOCALIZATION 27

Input
Keypoint
Extraction

Data
Preprocessing

Registration
(Odometry)

T̂rk

Map
Updating

Sliding Map

F−→k+1

Local Map

Odometry & Mapping

Registration
(Localization)

F−→l Local Map

T̂rl

Inter-Exp.
Localization

Figure 3.1: The data processing pipeline diagram for lidar/radar topometric mapping and localiza-
tion, leveraging VT&R3’s state estimation interface (Section 2.4) and its pipeline and parallelization
scheme (Figure 2.8). See Section 3.3.1 for details.

pipeline and Figure 2.8 for the pipeline execution model. In VT&R3, the pipeline is divided into

three modules: Data Preprocessing, Odometry & Mapping, and Inter-Experience Localization. In

this work, we assign the following tasks to each module:

Keypoint Extraction: extracts keypoints from raw sensor data (either lidar or radar scans) to be

used for scan-to-map registration. More sensor-specific information is given in Section 3.3.2.

Registration (Odometry): estimates the robot pose with respect to the latest vertex frame, T̂rk,

by registering the live scan to the current sliding map. The sliding map is a point cloud accumulated

from previous scans and is constantly updated to be bounded in size and centered at the robot’s

location. The sliding map frame, denoted F−→m, is initialized at the beginning and kept fixed. The

live scan is also motion-compensated and sent to Map Updating and Registration (Localization). We

present the details of our motion-compensated odometry algorithm, CT-ICP, in Section 3.3.3.

Map Updating : adds the motion-compensated scan to the sliding map and removes points too

far away from the robot. If either translation or rotation of T̂rk exceeds a threshold of 10m/30◦, we

ask VT&R3 to add a new vertex F−→k+1 to the pose graph with Tk+1,k = T̂rk. The associated local

map is the current sliding map transformed to the frame F−→k+1 of the newly added vertex .

Registration (Localization): localizes the robot frame, F−→r, against the local map of the spatially

closest vertex frame, F−→l, on the repeat path (i.e., T̂rl as shown in Figure 2.7). The way we find the

closest vertex is described in Section 2.4.1, which leverages past localization results and odommetry

updates. We present the details of the ICP optimization in Section 3.3.5.

3.3.2 Keypoint Extraction

Lidar

For each incoming lidar scan, we first perform voxel downsampling with voxel size dl = 0.3m. Only

one point that is closest to the voxel center is kept. Next, we extract plane features from the

downsampled point cloud by applying Principle Component Analysis (PCA) to each point and its

neighbors from the raw scan. We define a feature score from PCA to be

s = 1− λmin/λmax, (3.1)
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where λmin and λmax are the minimum and maximum eigenvalues, respectively. The downsampled

point cloud is then filtered by this score, keeping no more than 20,000 points with scores above 0.95.

Note that we use this score as a simple heuristic to remove points that are not on a planar surface.

Specifically, a point on a planar surface may have one eigenvalue that is significantly smaller than

the other two. With a threshold of 0.95, we only retain points whose largest eigenvalue is more than

20 times greater than the smallest eigenvalue. This is a sufficient but not necessary condition for a

point to be not on a planar surface.

Radar

For each radar scan, we first extract point targets from each azimuth using the Bounded False

Alarm Rate (BFAR) detector as described in [77]. BFAR adds a constant offset b to the usual

Cell-Averaging CFAR threshold: T = a · Z + b. We use the same (a, b) parameters as [77]. For

each azimuth, we also perform peak detection by calculating the centroid of contiguous groups of

detections as is done in [64]. We obtained a modest performance improvement by retaining the

maximum of the left and right sub-windows relative to the cell under test as in (greatest-of) GO-

CFAR [54]. These polar targets are then transformed into Cartesian coordinates and are passed to

the Odometry & Mapping module without further filtering.

3.3.3 Continuous-Time Iterative Closest Point

xe
i−1 xb

i xe
i

motion prior factor

point to point/plane factor

trajectory state

sliding map point

interpolated state

Figure 3.2: Factor graph of our CT-ICP algorithm. xb
i and xe

i are states of the underlying discrete
trajectory at the beginning and end of the current scan i. xe

i−1 is the state at the end of the previous
scan i− 1. The interpolated states depend on the state variable xb

i and xe
i .

Our CT-ICP algorithm combines the iterative data association of ICP with a continuous-time

trajectory represented as exactly sparse Gaussian Process (GP) regression [89]. Our trajectory is

x(t) = {T(t),ϖ(t)}, where T(t) ∈ SE(3) is the robot pose (i.e., the relative transformation from

the sliding map frame, F−→m, to the robot frame, F−→r), and ϖ(t) ∈ R6 is the body-centric velocity.

Following Anderson and Barfoot [89], our motion prior is

Ṫ(t) = ϖ(t)∧T(t),

ϖ̇ = w(t), w(t) ∼ GP(0,Qcδ(t− τ)),
(3.2)

where w(t) ∈ R6 is a zero-mean, white-noise Gaussian Process. This prior is applied in a piecewise

fashion between an underlying discrete trajectory of pose-velocity state pairs, xi = {Ti,ϖi}, that
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correspond to the representative timestamps of the ith sensor scan. Currently, we choose two

representative timestamps for each scan, one at the beginning (xb
i ) and the other at the end (xe

i ).

We seek to align the latest sensor scan i to the sliding map in frame F−→m by optimizing for the states

xi.

We define a nonlinear optimization problem for xi, locking all previous states. The cost function

is

Jodom = ϕmotion +

M∑
j=1

(
1

2
eTodom,jR

−1
j eodom,j

)
︸ ︷︷ ︸

measurements

. (3.3)

Readers are referred to Anderson and Barfoot [89] for the squared-error cost expression of the motion

prior, ϕmotion.

Each measurement error term is

eodom,j = D
(
pj
m −T(tj)

−1Trsqj

)
, (3.4)

where qj is a homogeneous point with corresponding timestamp tj from the ith sensor scan, Trs is

the extrinsic calibration from the sensor frame F−→s to the robot frame F−→r, T(tj) is a pose from our

trajectory queried at tj . Note that, through GP interpolation, T(tj) depends on the state variables

xb
i and xe

i [89]. pj
m is a homogeneous point from the sliding map associated to qj and expressed in

F−→m, and D is a constant projection that removes the 4th homogeneous element. We define R−1
j

as either a constant diagonal matrix for radar data (point-to-point) or by using the outer product

of the corresponding surface normal estimate for lidar data (point-to-plane). A factor graph of our

CT-ICP formulation is shown in Figure 3.2.

We optimize for xi iteratively using Gauss-Newton, but with nearest-neighbour data association

after every Gauss-Newton iteration. CT-ICP is therefore performed with the following steps:

1. Temporarily transform all points qj to frame F−→m using the latest trajectory estimate (motion

undistortion).

2. Associate each point to its nearest neighbour in the map to identify its corresponding map

point pj
m in F−→m.

3. Formulate the cost function Jodom in Equation (3.3) and perform a single Gauss-Newton

iteration to update xi.

4. Repeat steps 1 to 3 until convergence.

Since VT&R3’s odometry & mapping interface requires a single pose estimate per scan with respect

to the most latest vertex frame F−→k. We interpolate to get the robot pose with respect to the sliding

map, T̂rm, at the middle of the scan. The frame-to-vertex transformation is then obtained by

T̂rk = T̂rmT−1
km, (3.5)

where T−1
km is cached from previous estimates.

3.3.4 Doppler-Compensated CT-ICP

In [74], it is showed that Navtech radar sensors are susceptible to Doppler distortion and that

this effect becomes significant during mapping and localization. A relative velocity between the
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sensor and the surrounding environment causes the received frequency to be altered according to

the Doppler effect. If the velocity in the sensor frame is known, this effect can be compensated

for using a simple additive correction factor ∆qj . In this work, we include this correction factor,

which depends on a continuous-time interpolation of the estimated body-centric velocity ϖ(t) at

the measurement time of each target tj , in the measurement error term for radar CT-ICP:

eodom,j = D
(
pj
m −T(tj)

−1Trs(qj +∆qj)
)

(3.6)

where ∆qj = DTβaja
T
j Dq⊙

j Ad(Tsr)ϖ(tj), (3.7)

where β is the Doppler distortion constant inherent to the sensor [74], and aj is a 3× 1 unit vector

in the direction of qj .

3.3.5 Localization ICP

We use ICP to localize the motion-compensated live scan of the robot frame, F−→r, against the

local map of the spatially closest vertex frame, F−→l, of the repeat path. The resulting relative

transformation is T̂rl, as required by VT&R3’s inter-experience localization interface, as shown in

Figure 2.7. The nonlinear cost function is

Jloc = ϕpose +

M∑
j=1

(
1

2
eTloc,jR

−1
j eloc,j

)
, (3.8)

where we use Ťrl from Equation (2.3) as an initial guess and a prior:

ϕpose =
1

2
ln(ŤrlT

−1
rl )

∨T
Q−1

rl ln(ŤrlT
−1
rl )

∨. (3.9)

The covariance Qrl can be computed by compounding the edge covariances corresponding to the

relative transformations in Equation (2.3). Since all point clouds are already motion-compensated,

the measurement error term is simply

eloc,j = D
(
pj
l −T−1

rl Trsqj

)
, (3.10)

where qj is a homogeneous point from the motion-compensated live scan, and pj
l is the nearest

neighbour local map point to qj after being transformed to the localization vertex frame F−→l. See

Section 3.3.3 for how we define Trs, D, and R−1
j .

3.4 Evaluation

3.4.1 Dataset

Our experimental platform, depicted in Figure 3.3, includes a 128-beam Velodyne Alpha-Prime

lidar, a FLIR Blakfly S monocular camera, a Navtech radar, and an Applanix POS LV GNSS-INS.

Our lidar has a 40◦ vertical field of view, 0.1◦ vertical angular resolution, 0.2◦ horizontal angular

resolution, and produces roughly 220k points per revolution at 10Hz up to 300m. The Navtech is a

frequency modulated continuous wave (FMCW) radar with a 0.9◦ horizontal angular resolution and
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360◦ Radar
360◦ Lidar

CameraGNSS/IMU

Figure 3.3: Our platform, Boreas, includes a Velodyne Alpha-Prime (128-beam) lidar, a FLIR
Blackfly S camera, a Navtech CIR304-H radar, and an Applanix POS LV GNSS-INS.

Figure 3.4: The 8km Glen Shields route in Toronto. The yellow stars correspond to UTIAS, Dufferin,
and Glen Shields (left to right) as in Figure 3.5.
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5.96cm range resolution, which provides measurements up to 200m at 4Hz. The test sequences used

in this paper are part of our Boreas dataset, which contains over 350km of driving data collected by

driving a repeated route over the course of one year. We intend to support live and open benchmarks

for odometry, metric localization, and 3d object detection. Ground truth poses are obtained by post-

processing GNSS, IMU, and wheel encoder measurements. An RTX subscription was used to achieve

cm-level accuracy without a base station. RTX uses data from a global network of tracking stations

to calculate corrections. The residual error of the post-processed poses reported by Applanix is

typically 2-4cm in nominal conditions.

2020-11-26

Teach

2020-12-04

Repeats

2021-01-26 2021-02-09 2021-03-09 2021-06-29 2021-09-08
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Figure 3.5: Our test sequences were collected by driving a repeated route over the source of one year.
In our experiments, we use 2020-11-26 as our reference sequence for building maps. The remaining
six sequences, which include sequences with rain and snow, are used to benchmark localization
performance, which amounts to 48km of test driving. These camera images are provided for context.

In this experiment, we used seven sequences of the Glen Shields route (shown in Figure 3.4)

chosen for their distinct weather conditions. These sequences are depicted in Figure 3.5. During the

teach pass, a map is constructed using the reference sequence 2020-11-26. The radar-only and lidar-

only pipelines use their respective sensor types to construct the map. No GPS or IMU information is

required during the map-building process. Note that our test sequences include a significant amount

of seasonal variation with ten months separating the initial teach pass and the final repeat pass.

Sequences 2021-06-29 and 2021-09-08 include trees with full foliage while the remaining sequences

lack this. 2021-01-26 was collected during a snowstorm, 2021-06-29 was collected in the rain, and

2021-09-08 was collected at night.

3.4.2 Metrics

During each of the repeat passes, our pipeline outputs a relative localization estimate between the

live robot frame F−→r and a vertex frame F−→l in the repeat path, i.e., T̂rl. We then compute RMSE

values for the relative translation and rotation error as in [10]. We separate translational error

into lateral and longitudinal components. Since the Navtech radar is a 2D sensor, we restrict our

comparison to SE(2) by omitting vertical (z-axis) errors and reporting heading error as the rotation

error.

https://www.boreas.utias.utoronto.ca
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3.4.3 Results
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Figure 3.6: These histograms show the spread of the localization error for lidar-to-lidar, radar-to-
radar, and radar-to-lidar, during the snowstorm sequence 2021-01-26.

Figure 3.6 depicts the spread of localization error during sequence 2021-01-26. Note that, al-

though lidar-to-lidar localization is the most accurate, radar-to-radar localization remains reasonably

competitive. When localizing radar scans to lidar maps, both the longitudinal error and heading

error incur a bias. The longitudinal bias could be due to some residual Doppler distortion effects,

and the heading bias could be the result of an error in the radar-to-lidar extrinsic calibration. A

video showcasing radar mapping and localization can be found at this link2.

Figure 3.8 shows the localization errors as a function of time during the snowstorm sequence 2021-

01-26. Surprisingly, lidar localization appears to be unperturbed by the adverse weather conditions.

During the snowstorm sequence, the lidar point cloud becomes littered with detections associated

with snowflakes and a large section of the horizontal field of view becomes blocked by a layer of ice

as shown in Figure 3.7 (a). However, in Figure 3.7 (b), we show that in actuality, these snowflake

detections have little impact on ICP registration after filtering by normal score and only retaining

the inliers of truncated least squares. Charron et al. [90] previously demonstrated that snowflake

detections can be removed from lidar point clouds, although we do not use their method here. The

robustness of our lidar pipeline to both weather and seasonal variations is reflected in the RMSE

results displayed in Table 3.1.

Our results show that, contrary to the assertions made by prior works, lidar localization can be

robust to moderate levels of precipitation and seasonal variation. Clearly, more work is required by

2https://youtu.be/okS7pF6xX7A

https://youtu.be/okS7pF6xX7A
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Figure 3.7: This figure illustrates the noisy lidar data that was used to localize during the 2021-01-26
sequence. Points are colored by their z-height. In (a) the ground plane has been removed and the
point cloud has been randomly downsampled by 50% to highlight the snowflake detections. Note
that a large forward section of the lidar’s field of view is blocked by a layer of ice. However, as
the results in Table 3.1 and Figure 3.8 show, lidar localization remains quite robust under these
adverse conditions. (b) shows the lidar point cloud after filtering points by their normal score as
in Equation 3.1 and only retaining the inliers of truncated least squares. Note that the snowflake
detections seem to disappear, illustrating the robustness of our lidar pipeline.

Table 3.1: Metric Localization RMSE Results
Reference Sequence: 2020-11-26

Lidar-to-Lidar
lateral (m) longitudinal (m) heading (deg)

2020-12-04 0.057 0.082 0.025
2021-01-26 0.047 0.034 0.034
2021-02-09 0.044 0.037 0.029
2021-03-09 0.049 0.040 0.022
2021-06-29 0.052 0.058 0.042
2021-09-08 0.060 0.041 0.030

mean 0.052 0.049 0.030

Radar-to-Radar
lateral (m) longitudinal (m) heading (deg)

2020-12-04 0.130 0.127 0.223
2021-01-26 0.118 0.098 0.201
2021-02-09 0.111 0.089 0.203
2021-03-09 0.129 0.093 0.213
2021-06-29 0.163 0.155 0.241
2021-09-08 0.155 0.148 0.231

mean 0.134 0.118 0.219

Radar-to-Lidar
lateral (m) longitudinal (m) heading (deg)

2020-12-04 0.132 0.179 0.384
2021-01-26 0.130 0.153 0.360
2021-02-09 0.126 0.152 0.389
2021-03-09 0.140 0.152 0.360
2021-06-29 0.159 0.161 0.415
2021-09-08 0.169 0.165 0.401

mean 0.143 0.161 0.385
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Figure 3.8: Here we plot metric localization errors during the snowstorm sequence 2021-01-26. Note
that the lidar localization estimates remain accurate even with 1/4 of its field of view being blocked
by a layer of ice as shown in Figure 3.7.
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Figure 3.9: This figure shows the live radar point cloud (blue) registered to a submap (red) built
during the teach pass. In (a) we are performing radar-to-radar localization and so the submap is
made up of radar points. In (b) we are localizing a radar point cloud (blue) to a previously built
lidar submap.
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the community to identify operational conditions where radar localization has an obvious advantage.

These conditions may include very heavy precipitation, dense fog, or dust clouds. Nevertheless, we

demonstrated that our radar localization is reasonably competitive with lidar. Furthermore, radar

localization may still be important as a redundant backup system in autonomous vehicles. Figure 3.9

illustrates the live scan and submap during radar-to-radar and radar-to-lidar localization.

It is important to recognize that the results reported in this work are taken at a snapshot in

time. Radar localization is not as mature of a field as lidar localization and radar sensors themselves

still have room to improve. Note that incorporating IMU or wheel encoder measurements would

improve the performance of all three compared systems. The detector we used, BFAR [77], did not

immediately work when applied to a new radar with different noise characteristics. It is possible

that a learning-based approach to keypoint extraction and matching may improve performance.

Switching to a landmark-based pipeline or one based on image correlation may also be interesting

avenues for comparison.

Radar-to-lidar localization is attractive because it allows us to use existing lidar maps, which

many autonomous driving companies already have, while taking advantage of the robustness of radar

sensing. Radar-based maps are not as useful as lidar maps since they lack sufficient detail to be

used to create semantic maps.

Computation and Storage Requirements

Table 3.2: Pipeline Computation and Storage Requirements

Teach
(FPS)

Repeat
(FPS)

Storage
(MB/km)

Lidar-to-Lidar 3.6 3.0 86.4
Radar-to-Radar 5.3 5.1 5.6
Radar-to-Lidar N/A 5.1 86.4

In Table 3.2, we show the computation and storage requirements of the different pipelines dis-

cussed in this work. Recall that we perform odometry & mapping during both teach and repeat

passes and additionally localize against pre-built maps during repeat passes. We used a Lenovo P53

laptop with Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz and 32GB of memory. Our radar maps

use significantly less storage (5.6MB/km) than our lidar maps (86.4MB/km).

3.5 Summary

In this work, we developed and compared the performance of three topometric mapping and local-

ization pipelines that are different in using what sensor for mapping and localization, respectively.

Specifically, we attempted to localize radar data against radar maps and either radar or lidar data

against lidar maps. Our experiments showed that lidar-only mapping and localization is quite robust

to adverse weather such as a snowstorm with a partial sensor blockage due to ice, suggesting that

the sensitivity of lidar localization to moderate precipitation has been exaggerated in prior works.

However, our radar-only pipeline was able to achieve competitive accuracy with a much smaller map,

making it a viable alternative to lidar pipelines. More experiments are needed to identify conditions

where the performance of radar pipelines exceeds that of lidar.
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Furthermore, all three pipelines are available to be used with VT&R3, enabling lidar/radar-based

teach and repeat navigation when combined with other navigation modules for planning and control.

In the next chapter, we extend our lidar-only pipeline to detect obstacles in changing environments.



Chapter 4

Lidar Map Maintenance and

Obstacle Detection

In this chapter, we present the third contribution of this thesis: an extended lidar mapping and

localization pipeline with map maintenance and obstacle detection capabilities for obstacle-aware

navigation in changing environments. Map maintenance filters out temporary objects from lidar

local maps, while obstacle detection treats such objects as obstacles and labels them in live lidar

scans. We demonstrate the performance of the resulting pipeline using real-world datasets and

propose an idea of combining it with a local planner for obstacle avoidance during path repeating

(future work).

4.1 Introduction

VT&R achieves autonomous navigation in complex unstructured environments using human-taught

paths, which is powerful but relies on the assumption that the taught paths are always traversable.

This assumption results in safety concerns in changing environments where obstacles may be intro-

duced to the paths. In VT&R2, this problem is addressed by having a lookahead terrain assessment

module that stops the robot when the path ahead looks significantly different from past experiences.

However, it is still frustrating to see the robot constantly stop in front of obstacles that could have

been avoided by temporarily deviating from the repeat path. One of our goals for VT&R3 is to

prevent the taught paths from limiting the robot’s path-planning capabilities. Past experiences on

taught paths should be used to infer the environment dynamics and safety boundaries, facilitating

planning and generation of new paths.

In this work, we take a step toward this goal by introducing map maintenance and obstacle

detection capabilities to our lidar-only pipeline presented in Chapter 3. We classify objects in

the environment into three categories: 1) dynamic objects, objects observed to be moving as the

robot traverses through the environment; 2) short-term static objects, objects that appear, move, or

disappear between experiences; and 3) long-term static objects, objects that persist across multiple

experiences. Map maintenance identifies and retains only the constantly observed long-term static

objects in the lidar local maps. Obstacle detection treats both dynamic and short-term static objects

as obstacles and produces pointwise obstacle information from each incoming lidar scan. Both are

38
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achieved via simple change detection with respect to past experiences, requiring minimal assumptions

and prior knowledge about the environment. In particular, our obstacle detection approach does

not treat the ground plane any differently from other objects/structures in the environment, as

opposed to existing methods relying on ground segmentation as a preprocessing step [91, 92]. The

performance of our extended pipeline has been evaluated on datasets of typical VT&R operating

environments, from highly structured to highly unstructured.

Furthermore, we propose a way to use the detected obstacle information for safe obstacle avoid-

ance during path repeating. We extend the VT&R3 GUI allowing a safe corridor to be specified

along the taught paths within which the terrain is always traversable unless occupied by a dynamic

or short-term static obstacle. We convert both the safe corridor and the obstacle information into 2D

cost maps and pass them to VT&R3’s default TEB local planner [41]. These cost maps encourage

local deviation from the repeat path to avoid obstacles while restricting the maximum deviation

below the safe corridor boundaries.

4.2 Related Work

4.2.1 Change Detection

We are concerned with detecting changes in the environment from two sets of lidar measurements

or their derived representations (i.e., point clouds, voxel grids), with one considered a query and the

other as a reference. The problem is frequently encountered in lidar-based localization, mapping,

and object recognition tasks. Regarding existing solutions, the most direct approach is accumulating

measurements from both sets into point clouds, computing the nearest neighbor distances between

points from two clouds, and classifying changes by thresholding the distance [93]. Despite its sim-

plicity, decent results can be achieved if the point clouds are dense and there is no need to reason

about occlusions.

Some methods take one step further by clustering point clouds into more compact representa-

tions for improved efficiency and outlier robustness. Andreasson et al. [94] represents the reference

point cloud by the Normal Distributions Transform (NDT). Change is detected by measuring the

Mahalanobis distance between a query point and its nearest Gaussian. A similar approach is pro-

posed in [95], which extracts Gaussian mixture models from both query and reference point cloud

and quantifies change based on the Earth Mover’s Distance. Vieira et al. [96] convert both point

clouds into 3D density functions, which cluster points via implicit surfaces defined by the constant

density boundaries. The difference in densities then determines the changed space.

Alternatively, if a probabilistic sensor model is specified, the likelihood of query measurements

can be computed from reference measurements with change detected via Bayesian inference. An

example is presented in [97], which models a lidar range measurement as a Gaussian centered at the

predicted distance given no change and a uniform distribution otherwise. Another example can be

found in [98], which detects change between two surface reconstructions from an RGB-D camera.

The sensor model, in their case, accounts for not only depth measurement but also color and surface

orientation information, demonstrating the advantage of Bayesian inference in fusing information

from multiple sensing modalities.

However, the approaches above still cannot distinguish real changes from occlusions because



CHAPTER 4. LIDAR MAP MAINTENANCE AND OBSTACLE DETECTION 40

unmeasured space is implicitly assumed unoccupied. To avoid spurious changes due to occlusions,

unmeasured space and measured free space must be handled differently, necessitating ray-tracing

techniques.

Previous works have used ray-tracing for both 2D and 3D grid-based mapping, classifying cells

as occupied, free and unknown [99, 100]. Such approaches can be used directly for change detection

by comparing the resulting maps from the query and reference measurements at the cell level. To

avoid the unfavorable grid-based discretization, Hebel et al. [101] apply ray-tracing directly to a

point cloud representation for point-wise classification. In this approach, a voxel discretization of

the point cloud is still required to facilitate the search of neighboring points along each laser beam.

However, occupancy information is assigned to points instead of voxels according to their distances

to the laser beam and end-point. Information from multiple beams is fused using the Dempster-

Shafer theory of evidence, a common alternative to the Bayesian approach. Points lying in the free

space of all rays with strong evidence are classified as change. A similar approach is proposed in

[102] with minor differences in modeling the free and occupied space of laser beams.

Applying ray-tracing through voxel grids for neighboring points search is both computation and

memory expensive. Underwood et al. [103] propose to project both rays and points into spherical

coordinates where neighborhood search is done withO(1) complexity. The method is mainly designed

for a spinning-lidar configuration where all rays can be assumed to originate from the same location.

Although used by multiple previous works (e.g., [104, 105, 106, 107]), including our work in this

chapter, one should note that the above assumption is not strictly valid when the sensor platform

is moving and causing motion distortion of lidar scans. This issue is mentioned in [108], which

proposes another approach that accounts for platform motion while still exploiting some aspects of

the lidar scan pattern. However, its computation advantage compared to voxel-based algorithms is

no longer evident.

It is also worth mentioning that penetrable objects (e.g., vegetation) cause additional complexities

in change detection because such objects define space that is not completely occupied or free. In

representing environments with such objects, previous works often resort to real-valued grid maps

whose values represent, for example, the probability of reflection [109] or the expected laser ray

length [110]. A change detection method operating on such real-valued maps is proposed in [111].

In this work, we use change detection from lidar measurements as a tool for long-term mapping

and obstacle detection. Our approach is closest to those of [93] for direct point cloud comparison,

and [103] for ray-tracing, which are the relatively simple methods that avoid sensor and environment

modeling. Such approaches are sufficient for a working system in our environments of interest and

robot platform. However, one should be aware of implicit assumptions about the environment and

the sensor characteristics mentioned above.

4.2.2 Map Maintenance

Map maintenance in changing environments has been an active area of research for decades. A

particularly long-standing topic is detecting and removing dynamic objects from the map. The

popular occupancy grid algorithm [99] can implicitly tolerate a moderate number of dynamic objects

due to its additive map updating rule. A cell is considered free as long as it is more often observed

free. Similarly, Hahnel et al. [109] proposed an Expectation-Maximization approach to differentiate

between static and dynamic cells in grid mapping. They showed that the closed-form result could
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be obtained directly from counting occupied and free observations. An alternative approach was to

track moving objects from feature correspondences and exclude them from map building [112]. The

main ideas behind these approaches are still seen in recent publications, although the details on map

representation and moving object detection are very different.

Previous works most similar to ours in this aspect are [104] and [105]. We represent the map

by sparse point clouds and identify dynamic objects from scan-to-map inconsistencies using ray-

tracing. Moreover, both [104] and our method compare observations from multiple experiences to

detect short-term static objects. The main difference is that [104] lacks the notion of dealing with

long-term environmental changes. It keeps both static and dynamic points in a single map and

assumes that a point can never be static once confirmed to be dynamic. In contrast, our method

immediately discards the classified dynamic points from each experience. Static points are added to

the map only if observed in multiple experiences and thereby considered long-term static.

Handling long-term environmental changes is another topic that has received a fair amount of

attention. Existing work often assumes that the environment is observed intermittently over an

extended period and focuses on dealing with changes between observations. Dynamic objects are

assumed to be removed in advance using the methods above. Current approaches can be divided into

two classes. One constantly updates a single map to stay updated with the current environment

[113, 114, 115]. The other assumes the environment has multiple configurations and thus keeps

multiple maps to match them individually [116, 117, 39].

Our multi-experience mapping algorithm (more details below in Section 4.3.4) falls into the

first class and shares similarities with the Meta-Room algorithm presented by Ambrus et al. [115].

Both algorithms aim at mapping the current long-term static objects of the environment. The main

difference lies in the assumption about the presence of unobserved objects due to occlusions. In [115],

unobserved objects are always assumed to be present and not removed from the map. However, in

our method, unobserved objects are treated the same as disappeared objects. As a result, their

algorithm may incorrectly keep disappeared objects while our algorithm can incorrectly remove

objects still in the environment. We adopt this different assumption to avoid expensive ray-tracing

operations to reason about occlusions. Our algorithm is still robust to temporary occlusion because

an object must be absent from multiple experiences before it is removed. Furthermore, we argue

that if an object is constantly occluded, it should be removed from the map even if it is long-term

static because it no longer benefits our use of the map for localization and obstacle detection.

Regarding methods belonging to the second class, an example is the Multi-Experience Localiza-

tion (MEL) algorithm in VT&R2 [4]. MEL is inspired by the experience-based navigation framework

of [39], which can be seen as a generalization of the mapping algorithms in [116] and [117]. The

motivation behind this class of methods is that the environment may change too significantly, so

generating maps using only its most stable components becomes insufficient. However, it is often a

problem for visual maps but not lidar maps. In Chapter 3, we have shown that accurate lidar local-

ization can be achieved across a year without any map updating. Furthermore, lidar localization is

also too expensive to run across multiple maps in real-time. We thereby prefer maintaining a single

map in this work instead of keeping multiple maps.

It is also worth pointing out some works that attempt to model the environment dynamics with

parameters learned from observations [118, 119, 120]. Leveraging such models allows one to produce

more compact maps and predict the environment state at a future time, which addresses the latency
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problem in the above map updating methods. For example, Krajnik et al. [120] discretize the

environment into voxel grids and model the occupancy of each cell by a superposition of periodical

functions. Our method also stores past observations, which could be used for model learning.

However, it is currently not considered because 1) the amount of data required is prohibitively large,

and 2) the underlying model assumptions restrict the type of environments they can be applied to.

4.2.3 Obstacle Detection

Obstacle detection in this work can be related to the problem of unsupervised object discovery

from change detection, which is often handled jointly with long-term mapping [121, 115, 122, 123].

Assuming again that the environment is observed intermittently over time, the object of interest

are those that appear, disappear or move between observations so that can be extracted using

methods from Section 4.2.1. They are excluded from mapping but, in this case, segmented and

associated with known object classes. The same approaches can be applied to obstacle detection if

one assumes that 1) the static map is always obstacle-free and 2) every obstacle can be observed

and cause discrepancies to the map. Segmentation and association are not strictly required because

object-level information is not mandatory for local path planning to avoid obstacles.

Our method is also inspired by previous terrain assessment works for VT&R2, which also rely on

change detection [5, 6]. In [5], the terrain ahead of the robot is organized into robot-sized patches,

each of which is a 2D grid storing the estimated terrain height. These patches are compared with

those from previous experiences, and any significant difference causes the respective terrain to be

marked untraversable. This approach is improved in [6], with each cell storing a 1D GMM with

two Gaussians in the vertical direction. One Gaussian models the terrain height and roughness,

and the other addresses noises due to over-hanging vegetations. With this representation, they can

adaptively detect small changes in smooth terrain while being robust to noises in rough terrain.

Our method learns from [6] to explicitly account for surface roughness in change detection using a

Gaussian model, improving the detection of small obstacles in structured environments. However,

other than that, our approach is very different because changes are identified pointwise from a live

lidar scan, and we do not assume the terrain ahead of the robot to be the only surface of interest.

4.3 Methodology

4.3.1 Assumptions

Before describing our method, we formally state our assumptions about the environment and discuss

their necessity and validity.

Assumption 1 A safe corridor with place-dependent width is specified along all taught paths. Inside

this corridor, the terrain formed by long-term static structures is always traversable unless blocked

by dynamic or short-term static obstacles.

Above is the key assumption allowing us to simplify obstacle detection to a change detection

problem and enable the robot to avoid obstacles by temporarily deviating from the repeat path.

The long-term static structures in the environment can be identified by comparing observations from

different times, which is essentially a change detection problem. Given a map that contains only the
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long-term static structures, dynamic or short-term static objects cause discrepancies between the live

observation and the map, which is again identifiable from change detection. The above assumption

ensures that only such objects can cause the terrain to be untraversable, so treating them uniformly

as obstacles is sufficient. The safe corridor specification makes this assumption more realistic and

defines the maximum path deviation for obstacle avoidance.

Assumption 2 The environment geometry is well-constrained by the long-term static structures,

ensuring sufficiently accurate inter-experience localization in the presence of short-term static and

dynamic objects.

Accurate localization implies proper alignment between the local maps from different experiences,

which is a prerequisite for change detection. In Chapter 3, we have shown that lidar localization

remains accurate across seasons and is robust to moderate adverse conditions. Previous works have

also shown centimeter-level localization error in both structured and unstructured environments

[35]. Our method cannot distinguish actual environment changes from those due to point cloud

misalignments. However, the above assumption allows us to treat them as noise and ignore them in

our change detection algorithm.

Assumption 3 The environment can be approximated by local planar surfaces with different rough-

ness, and penetrable objects can be safely ignored.

The assumption about penetrable objects is necessary because our method considers a space in

the environment at a time to be either occupied or free without ambiguity. We trade the ability to

handle penetrable objects for more reliable detection of solid obstacles, which is more important in

our case. The primary type of penetrable objects in our operating environments is vegetation such

as tall grass and tree canopy, which can indeed be ignored from mapping and obstacle detection. As

mentioned in Section 4.2.1, it is possible to learn a place-dependent sensor model that accounts for

penetrable objects [110]. However, such a model cannot distinguish penetrable objects from space

frequently occupied by dynamic objects, so is not considered in this work.

The assumption about local planar surfaces is needed because we use point-to-surface distance as

a metric to classify changes between two point clouds, and the result is used for map maintenance and

obstacle detection (more details in Section 4.3.4). This assumption may sound restrictive. However,

since we ignore penetrable objects and allow for a certain degree of surface roughness, we show in

our results that this assumption is still reliable even in highly unstructured environments that seem

to lack any apparent surface feature.

4.3.2 Pipeline Overview

As shown in Figure 4.1, our data processing pipeline is an extension to the lidar-only pipeline pre-

sented in Section 3.3.1 with three new tasks: Obstacle detection, Dynamic Points Removal andMulti-

Experience Mapping. The pipeline again leverages VT&R3’s pipeline and parallelization scheme

(Section 2.4.2). Obstacle detection is placed in the Inter-Experience Localization module to be per-

formed immediately after Registration (Localization) on the same software thread. Dynamic Points

Removal and Multi-Experience Mapping do not have real-time requirements, so they are submitted

to the Asynchronous Task Executor. A summary of each task is given below.
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Figure 4.1: The data processing pipeline diagram for lidar map maintenance and obstacle detection,
extending the mapping and localization pipline in Figure 3.1. Three new tasks (highlighted in
green) are added to the pipeline: dynamic points removal, multi-experience mapping, and obstacle
detection. See Section 4.3.2 for details about each task.

Keypoint Extraction: extracts keypoints from raw lidar scans to be used for scan-to-map regis-

tration. We use the same strategy presented in Section 3.3.2 without changing any parameters.

Registration (Odometry): stays the same as in Section 3.3.1, which estimates the robot pose

with respect to the latest vertex frame via scan-to-map point cloud registration using our motion-

compensated odometry algorithm, CT-ICP (Section 3.3.3). Recall that the map herein is a sliding

map that is initialized at the start of the current teach/repeat pass and is updated to center at the

robot location. A motion-compensated scan is also generated to be used by subsequent tasks.

Map Updating : updates the sliding map by including the motion-compensated live scan while

removing points too far away from the robot. The thresholds for vertex and local map creation are

changed compared to those in Section 3.3.1. We use a different threshold of 0.3m/10◦ for vertex

creation and 5m/30◦ for local map creation. Specifically, whenever the robot’s pose with respect to

the last vertex exceeds the vertex creation threshold, we ask VT&R3 to add a new vertex to the

pose graph. Additionally, we store the motion-compensated scan in the new vertex, which will be

used to identify dynamic points from the local map (more details in Section 4.3.3). We separately

keep track of the robot’s motion since the last local map and generate a new one if it exceeds the

local map creation threshold. Each newly added vertex will be associated with the latest local map.

Dynamic Points Removal : is performed on every local map produced by Map Updating. It

detects and removes points from dynamic objects in the local map using a scan-to-map ray-tracing

approach presented in Section 4.3.3. The updated local map is sent to Multi-Experience Mapping.

Multi-Experience Mapping : uses the output from Dynamic Points Removal to initialize and

maintain a number of multi-experience local maps from which the points on long-term static objects

can be extracted. We present the details of our multi-experience mapping algorithm in Section 4.3.4.

Registration (Localization): also stays the same as in Section 3.3.1, which localizes the robot to

the closest vertex frame from the repeat path using the ICP algorithm presented in Section 3.3.5.

Note that the local map in this case will have both dynamic and short-term static points removed .

The aligned scan is sent to Obstacle Detection to label points on obstacles.

Obstacle Detection: performs point-wise obstacle detection from the aligned scan using the

method in Section 4.3.5. The output is an annotated scan with points on obstacles distinguished

from points on long-term static structures. It can also convert the output to a 2D cost map to be

used by VT&R3’s TEB local planner. The details will be given in Section 4.3.7.
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4.3.3 Dynamic Points Removal

Identifying points on dynamic objects can be achieved by detecting changes across successive lidar

scans. We follow previous work by Underwood et al. [103] to use a ray-tracing approach for change

detection. The underlying idea is that each scan provides two kinds of information: occupied space

where the points are located and free space where the lidar rays pass through. A point measured in

one scan is likely to come from a dynamic object if it lies in the free space of other scans. Given the

local map produced from Map Updating, which contains points accumulated from multiple scans,

the task is then to find those points whose position is observed to be free space in some scans viewing

the same space and remove them from the map. The detailed steps are as follows.

First, we find the lidar scans that are spatially close to the current local map and from the

same experience. It can be done via a Breadth-First Search (BFS) on the pose graph, starting

from the closest vertex to the center of the local map and up to a certain depth. Recall that

Registration (Odometry) produces motion-compensated lidar scans, which will be stored in the pose

graph vertices. The lidar scans from all visited vertices are retrieved for ray-tracing.

Then, for each lidar scan, we project it into a frustum grid to encode free space information

[107]. A frustum grid is a 2D grid along the ϕ and θ dimensions of the scan’s spherical coordinates,

and each cell stores the measured range coordinate ρ. The resolution of the grid, dϕ, dθ, is the same

as the resolution of the scan in the horizontal and vertical direction, respectively.

After that, we transform the local map into the lidar scan frame, where the transformation is

found by compounding the scan/map-to-vertex transformations and the vertex-to-vertex transfor-

mations stored in the pose graph. For each point in the transformed local map with its Cartesian

coordinate q ∈ R3 and surface normal n ∈ R3, ∥n∥ = 1, we consider it as lying in the free space of

the lidar scan if the following conditions are met:

Condition 1: ∥q∥ < ρ− ρ max(dθ, dϕ)/2, (4.1a)

Condition 2: arccos
∣∣∣n · q

∥q∥
∣∣∣ < π/4, (4.1b)

where ρ is the corresponding range value given q’s coordinate in the frustum grid. Similar conditions

have been used in [107]. In Condition 1, the term ρmax(dθ, dϕ)/2 is a safety margin to avoid false

positives due to the finite resolution of the frustum grid. It is equal to the largest half size of

the frustum at range ρ and ensures that points from a planar surface whose incidence angle is

approximately less than π/4 will not be misclassified as free space. Condition 2 also avoids false

positives for points with greater incidence angles. 2D examples illustrating the rationale of these

two conditions are shown in Figure 4.2.

Condition 2 prevents us from treating the ground as dynamic because the ground is always near-

parallel to the lidar rays. However, the downside is that we can no longer correctly classify points

from a true dynamic object if it is always observed with a high incidence angle, such as car tops.

We consider this a trade-off between false positive and false negative, and Condition 2 favors having

fewer false negatives. In our situation, false negatives are less detrimental because they are usually

classified as short-term static in Multi-Experience Mapping (Section 4.3.4) and thereby still removed

from the final map of long-term static structures.

Once the local map is ray-traced against all lidar scans, we count the number of times each point

in the map is observed in the free space of a lidar scan. We remove points that lie in the free space
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(a) Condition 1

Occupied Space
(Safety Margin)

Free Space

(b) Condition 2

measured points

potential false positives

Figure 4.2: This figure illustrates the idea of the two conditions (4.1a) and (4.1b) in preventing
false positives in the ray-tracing algorithm using 2D examples. The safety margin in Condition 1
avoids potential false positives due to measurement noises and small incidence angle. Condition 2
conservatively prevents any positive classification when the incidence angle is large.

of at least two scans.

4.3.4 Multi-Experience Mapping

To remove short-term static obstacles and handle long-term changes, we extend our local map from

the privileged experience to store observations from additional, non-privileged experiences. Each

point in this extended multi-experience local map is associated with a bit-vector of maximum size

K = 128, denoting whether its underlying surface is observed over the last K experiences. Each

multi-experience local map is initialized with a regular local map from the teach pass and constantly

updated with nearby local maps from the subsequent repeat passes.

Given a newly generated local map M with dynamic points removed, we first follow the same

procedure as in Section 4.3.3 to find nearby multi-experience local maps {M̃i, i = 1, ...,M} and the

corresponding transformations for map-to-map alignment, i.e. by performing a BFS on the pose

graph and compounding vertex-to-vertex/map transformations.

Then, for each selected multi-experience local map M̃i, if it has not been updated by any local

map from the same experience as M but already contains K experiences, we discard the oldest

experience and then remove points that are marked unobserved in the rest K − 1 experiences.

For each remaining point p ∈ M̃i, we check if it is also observed in M and update its bit-vector

accordingly.

Determining whether p ∈ M̃i is observed in M is essentially a change detection problem. A

simple metric to use is p’s distance to the nearest point in M [93]. However, point-to-point distance

is sensitive to point cloud density and cannot detect small changes. When Assumption 3 is true,

point-to-surface distance is a better choice, in which case we instead aim to classify whether the

underlying surface of p is observed in M. We also follow [5] to account for the surface roughness

in our metric so that we can detect small changes in structured environments while ignoring them

in unstructured environments. We discuss our parameterization of a surface first and then the

classification metric.

We define the underlying surface of a point p using three parameters: a point on the surface

c ∈ R3, the surface normal n ∈ R3, ∥n∥ = 1 and a roughness value λ. These parameters are estimated

using p and its neighboring points, where c is the centroid, and λ is the smallest eigenvalue from

PCA with n being its corresponding eigenvector. With this information, we could consider the
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likelihood of a point q ∈ R3 being on the surface of p as a Gaussian along its normal direction,

p(q | cp,np, λp) = N ((q− cp) · np | 0, λp) . (4.2)

Equation (4.2) could be used directly as a classification metric. However, we notice that it is

error-prone when the neighborhood of p cannot be approximated by a surface. A typical example is

when p comes from vegetation (e.g., tall grass, tree canopy), where the estimated roughness λ is often

large, making p more likely considered as observed in subsequent experiences. This is undesirable

because we will end up accumulating points from or near vegetation in the multi-experience local

map, which affects our ability to detect obstacles.

To address this issue, we choose to introduce a prior on λp to prevent it from getting too large. For

simplicity, we use the conjugate prior of a Gaussian with a fixed mean, which is an Inverse-Gamma

distribution

p(λp | α0, β0) = Inv-Gamma(λp | α0, β0), (4.3)

where α0 and β0 are tunable shape and scale parameter, respectively. Let P = {pi, i = 1, ..., N} be

the points used to estimate the surface parameters of p, the posterior is

p(λp | α0, β0, P ) = Inv-Gamma(λp | αn, βn), (4.4)

where αn = α0 +
N

2
, (4.5)

βn = β0 +
1

2

N∑
i=1

|(pi − cp) · np|2. (4.6)

From Equation (4.5) and (4.6), we can see that β0 and α0 essentially play the role of a pseudo-

measurement and its weight compared to real measurements. Also note that cp and np are still

estimated directly from P .

Given the posterior of λp from Equation (4.4), we can compute the probablity of a point q being

on the underlying surface of p using the posterior predictive distribution, which is a t-distribution

[124]

p(q | α0, β0, P ) =

∫
p(q | λp) p(λp | α0, β0, P ) dλp (4.7)

= t

(
αn(q− cp) · np

βn

∣∣∣ 2αn

)
. (4.8)

where 2αn is the degree of freedom.

Using Equation (4.8), we consider the underlying surface of p as observed in M if the following

condition is satisfied:

∃q ∈ M, ∥q− p∥ < r such that p(q | α0, β0, P ) > γ. (4.9)

where r is the neighborhood search radius and γ is a classification threshold.

Finally, we merge the local map M into each of the multi-experience local map M̃i to add points

observed for the first time. Voxel-based downsampling is performed afterward to keep the size of

the map bounded. Importantly, if a point from M and an existing point lies in the same voxel, the



CHAPTER 4. LIDAR MAP MAINTENANCE AND OBSTACLE DETECTION 48

existing point is kept to prevent the map from drifting over experiences due to sensor noises and

alignment errors.

Overall, our multi-experience local map keeps up with environment changes by constantly getting

updated by the latest observations. To extract points from long-term static structures, we simply

count the number of experiences each point is observed and filter out those below a certain threshold.

4.3.5 Obstacle Detection

With Assumption 1, obstacle detection simplifies to a change detection problem between the envi-

ronment’s long-term static structures and the current observation. The former can be obtained from

the multi-experience local map, and the latter comes from the live lidar scan. If a point from the

live scan does not belong to any mapped structure, it is likely from an obstacle.

As shown in the pipeline diagram (Figure 4.1), before Obstacle Detection, each lidar scan S has

passed through Registration (Localization) where it is aligned to the nearest local map M, which

in this case contains only the long-term static structures. We perform change detection between S
and M using a similar condition as (4.9). Specifically, each point q ∈ S may be from an obstacle if

the following condition is true:

∃p ∈ M, ∥q− p∥ < r such that p(q | α0, β0, P ) > γ. (4.10)

The same parameters α0, β0, r, γ in (4.9) are used. Note that P is the set of points for estimating

the surface parameters of p.

After all points in S have been classified, we remove isolated points classified as positive (i.e.,

coming from an obstacle) because they are likely noise or from penetrable objects. For each positive

point q′, we compute a support of this classification using q′’s neighboring points as

support(q′) =
∑

pi∈Br(q′)

exp
(
−∥q′ − pi∥2

)
× 1(pi = positive), (4.11)

where Br(q
′) is the spherical neighborhood of q′ with radius r (same r as in (4.10)). 1(pi = positive)

is a binary indicator function that evaluates to 1 if pi is positive and 0 otherwise. Points with a

support value below a threshold λf have their classification flipped to negative. We stress that,

using Equation (4.11), neighboring points considered negative do not negatively contribute to the

calculation of the support. This is necessary to prevent points near the intersection of obstacles and

long-term static structures from being misclassified as negative.

4.3.6 Safe Corridor Specification and Visualization

Due to Assumption 1, it is necessary to develop a method such that the width of the safe corridor

can be easily specified during online operation. To this end, we extend the VT&R3 GUI with a

slider at the bottom for specifying the safe corridor width, as shown in Figure 4.3. The slider’s

value can be set as either continuous to reflect the width in meters directly or discrete to indicate

different path types with predefined corridor widths. During the teach pass, the user can adjust the

safe corridor width at the current location by simply dragging the cursor on the slider. The selected

value is then sent to the navigation system and associated with newly created vertices. The network
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Figure 4.3: This figure shows the updated VT&R3 GUI for specifying and visualizing the safe
corridor information. The slider at the bottom is used to specify the safe corridor width during each
teach pass, and the paths are colored accordingly.

of paths displayed in the GUI is also colored accordingly to reflect the safe corridor width.

4.3.7 Local Planning Integration

In VT&R2, the path tracker commands the robot to follow the repeat path as closely as possible

and will stop the robot for human intervention if the terrain ahead looks significantly different from

past experiences [6]. However, with the safe corridor assumption (Assumption 1), the robot may

occasionally leave the repeat path to avoid obstacles as long as it stays inside the safe corridor.

In this section, we propose a way to achieve this behavior with VT&R3’s default local planning

solution.

Recall from Section 2.6 that VT&R3 adopts the TEB local planner as its default local planning

algorithm. This planner essentially performs nonlinear MPC via online optimization of a trajectory

in a three-dimensional spatiotemporal space (x, y, t). Trajectory optimization minimizes a cost

function that encodes the desired behavior. Normally, the cost function comprises terms that 1)

minimize the distance to waypoints along the repeat path, 2) minimize time to the last waypoint in

the planning horizon, and 3) encourage compliance with certain smoothness and speed constraints.

To enable obstacle avoidance, we convert the obstacle detection result and safe corridor information

into two 2D cost maps and feed them into the cost function as additional terms.

Safe Corridor Cost Map (CSC): the safe corridor cost map is centered at the origin of the current

localization frame (i.e. the closest vertex frame on the repeat path). The cell value is defined to be

CSC(i, j) = min

(
1,max

(
0, 1− ds − d1 − d(i, j)

d0

))
, (4.12)
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where d(i, j) is the distance from the center of cell (i, j) to the repeat path, ds is the specified

corridor width. d1 and d0 are tuned minimum distance to the corridor boundary and influence

distance, respectively.

Obstacle Cost Map (COb): for the obstacle cost map, we project positive points in the lidar scan

onto the horizontal plane of the current localization frame. Then, we construct the cost map with

its center being the localization frame origin. The value in each cell is set to

COb(i, j) = min

(
1,max

(
0, 1− d(i, j)− d1

d0

))
, (4.13)

with d(i, j) being the distance from the center of cell (i, j) to the closest point in the projected lidar

scan with only positive points. d1 and d0 are defined similarly as in (4.12).

We emphasize using two cost maps instead of merging them because the values are updated at

different rates. The obstacle cost map is updated per lidar scan, but the safe corridor cost map is

only updated when switching to a new localization frame. Both cost maps are incorporated by the

TEB planner into its trajectory cost function. During optimization, the cost value from CSC/COb

at a trajectory pose is defined as a bilinear interpolation of the nearby cell values. The gradient

is computed using a finite-difference approximation by the g2o library [125], which is the backend

optimizer of the TEB planner.

The TEB planner additionally allows for simultaneous optimization of multiple trajectories from

different homotopy classes to overcome sub-optimality issues due to trajectory initialization. We can

enable this feature following the idea from Thomas et al. [126] by generating fake point obstacles at

local maxima in COb for homotopy class discovery.

Obstacle Cost Map (COb)

Safe Corridor Cost Map (CSC)

Planned Path

Repeat Path

Figure 4.4: This figure demonstrates the proposed method of incorporating obstacle and safe corridor
information into VT&R3 local planning. The planned path locally deviates from the repeat path to
avoid obstacles while staying inside the safe corridor.

Figure 4.4 shows an example of what the two cost maps may look like and how they affect the
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planned trajectory. Note that, although we have implemented this obstacle-avoiding local planning

feature in VT&R3, a thorough evaluation is outside the scope of this chapter and left for future

work.

4.4 Evaluation

4.4.1 Dataset

Honeycomb Lidar

Figure 4.5: This picture shows our Clearpath Grizzly UGV used for data collection, equipped with
a Waymo Laser Bear Honeycomb lidar.

The dataset for evaluation is collected at UTIAS using a Clearpath Grizzly UGV equipped with

a Waymo Laser Bear Honeycomb lidar. Figure 4.5 shows a picture of our data collection vehicle. It

is typically driven at 0.5-1m/s during data collection. The Honeycomb lidar has a 210◦ horizontal

FOV and a 95◦ vertical FOV (21◦ up, 74◦ down). The vertical and horizontal resolutions are set to

0.76◦ and 1.2◦, respectively. It spins at 5Hz and produces up to 40k points with a range up to 50m

per revolution. Since the lidar fires two laser beams on opposite sides of the sensor, each revolution

covers its FOV twice.

The dataset consists of repeated traversals of three different routes at the UTIAS campus, each

representing a typical environment we are interested in and is depicted in Figure 4.6. We name

the three routes Parking Lot Route, MarsDome Route, and Grove Route, respectively, and the

characteristics of each route are as follows:

Parking Lot Route: is a 270m route at the UTIAS parking lot. The route is 100 percent on-road

so that the ground is always level and smooth, which is easy for obstacle detection. However, the

parking lot is an ideal environment for evaluating our long-term map maintenance algorithm since it

presents the two types of obstacles we aim to detect and remove from the map: dynamic obstacles,

which are pedestrians and moving vehicles, and short-term static obstacles, which are the parked

cars that may appear or disappear between traversals.

MarsDome Route: is a 70m route inside the UTIAS MarsDome. The MarsDome is a 40-meter

diameter dome filled with sand, gravel, and rocks to form hilly features. It is used to examine our ob-
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stacle detection method’s ability to handle slopped ground surfaces, which is typical in unstructured

environments.

Grove Route: is a 330m route in a grove to the south of the UTIAS campus. The environment

has no artificial structures but only trees. The ground is rougher than that in the parking lot and

MarsDome and is covered by short grass, resulting in the most challenging condition for obstacle

detection. The tree canopy is a typical penetrable structure we wish to filter out from obstacle

detection.

From each route, we intermittently collected many sequences of data in December 2021 and

January 2022.

Parking Lot Route

MarsDome Route

Grove Route

Figure 4.6: This figure shows the three data collection routes plotted on top of a satellite image and
a picture taken inside the MarsDome.

4.4.2 Evaluation Strategy and Metrics

The main difficulty of using a real-world dataset for evaluation is that there is no direct access

to ground truth information about whether a point in the lidar scan belongs to an obstacle or not.



CHAPTER 4. LIDAR MAP MAINTENANCE AND OBSTACLE DETECTION 53

Previous works typically resort to hand-labeling the ground truth, which inevitably introduces biases,

especially in unstructured environments where many ambiguities exist. Another issue with our

dataset is the lack of actual obstacles in the environment of MarsDome Route and Grove Route. In

such environments, the usual obstacles of interest, apart from humans, are wild animals, large rocks,

and fallen trees. However, their presence during data collection is rare unless manually introduced

to the scene. Adding and removing such obstacles by hand is unfortunately too inefficient to handle

the large number of obstacles we would like for evaluation. For example, in [6], approximately every

20 meters along the path has only one obstacle. In contrast, we would like 10-20 actual obstacles in

each lidar scan to have a reasonable ratio of positive and negative points. Although we could evaluate

our approach in a simulated environment, it does not capture all the real-world complexities, so it

cannot prove our approach’s practicality to be used by VT&R3.

To address the problem of missing ground truth labels and lacking obstacles, we adopt a strategy

that mixes real-world structures with simulated obstacles. Specifically, we generate and place many

virtual obstacles (e.g., humans, cars, rocks) at various locations in the environment. These obstacles

are represented by CAD models approximating their shape. During pipeline execution, localization

and mapping are performed with the original lidar scans from the dataset. However, before passing

each scan for obstacle detection, these virtual obstacles are synthesized into the scan based on

the current robot location. Points on obstacles are obtained via ray-tracing from the lidar origin

according to the sensor resolution, and points behind obstacles are removed. Figure 4.7 shows an

example scan with and without adding virtual obstacles. With these fake obstacles and by picking

sequences from our dataset with no real obstacles, which is true for many sequences in the dataset,

ground-truth labels can be obtained freely. We can then evaluate our obstacle detection algorithm

using standard precision and recall metrics with the ground-truth labels1. Note that the positive

class, in our case, are points belonging to obstacles.

(a) Original Scan (b) Modified Scan with Fake Obstacles

Figure 4.7: This figure shows an example of synthesizing fake obstacles into a real lidar scan. (a)
is the original scan. (b) is the scan with points on fake obstacles added and points behind fake
obstacles removed. The fake obstacles include humans, cars, cubic boxes, and pylons.

1For map maintenance, we perform a qualitative-only evaluation because similar techniques have been used in
other contexts and evaluated extensively in simulated and real environments [115]. Our evaluation herein is intended
to demonstrate their applicability to VT&R and performance in the environments of our interest. We perform both
quantitative and qualitative evaluations for obstacle detection to demonstrate our method’s robustness to environments
with sloped, rough ground surfaces and vegetations.
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4.4.3 Results

Dynamic Points Removal

(a) Dynamic Points in Green

(2)

(1)

(b) Dynamic Points Removed

Figure 4.8: Both subfigures show a global map of the Parking Lot Route aggregated from local maps
of 25 teach/repeat passes, providing the qualitative result of dynamic points removal. The map in
(a) has dynamic points highlighted in green, and the map (b) has dynamic points removed. We
mark two areas in (a) where our method results in false negatives due to (1) high incidence angle
and (2) non-detectable motion.

We evaluate our dynamic points removal approach (Section 4.3.3) using 25 sequences of data

from the Parking Lot Route with one used as the teach sequence and others being repeat sequences.

Figure 4.8 shows our method’s classification between dynamic and static (both short-term and long-

term) points. For better visualization, local maps from all locations and sequences are transformed

into a common frame and aggregated to form a global map. Observations on the ground are also

removed by keeping only points above the robot chassis.

Although having no ground-truth labels, we can infer them visually according to the points’

location and pattern. Points on the road that form trails are clear from pedestrians and moving

vehicles and thereby dynamic. The rest of the points tend to be static except those on tree canopy,

which are ambiguous.

From Figure 4.8a, we see that most dynamic points are correctly classified, although with a fair

amount of false negatives (i.e., dynamic points that are incorrectly classified as static). In contrast,

there are few misclassifications of static points from buildings or parked cars. The results suggest

that our algorithm trades false negatives for fewer false positives, which is intended as discussed in

Section 4.3.3.

In Figure 4.8b, we mark misclassified points at two locations that correspond to typical failure

modes of ray-tracing: high incidence angle and non-detectable motion, respectively. Points from

location (1) come from the top of a car whose surface normal is nearly parallel to the laser rays.

Points from location (2) are from a long truck that moves in parallel with the robot in that area so

that the space on one side of the truck is never seen as free.

Multi Experience Mapping

Figure 4.9 shows the resulting classification between short-term and long-term static points by

comparing local maps from multiple experiences using the method from Section 4.3.4. The plot is
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(a) Short-Term Static Points in Green (b) Short-Term Static Points Removed

Figure 4.9: This figure resembles Figure 4.8, providing the qualitative result of short-term static
points removal via multi-experience mapping. The map in (a) has short-term static points high-
lighted in green, and the map in (b) has short-term static points removed.

generated similarly as in Figure 4.8 by aggregating the multi-experience local maps from all locations

and removing points on the ground. The same 25 sequences of data as above are used for evaluation.

We treat points observed in less than 20 out of 25 experiences as short-term static points, resulting

in a perfect classification of parked cars that are not present in all experiences. Furthermore,

previously misclassified dynamic points are also treated as short-term static since they rarely appear

in every experience. This behavior is favorable because it prevents such points from polluting the

final map for localization and obstacle detection. It is also why we can afford a certain amount of

false negatives from ray-tracing. However, we stress that it does not entirely preclude the necessity

of attempting to remove dynamic points beforehand. In highly dynamic environments, some spaces

may be frequently occupied by dynamic obstacles and contain points in all experiences. In this case,

such points may be considered long-term static if we count their presence in different experiences.

The ground-truth label of points on tree canopy is again ambiguous, and their classification result

from our method is difficult to characterize. The tree canopy is a typical structure that does not

conform to our Assumption 3 since it is penetrable and cannot be approximated by local surfaces.

Roughly, we see from Figure 4.9a that more points on the tree canopy seem to be classified as short-

term static than long-term static. However, we posit that most positives are false due to our keypoint

extraction strategy and poor surface normal estimates. We could have completely removed points on

the tree canopy by simply clustering the classified positives. However, we observed that it sometimes

leads to a degradation of accuracy and a higher chance of failure in localization, suggesting that the

distribution of points on the tree canopy still provides some useful geometry information.

Figure 4.10 shows the aggregated long-term static global map with ground included and points

colored according to their heights. Overall, we obtain a high density of points on all of the apparent

long-term static structures, such as the ground and buildings. The intactness of the ground near

the taught path is especially important because it is always observed in the lidar scan, which will

be classified as an obstacle otherwise.

Obstacle Detection

Figure 4.11 shows the spread of the ground roughness and slope along the three routes as a quantita-

tive reflection of their difficulty for obstacle detection. The values are obtained from the underlying
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(a) Grove Route

(b) Parking Lot Route (c) MarsDome Route

Figure 4.10: This figure shows the final long-term static local maps of all three environments in
our dataset, aggregated in a global frame. Points are colored by height, and the path is drawn in
pink. These maps capture the observed long-term static structures in the environment. The map of
Parking Lot Route is built from 25 sequences, and the other two maps are built from 5 sequences.
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Figure 4.11: These histograms show the spread of the slope and roughness of the ground in the three
environments for evaluation, as a quantitative reflection of the environments’ difficulty for obstacle
detection.

surface of each point close to the ground in the global maps from Figure 4.10. Slope is the angle

between the surface normal and the horizontal plane defined by its closest vertex frame, and rough-

ness is the variance of the point’s neighbors along the surface normal. Comparing the MarsDome

Route to the Parking Lot Route, the hilly feature in the former causes a higher variation in slope

but a negligible difference in roughness. The roughness of the Grove Route is most spread out, and

its variation in slope is comparable to that of the MarsDome Route. Moreover, note that the Grove

Route is also populated by high vegetation, further complicating the obstacle detection conditions.
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Figure 4.12: The precision-recall curve of the proposed obstacle detection method and its variants.
The proposed method achieves the best performance in all three environments.

We evaluate our obstacle detection method (Section 4.3.5) using the strategy and metrics pre-

sented in Section 4.4.2. Five sequences from each route that contain no real obstacles are used for

evaluation. We use four sequences to construct the multi-experience local maps and perform obstacle

detection on the last sequence with fake obstacles added.

Figure 4.12 shows the resulting precision-recall curves of our method when varying the classifi-

cation threshold γ in Equation (4.10), and Table 4.1 shows the corresponding precision and recall
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Table 4.1: Obstacle Detection Results: Precision, Recall and F-Score

Parking Lot Route MarsDome Route Grove Route
Prec. Recall F-Score Prec. Recall F-Score Prec. Recall F-Score

No Prior & Filter 0.90 0.84 0.87 0.95 0.81 0.87 0.62 0.65 0.64
No Prior 0.93 0.88 0.91 0.95 0.83 0.89 0.69 0.82 0.75
No Filter 0.99 0.92 0.95 0.98 0.92 0.95 0.92 0.78 0.84
Proposed 0.98 0.95 0.97 0.98 0.94 0.96 0.95 0.86 0.90

values that give the highest f-score. As for comparison, we provide results that do not use a prior, fil-

ter, or both. No prior refers to replacing p(q | α0, β0, P ) in our condition (4.10) with p(q | cp,np, λp)

(see Equation (4.2)) for classification. We further provide qualitative results in Figure 4.13, which

shows a lidar scan from a Grove Route sequence after obstacle detection using our method and its

no prior or filter variants, comparing to ground truth labels.

In all three environments, our method achieves an f-score no less than 0.90 with both precision

and recall values higher than 0.85. There is little difference between the result from the Parking

Lot Route and that from the MarsDome Route. It is expected because our method does not have

any requirement or assumption on the overall planarity of the ground. The performance does de-

teriorate in the Grove Route due to vegetations that inject more noise to our surface parameter

estimates. Adding a prior to surface roughness significantly improves the performance in all sce-

narios. As mentioned in Section 4.3.4, the prior can help avoid false negatives when the obstacle is

near vegetation or other objects that cannot be approximated by local surfaces. An example can

be seen in Figure 4.13d where the upper half of two fake humans in the scan is incorrectly classified

as negative because the points are associated to over-hanging vegetations that give erroneously high

roughness estimates. Applying a filter offers the most notable improvement in the Grove Route,

where most outliers belong to vegetation, as shown by the difference in the precision-recall curves

and Figure 4.13e.

Finally, Figure 4.14 shows an example of detecting real obstacles using our method during VT&R3

online operation. Three traffic barrels were placed in front of the robot and correctly detected as

obstacles in the lidar scan. Points from the ground, trees and tall grass surrounding the robot were

labeled negative as expected.

Computation Requirements

Table 4.2: Pipeline Computation Requirements

Task ∆T (ms)
Keypoint Extraction 33
Registration (Odometry) 152
Map Updating 20
Registration (Localization) 128
Obstacle Detection 10
Dynamic Points Removal 329
Multi-Experience Mapping 14

In Table 4.2, we show the computation requirements of each task in the pipeline diagram (Fig-

ure 4.1). ∆T is the average running time per execution over an entire sequence of data from the

Parking Lot Route. We used a Lenovo P53 laptop with Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
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(a) Labeled Scan & Local Map

(b) Ground Truth (c) Proposed

(d) No Prior (e) No Filter

Figure 4.13: This figure provides qualitative results of the proposed obstacle detection method and
its variants on fake obstacles. (a) displays the labeled scan and its aligned local map for reference.
(b) shows the ground-truth labels for comparison. (c), (d) and (e) are the results of the proposed
method and when no prior or filter is applied, respectively. In (d), points in the circled area are
labeled negative because they are incorrectly considered part of the overhanging vegetation.
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Figure 4.14: This figure shows qualitative results of online real obstacle detection using the proposed
method. Green points in the circled area are from the traffic barrels in front of the robot, introduced
as obstacles.

and 32GB of memory. The pipeline relies on VT&R3’s parallelization scheme to run at frame rate

(5Hz). The bottleneck is the Odometry & Mapping module, where Registration (Odometry) takes

152ms, and Map Updating takes 20ms. Note that Dynamic Points Removal is an asynchronous task

executed once per each local map instead of each lidar scan, so it does not have to run at the frame

rate.

4.5 Summary

In this work, we looked into the problem of safe lidar-based teach and repeat navigation in changing

environments where obstacles may appear on the taught paths. We assumed that only dynamic and

short-term static objects in the environment could be obstacles and developed methods that remove

such objects from local maps while detecting them from live lidar scans. Our methods rely on simple

change detection algorithms that work without requiring prior knowledge of these objects.

For map maintenance, we provided qualitative results on a parking lot dataset. We showed that

both dynamic objects (e.g., moving cars, pedestrians) and short-term static objects (e.g., parked

cars) were cleanly removed, while the long-term static objects (e.g., buildings, ground plane) were

kept intact. For obstacle detection, we performed both qualitative and quantitative evaluations

using real-world data from multiple environments with fake obstacles inserted. Our method achieved

high precision and recall in both structured and unstructured environments and was particularly

robust to noisy measurements from vegetations (given that we do not treat vegetations as obstacles).

Qualitative result of online, real obstacle detection was also reported. The full pipeline was able to

process data from a Honeycomb Lidar at frame rate (5Hz) using VT&R3’s parallelization strategy.

We additionally proposed to specify a safe corridor along taught paths within which the robot

could deviate from the repeat path to avoid obstacles. We presented an idea of converting both
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the safe corridor and obstacle information into 2D cost maps and passing them to VT&R3’s default

TEB local planner to obtain a safe, obstacle-free trajectory. We reserve a thorough evaluation of

this idea for future work.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

The motivation behind this thesis is the desire to bring the success of VT&R to not just mobile

robots using a stereo camera as the primary sensor but also those equipped with other sensors, such

as lidar, radar, GPS, or a combination of them. Designing VT&R to work with different sensors

allows us to exploit the strength of each sensor, enjoy the power of sensor fusion, and prepare the

system for more applications.

The primary goal of this thesis is thereby to re-design VT&R so that it is not tailored to a

stereo camera setup, which is where the idea of generalizability lies. To this end, we re-formulated

the state estimation, planning, and control problems in VT&R to be more generic and defined

interfaces allowing algorithms for different sensors to be added easily. We also re-built the system’s

sensor/robot communication interfaces using the ROS2 library due to its reliability, efficiency, and

popularity. We named our new system Visual Teach & Repeat 3 (VT&R3) and made it an open-

source project, hoping to get external contributions and benefit the broader robotics community.

With VT&R3 at hand, we developed and evaluated methods for lidar/radar-based teach and

repeat navigation, serving as demonstrations of the improved generalizability of our new system.

In Chapter 3, we developed pipelines for lidar/radar topometric mapping and localization using

VT&R3’s state estimation interface and two algorithms for map building and localization, respec-

tively. Experiments showed that using lidar data for both map building and localization resulted in

the best localization accuracy and surprising robustness to adverse weather conditions such as snow-

storm. However, pipelines using radar data also demonstrated competitive accuracy and robustness

with some advantages in computation and storage, making them viable alternatives.

In Chapter 4, we further extended the lidar topometric mapping and localization pipeline with

methods that remove temporary objects (e.g., pedestrians, cars) from the local maps while detecting

them as obstacles from live scans. Our proposed methods do not generalize beyond teach and

repeat navigation but have the advantage of not requiring prior knowledge of those objects. We

validated these methods using real-world data from multiple structured/unstructured environments

and demonstrated online operation of the extended pipeline on our testing robot. Using this pipeline

for online obstacle avoidance in lidar-based teach and repeat is still a work in progress.

62
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5.2 Future Work

In this section we discuss potential future directions to further improve or extend our work in

Chapter 2, 3 and 4.

5.2.1 Visual Teach & Repeat 3

Handling Failures

Recall VT&R3’s state transition diagram in Figure 2.11. Apart from the normal transitions accom-

plishing teach and repeat logics, there are only a few ones triggered by localization failures that

result in early exiting from the current teach/repeat pass. However, other failures may occur from,

for example, odometry and local planning. Our system is currently missing a systematic way to

handle or recover from these failures. Future work should look into this issue and possibly define

more states and transitions to address these failures. If state management using a HFSM becomes

challenging, we should consider more flexible and scalable solutions, such as Behavior Trees [42].

Topological Localization

Currently, the user must manually specify the robot’s closest vertex in the pose graph every time

VT&R3 is re-started. However, it can be avoided if vertex-level topological localization is supported.

It is easy when a GPS is available, and each vertex is associated with a GPS coordinate. If a camera

is used, one can store the captured image to vertices and use any visual place recognition approach

to re-locate the robot. Future work should explore these options and define a topological localization

interface for VT&R3.

5.2.2 Lidar & Radar Topometric Mapping and Localization

Radar Localization Advantages

Our experiments in Section 3.4 show that lidar localization outperforms radar localization in ac-

curacy on all test sequences, including those with rain and snow. However, according to previous

studies on lidar/radar operating conditions [46, 47], it is likely that we have not reached the opera-

tional boundary of either lidar or radar. More experiments are needed, possibly with data collected

during more adverse conditions. Meanwhile, we believe that radar localization accuracy can be fur-

ther improved. Future work should explore alternative keypoint extraction algorithms and possibly

landmark/correlation-based pipelines.

Computation Requirements

As shown in Table 3.2, our lidar-only pipeline cannot run at the frame rate of a Velodyne Alpha-

Prime lidar (10Hz), even though we have exhausted all cores of our CPU. Compared to existing

real-time ICP-based lidar odometry & mapping methods, our method is slow because 1) we pass

more keypoints to our odometry algorithm, CT-ICP, and 2) the algorithm itself requires more

computation for motion compensation (mainly to get the error Jacobians during Gauss-Newton op-

timization). It should be possible to select fewer keypoints without sacrificing localization accuracy,

and computational improvements to CT-ICP should be explored.



CHAPTER 5. CONCLUSION AND FUTURE WORK 64

5.2.3 Lidar Map Maintenance and Obstacle Detection

Local Planning Integration

Combining the pipeline in Chapter 4 with a local planner and demonstrating obstacle avoidance

capability is the most important work to be done. An issue with our idea in Section 4.3.7 is that

the cost function encodes objectives inherently conflict with each other. For example, even with no

obstacles, the optimized trajectory will cut corners of the repeat path due to balancing trajectory

length and distances to waypoints. Future work should look into ways that better reconcile these

conflicting objectives. The TEB planner is itself a tentative default for VT&R3 that should be

replaced eventually.

General Terrain Assessment

A strong assumption of our method is that only dynamic and short-term objects can be obstacles.

Breaking this assumption can easily cause damage to the robot or other assets. Imagine that

some long-term static objects happen to block the taught paths. Our method will only detect

them during the first few times and eventually treat them as safe to pass through. Avoiding this

assumption necessitates the use of more general terrain assessment methods. Future work should

explore appropriate methods that can take advantage of the gathered environment information from

past teach/repeat passes.
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