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Estimating the trajectory of a robot over time is a key component to enabling autonomy

in the real world. While there are remaining challenges in difficult edge and corner cases,

research and application of state estimation has reached an impressive level of maturity.

Large-scale trajectories can be estimated efficiently and accurately with observation data

from rich sensor modalities such as cameras and lidars. However, for each different

application setting, platform, and mounted sensor, manual effort from an expert state

estimation engineer is necessary for successful robot deployment. From this perspective,

the research goal of this thesis is to formulate and apply a parameter learning framework

that will help automate this deployment process. We seek to train the model parameters

in our estimators from data and reduce the burden of manual tuning. To meet this end,

we formulate parameter learning as an optimization of the observed data likelihood, which

we choose to optimize using the well-known Expectation-Maximization (EM) algorithm.

The first major chapter of this thesis develops the necessary tools that we may require

for EM, which resulted in a Gaussian variational inference framework that is tractable

for large-scale estimation problems. We dedicate the remaining three major chapters to

various applications of EM. Two chapters focus on learning measurement noise models,

where one of these chapters also considers measurement bias. The last chapter focuses on

improving the learning capacity of our models by applying deep learning. We demonstrate

experimental results on several real-world datasets where we use EM to train our models

without supervision from the groundtruth trajectory.
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Chapter 1

Introduction

The accelerating research in autonomous navigation has enabled the application of robots
in the real world. Robots operating in our daily lives was once thought to be a novelty,
but is now becoming more commonplace. To list a few examples, it is now not out
of the ordinary to see robot vacuums in households today. Commercial drones can be
purchased with active tracking functionality to autonomously record a subject during
outdoor recreation. Waymo, the self-driving subsidiary of Google, offers driver-less taxi
services in select locations in the United States (Schwall et al., 2020). These are only a
handful of examples of robot application in the real world, with many that already exist,
and many more to come.

A key component of autonomous navigation that enables robotics applications is state
estimation. The state of a robot can be defined as its position, orientation, and the change
in these quantities over time (Barfoot, 2024). While other components, such as control
and path planning, are also essential and directly contribute to the robot’s actions in its
setting, the estimate of a robot’s trajectory is a critical precursor step.

While there are still remaining challenges, state estimation has achieved an impressive
level of maturity over the past couple decades. Robust, accurate estimators can be
implemented using a combination of different sensor modalities, including those that
produce rich data such as cameras, lidars, and radars. In situations where one sensor
modality may fail, another sensor can compensate. For example, visual localization
using cameras is extremely challenging under severe changes in ambient lighting (Paton
et al., 2016), for which we may be able to compensate using a lidar sensor that is robust
to ambient lighting in comparison. The same can be said going the other way; lidar
sensors can fail to localize in environments with low geometric structure (e.g., a tunnel
or barren landscape), for which we may be able to use a camera (given there are enough
visual cues), or an inertial measurement unit (IMU) to help dead reckon. The real

1



Chapter 1. Introduction 2

world is dynamic and unpredictable, which may seem problematic as many of our sensor
models are designed assuming that the world is static. However, classic tools in robust
estimation, such as Random Sample And Consensus (RANSAC) (Fischler and Bolles,
1981) or M-estimation (Zhang, 1997) offer a surprising level of robustness that facilitates
the application of state estimation in many scenarios that may appear difficult at first
glance.

From this perspective on the maturity of state estimation, the work presented in this
thesis takes a different approach for contributing to state estimation research. We are
less concerned about pushing the state of the art on estimation accuracy, e.g., setting
the best performance on a benchmark for odometry or localization. Instead, we are
interested in how we can improve the automation process of deploying robust, accurate
estimators in different application settings. Within the implementation of an estimator,
there is a large dependence on the platform, sensors, and application setting that often
involves manual design and tuning by an expert engineer. Rather than having an expert
engineer meticulously design and tune estimators for each different application, we wish
to automate the process of tuning the models from data. For this, we turn to machine
learning, but in a way that we maintain many of the classic tools in estimation with
which we are familiar.

1.1 Thesis Overview and Novel Contributions

In Chapter 2, we begin with a review on batch state estimation. In particular, we focus on
the method known as Maximum A Posteriori (MAP) as it is the most commonly used tool
for nonlinear batch inference of a Gaussian approximation of the posterior Probability
Density Function (PDF) (Barfoot, 2024). This review sets the stage for the following
chapter, in which we present an alternative formulation for batch state estimation that
improves upon MAP. There are no novel contributions in this background chapter.

Chapter 3 focuses on the (second author) contributions made to an estimation frame-
work, Exactly Sparse Gaussian Variational Inference (ESGVI) (Barfoot et al., 2020).
ESGVI is a nonlinear batch state estimation framework that starts from a variational
objective (Bishop, 2006), and provides a family of scalable estimators by exploiting the
factorization of the joint likelihood between the observed measurements (data) and state.
We demonstrate that our choice of optimizing a variational objective is better than MAP
as it optimizes a closer Gaussian fit to the true Bayesian posterior. This is because MAP
is simply an optimization of a point estimate of the posterior, which we show is an ap-
proximation of our ESGVI method when we optimize the variational objective for only
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the mean (and not the covariance) of the approximate posterior.
The novel contributions of Chapter 3 are:

1. A computationally tractable approach to Gaussian Variational Inference (GVI) for
large-scale estimation problems via exploitation of the sparsity formed from the
factorization of the joint likelihood.

2. An implementation of sparse GVI that uses Gaussian cubature to avoid the need
for computing analytical derivatives.

3. A conservative, cheaper (compute) approximation of Gaussian Variational Inference
(GVI) that is applicable under mild nonlinearities and/or when the posterior is
concentrated.

4. Various experiments in both simulation and on real data demonstrating an im-
provement in performance over MAP.

Critically, our work on ESGVI outlines the necessary tools we require for parameter
learning using the well-known Expectation-Maximization (EM) algorithm. This is be-
cause the GVI loss is exactly the Evidence Lower Bound (ELBO) that we optimize in
EM (Barfoot et al., 2020). We choose EM as our method of parameter learning for its
potential to harmoniously combine probabilistic state estimation with machine learning
under a single data likelihood objective. We dedicate the remaining chapters of this the-
sis to applying our ESGVI and EM parameter learning framework to various estimation
problems.

Starting with Chapter 4, we learn a measurement covariance model that can vary over
time in a trajectory. We apply our ESGVI and EM parameter learning framework by
placing an Inverse-Wishart (IW) prior on the measurement covariance and estimating it
(the covariance) as part of the state. Our approach results in an adapting measurement
covariance that is robust to measurement outliers. This work was done in part as a
shared (second author) contribution (Wong et al., 2020b).

The novel contributions of Chapter 4 are:

1. A methodology for estimating measurement covariance by using an IW prior in a
EM framework.

2. Experimental results on a lidar localization dataset that demonstrates learning a
varying measurement covariance without the groundtruth trajectory. We also show
that the resulting covariance model is robust to measurement outliers during both
training and testing.
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Chapter 5 focuses on learning measurement bias and noise as feature-dependent re-
gression models. Due to nonidealities in the real world, our sensors can produce biased
measurements that we may have to calibrate ourselves. Similar to our motivation in
Chapter 4, the uncertainty of the measurements can differ from the manufacturer spec-
ification and may vary depending on the operation environment. Feature-dependent
regression models are a viable solution for applications where these quantities are pre-
dictable from a training dataset. While the idea of using feature-dependent models is not
novel, we present our EM training scheme as a way to train these models without the
groundtruth trajectory. We demonstrate our approach on odometry experiments with a
Frequency-Modulated Continuous Wave (FMCW) lidar sensor. The estimators we use
in this chapter appeared in two associated publications, one of which is a second-author
contribution (Wu et al., 2023; Yoon et al., 2023). In this thesis, we improve upon the work
from these publications by training for measurement bias and noise without groundtruth
supervision.

The novel contributions of Chapter 5 are:

1. A methodology for training feature-dependent regression models for measurement
bias and covariance using ESGVI and EM.

2. A lightweight correspondence-free odometry method using Doppler measurements
from a FMCW lidar and gyroscope measurements from an IMU.

3. Experiments using the proposed method for learning Doppler measurement bias
and variance, demonstrating the ability to train the regression models without
supervision from the groundtruth trajectory.

Chapter 6 focuses on extending our application of parameter learning with Deep Neu-
ral Networks (DNNs). We first look into how we can model a measurement model in its
entirety using a DNN. We demonstrate application of the derivative-free approach for
ESGVI (see Section 3.2.5), which allows us to efficiently train and use a neural network
measurement model without computing derivatives of the model with respect to our vehi-
cle state. Instead of derivatives, we use multiple forward passes with sigmapoints, which
complements the parallel work-flow of DNNs well. We then present an alternative way of
using a DNN to tractably handle rich sensor data. Instead of modelling the measurement
model directly, which can be costly in compute due to the density of measurements, we
can train a Convolutional Neural Network (CNN) front-end that processes the rich data
and outputs sparse features that can be used with a probabilistic estimation back-end
(e.g., ESGVI). We demonstrate how our approach for learning deep features is applicable
to both lidar (Yoon et al., 2021) and radar (Burnett et al., 2021) odometry.
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The novel contributions of Chapter 6 are:

1. Learning a DNN measurement model using EM and ESGVI without having to
compute the derivative (Jacobian) of the model with respect to the state.

2. Experiments on a real-robot dataset for localization and learning a range-bearing
measurement model without the groundtruth trajectory.

3. Learning a DNN using EM and ESGVI that is specifically tailored to rich sen-
sor data via a CNN architecture that outputs sparse keypoints, descriptors, and
uncertainty.

4. Experiments on lidar odometry, again demonstrating that our parameter learning
framework can train the network parameters without the groundtruth trajectory.

Finally, a summary of the contributions of this thesis and a discussion of future work
are presented in Chapter 7.

1.2 List of Associated Publications

For Chapter 3:

• Barfoot, T. D., Forbes, J. R., and Yoon, D. J. (2020). Exactly sparse gaussian varia-
tional inference with application to derivative-free batch nonlinear state estimation.
International Journal of Robotics Research (IJRR) (second author contribution)

For Chapter 4:

• Wong, J. N., Yoon, D. J., Schoellig, A. P., and Barfoot, T. D. (2020b). Variational
inference with parameter learning applied to vehicle trajectory estimation. IEEE
Robotics and Automation Letters (RAL), 5(4):5291–5298 (second author contribu-
tion)

For Chapter 5:

• Wu, Y., Yoon, D. J., Burnett, K., Kammel, S., Chen, Y., Vhavle, H., and Barfoot,
T. D. (2023). Picking up speed: Continuous-time lidar-only odometry using doppler
velocity measurements. IEEE Robotics and Automation Letters (RAL), 8(1):264–
271 (second author contribution)
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• Yoon, D. J., Burnett, K., Laconte, J., Chen, Y., Vhavle, H., Kammel, S., Reuther,
J., and Barfoot, T. D. (2023). Need for speed: Fast correspondence-free lidar-inertial
odometry using doppler velocity. In International Conference on Intelligent Robots
and Systems (IROS)

For Chapter 6:

• Yoon, D. J., Zhang, H., Gridseth, M., Thomas, H., and Barfoot, T. D. (2021). Un-
supervised learning of lidar features for use in a probabilistic trajectory estimator.
IEEE Robotics and Automation Letters (RAL), 6(2):2130–2138

• Burnett, K., Yoon, D. J., Schoellig, A. P., and Barfoot, T. D. (2021). Radar
odometry combining probabilistic estimation and unsupervised feature learning.
In Robotics: Science and Systems (RSS) (equal contribution between Burnett, K.
and Yoon, D.)



Chapter 2

Background on Batch State
Estimation

This chapter presents a background primer on batch state estimation, covering topics
relevant to the latter chapters of this thesis. Much of the content in this section are
sourced from and can be found in more detail in the textbook by Barfoot (2024). There
are no novel contributions in this chapter.

2.1 Gaussian Probability

In this thesis, we choose to model uncertainty using a Gaussian PDF. The Gaussian
PDF of a random variable, x ∈ RN , is

p(x|µ,Σ) = 1√
(2π)N |Σ|

exp
(
−1

2(x− µ)TΣ−1(x− µ)
)
, (2.1)

where | · | is the matrix determinant, µ ∈ RN is the mean, and Σ ∈ RN×N is the
symmetric, positive-definite covariance matrix.

Gaussian distributions have a convenient marginalization property, where the marginal
distribution of a joint Gaussian is simply another Gaussian PDF with the mean and co-
variance corresponding to the blocks of that marginal. As an example, say we have a
joint distribution

p(x1,x2) = N


µ1

µ2

 ,
Σ11 Σ12

Σ21 Σ22


 . (2.2)

7
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The marginal distributions are

p(x1) =
∫
p(x1,x2)dx2 = N (µ1,Σ11), (2.3a)

p(x2) =
∫
p(x1,x2)dx1 = N (µ2,Σ22). (2.3b)

Often in state estimation we will not immediately have access to the mean and co-
variance, but have the quantities in information form. For a Gaussian x ∼ N (µ,Σ), the
information form consists of the information vector, Σ−1µ, and the information matrix,
Σ−1. A benefit of working with the information form is that the information matrix
(inverse covariance) will have sparsity that the covariance matrix does not have.

We can still conveniently marginalize our distribution when it is in information form.
Given the following joint distribution,

Σ−1µ =

b1

b2

 , Σ−1 =

A11 A12

A21 A22

 , (2.4)

the information marginals are

Σ−1
11 µ1 = b1 −A12A−1

22 b2, Σ−1
11 = A11 −A12A−1

22 A21, (2.5a)
Σ−1

22 µ2 = b2 −A21A−1
11 b1, Σ−1

22 = A22 −A21A−1
11 A12. (2.5b)

We will find this marginalization form useful if we wish to modify our batch estimation
formulation into a sliding-window filter for online application.

2.2 Maximum A Posteriori

We begin our derivation of batch state estimation with Bayes’ theorem:

p(x|y) = p(y|x)p(x)
p(y) , (2.6)

where x = {x0,x1, . . . ,xN} is our discrete trajectory and y = {y0,y1, . . . ,yM} is a
stacked quantity of all measurements. The quantity p(x|y) is the posterior probability
density and the output from our estimation problem in which we are interested. Bayes’
theorem shows that the posterior is a product of a generative model of the measurements
given the trajectory, p(y|x), and a prior density over our trajectory, p(x).

In practice, we generally cannot evaluate Bayes’ theorem in a computationally fea-
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sible way (e.g., nonidealities that lead to a posterior that is not Gaussian). Instead we
can take a Maximum A Posteriori (MAP) approach and optimize (2.6) for a Gaussian
approximation of the posterior by noting that the denominator p(y) does not depend on
x,

µ∗ = arg max
x

p(y|x)p(x) = arg max
x

p(x,y), (2.7)

where µ∗ is the mean of our optimized approximate posterior. This MAP approach is
concerned with finding the most likely state as a point estimate, which is the mode1 of
the true Bayesian posterior distribution. We then obtain an estimate of the posterior
covariance as a byproduct through the Laplace approximation (Bishop, 2006). We make
note of this to contrast with the estimation framework that we introduce in Chapter 3,
which optimizes a different objective for both the mean and covariance.

Often in state estimation for robotics, the joint likelihood, p(x,y), factors in a way
such that there is sparsity that we can exploit for implementing large-scale trajectory
problems efficiently. For convenience we work with the negative log-likelihood, which we
can express as ϕ(x,y) = − ln p(x,y). In general we can assume that our joint likelihood
factors, allowing us to rewrite our MAP objective as a cost function

J = ϕ(x,y) =
K∑

k=1
ϕk(xk,yk), (2.8)

where ϕk(·, ·) is the kth (negative log) factor expression, xk is a subset of variables in x
associated with the kth factor, and yk is a subset of the data in y associated with the
kth factor. We can optimize the cost function J iteratively for nonlinear problems. We
perturb our current best estimate of the mean,

x = x̄ + δx, (2.9)

where x̄ is the nominal value and δx is a small perturbation vector. We can then optimize
J for δx∗ at each iteration. Taking the derivative of J with respect to δx and setting it
to zero for an extremum will result in a linear system

A δx∗ = b. (2.10)

Critically, there will be sparsity in the matrix on left-hand side of the linear system,
A, corresponding to the factorization of the joint likelihood. The matrix A is also the
approximation of the inverse posterior covariance (i.e., the Laplace approximation). This

1Since the posterior is non-Gaussian, the mean and mode are not the same.
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sparsity in the inverse covariance includes familiar patterns such as the block-tridiagonal
sparsity in smoothing problems and the ‘arrowhead’ matrix in Simultaneous Localization
and Mapping (SLAM). Using a sparse solver, we can efficiently compute the latest update
to our mean:

x̄(i) = x̄(i−1) + δx∗, (2.11)

where we are showing the update to the mean at iteration i using our estimate from the
previous iteration, i− 1. We repeat this iterative process until convergence of J .

2.3 Estimation on SE(3)

We cannot in general use a vector space to describe the three-dimensional orientation of
an object. There are several different ways to parameterize rotations and each approach
has its advantages and disadvantages, which appear in the form of singularities and
constraints. In this thesis, we choose to parameterize rotations (and poses) as matrix Lie
groups, as outlined in the textbook by Barfoot (2024). We provide a brief summary of the
left perturbation approach for expressing Gaussian uncertainty and handling linearization
for optimization.

We use the special Euclidean group, SE(3), to represent poses (i.e., translation and
rotation). This is formally defined as

SE(3) =

T =

C r

0T 1

 ∈ R4×4

∣∣∣∣∣∣∣∣C ∈ SO(3), r ∈ R3

 , (2.12)

where we define the rotation, C, as an element of the special orthogonal group, SO(3).
Using a left perturbation scheme, we can express Gaussian uncertainty on a pose

estimate using
T = exp(ϵ∧)T̄, (2.13)

where T̄ ∈ SE(3) is the nominal pose estimate, ϵ ∈ R6 ∼ N (0,Σ) is a small Gaussian
random variable in vectorspace, exp(·) is the exponential map, and the (·)∧ operator is
defined as

ϵ∧ =

ρ
ϕ


∧

=

ϕ∧ ρ

0T 0

 , ϕ∧ =


ϕ1

ϕ2

ϕ3



∧

=


0 −ϕ3 ϕ2

ϕ3 0 −ϕ1

−ϕ2 ϕ1 0

 . (2.14)
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Note that we are overloading the (·)∧ operator here for inputs that are R3 and R6.
We can also use the same perturbation scheme to take derivatives of our models with

respect to a SE(3) pose variable. The relevant example for this thesis is the following
error function,

e(T) = p−Tq, (2.15)

where p and q are homogeneous points, e.g.,

p =
[
p1 p2 p3 1

]T

, p1, p2, p3 ∈ R. (2.16)

Using our left perturbaton scheme, we linearize the model as follows:

e(T) ≈ p− exp(ϵ∧)T̄q (2.17)
≈ p− (1 + ϵ∧)T̄q (2.18)

= p− T̄q︸ ︷︷ ︸
ē

−
(
T̄q

)⊙
ϵ. (2.19)

We applied the definition

p⊙ =

ε
η


⊙

=

η1 −ε∧

0T 0T

 . (2.20)

Notice how our error function was originally expressed with respect to a SE(3) pose
variable, but after linearization, it is now a linear function with respect to a vectorspace
perturbation, ϵ. We can linearize any model with SE(3) pose variables in this way,
resulting in a linear model with respect to a vectorspace perturbation.

It is now clear how we can apply our perturbation scheme to optimize a MAP cost
function that is expressed in terms of SE(3) pose variables. Using our chosen perturba-
tion and linearizaton scheme, solving for the optimal (vectorspace) perturbation will be
no different from what we showed in the previous section. After solving for the optimal
perturbation, updates to the mean estimate at the latest iteration i can be done in a
constraint-sensitive way for each pose variable in the state:

T̄(i) = exp((ϵ∗)∧)T̄(i−1). (2.21)



Chapter 3

Exactly Sparse Gaussian Variational
Inference

In nonlinear batch state estimation, the true Bayesian posterior will not be a Gaussian
PDF. In order to obtain a solution that is computationally tractable, we compromise by
optimizing a point estimate that maximizes the posterior (i.e., the mode) using Maximum
A Posteriori (MAP). In practice, MAP produces a reasonably accurate approximation of
the true Bayesian posterior in the presence of mild nonlinearities and/or when the poste-
rior is concentrated. However, there is potential for improved performance in comparison
to MAP by additionally taking into consideration the covariance of the Gaussian in our
optimization objective.

In this chapter, we propose formulating the estimation problem as Gaussian Vari-
ational Inference (GVI), which optimizes a Gaussian approximation that is ‘closest’ to
the true posterior in terms of the Kullback-Leibler (KL) divergence. Similar to MAP,
we demonstrate how to fit the best Gaussian to the posterior efficiently by exploiting
factorization of the joint likelihood of the state and data. Our proposed method stores
the inverse covariance matrix, which is exactly sparse (e.g., block-tridiagonal for classic
state estimation) for many robotics problems. We show that only blocks of the (dense)
covariance matrix that are required to be calculated correspond to the non-zero blocks
of the inverse covariance matrix, which can be efficiently calculated in the general GVI
problem. Exactly Sparse Gaussian Variational Inference (ESGVI) operates iteratively,
where analytical derivatives can be used to optimize the GVI objective. We also show
how Gaussian cubature can instead be applied as an alternative to analytical derivatives
to produce an efficient derivative-free batch formulation.

In summary, the main contribution of this chapter is to show how GVI can be made
tractable for large-scale trajectories and improve upon the performance of MAP in chal-

12
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lenging estimation problems. We demonstrate the technique on controlled simulation
problems and a batch nonlinear SLAM problem with an experimental dataset.

The work we present in this chapter is a second-author contribution to a journal
publication in the International Journal of Robotics Research (Barfoot et al., 2020).
Secondary contributions were made to the theory and methodology, which we present in
Section 3.2 for completeness. The primary contribution as an author of this work was the
implementation and analysis of the experiments, which we present in Sections 3.4, 3.5,
and 3.6. Critically, Section 3.3 presents a sketch for parameter learning with the ESGVI
estimation framework using EM. This idea is the foundation for this thesis, which we
build upon and apply in the later chapters to solve practical problems in the real world.

3.1 Related Work

For Gaussian estimation, the well-known Kalman Filter (KF) is the optimal solution
that recursively propagates the Gaussian state estimate for linear systems. If we wish to
incorporate all measurements in time, the Rauch-Tung-Striebel (RTS) smoother (Rauch
et al., 1965) applies forward and backward passes to efficiently estimate the entire state.
In practice, our models tend to be nonlinear, for which we can apply more advanced
methods. Särkkä (2013) presents an overview of recursive inference methods for both
linear and nonlinear models.

However, the work we present in this chapter focuses on a more general problem setup
with batch Gaussian inference. Canonical problems in robotics are batch trajectory esti-
mation, pose-graph relaxation (Bourmaud, 2016), and Bundle Adjustment (BA) (Brown,
1958) / SLAM (Durrant-Whyte and Bailey, 2006). Other problems we can apply batch
inference include control/planning (Dong et al., 2016; Mukadam et al., 2018), calibration
(Pradeep et al., 2014), and three-dimensional modelling problems (Li et al., 2011). What
distinguishes these problems from the recursive/smoothing problem discussed above is
that the factorization of the joint likelihood between the state and observed data is not
limited to a linear chain (i.e., the inverse covariance sparsity is not block-tridiagonal).
Despite not having a fixed factorization and sparsity pattern, we can still exploit the ex-
isting problem-specific sparsity for a computationally efficient solution. The predominate
method for doing so is Maximum A Posteriori (MAP) estimation.

In MAP estimation, we optimize a Gaussian fit by assigning the most likely state
in the true Bayesian posterior as the mean of our approximation, with a corresponding
covariance referred to as the Laplace approximation (Bishop, 2006). The MAP estimate
will produce the exact Gaussian posterior for linear systems, but that is no longer true
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when our models are nonlinear. The primary goal of the work in this chapter is to
revisit the batch Gaussian inference problem in search of improvements over this popular
method.

Our approach for improving upon MAP is to formulate our batch inference prob-
lem using variational Bayes (Bishop, 2006), which optimizes for the closest Gaussian
approximation to the true Bayesian posterior using the KL divergence between the two
(Kullback and Leibler, 1951). In other words, we will be optimizing for both the mean
and covariance of our Gaussian approximation, which differs from MAP where we only
optimize for the mean and compute a Laplace-style covariance post hoc. The challenge
is to be able to do this efficiently for problems with a large state size. Naively estimating
the covariance for large problems is not computationally feasible since in general it will
be a large, dense matrix. We will demonstrate how we can apply full GVI by exploiting
the same problem-specific sparsity that we usually do in the MAP approach.

This is made possible in our formulation of GVI because the sub-blocks of the covari-
ance that we require are precisely the ones corresponding to the non-zero sub-blocks of the
inverse covariance (which is typically highly sparse). Thankfully, we are able to extract
the required sub-blocks of the covariance efficiently. For example, in smoothing problems
with a block-tridiagonal inverse covariance, the complexity of the solver for the mean is
linear in the trajectory length. We can additionally calculate the corresponding covari-
ance sub-blocks (i.e., the three main block diagonals of the covariance) (Meurant, 1992;
Barfoot, 2024) efficiently by reusing the calculations for the mean solve, maintaining the
linear complexity of the problem. It turns out we are still able to compute the required
sub-blocks efficiently in the general case. We use a method first proposed by Takahashi
et al. (1973) in the context of circuit theory, which was later used by Broussolle (1978)
in a state estimation context. Erisman and Tinney (1975) provide a proof of the closure
of the Takahashi et al. method and also discuss algorithmic complexity. More recently,
Triggs et al. (2000) and Kaess and Dellaert (2009) present methods to calculate specific
blocks of the covariance matrix efficiently for computer vision and robotics applications,
although they do not discuss computing the complete set of covariance sub-blocks that
correspond to the non-zero sub-blocks of the inverse covariance.

The idea of GVI is not new, and has been applied in other existing works. Opper
and Archambeau (2009) discuss a similar GVI approach in machine learning, where they
applied the method to Gaussian process regression problems (Rasmussen and Williams,
2006). Kokkala et al. (2014, 2016), Ala-Luhtala et al. (2015), Garćıa-Fernández et al.
(2015), Gašperin and Juričić (2011), and Schön et al. (2011a) discuss a very similar ap-
proach to our GVI scheme in the context of nonlinear smoothers and filters. They show
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how to exploit factorization of the joint likelihood (specific to smoothing problems), and
discuss how to apply sigmapoints (Kokkala et al., 2014, 2016; Gašperin and Juričić, 2011)
or particles (Schön et al., 2011a) to avoid the need to compute derivatives. Our method
extends these works by (i) generalizing to any large-scale batch GVI problems where the
likelihood factors (not restricted to smoothing problems with block-tridiagonal inverse
covariance), (ii) devising a Newton-style iterative solver for both mean and covariance,
(iii) explicitly showing how to exploit problem-specific structure in the case of a factored
likelihood to make the technique efficient, and (iv) demonstrating the approach on prob-
lems of interest in robotics. Similar to some of these works, we also demonstrate how to
apply Gaussian cubature in our approach to avoid the need to calculate derivatives.

3.2 Gaussian Variational Inference

3.2.1 Loss Functional

In variational inference, our objective is to minimize the KL divergence (Kullback and
Leibler, 1951) between the true Bayesian posterior, p(x|y), and an approximation of the
posterior, q(x). As we are applying Gaussian variational inference, our approximation
will be a multivariate Gaussian, q(x) = N (µ,Σ). The KL divergence we choose to use
for our loss is

KL(q||p) = −
∫ ∞

−∞
q(x) ln

(
p(x|y)
q(x)

)
dx = Eq [ln q(x)− ln p(x|y)] , (3.1)

where x is our state, y represents our measurements, and E[·] is the expectation operator.
We choose the divergence expressed in this order, rather than the alternative KL(p||q),
to have the expectation over our Gaussian estimate, q(x), rather than the unknown true
posterior. This key practical difference will allow us to evaluate the expectation and
devise an efficient iterative scheme for q(x) that best approximates the posterior.

The divergence objective can be rewritten in the following way,

KL(q||p) = Eq[− ln p(x,y)]− 1
2 ln

(
(2πe)N |Σ|

)
︸ ︷︷ ︸

entropy

+ ln p(y)︸ ︷︷ ︸
constant

, (3.2)

where we used the expression for the entropy, −
∫
q(x) ln q(x)dx, for a Gaussian. The

final term is a constant (i.e., it does not depend on q(x)), allowing us to define the
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following loss functional that we seek to minimize with respect to q(x):

V (q) = Eq[ϕ(x,y)] + 1
2 ln

(
|Σ−1|

)
, (3.3)

where ϕ(x,y) = − ln p(x,y). We choose to express our loss using Σ−1 (inverse covariance
matrix), rather than Σ (covariance matrix), since the former has sparsity that we can
exploit. Interpreting our loss functional, we can see that the first term encourages the
solution to match the data while the second penalizes it for being too certain. We also
note that our loss functional is the negative of the ELBO, which is important for our
approach to parameter learning that we will discuss later.

3.2.2 Optimization Scheme

Our goal is to optimize our loss functional, V (q), with respect to our approximate pos-
terior, q(x), i.e., the mean, µ, and the inverse covariance, Σ−1. Starting with a Taylor
series expansion of V (q),

V
(
q(i+1)

)
≈ V

(
q(i)
)
+
 ∂V (q)

∂µT

∣∣∣∣∣
q(i)

T

δµ+1
2δµ

T

 ∂2V (q)
∂µT∂µ

∣∣∣∣∣
q(i)

 δµ+tr
 ∂V (q)
∂Σ−1

∣∣∣∣∣
q(i)

δΣ−1

 ,
(3.4)

where δµ = µ(i+1) − µ(i) and δΣ−1 = (Σ−1)(i+1) − (Σ−1)(i) with i the iteration index of
our scheme. This expansion is second order in δµ, but only first order in δΣ−1. We need
to update δµ and δΣ−1 to make V (q) get smaller, i.e., V

(
q(i+1)

)
− V

(
q(i)
)
≤ 0.

The derivatives of our loss functional with respect to our Gaussian parameters are
given by (Opper and Archambeau, 2009)

∂V (q)
∂µT

= Σ−1Eq[(x− µ)ϕ(x,y)], (3.5a)

∂2V (q)
∂µT∂µ

= Σ−1Eq[(x− µ)(x− µ)Tϕ(x,y)]Σ−1 −Σ−1 Eq[ϕ(x,y)], (3.5b)

∂V (q)
∂Σ−1 = −1

2Eq[(x− µ)(x− µ)Tϕ(x,y)] + 1
2ΣEq[ϕ(x,y)] + 1

2Σ. (3.5c)

We note that it is not (in general) possible to isolate for µ and Σ−1 in closed form, which
is why we choose to formulate an iterative, Newton-style optimizer.

Comparing (3.5b) and (3.5c), we can get the relationship

∂2V (q)
∂µT∂µ

= Σ−1 − 2Σ−1∂V (q)
∂Σ−1 Σ

−1. (3.6)
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We can set the derivative, ∂V (q)
∂Σ−1 , to zero for an extremum to get

Σ−1(i+1) = ∂2V (q)
∂µT∂µ

∣∣∣∣∣
q(i)

, (3.7)

where we use the indices (i+ 1) and (i) to indicate our iterative update. Inserting (3.6)
on the right side, we can rearrange and get our update for the inverse covariance,

δΣ−1 = −2(Σ−1)(i) ∂V (q)
∂Σ−1

∣∣∣∣∣
q(i)

(Σ−1)(i). (3.8)

For the mean, µ, we refer back to our Taylor series approximation in (3.4). Since this
approximation is locally quadratic in δµ, we can take the derivative with respect to δµ
and set this to zero to formulate a Newton-style update (Nocedal and Wright, 2006):

 ∂2V (q)
∂µT∂µ

∣∣∣∣∣
q(i)


︸ ︷︷ ︸

(Σ−1)(i+1)

δµ = −
 ∂V (q)

∂µT

∣∣∣∣∣
q(i)

 , (3.9)

where, similar to the MAP approach, we have Σ−1 on the left-hand side.
Inserting our update scheme for δµ and δΣ−1 into (3.4), we have

V
(
q(i+1)

)
− V

(
q(i)
)
≈ −1

2 δµT
(
Σ−1

)(i+1)
δµ︸ ︷︷ ︸

≥0
with equality iff δµ = 0

−1
2 tr

(
Σ(i) δΣ−1 Σ(i) δΣ−1

)
︸ ︷︷ ︸

≥0
with equality iff δΣ−1 = 0

≤ 0,

(3.10)
which shows that our update will always make our loss, V (q), smaller as long as δµ and
δΣ−1 are not both zero. This will be true when the derivatives with respect to µ and
Σ−1 are not both zero, which only occurs at a local minimum of V (q). This is a local
convergence guarantee based on our Taylor series expansion in (3.4).

We can reformulate our update scheme using Stein’s lemma (Stein, 1981):

Eq[(x− µ)f(x)] ≡ ΣEq

[
∂f(x)
∂xT

]
, (3.11)

where q(x) = N (µ,Σ) is a Gaussian random variable and f(·) is any nonlinear differ-
entiable function. Assuming f(·) is twice differentiable, a double application of Stein’s
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lemma gives us

Eq[(x− µ)(x− µ)Tf(x)] ≡ ΣEq

[
∂2f(x)
∂xT∂x

]
Σ + ΣEq[f(x)]. (3.12)

We can apply (3.11) and (3.12) to (3.7) and (3.9) to rewrite our update equations as

(
Σ−1

)(i+1)
= Eq(i)

[
∂2

∂xT∂x
ϕ(x,y)

]
, (3.13a)

(
Σ−1

)(i+1)
δµ = −Eq(i)

[
∂

∂xT
ϕ(x,y)

]
, (3.13b)

µ(i+1) = µ(i) + δµ. (3.13c)

Ala-Luhtala et al. (2015) also apply Stein’s lemma in this way in the context of Gaussian
variational smoothers. Since only the first and second derivatives of ϕ(x,y) are required,
we can drop any constant terms (i.e., the normalization constant of p(x,y)). Also note
how these equations are identical to those of the MAP approach if we only evaluate
the expectations at the mean of q(x). We can view MAP with the Laplace covariance
approximation as one possible approximation of our GVI approach. Consequently, our
GVI approach will be equivalent to the discrete-time RTS smoother in the linear case
(i.e., when the true posterior is Gaussian) (Barfoot, 2024).

3.2.3 Exploiting Sparsity

Upon first glance of our loss functional and iterative update scheme in (3.13), it is not
clear how these updates can be calculated efficiently. We require the calculation of these
three expectations:

Eq[ϕ(x,y)]︸ ︷︷ ︸
scalar

, Eq

[
∂

∂xT
ϕ(x,y)

]
︸ ︷︷ ︸

column

, Eq

[
∂2

∂xT∂x
ϕ(x,y)

]
︸ ︷︷ ︸

matrix

. (3.14)

Note that we have dropped the iteration index for convenience. The expectations are
with respect to the full Gaussian estimate, q(x), which will be too expensive to be
computationally feasible for large-scale trajectories as the covariance, Σ, will (in general)
be dense.

Often in state estimation for robotics, the joint likelihood factors in a way such that
there is sparsity that we can exploit for implementing large-scale trajectory problems
efficiently. This sparsity consequently appears as the sparsity in the inverse covariance,
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Σ−1, and includes familiar patterns such as the block-tridiagonal sparsity in smoothing
problems and the ‘arrowhead’ matrix in SLAM. Recalling that we prefer to work with
the negative log-likelihood, ϕ(x,y) = − ln p(x,y), in general we will assume that our
joint likelihood factors in the following way:

ϕ(x,y) =
K∑

k=1
ϕk(xk,yk), (3.15)

where ϕk(·, ·) is the kth (negative log) factor expression, xk is a subset of variables in x
associated with the kth factor, and yk is a subset of the data in y associated with the
kth factor.

Consider the first (scalar) expectation in (3.14). Inserting the factored likelihood,

Eq[ϕ(x,y)] = Eq

[
K∑

k=1
ϕk(xk,yk)

]
=

K∑
k=1

Eq[ϕk(xk,yk)] =
K∑

k=1
Eqk

[ϕk(xk,yk)], (3.16)

where the last step shows (without approximation) that the expectation simplifies from
being over q = q(x), the full Gaussian estimate, to being over qk = qk(xk), the marginal
of the estimate for just the variables in each factor.

The other two expectations in (3.14) can also be simplified in a similar way. Let Pk

be a selection matrix such that it extracts xk from x:

xk = Pkx. (3.17)

Inserting the factored expression into the second (column) expectation, we have

Eq

[
∂

∂xT
ϕ(x,y)

]
= Eq

[
∂

∂xT

K∑
k=1

ϕk(xk,yk)
]

=
K∑

k=1
Eq

[
∂

∂xT
ϕk(xk,yk)

]

=
K∑

k=1
PT

k Eq

[
∂

∂xT
k

ϕk(xk,yk)
]

=
K∑

k=1
PT

k Eqk

[
∂

∂xT
k

ϕk(xk,yk)
]
. (3.18)

For factor k, we are able to simplify the derivative from being with respect to x, to
being with respect to xk. We use the selection matrix (as a dilation matrix) to map
the derivative back into the appropriate rows of the overall result. We see that the
expectation again simplifies to being with respect to qk = qk(xk), the marginal of the
estimate for just the variables in factor k. For the last (matrix) expectation, we can
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follow similar steps to show:

Eq

[
∂2

∂xT∂x
ϕ(x,y)

]
= Eq

[
∂2

∂xT∂x

K∑
k=1

ϕk(xk,yk)
]

=
K∑

k=1
Eq

[
∂2

∂xT∂x
ϕk(xk,yk)

]

=
K∑

k=1
PT

k Eq

[
∂2

∂xT
k ∂xk

ϕk(xk,yk)
]

Pk =
K∑

k=1
PT

k Eqk

[
∂2

∂xT
k ∂xk

ϕk(xk,yk)
]

Pk. (3.19)

Now it is clear that we do not require the full Gaussian estimate, q(x), which would
require a large amount of compute and storage in large-scale trajectories due to the dense
covariance, Σ. We only require the marginals of q(x) that correspond to each factor. We
can also see that from (3.13a) and (3.19) that Σ−1 is exactly sparse (with its pattern
depending on the nature of the factors) and that the sparsity pattern will be constant in
our iterative update scheme.

Some of these remarks may seem familiar to those used to working with a MAP
approach to batch state estimation (e.g., the sparsity pattern of Σ−1 exists and is constant
across iterations). But now we are performing GVI that iterates over a full Gaussian PDF
(i.e., mean and covariance) not just a point estimate (i.e., mean only). What remains is
how we can efficiently compute the sub-blocks of the covariance that we need, which we
discuss in the following subsection.

3.2.4 Partial Computation of the Covariance

At each iteration of our GVI approach, we need to solve a system of linear equations for
the update in the mean:

Σ−1 δµ = r, (3.20)

where r is the right-hand side in (3.13b). We start by applying a sparse lower-diagonal-
upper decomposition,

Σ−1 = LDLT , (3.21)

where D is diagonal and L is a sparse, lower-triangular matrix with ones on the main
diagonal. The sparsity of this decomposition depends on the factorization of the joint
likelihood (i.e., the nature of the prior and measurement factors). We can then solve for
the mean update similarly to what is done in MAP (e.g., sparse forward and backward
substitution).

For the covariance, Σ, we only need to compute the sub-blocks that correspond to
the non-zero sub-blocks of Σ−1. We will apply the method of Takahashi et al. (1973),
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which we summarize here for completeness. First, we notice that

LDLTΣ = 1, (3.22)

where 1 is the identity matrix. Premultiplying by the inverse of LD, we get

LTΣ = D−1L−1, (3.23)

where L−1 will in general no longer be sparse. Taking the transpose and adding Σ−ΣL
to both sides we have (Takahashi et al., 1973)

Σ = L−T D−1 + Σ (1− L) . (3.24)

Since Σ is symmetric, we only need to (at most) compute the main diagonal and the
lower-half blocks, which can be done through a backward substitution pass. To see this
we expand the lower-half blocks as follows:



. . .

. . . ΣK−2,K−2

. . . ΣK−1,K−2 ΣK−1,K−1

. . . ΣK,K−2 ΣK,K−1 ΣK,K


=



. . .

D−1
K−2,K−2

D−1
K−1,K−1

D−1
K,K



−



. . . ... ... ...

. . . ΣK−2,K−2 ΣK−2,K−1 ΣK−2,K

. . . ΣK−1,K−2 ΣK−1,K−1 ΣK−1,K

. . . ΣK,K−2 ΣK,K−1 ΣK,K





. . .

. . . 0

. . . LK−1,K−2 0

. . . LK,K−2 LK,K−1 0


, (3.25)

where we only show the blocks necessary for the calculation of the lower-half of Σ. We
drop L−T since it only affects the upper-half blocks of Σ and is therefore unnecessary.
Temporarily ignoring the need to exploit sparsity, we see that we can calculate the lower-



Chapter 3. Exactly Sparse Gaussian Variational Inference 22

basic sparsity constraint trajectory example SLAM example
(note fill in at (5, 3) in L) (6 robot poses) (3 poses, 3 landmarks)

Σ−1 =



∗ ∗ ∗
∗

∗ ∗
∗

∗ ∗
∗


Σ−1 =



∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗


Σ−1 =



∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗



L =



∗
∗

∗ ∗
∗

∗ + ∗
∗


L =



∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗


L =



∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ + ∗
∗ ∗ ∗ + + ∗



Figure 3.1: Example sparsity patterns of Σ−1 and the corresponding sparsity of the
lower-triangular factor L. The set of zero entries (whitespace) of the lower-half of L is a
subset of the zero entries of the lower-half of Σ−1. There are some extra non-zero entries
of L, shown as +, that arise from completing the ‘four corners of a box’ as shown in the
first example.

half blocks of Σ through backward substitution:

ΣK,K = D−1
K,K , (3.26a)

ΣK,K−1 = −ΣK,KLK,K−1, (3.26b)
ΣK−1,K−1 = D−1

K−1,K−1 −ΣK−1,KLK,K−1, (3.26c)
...

Σj,k = δ(j, k) D−1
j,k −

K∑
ℓ=k+1

Σj,ℓLℓ,k, (j ≥ k) (3.26d)

where δ(·, ·) is the Kronecker delta function.
Now recall that we do not want to compute all blocks of the covariance as that will

be too expensive. We will make use of an observation that (in general) blocks that are
zero in L will also be zero in Σ−1, but not the other way around. This is because the
sparsity of the lower-half of L matches the sparsity of the lower-half of Σ−1, except that
L can have a few more non-zero entries to ensure the sparsity of Σ−1 when multiplied
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together. Figure 3.1 shows example sparsity patterns for Σ−1 and the corresponding
sparsity pattern of L. Specifically, if Lk,i ̸= 0 and Lj,i ̸= 0, then we must have Lj,k ̸= 0
(Erisman and Tinney, 1975). This can be visualized as completing the ‘four corners of a
box’, as shown in the first column of Figure 3.1.

Finally, we follow the explanation of Erisman and Tinney (1975) to understand why
we do not need to calculate all of the blocks of Σ. We want to compute all the blocks of
the lower-half of Σ corresponding to the non-zero blocks of L. In equation (3.26d), we
see that if Lp,k is non-zero, then we need Σj,p to compute the non-zero block Σj,k. But
if Σj,k is non-zero, Lj,k must also be non-zero. Then using our ‘four corners of a box’
rule, Lj,p must be non-zero and so we will have Σj,p and Σp,j = ΣT

j,p on our list of blocks
to compute already. This shows the calculation of the desired blocks is closed under the
scheme defined by (3.26d), which in turn implies that there will always exist an efficient
algorithm to calculate the blocks of Σ corresponding to the non-zero blocks of Σ−1, plus
a few more according to the ‘four corners of a box’ rule.

We have shown that in general, the calculation of the required blocks of Σ (corre-
sponding to the non-zero block of Σ−1) can be piggybacked efficiently onto the solution
of (3.13b). The bottleneck for computational complexity is the original lower-diagonal-
upper decomposition, which is also required for MAP. Therefore our ESGVI approach
has the same order of computational cost (as a function of the state size) as MAP for
a given problem, but will have a higher coefficient due to the extra burden of using the
marginals to compute expectations.

3.2.5 Marginal Sampling and Derivative-Free Optimization

In Section 3.2.3, we demonstrated that we only need to calculate the marginal expecta-
tions at the factor level, which can then be reassembled back into the larger expectations
of (3.14). These expectations are

Eqk
[ϕk(xk,yk)]︸ ︷︷ ︸
scalar

, Eqk

[
∂

∂xT
k

ϕk(xk,yk)
]

︸ ︷︷ ︸
column

, Eqk

[
∂2

∂xT
k ∂xk

ϕk(xk,yk)
]

︸ ︷︷ ︸
matrix

. (3.27)

We note that we have not made any assumptions on the specific form of the factors,
ϕk(·, ·), including the differentiability of the factors (despite the first and second deriva-
tives in the equations). If the factors are twice differentiable, we can proceed as is and use
a Gaussian cubature approximation for the expectations. Alternatively, motivated by ex-
isting sampling-based filters, such as the unscented Kalman filter (Julier and Uhlmann,
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1996), the cubature Kalman filter (Arasaratnam and Haykin, 2009), and the Gauss-
Hermite Kalman filter (Ito and Xiong, 2000)(Wu et al., 2006), we present an alternative
method to compute the terms in (3.27) that is derivative-free.

To avoid the need to compute derivatives of ϕk(·, ·), we can apply Stein’s lemma in
the opposite direction from our previous use. Using (3.11) we have

Eqk

[
∂

∂xT
k

ϕk(xk,yk)
]

= Σ−1
kk Eqk

[(xk − µk)ϕk(xk,yk)], (3.28)

and using (3.12) we have

Eqk

[
∂2

∂xT
k ∂xk

ϕk(xk,yk)
]

= Σ−1
kk Eqk

[(xk−µk)(xk−µk)Tϕk(xk,yk)]Σ−1
kk−Σ−1

kk Eqk
[ϕk(xk,yk)].

(3.29)
Therefore an alternative way to compute the three expectations in (3.27) without explicit
computation of derivatives involves first computing

Eqk
[ϕk(xk,yk)]︸ ︷︷ ︸
scalar

, Eqk
[(xk − µk)ϕk(xk,yk)]︸ ︷︷ ︸

column
, Eqk

[
(xk − µk)(xk − µk)Tϕk(xk,yk)

]
︸ ︷︷ ︸

matrix

,

(3.30)
then computing (3.28) and (3.29) using the results of (3.30). Note how this reverse
application of Stein’s lemma has not affected the sparsity that we are exploiting for
efficiency since we are applying it at the marginal level.

Now we discuss how we can approximate the three expectations given in (3.30) in an
efficient, yet accurate way. As integrals, computing the expectations in (3.30) is gener-
ally not possible analytically, so we seek a numerical approximation. There are many
ways of approximating the integrals of this form, the most popular type being multi-
dimensional Gaussian quadrature, commonly referred to as Gaussian cubature or sim-
ply cubature (Cools, 1997)(Sarmavuori and Särkkä, 2012)(Kokkala et al., 2016)(Särkkä
et al., 2016)(Särkkä, 2013). Using cubature, each of the expectations is approximated as
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(Kokkala et al., 2016)(Särkkä et al., 2016)(Särkkä, 2013)

Eqk
[ϕk(xk,yk)] ≈

L∑
ℓ=1

wk,ℓ ϕk(xk,ℓ,yk), (3.31a)

Eqk
[(xk − µk)ϕk(xk,yk)] ≈

L∑
ℓ=1

wk,ℓ (xk,ℓ − µk)ϕk(xk,ℓ,yk), (3.31b)

Eqk
[(xk − µk)(xk − µk)Tϕk(xk,yk)] ≈

L∑
ℓ=1

wk,ℓ (xk,ℓ − µk)(xk,ℓ − µk)Tϕk(xk,ℓ,yk),

(3.31c)

where wk,ℓ are weights, xk,ℓ = µk +
√
Σkkξk,ℓ are sigmapoints, and ξk,ℓ are unit sigma-

points. Both the weights and unit sigmapoints are specific to the cubature method. Some
popular examples are the unscented transform (Julier and Uhlmann, 1996)(Särkkä et al.,
2016)(Särkkä, 2013), the spherical-cubature rule (Arasaratnam and Haykin, 2009)(Kokkala
et al., 2016)(Särkkä, 2013), and Gauss-Hermite cubature (Ito and Xiong, 2000)(Wu et al.,
2006)(Särkkä, 2013). Of note is how the nonlinearity of the integrand will affect how ac-
curately each cubature method can approximate it. Särkkä (2013) states that, given an
integrand composed of a linear combination of monomials of the form xd1

1 , x
d2
2 , . . . , x

dNk
Nk

,
the Mth order Gauss-Hermite cubature rule is exact when di ≤ 2M − 1. In other words,
more nonlinearity requires more computation effort (more sigmapoints). For example, an
Mth-order Gauss-Hermite cubature approximation will require MNk sigmapoints, which
could be infeasible in practice when Nk is large. Fortunately, the approximations given in
(3.31) are at the factor level (i.e., at the level of xk, not x), where Nk is a manageable size
in most robotics problems. For this reason, we use Gauss-Hermite cubature in our nu-
merical work presented in Sections 3.4, 3.5, and 3.6, resulting in accurate approximations
of the expectations that are reasonably efficient.

3.2.6 Alternate Loss Functional

In this subsection, we present an alternative loss functional that will require less com-
putational effort and offer more numerical stability over the main ESGVI approach. We
consider the special case where the negative-log-likelihood takes the form

ϕ(x,y) = 1
2e(x,y)T W−1e(x,y). (3.32)
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Substituting this into the loss functional, we have

V (q) = 1
2Eq

[
e(x,y)T W−1e(x,y)

]
+ 1

2 ln(|Σ−1|). (3.33)

Owing to the convexity of the quadratic expression, eT W−1e, we can apply Jensen’s
inequality (Jensen, 1906) directly to write

Eq[e(x,y)]T W−1Eq[e(x,y)] ≤ Eq

[
e(x,y)T W−1e(x,y)

]
. (3.34)

The Jensen gap is the (positive) difference between the right and left sides of this in-
equality and tends to be larger the more nonlinear e(x,y) is and less concentrated q(x)
is. Motivated by this relationship, we can define a new loss functional as

V ′(q) = 1
2Eq[e(x,y)]T W−1Eq[e(x,y)] + 1

2 ln(|Σ−1|), (3.35)

which can be thought of as a conservative approximation of V (q) for mild nonlinearities
and/or concentrated posteriors.

V ′(q) can be minimized by iteratively updating q(x) while exploiting the problem
sparsity from a factored likelihood. Combining Stein’s lemma with (3.5a), (3.5b), and (3.5c),
we have the useful identities

∂

∂µT
Eq[f(x)] ≡ Eq

[
∂f(x)
∂xT

]
, (3.36a)

∂2

∂µT∂µ
Eq[f(x)] ≡ Eq

[
∂2f(x)
∂xT∂x

]
≡ −2Σ−1

(
∂

∂Σ−1Eq[f(x)]
)
Σ−1. (3.36b)

We can then directly approximate the expected error as

Eq(i+1) [e(x,y)] ≈ Eq(i) [e(x,y)] + ∂

∂µ
Eq(i) [e(x,y)]

(
µ(i+1) − µ(i)

)
︸ ︷︷ ︸

δµ

= Eq(i) [e(x,y)]︸ ︷︷ ︸
ē(i)

+Eq(i)

[
∂

∂x
e(x,y)

]
︸ ︷︷ ︸

Ē(i)

δµ = ē(i) + Ē(i) δµ, (3.37)

where we have employed (3.36a).
We can then approximate the loss functional as

V ′(q) ≈ 1
2
(
ē(i) + Ē(i) δµ

)T
W−1

(
ē(i) + Ē(i) δµ

)
+ 1

2 ln(|Σ−1|), (3.38)
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which is now exactly quadratic in δµ. Since we have implicitly approximated the Hessian,
our approximations lead to a Gauss-Newton estimator. Taking the first and second
derivatives with respect to δµ, we have

∂V ′(q)
∂ δµT

= Ē(i)T W−1
(
ē(i) + Ē(i) δµ

)
, (3.39)

∂2V ′(q)
∂ δµT∂ δµ

= Ē(i)T W−1Ē(i). (3.40)

For the derivative with respect to Σ−1, we have

∂V ′(q)
∂Σ−1 ≈ −

1
2Σ Ē(i)T W−1Ē(i) Σ + 1

2Σ, (3.41)

where the approximation enforces the relationship in (3.36b), which does not hold exactly
anymore due to the altered nature of V ′(q). Setting this to zero for a critical point we
have

(Σ−1)(i+1) = Ē(i)T W−1Ē(i), (3.42)

where we have created an iterative update analogous to that in the main ESGVI approach.
For the mean, we set (3.39) to zero and then for the optimal update we have

Ē(i)T W−1Ē(i)︸ ︷︷ ︸
(Σ−1)(i+1)

δµ = −Ē(i)T W−1ē(i). (3.43)

Solving for δµ provides a Gauss-Newton update, which we will refer to as ESGVI Gauss-
Newton (ESGVI-GN). This is identical to how Gauss-Newton is normally carried out,
but now we calculate ē and Ē not just at a single point but rather as an expectation over
our Gaussian posterior estimate.

We make a number of remarks about the approach:

1. The sparsity of the inverse covariance matrix, Σ−1, will be identical to the full
ESGVI approach. We can demonstrate this by showing

ϕ(x,y) =
K∑

k=1
ϕk(xk,yk) = 1

2

K∑
k=1

ek(xk,yk)T W−1
k ek(xk,yk) = 1

2e(x,y)T W−1e(x,y),

(3.44)
where

e(x,y) =


e1(x1,y1)

...

eK(xK ,yK)

 , W = diag(W1, . . . ,WK). (3.45)
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Then we have

Σ−1 = Eq

[
∂

∂x
e(x,y)

]T

W−1Eq

[
∂

∂x
e(x,y)

]

=
K∑

k=1
PT

k Eqk

[
∂

∂xk

ek(xk,yk)
]T

W−1
k Eqk

[
∂

∂xk

ek(xk,yk)
]

Pk, (3.46)

which will have zeros wherever an error term does not depend on the variables. We
also see that the expectations can be reduced to being over the marginal, qk(xk),
meaning we still only require the blocks of Σ corresponding to the non-zero blocks
of Σ−1.

2. We can still use Stein’s lemma to avoid the need to compute any derivatives:

Eqk

[
∂

∂xk

ek(xk,yk)
]

= Eqk

[
ek(xk,yk)(xk − µk)T

]
Σ−1

kk . (3.47)

This is sometimes referred to as a statistical Jacobian and this usage is very similar
to the filtering and smoothing approaches described by Särkkä (2013), because
cubature can be applied at the measurement model level rather than the factor level.
Since we are iteratively recomputing the statistical Jacobian about our posterior
estimate, this is most similar to Sibley et al. (2006) and Garćıa-Fernández et al.
(2015), although some details are different, such as the fact that we started from
our loss functional, V ′(q).

3. The number of cubature points required to calculate Eqk

[
ek(xk,yk)(xk − µk)T

]
will be lower than our full ESGVI approach since the order of the expression in the
integrand is half that of Eqk

[
(xk − µk)(xk − µk)Tϕk(xk,yk)

]
. Since the number of

cubature points goes up as MNk , cutting M in half is significant.

4. It is known that minimizing KL(q||p), the objective of V (q), can result in a Gaussian
that is too confident (i.e., inverse covariance is too large) (Bishop, 2006; Ala-Luhtala
et al., 2015). From Jensen’s inequality, we can see that V ′(q) will result in a more
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conservative inverse covariance. For an arbitrary non-zero vector, a, we have

0 < aT Eq

[
∂e(x,y)
∂x

]T

W−1Eq

[
∂e(x,y)
∂x

]
︸ ︷︷ ︸

Σ−1 from V ′(q)

a

Jensen
≤ aTEq

[
∂e(x,y)
∂x

T

W−1∂e(x,y)
∂x

]
a Gauss-Newton≈ aT Eq

[
∂2ϕ(x,y)
∂xT∂x

]
︸ ︷︷ ︸
Σ−1 from V (q)

a,

(3.48)

which ensures we have a positive definite inverse covariance that is conservative
compared to the full ESGVI approach.

Due to the extra approximations made in ESGVI-GN compared to ESGVI, it remains
to be seen whether it improves over MAP approaches. However, as ESGVI-GN provides
a batch option that does not require any derivatives, it can be used as a less expensive
preprocessor for the derivative-free version of full ESGVI that will always be positive
definite (for numerical stability).

3.3 Parameter Estimation

We use this section to provide a sketch of how parameters can be learned using our
ESGVI framework and EM. This parameter learning framework is critical to the rest of
this thesis, as the remaining chapters will focus on applications of this idea.

We begin with a maximum-likelihood objective for the observed data, y,

θ∗ = arg max
θ

p(y|θ), (3.49)

where θ represents the parameters we want to learn. Switching to the negative log-
likelihood, introducing the latent state, x, and applying the usual EM decomposition
(Neal and Hinton, 1998; Ghahramani and Roweis, 1999; Bishop, 2006) results in

L = − ln p(y|θ) =
∫ ∞

−∞
q(x) ln

(
p(x|y,θ)
q(x)

)
dx︸ ︷︷ ︸

≤ 0

−
∫ ∞

−∞
q(x) ln

(
p(x,y|θ)
q(x)

)
dx︸ ︷︷ ︸

upper bound

,

where, as in the earlier sections, q(x) is our Gaussian posterior estimate.
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The first term is a KL divergence between the approximate posterior and the true
posterior, p(x|y), which is unknown. However, we can work with the second, upper
bound term that is the (negative) ELBO. We already discussed in Section 3.2.1 that the
ELBO is equivalent to our ESGVI loss:

V (q|θ) = Eq[ϕ(x,y|θ)] + 1
2 ln(|Σ−1|), (3.50)

which we now write with our unknown parameters, θ. We now can proceed iteratively
in two steps: the expectation step (e-step) and the maximization step (m-step). Note
that we are working with the negative log-likelihood so we are technically applying a
minimization, but the acronym stays the same.

The e-step, is already accomplished by ESGVI. We simply hold θ fixed and run the
inference to convergence to solve for q(x), our Gaussian approximation to the posterior.
In the m-step, we hold q(x) fixed and find the value of θ that minimizes the loss functional.
By alternating between the e- and m-steps, we can (locally) solve for the best value of
the parameters to minimize the original data likelihood objective, L .

As we have done in the main part of the chapter, we assume the joint likelihood of
the state and measurements (given the parameters) factors so that

ϕ(x,y|θ) =
K∑

k=1
ϕk(xk,yk|θ), (3.51)

where for generality we have each factor being affected by the entire parameter set, θ,
but in practice it could be a subset. Taking the derivative of the loss functional with
respect to θ, we have

∂V (q|θ)
∂θ

= ∂

∂θ
Eq[ϕ(x,y|θ)] = ∂

∂θ
Eq

[
K∑

k=1
ϕk(xk,yk|θ)

]
=

K∑
k=1

Eqk

[
∂

∂θ
ϕk(xk,yk|θ)

]
,

(3.52)
where in the rightmost expression the expectation simplifies to being over the marginal,
qk(xk), rather than the full Gaussian, q(x). As with the main ESGVI approach, this
means that we only need the blocks of the covariance, Σ, corresponding to the non-zero
blocks of Σ−1, which we are already calculating as part of the e-step. Furthermore, we
can easily evaluate the marginal expectations using sigmapoints.

To make this more tangible, consider the example of

ϕ(x,y|W) = 1
2

K∑
k=1

(
ek(xk,yk)T W ek(xk,yk)− ln(|W|)

)
, (3.53)
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where the unknown parameter is W, the inverse measurement covariance matrix. Then
taking the derivative with respect to W we have

∂V (q|W)
∂W

= 1
2

K∑
k=1

Eqk

[
ek(xk,yk)ek(xk,yk)T

]
− K

2 W−1. (3.54)

Setting this to zero for a minimum we have

W−1 = 1
K

K∑
k=1

Eqk

[
ek(xk,yk)ek(xk,yk)T

]
, (3.55)

where we can use sigmapoints to evaluate the marginal expectations. Reiterating, we
never require the full covariance matrix, Σ, implying that our exactly sparse framework
extends to parameter estimation.

3.4 Experiment 1: Stereo One-Dimensional Simula-
tion

Our first experiment is a simulation of a simple one-dimensional, nonlinear estimation
problem motivated by the type of inverse-distance nonlinearity in a stereo camera model.
Since this problem is one-dimensional, our aim in this experiment is to show that our
proposed iterative scheme converges to the minimum of our cost function and that we
offer an improvement over the usual MAP approach. We will demonstrate the ability to
exploit sparsity in the next two experiments.

(Barfoot, 2024) uses this same experiment, with the same parameter settings, as an
example to demonstrate how the point estimate of MAP approaches the mode of the true
(non-Gaussian) posterior. We assume our true state is drawn from a Gaussian prior:

x ∼ N (µp, σ
2
p). (3.56)

We then generate a measurement according to

y = fb

x
+ n, n ∼ N (0, σ2

r), (3.57)

where n is measurement noise. The numerical values used in our trials were

µp = 20 [m], σ2
p = 9 [m2], f = 400 [pixel], b = 0.1 [m], σ2

r = 0.09 [pixel2].
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The two factors are defined as

ϕ = 1
2

(x− µp)2

σ2
p

, ψ = 1
2

(
y − fb

x

)2

σ2
r

, (3.58)

so that − ln p(x,y) = ϕ+ ψ + constant. Our loss functional is

V (q) = Eq[ϕ] + Eq[ψ] + 1
2 ln(σ−2), (3.59)

where q = N (µ, σ2) is our Gaussian estimate of the posterior.
We ran 100, 000 trials of a proper Bayesian experiment, where each trial consisted

of drawing the latent state from the prior, then producing a noisy measurement given
that state. We avoided edge cases (e.g., negative distance) by only accepting a draw of
the latent state if it was within 4 standard deviations of the mean, resulting in 6 out
of the 100, 000 experiments to not be accepted and the state redrawn. We then ran
several versions of our algorithm summarized in Table 3.2. Everything else to do with
the experiment was the same for all algorithms, allowing a fair comparison. Figure 3.2
shows the statistical results of our 100, 000 trials as boxplots. The columns correspond to
the different versions of our algorithm, while the rows are different performance metrics.
The first column (analytical Hessian and Jacobian with a single quadrature point at the
mean) is equivalent to a standard MAP approach. We can see that our new algorithms
do require a few more iterations (first row) to converge than MAP, i.e., it takes more
computation to arrive at a better approximation to the posterior. We can also see that
the new algorithms do find a lower final value of the loss functional, V (q), which is what
we asked them to minimize (second row).

We also wanted to see if the new algorithms were less biased and more consistent
than MAP, and so we calculated the average error (third row), average squared error
(fourth row), and squared Mahalanobis / Normalized Estimation Squared Error (NEES)
(fifth row). To be fair, we did not ask the estimator to minimize these quantities, but our
hypothesis has been that we should also do better on these metrics by minimizing V (q).
Looking at the third row, all the GVI variants are less biased than MAP by two orders of
magnitude or more. Our MAP error of −30.6 cm is consistent with the result reported
by Barfoot (2024). The best algorithm reported there, the Iterated Sigmapoint Kalman
Filter (ISPKF) (Sibley et al., 2006), had a bias of −3.84 cm. Here, our best algorithm
has a bias of 0.3 cm. Squared error (fourth row) is also slightly improved compared to
MAP.

The average squared Mahalanobis / NEES error should be close to 1 for a one-
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Figure 1. (Experiment 1) Statistical results of 100, 000 trials of the one-dimensional stereo camera simulation shown as
standard boxplots. The different rows show different performance metrics for the different variants of our algorithm (columns).
Table 2 provides details of the different algorithms tested. The number below an algorithm label is its mean performance on that
metric. Further details are discussed in the text.
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The first column (analytical Hessian and Jacobian with
a single quadrature point at the mean) is equivalent to
a standard MAP approach. We can see that our new
algorithms do require a few more iterations (first row) to
converge than MAP, which is to say that it takes more

computation to arrive at a better approximation to the
posterior. We also see that the new algorithms do find a
lower final value of the loss functional, V (q), which is what
we asked them to minimize (second row).

We also wanted to see if the new algorithms were less
biased and more consistent than MAP, and so calculated
the average error (third row), average squared error (fourth
row), and squared Mahalanobis / Normalized Estimation
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Figure 3.2: (Experiment 1) Statistical results of 100, 000 trials of the one-dimensional
stereo camera simulation shown as standard boxplots. The different rows show different
performance metrics for the different variants of our algorithm (columns). Table 3.2
provides details of the different algorithms tested. The number below an algorithm label
is its mean performance on that metric. Further details are discussed in the text.

dimensional problem. Our results here are mixed, with some of our approaches doing
better than MAP and some not. It seems that our choice of KL(q||p) rather than KL(p||q)
results in a slightly overconfident covariance. Bishop (2006) and Ala-Luhtala et al. (2015)
show similar situations for the same choice of KL(q||p). It may be possible to overcome
this by changing the relative weighting between the two main terms in V (q) through the
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Figure 3.3: (Experiment 1) One trial of the one-dimensional simulation showing the
convergence history for three different algorithms in each row. The left column shows a
contour map of the loss functional, V (q), with the steps the optimizer took starting from
the prior (green dot) to its converged value (red dot). The right column shows the loss
at each iteration. Since each algorithm makes different approximations to the loss, we
show the loss that each algorithm used to make decisions and the true loss at each step.
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Figure 3.4: (Experiment 2) Factor graph for the stereo K-dimensional simulation. White
circles represent variables to be estimated, which are robot positions and landmark po-
sitions. Small black dots represent factors in the joint likelihood of the state and data.

use of a hyperparameter that is tuned for a particular situation.
Figure 3.3 shows the convergence of a single trial of the 100, 000 that we ran. Only

a subset of the algorithms (rows) are shown in the interest of space. The left column is
a contour plot of V (q) and the path the optimizer took to arrive at its minimum (red
dot), starting from the prior (green dot). The right column shows a plot of V (q) at each
iteration. We show the true value of the loss and the approximation of the loss that the
algorithm had access to during its iterations (each algorithm used a different number of
quadrature points, M). Note that the true value of the loss is calculated with a larger
number of quadrature points. We see that the MAP approach clearly does not converge
at the minimum of V (q) due to its approximation of the required expectations. The other
algorithms converge close to the true minimum in a similar number of iterations.

3.5 Experiment 2: Stereo K-Dimensional Simulation

In this simulated experiment, we introduce time and allow our simulated robot to move
along the x-axis, using the same nonlinear stereo camera model as the previous exper-
iment. Our aim is to show that we can exploit the sparse structure of the problem in
higher dimensions, while still benefiting from our variational approach. We apply a prior
both on the robot motion and on the landmark positions in this SLAM problem. While a
prior on the landmark positions is not common in practice, we do so in order to conduct
a proper Bayesian comparison of the algorithms. The factor graph for the problem is
shown in Figure 3.4.



Chapter 3. Exactly Sparse Gaussian Variational Inference 36

Our state is

x =



x0
...

xK

m1
...

mK



, xk =

pk

vk

 , (3.60)

where pk is a robot position, vk a robot speed, and mk a landmark position. The problem
is highly structured as each landmark is seen exactly twice from two consecutive robot
positions.

For the (linear) prior factors, we have

ϕk =


1
2(x0 − x̌0)T P̌−1(x0 − x̌0) k = 0
1
2(xk −Axk−1)T Q−1(xk −Axk−1) k > 0

, (3.61a)

φk = 1
2

(mk − µm,k)2

σ2
m

, (3.61b)

with

P̌ = diag(σ2
p, σ

2
v), A =

1 T

0 1

 , Q =

1
3T

3QC
1
2T

2QC

1
2T

2QC TQC

 , (3.62)

where T is the discrete-time sampling period, QC is a power spectral density, and σ2
p, σ2

v ,
σ2

m are variances. The robot state prior encourages constant velocity (Barfoot, 2024),
and the landmark prior is a Gaussian centered at the true landmark location, µm,k.

For the (nonlinear) measurement factors, we have

ψℓ,k = 1
2

(
yℓ,k − fb

mℓ−pk

)2

σ2
r

, (3.63)

where f and b are the same camera parameters of the previous experiment, yℓ,k is the
disparity measurement of the ℓth landmark from the kth position, and σ2

r is the mea-
surement noise variance.

The negative log-likelihood of the state and data is then

− ln p(x,y) =
K∑

k=0
ϕk +

K∑
k=1

φk +
K∑

k=1
(ψk,k−1 + ψk,k) + constant. (3.64)



Chapter 3. Exactly Sparse Gaussian Variational Inference 37

0 50 100 150 200 250 300
nz = 15445

0

50

100

150

200

250

300
0 50 100 150 200 250 300

nz = 31189

0

50

100

150

200

250

300
0 50 100 150 200 250 300

nz = 1687

0

50

100

150

200

250

300

⌃�1 ⌃L

robot trajectory landmarks robot trajectory landmarks robot trajectory landmarks
robot trajectory

landm
arks

(computed blocks only - matrix is dense)(sparsity pattern)(sparsity pattern)

Figure 3.5: (Experiment 2) Sparsity patterns for the stereo K-dimensional simulation
experiment. The red partition lines separate the robot state variables from the landmark
variables. The inverse covariance, Σ−1, is highly sparse due to the factor graph pattern
in Figure 3.4, where only 1,687/89,401 = 1.9% of entries are nonzero. After performing a
lower-diagional-upper decomposition, the lower factor, L, becomes more filled due to the
‘four corners of a box’ rule, where 15,445/89,401 = 17.3% of entries are non-zero. Finally,
we see that only a fraction of the entries of Σ are required even though this matrix is
actually dense. Since Σ is symmetric, we only need to calculate 17.3% of it as well.

We set the maximum number of timesteps to be K = 99, resulting in a total state
dimension of 299. Figure 3.5 shows the sparsity patterns of Σ−1, L, and the blocks of Σ
that get computed by the method of Takahashi et al. (1973).

We ran 10, 000 trials of this simulation, where for each trial, we drew the latent
robot trajectory and landmark states from the Bayesian prior, then simulated the noisy
nonlinear measurements. We estimated the full state using four different algorithms
from Table 3.2: ‘MAP Newton’, ‘ESGVI deriv M=2’, ‘ESGVI deriv M=3’, and ‘ESGVI
deriv-free M=4’. Figure 3.6 shows the statistical results of the 10, 000 trials.

The results show that all the algorithms converge well in a small number of iterations
(usually 4). Increasing the number of cubature points for the derivative-based methods
does result in reducing the overall value of the loss functional, V (q). The ‘ESGVI deriv-
free M=4’ method performs on par with ‘ESGVI deriv M=3’ method, but requires no
analytical derivatives of the factors.

Similar to the one-dimensional simulation, the bias in the estimate (see middle row
of Figure 3.6) is reduced in the GVI approaches compared to the MAP approach. This
result is important since it can be achieved in a tractable way for large-scale problems and
even without analytical derivatives. The GVI methods also do slightly better than MAP
on the mean-squared error (fourth row of Figure 3.6) as well as squared Mahalanobis
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Figure 5. (Experiment 2) Statistical results of 10, 000 trials of the K-dimensional stereo camera simulation shown as standard
boxplots. The different rows show different performance metrics for the different variants of our algorithm (columns). Table 2
provides details of the different algorithms tested. The number below an algorithm label is its mean performance on that metric.
Further details are discussed in the text.

groundtruth for both the robot trajectory and landmark
positions is provided by a Vicon motion capture system.
The whole dataset is 12, 000 timesteps long, which we
broke into six subsequences of 2000 timestamps; statistical
performance reported below is an average over these six
subsequences. We assume that the data association (i.e.,
which measurement corresponds to which landmark) is

known in this experiment to restrict testing to the state
estimation part of the problem.
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Figure 3.6: (Experiment 2) Statistical results of 10, 000 trials of the K-dimensional stereo
camera simulation shown as standard boxplots. The different rows show different perfor-
mance metrics for the different variants of our algorithm (columns). Table 3.2 provides
details of the different algorithms tested. The number below an algorithm label is its
mean performance on that metric. Further details are discussed in the text.

distance / NEES (fifth row of Figure 3.6), but the improvements are smaller.

3.6 Experiment 3: Robot Dataset

Here, we consider a batch SLAM problem with a robot driving around and building a
map of landmarks using a laser rangefinder. This dataset has previously been used by
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Figure 3.7: (Experiment 3) Setup: (left) a mobile robot navigates a map of landmarks,
receiving bearing measurements to some landmarks and wheel odometry. (right) the
ground-truth path of the robot and landmark map as measured by the Vicon system.

Barfoot et al. (2014) to test SLAM algorithms. Figure 3.7 shows the experiment setup.
The groundtruth for both the robot trajectory and landmark positions is provided by
a Vicon motion capture system. The whole dataset is 12, 000 timesteps long, which we
divide into six subsequences of 2, 000 timestamps. We report statistical performance as
an average over these six subsequences. We assume that the data association (i.e., the
correspondence between measurements and landmarks) is known in this experiment to
focus on testing the state estimation part of the problem.

Our state is

x =



x0
...

xK

m1
...

mL



, xk =



xk

yk

θk

ẋk

ẏk

θ̇k



, mℓ =

xℓ

yℓ

 , (3.65)

where xk is a robot state and mℓ a landmark position. For each of our six subsequences
we have K = 2, 000 and L = 17.

Figure 3.8 shows the factor graph for this experiment and Figure 3.9 shows the cor-
responding sparsity patterns. The (linear) prior on the robot states is

ϕk =


1
2(x0 − x̌0)T P̌−1(x0 − x̌0) k = 0
1
2(xk −Axk−1)T Q−1(xk −Axk−1) k > 0

, (3.66)
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Figure 3.8: (Experiment 3) Factor graph for our robot dataset. White circles indicate
state variables and small black circles indicate factors.

with

P̌ =diag(σ2
x, σ

2
y , σ

2
θ , σ

2
ẋ, σ

2
ẏ, σ

2
θ̇), A =

1 T1

0 1

 , Q =

1
3T

3QC
1
2T

2QC

1
2T

2QC TQC

 ,
QC = diag(QC,1, QC,2, QC,3), (3.67)

where T is the discrete-time sampling period, QC,i are power spectral densities, and
σ2

x, σ2
y ,σ2

θ , σ2
ẋ, σ2

ẏ, σ2
θ̇

are variances. The robot state prior encourages constant velocity
(Barfoot, 2024). Unlike the previous experiment, we do not have a prior on the landmark
positions. The landmark prior was necessary for conducting a proper Bayesian evaluation
in the previous experiment, but here we have a standard SLAM problem.

The (nonlinear) odometry factors are

ψk = 1
2 (vk −Ckxk)T S−1 (vk −Ckxk) , (3.68)

where

vk =


uk

vk

ωk

 , Ck =


0 0 0 cos θk sin θk 0

0 0 0 − sin θk cos θk 0

0 0 0 0 0 1

 , S = diag
(
σ2

u, σ
2
v , σ

2
ω

)
. (3.69)

The vk consists of measured forward, lateral, and rotational speeds in the robot frame,
derived from the wheel encoder measurements. We set vk = 0, which enforces the non-
holonomy of the wheels as a penalty. The σ2

u, σ2
v , and σ2

ω are measurement noise variances.
The (nonlinear) bearing measurement factors are

ψℓ,k = 1
2

(βℓ,k − g(mℓ,xk))2

σ2
r

, (3.70)
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Figure 3.9: (Experiment 3) Sparsity patterns for the first 100 of 2, 000 timestamps of
the robot dataset. The red partition lines separate the robot state variables from the
landmark variables. The inverse covariance, Σ−1, is highly sparse due to the factor graph
pattern in Figure 3.8, where only 11,636/401,956 = 2.9% of entries are nonzero. After
performing a lower-diagional-upper decomposition, the lower factor, L, becomes more
filled in due to the ‘four corners of a box’ rule, where 20,590/401,956 = 5.1% of entries
are non-zero. Finally, we see that only a fraction of the entries of Σ are required even
though this matrix is actually dense. Since Σ is symmetric, we only need to calculate 5.1%
of it as well. For the full 2, 000-timestamp trajectory, the sparsity is even more favourable
for ESGVI, but the landmark part of the pattern becomes difficult to visualize due to its
small size relative to the trajectory.

with
g(mℓ,xk) = atan2(yℓ − yk − d sin θk, xℓ − xk − d cos θk)− θk, (3.71)

where βℓ,k is a bearing measurement from the kth robot pose to the ℓth landmark, d is the
offset of the laser rangefinder from the robot center in the longitudinal direction, and σ2

r is
the measurement noise variance. Although the dataset also provides range measurements
to the landmarks, we chose to omit these measurements to make the problem more
difficult and accentuate the differences between the various algorithms. Our setup is
similar to a monocular camera SLAM problem, which is known to be challenging.

Combining all the factors, our joint state/data likelihood is

− ln p(x,y) =
K∑

k=0
ϕk +

K∑
k=0

ψk +
K∑

k=1

L∑
ℓ=1

ψℓ,k + constant. (3.72)

Note that not all L = 17 landmarks are actually seen at each timestep, so we remove
those factors for unseen landmarks in the implementation.

We initialized our landmark locations using the bearing-only RANSAC (Fischler and
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Bolles, 1981) strategy described by McGarey et al. (2017). We attempted to initialize our
robot states using only wheel odometry, but this was too difficult in practice for methods
that use the full Hessian (i.e., Newton’s method). We instead used wheel odometry to
initialize Gauss-Newton, which then provided a better initialization for Newton’s method.
Specifically, we used MAP Gauss-Newton to initialize MAP Newton and ESGVI-GN to
initialize ESGVI. To evaluate our results using the groundtruth, we aligned the resulting
landmark map to the groundtruth map since SLAM produces a relative solution. We
compute the errors we report after this alignment. We also allowed all of the algorithms
to make use of the usual Levenberg-Marquardt approximation of the Hessian and a line
search at each iteration to increase robustness.

As an aside, it is worth noting that an alternative to using Gauss-Newton for ini-
tialization was demonstrated as an extension to our full ESGVI approach in later work
by Goudar et al. (2022), where they propose a modification to the update scheme that
guarantees that the update to the inverse posterior covariance will always be positive
definite. We encourage readers to consider their work for improved numerical stability.
However, using the Gauss-Newton variant with the alternate loss functional, as we have
in our experiments, may still be desirable for its cheaper compute.

Similar to the previous experiments, Figure 3.10 provides the statistical results of
several variants of our ESGVI algorithms. We see that the number of iterations to
converge is higher than the previous experiments, with the ESGVI variants requiring a
few more than the corresponding MAP algorithms. Again, we see the ESGVI variants
reducing the loss functional, V (q), lower than the MAP methods. The mean error is
further away from zero for the ESGVI methods than MAP, but we believe this is due to
the small number of trials compared to the previous two experiments. The squared error
and squared Mahalanobis distance metrics are improved for the full ESGVI methods
compared to the MAP methods and the ESGVI-GN method.

Table 3.1: (Experiment 3) Wall-clock time per iteration for tested algorithms.

algorithm wall-clock time
label per iteration [s]

MAP Newton 4.25
MAP GN 1.09
ESGVI deriv M=3 82.94
ESGVI-GN deriv-free M=3 24.53
ESGVI deriv-free M=4 113.32
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Figure 9. (Experiment 3) Statistical results of robot dataset shown as standard boxplots. The different rows show different
performance metrics for the different variants of our algorithm (columns). Table 2 provides details of the different algorithms
tested. The number below an algorithm label is its mean performance on that metric, averaged over all 2000 timestamps and six
subsequences. Further details are discussed in the text.

of the Hessian and a line search at each iteration to increase
robustness.

Figure 9 provides the statistical results of several variants
of our ESGVI algorithms. We see that the number of
iterations required to converge is higher than in the previous
experiments, with the ESGVI variants requiring a few more
than the corresponding MAP algorithms. Again, we see the
ESGVI variants reducing the loss functional, V (q), further

than the MAP methods. The mean error is further away
from zero for the ESGVI methods than MAP, which could
simply be related to the relatively small number of trials
compared to the previous two experiments. However, the
squared error and squared Mahalanobis distance metrics are
drastically improved for the full ESGVI methods compared
to the MAP method and even the ESGVI-GN method.

Prepared using sagej.cls

Figure 3.10: (Experiment 3) Statistical results of robot dataset shown as standard box-
plots. The different rows show different performance metrics for the different variants of
our algorithm (columns). Table 3.2 provides details of the different algorithms tested.
The number below an algorithm label is its mean performance on that metric, averaged
over all 2, 000 timestamps and six subsequences. Further details are discussed in the text.

Figure 3.11 shows the error plots for one of the six subsequences for the ‘MAP GN’ and
‘ESGVI deriv-free M=4’ algorithms. The ESGVI path is visibly better than the MAP
in most sections. MAP seems to have underestimated the scale of the whole solution,
resulting in worse performance in translation, while performing similarly in heading.
Both algorithms are fairly consistent, with ESGVI being more confident. The other five
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subsequences have similar results.
Figure 3.9 shows the sparsity patterns of Σ−1, L, and the blocks of Σ that are

computed1. We show only the patterns for the first 100 timestamps for clarity, but each
subsequence is actually 2, 000 timestamps long. In terms of computational complexity,
all of the algorithms for this SLAM problem are O(L3 + L2K) per iteration, where L
is the number of landmarks and K is the number of timesteps. However, the wall-clock
time required by the different algorithms varies significantly due to different numbers of
iterations and the accuracy with which the required expectations in (3.27) are computed.
Table 3.1 reports how long each algorithm took per iteration. The ESGVI methods come
at a cost, but this may be acceptable for batch (i.e., offline) applications. It is also
worth noting that we have made little attempt to optimize our implementation. We used
a brute-force cubature method requiring MNk sigmapoints where Nk is the number of
state variables involved in a factor. More efficient options could be swapped in to speed
up the evaluation of each factor. Parallelization could also be employed at the factor
level to evaluate the expectations in (3.27) in parallel across several cores/threads.

Table 3.2: Descriptions of variants of our GVI algorithm tested in our experiments.

algorithm method to evaluate M , # quadrature
label expectations in (3.27) points (per dimension)

MAP Newton analytical Jacobian and Hessian 1
MAP GN analytical Jacobian and approximate Hessian 1
ESGVI deriv M=2 analytical Jacobian and Hessian + quadrature 2
ESGVI deriv M=3 analytical Jacobian and Hessian + quadrature 3
ESGVI deriv-free M=3 Stein’s lemma + quadrature 3
ESGVI-GN deriv-free M=3 Stein’s lemma + quadrature 3
ESGVI deriv-free M=4 Stein’s lemma + quadrature 4
ESGVI deriv-free M=10 Stein’s lemma + quadrature 10

3.7 Summary and Conclusions

We presented our Exactly Sparse Gaussian Variational Inference (ESGVI) approach and
demonstrated that it is possible to compute a Gaussian that is ‘closest’ in terms of KL
divergence from the true Bayesian posterior. For large-scale estimation problems, we
exploited the fact that the joint likelihood of the state and data factors, a property

1The covariance matrix is actually dense.
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of most common robotics problems, to show that the full (dense) covariance matrix
is not required, only the blocks corresponding to the non-zero blocks of the (sparse)
inverse covariance matrix. We further showed how to apply cubature methods (e.g.,
sigmapoints) within our framework resulting in a batch inference scheme that does not
require analytical derivatives, yet is applicable to large-scale problems. The methods
offer performance improvements (over MAP) that increase as the problem becomes more
nonlinear and/or the posterior less concentrated. The methodology and experimental
results in this chapter appeared in Barfoot et al. (2020) as a second-author contribution.

In summary, the contributions of this chapter are:

1. A computationally tractable approach to Gaussian Variational Inference (GVI) for
large-scale estimation problems via exploitation of the sparsity formed from the
factorization of the joint likelihood.

2. An implementation of sparse GVI that uses Gaussian cubature to avoid the need
for computing analytical derivatives.

3. A conservative, cheaper (compute) approximation of Gaussian Variational Inference
(GVI) that is applicable under mild nonlinearities and/or when the posterior is
concentrated.

4. Various experiments in both simulation and on real-data demonstrating an im-
provement in performance over MAP.

In the following chapters of this thesis, we shift the focus from state estimation to
parameter learning, of which we presented a brief sketch in Section 3.3.
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Figure 3.11: (Experiment 3) A comparison of ‘MAP GN’ and ‘ESGVI deriv-free M=4’ on
one of the six subsequences of 2, 000 timestamps. Above, we see the individual error plots
with 3σ covariance envelopes for the x, y, and θ components of the robot state. Below,
we have an overhead view of the robot path and landmark map for the two algorithms,
as well as groundtruth.



Chapter 4

Learning a Prior on Covariance

For state estimation, we often have a good understanding of the sensors we will use in
real-world applications and may have handcrafted sensor models to apply in practice. As
discussed in the earlier chapters, we can formulate a probabilistic estimator that relies
on an assumption that uncertain quantities are approximately Gaussian and unbiased.
However, we may find that the noise characteristics of our sensor are either unknown or
differ from the manufacturer specification.

In this chapter, we explore the application of learning covariances for measurement
models. We previously provided a sketch for learning a constant (i.e., non-varying)
measurement covariance in Section 3.3, but a constant model may not always be suitable
in practice. In order to achieve a covariance model that can adapt to varying noise levels,
we apply our ESGVI and EM parameter learning framework to estimate the measurement
covariance as part of the state, rather than treating it as a parameter. This is made
possible in our framework by placing an Inverse-Wishart (IW) prior on the measurement
covariance.

In summary, the main contribution of this chapter is the methodology for estimating
measurement covariance as part of the state by incorporating an IW prior. We demon-
strate our technique using a 36 km experimental dataset for lidar localization.

We present the methodology for our technique in Section 4.2. This is a paradigm shift
from the constant covariance example in Section 3.3 as the measurement covariance is
now treated as part of the state as an uncertain quantity (i.e., e-step). We instead train
for the parameters of the prior on the covariance as part of the m-step. In Section 4.3, we
show experimental results on a lidar localization problem and demonstrate a measurement
covariance that adapts during sensor operation and is robust to measurement outliers in
a fashion similar to a robust cost function.

The contents of this chapter is from a second-author contribution that appeared in

47
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a publication to the IEEE Robotics and Automation Letters (Wong et al., 2020b). This
collaboration work was an opportunity to apply parameter learning using the ESGVI
framework, which we developed in the previous chapter, to solve a practical problem of
covariance learning, the research focus of the first author. As a second author, the main
contribution was made to the theory and methodology (as a shared contribution), which
we developed from our work in Chapter 3. Secondary contributions were made to the
experiments, which we also present in this thesis chapter for completeness.

4.1 Related Work

In the simplest case, we may model the measurement noise as a zero-mean Gaussian with
a constant covariance matrix. With access to high-quality groundtruth, we can simply
calculate the sample covariance using a training dataset and be satisfied with this non-
varying noise model throughout the lifetime of the sensor. However, a constant noise
model may not be viable if the noise characteristics vary during sensor operation. An
early approach for handling this problem was the adaptive Kalman Filter (Mehra, 1970;
Stengel, 1994), which is a reactive method that recomputes the sample covariance over
a trailing window of the latest sensor data.

Rather than a reactive approach, a feature-dependent predictive approach adapts
the measurement covariance based on a training dataset. CELLO, a kernel regression
method for the measurement covariance, was presented by Vega-Brown et al. (2013). By
introducing handcrafted features that describe the measurements, local kernel estimates
of the covariance were learned by weighting measurements based on feature similarity.
Landry et al. (2019) adapt CELLO to model the uncertainty of pointcloud registration
for Iterative Closest Point (ICP). Later work extended CELLO to unsupervised training
using EM (Vega-Brown and Roy, 2013; Peretroukhin et al., 2016). Since CELLO is kernel-
based, it is a form of ‘lazy learning’ and may not be computationally efficient for querying
large training datasets. We can instead use a learned approach that generalizes to the
training data offline (i.e., ‘eager learning’), such as a DNN regression model. Brossard
et al. (2020a) regress the noise variances of a vehicle model that penalizes lateral and
vertical motion using a trailing window of IMU data as input. Predicting the covariance
matrices for richer sensor data has been demonstrated for cameras (Liu et al., 2018;
Russell and Reale, 2021) and for ICP using lidars (Torroba et al., 2020; De Maio and
Lacroix, 2022).

In this chapter, we present our approach of treating the measurement covariance as
part of the state we estimate, which involves using a corresponding prior distribution.
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This idea fits into the reactive category for adapting covariances as we will later show
that our estimated covariances are a weighted average between our covariance prior and
the current measurement error residual. Our method is most similar to the work of
Peretroukhin et al. (2016). They also apply an IW prior for learning a measurement
covariance and train it using EM. However, our method differs in the formulation of
the EM learning objective, where they choose to update the vehicle state as a parameter
during the m-step. Our approach considers both the vehicle trajectory and measurement
covariance as state variable quantities that are estimated during the e-step, and updates
the parameters of the IW prior in the m-step. In the next chapter, we will demonstrate
a feature-dependent regression model to predict the measurement variance of Doppler
measurements from a FMCW lidar sensor.

4.2 Inverse-Wishart Prior on Covariance

In this section, we present how an Inverse-Wishart (IW) prior can be placed on a mea-
surement covariance in our ESGVI and EM parameter learning framework. We start by
redefining our joint likelihood as

p(x,y,R) = p(x,y|R)p(R), (4.1)

where now we also include the covariances, R = {R1,R2, . . .RK}, as random variables,
distinguishing it from the W−1 we used in the constant covariance case. We also redefine
our posterior estimate to be

q′(x) = q(x)s(R), (4.2)

a product between a Gaussian q(x) and a posterior distribution for the covariances,
s(R). Following the usual EM decomposition, our negative log-likelihood objective can
be written as

L =− ln p(y) =
∫ ∫

q(x)s(R) ln
(
p(x,R|y)
q(x)s(R)

)
dx dR︸ ︷︷ ︸

≤ 0

−
∫ ∫

q(x)s(R) ln
(
p(x,y|R)p(R)
q(x)s(R)

)
dx dR︸ ︷︷ ︸

upper bound

. (4.3)
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We choose to define the posterior over the covariances as

s(R) = δ(R −Υ), (4.4)

where δ(·) is the Dirac delta function (interpreted as a PDF) and Υ = {Υ1,Υ2 . . .ΥK}
is the set of optimal covariances. The upper bound now simplifies to

−
∫
q(x) ln (p(x,y|Υ)p(Υ)) dx +

∫
q(x) ln q(x) dx +

∫
s(R) ln s(R)dR︸ ︷︷ ︸
indep. of Υ

,

where we have abused notation and written p(R = Υ) as p(Υ), and similarly will later
write p(Rk = Υk) as p(Υk). We view our selection of the delta function (in our posterior
over the covariances) as a convenient way of showing how we can approximate a Gaussian
distribution for the trajectory and a MAP approximation of the covariances in a single
variational framework. The last term is the differential entropy of a Dirac delta function,
and because it is independent of our variational parameter, Υ, we choose to drop it from
our loss functional.

We assume p(Υ) factors as

p(Υ) =
K∏

k=1
p(Υk). (4.5)

We apply an IW prior over our covariances by defining

p(Υk) = |Ψ|ν/2

2 νd
2 Γd( ν

2 )
|Υk|−

ν+d+1
2 exp

(
−1

2tr(ΨΥ−1
k )

)
, (4.6)

where d is the dimension of Υk, Ψ ∈ Rd×d > 0 is the scale matrix, ν > d−1 is the degrees-
of-freedom (DOF), and Γd(·) is the multivariate Gamma function. We choose to estimate
the scale matrix parameter Ψ and leave the degrees-of-freedom ν as a metaparameter.

Now we define our factors as

− ln (Υ) =
K∑

k=1
− ln p(Υk) =

K∑
k=1

ϕw
k (Υk|Ψ) = ϕw(Υ|Ψ).

Dropping constant terms, the loss functional can finally be written as

V (q′|Υ,Ψ) =
K∑

k=1
Eqk

[ϕm
k (xk|Υk) + ϕw

k (Υk|Ψ)] + 1
2 ln

(
|Σ−1|

)
, (4.7)
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where

ϕm
k (xk|Υk) = 1

2
(
ek(xk)T Υ−1

k ek(xk)− ln(|Υ−1
k |
)
, (4.8)

ϕw
k (Υk|Ψ) = −α− 1

2 ln |Υ−1
k | −

ν

2 ln |Ψ|+ 1
2tr(ΨΥ−1

k ), (4.9)

with α = ν + d+ 2.
In the e-step, we hold Ψ fixed and optimize for Υk, which we accomplish by taking

the derivative of the loss functional as follows:

∂V

∂Υ−1
k

= 1
2Eqk

[
ek(xk)ek(xk)T

]
− 1

2αΥk + 1
2Ψ. (4.10)

Setting the derivative to zero,

Υk = 1
α
Ψ + 1

α
Eqk

[
ek(xk)ek(xk)T

]
= α− 1

α

(
Ψ

α− 1

)
︸ ︷︷ ︸
IW mode

+ 1
α
Eqk

[
ek(xk)ek(xk)T

]
, (4.11)

where we see the optimal Υk is a weighted average between the mode of the IW dis-
tribution and the optimal constant covariance estimate from (3.55) at a single marginal
factor. Since our e-step in ESGVI is already iterative, we can seamlessly extend it by
applying (4.11) as iteratively reweighted least squares (IRLS).

In the m-step, we hold Υ fixed and optimize for Ψ, which we accomplish by taking
the derivative of the loss functional as follows:

∂V

∂Ψ
=

K∑
k=1

(
−ν2Ψ

−1 + 1
2R−1

k

)
. (4.12)

Setting the derivative to zero,

Ψ−1 = 1
Kν

K∑
k=1

Υ−1
k . (4.13)

Applying (4.11) in the e-step and (4.13) in the m-step, in practice we found that our
optimization scheme was ill-posed, resulting in our covariance estimates tending toward
the positive-definite boundary (i.e., the zero matrix). As a practical solution, we propose
constraining the determinant of Ψ to be a constant β, which constrains the volume of
the uncertainty ellipsoid of the corresponding measurements to be fixed. We accomplish
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Figure 4.1: The data collection vehicle used for our lidar localization experiments. The
vehicle is equipped with a Velodyne VLS-128 lidar and an Applanix POS LV for the
groundtruth trajectory.

this by scaling the latest Ψ update as follows:

Ψconstrained ←
(
β |Ψ|−1

) 1
d Ψ. (4.14)

While this determinant constraint limits the learning capacity of our noise model, in
practice we can rely on the noise models of other factors (e.g., the motion prior) to
relatively adapt to our selection of β during training.

4.3 Experiment: Lidar Localization

We present our experiments on learning an IW prior for the measurement covariance
in this section, which appeared in a publication as a second author contribution (Wong
et al., 2020b). Our experiments use the vehicle dataset collected by an earlier publication
by Wong et al. (2020a). The dataset consists of 36 km of driving, with Velodyne VLS-128
lidar data and an Applanix POS LV positioning system. An image of the experimental
setup is shown in Figure 4.1, which is an earlier setup for the Boreas data collection
vehicle that we will later use for our experiments in the following chapter.

There are two sources of 6-DOF vehicle pose measurements. The first is from the Ap-
planix POS LV, which we treat as groundtruth. The second is from a lidar localization
system, also from Applanix, which localizes the lidar data to a prebuilt high-definition
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pointcloud map. We will treat the lidar localization estimates as pose pseudomeasure-
ments1 and place a prior on its measurement covariance to demonstrate our parameter
learning approach.

We use Route A2, our 16 km long training set, to learn the parameters of our noise
models. For inference, we perform a batch trajectory optimization on Route B3, our
20 km long test set, using the learned noise model parameters of our motion prior and
measurements.

4.3.1 Loss Functional and Factors

Loss Functional

We define our trajectory as x = {Tk,ϖk| k = 1, 2, . . . , K}, where Tk ∈ SE(3) is the
vehicle pose at time tk and ϖk is the corresponding body-centric vehicle velocity. The
estimation times, tk, correspond exactly to the measurement times of the lidar localization
measurements, which is approximately a uniform temporal spacing of 100 ms.

The loss functional corresponding to this experiment is

V (q′|Υ,Ψ,Wgt,Qc) = Eq′ [ϕp(x|Qc)+ϕm(x|Wgt)+ϕm(x|Υ)+ϕw(Υ|Ψ)]+1
2 ln

(
|Σ−1|

)
,

(4.15)

where ϕp(x|Qc) are motion prior factors, ϕm(x|Wgt) are the groundtruth pose factors
(when available during training), and ϕm(x|Υ) and ϕw(Υ|Ψ) are the lidar measurement
factors with an IW prior over the covariances.

We illustrate our loss functional in Figure 4.2 as a factor graph, where we can train
with or without the groundtruth factors shown inside the dashed box. For the sake of
conciseness in our notation, we denote ϕp(xk−1,k|Qc) as ϕp

xk−1,k|Qc
, ϕm(xk|Wgt) as ϕm

xk|Wgt
,

ϕm(xk|Υk) as ϕm
xk|Υk

, and ϕw(Υk|Ψ) as ϕw
Υk|Ψ. We show the details of each factor in the

following subsections.

Pose Measurement Factors

In our experiments, we place an IW prior on the measurement covariance for the lidar
measurements. We defined this factor in Section 4.2, which we repeat here for conve-

1We will simply refer to these localization poses as lidar measurements for the rest of this chapter.
2 Map available at: https://tinyurl.com/rrjgxaj
3 Map available at: https://tinyurl.com/r5m78nq

https://tinyurl.com/rrjgxaj
https://tinyurl.com/r5m78nq
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Figure 4.2: Factor graph for our vehicle estimation problem in Experiment A (see Section
4.3.2). White circles represent random variables to be estimated (vehicle state x and
measurement covariances Υ). Small black dots represent factors in the joint likelihood
of the data and the state. Binary motion prior factors, ϕp

xk−1,k|Qc
, depend on parameter

Qc. Unary groundtruth pose factors (if available), ϕm
xk|Wgt

, depend on parameter Wgt.
Factors ϕm

xk|Υk
and ϕw

Υk|Ψ are for applying an Inverse-Wishart prior over our measurement
pose covariances, Υ, and depend on parameter Ψ. We are able to learn parameters Qc

and Ψ, even without groundtruth factors (factors inside dashed box).

nience:

ϕm(x|Υ) =
K∑

k=1
ϕm

k (xk|Υk) =
K∑

k=1

1
2
(
em,k(xk)T Υ−1

k em,k(xk)− ln(|Υ−1
k |
)
, (4.16)

ϕw(Υ|Ψ) =
K∑

k=1
ϕw

k (Υk|Ψ) =
K∑

k=1

(
−α− 1

2 ln |Υ−1
k | −

ν

2 ln |Ψ|+ 1
2tr(ΨΥ−1

k )
)
. (4.17)

We can now specify the error function as the following:

em,k(xk) = ln(TkT−1
meas,k), (4.18)

where Tmeas,k is a lidar measurement corresponding to time tk. We choose to fix the
parameters to ν = 6 and β = 1 and learn the parameters Ψ

We optionally train our parameters by including the groundtruth poses from the Ap-
planix POS LV. We choose to model this factor using a constant measurement covariance,
Wgt:

ϕm(x|Wgt) =
K∑

k=1
ϕm

k (x|Wgt) =
K∑

k=1

1
2
(
em,k(xk)T W−1

gt em,k(xk)− ln(|W−1
gt |
)
, (4.19)

where we apply the same error function as in (4.18). Recall that we demonstrated how
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to learn a constant covariance as part of the m-step in Section 3.3, which we will apply
in our experiments for Wgt. This factor will only be used during training and will be
removed for testing.

Motion Prior Factor

We apply the SE(3) White-Noise-on-Acceleration (WNOA) motion prior by Anderson
and Barfoot (2015), which is defined as

Ṫ(t) = ϖ(t)∧T(t),
ϖ̇ = w(t), w(t) ∼ GP(0,Qcδ(t− t′)),

(4.20)

where T(t) ∈ SE(3) is a continuous-time representation of the pose, ϖ(t) ∈ R6 is the
body-centric vehicle velocity, w(t) ∈ R6 is a zero-mean, white-noise Gaussian process,
and the operator, ∧, transforms an element of R6 into a member of Lie algebra, se(3).
Recall that the state at time tk is xk = {Tk,ϖk}. Similarly, we will write xk−1,k to be
the state at two consecutive times, tk−1 and tk. Written in factor form, our motion prior
is

ϕp(x|Qc) =
K∑

k=2
ϕp

k(xk−1,k|Qc) =
K∑

k=2

1
2
(
eT

p,kQ−1
k ep,k + ln|Qk|

)
, (4.21)

where

ep,k =

ln(TkT−1
k−1)∨ − (tk − tk−1)ϖk−1

J −1(ln(TkT−1
k−1)∨)ϖk −ϖk−1

 , (4.22)

and the covariance of the prior, Qk, is defined as

Qk = Q∆t ⊗Qc, Q−1
k = Q−1

∆t ⊗Q−1
c ,

Q∆t =

1
3∆t3 1

2∆t2

1
2∆t2 ∆t

 , Q−1
∆t =

12∆t−3 −6∆t−2

−6∆t−2 4∆t−1

 ,
where ⊗ is the Kronecker product.

In our experiments, we will additionally learn the parameters of this prior, the power
spectral density matrix Qc, as part of the m-step. To do so, we evaluate the derivative
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of our loss with respect to Qcij
, the (i, j) matrix element of Qc, which is

∂V (q|θ)
∂Qcij

= 1
2tr

(
K∑

k=2
Eqk−1,k

[ep,keT
p,k](Q−1

∆t ⊗ 1ij)
)
− 1

2(K − 1)dim(Q∆t)Qcij
, (4.23)

where qk−1,k is the marginal posterior at two consecutive times, tk−1 and tk. Setting the
derivative to zero, the optimal estimate of our parameter is then

Qcij
=

tr
(∑K

k=2 Eqk−1,k
[ep,keT

p,k](Q−1
∆t ⊗ 1ij)

)
dim(Q∆t)(K − 1) . (4.24)

4.3.2 Experiment A: Training With and Without Groundtruth

In Experiment A, we only use the lidar measurements to train our model parameters
(i.e., training without groundtruth). As a benchmark, we also train another set of model
parameters where we additionally include groundtruth poses in our training (i.e., training
with incomplete groundtruth). This is different from earlier work by Wong et al. (2020a),
where the training method required groundtruth of the entire state (training with com-
plete groundtruth), which for our problem setup is the vehicle pose and velocity.

Figure 4.3 shows the error plots where we have trained without groundtruth for our
estimated x, y, and z positions, along with their 3σ covariance envelopes. We can see
that the errors consistently remain within the covariance envelopes. However, we note
that our estimator appears to be underconfident. We believe that this is a result of our
decision to constrain |Ψ| = β = 1 in order for our training method to work in practice.
This decision is analogous to fixing the volume of the covariance ellipsoid to be constant.
In doing so, we relied on the learned covariance of the motion prior to adjust relative to
the measurement covariances. The posterior mean is unaffected by this choice, but not
the posterior covariance.

Table 4.1 shows the translational Root Mean Squared Error (RMSE) from both train-
ing methods on all test sequences. For comparison, we also include the results from earlier
work by Wong et al. (2020a) (first column). This publication trained the same motion
prior on the same dataset using complete groundtruth (both pose and velocity) and did
not learn the measurement covariances for the lidar localization, instead using the noise
levels predicted by the Applanix lidar localization system. While all three methods per-
form on par with each other, the key benefit is that our newly proposed method does not
require any groundtruth during training. However, we note that our lidar measurements
are quite accurate relative to the groundtruth, which we believe plays a factor in our
ability to achieve comparable performance when trained unsupervised.
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Figure 4.3: Experiment A: Error plots (blue lines) along with the 3σ covariance envelopes
(black dashed lines) when parameters are trained without groundtruth. The resulting
trajectory error from our estimator consistently remains within the covariance envelopes.

To further validate our method and show that we can train with noisier measurements
and without groundtruth, we perform a sensitivity test by artificially adding additional
noise to the measurements. We keep the statistics of the additional noise unknown to
the training process. We use the following SE(3) perturbation scheme to inject noise
into the translational portion of our pose measurements:

Tnoisy = exp(ϵ∧)Tmeas, (4.25)

where

ϵ =

ϵ1:3

0

 , ϵ1:3 ∼ N
(
0, σ2I

)
. (4.26)

We vary σ from 0.25 m to 1 m, injecting the same amount of noise into the test mea-
surements and training measurements.

Table 4.2 shows the results of our sensitivity test. Our test errors change with in-
creasing noise on measurements in both our training and test set. While measurement
error increases significantly (up to over 1.6 m), we are still able to achieve translational
errors below 0.5 m on our estimated trajectory. This experiment demonstrates that we
are still able to learn reasonable parameters of our system without any groundtruth and
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Table 4.1: Experiment A: Comparison of translational errors on test set between train-
ing with complete groundtruth, with incomplete groundtruth, and without groundtruth
(GT). We note that the first column did not learn the measurement covariances.

Seq
no.

Trained with complete GT
(Wong et al., 2020a)

(m)

Trained with
incomplete GT

(m)

Trained
without GT

(m)
0 0.0690 0.0720 0.0717
1 0.0888 0.1003 0.0925
2 0.4071 0.4148 0.4106
3 0.1947 0.1908 0.1847
4 0.2868 0.2866 0.2820
5 0.5703 0.5592 0.5549
6 0.3292 0.3014 0.2965
7 0.2207 0.2248 0.2230
8 0.1115 0.1151 0.1199
9 0.0979 0.1026 0.0997

AVG 0.2376 0.2368 0.2335

Table 4.2: Experiment A: Analysis of how increasing noise on measurements affects the
parameter learning method. Even with measurement errors of over 1.6 m the errors on
the estimated trajectory are under 0.5 m.

Measurement noise (m) Estimated trajectory errors (m)
0.2407 0.2335
0.5010 0.2909
0.8653 0.3289
1.2481 0.3936
1.6383 0.4566

noisier measurements (relative to our original experiment).

4.3.3 Experiment B: Training and Testing With Measurement
Outliers

In Experiment B, we show that our formulation of an IW prior on our measurement
covariances results in outlier rejection. We artificially introduce outliers in our training
and test set. With 5% probability, we apply the following perturbation to the our pose
measurements:

Toutlier = exp(ϵ∧)Tmeas, (4.27)
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with
ϵ =

[
ϵ1 ϵ2 ϵ3 ϵ4 ϵ5 ϵ6

]T

, ϵi ∼ U(−200, 200). (4.28)

Figure 4.4 shows a qualitative illustration of the measurement outliers on sequence 3 of
our test set.

We now compare the performance between the cases where we have treated the mea-
surement covariance, W, as a static parameter to be learned (using the same data likeli-
hood objective, see Section 3.3), and where we have treated the measurement covariance
at each time as a random variable and learn the parameter, Ψ, of the IW prior.

The left portion of Table 4.3 shows the resulting translational errors on our test
trajectory for this experiment (Experiment B). Without the IW prior, the estimation
framework fails to reject outliers and results in an average translation error above 5 m.
In comparison, using the IW prior results in an average error of only 0.2365 m, which
is a significant improvement and similar to our previous experiment where we did not
have any outliers (0.2335 m in Table 4.1). We expect that similar performance would
be achievable if an existing outlier rejection scheme, such as M-estimation, was applied
alongside the static W. However, the benefit we highlight with our proposed method
is the ability to learn the measurement covariance (without groundtruth) and achieve
outlier rejection using a unified approach, rather than learning a static covariance (which
can be challenging in the presence of outliers) and applying outlier rejection post hoc.

Figure 4.4: Experiments B & C: Measurement outliers overlaid with the groundtruth
trajectory on sequence 3 of the test set. Background image from Google Maps.
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Table 4.3: Experiments B & C: Translational errors using a static measurement covari-
ance compared to using an IW prior when we have outliers in our test set. In Experiment
B, we train with outliers and in Experiment C, we train without outliers.

Experiment B Experiment C
Seq
no.

Static W
(m)

IW prior
(m)

Static W
(m)

IW prior
(m)

0 6.1976 0.0773 7.3504 0.0731
1 5.8371 0.0979 6.0754 0.0948
2 5.3652 0.4125 5.5771 0.4096
3 5.1217 0.1860 5.8157 0.1873
4 5.5186 0.2807 5.5503 0.2826
5 5.4780 0.5563 6.3057 0.5554
6 6.3936 0.3004 7.1858 0.2995
7 5.6898 0.2274 6.0332 0.2256
8 6.3717 0.1233 9.3079 0.1224
9 6.8032 0.1036 8.1237 0.1046

AVG 5.8776 0.2365 6.7325 0.2355

4.3.4 Experiment C: Training Without and Testing With Mea-
surement Outliers

In Experiment B, we included outlier measurements in both the training and test set
and saw that the IW prior allows us to achieve comparable errors to the case with no
outliers. To see if this still holds even when we do not see any outliers in training, in
Experiment C we now train without any outliers, but test with outliers. The results of
this experiment are shown as the right portion of Table 4.3.

We see that the resulting translational errors are again very high when we simply
learn a static measurement covariance, but that we can still achieve reasonably low errors
when learning the parameters of our IW prior. By incorporating the IW prior instead of
learning a static measurement covariance, we decrease error from above 6 m to 0.2355
m. Compared to the error of 0.2335 m when there are no outliers in our test set (Table
4.1), we see an increase in error of only 0.002 m with the IW prior, which we believe
is negligible. This experiment shows that we can indeed still benefit from the outlier
rejection scheme that comes with using an IW prior, even when there are no outliers in
our training set.
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4.4 Summary and Conclusions

We presented our ESGVI and EM parameter learning framework that incorporates an
IW prior to learn a varying measurement covariance. We estimate the measurement
covariance as part of the state (e-step) and learn the parameters of the corresponding
IW prior as part of the m-step. We presented experimental results on a lidar localization
dataset and demonstrated training without the groundtruth trajectory. The methodology
and experimental results in this chapter appeared in Wong et al. (2020b) as a second-
author contribution.

In summary, the contributions of this chapter are:

1. A methodology for estimating measurement covariance by using an IW prior in a
EM framework.

2. Experimental results on a lidar localization dataset that demonstrates learning a
varying measurement covariance without the groundtruth trajectory. We also show
that the resulting covariance model is robust to measurement outliers during both
training and testing.

In the next chapter, we will revisit the measurement covariance problem using a feature-
dependent model and also demonstrate how we can also model measurement bias.



Chapter 5

Learning Feature-Dependent Models

Due to nonidealities in the real world, our sensors can produce biased measurements with
respect to our sensor models that we may have to calibrate ourselves. The uncertainty
of the measurements can also differ from the manufacturer’s specification and may vary
depending on the operation environment. In the previous chapter, we presented a reac-
tive approach for estimating the measurement covariance as part of the state. In this
chapter, we explore training feature-dependent regression models for both measurement
bias and covariance, which is a viable solution in applications where these quantities are
predictable from a training dataset.

When tuning a sensor for bias and covariance, one could carefully devise a calibration
experiment with high-quality groundtruth in a controlled setting. However, experiments
in a controlled setting may not accurately reflect the data in a practical setting. The
quality of the data may even change over time (possibly due to hardware degradation).
This suggests that we should instead be able to readily train our models from practical
data collection experiments such that the training data will be in-distribution and up-to-
date. Our method ideally should not be reliant on high-quality groundtruth as a training
signal since it may be difficult to obtain in an uncontrolled setting.

We propose to train sensor models using the likelihood of the observed data from the
sensors themselves. We can accomplish this using our ESGVI and EM parameter learning
framework. By choosing to optimize the data likelihood, we may avoid the requirement
of a groundtruth training signal, which we demonstrate in a lidar odometry experiment
using real-world data.

In summary, the main contribution of this chapter is the methodology for learning
feature-dependent regression models for measurement bias and covariance. While the
usage of feature-dependent models is not new, the novelty of our work is the application
of training without the groundtruth trajectory using EM.

62
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Section 5.2 presents our methodology for learning feature-dependent regression mod-
els for the measurement bias and covariance. For the e-step, we can apply a suitable
approximation for ESGVI, as covered in Chapter 3. We present the specifics of the
m-step in this section, which can differ if the learnable parameters have a linear or non-
linear relationship in our regression models. In Section 5.3 and Section 5.4, we apply
our methodology to learning the bias and covariance for Doppler velocity measurements
from a FMCW lidar for application to lidar odometry. We present experimental results
on two datasets we collected: the Boreas dataset and the Aeva HQ dataset. Since we are
learning a measurement bias, we cannot reliably train for the bias and covariance models
using EM with the Doppler measurements alone1. Instead, we can run EM using a slower
ICP-based odometry method (i.e., effectively using the pointcloud alignment as a super-
vision signal) and apply the learned models to a faster Correspondence-Free (CF)-based
odometry method after training.

The work on the ICP-based odometry method using Doppler measurements was pub-
lished as a second-author contribution to the IEEE Robotics and Automation Letters
(Wu et al., 2023). As a second author, contributions were mainly made to the method-
ology and analysis of the experiments. Doppler bias and noise models were not applied
or learned in this publication.

The methodology of the fast CF-based odometry method was presented as a first-
author contribution at the International Conference on Intelligent Robots and Systems
(Yoon et al., 2023), which we presented as a fast and low-cost alternative to ICP.
We demonstrated supervised training for Doppler bias in this publication using the
groundtruth trajectory, and we did not learn the Doppler measurement noise.

The work in this chapter extends upon the work of the existing two publications by (i)
also incorporating a learned noise model for the Doppler measurements, (ii) demonstrat-
ing unsupervised training using EM, and (iii) applying the CF-based method to multiple
FMCW lidar sensors in simulation and on real data.

5.1 Related Work

In this section, we provide a literature review on measurement biases and FMCW lidar
odometry. For a literature review on measurement covariances, please see the previous
chapter.

1We further discuss this later in the chapter
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5.1.1 Measurement Biases

It is no surprise that unaccounted biases will degrade state estimation performance. In
some situations, however, the exact source of the bias may not be well understood or
difficult to model. In such cases, it may be favourable to model a systematic bias as a
correction to the output of the estimator (Hidalgo-Carrió et al., 2017; Peretroukhin and
Kelly, 2017; Tang et al., 2018). Hidalgo-Carrió et al. (2017) model the residual error for
wheel odometry using Gaussian process (GP) regression. A similar approach was later
applied to correct for the bias in lidar odometry by Tang et al. (2018). Instead of GP
regression, Peretroukhin and Kelly (2017) learn a correction for stereo visual odometry
using a CNN.

We can apply a more direct approach if the source of the bias can be narrowed down
to a residual error within a well-understood model. One such way is online estimation
of the bias as part of the state (Barfoot, 2024, §5, p. 183). This approach is often
applied for handling biases in IMU data since it can be modelled as a slowly changing
quantity that evolves as a random walk (Barfoot, 2024). Instead of a random walk, a
more sophisticated process model for IMU bias can be learned using a deep network for
better robustness to prolonged visual tracking failure (Buchanan et al., 2022).

If the dependencies of the biases are known and do not change over time (or change
relatively slowly over time), a bias model can instead be calibrated offline. For example,
several works investigated bias compensation for lidar range measurements that is depen-
dent on measurement incidence angle and/or distance (Laconte et al., 2019; Kümmerle
and Kühner, 2020; Agishev et al., 2023). Laconte et al. (2019) propose an approxi-
mated closed-form formula based on a model of the lidar return waveform. Kümmerle
and Kühner (2020) use a polynomial model that is dependent only on the incidence
angle. Agishev et al. (2023) propose using a polynomial model that is dependent on
both incidence angle and distance, but also train their model parameters from data in a
self-supervised manner.

In our experiments in Section 5.4 using FMCW lidar, we require a method for mod-
elling bias in the Doppler velocity measurements. While our use case is not exactly the
same as the range bias compensation discussed above, we can follow a similar approach
and calibrate for the Doppler bias offline using a regression model that is an additive cor-
rection to our known measurement model. Our approach for modelling the bias is most
similar to Agishev et al. (2023) since we will use a regression model with polynomial
basis functions on the input features. However, the focus in our work is not on the par-
ticular model we chose, but rather the way we are proposing to train it. We demonstrate
training using our parameter learning framework with ESGVI and EM, which can be
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viewed as self-supervised training since we will not be using the groundtruth trajectory
as a training signal.

5.1.2 FMCW Lidar Odometry

Our odometry experiments in Section 5.4 involve a relatively new type of lidar sensor
referred to as Frequency-Modulated Continuous Wave (FMCW) lidar, a lidar sensor that
additionally measures per-return relative radial velocities via the Doppler effect. We
present a brief overview of the current literature regarding FMCW and lidar odometry
in this subsection.

Recent works have already demonstrated how FMCW lidars are beneficial for im-
proving odometry. Hexsel et al. (2022) incorporate Doppler measurements into ICP to
improve estimation in difficult, geometrically degenerate locations. Shortly after, Wu
et al. (2023) improved upon their work by using a continuous-time estimator, not requir-
ing motion compensation as a preprocessing step. A major bottleneck in lidar odometry
is data association due to (i) the vast amount of data, and (ii) the need for iterative
data association. With the introduction of Doppler measurements from FMCW lidars,
we recently proposed a more efficient odometry method that avoids data association en-
tirely (Yoon et al., 2023). We present our latest experimental results in Section 5.4 with
models for measurement bias and noise trained without groundtruth using our parameter
learning framework.

Lidar odometry algorithms have proven to be highly accurate in nominal conditions,
but will struggle to perform in geometrically degenerate environments (e.g., long tunnels,
barren landscapes). Using IMU data is a way of handling these difficult scenarios, with
the added benefit of being able to use the IMU to motion-compensate pointclouds as
a preprocessing step. Loosely coupled methods may only use the IMU data for motion
compensation (Palieri et al., 2020), but can also fuse the pose estimates from pointcloud
alignment with IMU data downstream (Tagliabue et al., 2021). Zhao et al. (2021) im-
plement an odometry estimator for each sensor modality, where each estimator uses the
outputs of the other estimators as additional observations. Chen et al. (2023) combine
their pose estimates from ICP with IMU data using a hierarchical geometric observer.
Tightly coupled methods incorporate IMU data into the pointcloud alignment optimiza-
tion directly, which has been shown using an iterated extended Kalman filter (Qin et al.,
2020; Xu et al., 2022) and factor graph optimization over a sliding window (Ye et al.,
2019; Shan et al., 2020).

Our work differs from existing lidar-inertial methods in both motivation and imple-



Chapter 5. Learning Feature-Dependent Models 66

mentation. Our fast odometry method does not require data association by using the
Doppler measurements of a FMCW lidar. Our motivation for using IMU data is to
compensate for the degrees of freedom not observable from the Doppler measurements
of a single FMCW lidar. We only require gyroscope data (i.e., angular velocities) and
exclude the accelerometer2, permitting a linear continuous-time formulation. We do not
require pre-integration of the gyroscope data (Forster et al., 2016), and instead efficiently
incorporate data at their exact measurement times.

FMCW is a relatively new technology for lidar, but not for radar. Radar, in contrast
to FMCW lidar, returns two-dimensional (2D) detections (azimuth and range). Simi-
lar to our proposed method, Kellner et al. (2013) estimate vehicle motion using radar
Doppler measurements without data association. Using a single radar, they estimate a
2-degrees-of-freedom (DOF) vehicle velocity (forward velocity and yaw rotation) by ap-
plying a kinematic constraint on the lateral velocity to be zero. Using multiple radars
allowed them to estimate a 3-DOF vehicle velocity (Kellner et al., 2014). As radars pro-
duce 2D data in lesser quantities compared to lidar, Kellner et al. (2013, 2014) limited
their experiments to driven sequences that were a few hundred meters in length. Our
FMCW lidar produces thousands of three-dimensional (3D) measurements at a frame
rate of 10Hz. We take advantage of the richer data by efficiently applying them in a
continuous-time linear estimator, and demonstrate reasonably accurate odometry over
several kilometers.

Kramer et al. (2020) estimate the motion of a handheld sensor rig by combining radar
Doppler measurements and IMU data. Park et al. (2021) estimate for 6-DOF motion
by first estimating the 3D translational velocities, then loosely coupling them with IMU
data in a factor graph optimization. We similarly use IMU data to help estimate 6-
DOF motion. However, we only use the gyroscope data to keep the estimator linear and
efficient.

5.2 Learning Feature-Dependent Bias and Covari-
ance Models

In Section 3.3, we presented a brief sketch of how parameters may be learned using our
ESGVI framework and EM. An example for a constant measurement covariance, W−1,

2The gravity vector would require a nonlinear estimator for orientation.
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was shown for the following factor:

ϕ(x,y|W) = 1
2

K∑
k=1

(
ek(xk,yk)T W ek(xk,yk)− ln(|W|)

)
, (5.1)

which resulted in the following m-step update:

W−1 = 1
K

K∑
k=1

Eqk

[
ek(xk,yk)ek(xk,yk)T

]
. (5.2)

In this section, we extend this idea to modelling and learning feature-dependent mea-
surement covariances, as well as the measurement biases (if they exist). In practice,
how noisy (or how biased) a sensor is can vary and depend on factors at the time of
application. A constant model for the measurement covariance (or measurement bias) in
such situations may not be sufficient. We can model the variation of the measurement
covariance explicitly by using a regression model that depends on a handcrafted input
feature. The input feature will be defined with known quantities that we expect the
covariance to be correlated with and will be application-dependent. For example, later
in Section 5.4 we will use features such as the lidar measurement range (magnitude) and
intensity (signal strength). We can similarly model a regression model for a measurement
bias (if needed).

As shown in Section 3.3, we will assume our measurement model factors in the fol-
lowing way:

ϕ(x,y|θ) =
K∑

k=1
ϕk(xk,yk|θ)

=
K∑

k=1

1
2
(
(ek + bψbk|θb

)T WψW k|θW
(ek + bψbk|θb

)− ln(|WψW k|θW
|)
)
, (5.3)

where we now partition our parameters, θ = {θW ,θb}, to distinguish between the co-
variance parameters, θW , and the bias parameters, θb. We choose to model the feature-
dependent (inverse) measurement covariance using a regression model,

WψW k|θW
= W(ψW k|θW ), (5.4)

that depends on an input feature, ψW k. Note that the regression model for the (inverse)
covariance must be constrained to be a positive-definite matrix. Similarly, we choose to
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model the feature-dependent bias using a regression model,

bψbk|θb
= b(ψbk|θb), (5.5)

that depends on an input feature, ψbk. Note that we have introduced our bias model as
an additive term to the measurement error model. Another possibility is to incorporate
a bias model inside the measurement model, but how that should be done is model-
dependent.

We will apply EM to jointly optimize the latent state and our model parameters. For
the e-step, we will hold the parameters fixed and optimize the state using an appropriate
approximation of ESGVI. For the m-step, there are a couple cases to consider. Let us
first look at the derivative of our loss with respect to our parameters again,

∂V (q|θ)
∂θ

= ∂

∂θ
Eq[ϕ(x,y|θ)] = ∂

∂θ
Eq

[
K∑

k=1
ϕk(xk,yk|θ)

]
=

K∑
k=1

Eqk

[
∂

∂θ
ϕk(xk,yk|θ)

]
.

(5.6)
There are special cases where we can simply set the derivative to zero for an extremum
and isolate for the parameter in closed form. One such case was the constant covariance
example from Section 3.3. Another case worth noting is when our bias regression model,
b(ψb|θb), is a linear function with respect to the parameters, θb.

5.2.1 Special Case: Linear Bias Regression

Focusing on the bias regression, we will assume for now that the (inverse) covariance,
Wk, is known. We will assume the bias regression model is a linear function with respect
to the parameters, b(ψbk|θb) = Θbψbk, where θb = vec(Θb) (i.e., the vec(·) operator
converts a matrix to a vector by stacking its columns). Note that we define our input
feature, ψb, with a scalar 1 as its last element to incorporate a constant addition term.
We will next manipulate it using vector notation for a more convenient form with respect
to the parameters,

b(ψbk|θb) = Θbψbk = vec(Θbψbk) = (ψT
bk ⊗ 1)︸ ︷︷ ︸
Ubk

vec(Θb)︸ ︷︷ ︸
θb

, (5.7)

where the ⊗ operator is the Kronecker product and we used the identity (Magnus and
Neudecker, 2019)

vec(ABC) = (CT ⊗A)vec(B). (5.8)
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Substituting our model back into (5.3) and our derivative expression in (5.6) with respect
to θb,

∂V (q|θb)
∂θb

=
K∑

k=1
Eqk

[
UT

bkWk(ek + Ubkθb)
]
. (5.9)

While our bias regression model is linear with respect to our parameters, our measurement
error model, ek, can be nonlinear with respect to our state. In order to evaluate the
expectation, we take a linear approximation for the state by using a perturbation, xk =
x̄k + δxk:

∂V (q|θb)
∂θb

≈
K∑

k=1
Eqk

[
UT

bkWk(ēk + Ekδxk + Ubkθb)
]

(5.10)

=
K∑

k=1

UT
bkWk(ēk + Ubkθb) + Eqk

[
UT

bkWkEkδxk

]
︸ ︷︷ ︸

=0

 , (5.11)

where we used the Jacobian of our error function, Ek. Setting the derivative to zero for
an extremum, we get a linear system for θb that we can use as our m-step update:

(
K∑

k=1
UT

bkWkUbk

)
θb =

K∑
k=1

UT
bkWkek. (5.12)

If we were to combine this m-step for θb with the m-step for a constant measurement
covariance from Section 3.3, we can pick an order for which update to do first within
each m-step. Since EM requires iteration anyway, we expect the choice of order to not
be significant.

5.2.2 General Case: Nonlinear Regression

The more general case is when our feature-dependent model for covariance or bias is
nonlinear with respect to the model parameters. In such cases, we cannot simply set
the derivative in (5.6) to zero and isolate for a solution in closed form. Instead, we can
formulate our m-step using gradient-descent optimization:

θ(i+1) = θ(i) − η ∂V (q|θ)
∂θ

∣∣∣∣∣
θ(i)

, (5.13)

where i is the iteration index and η is a tunable learning rate.
A practical aspect to EM is that we do not need to perform the m-step to convergence

before alternating back to the e-step. This is known as Generalized EM (GEM) (Bishop,
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2006). For clarity, the GEM process will be as follows:

1. e-step: hold our parameters, θ, fixed and optimize our loss, V (q|θ), for the current
best estimate of our approximate posterior, q(x).

2. m-step: hold our posterior estimate, q(x), fixed and run gradient descent for a short
number of iterations to update our parameters, θ.

3. alternate between steps 1 and 2 until convergence.

There are other practical considerations for the m-step that can be helpful depending
on the application. If the training dataset is very large, we can substitute standard
gradient descent with a stochastic variant that approximates the gradient with a subset
(mini-batch) of the dataset. Depending on the complexity of the model, we may wish to
simply run an off-the-shelf optimizer that has built-in improvements to gradient descent,
such as momentum and automated learning rate tuning.

5.3 Estimator Methodology: FMCW Lidar
Odometry

Before diving into the experiments on FMCW lidar odometry, we dedicate this section
to present the methodologies for the two estimators that we will use. The first CF-based
method estimates for only the 6-DOF vehicle velocity using Doppler measurements from
a FMCW lidar and gyroscope measurements from an IMU. Removing the vehicle pose
from the estimator formulation results in a fast, linear odometry estimator that does not
require data correspondence, which is often a computational bottleneck in lidar odometry.
However, the Doppler measurements are biased and we cannot reliably train for the bias
calibration using EM with the Doppler and gyroscope measurements alone. Instead,
we can run EM using a slower ICP-based odometry method (i.e., effectively using the
pointcloud alignment as a supervision signal) and apply the learned models to the faster
CF odometry at test time.

The CF-based odometry methodology was presented in our publication, Yoon et al.
(2023). We extend this work in this thesis by training our regression models for mea-
surement noise and bias using EM. The slower ICP-based odometry methodology was
presented in a second-author publication, Wu et al. (2023), which we slightly improve
upon here by incorporating gyro measurements from an IMU.
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5.3.1 Correspondence-Free Odometry

We formulate our odometry as a linear, continuous-time batch estimation for the 6-DOF
vehicle body velocity, ϖ(t) = ϖiv

v (t) ∈ R6. As we will later see, this is possible because
our measurement and motion prior models are linear with respect to the vehicle velocity.
A continuous-time formulation allows each measurement to be applied at their exact
measurement times efficiently. The relative pose estimate can be computed via numerical
integration afterwards if pose is the desired output. For the rest of the methodology, we
drop the superscripts and subscripts denoting the frames of our state for convenience,
but note that they are defined between the inertial frame, i, and vehicle frame, v (i.e.,
not the sensor frame).

The proposed method is extremely lightweight as the estimation problem is linear
and we do not require data association for the lidar data. For generality we present
our methodology as batch state estimation. We can then adapt our method for online
application by incrementally marginalizing out all past velocity state variables and only
keeping around the latest state (see Gaussian marginalization in Section 2.1). This
marginalization will result in a linear, continuous-time filter that handles measurements
asynchronously. There is no need to keep additional states in a window (i.e., sliding
window) since the problem is linear.

Motion Prior Factors

We apply the continuous-time estimation framework of Barfoot et al. (2014) to estimate
the trajectory as a GP. We model our vehicle velocity prior as WNOA,

ϖ̇(t) = w(t), w(t) ∼ GP(0,Qcδ(t− t′)), (5.14)

where ϖ(t) is our continuous-time body velocity state, and w(t) is a (stationary) zero-
mean GP with a power spectral density matrix, Qc. The underlying representation of
ϖ(t) is a discrete trajectory, ϖk = ϖ(tk), for k = 0, 1, . . . , K. For convenience, we set
ϖk to correspond to the end time of the kth lidar frame3, where each lidar frame is the
acquisition of lidar data over the time period of 100 ms4. The advantage of this GP
approach is the separation of the low-frequency state times that we estimate from the
high-frequency measurement times of our Doppler and gyroscope measurements. The

3We set x0 to be at the start of the first frame.
4While 100 ms is an application-specific value, 3D lidar sensors commonly operate at a rate of 10Hz,

including the lidars we use in our experiments. A frame of a lidar is the accumulation of data over the
full (horizontal) field of view of the sensor.
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WNOA motion prior factor between state times k − 1 and k is then

ϕwnoa,k = 1
2eT

wnoa,kQ−1
k ewnoa,k, (5.15a)

ewnoa,k = ϖk −ϖk−1, (5.15b)

where the covariance Qk = (tk − tk−1)Qc. This prior conveniently results in linear
interpolation in time for our velocity-only state (Barfoot, 2024):

ϖ(τ) = (1− α)ϖk + αϖk+1, α = τ − tk
tk+1 − tk

∈ [0, 1], (5.16)

with τ ∈ [tk, tk+1].
In addition to the WNOA motion prior, we found it beneficial to incorporate vehicle

kinematics by penalizing velocities in specific dimensions. We center our vehicle frame
at the rear axle of the vehicle and orient it such that the x-axis points forward, y-axis
points left, and z-axis points up. The vehicle kinematics factor is

ϕkin,k = 1
2eT

kin,kQ−1
kinekin,k, (5.17a)

ekin,k = Hϖk, (5.17b)

where a constant H extracts the dimensions of interest (e.g., the lateral, vertical, roll,
and pitch dimensions) and Qkin is the corresponding covariance matrix.

Measurements Factors

The (scalar) Doppler velocity measurement factor is

ϕdv = 1
2e

2
dv/σ

2
dv, (5.18a)

edv = ydv −
[
q̂T 0T

]
T svϖ(τ) + b. (5.18b)

The Doppler velocity error function is defined using a projection of the vehicle velocity
state onto the radial direction of the scalar Doppler measurement, ydv. We slightly abuse
notation5 to define the unit direction vector of the query point:

q̂ = Dq
(qT DT Dq) 1

2
, (5.19)

5q̂ ∈ R3 is the unit direction vector of q ∈ R4 ignoring the fourth homogeneous element.
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where D is a selection matrix that removes the fourth homogeneous element. See Ap-
pendix A.1 for a derivation of this measurement model. We query our continuous-
time trajectory for the vehicle velocity corresponding to the measurement time, ϖ(τ),
which is transformed using the adjoint of the sensor-vehicle extrinsic transformation,
T sv = ad(Tsv). We model the measurement variance, σ2

dv, and measurement bias, b, as
feature-dependent regression models, which we further discuss in Section 5.4.1.

The gyroscope measurement factor is

ϕgyro = 1
2eT

gyroR−1
gyroegyro, (5.20a)

egyro = ygyro −CsvDrotϖ(τ), (5.20b)

where ygyro ∈ R3 is a gyroscope measurement, Rgyro is the corresponding measurement
covariance, Csv is a known sensor-vehicle extrinsic rotation matrix, and Drot ∈ R3×6 is a
constant selection matrix that removes the first three elements (translation components)
of ϖ(τ). We verified empirically that the bias of the gyroscopes used in our experiments
is reasonably constant throughout the duration of a data sequence, therefore we found it
sufficient to apply an offline calibration for a constant bias. Ideally we would incorporate
the gyro bias as part of our state, but the estimation problem would then be ill-posed
if only relying on the Doppler measurements (i.e., no ICP). We plan on revisiting this
problem in future work.

Objective Function

Since all our models are linear with respect to our state, MAP is equivalent to ESGVI
(Barfoot et al., 2020). Compiling all the factors together, our MAP objective function is

J =
∑

k

(ϕwnoa,k + ϕkin,k) +
∑

i

ϕdv,i +
∑

j

ϕgyro,j. (5.21)

We can simply differentiate this objective with respect to the state and set it to zero for
an optimum.

Figure 5.1 illustrates the states and factors in our online problem. For the latest lidar
frame, k, the Doppler measurements are incorporated at their measurement times using
our continuous-time interpolation scheme. The gyroscope measurements are similarly
handled at their respective measurement times. For online application, we incrementally
marginalize out older state variables, ϖi, where i < k, and estimate the latest velocity,
ϖk (i.e., a filter implementation).
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$k−1 $k

kth lidar frame

motion prior gyroscope lidar measurement
estimated state interpolated state

Figure 5.1: An illustration of the factors involved in the online velocity estimation prob-
lem. The Doppler and gyroscope measurements are applied at their exact measurement
times using our continuous-time interpolation scheme. There is no data association for
the lidar measurements. We marginalize out past state variables (i.e., ϖk−1), resulting
in a filter for the latest velocity, ϖk.

Numerical Integration for Pose

Using our estimates of the vehicle velocity, we can approximate the relative pose by
numerically sampling ϖ(t) with a small timestep, △t, and creating a chain of SE(3)
matrices spanning the time interval (Anderson and Barfoot, 2013):

Tk,k−1 ≈

↶
S∏

s=1
exp(△tϖ(tk−1 + s△t)∧) = exp(△tϖ(tk)∧) . . . (5.22)

× exp(△tϖ(tk−1 + 3△t)∧) exp(△tϖ(tk−1 + 2△t)∧) exp(△tϖ(tk−1 +△t)∧),

where exp(·) is the exponential map, ϖ(t) is the vehicle velocity interpolated between
boundary velocities ϖk−1 and ϖk, and we have divided the time interval by S steps,
making △t = (tk − tk−1)/S. Note that we use

↶
(·) in our matrix product notation to

indicate the multiplication order, i.e., each subsequent matrix is multiplied on the left
side of the accumulated matrix product. In practice, our vehicle pose estimates drift while
the vehicle is stationary (e.g., no movement due to traffic) due to noise and residual error
in the velocity estimates. We propose mitigating this drift by checking a tolerance (we use
0.03m/s) on the forward translational speed estimate. If the speed of a boundary estimate
is less than the tolerance, we set that boundary estimate ϖi = 0 before interpolation to
mitigate pose drift.
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Outlier Rejection

Outliers in the Doppler measurements are often caused by erroneous reflections and mov-
ing objects in the environment. Fortunately, each lidar frame is dense and, in practice,
the majority of the measurements are of the stationary environment (inliers). Similar
to Kellner et al. (2013), we found RANSAC (Fischler and Bolles, 1981) to be a suitable
method for outlier filtering. We classify between inliers and outliers using a constant
threshold (0.2m/s) on the Doppler error model (5.18b). We run RANSAC on each lidar
frame independently. We assume the vehicle velocity is constant throughout each frame
and solve for it using two randomly sampled Doppler measurements. The solve is made
observable by enforcing vehicle kinematic constraints, i.e., we solve for a 2-DOF velocity6

ϖT = [v 0 0 0 0 ω]. We can optionally include the gyroscope measurements in
the RANSAC solve. In practice, 20 iterations of RANSAC was sufficient for each lidar
frame.

5.3.2 ICP-based Odometry

The detailed methodology of our ICP-based odometry with Doppler measurements can
be found in our publication (Wu et al., 2023), where we referred to the method as
STEAM-DICP. We provide a brief summary of the methodology here. In contrast to
the publication, we slightly improve upon the original method in this thesis by adding
gyroscope measurements from an IMU and learned feature-dependent models for the
Doppler variance and bias.

We again formulate our odometry as a continuous-time estimation problem using
GP regression in order to efficiently handle high-frequency measurements at their exact
timestamps. What differs now from the CF-based method is the introduction of the
vehicle pose. We now represent our continuous-time trajectory as x(t) = {T(t),ϖ(t)},
where T(t) = Tvi(t) ∈ SE(3) is our continuous-time pose trajectory between the vehicle
and stationary inertial frames, and ϖ(t) = ϖiv

v (t) ∈ R6 is the same vehicle body velocity
we estimated in the CF-based method. We again drop the superscripts and subscripts
denoting the frames of our state variables for convenience, but note that they are defined
between the inertial frame and vehicle frame (and not the sensor frame).

With the introduction of the vehicle pose to our state, which is a variable that belongs
to SE(3), we need a different motion prior for our GP approach. Following Anderson
and Barfoot (2015), we apply a WNOA motion prior in SE(3) in a piecewise fashion

6Recall that we orient our vehicle frame such that the x-axis points forward, y-axis points left, and
z-axis points up.
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across an underlying discrete trajectory of states, xk = x(tk), k = 0, 1, . . . , K. We
previously applied this motion prior factor for our experiments in Chapter 4 (see details
in Section 4.3). For convenience, we set our discrete states xk to correspond to the end
time of the kth lidar frame. The time period of the kth frame lies between the states xk−1

and xk.

ICP Factor

Unique to the ICP-based method is the point-to-plane factor,

ϕp2p = 1
2e

2
p2p/σ

2
p2p, (5.23a)

ep2p = n̂T D(p−T(τ)−1T−1
sv q). (5.23b)

The point-to-plane error function is defined as a nearest-neighbour correspondence be-
tween a homogeneous query point, q, to a homogeneous map point, p. We query our
continuous-time trajectory for the pose variable corresponding to the (measurement)
time of the query point, T(τ). The unit surface normal, n̂, is a computed estimate of
the surface normal at point p in the map. The sensor-vehicle extrinsic transformation,
Tsv, is a known calibration and we use a constant selection matrix, D, to remove the
fourth homogeneous element. The factor, ϕp2p, is expressed as the usual squared cost
term, but in practice we replace the squared cost with a Cauchy robust cost term for
outlier rejection. We set σp2p = 0.1m.

Sliding-Window ICP

The combination of the SE(3) WNOA motion prior and the point-to-plane factor in
a sliding-window implementation results in our continuous-time ICP-based odometry
method. We can additionally include the kinematic prior on the vehicle velocity, the
Doppler measurement, and the gyroscope measurement factors from the CF-based esti-
mator to improve performance. We optimize for the state using a MAP objective (more
specifically, Gauss-Newton) rather than applying a higher-order approximation of ESGVI
since (i) the posterior distribution in practice will be highly concentrated because of the
dense, highly-accurate7 range measurements, (ii) a derivative-free implementation is not
necessary, and (iii) ICP is already computationally demanding. We also set the window
size to 1 since ICP performance is not a priority in our experiments in this thesis.

7Manufacturer specification of the noise on range measurements for commercial 3D lidar sensors are
often in the ballpark of a few centimeters.
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Figure 5.2: This diagram shows the states and factors involved in our sliding-window
estimation with an example window size of two. We query the trajectory states at the
acquisition time of each keypoint in each lidar frame. The motion prior factor ϕmp
connects neighbouring trajectory states. The point-to-plane factor ϕp2p requires local
map information while the Doppler velocity factor ϕdv does not. Not shown in the
diagram is an optional gyroscope measurement, which we can directly apply on the
velocity component of the state via interpolation at the gyroscope measurement times.

Figure 5.2 shows a factor graph illustration of our ICP-based method. A local point-
cloud map is incrementally built and updated as we slide the window. We follow the
approach of Dellenbach et al. (2022) for the front-end processing of the pointcloud data.
Keypoints are extracted from each lidar frame via voxel grid downsampling. We use a
grid size of 1.5 m and keep one random point in each voxel. Our local map is a pointcloud
accumulated from the most recent frames and cropped to be within 100 m of the latest
estimate of the vehicle after each frame update. The local map is stored in a sparse
voxel grid structure with a 1 m grid size and a maximum of 20 points per voxel. We use
point-to-plane ICP for frame-to-map registration. Each frame point is associated with
a map point via nearest-neighbour association, and the corresponding plane normal is
computed by applying Principle Component Analysis (PCA) to the 20 closest neighbours
of the associated map point.



Chapter 5. Learning Feature-Dependent Models 78

5.4 Experiment: FMCW Lidar Odometry

We demonstrate learning covariance8 and bias for Doppler velocity measurements from
FMCW lidar sensors without supervision from the groundtruth trajectory. We apply the
feature-dependent approach discussed in Section 5.2 and show experimental results on
two datasets: the Boreas FMCW dataset and the Aeva HQ dataset.

5.4.1 Models and Training

The FMCW lidar sensors that we use in our experiments have biased Doppler measure-
ments that we found in practice to be reasonably stationary, making our proposed offline
training (calibration) approach to be effective. We apply the feature-dependent approach
discussed in Section 5.2 to model the bias, as well as the measurement uncertainty (vari-
ance), which we discuss in this subsection.

Unseen from our perspective of the lidar data is an algorithm within the sensor that
extracts the range and relative velocity from the raw lidar signal. Any inaccuracy in the
assumptions made for this algorithm may result in a residual bias that we observe during
operation of the sensor. We found the Doppler measurements to be biased with a large
dependence on the range (distance). A few other input features that were found to be
useful in our experiments are: the bearing (azimuth and elevation) of the measurement,
the intensity of the measurement, and the speed of the vehicle. As it is not the focus of
our work, we relegate the explanation of a speed input feature to Appendix B.1.

Our priority in the design of our regression model is computational efficiency, therefore
our choice of model for bias compensation is a linear regression model (i.e., a model that
is linear with respect to its learnable parameters). In order to strike a balance between
model complexity and computational efficiency, we adopt a lookup table approach. Input
features that we expect to be highly nonlinear with respect to our learnable parameters
we choose to discretize into bins that can be accessed with constant-time complexity,
where each bin contains its own regression model. Input features that we expect to have
a linear or mildly nonlinear relationship with our learnable parameters are handled using
polynomial basis functions. The input feature we discretize into a lookup table is the
measurement bearing, i.e., we partition each lidar frame into (approximately) uniform
bins of azimuth and elevation. We can express our model as

bae(ψbk|θae
b ) = ψae

bk
Tθae

b , (5.24)
8Technically variance since the Doppler measurements are scalar and we assume they are statistically

independent from one another.
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as we have shown in Section 5.2.1, but now written for a scalar bias output that is indexed
by the azimuth bin, a, and elevation bin, e. We apply the polynomial basis functions
within the feature vector, ψae

bk . For example, using a polynomial order of up to 2, our
input feature is

ψae
bk

T =
[
rae (rae)2 iae (iae)2 s s2 1

]
, (5.25)

where rae is the measurement range, iae is the measurement intensity, and s is the speed
input feature.

Partitioning the lidar data by azimuth and elevation also has the effect of downsam-
pling since we keep one measurement per azimuth-elevation bin. We uniformly partition
along the azimuth by 0.2◦. The measurements are already partitioned in elevation by the
scan pattern of the sensor, which produces 80 or 64 horizontal sweeps9. This downsam-
pling effectively projects each lidar frame into a 80×500 or 64×500 image (see Figure 5.3
for an example).

We model our variance regression model similarly to our bias model, but with a
constraint to output positive values. We follow Liu et al. (2018) and use the exponential
function to constrain our model output to be positive. We model our inverse-variance
model as

W (ψae
W k|θW ) = exp

(
ψae

W k
TθW

)
, (5.26)

which, in contrast to the bias regression model, is a nonlinear model with respect to
our learnable parameters, θW . Note the intentional omission of the azimuth-elevation
superscripts, ae, on our model W (·). This indicates a single regression model that is not
dependent on azimuth and elevation, as we found it unnecessary for the measurement
variance in practice. We additionally incorporate an input feature specifically for the
variance, which we refer to as the pseudo-variance. For clarity and in the interest of
space, please see Appendix B.2 for the details of this input feature.

In summary, our Doppler measurement model is

yae
k =

[
q̂T 0T

]
T svϖ(τ) + bae(ψbk|θae

b ) + n, n ∼ N (0,W (ψae
W k|θW )−1). (5.27)

Our Doppler factor when training using the m-step is

ϕae
k = 1

2

(
yae

k −
[
q̂T 0T

]
T svϖ(τ) + bae(ψbk|θae

b )
)2
− α

2 ln (W (ψae
W k|θW )), (5.28)

where we have additionally placed a hyperparameter, α, that can be used to scale the
9This is a configuration setting in the sensor hardware.
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Figure 5.3: We partition the FMCW data into (approximately) uniform azimuth-
elevation bins, effectively creating an image-space projection of the lidar data. The first
row shows the biased Doppler velocity measurements, which noticeably exhibit more bias
on certain parts of the image, e.g., near the left and right edges. The second row shows
the range measurement, the third row shows the intensity, and the last row shows the
square root of the pseudo-variance (pseudo-standard-deviation) input feature (see Ap-
pendix B.2 for details). The pseudo-variance shows higher values on uneven surfaces
(e.g., foliage) and lower values for flat surfaces (e.g., road).

balance between the (first) error term and the (second) logarithm term. When α <

1, we decrease the contribution of the logarithm term, which in practice results in a
more conservative (larger) measurement variance. Due to unmodelled nonidealities, the
default value of α = 1 that we obtain from the negative-log of a Gaussian may result
in overconfident estimates of the measurement uncertainty. These nonidealities could be
from residual measurement bias that was not modelled by our method, time correlations
in the measurement noise, and/or noise characteristics not modelled well by a Gaussian
(e.g., a heavy-tailed noise distribution). In our experiments we set α = 0.1, which we
found to work well for us in practice.

We train our two models using EM. For the e-step, we apply our ICP-based odometry
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Figure 5.4: Our platform, Boreas, was previously used to collect the Boreas Multi-Season
dataset (Burnett et al., 2023) and additionally equipped with an Aeva Aeries I FMCW
Lidar for use in this work.

method, i.e., we take a Gauss-Newton (GN) approximation for ESGVI. For the m-step,
we apply an off-the-shelf stochastic gradient optimizer. We use the Adam optimizer
(Kingma and Ba, 2014) and optimize the parameters for a single epoch in each m-
step (i.e., a full pass through the training dataset) before alternating back to the e-
step. After training, we can replace the slower ICP-based odometry method with our
faster CF-based odometry method for a trade-off between odometry performance and
computational speed.

5.4.2 Datasets

We collected two datasets with FMCW lidar data on which we show experimental results
in the following subsection. We provide a brief description of the datasets in this section.

Boreas FMCW Dataset

The Boreas FMCW dataset is a dataset collected using our data-collection vehicle at the
Autonomous Space Robotics lab at the University of Toronto. An image of our data
collection vehicle, Boreas, is shown in Figure 5.4. The vehicle was previously used for
the Boreas Multi-Season dataset (Burnett et al., 2023), which does not include data
collected with a FMCW lidar. Boreas was later equipped with an Aeva Aeries I FMCW

https://www.boreas.utias.utoronto.ca
https://www.boreas.utias.utoronto.ca
https://www.boreas.utias.utoronto.ca
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Figure 5.5: The two routes of the Boreas FMCW dataset in Toronto, Ontario, Canada.
We have four sequences of the Glen Shields route (red) and one sequence of a different
route collected in the same area (blue). Mapbox was used to generate this figure.

lidar sensor, which has a horizontal field-of-view of 120◦, a vertical field-of-view of 30◦,
a 300 m maximum operating range, and a sampling rate of 10 Hz. The lidar includes a
Bosch BM160 IMU, which we use for our experiments to get gyroscope measurements.
We use the post-processed estimates from an Applanix POS LV as our groundtruth.

We collected five data sequences near the University of Toronto Institute for Aerospace
Studies (UTIAS). Sequences 1 to 4 follow the Glen Shields route of the Boreas Multi-
Season dataset (Burnett et al., 2023). Sequence 5 is a different route collected in the
same area. Figure 5.5 shows the paths of the two routes overlaid on a map.

Aeva HQ Dataset

The Aeva HQ dataset is a dataset collected in Mountain View, CA where Aeva Technolo-
gies Inc. is located. The data collection vehicle was equipped with four Aeva Aeries II
FMCW lidar sensors. Similar to the Aeries I, the Aeries II has a horizontal field-of-view
of 120◦, a vertical field-of-view of 30◦, a 300 m maximum operating range, a sampling
rate of 10 Hz, and a built-in gyroscope. Figure 5.6 shows images of the data collection
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vehicle and the four lidar sensors. As in the Boreas FMCW dataset, this vehicle was
equipped with an Applanix POS LV for obtaining trajectory groundtruth.

Figure 5.6: Images of the data collection platform used for the Aeva HQ dataset. The
platform is equipped with four Aeries II FMCW lidar sensors and a Applanix POS LV
for providing groundtruth. Each sensor is facing in a different direction (i.e., forward,
left, right, and back), which is indicated by the red arrows in the right image.

We collected data over three different driving routes. There are three sequences for
each of the three routes (A, B, and C), resulting in a total of nine sequences. Figure 5.7
illustrates the three routes overlaid on a map.

5.4.3 Results and Discussion

Recall that the intention of our training pipeline with EM is to use the slower ICP-
based odometry to learn the parameters of our bias and noise models, which can be
done offline. The main motivation for using EM is to be able to train without the
groundtruth trajectory. After training, we can apply our learned models to our CF-
based odometry for fast online estimation. The main objective of our experiments is to
determine how well our EM-trained models will perform. Our baseline comparison will
be the CF-based odometry performance when trained using high-quality groundtruth
(i.e., supervised training).

Evaluation Metrics

Following existing work on vehicle odometry, we evaluate odometry using the KITTI
odometry metric (Geiger et al., 2012), which averages errors over path lengths that vary
from 100 m to 800 m in 100 m increments.
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Figure 5.7: The routes of the Aeva HQ dataset: route A (red), route B (blue), and
route C (green). We collected three sequences for each route, resulting in a total of nine
sequences for this dataset. Mapbox was used to generate this figure.

As our CF-based odometry method directly estimates the vehicle velocity, we also
evaluate the overall RMSE of the vehicle velocity in the translational and rotational
dimensions. For the translational dimensions, we can compute the T-RMSE as

T-RMSE =
√√√√( 1

K

∑
k

∥vk − vgt,k∥2
)

[m/s], (5.29)

where vk ∈ R3 is the translational vehicle velocity estimate at lidar frame k and vgt,k ∈
R3 is the corresponding translational vehicle velocity groundtruth. Similarly, we can
compute the R-RMSE as

R-RMSE =
√√√√( 1

K

∑
k

∥ωk − ωgt,k∥2
)

[rad/s], (5.30)

where ωk ∈ R3 is the rotational vehicle velocity estimate at lidar frame k and ωgt,k ∈ R3

is the corresponding rotational vehicle velocity groundtruth.

Boreas FMCW Dataset

We use the first two sequences as our training set. Within our training set, we leave out
sequence 2 as our validation set. When training using EM, we stop training when the
validation training loss does not continue to improve. When training supervised using the
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Figure 5.8: A comparison of the learned bias on the same stationary lidar frame shown
in Figure 5.3. The first three rows show the Doppler error magnitude evaluated using the
groundtruth for three configurations: (row 1) no compensation, (row 2) compensation
using our regression model trained using EM (i.e., no groundtruth), and (row 3) compen-
sation using our regression model trained using the groundtruth. The last row shows the
error histograms corresponding to the same three configurations. The uncompensated
histogram shows a clear bias, while the two compensated histograms appear reasonably
centered about 0 m/s error. Outliers were removed in all examples using RANSAC.

groundtruth, which we use as a baseline comparison, we stop training when the KITTI
odometry translation error stops improving on the validation sequence. Sequences 3, 4,
and 5 are the test sequences.

Figure 5.8 shows an illustrative comparison of the learned measurement bias on the
same stationary lidar frame shown in Figure 5.3. The first row shows the biased Doppler
measurements. The second row and third row show the compensated Doppler measure-
ments using our regression models trained using EM (i.e., trained without groundtruth)
and trained using the groundtruth, respectively. The fourth row shows three error his-
tograms of (i) the uncompensated Doppler error, (ii) the Doppler error compensated
using EM, and (iii) the Doppler error compensated using the groundtruth. The uncom-
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Figure 5.9: Three qualitative examples that demonstrate the Doppler uncertainty pre-
diction on the Boreas FMCW dataset. The intensity values are shown along with the
prediction to provide visual context of the scene. Doppler error tends to be higher on
unstructured surfaces such as the foliage on trees and lower on flat surfaces such as the
ground.

pensated histogram shows a clear bias, while the two compensated histograms appear
similar and reasonably centered around 0 m/s error. Outliers were removed in all exam-
ples using RANSAC. Figure 5.9 shows qualitative examples of learning the measurement
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Table 5.1: Quantitative performance evaluation on data sequences from the Boreas
FMCW dataset. We show the translation values for the KITTI metric and the velocity
RMSE. A detailed explanation of the various methods and analysis of the results are dis-
cussed in the main body text. The main outcome is that we can train our models without
high-quality groundtruth using EM and perform reasonably close to training with the
groundtruth. Training sequences are highlighted in grey and not counted towards the
average. Best results in each of the three categories are in bold font.

Translation Error [%]

ICP-Based 01 02 03 04 05 AVG

No Dop. 0.269 0.266 0.265 0.256 0.320 0.281
w/ Dop. (GT) 0.251 0.242 0.248 0.230 0.271 0.249
w/ Dop. (EM) 0.287 0.258 0.265 0.253 0.293 0.270
Range Limited 21.78 21.66 45.44 58.97 24.50 42.97

CF-Based 01 02 03 04 05 AVG

Train GT 1.122 1.017 1.066 1.057 0.927 1.017
Train EM 1.132 1.062 1.124 1.109 0.998 1.077
Train EM* 1.179 1.114 1.141 1.132 1.048 1.107
No Train 1.465 1.382 1.439 1.423 1.343 1.402

Translational Velocity Error [m/s]

CF-Based 01 02 03 04 05 AVG

Train GT 0.071 0.071 0.070 0.072 0.059 0.067
Train EM 0.072 0.072 0.071 0.074 0.062 0.069
Train EM* 0.076 0.076 0.075 0.078 0.066 0.073
No Train 0.121 0.119 0.117 0.116 0.105 0.113

*EM trained using range limited ICP

uncertainty for three example lidar frames. Additional qualitative examples of bias and
variance outputs are available in Appendix B.3.

Table 5.1 shows our quantitative results for the Boreas FMCW dataset. We present
the KITTI translation metric for various settings of the ICP-based method and the CF-
based method. We also show the T-RMSE for the CF-based methods. As expected, the
ICP-based methods perform the best (when not artificially limited in range). Comparing
among just the ICP-based methods, using Doppler measurements shows an improvement
in performance over ICP on its own. The performance difference is most significant when
the Doppler regression models are trained using the groundtruth. Note that evaluating
the performance of ICP in comparison to our CF-based methods is not a primary objective
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of our experiments here, but it is reassuring to see that the results are consistent with
our prior published works (Wu et al., 2023; Yoon et al., 2023).

The primary objective of our experiments is to compare the performance our Doppler
bias and noise models when trained with the groundtruth (i.e., supervised training)
and without the groundtruth trajectory (i.e., training using EM). In Table 5.1, we see
that the performance of our CF-based odometry when trained using EM is reasonably
similar to when trained using the groundtruth. Unsurprisingly, training with groundtruth
performs slightly better, but that is attributed to the high quality of the Applanix POS
LV groundtruth we use. Groundtruth of this quality is costly to obtain, so we believe
the (small) performance difference we show here is a good outcome. We do not show the
rotation metrics in Table 5.1 in the interest of space as the performance on those metrics is
extremely similar. When trained with the groundtruth, our CF-based odometry achieves
an average 0.39 ◦/(100 m) error for the KITTI rotation metric and 0.0239 rad/s for the
R-RMSE. When trained with EM, our CF-based odometry achieves an average 0.40
◦/(100 m) error for the KITTI rotation metric and 0.0239 rad/s for the R-RMSE. We
show the performance without training as an additional baseline, which is the CF-based
method without bias compensation and a constant Doppler noise model set to 0.5 m
(standard deviation). Unsurprisingly, odometry without training performs the worst.

Given that the performance between training with groundtruth and training without
groundtruth is very similar, and that ICP on its own is very accurate, a remaining
question is whether there is any benefit in using EM. In the absence of our Applanix
POS LV groundtruth, we could utilize the ICP estimates as a pseudo-groundtruth and
still train our models in a supervised fashion (i.e., without EM). In order to demonstrate
the effectiveness of EM, we designed an experiment where we artificially limited the
measurements available for the ICP factors by setting a maximum range of 40 m. We
show the evaluation of ICP using this artificial range limit in Table 5.1 as the ‘Range
Limited’ entry under the ‘ICP-based’ section, which we see is extremely poor and clearly
not suitable to use as a reference signal for supervised training. We then train our models
using EM10 with the range-limited ICP factors and show the evaluation of this model as
‘Train EM*’ in the same table. We view this artificial range limit on ICP as a way to
simulate instances of difficult real-world scenarios where there is insufficient environment
geometry for ICP to fully constrain the vehicle motion (e.g., barren landscapes or long
tunnels). Therefore we show this experiment as a stress test to demonstrate that there
is reasonable robustness to using training data from difficult environment settings.

10While we limited the range for the ICP factors during training, we do not apply this limit on the
Doppler factors.
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Figure 5.10: Plot of the CF-based odometry paths on the Boreas FMCW dataset for se-
quence 4 (first row) and sequence 5 (second row) using our learned Doppler bias and vari-
ance models. There is little difference between training supervised using the groundtruth
and training unsupervised using EM, which is consistent with the results we see in Ta-
ble 5.1.

Figure 5.10 shows a qualitative comparison of the odometry paths for the EM-trained
models and GT-trained models. The first row shows the odometry on sequence 4, while
the second row shows the odometry on sequence 5. Consistent with the quantitative
results we see in Table 5.1, the plots of the paths are nearly identical to each other.
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Figure 5.11: Plot of the CF-based odometry paths on the Aeva HQ dataset for sequence
A3 (first row), sequence B3 (second row), and sequence C3 (third row) using our learned
Doppler bias and variance models. There is little difference between training supervised
using the groundtruth and training unsupervised using EM, which is consistent with the
results we see in Table 5.2.
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Aeva HQ Dataset

We repeat the experiments of the Boreas FMCW dataset on the Aeva HQ dataset using a
single lidar and gyroscope11 combination. For these single sensor experiments, we present
results using the back facing lidar sensor (see Figure 5.6). Out of the nine available
sequences, we use A1, A2, A3, and C1 as our training sequences. Out of these training
sequences, we use A2 as our validation sequence.

Table 5.2 shows the quantitative results in the same format as Table 5.1. Our observa-
tions here are a close mirror to what we saw previously for the Boreas FMCW experiments
and so we will keep the explanation brief. The performance of the CF-based odometry
when trained using EM is reasonably similar to when trained using the groundtruth.
Compared to our Boreas experiments, the results of EM training in this table are even
closer, and sometimes favour EM over supervised training on some sequences. We re-
peat the artificial range limit experiment here to demonstrate the effectiveness of EM.
Overall, it is reassuring to see that we can replicate our observations from the previous
experiment on an entirely different dataset (i.e., different location, platform, sensor).

Figure 5.11 shows a qualitative comparison of the odometry paths for the EM-trained
models and GT-trained models. The first row shows the odometry on sequence A3, the
second row shows the odometry on sequence B3, and the third row shows the odometry
on sequence C3. Consistent with the quantitative results we see in Table 5.2, the plots
of the paths are nearly identical to each other.

The performance of the ICP-based methods is noticeably not as accurate as what we
observed in the Boreas experiments, but to be fair, ICP performance was not a priority
for us here. Given that EM still achieves odometry performance on par with supervised
training, the lower performance of ICP does not seem to be a major contributing factor
to the performance of our models trained using EM.

Unique to the Aeva HQ dataset is its multi-lidar sensor setup. We test the per-
formance of using multiple FMCW lidar sensors on our CF-based odometry method.
Despite each FMCW lidar sensor having a built-in gyroscope, we refer to the lidar as
a separate sensor from its gyroscope for convenience in our experiment setup. In order
to evaluate the effectiveness of including multiple sensors, we evaluate odometry using
the following combinations: 1 lidar with 1 gyro, 1 lidar with 4 gyros, and 4 lidars with
4 gyros. Table 5.3 shows the quantitative results. As expected, using more sensors im-
proves odometry performance. Including multiple gyroscopes is the biggest contributing
factor to the improvement in performance. The ‘4 lidar with 4 gyro’ combination does

11As a clarification, we use the gyroscope that corresponds to the chosen lidar.
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Table 5.2: Quantitative performance evaluation on data sequences from the Aeva HQ
Dataset. We show the translation values for the KITTI metric and the velocity RMSE.
A detailed explanation of the various methods and analysis of the results are discussed
in the main body text. The main outcome is that we can train our models without
high-quality groundtruth using EM and perform reasonably close to training with the
groundtruth. Training sequences are highlighted in grey and not counted towards the
average. Best results in each of the three categories are in bold font.

Translation Error [%]

ICP-Based A1 A2 A3 B1 B2 B3 C1 C2 C3 AVG

No Dop. 0.559 0.534 0.551 0.552 0.531 0.543 0.857 0.802 0.848 0.655
w/ Dop. (GT) 0.539 0.570 0.544 0.616 0.586 0.590 0.723 0.662 0.723 0.635
w/ Dop. (EM) 0.655 0.675 0.660 0.750 0.726 0.726 0.885 0.821 0.883 0.781
Range Limited 19.60 24.22 18.71 7.037 9.741 7.505 23.56 24.83 25.81 14.98

CF-Based A1 A2 A3 B1 B2 B3 C1 C2 C3 AVG

Train GT 1.296 1.082 0.860 1.219 1.078 1.144 1.323 0.830 1.373 1.129
Train EM 1.335 1.100 0.882 1.229 1.075 1.142 1.341 0.841 1.391 1.136
Train EM* 1.287 1.079 0.881 1.216 1.068 1.144 1.372 0.857 1.424 1.142
No Train 1.776 1.415 1.386 1.718 1.485 1.582 1.900 1.554 1.941 1.656

Translational Velocity Error [m/s]

CF-Based A1 A2 A3 B1 B2 B3 C1 C2 C3 AVG

Train GT 0.054 0.050 0.048 0.051 0.051 0.048 0.055 0.063 0.057 0.054
Train EM 0.056 0.052 0.050 0.053 0.053 0.051 0.059 0.067 0.059 0.056
Train EM* 0.056 0.053 0.050 0.054 0.054 0.052 0.059 0.067 0.059 0.057
No Train 0.123 0.124 0.117 0.122 0.123 0.117 0.135 0.142 0.133 0.127

*EM trained using range limited ICP

perform slightly better, but most of the improvement in performance is clearly from the
inclusion of multiple gyroscopes. Comparing between training with groundtruth and
without groundtruth, we again see very similar performance between the two. There are
more instances where EM outperforms supervised training, but we do not believe the
performance difference to be significant enough to judge one method to be better than
the other.

Lastly, an outstanding question that remains is whether we can apply the CF-based
odometry method without gyroscope measurements, i.e., by only using the Doppler veloc-
ity factors and our motion prior factors. In our published work, we derived an algebraic
observability study and determined that the 6-DOF vehicle velocity is well-constrained
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Table 5.3: Quantitative results on our Aeva HQ data sequences using multiple lidar
sensors. As expected, performance improves with the inclusion of multiple sensors. Most
of the gain in performance is due to using multiple gyroscopes. Training sequences are
highlighted in grey and not counted towards the average. Best results in each of the four
categories are in bold font.

Translation Error [%]

GT Train A1 A2 A3 B1 B2 B3 C1 C2 C3 AVG

1 Lidar 1 Gyro 1.296 1.082 0.860 1.219 1.078 1.144 1.323 0.830 1.373 1.129
1 Lidar 4 Gyro 0.796 0.802 0.699 0.743 0.741 0.703 0.951 0.754 1.072 0.803
4 Lidar 4 Gyro 0.820 0.756 0.765 0.700 0.695 0.659 0.867 0.685 0.993 0.746

EM Train A1 A2 A3 B1 B2 B3 C1 C2 C3 AVG

1 Lidar 1 Gyro 1.335 1.100 0.882 1.229 1.075 1.142 1.341 0.841 1.391 1.136
1 Lidar 4 Gyro 0.800 0.799 0.676 0.709 0.717 0.683 0.925 0.731 1.037 0.775
4 Lidar 4 Gyro 0.858 0.742 0.711 0.685 0.694 0.689 0.808 0.675 0.918 0.732

Translational Velocity Error [m/s]

GT Train A1 A2 A3 B1 B2 B3 C1 C2 C3 AVG

1 Lidar 1 Gyro 0.054 0.050 0.048 0.051 0.051 0.048 0.055 0.063 0.057 0.054
1 Lidar 4 Gyro 0.053 0.050 0.049 0.050 0.049 0.048 0.054 0.061 0.055 0.053
4 Lidar 4 Gyro 0.050 0.047 0.045 0.043 0.046 0.045 0.052 0.055 0.049 0.047

EM Train A1 A2 A3 B1 B2 B3 C1 C2 C3 AVG

1 Lidar 1 Gyro 0.056 0.052 0.050 0.053 0.053 0.051 0.059 0.067 0.059 0.056
1 Lidar 4 Gyro 0.055 0.051 0.050 0.050 0.049 0.048 0.055 0.063 0.056 0.053
4 Lidar 4 Gyro 0.055 0.047 0.046 0.049 0.050 0.050 0.056 0.061 0.053 0.053

without gyroscope measurements if we have at least three FMCW lidar sensors (Yoon
et al., 2023), which we show in Appendix A.2. As a preliminary test, we evaluate our
CF-based odometry method using all four lidar sensors without gyroscope measurements.

Unfortunately our experiments show that, while the vehicle velocity is fully con-
strained, the performance of odometry is very poor. On average, we obtain 4.808 %
translation error and 0.18 ◦/(100 m) rotation error on the test sequences using the KITTI
odometry metrics. The average RMSE errors for velocity are 0.069 m/s and 0.031 rad/s,
which seem comparable to when we used gyroscope measurements, but we believe this is
due to our data sequences mostly being composed of driving in a straight motion. The
velocity errors are largest while turning, which causes significant drift that is reflected
in the poor KITTI odometry metrics. We suspect that the poor performance is due to
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Figure 5.12: (top) A simulated sensitivity study for lidar-only CF-based odometry (no
gyroscopes) using four FMCW lidars. We simulate measurements by replacing the real
measurements using the groundtruth, the measurement model, and zero-mean Gaussian
noise. The plot shows the translation error using the KITTI odometry metric as we
increase the simulated measurement noise. For comparison, our result on the real data
is shown as the (red) horizontal line. (bottom) The corresponding plots of odometry for
the simulated result using 0.2 m/s standard deviation and real data.

unmodelled biases that remain even after our learned bias compensation. We chose a
linear regression model using handcrafted features to favour computation over accuracy,
but evidently the achievable accuracy using our relatively simple model falls short when
we do not use gyroscope measurements.

We additionally demonstrate the performance of odometry by substituting the real
Doppler measurements with simulated (unbiased) measurements using our Doppler mea-
surement model and groundtruth. Figure 5.12 (top) shows a sensitivity study where we
vary the standard deviation of the simulated noise on sequence B1 and plot the KITTI
translation error. The sensor realistically returns Doppler measurements with a standard
deviation of approximately 0.1 m/s (see an example histogram of errors in Figure 5.8),
but we do not match the performance on real data until we increase the simulated noise to
as high as 1.6 m/s. A comparison plot of the path for a simulated run with 0.2 m/s noise
is shown below the sensitivity plot. This further validates our algebraic observability
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study and makes it clear that further performance gains will depend on improved han-
dling of the real data nonidealities. We leave improving the performance of Doppler-only
odometry as future work and look towards using models with higher learning capacity.

5.5 Summary and Conclusions

Our focus in this chapter was on learning measurement bias and noise models. Due to
nonidealities in the real world, measurements can be biased in comparison to our known
sensor models and their uncertainty may require a richer noise model that can vary
depending on the application setting. We proposed modelling bias and covariance using
feature-dependent regression models, where our main interest was on training the models
using ESGVI and EM. We demonstrated EM training for odometry using FMCW lidar
sensors, where we trained our models using the observed sensor data without supervision
from the groundtruth trajectory. The odometry estimators we used for this problem
appeared in two of our previously published works (Wu et al., 2023; Yoon et al., 2023).

In summary, the contributions of Chapter 5 are:

1. A methodology for training feature-dependent regression models for measurement
bias and covariance using ESGVI and EM.

2. A lightweight correspondence-free odometry method using Doppler measurements
from a FMCW lidar and gyroscope measurements from an IMU.

3. Experiments using the proposed method for learning Doppler measurement bias
and variance, demonstrating the ability to train the regression models without
supervision from the groundtruth trajectory.



Chapter 6

Learning Neural Networks

In the previous chapters, we investigated how one could tune measurement models for
compensating measurement bias and/or assigning measurement uncertainty (i.e., covari-
ance). We were interested in learning our models from the onboard sensor data, rather
than relying on a source of groundtruth for supervision. A motivation for having such
a methodology is to enable training on datasets that were collected in the field, rather
than carefully curated datasets collected specifically for tuning our models. We now wish
to enrich the same idea with Deep Neural Networks (DNNs).

According to the universal approximation theorem (Cybenko, 1989; Hornik et al.,
1989; Goodfellow et al., 2016), a feedforward network with a linear output layer and
at least one hidden layer (with enough hidden units and nonlinear activation functions)
can approximate any continuous function on a closed and bounded subset of RN . In
other words, a DNN is a general function approximator and we can in theory use it to
approximate any function we require, given we make the network model large enough and
have sufficient training data. In this chapter, we will use DNNs to learn more aspects of
our measurement model than we have shown in the previous chapters. We will use our
estimation and parameter learning framework using ESGVI and EM. By doing so, we
can maintain a probabilistic estimation back-end, while taking advantage of the learning
capacity of DNNs, all under a single data-likelihood learning objective. Maintaining
a probabilistic estimation back-end gives us familiar benefits, such as outlier rejection
(M-estimation), motion priors, continuous-time machinery, and interpretability of our
estimator.

In summary, the main contribution of this chapter is the incorporation of DNNs to
our parameter learning framework using ESGVI and EM, which we demonstrate using
two different methodologies.

In Section 6.2, we first look into how we can model a measurement model in its entirety

96
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using a DNN. We demonstrate application of the derivative-free approach for ESGVI (see
Section 3.2.5), which allows us to efficiently train and use a neural network measurement
model without explicitly taking derivatives of the model with respect to our vehicle
state. Instead of derivatives, we use multiple forward passes with sigmapoints, which
complements the parallel work-flow of DNNs well. We demonstrate our methodology on
the robot dataset from Section 3.6 to learn a range-bearing measurement model without
supervison from the groundtruth trajectory. We present our experiments on this low-
dimensional problem as a proof-of-concept and hope to enable further research on this
methodology in future work.

In Section 6.4, we present an alternative way of using a DNN for application to rich
sensor data. Instead of modelling the measurement model directly, which can be costly
due to the density of measurements, we can model a DNN front-end that processes the
rich data and outputs sparse features that can be used for state estimation. Our method-
ology is not specific to one type of sensor and generalizes to many because of our factor
graph formulation to estimation and parameter learning. However, for this thesis we
focus our experiments on lidar odometry and demonstrate learning without supervision
from the groundtruth trajectory. Our experiments on lidar odometry was published to
the IEEE Robotics and Automation Letters (Yoon et al., 2021). We additionally demon-
strated the approach on radar odometry, which was presented at the Robotics: Science
and Systems conference (Burnett et al., 2021) (equal-contribution work). We briefly
discuss the methodology of radar odometry in this chapter and forward readers to the
corresponding publication for the experimental results.

6.1 Related Work

6.1.1 Network Training

Our idea of parameter learning with ESGVI originates from a linear system identification
method, where Ghahramani and Hinton (1996) optimize the likelihood of the observed
measurements (data) by introducing a latent trajectory (state) and applying EM. In the
e-step, model parameters are held fixed and the trajectory is optimized with Kalman
smoothing. In the m-step, the trajectory is held fixed and the model parameters are
optimized. Critically, this method is able to learn entire linear models from just the
observed data, with no prior knowledge. Ghahramani and Roweis (1999) extend this
concept to simple nonlinear models modelled using a Gaussian Radial Basis Functions
(RBF) network. Inspired by the work of Ghahramani and Roweis (1999), which dates
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back to approximately two decades from the time of this thesis work, we revisit this idea
of using EM to train network parameters, but with advances in both state estimation
and DNN learning.

A similar concept based on optimizing the data likelihood by introducing a latent state
is applied in the Variational Autoencoder (VAE) (Kingma and Welling, 2013) framework.
With VAEs, in contrast to our approach using EM, inference of the latent state is approx-
imated as a deep network (i.e., data input mapped to state output using a DNN). This
approximation is restrictive for time-series application, such as trajectory estimation. EM
parameter learning with ESGVI gives us all the benefits of probabilistic estimation, such
as (i) information propagation and regularization over the entire latent trajectory through
a kinematically motivated motion prior, (ii) robustness to outliers using techniques such
as M-estimation (Zhang, 1997), (iii) continuous-time estimation for efficiently handling
dense and/or asynchronous measurements (Barfoot et al., 2014; Anderson and Barfoot,
2015), and (iv) the flexibility of incorporating multiple sensor modalities as additional
factors.

Alternatively, Bloesch et al. (2018) use a VAE in probabilistic trajectory estimation
without directly inferencing the state with a deep network. They train a VAE to learn
an efficient (lower-dimensional) latent space for geometry, and optimize over this do-
main jointly with pose variables at test time for monocular vision estimation problems.
Czarnowski et al. (2020) extend this work by using the same depth representation in a
full dense SLAM system. Unlike our approach, their network is trained independently
from the trajectory estimator, and a training dataset with groundtruth depth images
is required. One motivation of ours for using EM is to train our network parameters
without groundtruth.

Evidently, deep learning with core components of probabilistic estimation is an in-
creasingly popular avenue of research. Tang and Tan (2018) maintain the differentiabil-
ity of the Levenberg-Marquardt optimizer by iterating for a fixed number of steps and
proposing a network to predict the damping factor. Similarly, von Stumberg et al. (2020)
backpropagate through the Gauss-Newton update step from a random initial condition.
Jatavallabhula et al. (2020) go even further by proposing differentiable alternatives to
all modules in full SLAM systems as computational graphs. Most recently, Pineda et al.
(2022) present Theseus, an application-agnostic open source library for differentiable
nonlinear least squares. In contrast to these methods, our approach does not rely on
making the estimator differentiable and so facilitates using any available probabilistic es-
timation method and related tools. As an example, we can easily incorporate an outlier
rejection technique such as RANSAC (Fischler and Bolles, 1981) without worrying about
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differentiability.
We first present a methodology that learns a measurement model in its entirety using

a DNN. Taking derivatives of a DNN’s output with respect to its input can be computa-
tionally demanding, requiring backpropagation for each output dimension. Sample-based
estimators can be used instead, where function model evaluations with samples of the
latent state replaces the need for taking analytical gradients. Schön et al. (2011b) ap-
plies EM with a particle smoother for parameter estimation, and similarly, Kokkala et al.
(2016) applies cubature (e.g., sigmapoints) smoothing. Neither of these works have ap-
plied their method for neural network models. Rather, only a handful of parameters are
estimated where most of the nonlinearity is predefined (e.g., for calibration or covariance
estimation). We will use ESGVI, which can similarly be evaluated derivative-free with
cubature sampling. ESGVI is not restricted to smoothing problems (i.e., does not require
a block-tridiagonal inverse covariance) and can exploit the problem structure regardless
of how the joint likelihood factors. There has been work that proposes learning nonlin-
ear measurement models using Gaussian Processes (GPs) (Turner et al., 2010; Ko and
Fox, 2009, 2011). Inference with GPs is a form of ‘lazy learning’ and scales cubically
in computation with respect to the size of the training data. Sparse GP approxima-
tions to query on a subset of the training data (Snelson and Ghahramani, 2006) may be
necessary for online application. In contrast, DNNs generalize to training data offline
and off-the-shelf libraries readily have support for hardware-accelerated computing (i.e.,
parallel processing on a GPU).

Our methodology for modelling a sensor using a DNN is not computationally favourable
for dense measurements from a rich sensor. Instead, for rich sensors we propose an alter-
native approach that uses a DNN as a front-end processor that outputs sparse features.
We demonstrate the ability to train this network model without supervision from the
groundtruth trajectory using EM. Most similar to this approach is the work of DeTone
et al. (2018), where they alternate between training a deep network front-end that out-
puts visual features from images, and a bundle adjustment back-end that optimizes the
feature observations as landmarks. The optimized landmarks become the training signal
for learning the front-end network. While their idea is similar in practice to our approach
with EM, our formulation is motivated from probabilistic data-likelihood objective and
so the details of our optimization objective are different.
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6.1.2 Application to Lidar Odometry

While our learning framework is sensor agnostic, our choice of application to demonstrate
our work on rich sensor data is lidar odometry. We briefly discuss the current literature
related to lidar odometry in this subsection, including works that apply deep learning.
Note the lidar used in our experiments of this chapter is a standard 3D lidar sensor, and
not a FMCW lidar sensor that we used in the previous chapter.

The current state of the art for non-learned lidar estimation are those based on ICP.
ICP estimates the relative transformation between two pointclouds by iteratively re-
associating point measurements via nearest-neighbour search (Besl and McKay, 1992;
Pomerleau et al., 2015). Lidar odometry methods that achieve state-of-the-art perfor-
mance apply this simple-but-powerful concept of nearest-neighbour data association in a
low-dimensional space (e.g., Cartesian). Zhang and Singh (2017) present LOAM, which
has been the top contender for lidar-only odometry in the KITTI odometry benchmark
(Geiger et al., 2012) since its inception. Behley and Stachniss (2018) present SuMa, which
is notably the method used as the trajectory groundtruth in SemanticKITTI (Behley
et al., 2019), the KITTI odometry sequences with semantic labels.

Modern lidars output high-resolution, 3D pointclouds by mechanical actuation. Con-
sequently, pointclouds acquired from a moving vehicle will be motion distorted, similar
to a rolling-shutter effect. One can motion-compensate (de-skew, or undistort) the data
as a preprocessing step (Ye et al., 2019; Vizzo et al., 2023). Alternatively, data can be in-
corporated at their exact measurement times by estimating a continuous-time trajectory
(Furgale et al., 2012; Anderson and Barfoot, 2013; Barfoot et al., 2014). Continuous-time
ICP-based methods have been successfully demonstrated in several works (Wong et al.,
2020a; Dellenbach et al., 2022; Wu et al., 2023). State-of-the-art lidar odometry methods
address the motion compensation problem and are capable of achieving highly accurate,
real-time performance (Pan et al., 2021; Dellenbach et al., 2022; Vizzo et al., 2023).
Pan et al. (2021) extract low-level geometric features to apply multiple error metrics in
their ICP optimization. Dellenbach et al. (2022) use a sparse voxel data structure for
downsampling and nearest-neighbour search in a single-threaded implementation. Vizzo
et al. (2023) demonstrate faster performance with comparable accuracy by proposing a
simplified registration pipeline that requires few tuning parameters in a multi-threaded
implementation.

At the opposite end, we have fully-learned lidar odometry methods that infer relative
poses with a deep network. (Li et al., 2019) present LO-Net, a network that takes two
pointclouds as input and outputs the relative pose. Their method demonstrates com-
petent odometry performance comparable to ICP-based ones, but requires training with
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supervision from groundtruth trajectories. Cho et al. (2020) present DeepLO, a network
that similarly outputs a relative pose change from two input pointclouds and is trained
unsupervised. However, their unsupervised approach comes at a cost, as the odometry
performance they present falls short compared to LO-Net and existing ICP-based meth-
ods. The learned estimator in LO-Net is impressive, but Li et al. (2019) demonstrate
better odometry in the same publication with ICP enhanced with point measurement
masks that were trained alongside LO-Net. In similar fashion, Chen et al. (2019) im-
prove on SuMa with SuMa++, which incorporates a pretrained semantic classification
network. These outcomes suggest that a hybrid of non-learned estimators with learned
components can be beneficial. Our work is motivated by the idea that in the spectrum
between non-learned and fully learned estimators, there is an optimal balance that can
benefit from the advantages of both extremes. The learning framework and odometry
solution we present is our attempt at meeting this balance.

Compared to fully learning the estimator, such as in DeepLO (Cho et al., 2020) and
LO-Net (Li et al., 2019), our odometry solution achieves better performance while being
trained unsupervised. Compared to SuMa++ (Chen et al., 2019) and LO-Net with ICP,
our approach learns more and does not rely on nearest-neighbours for data association.
Having more learnable components has the advantage of automation, i.e., being able
to tune models from data for different deployments, rather than requiring an expert
engineer. Another advantage of not relying on ICP is that our method inherently has a
reasonably good estimate of trajectory uncertainty. Uncertainty estimation for ICP is on
its own a challenging research problem (Landry et al., 2019; Brossard et al., 2020b).

6.2 Neural Network Measurement Model

In this section we present the methodology for modelling and training a DNN measure-
ment model. Using our ESGVI and EM parameter learning framework, we can take
advantage of the learning capacity of DNNs while using a classic estimation back-end.

Recall from Section 3.3 our data likelihood objective. Repeating the objective here
for convenience,

L = − ln p(y|θ) =
∫ ∞

−∞
q(x) ln

(
p(x|y,θ)
q(x)

)
dx︸ ︷︷ ︸

≤ 0

−
∫ ∞

−∞
q(x) ln

(
p(x,y|θ)
q(x)

)
dx︸ ︷︷ ︸

upper bound

,
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where we know that the upper bound term is equivalent to our ESGVI loss,

V (q|θ) = Eq[ϕ(x,y|θ)] + 1
2 ln(|Σ−1|). (6.1)

As per usual, we will learn our model parameters, θ, while simultaneously estimating for
the latent state, q(x), using EM.

We will for now not specify the details of the network architecture as that can be
largely dependent on the application. We instead represent our network model as a
generic measurement function, yk = g(xk|θ), where yk is the output measurement from
our model that takes the state estimate, xk, as input, and depends on the network
parameters, θ. We assume that we are applying a large enough network to learn the
measurement model from our training data.

We will assume our joint log-likelihood between our states and measurements factors
apart in the following way:

ϕ(x,y|θ) =
∑

k

(ϕp(xk−1,xk) + ϕm(yk|xk,θ)) , (6.2)

where ϕp(·, ·) are motion prior factors and ϕm(·|·,θ) are measurement factors that depend
on the parameters, θ. Focusing on just the measurements, we can write each factor as

ϕm(yk|xk,θ) = 1
2eT

m,kW−1
k em,k −

1
2 ln(|W−1

k |), (6.3a)

em,k = yk − g(xk|θ), (6.3b)

In the m-step, we need to optimize for θ by taking the derivative of our loss functional
while holding our latent state, q(x), fixed. However, our network measurement model is
nonlinear with respect to our latent state. We can approximate the uncertainty of our
latent state using cubature approximations of the expectations. Then the gradients of
the loss functional can easily be computed with existing, off-the-shelf DNN training tools
(i.e., backpropagation with automatic differentiation libraries). For clarity, we can write
the required gradient evaluated with sigmapoints as follows:

∂V (q|θ)
∂θ

=
∑

k

Eqk

[
∂

∂θ
ϕm,k(yk|xk,θ)

]
=
∑

k

∑
i

wk,i

(
∂

∂θ
ϕm,k(xk,i,yk|θ)

)

= ∂

∂θ

(∑
k

∑
i

wk,i

2 (yk − g(xk,i|θ))T W−1
k (yk − g(xk,i|θ))

)
, (6.4)

where wk,i are weights, xk,i = µk+
√
Σkξk,i are sigmapoints, and ξk,i are unit sigmapoints.
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Both the weights and unit sigmapoints are specific to the cubature method. With the
inclusion of cubature sampling, we see that with the gradient expression is in a familiar
form for supervised regression training.

In the e-step, we use our current best measurement model to improve our estimate of
our latent state, q(x), using ESGVI. While it is possible to use automatic differentiation
from our usual DNN tools to compute the gradient of our learned measurement model
with respect to our state, running backpropagation on multiple dimensions of the model
output can become costly1. We can instead use our derivative-free formulation of ESGVI.
This will require running multiple forward passes through our network model for each
sigmapoint, a task that is easily computed in parallel on a GPU. Intuitively, we could also
run multiple forward passes through our model to calculate a numerical approximation
of the required gradient. Our approach with derivative-free ESGVI is similar in concept,
but takes into account the uncertainty of our latent state to determine the spread of the
perturbed states, rather than choosing them ad hoc.

In Chapter 3, we took a deep look into how Gaussian cubature can be applied to
approximate our expectation expressions. Higher-order expressions with respect to our
state will require more cubature points for an accurate approximation, requiring more
compute. Therefore it may be beneficial to consider the alternate loss functional to re-
duce the number of required cubature points. Recall that the alternate loss is a good,
conservative approximation of the full ESGVI loss under mild nonlinearities and/or con-
centrated posteriors. While we do not expect the nonlinearity of our network model to
be mild, we may find in our applications that the posterior is concentrated enough to
justify the alternate loss. For example, the required gradient for our m-step using the
alternate ESGVI loss will be

∂V ′(q|θ)
∂θ

= ∂

∂θ

∑
k

(1
2Eqk

[yk − g(xk|θ)]T W−1
k Eqk

[yk − g(xk|θ)]
)

= ∂

∂θ

∑
k

1
2

(∑
i

wk,i(yk − g(xk,i|θ))
)T

W−1
k

(∑
i

wk,i(yk − g(xk,i|θ))
) .

(6.5)
1Off-the-shelf libraries for DNN training are designed for automatic differentiation of parameters

with respect to a scalar loss term. Using the same tool to compute a measurement Jacobian will require
multiple queries for each dimension of the measurement.
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6.3 Experiment: Learning a Range-Bearing Model
without Derivatives

6.3.1 Experiment Setup

We demonstrate our derivative-free approach to train a DNN range-bearing measurement
model on the same robot dataset used in Experiment 3 of Chapter 3 (see Section 3.6).
While there is little practical value in learning a well-defined measurement model, we
use this experiment to establish a proof of concept of our method for training without
groundtruth and to motivate further research in this direction. Once again, we assume
that the data association (i.e., which measurement corresponds to which landmark) is
known in this experiment. We partition the 12,000 timesteps of the dataset into 6
sequences of 2,000 timesteps each. Out of the 6 sequences, we will use 3 as our training
set, 1 as our validation set, and 2 for our test set.

Since our focus is on learning the range-bearing measurement model, we simplify the
estimation problem in a few aspects: (i) we switch the estimation problem to localization
by assuming that the map of landmarks is known (i.e., we do not estimate landmarks as
part of the state), (ii) we reduce the dimension of the state to 3 by removing the robot
velocity, and (iii) we remove the WNOA motion prior. By reducing the dimension of
the state, we can reduce the number of sigmapoints required for our ESGVI method,
reducing compute. Since we no longer estimate the robot velocity, we do not require
the WNOA motion prior. We instead re-purpose the wheel encoder measurements into
a motion model, which is common practice in many robot applications. We assume our
motion model is known and we will learn the range-bearing model. Therefore there are
three types of factors in our estimation problem: (i) the range-bearing measurement
factors using our learned DNN model, (ii) the motion model factors, and (iii) an initial
condition factor on the first robot pose of each sequence.

We define our state to be

x =



x0

x1
...

xK


, (6.6)

where xk is the robot state at timestep tk, xk =
[
xk yk θk

]T

. The measurement model
we require our DNN to learn is the range-bearing model. For convenience, we repeat the
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model here: rℓ
k

bℓ
k

 =


√

(xℓ − xk − d cos θk)2 + (yℓ − yk − d sin θk)2

atan2(yℓ − yk − d sin θk, xℓ − xk − d cos θk)− θk

 , (6.7)

where mℓ =
[
xℓ yℓ

]T

is a known landmark position, and d is an extrinsic calibration
parameter that describes the placement of the sensor on the robot platform.

Since this is a relatively simple, low-dimensional measurement model, our network can
be relatively shallow in comparison to networks that work with rich data. We take the
intuitive approach, which is to apply a fully connected network with input dimension 5,
corresponding to the sum of the state and landmark dimensions, and output dimension 2,
corresponding to the dimension of the range-bearing measurement. We apply the ReLU
nonlinear function as our activation for the hidden layers, while the width and depth
of the hidden layers remain as tuning hyperparameters. We can write this model as a
function

g(xk,mℓ
k|θ), (6.8)

where we have two distinct inputs: the state, xk, and a landmark position, mℓ
k.

However, it turns out that the network model above is not capable of learning the
range-bearing model well without the groundtruth trajectory. Our data likelihood learn-
ing objective does not provide enough information to learn a latent state space that is
consistent with the given map. Our solution is to combine the robot state input with the
landmark input by transforming the landmark into the local frame of the robot. We can
write this alternate model as a function

g(Tkmℓ
k|θ), (6.9)

where we have converted the vectorspace xk to a transformation matrix Tk ∈ SE(2),
which we use to transform the landmark position into the local robot frame. We pro-
vide experimental results using both models and further discuss the comparison in the
following subsection.

In summary, we train our model by alternating between the e-step and m-step. We
found that using the alternative loss functional for ESGVI works sufficiently, which we
recall helps reduce compute by lowering the number of sigmapoints we require. For the
e-step, we run a batch optimization for each sequence independently. For the m-step, we
train our model with the Adam optimizer (Kingma and Ba, 2014) over the entire training
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Figure 6.1: A block diagram illustrating the evaluation of our loss to train our network
measurement model. For convenience, we illustrate each mini-batch as data from a single
timestamp at time tk, but in practice we use a mini-batch of several timestamps. The
state marginals are from the latest solve of the e-step.

set while holding our trajectory estimates fixed. We use a validation set for early stopping
within each m-step, i.e., we evaluate the loss functional of the validation set and stop
training once it ceases to further decrease. We apply the same early-stopping criterion to
terminate the outer EM loop. Figure 6.1 illustrates a block diagram for evaluating our loss
(see (6.5)) during the m-step. We load a mini-batch of data consisting of the observed
measurements, yℓ

k, the corresponding landmark positions, mℓ
k, and the corresponding

state marginals, xk ∼ N (µk,Σk) from the latest e-step. We use Gaussian cubature to
sample sigmapoints from the state marginals and forward propagate the sigmapoints
through our network measurement model. We then evaluate our loss using the network
outputs and the observed measurements, for which we apply backpropagation on to
update the network parameters.

6.3.2 Results and Discussion

We evaluate localization using our learned range-bearing measurement models that we
train without the groundtruth trajectory. Recall that we have two network models: a
model that takes the robot state and landmark position as inputs separately, g(xk,mℓ

k|θ)
(model 1), and a model that takes a combined input of the two via a transformation of
the landmark into the local robot frame using the state, g(Tkmℓ

k|θ) (model 2).
Figure 6.2 is a plot of the paths of our localization with the two models and the

groundtruth. Notice how the shape of the path for model 1 is approximately congruent
to the groundtruth, but seemingly offset by a translation. It turns out that the ESGVI
loss functional is doing what we asked it to, i.e., the loss encourages the network model to
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Table 6.1: A table of the quantitative results for localization on two test sequences for
learning a range-bearing measurement model without the groundtruth trajectory. We
present the RMSE for translation [m] and rotation [rad] (units are shown as [m]/[rad]).
Best values are highlighted in bold font between the two proposed models (excluding the
known model). The results clearly demonstrate the performance improvement of using
model 2 over model 1. Comparing model 2 to the known model, which we can consider as
the groundtruth model, it appears to perform on par in translation, but not in rotation.

Test Seq. Model 1 Model 2 Known Model

1 0.352/0.109 0.030/0.086 0.031/0.043
2 0.363/0.113 0.033/0.080 0.031/0.039

Avg. 0.358/0.111 0.032/0.083 0.031/0.041

learn a parameter configuration that can explain the data (increase the data likelihood).
However, EM ends up converging to a local minimum that has the latent state space
in a different reference frame than the given map. Using model 1, we provided too
little information to encourage the latent space to be in the same reference frame as the
given map, which is problematic for a localization application. While the prior factor on
the first pose does provide this information, it alone is not strong enough to encourage
convergence to a good solution in our experiments.

Understanding why model 1 does not work well, we can see the reasoning behind the
design of model 2. We can encourage the latent space to be in the same reference as
the known map by transforming the input landmark position into the local robot frame
before inputting it into the network. Looking at Figure 6.2 again, we see that we are
able to localize to the map reasonably well using our learned range-bearing model.

Table 6.1 shows the quantitative results of localization for our 2 models and the known
range-bearing model from (6.7). Model 2 clearly performs better in both translation and
rotation than model 1. Interestingly, model 2 appears to perform on-par with the known
model in translation. However, the known model clearly outperforms model 2 in rotation.
While we have exhausted the data available, it would be interesting to see in future work
if increasing the training dataset size would help reduce this gap in performance.

6.4 Deep Features for Rich Data

In the previous two sections of this chapter, we discussed a methodology for learning a
measurement model using a DNN and our ESGVI and EM parameter learning framework.
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Figure 6.2: A comparison of localization with the two learned range-bearing models
and the groundtruth. Model 1 takes the robot state and landmark as the input, while
model 2 takes the transformed landmark in the local robot frame as input. Model 1 is
unable to learn a latent state space that is in the same reference frame as the given map.
Transforming the landmark positions into the local robot frame helps resolve this issue.

The appeal of the approach was to take advantage of the learning capacity of DNNs while
using a probabilistic estimation back-end. However, we limited our experiment to a low-
dimensional problem because the current methodology without further improvements
may not be computationally suitable for handling rich sensor data (e.g., dense pointclouds
from a lidar). In this section, we present an alternative approach to incorporating a DNN
that is designed specifically for rich sensor data. We accomplish this by learning a CNN
front-end that processes rich sensor data into sparse features. Those sparse features can
then be used in our probabilistic estimation back-end (i.e., ESGVI).

We will focus our methodology on odometry using rich sensor data. We define our
state at time tk as xk = {Tk,0,ϖk}, where the pose Tk,0 ∈ SE(3) is a transformation
matrix between frames at tk and t0, andϖk ∈ R6 is the body-centric velocity. We assume
we receive a new sensor frame from the sensor at each new time tk.

Our odometry implementation is an optimization over a window of w sensor frames,
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Figure 6.3: An example factor graph diagram of a odometry problem using pointcloud
data from a lidar. We optimize the trajectory over a sliding window of w time frames
(e.g., w = 3 above), where xk is our state at time tk. The first frame is locked (grey)
and is the reference frame, we do not optimize it. Each frame receives a pointcloud
from the lidar sensor. A deep network takes each pointcloud as input and outputs
features with uncertainty (stars) that can be associated to other frames and composed
into measurement factors, ϕm (circles). Motion prior factors, ϕp (squares), are applied
between every frame. We do not require supervision, and only learn from the on-board
lidar data.

tτ , . . . , tτ+w−1. The first pose of the window at tτ , Tτ,0, is locked (not optimized) and
treated as the reference frame for keypoint matching. The factorization of our joint
likelihood of the state and data is

ϕ(x, z|θ) =
τ+w−1∑
k=τ+1

ϕp(xk−1,xk) +
Lk∑
ℓ=1

ϕm(zℓ
k|xτ ,xk,θ)

 , (6.10)

where zℓ
k is the ℓth keypoint measurement in sensor frame k, which has a total of Lk

keypoints. Figure 6.3 shows an example factor graph illustration for a lidar odometry
problem.

Referring to Figure 6.3, the square factors, ϕp, are motion prior factors. We use
the SE(3) WNOA motion prior by Anderson and Barfoot (2015). The circle factors in
Figure 6.32, ϕm, are the measurement factors defined by the sparse keypoints:

ϕm(zℓ
k|xτ ,xk,θ) = 1

2
(
zℓ

k − g(xτ ,xk)
)T

Wℓ
k

(
zℓ

k − g(xτ ,xk)
)
− 1

2 ln
∣∣∣Wℓ

k

∣∣∣ , (6.11)

where we use the log-likelihood of a Gaussian as the factor, and Wℓ
k is the inverse covari-

ance matrix corresponding to measurement zℓ
k. The keypoint, zℓ

k, its inverse covariance
matrix, Wℓ

k, and the measurement model, g(·), are quantities that depend on the network
parameters, θ. These quantities will be further explained in the following subsection.

2This is a general illustration with measurement factors between frames. For implementation, we
associate each frame only to the reference (see (6.11)).
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Figure 6.4: The network architecture from our publication on radar odometry (Burnett
et al., 2021). The network outputs detector scores for keypoint detection, weight scores
predicting keypoint uncertainty, and descriptors for matching. The weight scores are
composed into 2× 2 inverse covariance matrices. Descriptors are the concatenation of all
encoder layer outputs after resizing via bilinear interpolation. The encoder and decoder
layers are a double application of a 3 × 3 convolution, batch normalization, and ReLU
nonlinearity. The layer sizes vary by a factor of 2 through max-pooling (encoder) and
bilinear upsampling (decoder). Note that the output size is the same as the input, and
are visually smaller in the interest of space. An output 1 × 1 convolution is applied for
the detector and weight scores. The detector score map is partitioned into uniform cells,
where a spatial softmax and weighted summation of coordinates are applied to yield a
keypoint for each cell. Corresponding weights and descriptors are obtained via bilinear
sampling.
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Figure 6.5: The network architecture from our publication on lidar odometry (Yoon
et al., 2021). We apply convolutions on pointclouds using the KPConv (Thomas et al.,
2019) pointcloud convolution operator. Input to the network is a lidar pointcloud with
an intensity channel. Descriptor vectors for each point are composed from the output of
the first four encoder layers. The 6 channel output of the top decoder are composed into
inverse measurement covariances (see (6.13) in body text). The single channel output of
the remaining decoder are detector scores used to compute keypoints (see (6.12) in body
text). Refer to the KPConv (Thomas et al., 2019) publication for implementation details
of the various operations.
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6.4.1 Network Architecture for Deep Features

The design of the network architecture for learning sparse features from rich sensor data
will differ depending on the sensor modality. In general, we follow the architecture
design of Barnes and Posner (2020). They present a U-Net (Ronneberger et al., 2015)
style convolutional encoder-multi-decoder network architecture that outputs keypoints
and descriptors from radar data projected into a 2D bird’s-eye view image.

In our publication on unsupervised radar odometry (Burnett et al., 2021), we can
closely apply the architecture of Barnes and Posner (2020). Figure 6.4 shows an illustra-
tion of the network architecture. Similar to Barnes and Posner (2020), we have a single
encoder that branches into 2 decoder outputs. The first decoder output determines the
locations of the sparse keypoints via a spatial softmax on a uniformly partitioned grid
and is unchanged from the original work. An aspect that differs from the architecture of
the original work is the output of the second decoder. Barnes and Posner (2020) output
a scalar weight score that measures the quality of each keypoint. We instead output
a vector of weights that are constructed into the keypoint (inverse) covariance, i.e., we
learn the measurement uncertainty. This uncertainty is visualized in the output on the
far right of Figure 6.4 as the uncertainty ellipses.

We keep the discussion on radar odometry brief as our intention is to focus on the
methodology for lidar odometry in this thesis, which also requires more explanation as
the sensor modality is different from the radar used in the work of Barnes and Posner
(2020). In the radar architecture, the convolutions are applied on radar data projected
into a 2D bird’s-eye view image, meaning that the convolutional kernels have a spatial
extent in 2D Euclidean space. If we wish to apply this idea to lidar data, we can achieve
an equivalent effect for 3D pointclouds with KPConv (Thomas et al., 2019), a pointcloud
convolution method that uses kernel points arranged in a sphere of fixed radius3. Figure
6.5 shows the network architecture for pointcloud data, where in place of pixels of an
image with feature channels, we have points of a pointcloud with feature channels.

The input to the network is a pointcloud with a channel for intensity data. Each
network layer j, including the input layer 0, uniformly subsamples the pointcloud into a
voxel grid of dimension dlj. Successive layers in the encoder increase the grid dimension
by a factor of 2, i.e., dlj+1 = 2 dlj, and therefore the convolutions are applied at different
scales in Euclidean space. The opposite is true for the decoder layers in order to have
the input and output dimensions be equal. We set dl0 to be 0.3 m.

Each layer of the encoder consists of two KPConv variations of bottleneck ResNet
3Thomas et al. (2019) also present a deformable kernel implementation, but we do not apply it in

our work.
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blocks (He et al., 2016), followed by a strided variation for spatial dimension reduction.
Each layer of the decoder consists of a nearest upsample operation, for spatial dimension
enlargement, and a single KPConv bottleneck ResNet block. These convolution blocks
apply the leaky ReLU nonlinearity and batch normalization. We direct readers to the
KPConv publication (Thomas et al., 2019) for detailed definitions of the various block
operations. As in U-Net (Ronneberger et al., 2015), we use skip connections between
encoder and decoder layers.

Similar to the radar architecture, the lidar network outputs descriptors, weights, and
detector scores for each input point. The descriptor vectors are computed for each point
in the input layer and are composed of the output feature channels of all but the last
encoder layer. The channel output dimension of the first layer is 64, and doubles for
each subsequent layer. The output channels of the layers are concatenated with nearest
upsampling to create descriptors of length 960, which are normalized into unit vectors.
The detector scores are used to compute the keypoint locations, zℓ

k, and the weights are
used to construct the corresponding inverse covariance matrices, Wℓ

k.
We convert the detector scores into keypoint locations (coordinates), zℓ

k, using a
spatial softmax operation. We partition the pointcloud into voxels of grid size dg (we set
dg to be 1.6 m) for the purpose of computing one keypoint per voxel. For each voxel,
we apply a softmax over the detector scores, resulting in weights we use to compute the
keypoint’s coordinates along with its descriptor and inverse covariance. For example, the
ℓth keypoint coordinate in frame k is

zℓ
k =

M∑
i=1

exp si∑M
j=1 exp sj

pi, (6.12)

where s1, . . . , sM are the detector scores of voxel ℓ, and p1, . . . ,pM ∈ R3 are the corre-
sponding point coordinates. A similar computation is done to get the descriptor vector,
dℓ

k, and inverse covariance, Wℓ
k, for each keypoint. For the inverse covariance, we apply

the weighted summation over the 6D weight vector, and compose it into the 3×3 matrix
afterward.

We compose the inverse covariance matrices following the approach of Liu et al.
(2018), which uses the following LDU decomposition for symmetric, positive definite
matrices:

W =


1 0 0

ℓ1 1 0

ℓ2 ℓ3 1




exp d1 0 0

0 exp d2 0

0 0 exp d3




1 0 0

ℓ1 1 0

ℓ2 ℓ3 1


T

, (6.13)
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where [ℓ1, ℓ2, ℓ3, d1, d2, d3] is the 6D weight output for each point. Note that in the radar
architecture in Figure 6.4, we would only require a 3D weight output to construct a 2×2
inverse covariance matrix.

We use the keypoint descriptor for data association, which will be matched to a point
in the reference pointcloud at time tτ . Differentiability is maintained by approximating
all matches with a softmax (Barnes and Posner, 2020; Wang and Solomon, 2019). We
compute the dot product between each keypoint descriptor and all descriptors of the
reference pointcloud:

cℓT

k = dℓ T
k

[
d1

τ . . . dN
τ

]
, (6.14)

where dℓ
k is the descriptor vector of keypoint zℓ

k, and d1
τ , . . . ,dN

τ are the descriptor vectors
of the N points in the reference frame. We apply a softmax function on cℓ

k, and compute
a weighted summation. The reference point match for keypoint zℓ

k is therefore

rℓk
τ =

N∑
i=1

exp cℓ
k,i∑N

j=1 exp cℓ
k,j

pi
τ , (6.15)

where cℓ
k,1, . . . , c

ℓ
k,N are the scalar elements of cℓ

k, and p1
τ , . . . ,pN

τ are the reference point
coordinates.

We can now fully define the measurement factor in (6.11) with outputs of the network:

ϕm(zℓ
k|xτ ,xk,θ) = 1

2

zℓ
k −DTk,0T0,τ

rℓk
τ

1




T

Wℓ
k

zℓ
k −DTk,0T0,τ

rℓk
τ

1


− 1

2 ln
∣∣∣Wℓ

k

∣∣∣ ,
(6.16)

where D is a 3× 4 constant selection matrix that removes the homogeneous element.
Figure 6.6 shows visualizations of the learned detector scores and covariances. The

detector favours points on, and in the vicinity of, structure such as wall corners and
vertical posts. Interestingly, the nearby ground is favoured over vehicles, possibly due
to their dynamic nature. We visualize sphericity (Thomas et al., 2018) to demonstrate
the covariance. Instead of manually choosing the error metric (e.g., point-to-plane), the
network adapts to low-level geometry.

6.4.2 Training and Inference

We simultaneously estimate the vehicle trajectory and train the parameters of our net-
work using EM. In the e-step, we hold all network parameters, θ, fixed and optimize
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Fig. 3: Network outputs coloured in the following order: blue (low value), cyan, green, yellow, and red (high value). (Left) Detector score visualization,
highlighting structure such as wall corners and vertical posts. The nearby ground is favoured over vehicles, possibly due to their dynamic nature. (Right)
Visualization of sphericity (see Section IV-D) computed with the learned measurement covariance. Planar surfaces have low values, the expected result.

where we use the log-likelihood of a Gaussian as the factor,
and W�

k is the inverse covariance matrix corresponding to
measurement z�k. The keypoint, z�k, its inverse covariance
matrix, W�

k, and the measurement model, g(·), are quantities
that depend on the network parameters, θ. These quantities
will be further explained in Section IV-B.

We apply EM (see Section III) to jointly optimize for the
posterior, q(x), and the network parameters, θ, under the
single objective in (3). We emphasize that we do not use any
form of groundtruth, such as pose estimates from a global
positioning system, for training θ. We learn only from the
on-board lidar data.

However, ESGVI parameter learning is a general frame-
work based on factor graph optimization and can accommo-
date additional data sources beyond those presented in this
work. For example, supervision from a global positioning
system could be applied as unary factors for the poses of
the posterior. Alternatively, a weaker form of supervision can
come from applying a known measurement factor for inertial
measurement unit (IMU) data, which could be used at both
train and test time for a lidar-IMU odometry solution.

B. Network

We adapt the network architecture of Barnes and Posner
[16] for pointclouds. They present a U-Net [27] style convo-
lutional encoder-multi-decoder network architecture that out-
puts keypoints and descriptors from radar data projected into
a 2-dimensional (2D) bird’s-eye view image, and thus the
convolutional kernels have a spatial extent in 2D Euclidean
space. We achieve an equivalent effect for 3D pointclouds
with KPConv [3], a pointcloud convolution method that uses
kernel points arranged in a sphere of fixed radius3. Figure 2
shows the network architecture, where in place of pixels of an
image with feature channels, we have points of a pointcloud
with feature channels.

The input to the network is a lidar frame pointcloud with
a channel for intensity data. Each network layer j, including
the input layer 0, uniformly subsamples the pointcloud into
a voxel grid of dimension dlj . Successive layers in the
encoder increase the grid dimension by a factor of 2, i.e.,
dlj+1 = 2 dlj , and therefore the convolutions are applied
at different scales in Euclidean space. The opposite is true
for the decoder layers in order to have the input and output
dimensions be equal. We set dl0 to be 0.3 m.

Each layer of the encoder consists of two KPConv vari-
ations of bottleneck ResNet blocks [28], followed by a

3Thomas et al. [3] also present a deformable kernel implementation, but
we do not apply it in our work.

strided variation for spatial dimension reduction. Each layer
of the decoder consists of a nearest upsample operation,
for spatial dimension enlargement, and a single KPConv
bottleneck ResNet block. These convolution blocks apply the
leaky ReLU nonlinearity and batch normalization. We direct
readers to the KPConv publication [3] for detailed definitions
of the various block operations. As in U-Net [27], we use
skip connections between encoder and decoder layers.

The network outputs descriptor vectors, inverse measure-
ment covariance matrices, and detector scores for each input
point. These outputs are used to compute the keypoints, z�k,
their corresponding inverse covariance matrices, W�

k, and the
output of the measurement model, g(·) (see Section IV-A).

The descriptor vectors are computed for each point in
the input layer and are composed of the output feature
channels of all but the last encoder layer. The channel
output dimension of the first layer is 64, and doubles for
each subsequent layer. The output channels of the layers are
concatenated with nearest upsampling to create descriptors
of length 960, which are normalized into unit vectors.

The inverse measurement covariances are derived from the
output of one of the two decoders (top decoder of Figure 2).
Applying a 1×1 linear convolution to the last decoder layer
gives a final output with 6 channels. We compose the output
values into inverse covariance matrices, W ∈ R3×3, with the
approach of Liu et al. [29], which uses the following LDU
decomposition for symmetric, positive definite matrices:

W =



1 0 0
�1 1 0
�2 �3 1





exp d1 0 0

0 exp d2 0
0 0 exp d3





1 0 0
�1 1 0
�2 �3 1



T

,

(7)
where [�1, �2, �3, d1, d2, d3] is the 6D output for each point.

The detector scores are the output of the remaining de-
coder. After applying a 1 × 1 linear convolution to the last
layer, the final output has 1 channel, i.e. a scalar detector
score for each point. The pointcloud is then partitioned into
voxels of grid size dg (we set dg to be 1.6 m) for the purpose
of computing one keypoint per voxel. For each voxel, we
apply a softmax function over the detector scores, resulting in
weights we use to compute the keypoint’s coordinates along
with its descriptor and inverse covariance. For example, the
�th keypoint coordinate in frame k is

z�k =

M�

i=1

exp si�M
j=1 exp sj

pi, (8)

where s1, . . . , sM are the detector scores of voxel �, and
p1, . . . ,pM ∈ R3 are the corresponding point coordinates.

Figure 6.6: Network outputs coloured in the following order: blue (low value), cyan,
green, yellow, and red (high value). (Left) Detector score visualization, highlighting
structure such as wall corners and vertical posts. The nearby ground is favoured over
vehicles, possibly due to their dynamic nature. (Right) Visualization of neighbourhood
sphericity computed with the learned measurement covariance. Planar surfaces have low
values, which is the expected result.

for the posterior, q(x). In the m-step, we hold the posterior, q(x), fixed and optimize
for the network parameters, θ. As discussed previously in Chapter 5 when learning
feature-dependent measurement covariances, the m-step does not have to be computed
to convergence, before alternating to the e-step, to satisfy the iterative update scheme of
the data likelihood. In other words, we will apply generalized EM (GEM).

We adapt GEM to seamlessly fit into conventional network training (i.e., stochas-
tic gradient optimization) by including the e-step in the forward propagation routine.
A window of sequential sensor frames is treated as a mini-batch of data, and forward
propagation involves the following steps:

1. Evaluate the sparse features and other associated outputs of each sensor frame (see
Section 6.4.1).

2. Construct the motion prior, ϕp, and measurement, ϕm, factors for our estimator
formulation.

3. The e-step: inference for the current best posterior estimate q(x) of the mini-batch
(window) of frames.

Similar to our ICP-based work in the previous chapter, we will approximate the e-
step using MAP via Gauss-Newton. The reasoning is the same as before, i.e., lidar
measurements are dense and highly accurate, resulting in a concentrated posterior that is
reasonably approximated with a lower-order approximation of ESGVI (i.e., MAP Gauss-
Newton).

For the m-step, we compute backpropagation for the network parameters, θ, on the
loss functional (3.3), where only the measurement factors, ϕm, are affected since the mo-
tion prior factors are constant with respect to θ. We can use the spherical-cubature rule
(Särkkä, 2013) to compute sigmapoints for the posterior, q(x), in order to approximate
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the expectation in (3.3). Recall that we do not need to compute sigmapoints over the
entire posterior, which can be expensive, but just the marginals for each factor (Barfoot
et al., 2020). Training continues until the loss functional (3.3) converges. Once con-
verged, inference can be computed on new sequences of lidar frames for odometry (i.e.,
the e-step).

6.4.3 Outlier Rejection

Outlier rejection is an important component to improve robustness for any estimation
algorithm, and is traditionally handled with M-estimation (Zhang, 1997) in factor graph
optimization. We apply M-estimation in the e-step by applying the Geman-McClure cost
function on the measurement factors when optimizing with Gauss-Newton. M-estimation
is applied at both train and test time.

While the robust cost function is sufficient for the e-step, we cannot apply it to the
measurement factor when backpropagating to learn the inverse measurement covariances,
W, in the m-step. Instead, we apply a hard threshold on the squared Mahalanobis term
in the measurement factor with the current best posterior estimate,

(
zℓ

k − g(xτ ,xk)
)T

Wℓ
k

(
zℓ

k − g(xτ ,xk)
)
> α, (6.17)

and do not backpropagate any factor terms that exceed the threshold, α. This threshold,
which we set to 4, is only applied during training at the backpropagation step.

Our keypoint detector determines the best keypoint in each voxel partition of the
pointcloud. This is suboptimal for our problem formulation, as it results in keypoints in
uninteresting areas (e.g., the ground plane). We can compensate at test time by judging
the quality of each keypoint, zℓ

k, with the learned inverse measurement covariance, Wℓ
k.

Computing the sphericity metric (Thomas et al., 2018) using the eigenvalues of the
measurement covariance, λ3/λ1, where λ1 ≥ λ2 ≥ λ3 ∈ R are the eigenvalues4 of the
covariance Wℓ

k
−1, is a potential way to judge the quality of each keypoint. However, we

found the computation of the eigenvalues to be too inefficient in practice. Alternatively,
we apply a metric that achieves a similar effect using the diagonal elements of Wℓ

k (see
(6.13)). We define this metric with a threshold as

exp dmin/exp dmax = exp (dmin − dmax) < β, (6.18)

where dmin and dmax are the smallest and largest of the diagonal elements, respectively.
4Eigenvalues of Wℓ

k

−1 are the reciprocals of the eigenvalues of Wℓ
k.
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We do not use keypoints less than the threshold, β. We found through experimenta-
tion that this metric works well on planar surfaces that are axis-aligned to the sensor
frame. This threshold, which we set to 0.05, is only applied in the e-step, i.e., we still
backpropagate keypoints less than the threshold for covariance learning.

6.5 Experiment: Deep Features for Lidar Odometry

6.5.1 Experiment Setup

We evaluate lidar odometry on two publicly available datasets: the KITTI odometry
dataset (Geiger et al., 2012) and the Oxford RobotCar dataset (Maddern et al., 2017;
Barnes et al., 2020).

The KITTI odometry benchmark (Geiger et al., 2012) has 22 sequences of Velodyne
HDL-64 data collected at 10 Hz. The first 11 sequences (00-10) are provided as the
training set, and the remaining 11 sequences (11-21) are provided without groundtruth
and act as the online public benchmark. Following existing work (Li et al., 2019; Cho
et al., 2020), we split the first 11 sequences into training and testing sequences and
evaluate against the provided groundtruth. We additionally submitted our estimator
results into the public benchmark for a fair comparison to other existing methods.

Velodyne HDL-32 sensors were introduced to the Oxford RobotCar dataset (Maddern
et al., 2017) in the radar dataset extension (Barnes et al., 2020). Two 20 Hz HDL-32
sensors were placed on the roof of the data collection vehicle. We opted for the simpler
setup of only evaluating odometry using one of the two sensors. The dataset contains 30
sequences, each 9 km in length, and 2 shorter sequences. All sequences were collected
from a similar driving route over a the time span of a week, and thus there is little
variation for lidar data. We use 6 of the 9 km sequences in our experiments, where 2 of
the 6 are used for training.

KITTI preprocessed the lidar data to account for motion distortion. While the Oxford
dataset does not motion-compensate the data, we chose to not account for this effect as
it is not the focus of this work, and the faster spin-rate alleviates this problem to some
degree. We demonstrated motion compensation in the earlier chapter for our ICP-based
odometry, and note that it is applicable to this work as well. We also applied motion
compensation in our published work on unsupervised radar odometry (Burnett et al.,
2021), which applies the same methodology for training the radar processing front-end.

We follow the KITTI odometry evaluation metric for all datasets, which averages
the relative position and orientation errors over trajectory segments of 100 m to 800 m.
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We implemented the front-end network using a KPConv implementation in PyTorch5.
Network parameters were trained with the Adam optimizer (Kingma and Ba, 2014),
and always trained from random initialization (i.e., trained from scratch). Pointclouds
were augmented during training with random rotations in the z-axis for more variation
to large rotations. The back-end estimator was implemented using STEAM6, a C++
optimization library for state estimation. Loop closures were not implemented.

Our current implementation7 is not real-time for a HDL-64, taking on average 359
ms for a window of 4 frames. KPConv is a bottleneck, taking 180 ms for pre-processing
and 43 ms for forward propagation for each frame8. Updates are in the works to improve
runtime. Data association for each frame takes 19 ms (×3 for window of 4), while Gauss-
Newton takes 58 ms. Gauss-Newton is the only C++ implementation and runs on the
CPU. The rest is overhead.

6.5.2 Odometry results

We train and evaluate odometry with a window of 4 frames for our experiments on the
KITTI dataset. The relative pose between the latest two frames of the window are taken
as the odometry output, reflecting online operation (i.e., we do not evaluate odometry
performance on estimates that take future data into consideration). We compare to
methods that fully learn the estimator: LO-Net (Li et al., 2019) and DeepLO (Cho
et al., 2020). Since DeepLO only presents the average of sequences 00-08, Table 6.2
presents the results in the same way. DeepLO train on sequences 00-08, while we follow
LO-Net and train on sequences 00-06. DeepLO does not perform as well as LO-Net, but
has the advantage that it is unsupervised. Our method maintains the advantage of being
unsupervised, and achieves better performance than both methods.

The uncertainty output of our estimator is in Figure 6.7, which shows the relative
pose error of sequence 07 with 3σ variance envelopes. Errors are computed as

ξk,k−1 = [ρ1 ρ2 ρ3 ψ1 ψ2 ψ3]T = ln
(
Tk,k−1Tgt−1

k,k−1

)∨
, (6.19)

where Tk,k−1 is the relative pose estimate between frames tk and tk−1, Tgt
k,k−1 is the

groundtruth, ln(·) is the inverse exponential map, and ∨ is the inverse of the ∧ operator
(Barfoot, 2024).

Table 6.3 compares our odometry to the state of the art for lidar odometry at the time
5https://github.com/HuguesTHOMAS/KPConv-PyTorch
6https://github.com/utiasASRL/steam
7On an Nvidia Tesla V100 GPU and 2.2 GHz Intel Xeon CPU.
8Only computed for the latest frame since previous ones are saved.
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Table 6.2: A comparison of our odometry method to those that fully learn the estimator
with a deep network. DeepLO (Cho et al., 2020) and our method are trained unsuper-
vised, while LO-Net (Li et al., 2019) is trained with supervision from the groundtruth
trajectory. Our method and LO-Net trained on sequences 00-06, while DeepLO trained
on sequences 00-08. Using the KITTI odometry benchmark metric (Geiger et al., 2012),
the average translation (%) and orientation (◦/100 m) errors over lengths of 100 m to
800 m are presented. The average over sequences 00-08 are presented, as DeepLO does
not present them individually. The best results are in bold.

Seq.
Ours DeepLO (Cho et al., 2020) LO-Net (Li et al., 2019)

(Unsupervised) (Unsupervised) (Supervised)

00-08 0.82/0.32 3.68/0.87 1.27/0.67
09 0.97/0.34 4.87/1.95 1.37/0.58
10 1.38/0.51 5.02/1.83 1.80/0.93

Avg. 0.89/0.34 3.91/1.06 1.33/0.69

of publication of our work, which are ICP-based methods. Lidar Odometry and Mapping
(LOAM) (Zhang and Singh, 2017) is a well-known method that often led the online KITTI
benchmark leaderboard, and LO-Net+Mapping is the ICP solution presented by Li et al.
(2019) that applies point masks trained with LO-Net9 and manually computed surface
normals. Overall, we demonstrate that our method is comparable to the other methods.
Compared to LO-Net+Mapping, our method is learned unsupervised and does not rely
on ICP for data association. Compared to LOAM, our method can easily be tuned for
different platforms and lidar sensors by learning from just the on-board lidar data. Note
that the orientation results for LOAM are not provided in their publication, so we omit
them in our table.

Our submission to the online KITTI benchmark, with the same network and param-
eters, achieved 1.07 % average translation and 0.36 ◦/100 m average orientation error. In
comparison, LOAM currently has 0.55% translation and 0.13◦/100 m orientation (0.88%
translation in original publication (Zhang and Singh, 2017)). Our results are more com-
parable to Surfel-based Mapping (SuMa) (Behley and Stachniss, 2018) (1.39 % and 0.34
◦/100 m) and SuMa++ (Chen et al., 2019) (1.06 % and 0.34 ◦/100 m), both being well-
regarded odometry methods. DeepLO and LO-Net currently do not have submissions.
Considering we do not apply loop closure, which the benchmark permits, we believe our

9Our understanding is that the masks are trained without supervision from mask targets, but with
supervision from groundtruth trajectory (Li et al., 2019).
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frames of the window are taken as the odometry output,
reflecting online operation (i.e., does not use data from future
frames). We compare to the current state-of-the-art methods
that fully learn the estimator: LO-Net [20] and DeepLO [21].
Since DeepLO only presents the average of sequences 00-
08, Table I presents the results in the same way. DeepLO
train on sequences 00-08, while we follow LO-Net and train
on sequences 00-06. DeepLO does not perform as well as
LO-Net, but has the advantage that it is unsupervised. Our
method maintains the advantage of being unsupervised, and
achieves better performance than both methods.
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Fig. 4: Odometry error of KITTI sequence 07 with 3σ variance envelopes. In
the interest of space, only two dimensions, ρ1 and ψ1, are shown (See (14)).
Our estimator is in general consistent, but at times slightly overconfident.

The uncertainty output of our estimator is in Figure 4,
which shows the relative pose error of sequence 07 with 3σ
variance envelopes. Errors are computed as

ξk,k−1 = [ρ1 ρ2 ρ3 ψ1 ψ2 ψ3]
T
= ln

�
Tk,k−1T

gt−1

k,k−1

�∨
,

(14)
where Tk,k−1 is the relative pose estimate between frames
tk and tk−1, Tgt

k,k−1 is the groundtruth, ln(·) is the inverse
exponential map, and ∨ is the inverse of the ∧ operator [26].

Table II compares our odometry to the current state of
the art for lidar odometry, which are ICP-based methods.
LOAM9 [17] is currently leading the KITTI benchmark
leaderboard, and LO-Net+Mapping is the ICP solution pre-
sented by Li et al. [20] that applies point masks trained with
LO-Net10 and manually computed surface normals. Overall,
we demonstrate that our method is comparable to the current
state of the art. Compared to LO-Net+Mapping, our method
is learned unsupervised and does not rely on ICP for data
association. Compared to LOAM, our method can easily be
tuned for different platforms and lidar sensors by learning
from just the on-board lidar data.

Our submission to the online benchmark, with the same
network and parameters, achieved 1.07% average translation
and 0.36◦/100 m average orientation error. In comparison,
LOAM currently has 0.55% translation and 0.13◦/100 m
orientation (0.88% translation in original publication [17]).
Our results are more comparable to SuMa [18] (1.39% and
0.34◦/100 m) and SuMa++ [22] (1.06% and 0.34◦/100 m),
which are both well-regarded ICP-based methods. DeepLO
and LO-Net currently do not have submissions. Considering
we do not apply loop closure, which the benchmark permits,
we believe our method achieved reasonable performance.

9The orientation results for LOAM are not provided in their publication.
10Our understanding is that the masks are trained without supervision

from mask targets, but with supervision from groundtruth trajectory [20].
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Fig. 5: Odometry paths for sequence 2019-01-15-14-24-38 of the Oxford
RobotCar dataset [5], [6] with a Velodyne HDL-32. We compare against the
performance when using a network trained on a different dataset, KITTI [4],
which is a Velodyne HDL-64. Odometry fails prematurely due to numerical
instability when the network is not trained (red).

We demonstrate automated tuning by training and testing
on the Oxford dataset, and comparing it to performance of
the network trained on KITTI (i.e., the network applied in
Tables I and II). We optimize over a window of 7 and use the
lidar data at 10 Hz (i.e., skip every other frame), settings with
which the KITTI trained network performed best. The same
settings were applied when training on the Oxford dataset.
The results in Table III show a clear improvement when
parameters are trained with data related to the deployment.
Figure 5 shows a qualitative plot of the odometry paths for
sequence 2019-01-15-14-24-38, where we additionally show
the performance with an untrained network.

TABLE III: Odometry results for our method on Velodyne HDL-32 data of
the Oxford RobotCar dataset [5], [6]. Using the KITTI odometry benchmark
metric [4], the average translation (%) and orientation (◦/100 m) errors over
lengths of 100 m to 800 m are presented. The best results are in bold.

Seq. Trained on Oxford Trained on KITTI

2019-01-10-11-46-21† 2.85/1.29 3.21/1.55
2019-01-18-15-20-12† 2.41/1.13 3.04/1.47

2019-01-15-13-06-37∗ 2.48/1.20 2.89/1.43
2019-01-15-14-24-38∗ 2.60/1.25 2.95/1.51
2019-01-16-13-09-37∗ 2.56/1.20 3.15/1.48
2019-01-16-14-15-33∗ 2.99/1.47 3.60/1.76

Avg. 2.65/1.26 3.14/1.53

†: Sequences that we train on (applicable only to ’Trained on Oxford’).
∗: Sequences that are not used for training.

C. Ablation Study
Table IV shows the results of an ablation study, where we

remove various components of our method. In addition to the
KITTI benchmark metrics for translation and orientation, we
compute an average Mahalanobis distance metric [24],

�
K�

k=1

ξTk,k−1Q
−1
k,k−1ξk,k−1

dim(ξk,k−1)K

�1/2

, (15)

where ξk,k−1 is the error as defined in (14) and Qk,k−1 is
the corresponding covariance. A value close to 1 is ideal.

Figure 6.7: Odometry error of KITTI sequence 07 with 3σ variance envelopes. In the
interest of space, only two dimensions, ρ1 and ψ1, are shown (See (6.19)). Our estimator
is in general consistent, but at times slightly overconfident.

method achieved reasonable performance.
Recently, our own published work on continuous-time ICP-based odometry (Wu et al.,

2023) achieved results more comparable to the latest state-of-the-art results of LOAM
on the publicly available sequences10. An aspect to lidar odometry from our latest work
that we do not apply here is building and maintaining a pointcloud submap that we
optimize (register) the latest lidar frames to (i.e., the difference between map-to-frame
optimization and frame-to-frame). From our experience working with ICP, building and
maintaining a high-quality submap is a key component in greatly reducing odometry drift.
We believe that incorporating a submap is possible in our proposed method with a DNN
front-end given our application of pointcloud convolutions in our network architecture,
and propose pursuing this avenue in future work.

We demonstrate the capability of our method for automated tuning by training and
testing on the Oxford dataset, and comparing it to performance of the network trained
on KITTI dataset (i.e., the trained network applied in Tables 6.2 and 6.3). We optimize
over a window of 7 frames and use the lidar data at 10 Hz (i.e., skip every other frame),
settings with which the KITTI trained network performed best on the Oxford data. The
same settings were applied when training a new network on the Oxford dataset.

We present qualitative results of our odometry in Figure 6.8, which shows plots of
the odometry paths for sequence 2019-01-15-14-24-38. Interestingly, we see that the
performance when using a network trained on the KITTI dataset is still reasonable.
However, there is a clear improvement in odometry when we train on the Oxford data,
which is expected. We additionally show the performance with an untrained network
(i.e., randomly initialized weights), which is clearly incapable of performing odometry.

10We did not submit our results to the online benchmark.
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Table 6.3: A comparison of our method to existing lidar odometry methods at the time
of publication. Using the KITTI odometry benchmark metric (Geiger et al., 2012), the
average translation (%) and orientation (◦/100 m) errors over lengths of 100 m to 800 m
are presented. The best results are in bold.

Seq.
Ours LO-Net+Mapping (ICP)(Li et al., 2019) LOAM (Zhang and Singh, 2017)

(Unsupervised) (Supervised) (Non-Learned)

00† 0.92/0.39 0.78/0.42 0.78/-
01† 1.30/0.28 1.42/0.40 1.43/-
02† 1.11/0.42 1.01/0.45 0.92/-
03† 0.77/0.38 0.73/0.59 0.86/-
04† 0.62/0.22 0.56/0.54 0.71/-
05† 0.68/0.30 0.62/0.35 0.57/-
06† 0.50/0.17 0.55/0.33 0.65/-

07∗ 0.49/0.33 0.56/0.45 0.63/-
08∗ 1.01/0.36 1.08/0.43 1.12/-
09∗ 0.97/0.34 0.77/0.38 0.77/-
10∗ 1.38/0.51 0.92/0.41 0.79/-

Avg. 0.89/0.34 0.82/0.43 0.84/-

†: Sequences that our method and LO-Net train on.
∗: Sequences that are not used for training.

Table 6.4 shows the quantitative results of odometry, which show a clear improvement
when parameters are trained with data related to the deployment.

6.5.3 Ablation Study

Table 6.5 shows the results of an ablation study, where we remove various components of
our method. In addition to the KITTI benchmark metrics for translation and orientation,
we compute an average Mahalanobis distance metric (Brossard et al., 2020b),

(
K∑

k=1

ξT
k,k−1Q−1

k,k−1ξk,k−1

dim(ξk,k−1)K

)1/2

, (6.20)

where ξk,k−1 is the error as defined in (6.19) and Qk,k−1 is the corresponding covariance.
A value close to 1 is ideal for this metric.

‘No Sampling’ refers to evaluating the expectation in the loss functional (3.3) at only
the mean of the posterior in the m-step. We see that approximating the expectation with
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Figure 6.8: Odometry paths for sequence 2019-01-15-14-24-38 of the Oxford RobotCar
dataset (Maddern et al., 2017; Barnes et al., 2020) with a Velodyne HDL-32. We compare
against the performance when using a network trained on a different dataset, KITTI
(Geiger et al., 2012), which is a Velodyne HDL-64. Odometry fails prematurely due to
numerical instability when the network is not trained (red).

sigmapoints is insignificant for this problem, which is consistent with the approximation
made in the e-step. ‘No β’ and ‘No α’ refers to not applying the β and α thresholds in
Section 6.4.3. It is clear that the performance is worse in translation and orientation for
both configurations. The exception is the Mahalanobis metric for ‘No α’, which performs
the most consistently and more conservatively than the rest. Backpropagating outliers
means the learned uncertainties must account for them, which may explain why the
estimator became more conservative.
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Table 6.4: Odometry results for our method on Velodyne HDL-32 data of the Oxford
RobotCar dataset (Maddern et al., 2017; Barnes et al., 2020). Using the KITTI odometry
benchmark metric Geiger et al. (2012), the average translation (%) and orientation (◦/100
m) errors over lengths of 100 m to 800 m are presented. The best results are in bold.

Seq. Trained on Oxford Trained on KITTI

2019-01-10-11-46-21† 2.85/1.29 3.21/1.55
2019-01-18-15-20-12† 2.41/1.13 3.04/1.47

2019-01-15-13-06-37∗ 2.48/1.20 2.89/1.43
2019-01-15-14-24-38∗ 2.60/1.25 2.95/1.51
2019-01-16-13-09-37∗ 2.56/1.20 3.15/1.48
2019-01-16-14-15-33∗ 2.99/1.47 3.60/1.76

Avg. 2.65/1.26 3.14/1.53

†: Sequences that we train on (applicable only to ’Trained on Oxford’).
∗: Sequences that are not used for training.

Table 6.5: An ablation study over components of our method on the KITTI odometry
dataset. Using the KITTI odometry benchmark metric (Geiger et al., 2012), the average
translation (%) and orientation (◦/100 m) errors over lengths of 100 m to 800 m are
presented. We additionally compute the average squared Mahalanobis distance (third
metric in each column) of the relative pose estimates (see (6.20)), which ideally is 1 for
a consistent estimator.

Seq. Full method No Sampling No β No α

07 0.49/0.33/1.22 0.48/0.29/1.23 0.61/0.38/1.67 1.22/0.96/1.06
08 1.01/0.36/2.66 0.96/0.33/2.71 1.17/0.45/6.98 2.23/0.84/2.09
09 0.97/0.34/1.31 0.98/0.36/1.34 1.36/0.56/1.98 2.44/0.92/1.14
10 1.38/0.51/1.54 1.56/0.58/1.55 2.13/0.84/2.09 2.13/1.58/1.28

Avg. 0.96/0.38/1.68 0.99/0.39/1.71 1.32/0.56/3.18 2.00/1.07/1.39

6.6 Summary and Conclusions

We presented in this chapter applications of DNNs in our parameter learning framework
with ESGVI and EM. Our motivation in doing so was to incorporate a richer learning
model (in contrast to the work in Chapter 5) for our sensor measurements (i.e., a front-
end), while maintaining a probabilistic state estimation back-end. We presented two
types of models: the first being a network that learns the measurement model in its
entirety by mapping the input state to the output measurement, and the second being a



Chapter 6. Learning Neural Networks 123

front-end processor of dense, rich sensor data that outputs sparse features. For the former
model type, we presented experimental results on a localization problem and learned a
range-bearing measurement model without groundtruth. For the latter model type, we
presented experimental results on lidar odometry, which appeared in Yoon et al. (2021).

In summary, the contributions of this chapter are:

1. Learning a DNN measurement model using EM and ESGVI without having to
compute the derivative (Jacobian) of the model with respect to the state.

2. Experiments on a real-robot dataset for localization and learning a range-bearing
measurement model without the groundtruth trajectory.

3. Learning a DNN using EM and ESGVI that is specifically tailored to rich sen-
sor data via a CNN architecture that outputs sparse keypoints, descriptors, and
uncertainty.

4. Experiments on lidar odometry, again demonstrating that our parameter learning
framework can train the network parameters without the groundtruth trajectory.

There are several avenues for further exploration of this idea of using EM to train
network parameters, which we discuss in the following chapter.



Chapter 7

Conclusion

In this chapter, we provide a short summary of the contributions and publications that
arose from the work presented in this thesis. We also provide some narrative on directions
for future work in the area of estimation and parameter learning for vehicle trajectory
estimation.

7.1 Summary of Contributions

In the first major chapter of this thesis (Chapter 3), we presented a Gaussian Variational
Inference (GVI) approach to batch state estimation that is computationally tractable
for large-scale estimation problems, which we call Exactly Sparse Gaussian Variational
Inference (ESGVI). The motivation was to develop an estimator that finds a ‘closer’
fit to the full Bayesian posterior PDF, in contrast to MAP that optimizes the posterior
approximation as a point estimate.

The methods and experiments for ESGVI that were presented in Chapter 3 appeared
in the publication:

• Barfoot, T. D., Forbes, J. R., and Yoon, D. J. (2020). Exactly sparse gaussian varia-
tional inference with application to derivative-free batch nonlinear state estimation.
International Journal of Robotics Research (IJRR) (second author contribution)

In summary, the contributions of Chapter 3 are:

1. A computationally tractable approach to Gaussian Variational Inference (GVI) for
large-scale estimation problems via exploitation of the sparsity formed from the
factorization of the joint likelihood.
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2. An implementation of sparse GVI that uses Gaussian cubature to avoid the need
for computing analytical derivatives.

3. A conservative, cheaper (compute) approximation of Gaussian Variational Inference
(GVI) that is applicable under mild nonlinearities and/or when the posterior is
concentrated.

4. Various experiments in both simulation and on real-data demonstrating an im-
provement in performance over MAP.

While the motivation behind our initial work on ESGVI was to improve upon exist-
ing estimation tools, such as MAP, we found interest in the application of ESGVI to
parameter learning due to its synergy with Expectation-Maximization (EM). We were
motivated to apply parameter learning to facilitate data-driven model tuning, rather than
requiring an expert engineer to design and tune models for each different deployment.
The remaining chapters of this thesis were dedicated to applications of our ESGVI and
EM parameter learning framework.

In Chapter 4, we presented a methodology for modelling a varying noise model by
placing an Inverse-Wishart prior on the measurement covariance. This approach treats
the measurement covariance as part of the state and not a parameter. A useful outcome of
this work was robustness to measurement outliers similar to the application of a robust
cost function. We presented the methodology and experiments in a second-authored
publication:

• Wong, J. N., Yoon, D. J., Schoellig, A. P., and Barfoot, T. D. (2020b). Variational
inference with parameter learning applied to vehicle trajectory estimation. IEEE
Robotics and Automation Letters (RAL), 5(4):5291–5298 (second author contribu-
tion)

In summary, the contributions of Chapter 4 are:

1. A methodology for estimating measurement covariance by using an IW prior in a
EM framework.

2. Experimental results on a lidar localization dataset that demonstrates learning a
varying measurement covariance without the groundtruth trajectory. We also show
that the resulting covariance model is robust to measurement outliers during both
training and testing.
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Our focus in Chapter 5 was on learning measurement bias and noise models using
feature-dependent regression models. Due to nonidealities in the real world, measure-
ments can be biased in comparison to our known sensor models and their uncertainty
may require a richer noise model that can vary depending on the application setting. We
propose modelling bias and covariance using feature-dependent regression models. The
focus, however, was not on the particular choice of regression model we chose to use, but
rather the application of training the models using EM without the groundtruth trajec-
tory. We demonstrated application on odometry using FMCW lidar sensors, where we
trained our models using only the observed sensor data. The odometry estimators we used
in our work, a ICP-based odometry method and a fast Correspondence-Free (CF)-based
odometry method using Doppler measurements, appeared previously in two publications:

• Wu, Y., Yoon, D. J., Burnett, K., Kammel, S., Chen, Y., Vhavle, H., and Barfoot,
T. D. (2023). Picking up speed: Continuous-time lidar-only odometry using doppler
velocity measurements. IEEE Robotics and Automation Letters (RAL), 8(1):264–
271 (second author contribution)

• Yoon, D. J., Burnett, K., Laconte, J., Chen, Y., Vhavle, H., Kammel, S., Reuther,
J., and Barfoot, T. D. (2023). Need for speed: Fast correspondence-free lidar-inertial
odometry using doppler velocity. In International Conference on Intelligent Robots
and Systems (IROS)

In summary, the contributions of Chapter 5 are:

1. A methodology for training feature-dependent regression models for measurement
bias and covariance using ESGVI and EM.

2. Experiments using the proposed method on odometry using a FMCW lidar, demon-
strating the ability to train the regression models without supervision from the
groundtruth trajectory.

In Chapter 6, we continued the application of our ESGVI and EM parameter learning
framework, but enriched the framework by incorporating Deep Neural Networks (DNNs).
We first proposed modelling the measurement model in its entirety using a DNN, which
utilized our derivative-free optimization of ESGVI to avoid the need to compute Jaco-
bians of the learned model. Numerical experiments were conducted and presented in
Section 6.3. We then proposed an alternative DNN model using a CNN architecture
that processes rich sensor data into sparse features. Applications of our method to lidar
odometry and radar odometry appeared in the following publications:
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• Yoon, D. J., Zhang, H., Gridseth, M., Thomas, H., and Barfoot, T. D. (2021). Un-
supervised learning of lidar features for use in a probabilistic trajectory estimator.
IEEE Robotics and Automation Letters (RAL), 6(2):2130–2138

• Burnett, K., Yoon, D. J., Schoellig, A. P., and Barfoot, T. D. (2021). Radar
odometry combining probabilistic estimation and unsupervised feature learning.
In Robotics: Science and Systems (RSS) (equal contribution between Burnett, K.
and Yoon, D.)

The contents in this thesis chapter focused on the lidar odometry problem. We briefly
discussed the methodology for radar odometry and refer readers to the corresponding
publication for the experiments. In summary, the contributions of Chapter 6 are:

1. Learning a DNN measurement model using EM and ESGVI without having to
compute the derivative (Jacobian) of the model with respect to the state.

2. Experiments on a real-robot dataset for localization and learning a range-bearing
measurement model without the groundtruth trajectory.

3. Learning a DNN using EM and ESGVI that is specifically tailored to rich sen-
sor data via a CNN architecture that outputs sparse keypoints, descriptors, and
uncertainty.

4. Experiments on lidar odometry, again demonstrating that our parameter learning
framework can train the network parameters without the groundtruth trajectory.

7.2 Future Work

For future work regarding ESGVI, we suggest the following:

1. Computational improvements to the implementation of ESGVI. A few avenues
of interest regarding this are: parallel computation of sigmapoints (possibly on
a GPU), variable reordering and other schemes such as Givens rotations (Golub
and Van Loan, 1996) in combination with the Takahashi method (Takahashi et al.,
1973) for efficiently computing blocks of the posterior covariance, and modifications
for online implementation (e.g., sliding-window filter).

2. An extension of the variational approach to multi-modal estimation problems, e.g.,
a mixture of Gaussians, in contrast to the single multivariate Gaussian we have
shown in our work.
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For future work regarding learning covariances and biases, we suggest the following:

1. For our learned covariance models, we made the assumption that measurements
from different times are corrupted by statistically independent noise. Extending
our methods (both prior-based and feature-based) to handle time-correlated noise
and being able to train them without the groundtruth trajectory is of interest. We
recently worked on a feature-based approach to modelling a time-correlated mea-
surement covariance trained using the groundtruth trajectory (Yoon and Barfoot,
2023). We believe extending this work using EM to train without groundtruth is a
promising avenue for future work.

2. Our CF-based odometry method using multiple sensors does not perform accurately
without the gyroscope measurements. Incorporating a richer regression model for
compensating measurement bias and covariance could be beneficial. For that, we
can look to applying aspects of our work we explored in Chapter 6 on DNNs.

Finally, for future work on applying DNNs to our estimation and parameter learning
framework, we suggest the following:

1. Recent works on neural radiance fields demonstrate the viability of applying a multi-
layer perception to model a rich implicit representation of a given scene (Mildenhall
et al., 2021). Combining ideas from this area of machine learning with the ideas
we presented on learning a DNN measurement model can be an interesting, viable
way of applying DNNs to state estimation with rich sensor data.

2. The performance of lidar odometry using our learned sparse features was once
competitive to the state of the art at the time of publication, but now falls short
in comparison to recent improvements in lidar odometry. Current state of the
art odometry methods maintain and update a pointcloud submap that is used
as the reference pointcloud for alignment. Our method, which uses pointcloud
convolutions using KPConv (Thomas et al., 2019), should be capable of handling a
submap and we hypothesize that this addition will bring our method closer to the
current state of the art.



Appendix A

Doppler Derivations

A.1 Doppler Measurement Model

Here we show a derivation of our Doppler measurement model, which was presented in
our publication (Wu et al., 2023) (second-authored contribution). We first define q̇ and
q̇i to be q’s velocity expressed in the lidar and inertial reference frame, respectively.
Applying the transport theorem,

q̇i = Tiℓ(t)
(
q̇ −ϖiℓ

ℓ (t)∧q
)
. (A.1)

Assuming q is static in the inertial frame such that q̇i = 0, we can rearrange (A.1) to be
(see SE(3) identities in (Barfoot, 2024))

q̇ = ϖiℓ
ℓ (t)∧q

= q⊙ϖiℓ
ℓ (t)

= q⊙T ℓvϖ
iv
v (t), (A.2)

where (A.2) relates the point velocity q̇ to the body-centric velocity component of our
trajectory state ϖiv

v . Next, we project q̇ onto q to obtain the predicted Doppler velocity:

˜̇r = qT DT

(qT DT Dq)1/2︸ ︷︷ ︸
Projection d̂

Dq⊙T ℓvϖ
iv
v (t), (A.3)

where the projection, d̂, is simply a unit vector along the direction of q. This derivation
is graphically illustrated in Figure A.1.
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F−→v F−→ℓ

νiℓ
ℓ ωiℓ

ℓ

qq̇

˜̇r

d̂

Figure A.1: This diagram provides a graphical illustration of the Doppler velocity error
term derivation. F−→i, F−→v, and F−→ℓ are the inertial, vehicle, and lidar reference frames,
respectively. q and q̇ are the measured point position and velocity expressed in F−→ℓ,
respectively. d̂ is a unit vector along the direction of q, and ˜̇r is the relative radial
velocity according to ϖiℓ

ℓ =
[
νiℓ

ℓ
T
ωiℓ

ℓ
T
]T

.

A.2 Doppler Observability Study

A.2.1 Observability Study - Multiple FMCW Lidars

We present an observability study for the 6-DOF vehicle velocity using Doppler mea-
surements from multiple FMCW lidars, which we first presented in our published work
(Yoon et al., 2023). In order to simplify the proof, we focus on estimating the vehicle
velocity over the interval of one lidar frame, assuming that the data from multiple lidars
are synchronized and each have m measurements. We also remove the continuous-time
aspect of the problem by assuming the vehicle velocity is constant throughout the frame
duration.

For the ith measurement seen by the jth sensor,

eij
dv = yij

dv −
1

(qij
j

T qij
j ) 1

2

[
qij

j

T
0T

]
Tjvϖ

= yij
dv −

1
(qij

j

T qij
j ) 1

2

[
qij

j

T
Rjv qij

j

T
tvj

j

∧
Rjv

]
ϖ

= yij
dv − cT

ijϖ,

(A.4)
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where the additional superscript j indicates the sensor1, T sv ∈ Ad (SE(3)) is the extrinsic
adjoint transformation between the jth sensor and vehicle frames, and

cT
ij =

[
q̂ij

v
T q̂ij

v
T
tvj

v
∧
]
, q̂ij

v =
RT

jvqij
j

∥qij
j ∥

. (A.5)

Note how the measurement model does not depend on the magnitude (range) of q since
q̂ are unit vectors. We define the stacked quantity Cj = [c1j · · · cmj]T for sensor j. In
the case of N sensors, we have

CTC =
N∑

j=1
CT

j Cj =
∑

j

 Qj Qjt
vj
v

∧

tvj
v

∧T
Qj tvj

v
∧T
Qjt

vj
v

∧

 , (A.6)

where Qj = ∑
i q̂ij

v q̂ij
v

T is the sum of the outer product of the points seen by the jth

sensor. The velocity is fully observable from a single lidar frame if and only if CTC is
full rank, or equivalently that the nullspace of CTC has dimension zero (Barfoot, 2024).
In the following, we assume Qj to be full rank (best case scenario), meaning that the
unit velocities seen by the jth sensor are not all contained in a line or a plane. In the case
of a 3D lidar sensor, Qj will always be full rank regardless of the environment geometry.

Lemma 1 Let A and B be two symmetric positive semidefinite matrices. Then, we have

null (A+B) = null (A) ∩ null (B) .

Assume x ∈ null (A)∩null (B). It is straightforward to see that x ∈ null (A+B), hence
null (A+B) ⊇ null (A) ∩ null (B). Then, assume x ∈ null (A+B), we have

xT (A+B)x = xTAx︸ ︷︷ ︸
≥0

+xTBx︸ ︷︷ ︸
≥0

= 0

Recall that for any symmetric PSD matrix M , we have M = STS. As such, xTMx =
0⇔ (Sx)T Sx = 0⇒ x ∈ null (S)⇒ x ∈ null (M ). Therefore, x ∈ null (A) ∩ null (B)
and null (A+B) ⊆ null (A) ∩ null (B), which concludes the proof.

First, note that each member can be factorized as

CT
j Cj =

 1 0

tvj
v

∧T
1


︸ ︷︷ ︸

full rank

Qj 0

0 0


︸ ︷︷ ︸

PSD, rank=3

1 tvj
v

∧

0 1


︸ ︷︷ ︸

full rank

, (A.7)

1qij
f are the coordinates of the ith point from sensor jth, in frame f .
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thus being positive semidefinite. Using Lemma 1, we find the nullspace of CTC using
the nullspace of each member of the sum. The nullspace of CT

j Cj is

null
(
CT

j Cj

)
= null


Qj 0

0 0


1 tvj

v
∧

0 1




=


1 tvj

v
∧

0 1


−1 0

k

 ,k ∈ R3


=


−tvj

v
∧
k

k

 ,k ∈ R3

 .

(A.8)

Thus for one sensor, CTC is rank deficient by 3. For two sensors, the nullspace of
CT

1 C1 +CT
2 C2 is


−tv1

v
∧
k

k

 ,k ∈ R3

 ∩

−tv2

v
∧
l

l

 , l ∈ R3



=




 αtv2

v
∧
tv1

v

α(tv2
v − tv1

v )

 , α ∈ R

 if tv1
v ̸= tv2

v
−tv1

v
∧
k

k

 ,k ∈ R3

 if tv1
v = tv2

v ,

(A.9)

therefore being of dimension 1 if the two sensors are not at the same position, and
dimension 3 otherwise. Adding a third sensor, we obtain

 αtv2
v

∧
tv1

v

α(tv2
v − tv1

v )

 , α ∈ R

 ∩

−tv3

v
∧
k

k

 ,k ∈ R3

 =


 αtv2

v
∧
tv1

v

α(tv2
v − tv1

v )


∣∣∣∣∣∣∣∣t

v2
v

∧
tv1

v =−tv3
v

∧(
tv2

v − tv1
v

)
, α ∈ R

 .
(A.10)

Looking at the condition, we remark that tv2
v

∧
tv1

v ,−tv3
v

∧ (tv2
v − tv1

v ) ∈ tv2
v

⊥ ∩ tv3
v

⊥ is nec-
essary, where (·)⊥ denotes the orthogonal complement. As such, we can re-write the
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condition as t
v2
v

∧
tv1

v = βtv2
v

∧
tv3

v , β ∈ R

−tv3
v

∧ (tv2
v − tv1

v ) = βtv2
v

∧
tv3

v

⇔

t
v1
v = γtv2

v + βtv3
v , γ ∈ R

β = 1− γ

⇔ tv1
v = γtv2

v + (1− γ)tv3
v .

(A.11)

The nullspace of CTC for three sensors has dimension 1 if all three tvj
v are on the same

line, and dimension 0 otherwise. As such, the full state is observable as long as the three
lidar sensors form the vertices of a triangle. Note that using induction with Lemma 1,
we can intuitively add more sensors and the system remains fully observable.

A.2.2 Observability Study - Single FMCW Lidar + Gyroscope

Considering now the case of one lidar with one gyroscope measurement, we show that
adding the gyroscope measurement leads to a fully observable system. With one gyro-
scope measurement, the measurement matrix becomes

C ′T =

 q̂1
v · · · q̂N

v 0

tvj
v

∧T q̂1
v · · · tvj

v
∧T q̂N

v Rsv

 , (A.12)

leading to

C ′TC ′ =

 1 0

tvj
v

∧T
1


︸ ︷︷ ︸

full rank

Q 0

0 1


︸ ︷︷ ︸
full rank

1 tvj
v

∧

0 1


︸ ︷︷ ︸

full rank

. (A.13)

As such, the system becomes fully observable with only one lidar sensor and one gyro-
scope.
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Supplementary Material for Doppler
Experiments

B.1 Vehicle speed Input Feature

Here, we discuss the speed of the vehicle as an input feature. The speed of the vehicle
may seem problematic as the vehicle velocity is the quantity that we seek to estimate. To
represent the vehicle speed as an input, we calculate the median radial velocity for each
lidar frame. The median is simple to calculate and gives us an estimate of the speed that
is robust to outliers (e.g., from other moving objects in the environment). We calculate
the median using the uncompensated, biased measurements which prevents a negative
feedback loop in our learning approach, while still representing the motion of the vehicle.
Alternatively we can calculate a speed estimate using the uncompensated measurements
and RANSAC using a little more compute.

B.2 Pseudo-variance Input Feature

We add one additional input feature for the variance model based on the relative variance
of the Doppler measurements in azimuth space. Doppler measurements do not differ
greatly with a small change in direction since they are simply the projection of the vehicle
velocity onto the corresponding radial direction. We exploit this aspect by calculating
a pseudo-variance of the measurements using a local azimuth neighbourhood and the
sample variance equation,

ρae
k =

a+ℓ∑
j=a−ℓ

j ̸=a

1
2ℓ
(
yje

k − yae
k

)2
, (B.1)
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where yae
k is the Doppler measurement in lidar frame, k, at the azimuth bin, a, and eleva-

tion bin, e. Instead of the mean, which we cannot calculate without the groundtruth, we
use the Doppler measurement at the center, yae

k . We choose not to include neighbouring
elevation bins since those measurements are physically from different beams. We keep
the neighbourhood small, e.g., we set ℓ = 5. Figure 5.3 shows an example visualization
of our pseudo-variance input feature.

B.3 More Qualitative Examples

In this section of the Appendix, we show additional figures from our FMCW lidar odom-
etry experiments. These figures show more qualitative examples of the Doppler bias and
variance predictions using our trained models. We show examples from both the Boreas
FMCW dataset and the Aeva HQ dataset.
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Figure B.1: Three qualitative examples that demonstrate the Doppler uncertainty pre-
diction on the Boreas dataset. The intensity values are shown along with the prediction
to provide visual context of the scene. Doppler error tends to be higher on unstructured
surfaces such as the foliage on trees and lower on flat surfaces such as the ground.
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Figure B.2: Three qualitative examples that demonstrate the Doppler bias prediction on
the Boreas FMCW dataset. The raw Doppler errors are shown along with the predic-
tion to provide a visual comparison. Even without training with supervision from the
groundtruth trajectory, we are able to adequately estimate the measurement biases.
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Figure B.3: Three qualitative examples that demonstrate the Doppler uncertainty pre-
diction on the Aeva HQ dataset. The intensity values are shown along with the prediction
to provide visual context of the scene. Similar to the Boreas FMCW dataset, Doppler
error tends to be higher on unstructured surfaces such as the foliage on trees and lower
on flat surfaces such as the ground.
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Figure B.4: Three qualitative examples that demonstrate the Doppler bias prediction on
the Aeva HQ dataset. The raw Doppler errors are shown along with the prediction to pro-
vide a visual comparison. Even without training with supervision from the groundtruth
trajectory, we are able to adequately estimate the measurement biases.
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