
Model-free Setting-Independent Detection of Dynamic
Objects in 3D Lidar

by

Juny David Yoon

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

University of Toronto Institute for Aerospace Studies
University of Toronto

c© Copyright 2019 by Juny David Yoon

Abstract

Model-free Setting-Independent Detection of Dynamic Objects in 3D Lidar

Juny David Yoon

Master of Applied Science

University of Toronto Institute for Aerospace Studies

University of Toronto

2019

This thesis presents a model-free, setting-independent method for online detection of dy-

namic objects in 3D lidar data. We focus on a common type of 3D lidar, spinning-lidars,

for which its moving-while-scanning operation must be compensated. Our detection

method uses motion-compensated scan alignment and a novel freespace querying algo-

rithm to classify between dynamic (currently moving) and static (currently stationary)

labels at the point level.

A public dataset and benchmark suitable to evaluate our work did not previously exist

due to the difficulty of accurately labelling groundtruth. For a quantitative evaluation,

we establish a benchmark with motion-distorted lidar data using an open-source 3D

simulator for autonomous driving research. We also provide a qualitative evaluation

with real data using a commercially available lidar in driving scenarios. Results show

that we can do a reasonable job of labelling each lidar point as either static or dynamic

without resorting to a model or application-specific assumptions.

ii

Acknowledgements

There are several people I give thanks to for the completion of this thesis, for their

support in both my academic and personal life.

A very special thanks to my supervisor, Dr. Tim Barfoot, for his expert guidance.

To all the members of the Autonomous Space Robotics Lab, each of whom helped me in

countless ways, I am truly grateful.

Finally, thanks to my family, my parents and older brother, for helping me through all

the years of school that built up to the completion of this thesis.

iii

Contents

Acknowledgements iii

Contents iv

List of Figures vi

Notation vii

1 Introduction 1

1.1 Object Detection . 1

1.2 Contributions . 2

1.3 High-level Overview . 3

2 Background 4

2.1 Lidar and Data Representation . 4

2.1.1 Pointcloud . 5

2.1.2 Imagespace . 8

2.1.3 Freespace . 10

2.2 Online Lidar Scan Alignment . 11

2.3 Existing Detection Methods . 12

2.4 Existing Datasets and Benchmarks . 14

2.5 Summary . 16

3 Methodology 17

3.1 Pipeline Formulation . 18

3.2 Lidar Trajectory and Scan Alignment . 20

3.2.1 Trajectory Representation and Motion Prior 20

3.2.2 Measurement Term . 22

3.2.3 Single-scan Lidar Odometry . 23

iv

3.3 Pointcloud Comparison . 25

3.3.1 Error Metric . 26

3.3.2 Comparison Trade-offs . 27

3.3.3 Comparison Limitations . 33

3.4 Freespace Check . 34

3.4.1 Freespace Query Algorithm . 36

3.4.2 Freespace Reference Scans . 41

3.5 Box Filter . 42

3.6 Clustering and Region Growth . 44

3.7 Summary . 47

4 Datasets and Benchmark 48

4.1 Realworld Dataset . 48

4.2 Simulated Dataset . 49

4.2.1 Simulator . 50

4.2.2 Benchmark . 52

4.3 Summary . 53

5 Pipeline Simulation and Experimental Results 54

5.1 Analysis of Pipeline Components . 54

5.1.1 Freespace . 55

5.1.2 Motion Compensation . 57

5.1.3 Box Filter . 59

5.1.4 Region Growth . 60

5.2 Evaluation of Final Pipeline . 61

5.2.1 Simulated Benchmark . 61

5.2.2 Realworld Dataset . 64

5.3 Summary . 65

6 Conclusion 68

6.1 Future Work . 70

6.1.1 Faulty Lidar Returns . 70

6.1.2 Detection Uncertainty . 70

A SE(3) Definitions 73

Bibliography 75

v

List of Figures

2.1 Example Velodyne HDL-64E S3 pointcloud 6

2.2 Illustration of reference frames of a spinning-lidar 7

2.3 Motion distortion example in pointcloud data 8

2.4 Example imagespace data of Velodyne HDL-64E S2 9

3.1 The full detection pipeline . 19

3.2 Example vehicle pointcloud as operated by the pipeline 19

3.3 Example query pointcloud coloured by the error metric 27

3.4 1D scenario explaining scan gap trade-off 29

3.5 1D scenario showing reference pointcloud composition options 30

3.6 Increasing the number of reference scans 32

3.7 2D lidar example showing freespace importance 35

3.8 Example query pointcloud after a freespace check 37

3.9 Illustration depicting the three freespace cases 38

3.10 A visualization of the point-to-line distance 39

3.11 Box filter example . 43

3.12 Example query pointcloud after region growth 46

4.1 Image of the ASRL perception vehicle. 49

4.2 Example pointcloud and camera image from CARLA 51

4.3 Recall plots against limited lidar range 53

5.1 Precision-recall curves showing significance of freespace check 56

5.2 Precision-recall curves showing the significance of motion compensation . 58

5.3 Precision-recall curves showing the significance of the box filter 59

5.4 Precision-recall curves showing the significance of region growth 61

5.5 Precision-recall plots for the full pipeline using the simulated benchmark. 64

5.6 Real data pointcloud examples of the detection pipeline 67

6.1 Example of the amount of faulty lidar measurements in lidar scans 71

vi

Notation

a : Symbols in this font are real scalars.
a : Symbols in this font are real column vectors.
A : Symbols in this font are real matrices.
1 : The identity matrix.
0 : The zero matrix.

F−→a : A reference frame in three dimensions.

Ta,b : The SE(3) transformation that transforms vectors in ho-
mogeneous form from F−→b to F−→a.

vii

Chapter 1

Introduction

1.1 Object Detection

At the current state of the art for autonomous mobile robotics research, we are able au-

tonomously navigate with ease in stationary, predictable environments. A good example

is visual teach and repeat, a navigation system that can reliably repeat long routes with a

single on-board stereo camera (Furgale and Barfoot, 2010). However, in order to further

enable autonomous navigation, an autonomous vehicle (or robot) must be able to reli-

ably detect the dynamic aspects of its setting. While dynamic detection and perception

is not as important in applications such as extraterrestrial rover navigation, the current

trend in the industry is enabling autonomous driving, where there is a high abundance

of moving objects (e.g., other vehicles and pedestrians).

Fortunately, detection is possible with the same suite of sensors used for egomotion

estimation. Cameras are passive sensors that are widely used for their small form factor

and being relatively inexpensive. A disadvantage to using cameras are their reliance on

ambient lighting and the difficulty in estimating depth. In contrast, lidar (light detection

and ranging) actively illuminates the scene and measures distance by observing the time

it takes to reflect and return. Lidars are significantly more expensive than cameras, but

1

Chapter 1. Introduction 2

provide rich geometric data and are relatively unaffected by ambient lighting.

In this thesis we focus on the spinning-lidar configuration, which is currently the

most common type of lidar that produces three-dimensional (3D) measurements. Several

lasers are rigidly arranged along the vertical and are rotated continuously to produce 3D

data over a limited vertical, but 360◦ horizontal field of view (FOV). Refer to Figure 2.2

in Section 2.1.1 for an example diagram.

Given data from a spinning-lidar, our goal is to detect which parts of the data belong

to dynamic (moving) objects. One approach to dynamic object detection trains learning

algorithms, such as deep neural networks (DNN), most commonly to detect objects of pre-

defined class categories (e.g., pedestrians, vehicles, cyclists) (Chen et al., 2017). Given an

accurate, reliable map, we can alternatively compare new data to the map and segment

the discrepancies that are likely to be caused by dynamic objects (e.g., change detection)

(Underwood et al., 2013).

We are more interested in a detection method that is independent of prior knowledge

on the objects and the setting, including training data, making its use flexible to a

larger variety of applications. Such a method does not have to be a direct competitor to

methods that use prior knowledge, but can rather be a part of a larger suite of detection

methods where it will act as a safety net (e.g., for learning-based detectors). Consider

for example application in scenarios where a prior map is not available (e.g., a disaster

zone), where methods that only rely on the latest sequences of data will have no issue

detecting survivors.

1.2 Contributions

This thesis introduces a model-free, setting-independent dynamic object detection method

for 3D lidar data at the point level. Detection involves labeling lidar points as dynamic

(moving) or static (not moving) using only the most recent set of lidar scans. Due

Chapter 1. Introduction 3

to the difficulty in obtaining accurate groundtruth labels, we quantitatively analyze our

method using motion-distorted lidar data simulated in CARLA (Dosovitskiy et al., 2017),

an open-source simulator for autonomous driving research. We make this dataset publicly

available for others to use (visit http://asrl.utias.utoronto.ca/datasets/mdlidar/index.html).

We also provide a qualitative analysis using real data collected with a Velodyne HDL-64E

in driving scenarios.

Specifically, the novel contributions are as follows:

• Model-free, setting-independent labelling of lidar points as static or dynamic.

• Dataset and benchmark of simulated 3D lidar data in on-road driving scenarios.

• Quantitative analysis of our work using the simulated benchmark.

• Qualitative analysis of our work using real lidar data collected in on-road driving

scenarios.

1.3 High-level Overview

The remainder of this thesis is divided into the following chapters. Chapter 2 provides

background knowledge on lidar data representations, lidar scan alignment, existing de-

tection methods, and existing lidar datasets. Chapter 3 introduces the detection pipeline

and discusses the individual components. Chapter 4 presents our lidar datasets, con-

sisting of real data we collected with a Velodyne HDL-64E sensor, and simulated data

using CARLA. Chapter 5 presents the quantitative and qualitative analyses, as well as

the discussion of the results. Finally, Chapter 6 concludes the thesis and discusses future

work.

Chapter 2

Background

We describe in this chapter background material and relevant literature. We begin with

describing lidar data and its different representations, followed by a brief look into lidar

scan alignment. We then discuss the existing literature on dynamic object detection

methods, and finally end the chapter with a look at existing lidar datasets.

2.1 Lidar and Data Representation

Lidar operates by actively illuminating the scene and uses the time it takes for light to

reflect and return to determine range. The amount of reflected light is also available as

an intensity measurement.

This thesis focuses on the spinning-lidar configuration, which is currently the most

common type of lidar in autonomous application for 3D measurements (see Figure 2.2).

These lidars operate by continuously rotating a vertical arrangement of lasers to provide

a 360◦ horizontal FOV. The horizontal resolution depends on how often the lasers take

measurements and the rotation speed of the rotating laser hub. The vertical resolution

and FOV depends on the number of lasers and the angular spacing along the vertical

(i.e., elevation).

In this thesis, we refer to the accumulation of data from a finite amount of rotation

4

Chapter 2. Background 5

of the lidar (e.g., one revolution) as a lidar scan. We carefully distinguish the term, lidar

scan, from the different representations of lidar data (e.g., pointcloud, imagespace, and

freespace).

The Velodyne HDL-64E, a spinning-lidar with 64 lasers, first found prominent use

during the 2007 Defense Advanced Research Projects Agency (DARPA) Urban Challenge,

an autonomous driving challenge in an urban area course (Montemerlo et al., 2008;

Bohren et al., 2008). To this day, Velodyne lidars are one of the most common 3D lidar

sensor used in robotics. Currently, Velodyne offers lidar variants with 16, 32, 64, and

128 lasers. Competitors to Velodyne have emerged over recent years, with companies like

Quanergy and Ouster providing similar spinning-lidars that produce 3D measurements

with a 360◦ horizontal FOV.

2.1.1 Pointcloud

A pointcloud, as its name implies, is a collection of points formed from the endpoints

of laser measurements of a lidar scan. Figure 2.1 shows an example pointcloud formed

from one revolution of a Velodyne HDL-64E S3 at the University of Toronto Institute for

Aerospace Studies campus.

The points (i.e., each element) of the pointcloud are computed from the raw bearing

(encoder measurement of rotating laser hub) and range measurements of the lidar. Each

bearing and range measurement pair corresponds to one laser, where each laser has a

known unique position and orientation (i.e., pose) with respect to the base of the sensor.

These individual laser pose values are given as calibration parameters.

We can explain this more clearly with reference frames. We introduce the lidar base

frame, F−→b, the laser hub frame, F−→h, and individual laser frames, F−→`, for each laser `.

The laser hub houses all the lasers and rotates with respect to the lidar base. We define

F−→h to have a time-varying rotation about a single axis (e.g., z-axis) of F−→b. We define

each F−→` to measure range along a single axis (e.g., x-axis). Figure 2.2 illustrates the

Chapter 2. Background 6

Figure 2.1: Example pointcloud taken from a Velodyne HDL-64E S3. 3D spinning-lidar
sensors provide accurate geometric information at far ranges (up to 120 m).

reference frames for an example lidar with n lasers, F−→`1 , F−→`2 , . . . , F−→`n . The blue arrows

indicate rigid transformations between the frames.

Atanacio-Jiménez et al. (2011) present a calibration method for Velodyne HDL-64E

sensors using pattern planes, which includes accurately determining the unique poses of

each laser. Consequently, their work is a good reference for converting raw range and

bearing data to a pointcloud. Maddern et al. (2012a) present a calibration method for

multiple generic 2D and 3D lidars by optimizing the quality of the resulting composite

pointclouds.

The pointcloud is the most commonly used data product of 3D lidars and is often

treated as an instantaneous snapshot of the scene. This is not true for spinning-lidars

due to their moving-while-scanning mode of operation. Analogous to the rolling-shutter

effect in certain cameras, the scene observed by the lidar will be distorted if it is mounted

on a moving platform (e.g., robot or vehicle). We refer to this effect as motion distortion.

Compensation for motion distortion (i.e., accounting for the actual sensor pose for

each measurement) is required for accurate construction of pointclouds on moving plat-

Chapter 2. Background 7

Ray
Laser

Hub

Ray

Ray

Lidar Base

Figure 2.2: An illustration of the lidar reference frames involved in converting range and
bearing measurements into 3D points for an example lidar with n lasers, F−→`1 , F−→`2 , . . . ,
F−→`n . The laser hub frame, F−→h, rotates with respect to the lidar base frame, F−→b. The
blue arrows indicate rigid transformations. Note the placement of the laser frames are
not metrically to scale and should all be within the laser hub (grey).

forms. Past robotics research often experimented with terrestrial robots with movement

speeds of at-most a few meters per second, for which a 10 Hz spinrate (common speci-

fication) is sufficiently fast enough to assume each revolution is a snapshot of the scene.

The snapshot assumption loses validity as applications involve faster moving vehicles,

such as vehicles for autonomous driving. Note that it is not correct to judge the amount

of distortion by the spinrate of the lidar, rather it is the rate at which the lasers take

measurements that is the limiting factor and should be taken into account. The config-

ured spinrate is a result of considering the measurement-rate of the lidar and deciding

on a desired horizontal (angular) resolution.

Figure 2.3 shows an example of a simulated lidar scan (one revolution) of a 10 Hz

spinning-lidar moving at approximately 70 km/h. The top pointcloud is created from

the scan by treating it as an instantaneous snapshot (i.e., all measurements share the

same timestamp). The bottom pointcloud is created by compensating for the exact

Chapter 2. Background 8

timestamp of each measurement, each which has a corresponding lidar pose. The jagged

discontinuity of the bottom pointcloud at the start and end of the sensor rotation shows

the degree of distortion. The dimension of the shown square grid is 1 m, indicating

approximately 2 m of distortion between the rotation start and end.

Figure 2.3: An example simulated lidar scan of a 10 Hz lidar moving at approximately
70 km/h. The bottom pointcloud has been compensated for motion, whereas the top has
not. The motion distortion is most noticeable at the discontinuity of the start and end
of the lidar rotation (9 o’clock position). The dimension of the shown grid (blue) is 1 m,
showing approximately 2 m of distortion between the rotation start and end.

2.1.2 Imagespace

The ordering of laser measurements in a spinning-lidar can be used to represent the data

in a form similar to a camera image. We refer to this as the imagespace representation.

Each laser, ordered by its elevation angle, is an individual row of the image. The consec-

Chapter 2. Background 9

utive measurements of each laser are what becomes the entries along each row (forming

columns). The rows can be viewed as the elevation and the columns as the azimuth of

the lidar measurements.

Figure 2.4: Example imagespace representations of Velodyne HDL-64E S2 lidar data
from the publicly available dataset of Moosmann and Stiller (2013) in greyscale. The
top image is coloured by range measurements and the bottom by intensity. Darker pixels
indicate smaller values and lighter pixels indicate larger values. This example only shows
a portion of the entire horizontal FOV in order to fit the page.

Depending on the hardware configuration of a lidar sensor, consecutive measurements

of the lasers may not align perfectly with one another to form the columns of the im-

agespace. Uniform downsampling in the horizontal angular dimension may be required,

which is what Moosmann and Stiller (2013) did for their Velodyne HDL-64E S2 dataset.

They uniformly downsampled their data in the horizontal dimension to produce images-

pace representations that are 64 × 870 in dimension. Greyscale examples are shown in

Figure 2.4, where the top image has each pixel coloured by range measurements, and

the bottom by intensity measurements. Darker pixels indicate smaller values and lighter

pixels indicate larger values.

While pointclouds discard lidar measurement ordering, the imagespace representation

takes full advantage of it. One example of benefiting from measurement ordering is how

measurement neighbours in imagepsace can be used for efficient searching in Euclidean

space for point neighbours, though it is limited to the scope of a single scan. Searching

for point neighbours within a single scan is commonly done for surface normal estimation.

Chapter 2. Background 10

2.1.3 Freespace

The paths that measurements of a lidar scan trace in space define freespace. This aspect

of lidar data is often ignored as many applications focus on processing pointclouds (i.e.,

the endpoints of measurement rays).

A common way of representing freespace is by discretizing the world into occupancy

grids, or voxel grids in 3D. Raytracing algorithms, such as Bresenham’s line algorithm

(Bresenham, 1965), can associate lidar measurements into the discretized representation.

The occupancy of each grid (or voxel) can then be modelled with uncertainty (Moravec,

1988). This method is advantageous for its efficient spatial query, which is an O(1) op-

eration. Unfortunately, creating an occupancy grid is computationally expensive in both

processing and in memory, especially for lidar sensors with far range limits. Octree data

structure implementations, such as Octomap (Hornung et al., 2013) improve the mem-

ory requirements for 3D application, but the required computation is still considerable,

increasing with smaller grid resolutions.

Alternatively, the freespace of a single lidar scan can be queried efficiently by deter-

mining the nearest laser ray of the scan for each query point (3D coordinate) of interest.

From there it is a matter of checking if the scan ray goes past its corresponding query

point, which indicates that the point may lie inside the scan’s freespace. This is accom-

plished efficiently by building a search data structure (e.g., kd-tree) out of the spherical

coordinates (azimuth and elevation, excluding range) from the scan’s pointcloud (Pomer-

leau et al., 2014). The freespace can then be queried by converting the query points to

spherical coordinates in the local frame of the scan, from which each query point is then

matched to its nearest ray via a nearest neighbour search in spherical coordinates. While

this method is much more efficient than occupancy voxel grids, it assumes that the point-

clouds of lidar scans are instantaneous snapshots of the scene (i.e., no motion distortion).

The method also approximates that all measurements of the pointcloud originate from a

single point in space, the origin of the local reference frame of the pointcloud, which is

Chapter 2. Background 11

not true because each laser of the lidar can have a unique position and orientation.

2.2 Online Lidar Scan Alignment

A classic technique for aligning lidar scans is using the iterative closest point (ICP)

algorithm (Besl and McKay, 1992), a method that works well for rigid pointcloud regis-

tration. ICP handles the data association problem between two pointclouds by iteratively

re-associating data until convergence. Unfortunately, ICP assumes the pointclouds are

rigid, which is not the case for pointclouds produced from spinning-lidar scans. An alter-

native to ICP is the normal distributions transform (NDT), which instead of points, uses

combinations of normal distributions (Magnusson et al., 2007). Likewise to ICP however,

NDT does not consider the motion distortion of lidar scans. Another alternative is using

an entropy-based method, such as Renyi’s Quadratic Entropy (RQE) (Maddern et al.,

2012b), but once again, the technique was not designed to address motion distortion.

There has been work on lidar motion estimation that addresses the motion distortion

by using continuous-time representations of trajectories. Zlot and Bosse (2014) represent

their motion trajectory using splines and, similar to NDT, work with local statistical

summaries of pointclouds called surfels. The current state of the art for lidar odometry

is the work of Zhang and Singh (2014), which they call lidar odometry and mapping

(LOAM). LOAM extracts geometric features (e.g., edges and planes) from pointcloud

data to optimize a linearly-interpolated trajectory. LOAM currently ranks third in the

KITTI odometry benchmark (Geiger et al., 2013). A variation of LOAM that also uses

stereo camera data (VLOAM) (Zhang and Singh, 2015) ranks first.

A limitation to these continuous-time trajectory methods is the lack of a physically

motivated motion prior, making them susceptible to incorrect scan alignment in settings

with degenerate geometry (e.g., tunnels with few distinguishing geometric features). An-

derson and Barfoot (2015) formulate a continuous-time trajectory estimation framework

Chapter 2. Background 12

with a physically motivated, constant velocity motion prior in SE(3). We are able to use

this framework for scan alignment of motion-distorted lidar data, which we have used in

other works we have recently published (McGarey et al., 2018; Tang et al., 2018).

2.3 Existing Detection Methods

We place existing 3D lidar object detection methods into three categories: methods that

use class-specific or model-based detectors, methods that use maps, and methods that

only use the latest sequence of acquired data (live data).

Class-specific, or model-based, detectors take advantage of prior information of the

objects to be detected. Petrovskaya and Thrun (2009) model vehicles as 2D bounding

boxes, which they apply to 3D data by processing it into a 2D representation. Rather

than manually crafting models, recent work focuses on learning methods. Chen et al.

(2017), among many others (Ku et al., 2018; Zeng et al., 2018), take lidar data (some

may also use camera data) as input to a deep neural network (DNN) and output class-

specific detections at the object level in the form of bounding boxes. While this category

is proven to work well, such methods will simply not detect objects for which they have

not been trained.

Detection without prior object information is possible, which we refer to as being

model-free, by comparing current data to a reliable prior map. Given a reliable map of

the stationary world, differences from the comparison are indicative of dynamic objects.

Sometimes called change detection (Hebel et al., 2011; Underwood et al., 2013), these

methods make use of pointcloud comparisons (i.e., end-points of lidar measurements) and

freespace comparisons (i.e., paths traced by lidar measurements). Hebel et al. (2011) ray-

trace lidar data into occupancy voxel grids for their freespace representation. Occupancy

voxel grids are expensive computationally and in memory, so instead, Pomerleau et al.

(2014) query lidar freespace by matching measurements with local spherical coordinates.

Chapter 2. Background 13

The method is efficient, but assumes pointclouds are not motion distorted. Note that

while existing works that use occupancy voxel grids do not consider motion distortion,

compensation is trivial with a continuous-time trajectory.

Our interest is in methods that do not require prior information on the objects or

the setting, only making use of live data. Unfortunately, such methods are limited to

detecting objects that are moving in the current scene. Objects that are stationary, but

may be of interest (e.g., stationary cars in traffic), are not detectable.

Among live data methods are ones that only use pointcloud information. Dewan

et al. (2016a) compare subsequent pointclouds and sequentially identify motion through

a voting scheme. The first detected motion will always be the relative motion of the

stationary environment, followed by the largest dynamic objects. They directly compared

their work to Moosmann and Stiller (2013) and showed superior performance at the

object level. In another publication, Dewan et al. (2016b) produce scene flow (i.e., point-

wise velocity estimation), from which dynamic labels are trivial. However, both of their

methods are not setting-independent because they rely on removing ground points as

a pre-processing step. Live data methods are challenging because there are significant

differences between subsequent pointcloud comparisons due to viewpoint occlusions and

spatial data sparsity. In contrast, occlusions and data sparsity are not an issue when

comparing live data to a map. Removing ground points is helpful in avoiding false

detections, but it is not clear how to handle occlusions with only pointclouds.

Live data methods that use freespace handle viewpoint occlusions well. Azim and

Aycard (2012) raytrace over occupancy voxel grids and compare voxels over subsequent

scans, but only provide a qualitative analysis of their method. Postica et al. (2016) also

make comparisons with occupancy voxel grids. They present quantitative results using

short sequences from the KITTI dataset Geiger et al. (2013), for which they have man-

ually annotated with groundtruth labels, but have not made public. Notable limitations

of their work include relying on pre-processing ground points and ignoring measurements

Chapter 2. Background 14

further than 30 m, limiting their detection range.

The three categories are complementary to one another, so a combination can be

more effective. Moosmann and Stiller (2013) segment pointclouds into object proposals,

which they track over time. Consistent ones are labelled dynamic by a learned classifier.

Ushani et al. (2017) use freespace and learning to compute scene flow. Occupancy voxel

grids coarsely identify dynamic points, which are then refined by a learned classifier.

They make a planar motion assumption and limit their method to a 50 m × 50 m grid.

Dewan et al. (2017) combine their prior work on scene flow (Dewan et al., 2016b) with

a DNN to produce point labels of dynamic, static, and a third label for objects with the

potential to move (e.g., stationary cars).

The work we present in this thesis belongs to the live data category and is model-

free, labelling each point as dynamic (currently moving) or static (currently not moving).

Our detection method is unique because we compensate for motion distortion for both

pointclouds and freespace querying, which existing methods do not consider. We make

full use of the sensor range, which is often limited for methods that use freespace. Our

detection is setting independent. We do not make prior assumptions of the setting, such

as exploiting the knowledge of the gravity vector for the existence of a ground plane

(isotropic). If setting independence is not an application importance, our method can be

combined with methods from the other categories for greater performance and robustness.

2.4 Existing Datasets and Benchmarks

A lidar dataset labelled with accurate groundtruth is required to quantitatively evaluate

the dynamic object detection method presented in this thesis and compare it to existing

ones. The dataset must provide the raw motion-distorted data (e.g., not compensated

by other sensors). There should be an abundance of dynamic objects in the scene, with

ideally, accurate groundtruth labels at the point level. There should also be an abundance

Chapter 2. Background 15

of static obstruction in varying shapes for viewpoint occlusions (i.e., the setting should

not be an open field with only moving objects).

Several lidar datasets exist for the purpose of motion estimation (e.g., odometry,

localization). Some examples are the Ford Campus (Pandey et al., 2011), University of

Michigan North Campus (Carlevaris-Bianco et al., 2016), and Complex Urban (Jeong

et al., 2018) datasets. While these datasets are abundant in dynamic objects and static

obstruction, they are unfortunately not labelled with detection groundtruth. This is

often the case because annotating lidar data is a difficult and tedious manual task.

Most object detection methods evaluate against the KITTI 3D Object Detection

Evaluation benchmark (Geiger et al., 2013), where objects of specific classes (vehicles,

pedestrians, and cyclists) are annotated at the object level with bounding boxes. In this

dataset, lidar data was collected using a Velodyne HDL-64E S2. Apart from the absence

of point-level labels, a significant issue with this dataset for our use case is that only

pointcloud data is provided. The dataset is missing the raw lidar data (i.e., range and

bearing measurements) and laser calibration values (i.e., values related to laser positions

and orientations). As described in Section 2.1.1, each laser of spinning-lidar sensors

has a unique position and orientation. For computing freespace, simply computing the

spherical coordinates of a pointcloud (i.e., azimuth and elevation) in its local reference

frame is not equivalent to the true laser ray paths.

More recently, Roynard et al. (2018) made available the Paris-Lille-3D lidar dataset,

which has a Velodyne HDL-32E mounted on a vehicle driven through an urban setting.

They manually labelled their dataset at the point-level for a variety of objects, dynamic

and static. Unfortunately, similar to the KITTI dataset, they only provide processed

points and not the raw lidar data. Their pointclouds are motion compensated and mea-

surements with range greater than 20 m were removed, which is significantly lower than

the sensor’s maximum range of 100 m.

Existing work that is comparable to the work presented in this thesis either omit

Chapter 2. Background 16

quantitative results or use short sequences of manually labelled data, which they do not

make public. The lack of a suitable dataset and benchmark is a concern that needs to

be resolved. For the purpose of quantitative evaluation, we look to using simulated lidar

data. While simulated data is not an ideal replacement for real data, it is suitable as

a comparison benchmark between different methods given that there is enough fidelity

in the simulation. An example simulator is CARLA, an open-source simulator for au-

tonomous driving research (Dosovitskiy et al., 2017). We detail our efforts in generating

lidar data with accurate groundtruth using CARLA, including modifications to suite our

interests, in Chapter 4. Also discussed in Chapter 4 is the setup of our data perception

vehicle, which has mounted a Velodyne HDL-64E. We use datasets collected with this

setup for a qualitative evaluation.

2.5 Summary

In summary, this chapter describes background material related to the dynamic object

detection problem in 3D lidar data. We describe the different representations of lidar

data with examples. A brief literature review on lidar scan alignment is presented where

we highlight our ability to accomplish motion-compensated pointcloud registration with

a physically-motivated motion prior. A detailed literature review on existing detection

methods is provided, where we also distinguish the work presented in this thesis. The

chapter ends with a review on existing datasets, where we establish the lack of a suffi-

cient dataset and benchmark for evaluation and comparison of our work to others. Our

resolution to this issue is to work with simulated data for a quantitative evaluation and

real data for a qualitative evaluation.

Chapter 3

Methodology

In this chapter, we introduce our detection pipeline and describe the methodology of each

component. The general idea behind our detection is to rely on discrepancies between

subsequent lidar scans to identify dynamic objects without prior knowledge on object

types or the setting.

We begin with a brief overview of our pipeline, then discuss each pipeline compo-

nent in more detail. We introduce our lidar scan alignment algorithm that compensates

for motion distortion. We discuss trade-offs when applying comparisons between sub-

sequent lidar scans (pointclouds). We introduce a novel freespace query algorithm that

compensates for the moving-while-scanning operation of spinning-lidars. We describe an

imagespace filtering technique to reduce spurious labels. Finally, we outline our approach

to region-growing existing object detections, which we will see is a requirement to reliably

detect the entirety of dynamic objects.

From this point on, we explicitly refer to a lidar scan as the accumulation of measure-

ments over a single revolution of a spinning-lidar. In contrast, pointclouds can consist of

data from multiple lidar scans.

17

Chapter 3. Methodology 18

3.1 Pipeline Formulation

In this section, we define our dynamic object detection pipeline. A pipeline diagram is

shown in Figure 3.1, which labels points as dynamic or static on a single scan of interest,

the query scan. The sequential steps to the pipeline are explained as follows:

1. Odometry : Align the latest lidar scan to existing ones.

2. Pointcloud Comparison: Comparison of query scan against a reference. Discrepan-

cies are set to dynamic.

3. Freespace Check : Check dynamic points of query scan against freespace of other

reference scans. Points not in freespace are not dynamic and changed to static.

4. Box Filter : Apply a sliding box filter on the image representation of the query scan

for outlier rejection.

5. Region Growth: Cluster the dynamic query scan points. Add nearby points to

clusters if they satisfy conditions that indicate they are part of the same object.

The numbered steps correspond to the pipeline blocks in Figure 3.1. In the top-right

of the figure is an example diagram indicating which lidar scans are in use to compute

the detection of one query scan. The diagram indicates a gap of 4 scans between the

query and reference scans. Figure 3.2 shows a portion of a pointcloud with a moving

vehicle as it passes through the detection pipeline. The letters (a) to (d) correspond to

the letters in Figure 3.1.

C
h
a
p
t
e
r
3
.

M
e
t
h
o
d
o
l
o
g
y

19

Odometry

Latest lidar

scan

Pointcloud

Comparison

Memory

Query lidar

scan
Reference 1

Freespace

Check

(Backward)

Freespace

Check

(Forward)

Box Filter
Region

Growth

Reference 2 (Latest lidar scan)

Trajectory +

Latest lidar scan
Query lidar

scan

Latest lidar

scan
Reference 1

Query scan with

dynamic/static

labels

Query scan

with refined

labels

Query scan with final

dynamic/static labels

(Pipeline Output)

Query scan

with refined

labels

Query scan

with refined

labels

(a) (b) (c) (d)

1

2 3 3 4 5

Figure 3.1: The full detection pipeline, describing the sequence of operations on the query lidar scan, outputting the scan with
points labelled dynamic or static. A lidar odometry algorithm computes the sensor trajectory, which aligns the latest lidar.
The labels (a) to (d) correspond to the images in Figure 3.2. The numbers correspond to the enumerated steps in the text.

(a) After pointcloud comparison. (b) After freespace check. (c) After box filter. (d) After region growth.

Figure 3.2: Pointcloud examples of a vehicle throughout the detection pipeline from a Velodyne HDL-64E. Dynamic labels are
shown as red and static labels as black. Refer to the pipeline in Figure 3.1 for corresponding letters (a) to (d).

Chapter 3. Methodology 20

3.2 Lidar Trajectory and Scan Alignment

We require a scan alignment algorithm to provide metric-accurate alignment of incoming

lidar scans (i.e., the latest scan), which in consequence produces a trajectory of the

moving platform the sensor is mounted on. In other words, we require an online lidar

odometry algorithm. In this section, we provide a brief overview of a lidar odometry

algorithm that uses the continuous-time trajectory estimation framework of Anderson

and Barfoot (2015), which uses a physically motivated motion prior. We formulate the

problem as an optimization to align the latest lidar scan to existing ones.

3.2.1 Trajectory Representation and Motion Prior

Anderson and Barfoot (2015) present a continuous-time trajectory estimation framework

they refer to as simultaneous trajectory estimation and mapping (STEAM), a variation

of simultaneous localization and mapping (SLAM) that, rather than estimating for robot

states and landmarks at discrete times, outputs a continuous-time Markovian trajectory:

x(t) = {T(t),$(t)} ∈ SE(3)× R6, (3.1)

where T ∈ SE(3) is the robot pose and $ ∈ R6 is the body-centric generalized velocity.

In our use case, we are not concerned about estimating landmarks and only interested

in the trajectory. The underlying representation is still a discrete collection of robot

states,

x = {T1,0,$1,T2,0,$2, . . . ,Tk,0,$k} , F−→k = F−→v (tk) , (3.2)

where F−→v (tk) is the reference frame of the robot at time tk and F−→0 can be considered

as the world reference frame.

The estimation problem is formulated as a Gaussian Process (GP) regression (Ras-

mussen and Williams, 2006) with time as the independent variable. The physically moti-

Chapter 3. Methodology 21

vated GP prior (motion model) that Anderson and Barfoot use is a nonlinear stochastic

differential equation (SDE) of the form

Ṫ(t) = $(t)∧T(t), $̇ = w(t), w(t) ∼ GP(0,QCδ(t− t′)), (3.3)

where the process noise, w(t), is a zero-mean GP with power-spectral-density matrix,

QC , δ(t) is the Dirac delta function, and the operator ∧ turns a vector in R6 into a 4× 4

member of the Lie algebra, se(3) (see Appendix A for the definition). In other words, it

is a constant body-centric velocity motion prior.

The nonlinear SDE is approximated using a piecewise, locally linear SDE between the

discrete states for an efficient solution. We do not delve into the details of the derivation

in this thesis, but the importance of this method in our work is two-fold:

1. Binary smoothing terms between temporally adjacent states.

2. GP interpolation equations for T(t) and $(t) at any time, t.

The binary smoothing terms between temporally adjacent states at times tk and tk−1

are defined as

euk
=

 ln
(
Tk,0T

−1
k−1,0

)∨ − (tk − tk−1)$k−1

J
(

ln
(
Tk,0T

−1
k−1,0

)∨)−1

$k −$k−1

 , (3.4)

where ln(·) is the inverse of the SE(3) exponential map, J is the left Jacobian of SE(3)

and ∨ is the inverse of ∧ (see Appendix A for the definitions). These terms are weighted

with the inverse covariance expression

Q−1
k =

124t−3
k Q−1

C −64t−2
k Q−1

C

−64t−2
k Q−1

C 44t−1
k Q−1

C

 , (3.5)

where 4tk := tk − tk−1.

From the GP linear interpolation equation of Rasmussen and Williams (2006), An-

Chapter 3. Methodology 22

derson and Barfoot use their piecewise motion prior to form the following interpolation

equations:

T(τ) = exp

((
Λ1(τ)γtk−1

(tk−1) + Ω1(τ)γtk−1
(tk)
)∧)

Tk−1,0, (3.6)

$(τ) = J
(

ln
(
T(τ)T−1

k−1,0

)∨)(
Λ2(τ)γtk−1

(tk−1) + Ω2(τ)γtk−1
(tk)
)
, (3.7)

where tk−1 ≤ τ ≤ tk, exp(·) is the exponential map, Λ(τ) = [Λ1(τ) Λ2(τ)]T , Ω(τ) =

[Ω1(τ) Ω2(τ)]T , and

γtk−1
(tk−1) =

 0

$(tk−1)

 , γtk−1
(tk) =

 ln
(
Tk,0T

−1
k−1,0

)∨
J
(

ln
(
Tk,0T

−1
k−1,0

)∨)−1

$k

 . (3.8)

Definitions of the time-dependant coefficient matrices, Λ(τ) and Ω(τ), are provided in

Appendix A. Note that γtk−1
(t) is a vector representation of the trajectory local to

SE(3) transformation Tk−1,0. Anderson and Barfoot apply their piecewise prior in the

local vectorspace of each discrete state pose, which is essentially the sparse vectorspace

GP regression estimation of Barfoot et al. (2014).

The significance of the interpolation equations for the pose, T(t), and velocity, $(t),

at any time, t, is the O(1) efficiency of the operation. This is due to how Anderson and

Barfoot (2015) take advantage of the Markovian state trajectory to exploit sparsity in

the GP regression formulation, resulting in interpolation equations that only involve two

temporally adjacent discrete states.

3.2.2 Measurement Term

We define a measurement term for the scan alignment optimization based on the con-

verted 3D points (i.e., pointcloud) of lidar scans (recall that raw lidar measurements

are the range and bearing values). Although this method of data handling is ad hoc

Chapter 3. Methodology 23

compared to working with the raw data, it has proven to work well for scan alignment

algorithms and has become a standard (Pomerleau et al., 2015).

Let qi
ti
∈ R3 be the ith point from the latest scan that we wish to align, acquired at

measurement time, ti, and expressed in the time-varying robot reference frame F−→v (ti).

Assuming the data association is known, let pi
0 ∈ R3 be a point from a known reference

pointcloud that is associated to qi
ti

, expressed in the world reference frame, F−→0.

A point-to-point error term between qi
ti

and its reference, pi, for the scan alignment

optimization is defined as the euclidean distance between the two:

emi
= B


qi

ti

1

−Tti,0

pi
0

1


 , B =


1 0 0 0

0 1 0 0

0 0 1 0

 , (3.9)

where B is a constant projection matrix and Tti,0 := T(ti), which is known from the

trajectory interpolation scheme in Equation (3.6).

These error terms are weighted with an inverse covariance expression M−1
i ∈ R3×3,

which inevitably is a tuning parameter as it corresponds to a 3D point, not the raw

measurement. Alternatively, we can compute an estimate of the normal vector of the

surface that qi
0 resides on, ni, to formulate a point-to-plane error term. This is done

by weighting the error term, emi
, with M−1

i = niniT (Pomerleau et al., 2015). Surface

normals can be computed by evaluating the sample covariance of the interest point and its

neighbours (e.g., a constant radius away). The eigenvector corresponding to the smallest

eigenvalue of the sample covariance is the surface normal.

3.2.3 Single-scan Lidar Odometry

Here we formulate a single-scan alignment optimization for the latest lidar scan, which

is equivalently a lidar odometry algorithm.

Recall the discrete trajectory representation in Equation (3.1). By design choice, we

Chapter 3. Methodology 24

create a new discrete state (i.e., pose and velocity) at the latest measurement time of

the scan we wish to align. With each new lidar scan, we optimize one discrete state,

xk = {Tk,0,$k}. For the motion prior smoothing term in Equation (3.4), we use the

posterior estimate of the temporally previous discrete state, x̂k−1 =
{

T̂k−1,0, $̂k−1

}
.

The latest scan consists of m points obtained at times ti, i = 1 . . .m, where tk−1 < ti ≤

tk. We formulate the scan alignment problem as a nonlinear least squares optimization:

x̂k = arg min
xk

1

2

(
euk

(xk)TQ−1
k euk

(xk) +
m∑
i=1

emi
(xk)TM−1

k emi
(xk)

)
. (3.10)

Equation (3.10) is optimized using the Gauss-Newton algorithm. The error terms, euk

and emi
, are linearized with respect to xk using the constraint-sensitive SE(3) pertur-

bation scheme of Barfoot and Furgale (2014). Optionally, a robust cost function (i.e.,

M-estimation) can be applied to the measurement terms to eliminate sensitivity to outlier

point associations (Barfoot, 2017).

Equation (3.10) was formulated with the reference points, qi, corresponding to each

scan point, pi
tk

, as known. A simple method known to work well to solve the data

association problem is to employ the iterative nearest neighbour approach, similar to ICP.

This means we identify the nearest neighbour of each scan point, pi
tk

, in the reference

pointcloud as our reference points, qi, and optimize Equation (3.10), repeating the two

steps until convergence.

The scan alignment algorithm we present here is for a single lidar scan, optimizing

a single discrete time state, xk = {Tk,0,$k}. The discrete state is a single element of a

larger set of states that is the underlying representation of a continuous-time trajectory. It

is trivial to expand the method to more states and lidar scans, where the batch estimation

variation is what Anderson and Barfoot (2015) originally formulated. We applied our

scan alignment method in published works (McGarey et al., 2018; Tang et al., 2018).

Chapter 3. Methodology 25

3.3 Pointcloud Comparison

We compute a pointcloud comparison using the motion-compensated alignment of lidar

scans from the previous section. The pointcloud of the lidar scan of interest, the query

scan (in this case, equivalently called the query pointcloud), is compared to a reference

pointcloud. The reference pointcloud can consist of one or more lidar scans. Refer to the

lidar scan diagram in the top-right corner of Figure 3.1, where it depicts the query scan

(green triangle) and reference pointcloud consisting of one scan (blue triangle) in the past.

The reference pointcloud consists of scans from slightly different periods of time compared

to the query, so dynamic objects will cause discrepancies in the comparison. This is

the basis of how we achieve a model-free and setting-independant detection method,

where the pointcloud comparison will give the initial classification between the static

and dynamic labels. Note that the query scan is not necessarily the latest scan (i.e., the

most recent aligned scan).

Given the metrically aligned query pointcloud and reference pointcloud, the point-

cloud comparison algorithm is as follows:

1. Step through all query points.

2. Determine the nearest neighbour of the current query point in the reference point-

cloud.

3. Compute the error metric between the query and reference points.

• If the error metric is greater than a threshold, λerror, label the query point as

dynamic.

• Otherwise, label the query point as static.

The rest of this section defines how we compute the error metric and discusses trade-

offs that must be taken into account. These trade-offs involve choosing the appropriate

scan gap between the query pointcloud and reference, selecting the number of scans to

Chapter 3. Methodology 26

include in the reference pointcloud, deciding on the error metric type, and pointcloud

comparisons to previous and/or later scans. We end this section with a discussion on the

limitation of pointcloud comparisons for detecting dynamic objects.

3.3.1 Error Metric

Identifying discrepancies when comparing pointclouds is accomplished by using similar

measurement error metrics (i.e., point-to-point and point-to-plane) used for the scan

alignment problem in Section 3.2.2. If the query pointcloud matches well with its ref-

erence pointcloud, the residual error after alignment should be low (i.e., near zero).

Portions of the pointcloud with high error are indicative of a discrepancy, which may

have been caused by a dynamic object. The error metric is computed for all points of

the query pointcloud.

We use a point-to-plane metric when points have sufficient neighbours to compute

surface normals. Otherwise, we use a point-to-point metric. All points are transformed to

F−→0 using our continuous-time trajectory, allowing us to work with motion-compensated

pointclouds. Given a query point, q0, its unit surface normal, nq, and its nearest reference

scan neighbour, p0, the point-to-plane metric is |nq ·(p0 − q0)|. The point-to-point metric

is ‖p0 − q0‖2.

As mentioned previously, we expect static points to have low error because there

should be a corresponding reference point of the same surface observation. We expect

high error from dynamic points since they are observations of moving surfaces (i.e.,

discrepancies). We take a constant scalar error threshold, λerror. Error metrics greater

than the λerror are labelled dynamic, otherwise they are labelled static. Figure 3.3 shows

an example outcome of a pointcloud comparison before taking the error threshold. The

shown pointcloud is a query pointcloud where each point is coloured from black (low error)

to red (high error) according to its scalar error metric against a reference pointcloud (not

shown).

Chapter 3. Methodology 27

Figure 3.3: Example query pointcloud from simulated data, where each point is coloured
by its pointcloud comparison error metric. Black indicates low error and red indicates
high error. Notice the difficulty in discerning the dynamic objects as many parts of the
static scene also have high error.

3.3.2 Comparison Trade-offs

There are various trade-offs to consider, such as parameter selection, when implementing

the pointcloud comparison method. We discuss these trade-offs in this subsection.

Error Threshold

The error threshold, λerror, is the parameter that determines whether a point will be

labelled as static or dynamic during the pointcloud comparison. Fortunately, this pa-

rameter has a realworld meaning, as the error metric is the metric distance of a given

point to its reference point or surface.

In an ideal scenario, λerror should simply have a value of 0 so that all points with

non-zero error are considered dynamic (recall that errors greater than λerror are labelled

dynamic). Realistically, we have to account for sensor resolution (i.e., the discretization

of the realworld by the sensor) and noise. The source of noise for lidars is primarily from

range measurements. The encoder measurements of commercially available spinning-

Chapter 3. Methodology 28

lidars, which determine the orientation of the lasers, are accurate enough to be negligible.

Therefore we must account for sensor resolution and noise by setting λerror to be a non-

zero, small value.

As the basis of our detection method is identifying discrepancies between subsequent

lidar scans, the pointcloud comparison step is relatively significant compared to other

parts of the detection pipeline (not yet discussed). For quantitatively evaluating our

detection method, we found varying the value of λerror to generate precision-recall curves

against groundtruth labels to be an effective way to evaluate our overall performance.

For realworld application, we can then refer to the precision-recall curves to select a

desirable λerror. In practice, a lower λerror has more false detections. In contrast, a higher

λerror has more missed detections (i.e., dynamic points mislabelled as static). For more

detail, see Chapter 5 for the experimental results and discussion.

There are also external sources that affect measurements, such as adverse weather

conditions (e.g., precipitation or dust storms), but are much more challenging to handle

than sensor noise. We choose to treat these cases as outliers and handle them during a

later step of the pipeline for outlier filtering.

Scan Gap

The scan gap, ngap, is the number of lidar scans between the query scan and the tempo-

rally closest scan in the reference pointcloud. Recall the example lidar scan diagram in

the top-right of Figure 3.1, where ngap is 4. Ideally, ngap is chosen such that the entirety

of a dynamic object will be detected as high error points. In other words, we require

an appropriate value for ngap to ensure dynamic objects sufficiently displace between the

reference and query pointclouds.

However, consider how the object geometry (shape and size) and speed are not known

quantities. Figure 3.4 shows a top-down 1D scenario of two objects (object 1 and 2)

passing by. The size of ngap is proportional to the displacement between each object’s

Chapter 3. Methodology 29

new and previous positions. If ngap is chosen that is too small (middle row of figure), the

result is a situation where the objects spatially overlap themselves from a previous scan.

The overlap is indicated by the red double-sided arrows. This overlap will result in only

the front portions of the two objects labelled as dynamic from the comparison.

The obvious solution is to increase ngap, shown in the bottom row of Figure 3.4.

Unfortunately, setting a scan gap that is too large may cause overlap between different

objects. In the figure we see now that object 2 in the query pointcloud is overlapping

object 1 in the reference pointcloud.

Object 2 Object 1

6 m/s6 m/s

Object 2 Object 1

Object 2 Object 1

Small scan gap

(small displacement)

Large scan gap

(large displacement)

Displacement

Time

Query pointcloud

Overlap

No overlap

Figure 3.4: 1D scenario of two objects moving toward the right. A pointcloud comparison
with a small scan gap will not yield the entirety of the objects because they spatially
overlap themselves. Contrarily, a scan gap that is too large is also not desirable. In this
case, object 2 in the query pointcloud overlaps with object 1 in the reference pointcloud.

As the geometry and speed of objects are not known quantities, it is impossible to

guarantee that the entirety of all objects will be detected. We instead focus on selecting

ngap by defining a minimum detection speed to at least partially label dynamic objects.

The portions of objects that are not labelled dynamic due to spatial overlap will be

recovered in a later part of the detection pipeline. Referring back to Figure 3.4, we prefer

the small scan gap scenario (middle row) over the large scan gap scenario (bottom row).

The minimum detection speed is taken into account by considering the combination of

lidar spinrate, ngap, and λerror. For example, a lidar spinrate of 10 Hz, ngap of 0, and

λerror of 0.5 m will not be able to detect objects with a speed less than 5 m/s.

Chapter 3. Methodology 30

Past Scans vs. Later Scans

We consider the options of comparing the query pointcloud to a reference pointcloud

consisting of past scans, later scans, or both. Ideally, we want the latest lidar scan to

be the query pointcloud and compare it to past ones since this will be the configuration

with the least amount of detection latency. We must verify that comparing to later scans

has no additional benefit in detection performance.

Figure 3.5 shows a top-down 1D scenario of an object moving to the right. There

are three consecutive scans of the object, where we treat the second scan as the query.

Comparing to only the past scan, the detection product (i.e., the object portion labelled

dynamic) is the front portion of the object and just the back side. Comparing to only

the later scan, the detection product is the back portion of the object and just the front

side. Comparing to the composition of the past and later scans results in just the front

and back sides, with a middle portion depending on the scan gap.

Object

6 m/s

Past scan

reference

Later scan

reference

Query

pointcloud

Composite

reference

Dynamic label outputQuery and reference pointcloud options (each row)

Displacement

Figure 3.5: 1D scenario showing the options of comparing the query scan to a reference
pointcloud consisting of a past scan, later scan, or both. Comparing to a past scan and
later scan individually is desirable as they identify different parts of the object, but it is
not clear how to take advantage of it. Comparing to the composite reference yields no
benefit.

Comparing to the composite pointcloud clearly provides no benefit. We see that

Chapter 3. Methodology 31

comparing to both past and later scans individually may be desirable as they can identify

different portions of the dynamic object. However, it is unclear how to associate the

different portions identified to belong to the same object as they can be disconnected

with a larger scan gap. A factor this simple example does not take into account is the

large amount of the static scene that will be mislabelled dynamic due to spatial sparsity of

the points and viewpoint occlusion (recall Figure 3.3, which is a comparison to a single

reference scan). Additionally computing the comparison to another scan will equally

introduce even more mislabelled points.

Therefore we choose to only compare the query scan to a reference pointcloud consist-

ing of past lidar scans. Additionally comparing to later scans will be more detrimental

(more mislabelled points) than beneficial (identify missing object portions), and intro-

duce more latency to the overall detection.

Number of Reference Scans

We established in the previous trade-off discussion that it is desirable to construct a ref-

erence pointcloud consisting of past lidar scans. Here we discuss the trade-off associated

with selecting the number of scans to construct the reference pointcloud. We set the

number of scans as a tunable parameter, nscans.

Due to the lidar sensor resolution, the produced data is inevitably a discretization of

the realworld. Lidar points on surfaces further away or ones that make contact at an

angle will be spread-out more from their respective neighbour points, compared to points

on closer perpendicular surfaces. Notice in the shown pointcloud examples that points on

the ground form concentric circles around the lidar. The gap between each consecutive

circle is larger at further distances.

The top image of Figure 3.6 shows an example query pointcloud coloured by the

error metric in the same way as the previous Figure 3.3 (black is low error, red is high

error), using a reference pointcloud consisting of a single past scan. Notice the large

Chapter 3. Methodology 32

Figure 3.6: The top image is of a pointcloud coloured by the error metric (similar to
Figure 3.3) using a reference pointcloud consisting of a single scan. Black indicates
low error and red indicates high error. The bottom image is the same pointcloud, but
compared to a reference pointcloud consisting of three scans.

number of high error points on static surfaces. This is the limitation of a single lidar

scan. The bottom image of Figure 3.6 shows the same query pointcloud, but with a

reference pointcloud consisting of three past scans. At the cost of computation by using

more scans, there is a noticeable reduction in the number of static points with high error.

Chapter 3. Methodology 33

There is also a limit to consider when increasing nscans. Similar to how increasing the

scan gap, ngap, by too much is detrimental, we run the risk of dynamic objects in the

query pointcloud spatially overlapping with objects in the past if scans too far back in

the past are included. This can easily occur in driving scenarios due to high traffic. We

must consider the maximum speed of objects to ensure these overlaps do not occur.

Point-to-Point vs. Point-to-Plane

As mentioned in the discussion on the number of reference scans, a pointcloud of a single

scan will be sparse on oblique and far-away surfaces. In these cases, the point-to-point

error metric will yield high values even if the query point and its reference are truly of

the same static surface. If there are enough neighbouring points to compute a surface

normal estimate, the point-to-plane error will be more robust to this issue.

Using the point-to-plane error metric, which is the preferable metric of the two,

comes at the cost of computing surface normals. Surface normals can be computed

efficiently with a fast nearest neighbour search and eigendecomposition method, but the

computation adds up when each lidar scan consists of a large number of points (e.g.,

more than 100000).

Surface normals of pointclouds are in general useful for pointcloud-based applications.

So far, we described their use in scan alignment (Section 3.2) and pointcloud comparison

(Section 3.3). We will later describe their purpose in our region growth method. Mul-

tiple methods making use of surface normals makes them more worthwhile to compute.

Therefore we choose to use the point-to-plane metric whenever possible (i.e., there are

sufficient neighbours to compute a surface normal).

3.3.3 Comparison Limitations

The most apparent limitation for live data pointcloud comparisons as a tool for dynamic

object detection is how the objects must be moving in the query scan for it to be detected.

Chapter 3. Methodology 34

If a dynamic object comes to a stop (i.e., it momentarily becomes static), it will no longer

be detected. However, we believe this to be a necessary compromise for model-free,

setting-independent detection.

Another limitation is the inherent latency from working with only a window of latest

lidar scans, meaning objects must sufficiently displace before they can be detected. Con-

sider the time period where objects transition from a static to dynamic state. There will

be latency in detecting the discrepancy, proportional to the scan gap, ngap. Transitions in

the opposite way (i.e., dynamic to static) will also have latency, but mislabelling points

as dynamic for a couple extra time instances is not as severe of a mistake compared to a

delayed detection of dynamic points.

Finally, we see through qualitative examples (Figure 3.3 and 3.6) that pointcloud

comparisons alone are not enough for good detection performance. The lidar moving

on a vehicle or robot causes new surface observations and viewpoint occlusions, which

causes high error for many points on static surfaces. The number of points mislabelled

dynamic is therefore, unfortunately, significant. It is not obvious how these mislabels can

be reduced from pointcloud operations alone. Instead, we will next introduce freespace

checking which is able to correct these mislabels.

3.4 Freespace Check

We define freespacing checking as querying whether all points of a query lidar scan are

inside, on the border of, or outside the freespace of a reference lidar scan. Recall that a

lidar sensor gives freespace information from the paths traced by its laser measurements.

The previous section on pointcloud comparisons shows a good initial step in identifying

discrepancies between subsequent lidar scans, which are indicative of dynamic objects.

Unfortunately, pointcloud comparisons will label a large number of points on static sur-

faces as dynamic (high error) due to limited sensor resolution, new surface observations,

Chapter 3. Methodology 35

and viewpoint occlusions (recall Figure 3.3 and 3.6). We rely on checking against the

freespace of lidar scans to correct these mislabels.

Figure 3.7 shows a 2D example scenario depicting data from two positions of a lidar

(circles) and two positions of a dynamic object (rectangles). The block structure in grey

is static. In this example we treat data from position 1 as the query, where the stars are

a coarse representation of the query pointcloud. The space shaded in green indicates the

freespace of the scan from position 2. Computing a pointcloud comparison by setting

the lidar position 2 scan as the reference results in dynamic (high error red stars) and

static (low error black stars) labels. Dynamic points of the static structure, which are

mislabels, are not within the shown freespace, but rather are on the freespace boundary.

However, dynamic points belonging to the dynamic object (object position 1), which are

correct labels, are within the freespace.

Lidar
position 1

Lidar
position 2

Object
position 1

Object
position 2

Low error
High error

Figure 3.7: 2D lidar example showing data from two positions of a lidar (circles) and two
positions of a dynamic object (rectangles). The stars are a coarse representation of the
lidar points from lidar position 1. The shaded area in green indicates freespace of the scan
from lidar position 2. A pointcloud comparison labels high error points as dynamic (red)
and low error points as static (black). We see that the mislabelled dynamic points, those
that are on the static (grey) structure, are not within the depicted freespace. Correctly
labelled dynamic points, those on the dynamic object, are within the freespace.

Chapter 3. Methodology 36

Our simple example demonstrates the use case of freespace in labelling points. If a

query point is determined to be inside the reference freespace, it is of a dynamic object

(i.e., some surface exists in a particular location at the time of the query scan, but not the

same location in the reference scan). Points determined to be on the border of freespace

are likely of static objects. For points determined to be outside the reference freespace,

we cannot establish whether they are static or dynamic. In this event, we may have to

query the freespace of another reference scan.

An important observation is that there is an overlap between pointcloud comparisons

and checking against freespace. A pointcloud comparison can be considered as an efficient

way of completing a freespace border check. Therefore we can reduce computation by

pipelining freespace queries after the pointcloud comparison, only checking points labelled

dynamic against freespace.

Figure 3.8 shows the same query pointcloud of Figure 3.6, but after completing the

freespace check. Note that instead of a colour gradient between black and red, we now

show a binary label of static (black) or dynamic (red). The result is a significant im-

provement over what was shown earlier from just a pointcloud comparison. Indicated

with circles are areas that need improvement, but are beyond the scope of the freespace

check. The rest of this section describes the freespace query algorithm. We end this

section with a discussion on the need for using two freespace references for each query

scan, where one is of a past scan, and the other, unfortunately, has to be of a later scan.

3.4.1 Freespace Query Algorithm

Given a query point and reference scan that defines the freespace of interest, we wish to

determine if the query point is inside, on the border of, or outside freespace. Recall that

the spinning lidar continuously sweeps lasers about an axis for a 360◦ FOV. The laser ray

paths, from the sensor to their endpoints, define freespace. We design our freespace query

algorithm specifically for a single lidar configuration that has its lasers approximately

Chapter 3. Methodology 37

Figure 3.8: An example query pointcloud (the same as in Figure 3.6) after completing
the freespace check. Here the points are labelled static (black) or dynamic (red). The
labelling of this pointcloud is a significant improvement over just relying on the point-
cloud comparison. However, there is still room for improvement beyond the scope of the
freespace check. Circled in green are noticeable areas with points mislabelled dynamic.
Circled in red are dynamic objects that are not completed labelled dynamic.

radiating outward vertically (i.e., along the sweeping axis). This is important because

we exploit the elevation order of the lasers to speed up our freespace query.

Representing freespace in its entirety is possible, but is expensive in computation and

memory (e.g., occupancy voxel grids). Instead, we only determine the reference scan

measurement ray that has a direction that passes nearest to the query point in question

(i.e., smallest point-to-line distance). Consider the query point surface plane and the

identified reference scan ray – there are three cases (refer to illustration in Figure 3.9):

• Case 1: Ray intersects the surface plane.

• Case 2: Ray lies on the surface plane.

• Case 3: Ray does not reach the surface plane.

Case 1 means the surface plane is absent during the time period of the reference scan,

Chapter 3. Methodology 38

which is possible if the query point is an observation of a moving surface and is inside

freespace. Case 2 means the measurement is likely an observation of the same surface

plane (freespace border). Finally, Case 3 means another surface obstructed the measure-

ment (outside freespace).

Lidar

Query point
surface plane

Case 2Case 3 Case 1

Nearest reference ray
Possible ray endpoint

Figure 3.9: An illustration depicting the three cases for freespace querying. The blue
rectangle represents the query point surface plane. Case 1 has the nearest reference ray
intersect the plane, indicating the query point is inside the reference freespace. Case 2
has the reference point lie on the surface plane (to some margin), indicating the query
point is on the boundary of the reference freespace. Case 3 has the reference ray not
reach the surface plane, indicating the query point is outside the reference freespace.

Pomerleau et al. (2014) also use a nearest-ray strategy by constructing a kd-tree of

spherical coordinates of the reference scan, which they can efficiently search for each

query point after converting it as well to spherical coordinates. However, this method

requires the assumption that their pointclouds are instantaneous snapshots (i.e., ideal

pointcloud assumption) of the scene and that all measurement rays originate from a

single point in space (i.e., local frame origin). Instead, we compensate for the sensor

platform motion by using our continuous-time trajectory of the moving sensor, Tv,0(t),

where we define a time-varying vehicle reference frame, F−→v. Tv,0(t) is evaluated using

the GP interpolation in Equation (3.6).

We assume a total of L lasers rotate together at constant speed, ω. Each laser, `,

is indexed in order of increasing elevation and has a unique pose with respect to the

sensor hub (i.e., the continuously rotating base), F−→h, defined by the transformation

Chapter 3. Methodology 39

T`,h ∈ SE(3).

Given a query point, q0, we formulate for each laser, `, the point-to-line distance as

a continuous function of time:

‖e` (t) ‖2 =

∥∥∥∥∥∥∥DT`,hTh,v (t) Tv,0 (t)

q0

1


∥∥∥∥∥∥∥

2

. (3.11)

We introduce

Th,v (t) =

Rz(ωt) 0

0T 1

 ∈ SE(3), D =


0 0 0 0

0 1 0 0

0 0 1 0

 ,

where we assume the rotation of F−→h with respect to F−→v as a rotation at constant angular

speed, Rz(ωt) ∈ SO(3), at rotation speed ω. Note that we purposely define F−→v to be

equivalent to the sensor base frame, F−→b (recall Section 2.1.1). We also define F−→v such

that there is no translation between F−→h and F−→v, and F−→h rotates about the z-axis of

F−→v. We define F−→` such that the laser points along the x-axis. See Figure 3.10 for a

visualization.

Ray

Figure 3.10: A visualization of the point-to-line distance in Equation (3.11). Tv,0 is the
sensor trajectory, Th,v is the spinning lidar rotation, and T`,h is the unique pose for laser
`. We require the time, t, and laser, `, combination that minimizes ‖e`(t)‖2.

Chapter 3. Methodology 40

We require t∗ and `∗ that minimize ‖e` (t) ‖2. Unfortunately, ` is discrete. We min-

imize ‖e` (t) ‖2 iteratively by selecting ` (i.e., our best guess) and solving for t using

nonlinear least squares optimization:

t = arg min
t

1

2
e`(t)

Te`(t). (3.12)

We iterate by exploiting laser elevation order. We first solve Equation (3.12) using

initial guesses for t and `, the laser neighbour above it, ` + 1, and below it, ` − 1. If

a neighbour optimizes to a smaller ‖e` (t) ‖2, we iteratively search along that direction

by single laser increments, re-solving Equation (3.12) and comparing optimized ‖e` (t) ‖2

values. The iteration stops once ‖e` (t) ‖2 no longer decreases or we run out of neighbours.

Our iterative method relies on a good initial condition for t and `, which we select by

using the ideal pointcloud method of Pomerleau et al. (2014). We experimentally verified

this initialization choice always converges.

As the optimization in Equation (3.12) is nonlinear, we also require iteration to solve

for t. We solve Equation (3.12) using Gauss-Newton by linearizing e`(t) with respect to

t:

e`(t) ≈ ē`(t) + E`δt, (3.13)

where δt is the time perturbation, ē`(t) is the nominal term, and

E` =
de`(t)
dt

= DT`,h

(
Ṫh,vTv,0 + Th,vṪv,0

)q0

1

 . (3.14)

This time derivative, E`, has an exact expression since we know the time derivative of an

SE(3) transformation (Barfoot, 2017) to be

Ṫ = $∧T, (3.15)

Chapter 3. Methodology 41

where $ is the generalized velocity of T.

We substitute Equation (3.14) into Equation (3.12), differentiate the cost function

with respect to δt, set the derivative expression to 0, and solve for δt. This procedure

results in the ith time update

t(i) ← t(i−1) −
[(

ET
` E`

)−1 ET
` e`(t)

]∣∣∣
t=t(i−1)

, (3.16)

which we iterate until convergence.

Given t∗ and `∗, the reference scan ray (i.e., the ray closest to the query point) is

the measurement of laser `∗ with the closest measurement time to t∗. Adhering to the

three possible cases, we check for an intersection between the ray and surface plane of the

query point. This is easily done by computing the point-to-plane error metric of Section

3.3 with the ray endpoint for a freespace border test. Otherwise, the query point is inside

or outside freespace depending on which side of its surface the endpoint resides in.

3.4.2 Freespace Reference Scans

Just as in the pointcloud comparison, we ideally only require a freespace check against

a single past lidar scan. Unfortunately, dynamic objects moving away from the sensor

will never be within the freespace of a previous scan. In order to detect such dynamic

objects, we require an additional freespace check against a later lidar scan, where the

points of objects moving away will clearly be within the later scan’s freespace. This is

a common occurrence in driving scenarios, consider for example vehicles driving ahead

of the sensor in the same direction. Unfortunately, by using a later scan as a freespace

reference, we introduce latency to the overall detection.

Recall the discussion regarding the scan gap, ngap, in Section 3.3.2 on pointcloud

comparisons. The same trade-off applies here, where we require a sufficient gap between

the query and reference scans. Therefore it is logical to use the same ngap parameter

Chapter 3. Methodology 42

value for determining the freespace reference scans. However, dynamic objects moving

away from the sensor will likely have surface geometry perpendicular to the movement

direction. Surface geometry perpendicular to the movement direction is not susceptible

to the spatial overlapping issue we saw in Section 3.3.2. From this observation, we

understand that a scan gap is not required between the query scan and the later reference

scan, and only for the past reference scan, minimizing the added latency.

Another important aspect is how only query points identified as outside the freespace

of the past reference scan need to be queried against the later reference scan. This

significantly reduces the required computation.

3.5 Box Filter

Our freespace check eliminates the majority of the mislabelled dynamic points from the

pointcloud comparison, but is susceptible to mistakes because of finite lidar resolution.

Consider how adjacent laser rays diverge from one another as they extend further away

from the sensor. Determining freespace accurately at further ranges is more difficult,

causing our freespace check method to leave sparse traces of mislabelled dynamic points.

Now recall the imagespace representation of lidar data described in Section 2.1.2. We

can arrange the query scan measurements into its imagespace representation, but with

values according to their detection label. We set cell values of 1 for dynamic labels and

0 for static labels. The left image in Figure 3.11 shows a portion of the horizontal FOV

of a query scan (full vertical FOV) with detection labels after the pointcloud comparison

and freespace check. This was completed using simulated data with known ground truth,

so we are able to label correct dynamic labels as green and the incorrect dynamic labels

as red. White cells indicate static labels.

Notice the sparse traces of incorrect labels (red) and how they form horizontal lines.

The occurrence of the horizontal pattern is due to how this specific lidar has a lower

Chapter 3. Methodology 43

vertical resolution compared to the horizontal. This is a trait of most, if not all, spinning-

lidars with 360◦ horizontal FOV, causing points to be more spread out spatially along

the vertical imagespace axis than horizontal (i.e., higher horizontal resolution).

We filter the points mislabelled dynamic by sliding a box filter throughout the image.

We use a filter with a horizontal pattern, for example:


0 0 0 0

1 1 1 1

0 0 0 0

 .

We apply our filter with a pixelwise XNOR (exclusive logical NOR) operation. The

sum of all XNOR operations is a numerical score. Scores greater than a constant score

threshold, λfilter, are considered outliers. λfilter and the dimensions of the filter are tunable

parameters that depend on the lidar’s specifications (e.g. measurement resolution). The

result of applying the filter to the example image on the left of Figure 3.11 is shown in

the image on the right.

Figure 3.11: We apply a box filter with a horizontal pattern to a query scan’s image
representation to remove mislabelled dynamic points (red) while maintaining correct
ones (green). We show a before (left) and after (right) example.

The box filter relies on the sparsity pattern of the mislabelled dynamic points. This

means it will not be as effective if applied directly after the pointcloud comparison because

there are too many points mislabelled dynamic (refer back to Figure 3.3 and 3.6).

Chapter 3. Methodology 44

3.6 Clustering and Region Growth

Recall Section 3.3.2 where we discussed the necessary scan gap, ngap, between the query

scan and its reference. We established that it is not possible to guarantee that the

pointcloud comparison, and consequently the freespace check, will identify the entirety

of dynamic objects due to spatial overlap. This is because the speed and geometry of

dynamic objects are not known quantities, making it impossible to select the necessary

ngap. We see this issue in Figure 3.8, where only the front portions of dynamic objects

are labelled dynamic (red).

In this section, we describe a region growing method to regain dynamic points that

were incorrectly labelled as static during the pointcloud comparison and freespace check.

We first cluster the current dynamic query points into object clusters, to which we then

apply region growth.

For clustering, we use the 3D pointcloud clustering method presented by Klassing

et al. (2008). A radially bounded nearest neighbour strategy incrementally groups dy-

namic points into clusters. Points neighbours, as we are only concerned with points

within a single scan, are efficiently found by exploiting the point ordering of the scan’s

imagespace representation.

The clustering algorithm is only applied to points labelled dynamic, and is briefly

described by the following steps:

1. Step through all dynamic points.

2. If the current point is assigned to a cluster, continue to the next point.

3. For the current point that is not part of an existing cluster:

• Find all neighbours within a set radial bound, rneigh.

• If any neighbours belong to a cluster, assign the current point and all other

neighbours without a cluster to the same cluster.

Chapter 3. Methodology 45

• If there exists neighbours belonging to different clusters, merge all the clusters.

After clustering, we are left with a set of clusters that are dynamic objects. These

objects may only have a portion of its entirety labelled dynamic and thus require region

growth to correct the neighbouring points that are mislabelled static.

We make the assumption that all objects are rigid and are made up of locally convex

surfaces (i.e., smooth surfaces curve outward or adjacent flat surfaces form obtuse outer

angles). We use a criterion presented by Moosmann et al. (2009) called the local convexity

criterion, for which they applied to a pointcloud segmentation algorithm. Given two

points p1 and p2, with unit surface normals n1 and n2, the two points are of convex

surfaces if the following two conditions are both true:

n1 · (p2 − p1) ≤ 0, n2 · (p1 − p2) ≤ 0.

We grow each cluster by iteratively testing neighbouring measurements for paral-

lelism or convexity, indicating they are part of the same surface, until none are found.

Neighbours are identified using the same method as the clustering algorithm (i.e., points

within a radial bound, rneigh). Parallelism is tested by simply taking the dot product of

neighbouring surface normal vectors and taking a constant threshold. The two surface

normals, n1 and n2, are parallel if the following condition is true:

n1 · n2 > λparallel, 0 ≤ λparallel ≤ 1.

The region growing algorithm is similar to the clustering algorithm with the addition

of a first-in-first-out queue. We also now consider all points, not just the ones labelled

dynamic. The algorithm is described by the following steps for each cluster:

1. Queue all points of the cluster.

2. For the next point in the queue:

Chapter 3. Methodology 46

• Find all neighbours that do not belong to a cluster within a set radial bound,

rneigh.

• Check each neighbour for parallelism or convexity. Add the neighbour to the

cluster if conditions are met.

• Add to the queue all new cluster points .

Figure 3.12 shows the same query pointcloud example of Figures 3.6 and 3.8 after

applying region growth. Points previously dynamic are red, and dynamic points from

the result of region growth are green. Where previously we had only the front portions of

the objects labelled dynamic, our region growth method is able to recover the mislabeled

static portions as dynamic.

Figure 3.12: An example query pointcloud (the same as in Figures 3.6 and 3.8) after
completing region growth. As before, the points are labelled black for static or red for
dynamic. The green points are the result of region growth. Portions of dynamic objects
previously mislabelled as static are successfully recovered.

Chapter 3. Methodology 47

3.7 Summary

In summary, this chapter was an extensive look into the methodology behind the detection

pipeline and its individual components. We presented a scan alignment algorithm that

compensates for the exact measurement times of lidar data to align the latest lidar scan

and also produces a continuous-time trajectory. We compute an initial label for all query

points by completing a pointcloud comparison with error metrics familiar to the scan

alignment problem. We correct for dynamic mislabels by checking them against the

freespace of other scans, which we accomplish with a novel freespace querying algorithm

that uses the continuous-time trajectory output from the scan alignment. We additionally

correct for dynamic mislabels using a box filter on the imagespace representation of

the query scan, which we designed by exploiting the sensor scanning characteristics.

Finally, we describe a region growth method that can improve detection in cases where

the previous components do not label dynamic objects in their entirety. Where this

chapter only presents qualitative examples, we show in Chapter 5 quantitative analyses

of the different components and the full detection pipeline.

Chapter 4

Datasets and Benchmark

In this chapter we present the lidar datasets we have collected to evaluate our dynamic

object detection method. We begin with describing the realworld dataset collected using

a Velodyne HDL-64E lidar sensor, which unfortunately does not have groundtruth labels.

In order to produce a quantitative analysis, we collect lidar data using CARLA (Dosovit-

skiy et al., 2017), an open-source simulator for autonomous driving research. We present

the details behind the simulated dataset, including modifications to the simulator and

explain the benchmark that we establish with it.

4.1 Realworld Dataset

To collect a realworld dataset, we operated a perception vehicle belonging to Autonomous

Space Robotics Lab (ASRL). A suite of sensors is mounted onto the vehicle, which in-

cludes a Velodyne HDL-64E, a front-facing Bumblebee2 stereo camera, and an Applanix

POS-LV inertial navigation system. The POS-LV system includes an inertial measure-

ment unit (IMU), a global positioning system (GPS) receiver antenna, and a wheel en-

coder on the left-side rear wheel. For the work presented in this thesis, we only make use

of the Velodyne HDL-64E lidar sensor. Figure 4.1 shows an image of the vehicle, with a

close-up of the roof rack in the top-left corner.

48

Chapter 4. Datasets and Benchmark 49

Figure 4.1: The ASRL perception vehicle, a Buick Encore. It is equipped with a suite
of sensors, including a Velodyne HDL-64E, Bumblebee2 stereo camera, and an Applanix
POS-LV system. The top-left corner image is a closer look at the roof rack.

We collected data by driving the vehicle in Richmond Hill, Ontario. This includes

residential areas, larger and busier roads on major streets, and highways. A total of 60.4

km of data was collected. Lidar data was logged at 10 Hz, where each scan is a single

revolution.

4.2 Simulated Dataset

A qualitative analysis of a detection method requires accurate groundtruth labels. Since

manually labelling data is a tedious and intensive task, we rely on simulated data. This

section discusses the simulator we chose, CARLA (Dosovitskiy et al., 2017), and the

benchmark we establish using the collected data.

Chapter 4. Datasets and Benchmark 50

4.2.1 Simulator

CARLA is an open-source simulator for autonomous driving research (Dosovitskiy et al.,

2017). The implementation of the simulator is an open-source layer over Unreal En-

gine 4, a video game engine developed by Epic Games. Two urban maps are pro-

vided with 2.9 km (Town 1) and 1.9 km (Town 2) of drivable roads. We currently

made 5 min sequences from each map, which we plan on expanding in the near fu-

ture. Visit http://asrl.utias.utoronto.ca/datasets/mdlidar/index.html for more detail

about the dataset and download links.

We made modifications to the CARLA source code to produce datasets matching

a real Velodyne HDL-64E (e.g., laser positions and orientations). Notice the jagged

pattern of the lidar measurements where the scan starts and stops in Figure 4.2. We

capture motion distortion by making each laser take a measurement once every simulation

step, resulting in 128000 measurements with a maximum range of 120 m at a frequency

of 10 Hz. This means we simulate with an extremely small discrete timestep (0.05

milliseconds). While this is too computationally expensive for a real-time simulator, we

only need to collect an offline dataset. See an example pointcloud in Figure 4.2, which

also has a corresponding image from a simulated camera in the bottom-right corner.

Key points that highlight our configuration of CARLA are as follows:

• We used CARLA version 0.7.1.

• All vehicles, including the sensor vehicle, are driven with the provided autopilot

implementation.

• There are 90 other vehicles driving in the roads of Town 1.

• There are 60 other vehicles driving in the roads of Town 2.

As with any simulation, there are notable limitations. Currently there are only vehi-

cles (i.e., no pedestrians or cyclists). This has been revised in later versions of CARLA

Chapter 4. Datasets and Benchmark 51

Figure 4.2: Example image and pointcloud pair from the CARLA simulator. The image
is from a simulated camera sensor mounted at the front of the sensor vehicle. The
pointcloud is the product of a lidar sensor mounted on top of the vehicle.

and we intend on updating our dataset in the near future. Unfortunately, dynamic ob-

jects use primitive collision geometry, which is what the simulated lidar rays observe. For

example, the vehicles in Figure 4.2 are rendered with detail in the image (bottom-left),

but the corresponding pointcloud is made of rectangular boxes and spheres. Objects

introduced in recent updates to CARLA, such as pedestrians, are ellipsoidal blobs, so

they do not justify immediate priority in updating our dataset.

Another limitation is the lack of intensity measurements. Simulating intensity is

potentially possible considering the simulator has information on surface material and

geometry is known, but implementation will require substantial work.

Finally, the driving simulation only consists of roads with two lanes and at-most

three-way intersections. There are no four-way intersections, which is more complicated

to implement as it requires more sophisticated traffic rules.

Overall, CARLA provides an urban driving simulation that we believe to have enough

fidelity in scene detail to be used as a comparison for benchmarking detection methods.

Consider the example pointcloud in Figure 4.2, which has scene detail from large buildings

Chapter 4. Datasets and Benchmark 52

to more small-scale detail such as water fountains, fire hydrants, and traffic signs.

4.2.2 Benchmark

We establish a benchmark using simulated data by defining a groundtruth label threshold

and comparison metrics based on precision and recall. For groundtruth, points moving

faster than 0.2 m/s are considered dynamic. We define true positives (TP) as points

correctly labelled dynamic. We define false positives (FP) as points incorrectly labelled

dynamic, and false negatives (FN) as points incorrectly labelled static.

We compute precision, P, and recall, R, in two ways. Given the scan index, n, and

the total number of scans, N , the total computation is:

Pt =

∑N
n TPn∑N

n (TPn + FPn)
, Rt =

∑N
n TPn∑N

n (TPn + FNn)
. (4.1)

Given the total number of valid scans for precision, Np, and the total number of valid

scans for recall, Nr, the average computation is:

Pa =

∑Np

n
TPn/(TPn+FPn)

Np

, Ra =

∑Nr

n
TPn/(TPn+FNn)

Nr

. (4.2)

Scans where the denominator is 0 are ignored (e.g., TPn + FPn = 0), which is why we

distinguish Np and Nr.

The reason for providing two alternative methods for computing precision and re-

call is demonstrated by the plots in Figure 4.3. The plots show recall evaluated with

groundtruth at varying range limits (i.e., measurements greater than the range limit are

ignored). Observe how the total recall, Rt, is higher for low range limits compared to

the average recall. Ra. This is due to how there are more points on objects closer to the

lidar, which are easier to correctly label. Objects further away from the sensor are more

difficult to correctly label, but such objects have less points. Thus the neglection of far-

away objects is downplayed when computing Rt. In comparison, Ra averages over each

Chapter 4. Datasets and Benchmark 53

lidar scan, limiting the downplay of far-away objects compared to Rt. Therefore we pro-

vide two alternative methods to capture the effect of measurement range and pointcloud

density on detection performance.

0 50 100
Range Limit [m]

0.2

0.4

0.6

0.8

1
R

ec
al

l

Total
Average

(a) Town 1.

0 50 100
Range Limit [m]

0.2

0.4

0.6

0.8

1

R
ec

al
l

Total
Average

(b) Town 2.

Figure 4.3: Recall (total and average - see Equation (4.1) and (4.2)) using groundtruth
labels on two simulated sequences with varying limited range. Total recall is high at low
range limits because nearby objects have more points, downplaying far-away ones.

4.3 Summary

In summary, this chapter presents the lidar data required to evaluate our dynamic detec-

tion method. We collected real lidar data using a Velodyne HDL-64E in driving scenarios,

which unfortunately does not have groundtruth labels of dynamic objects. This limits

our use of the real dataset for a qualitative evaluation. Instead, we look to a proficient

simulator for collecting lidar data with accurate groundtruth. We use CARLA, an open-

source simulator for autonomous driving research. We modify the simulator to suite our

needs, such as implementing a Velodyne-like lidar sensor with motion distortion, and

make the dataset public for others to use. We also establish a benchmark for labelling li-

dar data as dynamic or static at the point level by defining two alternatives for computing

precision and recall.

Chapter 5

Pipeline Simulation and

Experimental Results

In this chapter we break down the detection pipeline to quantitatively analyze the in-

dividual components that were described in detail in Chapter 3. We then evaluate the

full detection pipeline for quantitative and qualitative analyses using the simulated lidar

benchmark and collected real data, respectively.

5.1 Analysis of Pipeline Components

This section analyzes the contribution of individual components of pipeline (e.g., point-

cloud comparison, freespace check, etc.) by removing components from the full pipeline

and testing the resulting (simpler) pipelines against the simulated data. Note that we

only use the Town 1 simulated dataset. Range measurements are injected with a zero-

mean Gaussian noise, with a standard deviation of 0.01 m. As mentioned in Section

3.3.2, we vary the value of the error threshold parameter, λerror, to generate precision

and recall values. We set the scan gap, ngap, to 4. Note that for these simulated results,

we used the groundtruth trajectory instead of our scan alignment algorithm to focus on

the detection aspect.

54

Chapter 5. Pipeline Simulation and Experimental Results 55

5.1.1 Freespace

In Chapter 3 we saw the limitation of only using the pointcloud comparison for dynamic

object detection through qualitative examples (e.g., images of labelled pointclouds). In

this subsection we will show the same conclusion, but quantitatively using the Town 1

dataset.

We define two variations of the pipeline, pc and fc. The first pipeline, pc, only uses

the pointcloud comparison component. In other words, referring to the pipeline diagram

in Figure 3.1, the output of the pc pipeline is at the step marked by the letter (a). The

second pipeline, fc, uses both the pointcloud comparison component and the freespace

check components. The output of the fc pipeline is at the step marked by the letter (b).

We evaluate both pipelines against the Town 1 dataset, using the two methods of

computing precision and recall, as defined in Chapter 4 (see Equation (4.1) and (4.2)).

An additional parameter we vary is the number of reference scans in the pointcloud

comparison, nscans. We vary nscans as 1, 3, and 5. The precision-recall curves resulting

from the two pipelines is shown in Figure 5.1. The total precision-recall curves are on

the left, with the average variation on the right. The numbers in the legend indicate the

value of nscans.

The first observation to address is why the precision-recall curves approach the 0

precision, 0 recall position. Normally we expect a trade-off between precision and recall,

where the extreme parameter setting that yields perfect precision (value of 1) will have

a corresponding recall value of 0, and vice versa. In our case, we instead approach 0

precision and 0 recall as we increase our threshold parameter, λerror, to a very large

value. Recall that precision is the relationship between TPs, correct dynamic labels,

and FPs, incorrect dynamic labels. It turns out that the query point with the largest

error metric over an entire data sequence will likely always be of a static surface. This

is expected as the size of dynamic objects are at most a few meters, while the maximum

lidar measurement range is 120 m. Much higher error will result on static surfaces simply

Chapter 5. Pipeline Simulation and Experimental Results 56

0 0.2 0.4 0.6 0.8
Recall

0.2

0.4

0.6

0.8

1

Pr
ec

is
io

n

pc1
pc3
pc5
fc1
fc3
fc5

0 0.5 1
Recall

0

0.2

0.4

0.6

0.8

1

Pr
ec

is
io

n

(a) Total

0 0.5 1
Recall

0

0.2

0.4

0.6

0.8

1

Pr
ec

is
io

n

(b) Average

Figure 5.1: Precision-recall curves comparing two pipeline variations, pc and fc. On the
left is the total variation and on the right is the average variation (see Equation (4.1)
and (4.2)). The numbers in the legend indicate the number of reference scans, nscans. We
see that the recall of the pc pipeline is extremely poor, where adding the freespace check
in the fc pipeline dramatically improves it.

due to the moving sensor and maximum range. Therefore as λerror approaches the highest

error value, we are left with no TPs, and precision evaluates to 0.

While this behaviour may be undesirable, the values of λerror where it occurs are at a

region where we do not wish to operate in the first place (i.e., very large values that will

have close to 0 recall). Therefore we ignore this behaviour for the rest of our qualitative

analyses, focusing on more useful (smaller) values of λerror.

More important is the comparison of the pipelines pc and fc. We observe a dramatic

improvement in precision in both the total and average, which agrees with the qualitative

pointcloud examples shown previously. Also note the slight increase in precision as we

increase nscans for both pipeline variations. This was another result that we concluded

qualitatively in Chapter 3, which we now show quantitatively.

For the fc pipeline, the total curves show slightly better precision and recall. Recall

in Section 4.2.2 we discussed how the total computation downplays the effect of objects

in the distance which have less points. We see this behaviour here as the total curves are

slightly better. Strangely, the pc pipeline shows better precision in the average curves

compared to its total curves. This result does make sense however, the strange behaviour

Chapter 5. Pipeline Simulation and Experimental Results 57

is just an outcome of the poor performance. Consider how the pc pipeline will label

(incorrectly) almost all points as dynamic, except for the instances where the sensor

vehicle is stationary (e.g., because of a traffic light). Those scans with no movement

are cases where pointcloud comparisons alone perform very well and will correctly label

static points. The average precision computation gives more weight to those scans with

no movement. In the end, this difference between the total and average pc pipeline curves

means very little as both have incredibly poor performance.

5.1.2 Motion Compensation

Our freespace check components use the novel freespace querying algorithm we formulated

in Chapter 3, which uses a continuous-time trajectory to compensate for the moving-

while-scanning operation of spinning-lidars. Here we quantitatively show the benefit

by comparing our method to the nearest-ray strategy of Pomerleau et al. (2014) which

assumes pointclouds are not motion-distorted.

We formulate a new pipeline variation, id, which shares the same structure as the fc

pipeline of the previous subsection (i.e., the output is at the step labelled (b) in Figure

3.1). The difference between id and fc is the nearest-ray algorithm. Where fc uses

our iterative nonlinear optimization using our continuous-time trajectory, id uses the

spherical kd-tree approach of Pomerleau et al. (2014).

The nearest-ray search of id is done by computing the spherical coordinates (i.e.,

azimuth and elevation, not including range) of the reference freespace scan in its local

frame, from which we build an efficient 2D search data structure (e.g., kd-tree) of azimuth

and elevation values. Query points of interest are transformed to the local frame of the

reference scan, and then also converted to spherical coordinates. Identifying the nearest

ray for each query point is completed by simply searching for the nearest neighbour in

the search structure. Everything else about the freespace check, such as determining

whether the query point is inside, on the border of, or outside freespace remains the

Chapter 5. Pipeline Simulation and Experimental Results 58

same between the two pipelines. Note that this includes the pointcloud comparison.

Both pipelines use the same pointcloud comparison method, which involves undistorting

the pointclouds. However, the pointclouds we use to compute spherical coordinates are

not motion-compensated.

Figure 5.2 shows the precision-recall curves resulting from the two pipelines on the

Town 1 dataset. As in the previous pipeline variation experiment, we also vary the

number of reference scans, nscans.

0.4 0.6 0.8 1
Recall

0.4

0.6

0.8

1

Pr
ec

is
io

n

id1
id3
id5
fc1
fc3
fc5

0.4 0.6 0.8 1
Recall

0.4

0.6

0.8

1

Pr
ec

is
io

n

(a) Total

0.4 0.6 0.8 1
Recall

0.4

0.6

0.8

1

Pr
ec

is
io

n

(b) Average

Figure 5.2: Precision-recall curves comparing two pipeline variations, id and fc. On the
left is the total variation and on the right is the average variation (see Equation (4.1)
and (4.2)). The numbers in the legend indicate the number of reference scans, nscans. We
see that our method of compensating for motion has better precision. Recall values are
similar between the two pipelines.

We see that our method has better precision, while recall values are mostly similar.

The similarity in recall between the two pipelines is understandable since not compensat-

ing for motion will not significantly affect the alignment of subsequent scans (also note

we are using the groundtruth trajectory), where the alignment determines the portions

of dynamic objects that are labelled dynamic (recall that objects overlap when ngap is

not sufficiently large). This is especially true when the lidar vehicle moves at a constant

velocity, which happens approximately half the time during the sequence. The increase

in incorrect dynamic labels (i.e., FPs) in the id pipeline, causing lower precision, is a

result of incorrectly approximating the laser ray paths. The effect of the incorrect ap-

Chapter 5. Pipeline Simulation and Experimental Results 59

proximations worsen during acceleration, which the sensor vehicles does the other half of

the time during the sequence (e.g., traffic intersections).

5.1.3 Box Filter

In Chapter 3 we qualitatively showed the need for filtering incorrect dynamic labels after

the freespace checks (i.e., FPs). We accomplish this by introducing a box filter in the

lidar imagespace. Here we show the quantitative effect of adding the box filter component

after the freespace checks.

We formulate a new pipeline variation, bf, which is the same as the fc pipeline, but

with the box filter component added. In other words, in the pipeline diagram of Figure

3.1, the output of the bf pipeline is indicated by the letter (c). The score threshold, λfilter,

was set to 10. We use the exact filter as shown in Section 3.5. Once again, we also vary

the number of reference scans, nscans. The resulting precision-recall curves are shown in

Figure 5.3.

0.4 0.6 0.8 1
Recall

0.4

0.6

0.8

1

Pr
ec

is
io

n

bf1
bf3
bf5
fc1
fc3
fc5

0.4 0.6 0.8 1
Recall

0.4

0.6

0.8

1

Pr
ec

is
io

n

(a) Total

0.4 0.6 0.8 1
Recall

0.4

0.6

0.8

1

Pr
ec

is
io

n

(b) Average

Figure 5.3: Precision-recall curves comparing two pipeline variations, bf and fc. On the
left is the total variation and on the right is the average variation (see Equation (4.1) and
(4.2)). The numbers in the legend indicate the number of reference scans, nscans. We see
that adding the box filter component increases performance, most notably the precision.

We see an improvement in precision for bf compared to fc, with not much change to

the recall. Notice how varying nscans loses its effectiveness in the bf pipeline, evident by

Chapter 5. Pipeline Simulation and Experimental Results 60

how it is unclear if there is a performance improvement over the progression of increasing

nscans. We consider that the detection pipeline may not require nscans greater than 1

with the inclusion of the box filter component, which is desirable as it requires less

computation.

5.1.4 Region Growth

In Chapter 3 we established that the combination of pointcloud comparisons and freespace

checks is not able to guarantee that dynamic objects will be detected in their entirety.

This is due to the effect of the scan gap, ngap, where we cannot choose a desirable value

for ngap because the speed and geometry of dynamic objects are not known beforehand.

We instead aim to partially label dynamic objects and later use a region growth compo-

nent to recover the dynamic points mislabelled as static. Previously we showed the effect

of region growth qualitatively with example image of a query pointcloud. Here we will

show the effect quantitatively.

We compare the pipeline variation that included up to the box filter, bf, with the full

detection pipeline, which we denote as rg. In other words, the output of the rg pipeline

is indicated by the letter (d) in the pipeline diagram of Figure 3.1. We do not vary nscans

for rg, setting it to a value of 1. Figure 5.4 shows the precision-recall curves.

Notice the significant improvement in recall using the full pipeline with region growth,

where now the upper-right corner of the precision-recall curve is much closer to the

upper-right corner of the graph (i.e., indicating good performance). The precision of the

full pipeline does decrease slightly compared to the bf pipeline. This is attributed to

instances of incorrect region growth. For example, a dynamic cluster made up of FPs

will be made larger by the region growth. Instances of incorrect growth to static surfaces

due to inaccurate surface normal computations also occur. However, the trade-off is

minor. With a slight decrease in precision, the detection pipeline gains significantly in

recall for an overall improved performance. The rg pipeline recall for the average curve is

Chapter 5. Pipeline Simulation and Experimental Results 61

0.4 0.6 0.8 1
Recall

0.4

0.6

0.8

1

Pr
ec

is
io

n

bf1
bf3
bf5
rg1

0.4 0.6 0.8 1
Recall

0.4

0.6

0.8

1

Pr
ec

is
io

n

(a) Total

0.4 0.6 0.8 1
Recall

0.4

0.6

0.8

1

Pr
ec

is
io

n

(b) Average

Figure 5.4: Precision-recall curves comparing two pipeline variations, bf and rg. On the
left is the total variation and on the right is the average variation (see Equation (4.1)
and (4.2)). The numbers in the legend indicate the number of reference scans, nscans.

noticeably lower than its total counterpart. Here we clearly see the implication outlined

in Section 4.2.2, particularly what is shown in Figure 4.3 – the total computation for

recall downplays the neglection of detecting objects at further distances.

5.2 Evaluation of Final Pipeline

In this section we evaluate the full detection pipeline on the entire simulated benchmark

and real data. We first evaluate it quantitatively using the simulated benchmark of data

obtained from CARLA, described in Chapter 4, using both sequences (i.e., Town 1 and

Town 2). We then further evaluate the pipeline qualitatively using a lidar data obtained

from a Velodyne HDL-64E mounted on a vehicle and operated in driving scenarios.

5.2.1 Simulated Benchmark

As in Section 3.1, we compute precision-recall curves by varying the error threshold,

λerror. We benchmark the full detection pipeline on both data sequences, Town 1 and

Town 2, and show the precision-recall curves in Figure 5.5.

Noise was added to range measurements with varying standard deviation. Note that

Chapter 5. Pipeline Simulation and Experimental Results 62

a Velodyne HDL-64E has a range standard deviation rated less than 0.02 m. The scan

gap was set to 4, allowing sufficient object displacement for a 10 Hz lidar. The score

threshold was set to 10, which was determined experimentally on data from Town 2.

As determined in Section 5.1.3, the inclusion of the box filter component decreases the

effect of having more scans in the reference pointcloud during the pointcloud comparison.

We set nscans to be 1. Table 5.1 provides a summary of all parameters and their values.

We emphasize that these parameters are specific to the lidar of our experiments (recall

the simulated lidar was implemented to be identical to the lidar of our real data) and

do not depend on the application setting. None of our algorithms in the pipeline make

assumptions about the type of objects to detect or the setting. However, this means that

the parameters do not generalize to other lidars. Sensor characteristics to consider are

the resolution of the measurements, maximum range, and spinrate. Note that for these

simulated results, we used the groundtruth trajectory instead of lidar odometry to focus

on the detection aspect.

Table 5.1: A list of parameters, their descriptions, and their values.

Parameter Description Value

λerror Threshold on error metric varied
ngap Scan gap 4
nscans Number of reference scans 1
λfilter Threshold for box filter score 10
rneigh Radial bound for nearest neighbour search 0.6 m
λparallel Threshold for parallel surface check 0.8

We have already discussed the effect on recall using the average computation, where

it is lower than its total counterpart because it does not downplay the effect of far-away

objects as much. We confirm this behaviour in the Town 2 data sequence. Also notice

how greater range noise has a more detrimental effect on the total precision and recall

compared to the average. Here we see how having more weight on nearby objects (i.e., due

to the number of points) results in lower performance values. Nearby surface observations

with high noise decreases the quality of our surface normal estimates, most significantly

Chapter 5. Pipeline Simulation and Experimental Results 63

impacting our region growth algorithm. This further highlights the importance of having

both ways of computing precision and recall. Fortunately, we see our detection pipeline

is minimally affected by the range noise within a realistic specification, which is less

than 0.02 m standard deviation for a Velodyne HDL-64E. There is a noticeable jump

between range noise settings of 0.02 m and 0.03 m, possibly due to the value of rneigh (set

to 0.06 m), which is used to identify point neighbours for surface normal computation.

The increase in noise from 0.02 m to 0.03 m causes a sudden drop in surface normal

computation accuracy.

Overall, we perform noticeably worse in the Town 2 sequence compared to Town 1.

This is attributed to the structure of the Town 2 simulation setting, which contains more

structure that causes partial occlusion instances (e.g., by fences) than Town 1, which we

struggle with. Compared to detection methods that use prior data, such as learning-

based or map-based methods, we lose out on recall because of the latency in detecting

objects accelerating from being stationary because of the scan gap, ngap.

We hope for future comparisons to other works as our dataset is public. For now we

make an indirect comparison to Dewan et al. (2017) as the state of the art. They used

two manually labelled sequences of Velodyne HDL-64E data at the point level in driving

scenarios. The variation of their detection pipeline without deep learning, which is still

setting-dependent because of ground point removal, reports the following maximum F1-

score precision-recall values: 72.8 precision and 92.3 recall (38 s length data sequence),

and 59.5 precision and 69.6 recall (50 s length data sequence). Their results report that

adding learning increases precision, but at the cost of recall. They do not distinguish

their precision-recall computation in two ways like we did and is unclear about the exact

computation. We stress that a fair comparison is not possible since they used real data,

but we at least see our total precision-recall values using longer, simulated sequences are

comparable.

Chapter 5. Pipeline Simulation and Experimental Results 64

0.7 0.8 0.9 1
Recall

0.7

0.8

0.9

1

Pr
ec

is
io

n

0.7 0.8 0.9 1
Recall

0.7

0.8

0.9

1

Pr
ec

is
io

n

0.7 0.8 0.9 1
Recall

0.7

0.8

0.9

1

Pr
ec

is
io

n

7 0.8 0.9 1
Recall

0.00 m
0.01 m
0.02 m
0.03 m
0.04 m

Noise Std Dev

(c) Town 2 (total) (d) Town 2 (average)

(b) Town 1 (average)(a) Town 1 (total)

0.7 0.8 0.9 1
Recall

0.7

0.8

0.9

1

Pr
ec

is
io

n

Figure 5.5: Precision-recall plots (total and average - see Equation (4.1) and (4.2)) on
two simulated sequences. The standard deviation of range measurement noise was varied.
Note that a Velodyne HDL-64E has a standard deviation rated less than 0.02 m.

5.2.2 Realworld Dataset

Here we provide further evaluation of the detection pipeline using the real lidar dataset

described in Chapter 4. Lidar data was collected using a Velodyne HDL-64E mounted on

top of a vehicle. Unlike the simulated benchmark evaluation, we apply the continuous-

time lidar odometry algorithm presented in Chapter 3 for scan alignment and trajectory

construction. The error threshold, λerror was set to 0.5 m. Other parameters were not

changed from the simulated benchmark.

An important limitation that was overlooked in the simulated benchmark is the in-

ability to distinguish between measurements that do not return because of the sensor

range limit, and measurements that do not return because of poor surface reflection (i.e.,

Chapter 5. Pipeline Simulation and Experimental Results 65

faulty returns). In both cases, the sensor records a range value of 0. Faulty laser returns

often occur on poorly reflecting surfaces, such as dark vehicles (Petrovskaya and Thrun,

2009) or glass windows. Our freespace querying algorithm was designed with the ability

to use maximum range measurements as freespace. As it is not obvious how they can be

distinguished from faulty measurements, we cannot use maximum range measurements

for freespace computation without incorrectly using faulty returns. Fortunately, this is

not detrimental for ground-based applications, since spinning-lidar lasers are slightly an-

gled downward to the ground. In other words, there will almost always be a surface

(e.g., the ground) behind dynamic objects from the perspective of the sensor. Applica-

tions where objects have no geometry behind them for the lidar to perceive (e.g., flying

objects) are unfortunately an issue.

Our pipeline works well in scenarios with consistent motion (e.g., no traffic slow-

downs). Figure 5.6 is a collage of real data examples, showing 22 different dynamic

objects. Our pipeline struggles with occluded objects, which is also reflected in our

simulated benchmark as detriments to the computed recall values. An example is row 3,

column 6, where we fail to detect the object highlighted with the green box. The pipeline

also struggles with inaccurate surface normal computations, causing incomplete region

growth (columns 1 and 2), or excessive growth to static points (column 4). The image

in row 2, column 6 shows a barely visible vehicle due to many faulty returns. We note

there is less concern with newer lidar models, which have more dependable laser returns.

5.3 Summary

In summary, we present the results of the dynamic object detection pipeline in this chap-

ter. Using the detection benchmark we established in Chapter 4 with the simulated lidar

datasets from CARLA, we quantitatively evaluated our detection pipeline and discussed

the results. This included looking at individual components of the pipeline to show their

Chapter 5. Pipeline Simulation and Experimental Results 66

significance to the overall detection performance. We further verified through real data

collected on a Velodyne HDL-64E that our detection method is not limited to simu-

lated data. From testing on real data, however, we identified that we cannot distinguish

between faulty laser returns and maximum range returns, which limits our ability to

compute freespace for maximum range returns.

C
h
a
p
t
e
r
5
.

P
ip
e
l
in
e
S
im

u
l
a
t
io
n
a
n
d

E
x
p
e
r
im

e
n
t
a
l
R
e
su

lt
s

67

Figure 5.6: Real data pointcloud examples (22 dynamic objects) of our detection method from a Velodyne HDL-64E. False
detections can occur (row 1, column 6), but rarely persist in the next scan. Inaccurate surface normals cause incomplete region
growth (columns 1 and 2) or growth to static points (column 4). The green box in the last image indicates an unlabelled
dynamic object due to occlusion by the other object in the freespace scan(s). The example in row 2, column 6 is a barely visible
vehicle due to many faulty returns.

Chapter 6

Conclusion

This thesis presented an online detection method for labeling 3D lidar points as dynamic

(moving) or static (stationary). Our goal was to formulate a detection method that does

not require prior information on objects (i.e., model-free), the setting (e.g., maps), and

even training data (e.g., for learning methods). We accomplished this by using only

the most recently acquired lidar scans and made comparisons between them to identify

discrepancies that are indicative of dynamic objects. Comparisons of pointclouds alone

are not enough as there are issues with spatial sparsity of points and viewpoint occlusions.

We addressed these issues by also checking against the freespace of lidar scans using a

novel method that accounts for the moving-while-scanning operation of spinning-lidars.

A caveat of this approach is the inability to detect objects of interest that are momentarily

stationary (e.g., vehicles stopped in traffic). We deemed this as an acceptable trade-off

for a detection method that is applicable to a wide variety of scenarios.

Unfortunately, a public lidar dataset suitable to test our work did not exist previ-

ously due to the difficulty of obtaining accurate groundtruth labels. We instead estab-

lished a benchmark of simulated lidar data with point-level groundtruth on dynamic

objects (http://asrl.utias.utoronto.ca/datasets/mdlidar/index.html) to produce a quan-

titative evaluation of our detection method. We make this dataset public in hopes that

68

Chapter 6. Conclusion 69

other researchers interested in a similar problem can make use of it and compare to

our results. We further validated our detection method through a qualitative evaluation

using real data collected with a Velodyne HDL-64E.

Apart from evaluating the full detection pipeline, we used the simulated data to quan-

titatively evaluate and show the significance of the individual components of the pipeline.

For example, we showed quantitatively the benefit of compensating for the moving-while-

scanning operation when querying the freespace, which other existing detection methods

do not consider.

In both simulated and real lidar data, our method found difficulty in detecting par-

tially occluded objects. From operating on real data, we observed an important lim-

itation that was overlooked in simulation – the inability to distinguish between faulty

measurement returns and measurements that do not return due to the sensor range limit.

The former case we simply want to ignore, while the latter case is desirable to use for

freespace computation. This limits our detection method to objects that reliably have

geometry behind them (from the perspective of the sensor), which is always the case for

ground-based detection, but not for instances such as flying objects in the air.

In summary, the novel contribution of this thesis is a dynamic object detection method

that is both model-free and setting-independent, labeling measurements as dynamic or

static. Our method explicitly handles the moving-while-scanning distortion effect of 3D

spinning-lidar sensors, which existing methods do not consider. While our work is flexible

and can be applied to a wide variety of applications, it should not be treated as competi-

tors to learning-based detectors, such as DNN methods to detect class-specific objects,

or detectors that make comparisons to maps (e.g., change detection). The methods are

complementary and can be combined into a larger detection suite, where our method can

act as a safety net. We quantitatively evaluated our work on simulated lidar data, which

we made public. We qualitatively evaluated our work with real data from a Velodyne

HDL-64E. We spend the rest of this section discussing future work.

Chapter 6. Conclusion 70

6.1 Future Work

We conclude this thesis with a discussion on future work, notably about topics that

became apparent during and after evaluating our contributed detection method.

6.1.1 Faulty Lidar Returns

Recall the issue of faulty lidar returns. We refer to a measurement as faulty when the

measurement contact surface is within the range capability of the sensor, but does not

produce a strong enough return signal due to poor reflectance. Future work should look

into developing a method to distinguish them from measurements that do not return due

to the maximum range in order to accurately represent the freespace of lidar scans.

Faulty measurements are often a negligible issue in most lidar applications as they

are unnoticeable when working with only pointclouds. Consider the pointcloud in the

top image of Figure 6.1, which was collected using a Velodyne HDL-64E S3 sensor in a

parking lot. In the bottom image, we visualize an imagespace representation of the same

lidar scan that created the above pointcloud. In black are the points of the pointcloud

above, but in red are measurements that did not return and thus are not shown in the

pointcloud. We see that the amount of faulty returns is immense. Entire vehicles, which

are still visible in the pointcloud, can be discerned from the bottom image.

The S3 is the latest model among the 64-laser variants from Velodyne. We should

take this as a valid issue that occurs from the limitation of the hardware and that it

likely will not be resolved in the near future by newer lidar products.

6.1.2 Detection Uncertainty

Our detection pipeline outputs point-level labels between dynamic, for points on moving

surfaces, and static, for points on stationary surfaces. What is lacking however, is a

measure of uncertainty in the detection labels.

Chapter 6. Conclusion 71

Figure 6.1: The top image is a pointcloud taken from a Velodyne HDL-64E S3 in a
parking lot. The bottom image is an imagespace representation of the same lidar scan
that produced the pointcloud. In red are measurements that did not return (e.g., faulty
measurements). We see from the bottom that there are a large amount of faulty returns,
which normally is not realised when working with pointclouds.

Given the detection of dynamic objects in a lidar scan, a follow-up task to accomplish

in an autonomous navigation system would be tracking the detections over time in a

state estimation framework. Classic state estimation machinery involves the process

of reducing state uncertainty using observations which themselves have a measure of

Chapter 6. Conclusion 72

uncertainty. The same applies to the multi-object tracking problem, where the detections

can be trated as the observations. If the detections do not have a measure of how reliable

they are, it is unclear how they can be used in an estimation framework.

Tracking is not the only use case for detection outputs with uncertainty. Consider

the mapping problem, where an accurate and reliable map properly filters out measure-

ments of dynamic objects. A binary label, without an uncertainty measure, of whether

measurements should be included or not will work, but is rather ad hoc, and may not be

robust. A good mapping framework will take into account uncertainty.

Therefore future work will involve looking into how the current detection pipeline

can accurately take into account the measurement uncertainty of the raw lidar measure-

ments for the end-goal of outputting detection labels with an uncertainty measure. The

absence of an uncertainty measure in our detection output limits its usefulness in other

autonomous navigation tasks.

Appendix A

SE(3) Definitions

We refer to Barfoot (2017) for all the definitions listed here. What is shown is the bare

minimum to be able to compute the shown quantities. For further understanding we

highly recommend consulting the source literature.

The linear operator ∧ takes a vector, φ ∈ R3, and turns it into a R3×3 matrix as

follows:

φ∧ =


φ1

φ2

φ3


∧

=


0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0

 . (A.1)

The operator ∨ is the inverse of ∧. We overload the ∧ operator to take a vector, ξ ∈ R6,

to turn it into a R4×4 matrix as follows:

ξ∧ =

ρ
φ


∧

=

φ∧ ρ

0T 0

 , ρ,φ ∈ R3, (A.2)

where once again, ∨ is the inverse.

For φ = φ a ∈ R3, where φ is the angle of rotation and a is the unit-length axis of

73

Appendix A. SE(3) Definitions 74

rotation, the left Jacobian of SO(3) is

J(φ) =
sinφ

φ
1 +

(
1− sinφ

φ

)
+

1− cosφ

φ
a∧. (A.3)

The left Jacobian of SE(3) is

J (ξ) =

J(φ) Q(ξ)

0 J(φ)

 , (A.4)

where

Q(ξ) =
1

2
ρ∧ +

(
φ− sinφ

φ3

)
(φ∧ρ∧ + ρ∧φ∧ + φ∧ρ∧φ∧)

+

(
φ2 + 2 cosφ− 2

2φ4

)
(φ∧φ∧ρ∧ + ρ∧φ∧φ∧ − 3φ∧ρ∧φ∧)

+

(
2φ− 3 sinφ+ φ cosφ

2φ5

)
(φ∧ρ∧φ∧φ∧ + φ∧φ∧ρ∧φ∧) (A.5)

The GP interpolation in Equation 3.6 has time-dependant coefficient matrices, Λ(τ)

and Ω(τ). They are defined as

Λ(τ) = Φ(τ, tk−1)−Ω(τ)Φ(tk, tk−1), Ω(τ) = Qk(τ)Φ(tk, τ)TQk(tk)−1, (A.6)

where tk−1 ≤ τ < tk and the Φ(t, t′) ∈ R12×12 state transition function

Φ(t, t′) =

1 (t− t′)1

0 1

 . (A.7)

Bibliography

Anderson, S. and Barfoot, T. D. (2015). Full STEAM ahead: Exactly sparse Gaus-

sian process regression for batch continuous-time trajectory estimation on SE(3). In

Intelligent Robots and Systems (IROS), pages 157–164. 11, 20, 22, 24

Atanacio-Jiménez, G., González-Barbosa, J.-J., Hurtado-Ramos, J. B., Ornelas-

Rodŕıguez, F. J., Jiménez-Hernández, H., Garćıa-Ramirez, T., and González-Barbosa,

R. (2011). Lidar velodyne HDL-64E calibration using pattern planes. International

Journal of Advanced Robotic Systems, 8(5):59. 6

Azim, A. and Aycard, O. (2012). Detection, classification and tracking of moving objects

in a 3D environment. In Intelligent Vehicles Symposium (IV), pages 802–807. 13

Barfoot, T. D. (2017). State Estimation for Robotics. Cambridge University Press. 24,

40, 73

Barfoot, T. D. and Furgale, P. T. (2014). Associating uncertainty with 3-D poses for use

in estimation problems. IEEE Transactions on Robotics, 30(3):679–693. 24

Barfoot, T. D., Tong, C. H., and Särkkä, S. (2014). Batch continuous-time trajectory

estimation as exactly sparse Gaussian process regression. In Robotics: Science and

Systems (RSS). 22

Besl, P. J. and McKay, N. D. (1992). Method for registration of 3-D shapes. In Sensor

Fusion IV: Control Paradigms and Data Structures, volume 1611, pages 586–607. 11

75

BIBLIOGRAPHY 76

Bohren, J., Foote, T., Keller, J., Kushleyev, A., Lee, D., Stewart, A., Vernaza, P.,

Derenick, J., Spletzer, J., and Satterfield, B. (2008). Little ben: The ben franklin

racing team’s entry in the 2007 DARPA urban challenge. Journal of Field Robotics

(JFR), 25(9):598–614. 5

Bresenham, J. E. (1965). Algorithm for computer control of a digital plotter. IBM

Systems journal, 4(1):25–30. 10

Carlevaris-Bianco, N., Ushani, A. K., and Eustice, R. M. (2016). University of Michigan

north campus long-term vision and lidar dataset. The International Journal of Robotics

Research, 35(9):1023–1035. 15

Chen, X., Ma, H., Wan, J., Li, B., and Xia, T. (2017). Multi-view 3D object detection

network for autonomous driving. In Computer Vision and Pattern Recognition. 2, 12

Dewan, A., Caselitz, T., Tipaldi, G. D., and Burgard, W. (2016a). Motion-based de-

tection and tracking in 3D lidar scans. In International Conference on Robotics and

Automation (ICRA), pages 4508–4513. 13

Dewan, A., Caselitz, T., Tipaldi, G. D., and Burgard, W. (2016b). Rigid scene flow for

3D lidar scans. In Intelligent Robots and Systems (IROS), pages 1765–1770. 13, 14

Dewan, A., Oliveira, G. L., and Burgard, W. (2017). Deep semantic classification for 3D

lidar data. In Intelligent Robots and Systems (IROS), pages 3544–3549. 14, 63

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., and Koltun, V. (2017). CARLA: An

open urban driving simulator. In Proceedings of the 1st Annual Conference on Robot

Learning, pages 1–16. 3, 16, 48, 49, 50

Furgale, P. and Barfoot, T. D. (2010). Visual teach and repeat for long-range rover

autonomy. Journal of Field Robotics, 27(5):534–560. 1

BIBLIOGRAPHY 77

Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013). Vision meets robotics: The

KITTI dataset. International Journal of Robotics Research (IJRR), 32(11):1231–1237.

11, 13, 15

Hebel, M., Arens, M., and Stilla, U. (2011). Change detection in urban areas by direct

comparison of multi-view and multi-temporal ALS data. In Photogrammetric Image

Analysis, pages 185–196. Springer. 12

Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., and Burgard, W. (2013).

Octomap: An efficient probabilistic 3D mapping framework based on octrees. Au-

tonomous Robots (AR), 34(3):189–206. 10

Jeong, J., Cho, Y., Shin, Y.-S., Roh, H., and Kim, A. (2018). Complex urban lidar data

set. In International Conference Robotics and Automation (ICRA). 15

Klassing, K., Wollherr, D., and Buss, M. (2008). A clustering method for efficient seg-

mentation of 3D laser data. In International Conference on Robotics and Automation

(ICRA), pages 4043–4048. 44

Ku, J., Mozifian, M., Lee, J., Harakeh, A., and Waslander, S. (2018). Joint 3D pro-

posal generation and object detection from view aggregation. In Intelligent Robots and

Systems (IROS). 12

Maddern, W., Harrison, A., and Newman, P. (2012a). Lost in translation (and rotation):

Rapid extrinsic calibration for 2D and 3D lidars. In International Conference on

Robotics and Automation (ICRA). 6

Maddern, W., Harrison, A., and Newman, P. (2012b). Lost in translation (and rotation):

Rapid extrinsic calibration for 2D and 3D lidars. In Robotics and Automation (ICRA),

2012 IEEE International Conference on, pages 3096–3102. IEEE. 11

BIBLIOGRAPHY 78

Magnusson, M., Lilienthal, A., and Duckett, T. (2007). Scan registration for autonomous

mining vehicles using 3D-NDT. Journal of Field Robotics, 24(10):803–827. 11

McGarey, P., Yoon, D., Tang, T., Pomerleau, F., and Barfoot, T. (2018). Field deploy-

ment of the tethered robotic eXplorer to map extremely steep terrain. In Field and

Service Robotics (FSR). 12, 24

Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H., Dolgov, D., Ettinger, S., Haehnel,

D., Hilden, T., Hoffmann, G., Huhnke, B., et al. (2008). Junior: The Stanford entry

in the urban challenge. Journal of field Robotics (JFR), 25(9):569–597. 5

Moosmann, F., Pink, O., and Stiller, C. (2009). Segmentation of 3D lidar data in non-flat

urban environments using a local convexity criterion. In Intelligent Vehicle Symposium

(IV), pages 215–220. 45

Moosmann, F. and Stiller, C. (2013). Joint self-localization and tracking of generic objects

in 3D range data. In International Conference on Robotics and Automation (ICRA),

pages 1146–1152. 9, 13, 14

Moravec, H. P. (1988). Sensor fusion in certainty grids for mobile robots. AI magazine,

9(2):61. 10

Pandey, G., McBride, J. R., and Eustice, R. M. (2011). Ford campus vision and lidar

data set. The International Journal of Robotics Research, 30(13):1543–1552. 15

Petrovskaya, A. and Thrun, S. (2009). Model based vehicle detection and tracking for

autonomous urban driving. Autonomous Robots, 26(2-3):123–139. 12, 65

Pomerleau, F., Colas, F., Siegwart, R., et al. (2015). A review of point cloud registration

algorithms for mobile robotics. Foundations and Trends R© in Robotics, 4(1):1–104. 23

Pomerleau, F., Krüsi, P., Colas, F., Furgale, P., and Siegwart, R. (2014). Long-term 3D

BIBLIOGRAPHY 79

map maintenance in dynamic environments. In International Conference on Robotics

and Automation (ICRA). 10, 12, 38, 40, 57

Postica, G., Romanoni, A., and Matteucci, M. (2016). Robust moving objects detection

in lidar data exploiting visual cues. In Intelligent Robots and Systems (IROS), pages

1093–1098. 13

Rasmussen, C. E. and Williams, C. K. (2006). Gaussian processes for machine learning.

The MIT Press, Cambridge, MA, USA. 20, 21

Roynard, X., Deschaud, J., and Goulette, F. (2018). Paris-Lille-3D: A large and high-

quality ground-truth urban point cloud dataset for automatic segmentation and clas-

sification. International Journal of Robotics Research (IJRR), 37(6):545–557. 15

Tang, T. Y., Yoon, D. J., Pomerleau, F., and Barfoot, T. D. (2018). Learning a bias

correction for lidar-only motion estimation. In Computer Robot and Vision. 12, 24

Underwood, J. P., Gillsjö, D., Bailey, T., and Vlaskine, V. (2013). Explicit 3D change

detection using ray-tracing in spherical coordinates. In International Conference on

Robotics and Automation (ICRA), pages 4735–4741. 2, 12

Ushani, A. K., Wolcott, R. W., Walls, J. M., and Eustice, R. M. (2017). A learning

approach for real-time temporal scene flow estimation from lidar data. In International

Conference on Robotics and Automation (ICRA), pages 5666–5673. 14

Zeng, Y., Hu, Y., Liu, S., Ye, J., Han, Y., Li, X., and Sun, N. (2018). RT3D: Real-time

3-D vehicle detection in lidar point cloud for autonomous driving. IEEE Robotics and

Automation Letters, 3(4):3434–3440. 12

Zhang, J. and Singh, S. (2014). LOAM: Lidar odometry and mapping in real-time. In

Robotics: Science and Systems, volume 2, page 9. 11

BIBLIOGRAPHY 80

Zhang, J. and Singh, S. (2015). Visual-lidar odometry and mapping: Low-drift, robust,

and fast. In International Conference on Robotics and Automation (ICRA), pages

2174–2181. 11

Zlot, R. and Bosse, M. (2014). Efficient large-scale 3d mobile mapping and surface

reconstruction of an underground mine. In Field and Service Robotics (FSR), pages

479–493. 11

	Acknowledgements
	Contents
	List of Figures
	Notation
	Introduction
	Object Detection
	Contributions
	High-level Overview

	Background
	Lidar and Data Representation
	Pointcloud
	Imagespace
	Freespace

	Online Lidar Scan Alignment
	Existing Detection Methods
	Existing Datasets and Benchmarks
	Summary

	Methodology
	Pipeline Formulation
	Lidar Trajectory and Scan Alignment
	Trajectory Representation and Motion Prior
	Measurement Term
	Single-scan Lidar Odometry

	Pointcloud Comparison
	Error Metric
	Comparison Trade-offs
	Comparison Limitations

	Freespace Check
	Freespace Query Algorithm
	Freespace Reference Scans

	Box Filter
	Clustering and Region Growth
	Summary

	Datasets and Benchmark
	Realworld Dataset
	Simulated Dataset
	Simulator
	Benchmark

	Summary

	Pipeline Simulation and Experimental Results
	Analysis of Pipeline Components
	Freespace
	Motion Compensation
	Box Filter
	Region Growth

	Evaluation of Final Pipeline
	Simulated Benchmark
	Realworld Dataset

	Summary

	Conclusion
	Future Work
	Faulty Lidar Returns
	Detection Uncertainty

	SE(3) Definitions
	Bibliography

