
Self-supervised Semantic Learning of LiDAR Point Clouds
for Large-scale Scene Understanding

by

Haowei Zhang

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Graduate Department of Institute for Aerospace Studies
University of Toronto

© Copyright 2021 by Haowei Zhang

Abstract

Self-supervised Semantic Learning of LiDAR Point Clouds for Large-scale Scene

Understanding

Haowei Zhang

Master of Applied Science

Graduate Department of Institute for Aerospace Studies

University of Toronto

2021

Semantic segmentation is a challenging task in the robotic vision community to clas-

sify various objects in a scene. While recent works employ supervised deep learning

approaches using hand-annotated examples, these training samples are often costly to

obtain.

In this thesis, we present a self-supervised semantic learning method for large-scale

scene understanding. Our offline method retrieves point cloud annotations by combining

a mapping and localization solution with ray-tracing algorithms. Through multi-session

navigation experiences in the same environment, our method labels points as members of

four semantic classes: ground, non-movable, long-term movable, and short-term movable.

These semantic labels allow us to train a semantic segmentation network without any

hand annotations, which can then be used online to remove dynamic points in point

clouds.

For a qualitative and quantitative analysis, we demonstrate our method on a simu-

lation dataset. We also provide a qualitative evaluation on a real-world dataset. Fur-

thermore, by semantically filtering out movable points, results show that our method

improves existing localization performance.

ii

Acknowledgements

I am grateful for different groups of people who support me through the completion of

this thesis. They provide me with great support during an important transition in my

academic career and personal life.

I would like to give special thanks to my supervisor, Dr. Tim Barfoot, for his expert

guidance and great passion throughout the degree in helping me grow as a researcher.

Thank you David Yoon and Hugues Thomas for your support in always being open

to research discussions and innovative ideas. I would also like to thank all the members

of Autonomous Space Robotics Lab for creating a friendly atmosphere through the hard

times.

A special thanks to Keith Leung and Andrew Lambert from Applanix Corporation

in providing technical help and research advice throughout my thesis.

Finally, tremendous thanks to my parents and my girlfriend Yuxuan Li for everyday

support and motivations that carried me through the degree. I would not have made it

without you.

iii

Contents

1 Introduction 3

1.1 Motivation . 3

1.2 Contributions . 4

1.3 High-Level Overview . 5

2 Background 6

2.1 LiDAR Data Representations . 6

2.1.1 Range & Bearing . 7

2.1.2 Point Cloud . 8

2.1.3 LiDAR Image . 10

2.2 Mapping and Localization . 12

2.2.1 Mapping . 12

2.2.2 Localization . 20

2.3 Scene Understanding . 22

2.3.1 Semantic Segmentation . 23

2.3.2 Dynamic Object Detection . 24

2.3.3 Semantic SLAM . 25

2.4 Summary . 26

3 Methodology 27

3.1 Pipeline Overview . 28

3.2 Mapping and Localization . 29

3.2.1 Applanix Mapping and Localization Solution 30

3.2.2 Map Aggregation . 31

3.3 Annotation Pipeline . 33

3.3.1 PointRay . 34

3.3.2 Annotation . 40

3.4 Semantic Segmentation . 45

iv

3.5 Summary . 47

4 Datasets 48

4.1 Simulation Dataset . 48

4.1.1 Simulator . 49

4.2 Real-World Dataset . 52

4.3 Summary . 54

5 Experimental Results 55

5.1 Experimental Setup . 55

5.1.1 Simulation Dataset . 56

5.1.2 Real-world Dataset . 56

5.2 Evaluation Methods . 57

5.3 Mapping and Localization Evaluation . 59

5.4 Annotation Evaluation . 61

5.5 Network Prediction Evaluation . 63

5.6 Semantics-Aware Localization Evaluation 66

5.7 Real-world Dataset Evaluation . 67

5.8 Summary . 70

6 Conclusions & Future Work 71

6.1 Conclusions . 71

6.2 Future Work . 72

6.2.1 Object-level Annotation . 73

6.2.2 Runtime for Semantic Segmentation 73

6.2.3 Annotation Update . 74

Appendix A Computing Moving Probability for Map M 75

Bibliography 76

v

List of Tables

3.1 Steps to annotate point cloud map M(lj). We use the computed moving

probability and ground extraction results to annotate map M(lj) so that

every point belongs to one of the semantic classes: ground, non-movable,

long-term movable and short-term movable. 44

4.1 A summary for three different maps in our simulation dataset. Each map

consists of various elements and has completely different layouts. 51

4.2 Number of vehicles and pedestrians used for each traffic level. Depend-

ing on the desired traffic level, we generate different number of vehicles

and pedestrians. Unlike parked vehicles, these vehicles and pedestrians

constantly move in the map. 51

5.1 Confusion matrix for evaluating a 4-class classification problem. The goal

is to correctly predict classes A, B, C and D. While the diagonal elements

are the true positives, the columns and rows comprise false positives and

false negatives of a class. We illustrate this by taking class A as an example. 59

5.2 Localization evaluation on sessions with light and medium traffic levels.

The evaluation metrics are averaged among sessions with the same traffic

level in the same map. 60

5.3 Localization evaluation on real-world datasets. 61

5.4 Confusion matrix between groundtruth and annotations, normalized by

rows. Diagonal elements suggest the correct prediction (TP) of each class.

While the rest of the rows suggest the percentage of misclassification to

other classes, the column suggests false annotations to a class. 63

5.5 List of network training parameters for learning semantic segmentation of

LiDAR scans. 64

vi

5.6 Confusion matrix between groundtruth and network predictions, normal-

ized by rows. Diagonal elements suggest the correct prediction (TP) of

each class. While we improve on nearly all classes, we still face challenges

when long-term movable and short-term movable intermix. 66

5.7 Localization evaluation on the test set with various traffic levels. Intu-

itively, with more traffic in the environment, it is more difficult for our

vehicle to localize against the pre-generated map. 67

5.8 Localization evaluation on the test set for the real-world dataset. 69

vii

List of Figures

2.1 An illustration of a measurement p in a LiDAR base frame F−→b
when

involved in converting from a range and bearing measurement to a 3D

LiDAR point. Range measurement r defines the Euclidean distance from

p to the origin of F−→b
. Azimuth angle α is measured in the X-Y plane from

the Y-axis whereas elevation angle ω is measured in the Y-Z plane from

the Y-axis. The red, green and blue directed lines represent x, y and z

coordinates of point p in a 3D space. 8

2.2 LiDAR intensity and range images produced from a 64-line Velodyne HDL-

64. The images both have 64 rows with each row representing measure-

ments from one laser beam. We choose azimuth resolution αres = 0.5◦ so

that it has 360◦

0.5◦
= 720 pixels on each row. We can observe clear contours

of the vehicles and high-intensity returns from vehicle plates through this

representation form. 11

2.3 Point-to-plane ICP tries to find an optimal transformation that transforms

source point (red) to destination point (blue). The point-to-plane metric

minimizes the distance l from source points to the tangent plane of desti-

nation points. Image credit: Low et al. [33]. 13

2.4 Extracted edge (yellow) and planar (red) features from a point cloud taken

in a corridor [66]. Based on local curvature information, Zhang et al. [66]

extracts sharp and flat points from point clouds. Image credit: Zhang et

al. [66]. 14

2.5 A vehicle visits an unmapped intersection and revisits from another view-

point after completing a loop of the environment. Based on the geometry

information in the LiDAR scans, the loop closure algorithm should inform

the robot of a detected closed loop at the intersection despite viewpoint

change. Image credit: Chen et al. [11]. 18

viii

2.6 Pose graph with a closed loop. Each node is a pose and each directed edge

is a relative pose measurement from one to another. The goal of this pose

graph optimization is to estimate a set of poses with respect to a fixed

pose T0. With the presence of a closed loop on top, we cannot simply

compound the relative poses. Image credit: Barfoot et al. [4]. 19

2.7 Ground truth semantic segmentation for a point cloud in SemanticKITTI

[6]. The dataset hand-annotates point clouds into classes including ground,

structure, vehicle, nature, human, object and outlier. It is commonly used

as a benchmark for point cloud semantic segmentation tasks. Image credit:

Behley et al. [6]. 23

3.1 Self-supervised semantic learning pipeline for large-scale scene 29

3.2 Pointwise timestamp information for all points in Pk spanning from tk to

tk+1 . 32

3.3 (a) After map aggregation, we apply grid down-sampling to retrieve a grid

representation of our point cloud map. A grid size of 0.3 m allows us to

keep the map compact while not losing many details. (b) When we zoom

into the grid down-sampled map, we can observe traces of the vehicles and

clear contours of the buildings. 33

3.4 Top view of a 2D LiDAR sensor (bottom middle) emitting light waves

and receiving returns when hit on obstacles. The dots (black) represent

point returns whereas the dashed lines (black) stand for the paths light

rays travel. In a grid representation of this scan, gray grids represent the

freespace. 35

3.5 Frustum grid representation of freespace for a 3D point cloud. Each pixel

contains the minimum point distance to the sensor origin from a spherical

angle. Points further away are coloured in yellow and points closer are

coloured in blue. 36

3.6 An example of moving probability for a sub-region in map M, where the

colour depicts the probability that a point belongs to a moving object.

Points in red have a high moving probability whereas points in blue have

a low probability. 39

ix

3.7 (a) Points belonging to parked vehicles in the bottom left receive a low

moving probability because these points do not belong to the freespace of

scans that are used to aggregate this map. However, (b) points belonging

to some parked vehicles receive a high moving probability because they do

not exist in scans from other sessions, and thus belong to the freespace. . 41

3.8 Our semantic segmentation network based on KPConv [54]. For simula-

tion dataset, we use point cloud x, y and z coordinates as input whereas

we add the intensity channel for the real-world dataset. We use KPConv

(yellow) to convolve points with 3D kernels and Strided KPConv (purple)

to effective reduce the number of points by half. Skip connections allow

information to flow between encoder and decoder layers at the same res-

olution. Nearest up-samping and concatenation (green) deconvolute the

learned decoder representations and output a class label for every point in

point cloud. 46

4.1 Simulated traffic in Carla simulator with different traffic levels: light,

medium and extreme. Different traffic levels simulate different numbers of

moving vehicles and pedestrians around our vehicle. 51

4.2 Our data-taking platform Boreas from ASRL. It includes a Velodyne VLS-

128 LiDAR sensor and an Applanix POS-LV inertial navigation system. . 52

4.3 Our data collection route using Boreas from ASRL. The route starts from

UTIAS, turns right onto Dufferin Street, North York, Ontario, and turns

left into a local residential neighbourhood. The vehicle takes a detour and

returns to its start position. 53

5.1 Comparison of annotated and groundtruth scan examples from the testing

set of our simulation dataset using the automated annotation pipeline. The

scan is annotated with four classes: ground (blue), non-movable (green),

long-term movable (yellow) and short-term movable (red). 62

5.2 Comparison of predicted and groundtruth scan examples from the testing

set of our simulation dataset using best-trained network parameters. Our

network learns to assign four class labels to understand the scene. 65

x

5.3 Comparison of a LiDAR scan captured in extreme traffic before and af-

ter semantic filtering. While generic localization estimates pose using all

points in (a), our semantics-aware localization filters out ground (blue),

long-term movable (yellow) and short-term movable (red) points from the

scan (b) before localizing against the pre-generated map. Under extreme

traffic, generic localization fails due to the abundance of dynamics in the

environment, i.e., on-road vehicles (red) in (a), whereas our semantics-

aware localization successfully localizes using non-movable points in (b). 68

5.4 Network predictions on the test set from the real-world dataset. 69

xi

Notation

F−→a
A reference frame for a three-dimensional coordinate system

SE(3) The special Euclidean group, a matrix Lie group used to represent poses

se(3) The Lie algebra associated with SE(3)

Ta,b A matrix in SE(3) that transforms vectors from frame F−→b
to frame F−→a

Tk Short form for Ti,k, a matrix in SE(3) that transforms vectors from F−→k
,

the frame representing the pose at time tk, to F−→i
, the inertial frame

exp(·∧) A Lie algebra operator mapping from se(3) to SE(3)

ln(·)∨ A Lie algebra operator mapping from SE(3) to se(3)

1 The identity matrix

0 The zero matrix

1

Acronyms

LiDAR Light Detection And Ranging

FOV Field Of View

MLP Multi-Layer Perceptron

SLAM Simultaneous Localization And Mapping

ICP Iterative Closest Point

NDT Normal Distributions Transform

DOF Degree Of Freedom

EM Expectation Maximization

SAM Smoothing And Mapping

BEV Bird Eye View

GPS Global Positioning System

IMU Inertial Measurement Unit

2

Chapter 1

Introduction

1.1 Motivation

Using the current state-of-the-art autonomous navigation stack, we can autonomously

navigate a robot in a predictable environment. A good example is visual teach and repeat

[22], a system that enables long-range rover autonomy with an on-board stereo camera

sensor. However, our navigation stack falls short in performance when the environment

becomes more complex and unpredictable. Therefore, we believe that it is crucial for a

robot to retrieve and analyze semantic information from the environment it interacts with

to improve scene understanding. Depending on the needs of particular tasks, semantic

information can be used in different ways to improve the task performance. One may

choose to filter out points belonging to dynamic objects from the map when building

a mapping algorithm, and an object detection algorithm may prefer to focus on points

that are identified as dynamic points. A good example is the work by Pagad et al. [42],

which describes a dynamic object removal algorithm that uses object detection result to

remove dynamic points from a point cloud map.

Cameras create a visual representation of the world and are the most common sensors

employed on an autonomous robot thanks to their inexpensive cost. Recent literature

addresses scene understanding in camera images [2, 50, 39]. However, the disadvantage

of using camera images for scene understanding is that they are sensitive to poor illumi-

nations and require a stereo setup to estimate depth, which is critical in understanding

3

Chapter 1. Introduction 4

the 3D geometry. On the opposite side, LiDAR (Light Detection and Ranging) provides

accurate depth information and remains invariant to challenging lighting conditions, de-

spite its relatively expensive cost and sparsity.

In the recent literature, supervised deep learning approaches have been demonstrated

to learn semantic information from LiDAR data [46, 44, 45, 54, 38]. These methods

represent LiDAR data in the form of either a point cloud or a LiDAR image, and learn to

assign a semantic label to each point to represent to what semantic class it belongs. Even

though these approaches demonstrate excellent performance in scene understanding, they

fall short in that all of them require groundtruth annotations for training, which are often

expensive to obtain.

In this thesis, we are interested in acquiring annotations using an automated ap-

proach to avoid hand annotations. These annotations would be used to train a semantic

segmentation network offline, which could then be used for online scene understanding.

1.2 Contributions

In this thesis, we introduce a self-supervised approach to semantically segment LiDAR

point clouds for large-scale scene understanding. The foundation of our approach is the

pipeline proposed by Thomas et al. [53]. We extend the pipeline to large-scale scenes,

especially autonomous driving scenarios. Combined with a mapping and localization

solution, our approach acquires point level annotations using an automated annotation

pipeline and learns the semantic segmentation of LiDAR point clouds using the latest

LiDAR input. To qualitatively and quantitatively evaluate our method, we collect a

simulation dataset using the CARLA simulator. We also make qualitative analysis on a

real-world dataset to validate our approach.

The main contributions of our proposed method are:

• a self-supervised semantic learning approach for point cloud scene understanding

in a large-scale environment

• a simulation dataset that contains multi-session navigation experiences in the same

Chapter 1. Introduction 5

environment and under multiple different self-driving scenes

• a qualitative and quantitative analysis of our method on the simulation dataset

• a qualitative analysis of our method on the real-world dataset

1.3 High-Level Overview

The thesis is organized as follows. Chapter 2 presents background information on com-

mon LiDAR data representations, existing mapping and localization methods, and exist-

ing semantic segmentation approaches for LiDAR point clouds. In Chapter 3, we intro-

duce our self-supervised semantic learning approach for large-scale scene understanding.

In Chapter 4, we provide more details on the simulation dataset we collect using the

CARLA simulator and a real-world LiDAR dataset collected using Velodyne VLS-128.

In Chapter 5, we show our experimental results and make qualitative and quantitative

analysis on both datasets. Finally, in Chapter 6 we draw our concluding remarks and

propose future research directions.

Chapter 2

Background

We describe background and relevant literature in this chapter. We begin by describing

LiDAR data and different forms of representations commonly used in robotics applica-

tions. Next, we discuss existing literature on LiDAR-based mapping and localization.

Then, we move our focus onto LiDAR semantic learning and end the chapter by looking

at how existing literature improves mapping and localization by exploiting the semantics.

2.1 LiDAR Data Representations

LiDAR, short for Light Detection and Ranging, has become a commonly used sensing

component for any robotics applications in the past decades. Laser beams inside the

LiDAR unit emit pulsed light waves into the surrounding environment and use the time

for each pulse to return to calculate the distance each pulse travels. Repeating this process

millions of times per second creates a precise, real-time 3D map of an environment. There

are mainly two types of LiDAR in the market for robotics applications, mechanically

spinning LiDAR and solid-state LiDAR. This thesis focuses on mechanically spinning

LiDAR as it is the more common type of LiDAR for autonomous navigation to this

date. Therefore, from now on, we refer to mechanically spinning LiDAR as LiDAR.

Furthermore, we also consider a laser beam emitting pulsed light waves as a firing to

clarify the term carefully.

Multiple configuration parameters are essential to a LiDAR product, including hor-

6

Chapter 2. Background 7

izontal and vertical field-of-view (FOV), horizontal and vertical resolutions. LiDAR’s

continuous sweep of the environment provides a 360-degree horizontal FOV. Based on

the physical placement of laser beams, different LiDAR products offer different vertical

FOV and resolutions. Meanwhile, the horizontal resolution of a LiDAR depends on laser

beam firing frequency in operation.

Velodyne is a top supplier of LiDAR products and has pioneered the high-performance

LiDAR for automotive use. It offers different configurations, including 16, 32, 64 and

128 lasers, for research and industry use. Although more companies (e.g., Ouster and

Hesai) have released similar LiDAR products to this date, Velodyne LiDAR remains the

leader in providing state-of-the-art LiDAR for autonomous navigation. This thesis uses

a Velodyne Alpha Prime with 128 lasers to collect a dense and high-resolution real-world

dataset. From now on, we refer to Velodyne Alpha Prime as Velodyne VLS-128 for

simplification purposes.

2.1.1 Range & Bearing

In Figure 2.1 we define the LiDAR base frame F−→b
rigidly attached to the robot platform.

When each laser beam fires and receives the returned signal, it takes a range measurement

r of the endpoint p to the origin of F−→b
based on time of travel. We often use bearing

angle to represent the laser beam’s relative orientation in F−→b
, but bearing angle is a term

usually associated with the angle in a 2D quadrant defined by the cardinal directions. To

represent the 3D spherical measurement, we separate bearing into azimuth and elevation

angle.

In Figure 2.1 we define each azimuth angle α to be measured in the X-Y plane from

the Y-axis and elevation angle ω to be measured in the Y-Z plane from the Y-axis. We

know each laser beam’s azimuth and elevation angle at the time of firing with respect

to LiDAR base frame F−→b
. Therefore, we can represent LiDAR data using the range,

azimuth, and elevation measurements, which are commonly referred to as range and

bearing. Furthermore, this thesis refers to the range and bearing measurements as the

raw measurements from a LiDAR sensor because they are the unprocessed output.

Chapter 2. Background 8

y

z

x

F−→b

p

r

ω

α

Figure 2.1: An illustration of a measurement p in a LiDAR base frame F−→b
when involved

in converting from a range and bearing measurement to a 3D LiDAR point. Range
measurement r defines the Euclidean distance from p to the origin of F−→b

. Azimuth angle

α is measured in the X-Y plane from the Y-axis whereas elevation angle ω is measured
in the Y-Z plane from the Y-axis. The red, green and blue directed lines represent x, y
and z coordinates of point p in a 3D space.

2.1.2 Point Cloud

A point cloud is a collection of points formed by each laser beam’s hit positions on a

physical object. Every point in a point cloud consists of x, y, and z coordinates, with

additional intensity information based on physical properties of the material and inci-

dence angle, etc. Every point is computed from a range and bearing measurement from

the last section. We can explain this conversion process more clearly with mathematical

notations. From now on, we carefully define a scan to be a point cloud containing point

measurements during a full 360◦ sweep of an environment.

Figure 2.1 shows an example of a point captured by a LiDAR in the LiDAR base

frame F−→b
. As discussed in the last section, the raw measurements for each point include

range r, elevation ω and azimuth α with respect to F−→b
. Therefore, to convert these raw

Chapter 2. Background 9

measurements to a point cloud representation, the corresponding x, y, and z coordinates

in F−→b
are

x = r cos(ω) sin(α)

y = r cos(ω) cos(α)

z = r sin(ω)

(2.1)

The point cloud is the most common data representation for LiDAR data, but it

is often misinterpreted as an instantaneous snapshot of the environment. Due to the

moving-while-scanning operations of LiDAR sensors, laser beams emit pulses sequentially

at slightly different timestamps during a sweep of the environment. Unlike most cameras

that scan the entire environment simultaneously, if a LiDAR is mounted on a moving

platform, its observed scene would be easily distorted due to the rolling shutter effect,

which we often refer to as motion distortion.

We emphasize the term motion compensation as the method to correct motion dis-

tortion, and we discuss it in more detail in Chapter 3. We can easily identify distinct

discontinuities near the start and end of the motion distorted scans because the start and

end are captured at slightly different timestamps. Motion compensation aligns points in

a motion distorted scan to the same timestamp. It is an essential pre-processing step for

point clouds before proceeding with further operations.

Point clouds are widely used in many computer vision and robotics applications, in-

cluding deep learning research. Unlike camera images, point clouds represent geometric

data in an irregular format and thus are often difficult to apply the traditional convo-

lution operation for deep learning. We mention existing literature in this section that

addresses point cloud representation within a deep learning framework and introduces

the use of point clouds in robotics applications. Su et al. [52] try to render 3D point

clouds into 2D images and apply 2D convolutional networks for classification. However,

this rendering strategy is unnecessarily voluminous and causes issues. To efficiently rep-

resent point clouds, Qi et al. [44, 45] pioneer the use of unordered point sets on point

clouds and relies on Multi-Layer Perceptron (MLP) to keep the permutation invariance.

Chapter 2. Background 10

The method demonstrates its state-of-the-art performance for classification and seman-

tic segmentation tasks. With a similar motive, Thomas et al. [54] convolve point clouds

directly with spherical kernel points to achieve kernel convolution. The method out-

performs state-of-the-art classification and semantic segmentation approaches in several

datasets. In addition to semantic learning, point clouds are often used as measurements

for autonomous navigation. Zhang et al. [66] propose point cloud features that aid

keyframe-based Simultaneous Localization and Mapping (SLAM), analogous to how vi-

sual features are often detected and matched in a visual odometry pipeline. As opposed

to manually extracting point cloud features, Yoon et al. [64] introduce unsupervised

learning of trajectory estimation by maximizing point cloud data likelihood through the

learned keypoint detector and descriptors. Finally, point clouds can be processed to ac-

complish more vision-oriented tasks. Yuan et al. [65] feature a decoder-based network

to address the shape completion problem using point cloud data. The method estimates

the complete scene geometry from partial observations. Drawing inspirations from the

natural language processing community, Pan et al. [43] apply Transformer [57] to point

clouds for 3D object detection tasks.

We emphasize that in this thesis we work extensively with the point cloud represen-

tation of LiDAR data as it is most commonly used in robotics applications.

2.1.3 LiDAR Image

We can use elevation and azimuth measurements to construct a LiDAR image. It can be

seen as an image coordinate-parametrized representation of LiDAR data. Consecutive

measurements from each laser beam in a LiDAR scan comprise an individual row in a

LiDAR image, and row ordering depends on each laser beam’s elevation angle. If every

entry in a LiDAR image contains an intensity channel of the associated measurement,

we refer to it as a LiDAR intensity image. Similarly, we define a LiDAR range image if

every entry contains the range measurement.

Because laser beams fire sequentially at slightly different timestamps during a sweep of

the environment, if we are to fill each column based on the point timestamp, the columns

would not align perfectly. To address this issue and also satisfy hardware configuration

Chapter 2. Background 11

and task-specific requirements, a LiDAR image is often uniformly down-sampled in the

row direction based on an azimuth resolution. We elaborate on the down-sampling with

more clear mathematical expressions. For a sweep of the environment, a LiDAR image

would contain rN entries in each row:

rN =
360◦

αres

, (2.2)

where αres is the azimuth resolution in degrees. A common value αres = 0.5◦ is often

empirically chosen to retain sufficient LiDAR image resolution while avoiding the missing

pixel issue. Figure 2.2(a) and Figure 2.2(b) show an example of LiDAR intensity and

range images produced from a 64-line Velodyne HDL-64.

(a) LiDAR intensity image

(b) LiDAR range image

Figure 2.2: LiDAR intensity and range images produced from a 64-line Velodyne HDL-
64. The images both have 64 rows with each row representing measurements from one
laser beam. We choose azimuth resolution αres = 0.5◦ so that it has 360◦

0.5◦
= 720 pixels on

each row. We can observe clear contours of the vehicles and high-intensity returns from
vehicle plates through this representation form.

The LiDAR image is often used in recent literature thanks to its efficient data repre-

sentations. Unlike point cloud data, LiDAR image is a compact 2D representation of the

3D geometry world. Dong et al. [18] introduce LiDAR intensity image to match visually

distinct features to recover motion of a ground vehicle, similar to how camera images

are processed in a visual odometry pipeline. To emphasize this efficient representation in

learning, Cho et al. [15] propose an unsupervised LiDAR odometry framework to learn

distinct features from stacked LiDAR intensity and range images through a deep learning

network with competing performance. Apart from the motion estimation, Milioto et al.

[38] use LiDAR range images to learn a state-of-the-art semantic segmentation network,

Chapter 2. Background 12

unlike prevalent point cloud based approaches.

Although point clouds provide rich 3D geometry information, their data processing

requires extensive computation resources, which are often absent on a mobile platform

aiming at fast inference. As an alternative approach to represent LiDAR data, the LiDAR

image has the benefit of being computationally friendly to large-scale scenes, thanks to

the nature of its 2D representation. A good example is RangeNet++. Milioto et al. [38]

empower RangeNet++ with LiDAR range image input to achieve more than 20 times

faster inference than a point cloud based segmentation network, which makes it more

applicable for real-world deployment.

2.2 Mapping and Localization

Mapping and localization refer to the process of constructing a map and localizing the

vehicle within it. We explicitly distinguish this from Simultaneous Localization and

Mapping (SLAM) because our pipeline does not require mapping and localization to

happen simultaneously. This section describes common components in a LiDAR-only

mapping and localization pipeline, without any use of a global positioning system (GPS)

and inertial measurement unit (IMU).

2.2.1 Mapping

Mapping refers to constructing or updating a map of an unknown environment. Many

mapping algorithms rely on a combination of odometry measurements, loop closure and

pose graph optimization techniques. We describe each component and discuss the existing

literature in this section.

2.2.1.1 Scan-to-scan odometry

Scan-to-scan odometry estimates relative pose change between two consecutive scans in

a LiDAR-only mapping pipeline. It is significant to the mapping pipeline because it in-

troduces odometry constraints between consecutive scans. The odometry measurements

would later be optimized through a pose graph that we would describe in a later section.

Chapter 2. Background 13

LiDAR odometry is a well-explored problem in the robotics community. We care-

fully place existing approaches into two categories: classic approach and deep learning

approach.

Iterative Closest Point (ICP) is the most common classic approach when it comes to

scan-to-scan odometry. Arun et al. [3] and Besl et al. [8] introduce standard point-to-

point ICP that iteratively finds an optimal transformation solution by minimizing the

Euclidean distance between corresponding points. To achieve real-time performance, cor-

respondences between two scans are computed using a KD-tree. As a more robust variant

of the standard ICP, the point-to-plane ICP introduced by Chen and Medioni et al. [13]

improves the scan matching performance by taking advantage of the surface normal in-

formation. The point-to-plane error metric minimizes the error along the surface normal

direction as opposed to Euclidean distance between matched points. As demonstrated in

Figure 2.3, source points s1, s2 and s3 try to find an optimal transformation to minimize

distance to tangent plane of the destination points d1, d2 and d3. As a further extension,

Segal et al. [47] combine standard ICP and point-to-plane ICP into a single probabilistic

framework to model locally planar surface structure from both scans. This algorithm can

be thought of as introducing another plane-to-plane error metric. Despite incremental

improvements to the standard ICP, the fallback of most ICP-based approaches is that it

requires a decent initial guess, which is unavailable in some cases.

Figure 2.3: Point-to-plane ICP tries to find an optimal transformation that transforms
source point (red) to destination point (blue). The point-to-plane metric minimizes the
distance l from source points to the tangent plane of destination points. Image credit:
Low et al. [33].

Chapter 2. Background 14

In addition to ICP and its variants, Normal Distributions Transform (NDT) is an-

other classic approach that represents point clouds as differential multi-variate Gaussian

distributions. Biber et al. [9] introduce this approach to sub-divide point clouds into

cells and locally model the probability of point measurements. The method uses differ-

entiable probability densities to match two scans with no explicit correspondences to be

established. Magnusson et al. [36] show that NDT is more robust to poor initialization

than ICP-based approaches yet the subdivision process could lead to problems due to

discontinuities in surface representations.

Both ICP-based approaches and NDT operate on a down-sampled point cloud due to

limitations on computational resources. As opposed to uniform down-sampling, an alter-

native is to extract point cloud features from consecutive scans to do feature matching,

similar to a visual odometry approach. Zhang et al. [66] introduce extracting edge and

planar features in point clouds based on local curvature and the ring number informa-

tion. The method matches the detected features across consecutive scans and manages

to achieve fast and accurate scan-to-scan odometry. An example of extracted point cloud

features is demonstrated in Figure 2.4. Using a similar idea, Shan et al. [48] apply a point

cloud segmentation technique to filter out noise in the point clouds prior to extracting

distinctive edge and planar features. These hand-designed point cloud features are fast

to compute and often used for real-time performance.

Figure 2.4: Extracted edge (yellow) and planar (red) features from a point cloud taken
in a corridor [66]. Based on local curvature information, Zhang et al. [66] extracts sharp
and flat points from point clouds. Image credit: Zhang et al. [66].

Although classic approaches have proved to be robust and computationally desirable

Chapter 2. Background 15

in most applicable scenarios, the enormous engineering efforts behind these approaches

motivate the research community to investigate deep learning approaches. Deep learn-

ing approaches for LiDAR odometry often consume two point cloud scans as input and

output a six degree-of-freedom (DOF) pose to represent the relative pose change. Li et

al. [32] learn the complete odometry pipeline end-to-end by introducing a mask-weighted

geometric constrained loss. This supervised method manages to achieve competent per-

formance as compared to ICP-based approaches. To take the end-to-end learning even

further, Cho et al. [14] propose an end-to-end unsupervised learning framework that

uses LiDAR vertex and normal images as input and outputs a six DOF relative pose

change. This is the first deep learning method that learns LiDAR odometry without

groundtruth poses yet its odometry performance falls short compared to LO-Net [32]

and other ICP-based methods.

As opposed to the fully learned methods, there are methods that combine the benefits

from both classic and deep learning approaches. Chen et al. [12] improve on the classic

SLAM framework Suma [7] by incorporating a pre-trained semantic segmentation network

to remove dynamic points in the scan. Partly inspired by Suma++ [12], Yoon et al. [64]

combine classic and deep learning approaches and introduce an unsupervised framework

that can be trained end-to-end for trajectory estimation. The method learns keypoints

and associated descriptors along with the 6 × 6 covariance by maximizing the point

cloud data likelihood through Expectation-Maximization (EM). During inference, the

learned keypoints and covariance are passed into a classic framework for batch trajectory

estimation. The highlight of this approach is that it not only achieves better odometry

performance than earlier mentioned deep learning methods but also can be trained end-

to-end without groundtruth poses.

2.2.1.2 Motion Compensation

In Chapter 2.1.2, we introduce motion distortion as a common issue with point clouds

due to the moving-while-scanning operation of LiDAR sensors. Motion compensation is

important in mapping and localization because distorted point clouds affect map qual-

ity when aggregating multiple scans into a map. In this section, we describe existing

Chapter 2. Background 16

literature to address motion compensation.

Motion distortion is an issue because points in a scan fire at slightly different times-

tamps. To address this issue, Tong et al. [55] and Merali et al. [37] suggest stopping

the vehicle occasionally to conduct the scan. However, this does not solve the issue from

the root. From a completely different perspective, Sheehan et al. [49] introduce the

continuous-time method to estimate robot motion at any given time. While the earlier

method assigns one timestamp for every LiDAR scan, this method allows the robot to

query six DOF poses for any laser points. Furthermore, Anderson et al. [1] formulate a

continuous-time trajectory estimation framework with a physically motivated constant

velocity motion prior. The framework enables motion compensation for scan-to-scan

odometry using LiDAR data.

2.2.1.3 Keyframes

Scan-to-scan odometry produces relative pose change between consecutive scans. How-

ever, over a long trajectory, compounded relative poses from odometry solution tend to

drift and cause dead reckoning. To mitigate this issue, existing literature introduces the

concept of keyframes, also known as submaps.

The keyframe refers to a reference frame used by a SLAM system to localize within an

environment. Generally, it contains data captured at a specific timestamp. In the context

of LiDAR-only mapping and localization, a keyframe is usually a motion-compensated

LiDAR scan at a specific timestamp. To retain global consistency and accuracy during

mapping, scans are matched against their nearest keyframes and keyframes are collected

along the robot trajectory to build a pose graph.

The concept of keyframes stems from a visual SLAM background and is often com-

pared with the classic filter-based approaches. Strasdat et al. [51] compare the classic

filtering approach with the keyframe-based approach in a visual SLAM setting. While

filtering methods marginalize out past poses and summarize the information gained over

time with a probability distribution, keyframe-based methods retain the optimization

approach of global bundle adjustment by computationally selecting only a small number

of past frames to process. To maintain a bounded-size optimization window for real-

Chapter 2. Background 17

time operation, Leutenegger et al. [30] improve keyframe-based visual-inertial SLAM by

introducing keyframe marginalization to remove past states.

The concept of keyframes is also widely used in LiDAR mapping and a keyframe is

often renamed as a submap to describe a sub-region of the complete map. Ni et al. [40]

propose a submap-based approach to speed up smoothing and mapping (SAM) process

when running SLAM in large environments. Hess et al. [23] introduce an indoor mapping

algorithm that achieves real-time mapping and loop closure, and is known as the popular

Google Cartographer. The method uses scan-to-submap matches as constraints, similar

to how the keyframe concept is employed in a visual SLAM system.

A common keyframe selection approach in LiDAR mapping is to select keyframes

based on how far the robot has travelled using the odometry measurements. This ensures

the robot to have a consistent window of keyframes over the trajectory.

2.2.1.4 Loop Closure

We introduce the concept of loop closure when a robot revisits a previously visited

location in the map. In Figure 2.5(a), a vehicle visits an unmapped intersection and marks

the current keyframe associated with this intersection. When the vehicle completes a loop

in the environment and revisits the intersection from another viewpoint in Figure 2.5(b),

the loop closure algorithm detects loop closure and matches the current scan to the earlier

keyframe to form a loop closure constraint. Loop closure is an important component in

building a globally consistent map because it adds this loop closure constraint into the

pose graph for optimization. A loop closure example can be found in Figure 2.6.

Current loop closure detection approaches rely heavily on vehicle pose estimates to

prompt loop closure. Over a short trajectory, compounded relative poses from the odome-

try solution do not drift much and can be used as a good source for loop closure detection.

However, when the robot travels in an unknown environment over a long trajectory, pose

estimates from the odometry solution become unreliable. Under such circumstances, the

GNSS solution is sometimes a good candidate to globally localize the robot to help detect

a loop closure, yet we require a more robust solution in GNSS-denied cases.

Scene-dependent visual appearances can be used to prompt loop closure. Ho et al.

Chapter 2. Background 18

(a) Vehicle at the intersection (b) Vehicle revisits the intersection

Figure 2.5: A vehicle visits an unmapped intersection and revisits from another viewpoint
after completing a loop of the environment. Based on the geometry information in the
LiDAR scans, the loop closure algorithm should inform the robot of a detected closed
loop at the intersection despite viewpoint change. Image credit: Chen et al. [11].

[25] introduce a loop closure detection algorithm in a SLAM environment by combining

visual and spatial appearances of local scenes. The method relies upon matching dis-

tinctive ‘signatures’ of individual local scenes to prompt loop closure and is completely

independent of pose estimates in the mapping process. With a similar idea, Kim et al.

[27] propose Scan Context, a non histogram-based global descriptor from a LiDAR scan,

to describe a visited place using the structural information. The method computes a

similarity score between two scan contexts in feature space and heuristically chooses a

threshold to prompt loop closure. Furthermore, the use of structural information in this

work ensures loop closure detection to be invariant to LiDAR viewpoint changes.

While classic approaches work well with loop closure detection, deep learning ap-

proaches address from a scene understanding perspective by learning the scene descrip-

tors. The term place recognition is often used in the research community to recognize

a visited place, similar to detecting a closed loop. Dubé et al. [20] extract segments

from point clouds to form a data-driven descriptor. Correspondences are made between

segments from the local and global maps by using k-NN retrieval in feature space which

allows robust loop closure performance. Furthermore, Uy et al. [56] propose Point-

NetVLAD that learns global descriptors from point clouds for large-scale scenes. The

method shows the feasibility of its network to the largely unexplored problem of point

Chapter 2. Background 19

cloud based retrieval for place recognition.

2.2.1.5 Pose Graph Optimization

A pose graph represents a robot’s trajectory in the form of a graph, where each node

is a pose and each directed edge is the relative pose from one node to another. Edges

are weighted by the relative uncertainty in the robot’s poses. The problem of pose

graph optimization is to estimate a set of poses with respect to a fixed pose T0 from

these relative pose measurements as illustrated in Figure 2.6. It is known to be a non-

convex problem, and currently few techniques can guarantee the computation of a globally

optimal solution.

Figure 2.6: Pose graph with a closed loop. Each node is a pose and each directed
edge is a relative pose measurement from one to another. The goal of this pose graph
optimization is to estimate a set of poses with respect to a fixed pose T0. With the
presence of a closed loop on top, we cannot simply compound the relative poses. Image
credit: Barfoot et al. [4].

In the context of pose graph optimization for LiDAR mapping, each vertex represents

a keyframe pose and each edge represents a measurement. As discussed in earlier sections,

we have odometry and loop closure constraints added to the pose graph. Through pose

graph optimization, we obtain optimized keyframe poses, which are essential to building a

globally consistent map. Lu et al. [34] pioneer the formulation of pose graph optimization

Chapter 2. Background 20

in a robot mapping problem. The method achieves consistency using all the spatial

relations as constraints to solve for the data frame poses simultaneously. Frese et al.

[21] improve the performance by incorporating multi-level resolution optimization. The

method proves its computation efficiency and performance on two real-world datasets.

Furthermore, Olson et al. [41] address the convergence issue in pose graph optimization,

especially with poor initial estimates. Through iterative optimization over only a subset

of the information available in the problem, the method improves the convergence and

rapidly recovers the robot trajectory even when given a poor initial estimate.

From the implementation perspective, g2o and gtsam are the popular graph optimiza-

tion libraries that support pose graph optimization. Kümmerle et al. [29] describe the

general structure of graph optimization and present g2o, an open-source C++ framework

for optimizing graph-based nonlinear error functions. Similarly, Kaess et al. [26] present

a novel data structure, Bayes tree, that encodes a factored probability density and maps

naturally to the square root information matrix of the SLAM problem. This incremental

method manages to achieve improvements in efficiency and results in the library gtsam.

2.2.2 Localization

Localization refers to localizing the robot within the map built from the mapping pipeline.

It is a crucial capability for mobile robots and autonomous vehicles because it provides

accurate pose estimates that are critical to downstream tasks, e.g., obstacle avoidance. In

this section, we introduce existing literature addressing the LiDAR localization problem.

2.2.2.1 Localization Initialization

Given a map built from the mapping pipeline, localization initialization is crucial for the

localization system because it provides an initial pose for the robot to start localizing

itself within the map.

A simple approach to initialize localization is to use the pose estimate provided by

a GNSS device [31, 60, 5, 59]. However, when the robot is in an area with poor GNSS

coverage, it becomes crucial to have an alternative approach to initialize the localization

Chapter 2. Background 21

system.

Recent literature addresses localization initialization from a scene understanding per-

spective similar to loop closure detection methods. Existing approaches match current

scans to the map in feature space to retrieve coarse pose estimates. Kim et al. [27]

compress point clouds to scan context images and train a CNN based on these images.

The method matches the scan context image for current scan to the one for every cell in

the map and estimates current location by computing a correlation score between scan

context images. Yin et al. [61] introduce a Siamese network to learn fingerprints of

local scenes for place recognition. The method then obtains precise localization using

a particle filter algorithm. Furthermore, Komorowski et al. [28] present an approach

to compress point clouds into global descriptors for place recognition purpose. Unlike

PointNetVLAD, this method captures both global and local geometric features and out-

performs the state-of-the-art.

2.2.2.2 Precise Localization

The localization system obtains prior knowledge of the robot’s initial pose in the map after

localization initialization. Precise localization uses prior knowledge to achieve accurate

pose estimation for robots within the map. In this section, we introduce existing literature

on robots to localize themselves within a given map provided some prior knowledge of

its pose. It is worth noting that many existing approaches either generate their own map

representations as discussed in the earlier section or rely on a third-party company to

provide accurate high-definition maps. Following, we carefully place existing approaches

into two categories: classic approach and deep learning approach.

Filter-based and ICP-based methods are the most common classic approaches to

address the precise localization problem. Levinson et al. [31] propose an approach to

utilize GPS, IMU, wheel odometry and LiDAR to build a high-resolution map, followed

by a particle filter algorithm to correlate LiDAR measurements against the map for

accurate localization. With a similar idea, Wan et al. [58] use Bird Eye View (BEV)

LiDAR intensity images, coupled with a differential GPS and an IMU, to robustly localize

against a pre-generated map to achieve centimetre-level accuracy. An error-state EKF

Chapter 2. Background 22

is also employed to fuse measurements from different sensor modalities for uncertainty

estimation. In contrast, Yoneda et al. [62] extract distinct LiDAR features and align the

online LiDAR scan to the highly precise 3D map using ICP. However, as discussed in an

earlier section, ICP is known to be susceptible to poor initial guesses.

With the rising popularity of deep learning, recent literature attempts to retrieve

precise localization information through data-driven methods. Barsan et al. [5] propose

a real-time calibration agnostic approach that learns deep embedding to align online Li-

DAR scan to a LiDAR intensity map that has been pre-processed for dynamic object

removal. Although the method achieves centimetre-level accuracy, its performance highly

relies on a good GPS prior. Using a similar idea, Wei et al. [59] encode LiDAR intensity

images into binarized form to achieve scan-to-map alignment. The method emphasizes its

contribution to the high map compression rate without loss of localization performance.

Furthermore, Lu et al. [35] introduce L3-Net to learn keypoints and their representa-

tions in an unordered point cloud for scan-to-map alignment. The method creates a

cost volume for every keypoint in the pre-generated map using the initial pose estimate

and conducts keypoint matching using learned representations. Although it achieves

strong localization performance on real-world datasets, it cannot run in real-time due to

expensive computations.

In this thesis, our mapping and localization solution provides us with accurate pose

estimates for robots within a globally consistent map. We rely on the map along with

these pose estimates to accomplish our automated annotation pipeline.

2.3 Scene Understanding

Scene understanding refers to analyzing and elaborating an interpretation of a 3D dy-

namic scene observed through a network of sensors. It provides the capability to further

enable autonomous navigation. In this thesis, we focus on scene understanding through

LiDAR point clouds and we introduce existing literature in this section. We carefully

place existing scene understanding works into two research streams: semantic segmen-

tation for point clouds and dynamic object detection in point clouds. While the former

Chapter 2. Background 23

classifies semantics into more classes, the latter focuses on distinguishing only dynamic

points in a scene.

2.3.1 Semantic Segmentation

The goal of semantic segmentation for point clouds is to assign every point in a point cloud

a semantic label of what it is represented. Common semantic labels in a self-driving sce-

nario include vegetation, building, person etc. In the current literature, researchers often

address point cloud semantic segmentation through supervised deep learning approaches,

which require groundtruth semantic labels from human annotations. A good example of

a hand-annotated semantic segmentation dataset for self-driving is SemanticKITTI [6],

which consists of 28 semantic classes distinguishing moving and non-moving objects as

shown in Figure 2.7.

Figure 2.7: Ground truth semantic segmentation for a point cloud in SemanticKITTI
[6]. The dataset hand-annotates point clouds into classes including ground, structure,
vehicle, nature, human, object and outlier. It is commonly used as a benchmark for point
cloud semantic segmentation tasks. Image credit: Behley et al. [6].

In this section, we introduce existing literature on supervised semantic segmentation

for point clouds. Riegler et al. [46] introduce OctNet to learn deep 3D representations at

high resolutions for point clouds. The method projects a point cloud onto an intermediate

Chapter 2. Background 24

grid structure and uses every leaf node in an octo-tree to store a feature representation.

However, the fallback of this approach is its limited flexibility due to the fixed grid size.

To avoid the grid structure, Qi et al. [44] pioneer pointwise operation in point cloud

learning and uses a shared Multi-Layer Perceptron (MLP) on every point followed by

a max pooling operation. The method validates its effectiveness on both classification

and semantic segmentation tasks. However, despite its great innovation in point cloud

learning, it fails to encode local geometric structure information into its feature represen-

tation. To extend PointNet, Qi et al. [45] further introduce PointNet++ to capture local

geometric structure induced by the metric space points live in. This method improves

the generalizability of semantic segmentation, especially in more complex scenes.

In addition to pointwise operations on point clouds, some recent literature defines

convolutions for points explicitly. Thomas et al. [54] define kernel point convolution for

point clouds and introduce KPConv that operates on point clouds without any intermedi-

ate representations. The convolutional weights lie in Euclidean space and apply to points

that are close to them. The locations of these kernel points are also learnable through

the network and thus they can learn to adapt to the local geometry of the point cloud.

As a result, this method outperforms state-of-the-art semantic segmentation approaches

in multiple datasets.

In this thesis, we are interested in existing semantic segmentation networks for point

clouds because we want to use automated annotations as training data to learn the

semantic information from a point cloud. To satisfy our need, we make the design choice

to build our network based on the existing semantic segmentation network, KPConv [54].

We further elaborate on our implementation details in Chapter 3.

2.3.2 Dynamic Object Detection

Compared to semantic segmentation, dynamic object detection focuses on detecting only

dynamic points in a point cloud. In this section, we describe the existing literature.

Recent literature detects dynamic points by exploiting temporal information from

a window of LiDAR scans. Yoon et al. [63] propose a model-free approach for online

detection of dynamic points in a point cloud. The method explicitly compensates for

Chapter 2. Background 25

motion distortion and compares the latest LiDAR scan to a reference scan for detection.

However, the fallback of this method is that it captures only currently moving objects

as opposed to all the movable objects. A good example is a parked vehicle, which has

the ability to move to another location yet does not move at the capture time. Including

points from a movable object in mapping and localization can affect the scan matching

performance because these points are not consistently observed.

In contrast, Dewan et al. [17] identify points into three categories: non-movable,

movable, and dynamic, and introduce Fast-Net to learn a pointwise objectness score,

where a high score corresponds to the moving class. Coupled with a dynamicity score

computed using odometry estimates, the method uses a Bayes filter framework for esti-

mating the pointwise semantic classification. Although this method takes into account

movable points, the network training requires hand-labelled groundtruth. Our approach

avoids this expensive operation via an automated annotation pipeline. Furthermore, our

semantic segmentation network makes predictions using the latest LiDAR scan yet this

method relies on accurate pose estimates between consecutive frames to compute the

dynamicity score.

2.3.3 Semantic SLAM

Motivated by the advances of deep learning in scene understanding, there have been

many semantic SLAM techniques that exploit semantic information in order to improve

SLAM performance.

Dubé et al. [20] introduces SegMap which is based on extracting segments from point

clouds to form data-driven descriptors. The method learns a simple fully connected net-

work to extract semantic information from descriptors. Using the semantic information,

it performs LiDAR localization only against static objects to add robustness against any

dynamic changes. In contrast, our approach not only learns semantic information directly

from the unordered sets of point clouds as opposed to voxel grid representation but also

replaces hand-labelling with an automated annotation pipeline.

In Suma++, Chen et al. [12] improve over SegMap by integrating semantic informa-

tion provided by a semantic segmentation network into a surfel-based Mapping pipeline

Chapter 2. Background 26

[7]. This method focuses on generating a rich semantic map with an abundance of se-

mantic classes. To improve both mapping and odometry accuracy, it filters out points

that belong to a movable class, such as moving vehicles and pedestrians. Despite perfor-

mance improvement, Suma++ still fails to address the expensive operation to retrieve

hand-labelled groundtruth for semantic segmentation.

Eventually, we emphasize that the foundation of our approach is the self-supervised

segmentation pipeline developed by Thomas et al. [53]. Thomas proposes an automated

annotation pipeline for LiDAR point clouds using pose estimates from a multi-session

SLAM solution. A point cloud segmentation network is then trained to predict semantic

labels using annotations as the groundtruth labels. The method obtains annotations

without any hand-labelling and shows its performance improvement from session to ses-

sion. Despite great benefits in this work, this method is only evaluated in an unchanged

simple indoor environment with limited complexities for scene understanding. In this

thesis, we improve over the existing pipeline and further extend it to a large-scale envi-

ronment. Following Chapter 3, we elaborate on our proposed pipeline.

2.4 Summary

In this chapter, we introduced the background and existing literature related to our thesis.

We provide in-depth descriptions of existing works on LiDAR mapping and localization

along with scene understanding. Finally, we looked at existing semantic SLAM methods

that incorporate semantic information to achieve improvements in mapping and odometry

accuracy.

Chapter 3

Methodology

This chapter introduces our self-supervised semantic learning pipeline for large-scale

scenes and describes the methodology of each component. Our proposed pipeline can

be summarized into two steps each comprising multiple components. Step one is to an-

notate LiDAR scans using an automated approach and step two is to use annotations

from step one to train a semantic segmentation network.

From now on, we explicitly define a session to be a traversal through an environment.

In a mapping and localization setting, it usually involves multiple sessions in the same

environment.

In the following sections, we begin by presenting a mapping and localization pipeline

that produces a globally consistent map along with associated localization trajectories.

We then apply ray-tracing on the map using all localization scans to compute point-level

moving probabilities. Next, we map point-level moving probability to a heuristically

determined annotation and finally learn a semantic segmentation network from the an-

notations.

We explicitly state that our proposed pipeline builds on the work by Thomas et al. [53]

for autonomous indoor navigation. We extend the approach to large-scale environments,

especially autonomous driving scenarios. The main extensions of our approach are

• utilizing a robust LiDAR-only mapping and localization solution provided by Ap-

planix Corporation for large-scale autonomous driving scenarios as opposed to stan-

27

Chapter 3. Methodology 28

dard ICP-based alignment

• correcting motion distortion for LiDAR point clouds when aggregating scans to

map

• designing a voting strategy to extract ground points for large-scale point cloud map

• accounting for move-and-stop nature of on-road vehicles at traffic intersections

• labelling long-term movable points without carefully crafted geometric constraints

3.1 Pipeline Overview

In this section, we define components in our self-supervised semantic learning pipeline

for large-scale scenes. A pipeline diagram is shown in Figure 3.1.

Our pipeline requires a classic mapping and localization setup, in which a vehicle

traverses through an environment, collecting multiple sessions of data. Usually, one

session is used for mapping and other sessions are used for localization. Following we

provide a short summary of every block and operation in the pipeline shown in Figure

3.1.

1. Mapping/Localization scans : Scans from a mapping/localization session.

2. Mapping : Align scans from a mapping session to produce a globally consistent map.

3. Localization: Localize scans from a localization session against map built from a

mapping session.

4. Mapping/Localization trajectory : Estimated vehicle trajectory for a mapping/localization

session.

5. M(m)/M(l): Aggregated point cloud map for a mapping/localization session.

6. PointRay : A ray-tracing technique that uses mapping and localization scans with

both M(m) and M(l). We provide more details in Chapter 3.3.1.

Chapter 3. Methodology 29

Mapping

Localization

PointRay

PointRay

Annotate

Transfer
Annotations

1

1

2

3

4&5

4&5

6

6

7

7

8

9

10
11

Mapping
scans

Localization
scans

Mapping
Trajectory

+ map M(m)

Localization
Trajectory

+ map M(l)

Moving probability
for map M(m)

Moving probability
for map M(l)

Annotated M(l)

Annotated
localization scans

Figure 3.1: Self-supervised semantic learning pipeline for large-scale scene

7. Moving probability : Probability that a point belongs to a moving object.

8. Annotate: Assign a semantic label to point in a point cloud map.

9. Annotated map: A point cloud map in which every point is assigned a semantic

label.

10. Transfer annotations : Transfer point labels from a point cloud map to points in

associated scans.

11. Annotated scans : Scans in which every point is assigned a semantic label.

3.2 Mapping and Localization

In Chapter 2, we introduced existing LiDAR mapping and localization methods. While

some existing literature focuses on localization within a pre-generated high-definition

map obtained through a third-party provider, our proposed pipeline obtains a globally

consistent map directly from LiDAR scans. Since an accurate mapping and localization

Chapter 3. Methodology 30

solution is an important factor in our pipeline, we make our design choice to use an ex-

isting LiDAR-only mapping and localization solution provided by Applanix Corporation.

Given multiple data sessions in an unknown environment, we follow the convention to

use one session as a mapping session and the rest as localization sessions.

3.2.1 Applanix Mapping and Localization Solution

The goal of mapping is to create a globally consistent map for an environment that

would later be used for localization. This becomes really challenging for large-scale

environments, especially self-driving scenarios that comprise many dynamic elements.

To our knowledge, Applanix Corporation has been a top contender in the industry field

to provide a robust mapping and localization solution, which perfectly suits our needs.

Here we elaborate our mapping and localization pipeline provided by Applanix even

though we cannot provide algorithm details due to the non-disclosure agreement. We

define point cloud P
(m)
k captured in LiDAR base frame F−→b

at timestamp t
(m)
k , where a

superscript m represents a quantity from the mapping session. Using a time series of

N point cloud input, P
(m)
1 , P

(m)
2 , ..., P

(m)
N , the mapping pipeline estimates poses T(m) =

{T(m)
1 ,T

(m)
2 , ...,T

(m)
N }, in which each entry T

(m)
k represents pose of F−→b

at time t
(m)
k with

respect to the inertial frame F−→i
. We emphasize that in our thesis the inertial frame F−→i

is designed to coincide with the initial F−→b
at time t

(m)
1 . In addition to the estimated

poses T(m), the mapping pipeline produces a globally consistent map M(m) which we

would use to localize our robot.

The goal of localization is to localize the current scans to a globally consistent map we

obtain from the mapping session. Again, we rely on Applanix Corporation’s mapping and

localization solution to provide accurate localization outputs for our multiple localization

sessions.

We demonstrate the localization pipeline to localize scans from one session against

map M(m). We repeat this process to retrieve pose estimates for multiple localiza-

tion sessions. We define point cloud P
(lj)
k captured in LiDAR base frame F−→b

at times-

tamp t
(lj)
k , where a superscript lj represents a quantity from the jth localization session.

We abuse the notation and assume N point cloud input from the localization session,

Chapter 3. Methodology 31

P
(lj)
1 , P

(lj)
2 , ..., P

(lj)
N . Provided the map M(m) from mapping session, the localization es-

timates poses T(lj) = {T(lj)
1 ,T

(lj)
2 , ...,T

(lj)
N }, pose of F−→b

at time t
(lj)
k with respect to the

inertial frame F−→i
in map M(m).

Using the described mapping and localization pipeline provided by Applanix Cor-

poration, we are able to retrieve a globally consistent map M(m) along with accurate

pose estimates T(m) and T(l) for both mapping and localization sessions. We remove

the subscript j from T(lj) so that T(l) represents a collection of pose estimates for mul-

tiple localization sessions. To use M(m) in our annotation pipeline, we require M(m)

to retain a fine resolution. However, M(m) is significantly down-sampled in the map-

ping and localization pipeline to satisfy the computation requirement, and thus can no

longer be used. Therefore, we choose to re-generate M(m) by aggregating LiDAR scans

P (m) = {P (m)
1 , P

(m)
2 , ..., P

(m)
N }, followed by a grid down-sampling operation.

Prior to aggregating LiDAR scans, we need to correct the motion distortion. Previ-

ously, we have defined point cloud P
(m)
k to be the kth scan captured at time t

(m)
k . We fur-

ther let point i in P
(m)
k where its pointwise timestamp is bounded by t

(m)
k <= t

(m)
ki

< t
(m)
k+1,

as illustrated in Figure 3.2. The goal of motion compensation is to retrieve pose esti-

mates T
(m)
ki

, which can be used to transform point i to F−→b
at time tk for each LiDAR

scan. The resulting scan at time tk is motion-compensated and we define it to be P̄
(m)
k .

We explicitly state that motion-compensated scans P̄
(m)
k can be obtained from Applanix

mapping and localization solution.

There are other alternatives to do mapping and localization other than the solution

provided by Applanix. We did not employ PointMap from Thomas et al. [53] to address

this due to its limitation in large-scale scenes. Compared to [53], the mapping and

localization solution from Applanix Corporation takes into account motion compensation,

works more robustly towards outliers, and provides high computational efficiency.

3.2.2 Map Aggregation

To aggregate motion compensated scans to a globally consistent mapM(m), we transform

LiDAR scans P̄ (m) = {P̄ (m)
1 , P̄

(m)
2 , ..., P̄

(m)
N } to the inertial frame F−→i

, followed by a grid

Chapter 3. Methodology 32

Time

Point Index

tk tk+1tki

Figure 3.2: Pointwise timestamp information for all points in Pk spanning from tk to tk+1

down-subsampling operation, denoted as g(·),

M(m) = g(
N∑
k=0

T
(m)
k P̄

(m)
k) (3.1)

For grid down-sampling, we use the first added point in a grid cell to represent a grid

instead of using the barycenter. We explicitly choose this strategy to avoid drift in space

when more LiDAR scans are added to the map. To retain a fine resolution for our

automated annotation pipeline, we heuristically choose a grid size of 0.3 m. This grid

size keeps the map compact while not losing much detail. Eventually, we obtain a list

of voxels after grid down-sampling and there is exactly one point residing in each voxel.

Figure 3.3(a) shows an example of a grid down-sampled map. When we take a closer

look at the map in Figure 3.3(b), we can easily observe the fine details and ignore the

usual artifacts coming from a grid representation.

Using the exact map aggregation method, we also aggregate LiDAR scans from each

localization session in order to produce M(lj). The benefit of using pose estimates after

localizing against a globally consistent map M(m) is that we can now easily overlay

M(lj) on top of M(m) without worrying about any misalignment issue. To simplify

our notation, we use M(l) to represent a collection of point cloud maps M(lj) for all

localization sessions.

Finally, we conclude our mapping and localization pipeline by mentioning that it

not only provides us with accurate pose estimates T(m) and T(l), but also allows us to

retrieve aggregated and grid down-sampled maps M(m) and M(l). More importantly, it

empowers our annotation pipeline which we introduce in the next section.

Chapter 3. Methodology 33

(a) Grid down-sampled map (b) Sub-region in grid down-sampled map

Figure 3.3: (a) After map aggregation, we apply grid down-sampling to retrieve a grid
representation of our point cloud map. A grid size of 0.3 m allows us to keep the map
compact while not losing many details. (b) When we zoom into the grid down-sampled
map, we can observe traces of the vehicles and clear contours of the buildings.

3.3 Annotation Pipeline

We build our annotation pipeline on the foundation of Thomas et al. [53] to annotate

LiDAR scans from localization sessions with four semantic classes: ground, non-movable,

long-term movable, and short-term movable. We choose these semantic classes to rep-

resent dynamics of the points. As the name suggests, ground refers to points belonging

to the ground. In a large-scale self-driving environment, ground points tend to have a

lower elevation than the rest of the point cloud and can be easily retrieved. Non-movable

includes points in a point cloud that do not have the capability of moving around. Per-

manent structures such as buildings belong to this category. Scan-to-scan odometry and

scan-to-map alignment intuitively achieve better accuracy if there is an abundance of per-

manent structures in the current scan. Another category is long-term movable. Points

belonging to this category do not move in the current session but can be relocated in

another session. For example, a vehicle may park at one location in the mapping session,

but at a different location in a localization session. The existence of these points affects

the localization performance because they are not consistently observed in the map. The

last class is the short-term movable that refers to points that are currently moving in the

session. For a large-scale self-driving environment, most of these points belong to the

on-road vehicles and pedestrians on the sidewalk.

Chapter 3. Methodology 34

In this section, we use pose estimates T(m) and T(l) along with map M(m) and M(l)

from the mapping and localization pipeline to automate the annotation pipeline. We em-

phasize that our goal is to annotate LiDAR scans from all localization sessions. We begin

with introducing PointRay as a ray-tracing strategy [53] to compute moving probability

for points in a map. Next, we utilize the moving probability to annotate the map and

transfer the annotations to LiDAR scans. Finally, we use automated annotations to train

a semantic segmentation network for scene understanding offline. To extend the original

idea [53] to large-scale autonomous driving scenarios, we employ a voting strategy to ex-

tract ground points for large-scale point cloud maps and account for the move-and-stop

nature of on-road vehicles at traffic intersections. Furthermore, our labelling of long-term

movable points does not require carefully crafted geometric constraints compared to the

original approach.

3.3.1 PointRay

Recall that a laser beam in a LiDAR sensor sends out pulsed light waves and returns

when it hits an obstacle. This is the foundation of ray-tracing. We use ray-tracing to

identify occupied and unoccupied space in a point cloud map in order to further compute

the moving probability. In this section, we provide more details about PointRay from

Thomas et al. [53] and how we utilize it to address our problem.

We begin by introducing the notion of freespace, which is the path that a laser ray

travels. Next, we describe the frustum grid we use to encode the freespace. Then we

define the moving probability for points in a point cloud, and eventually, combine the

knowledge to present our complete approach to compute and update moving probability.

3.3.1.1 Free Space

The paths that laser beams emit pulsed light waves define freespace. This aspect of

LiDAR data is often ignored as most robotics applications focus on processing endpoints,

i.e., point cloud data. However, freespace also provides us with useful information.

For better demonstration, Figure 3.4 shows an example of a 2D LiDAR sensor emitting

Chapter 3. Methodology 35

Figure 3.4: Top view of a 2D LiDAR sensor (bottom middle) emitting light waves and
receiving returns when hit on obstacles. The dots (black) represent point returns whereas
the dashed lines (black) stand for the paths light rays travel. In a grid representation of
this scan, gray grids represent the freespace.

light waves and receiving point returns. The dashed lines indicate light rays from the

LiDAR. If we choose to divide the scan into grids as how we apply grid down-sampling

in Chapter 3.2, the grids in gray represent the freespace of this scan.

Freespace allows us to learn more about the unoccupied space in the environment.

When a light ray travels and defines the freespace, it tells us that its freespace is less

likely to contain any permanent structures, e.g., buildings. Because otherwise, the light

ray is unable to go through. In other words, if a point is found in the freespace of

another point, the former point more likely belongs to a moving object. We further use

this knowledge about freespace to help us define moving probability. From now on, we

define the freespace of a scan to be the joint freespace of all points from this scan.

3.3.1.2 Frustum Grid

Prior to defining moving probability for our automated annotation pipeline, we describe

our method to encode freespace for a LiDAR scan.

We employ the common method to discretize the world using spherical coordinates

into frustum grids, also known as 2D grids along θ and φ dimension. Each pixel in

the frustum grid stores the minimum point distance to the origin of LiDAR base frame

Chapter 3. Methodology 36

F−→b
. Figure 3.5 shows an example of a frustum grid representation in a self-driving

environment. We can easily observe that this representation resembles a LiDAR range

image in Figure 2.2(b). However, rather than keeping its row dimension as the number

of available laser beams, frustum grids determine it to be parametric to the vertical

resolution dφ.

Figure 3.5: Frustum grid representation of freespace for a 3D point cloud. Each pixel
contains the minimum point distance to the sensor origin from a spherical angle. Points
further away are coloured in yellow and points closer are coloured in blue.

The resolution of a frustum grid representation is defined by the parameter dθ and

dφ. We use dθ = 1.2◦ and dφ = 0.1◦ in our thesis to encode freespace. Therefore, our

frustum grid representation has 360◦

1.2◦
= 300 columns.

Furthermore, we emphasize that one of the benefits of using a frustum grid represen-

tation is its efficient spatial query, which is an O(1) operation. To check if a point belongs

to the freespace, we convert the point into frustum grid representation and compare its

range value to the one stored in the corresponding frustum grid cell. The point belongs

to the freespace if it has a smaller range value.

3.3.1.3 Moving Probability

Moving probability refers to the probability that a point belongs to a moving object. It

is an important measure in our annotation pipeline because we carefully design heuris-

tics around it to annotate LiDAR scans. In our pipeline, we employ PointRay in [53]

to compute moving probability for points in the aforementioned M(m) and M(l) using

associated motion-compensated scans P̄ (m) and P̄ (l) and pose estimates T(m) and T(l).

PointRay consumes a sequence of LiDAR scans and associated poses to compute

Chapter 3. Methodology 37

moving probability for all the points in an arbitrary map M. We carefully identify

quantities to describe PointRay,

1. xi: a point in map M.

2. P̄k: a motion compensated scan at time tk that PointRay consumes to apply ray-

tracing on map M.

3. Tk: pose estimate of scan P̄k at time tk with respect to the inertial frame in map

M.

4. ni: number of times xi is observed in any LiDAR scans.

5. mi: number of times xi is observed in the freespace of any LiDAR scans.

From now on, we use mathematical notations to further describe PointRay. For every

point xi inM, PointRay assigns ni and mi to help quantify how frequently xi is observed

in the freespace of any scan. While ni counts the number of times a point is observed

in any scans, mi counts the number of times a point is observed in the freespace of any

scans. To begin PointRay, we initialize ni and mi to be all zeros.

Next, for every scan P̄k, we encode its freespace and update ni and mi for point xi by

checking whether xi belongs to the freespace of P̄k. For any point P̄ki in point cloud P̄k,

we obtain its occupied voxel in our grid down-sampled mapM using Tk and the known

grid resolution of 0.3 m

vox(P̄ki) =
TkP̄ki

0.3
∈ Z3 (3.2)

where Z3 represents the voxel grid coordinate system.

Then, we assume vox(P̄ki) happens to be the ith voxel in mapM in which xi resides.

This means P̄ki in scan P̄k shares the same voxel as xi in map M after scan-to-map

alignment using Tk. We repeat this process for all points in scan P̄k to retrieve a list of

voxels in map M.

For all xi residing in the list of voxels in the map M, we increment ni by 1. This

incremental procedure ensures that we accurately count the number of times a point xi is

Chapter 3. Methodology 38

observed in the occupied space in map M when traversing through all the scans. Next,

we encode the freespace of P̄k into a frustum grid representation Ik to further update ni

and mi. A detailed encoding process is described in Chapter 3.3.1.2. To check whether a

point xi belongs to the freespace of P̄k, map M is also projected into the same frustum

grid. We carefully update ni again by checking the following condition

ni =

ni + 1 if r(xi) <= Ik(θi, φi)

ni if r(xi) > Ik(θi, φi)

. (3.3)

Similarly, we update mi by

mi =

mi + 1 if r(xi) <= Ik(θi, φi)

mi if r(xi) > Ik(θi, φi)

, (3.4)

where r(·) defines the distance of xi to the origin of P̄k. When xi is projected onto the

frustum grid Ik, Ik(θi, φi) refers to the stored minimum point distance along the spherical

direction θi and φi. This incremental policy suggests that whenever xi is in the freespace

of a scan, we increment both ni and mi by 1.

Finally, after we traverse through all the scans and update ni and mi for all xi in map

M, we proceed to compute the moving probability pi for point xi in map M

pi =
mi

ni

, (3.5)

where 0 <= pi <= 1 because mi is strictly smaller than ni following our update policy.

Also, we can easily observe that moving probability pi is the probability that a point xi

is observed in the freespace of any scans.

To further use moving probability for the automated annotation pipeline, we save pi

to the existingM by adding a moving probability entry to each xi in addition to x, y and

z coordinates. Figure 3.6 shows an example moving probability of M(m) after applying

PointRay using scans from the same mapping session. It is easy to notice that points

belonging to vehicle traces (red) tend to receive a much higher moving probability as

Chapter 3. Methodology 39

Figure 3.6: An example of moving probability for a sub-region in map M, where the
colour depicts the probability that a point belongs to a moving object. Points in red
have a high moving probability whereas points in blue have a low probability.

opposed to points belonging to permanent structures (blue). This is because vehicles

are observed moving in the scene, and thus points belonging to vehicle traces frequently

fall into the freespace of LiDAR scans, resulting in a high moving probability. On the

other hand, permanent structures such as buildings do not move and therefore receive a

lower moving probability. To further illustrate our complete process to compute moving

probability, we provide pseudo-code in Algorithm 1 in the Appendix.

3.3.1.4 PointRay Comparison

PointRay computes moving probability for map M using scans from one session. How-

ever, moving probability pi for point i in map M differs when applying PointRay using

scans from another session. This is because different sessions define different freespace,

and thus resulting in different moving probabilities.

To illustrate the difference, we first apply PointRay on map M using scans from

session A, the same session that is used to aggregate and down-sample map M. Then

we apply PointRay again on map M but using scans from session B. Note that these

Chapter 3. Methodology 40

two PointRay operations are completely independent so we end up with two moving

probabilities for map M. In our thesis, we always use mapping session as session A and

localization session as session B.

When applying two independent PointRay operations, Figure 3.7(a) and 3.7(b) show

the difference in moving probability of a sub-region in map M. We can easily observe

that this sub-region contains points from all the four semantic classes we are interested to

annotate. The fundamental difference between the two figures is the moving probability

for parked vehicles. In Figure 3.7(a), points belonging to parked vehicles receive a low

moving probability because these non-moving points from map M can always be found

in the occupied space of session A. However in Figure 3.7(b), points belonging to some

parked vehicles receive a high moving probability (in red). This discrepancy is because

these points from map M do not exist in session B, and thus are often found in the

freespace, resulting in a high moving probability. Again, we emphasize the importance

of freespace as it is fundamental to our capability to compute moving probability. We

further take advantage of this discrepancy in moving probability to distinguish a long-

term movable point from a short-term movable point.

3.3.2 Annotation

Recall that we obtain mapsM(m) andM(l) along with pose estimates T(m) and T(l) from

the mapping and localization pipeline. We showed in the last section that we can use

PointRay to compute the moving probability for any map M given a session of LiDAR

scans. In this section, we describe our proposed pipeline to annotate scans P (l) for all

localization sessions. Our method extends the original approach proposed by Thomas

et al. [53] to large-scale autonomous driving scenarios. We emphasize our contributions

in robustly extracting ground points for large-scale point cloud maps, accounting for the

move-and-stop nature of on-road vehicles at traffic intersections, and labelling long-term

movable points without carefully crafted geometric constraints.

Intuitively, we choose to annotate map M(l) prior to annotating associated LiDAR

scans P (l). We transfer the annotations from map M(l) to the associated scans P (l) via

nearest neighbor interpolation due to the grid down-sampling operation.

Chapter 3. Methodology 41

(a) Moving probability of a sub-region in map M after applying PointRay using scans
from session A.

(b) Moving probability of a sub-region in mapM after applying PointRay using scans
from session B.

Figure 3.7: (a) Points belonging to parked vehicles in the bottom left receive a low
moving probability because these points do not belong to the freespace of scans that
are used to aggregate this map. However, (b) points belonging to some parked vehicles
receive a high moving probability because they do not exist in scans from other sessions,
and thus belong to the freespace.

Chapter 3. Methodology 42

3.3.2.1 Ground Points Extraction

Recall that we are interested in identifying points that belong to the ground. However,

these points are difficult to distinguish based on moving probability alone because they

have high moving probabilities like other movable objects in the scene. Therefore, we

follow a similar idea in [53] to explicitly retrieve ground points fromM(lj) without relying

on any other previously computed quantities. However, while Thomas et al. [53] only

need to extract one ground plane from mapM(lj) to annotate an indoor environment, we

cannot simply apply this trick due to the scale of our environment. Instead, we choose

to extract ground points for every scan and identify potential ground points inM(lj) via

a voting strategy.

To extract ground points from a scan, we choose a common approach proposed by

Himmelsbach et al. [24]. We emphasize that it is a fast method to segment scans, and

thus does not add much computation burden to our pipeline. The method first divides

a scan into a number of spherical segments and extracts a line function based on the z

coordinate of points in each segment. A point is identified as part of the ground if it is

close to the line function by a distance heuristic. In our thesis, we use a distance heuristic

of 0.1 m.

Once we extract ground points for every scan, we assign a li to every xi inM(lj) and

initialize it to be a zero. We carefully update li in the same way we update mi for every

xi. Instead of checking whether a point belongs to the freespace of any LiDAR scans,

we increment li by 1 if it is classified as a ground point in any scans. Using this voting

strategy, points classified more often as ground points receive more votes.

Finally, we identify a point xi inM(lj) as a ground point if it has been classified as a

ground point in at least 10 scans, i.e li >= 10.

3.3.2.2 Map Annotation

As mentioned at the start of Chapter 3.3.2, we choose to annotate map M(lj) prior to

transferring the annotations to its associated scans P (lj).

First, we use M(m) as the starting point of our map annotation process. We define

Chapter 3. Methodology 43

P(m,lj) to be the moving probability for M(m) using motion-compensated scans P̄ (lj)

from the jth localization session. We repeat this PointRay operation on map M(m) for

all localization sessions to retrieve P(m,l)

P(m,l) = max
j

(P(m,lj)) (3.6)

where P(m,l) is the maximum moving probability for points in M(m). Due to these

cross-session PointRay operations, all the movable points in M(m) including both long-

term and short-term movable receive a high moving probability, as per the discussion

related to Figure 3.7(a) and Figure 3.7(b). We take advantage of this information and

use a threshold of τrefine = 0.7 to refine M(m) so that it is left with only ground and

non-movable points. Since we already know ground points from our ground extraction

algorithm, we can easily separate ground from non-movable points. We further denote

the refined M(m) to be M(m)
refine.

In the next step, we move our focus to retrieve short-term movable points in M(lj).

Similarly, we utilize PointRay on mapM(lj) using scans P̄ (lj) from the same localization

session to retrieve P(lj ,lj). In contrast to the earlier cross-session operation, this provides

high moving probability only for most short-term movable points, but not the long-term

movable points. Therefore, we use a threshold τshort = 0.5 to identify these short-term

movable points. However, not all short-term movable points can be identified through

this approach due to the move-and-stop nature of the on-road vehicles. In a large-scale

self-driving environment, some vehicles move and stop at intersections and this behaviour

causes points belonging to these vehicles to have a lower moving probability compared

to points belonging to a constantly moving vehicle. In our thesis, we choose to annotate

points belonging to these vehicles as short-term movable even though they may not move

constantly. These points are not easily identified by applying a threshold τshort = 0.5 to

P(lj ,lj), and thus it requires us to compute P(m,m) to help resolve this issue. We emphasize

that we only need to compute P(m,m) once and can re-use it to annotate the map for

every localization session. We take advantage of P(m,m) to retrieve prior information

about short-term movable points in map M(lj) by overlaying M(lj) on top of M(m).

Chapter 3. Methodology 44

Step Target Class Strategy

1 Non-movable
Moving probability lower than τshort

or distance to M(m)
refine less than 0.2 m

2 Long-term movable
Moving probability lower than τshort

and distance to M(m)
refine greater than 0.2 m

3 Short-term movable
Moving probability greater than τshort

or its nearest neighbor in M(m) has a
moving probability greater than τshort

4 Ground li greater than 10

Table 3.1: Steps to annotate point cloud map M(lj). We use the computed moving
probability and ground extraction results to annotate map M(lj) so that every point
belongs to one of the semantic classes: ground, non-movable, long-term movable and
short-term movable.

We classify a point in M(lj) to be a short-term movable point if distance to its nearest

neighbor inM(m) is less than 0.2 m and its nearest neighbor also has a moving probability

greater than τshort = 0.5.

Moving forward, we proceed to annotate the non-movable and long-term movable

points in M(lj). Thanks to M(m)
refine, we can compare M(lj) to it and identify the non-

movable points inM(lj) based on a distance metric. We heuristically choose dnon-movable =

0.2 m so that any points in M(lj) that are within dnon-movable to M(m)
refine are classified

as non-movable points. To retrieve long-term movable points in M(lj), we extend the

original approach [53] to accommodate our large-scale autonomous driving scenarios.

The original approach relies on surface normal directions to identify long-term movable

points in an indoor scenario, which mostly have flat surfaces such as tables and chairs.

In contrast, our approach does not require any carefully crafted geometric constraints.

We carefully identify points in M(lj) that do not have a high moving probability but

are at least dnon-movable away from any points in M(m)
refine as long-term movable points. In

Table 3.1, we list out our annotation operations in strict order to annotate M(lj). We

emphasize that if a point receives multiple annotations during these operations, we use

its last annotation as the final annotation.

Also, an intermediate annotation M(m) is crucial to lift our computation burden.

Instead of applying PointRay onM(lj) using scans from all the other localization sessions,

Chapter 3. Methodology 45

we condense the joint freespace information into P(m,l) to produce M(m)
refine and reuse it

to annotate every M(lj).

3.3.2.3 Scan Annotation

After annotating map M(lj) for every localization session, we transfer annotations in

M(lj) to the associated motion compensated scans P̄ (lj). Because we applied grid down-

sampling onM(lj), points from scan P̄ (lj) may not find a point xi inM(lj) that it perfectly

coincides with. Therefore, we assign every point in scan P̄ (lj) with the annotation of

its nearest neighbor in M(lj). We accomplish this nearest neighbor search by taking

advantage of a KD-tree.

Finally, given the annotations to P̄ (lj), it becomes trivial to transfer annotations from

motion-compensated scans P̄ (lj) to motion distorted scans P (lj) due to the identical point

order. We hereby complete scan annotations for all the localization sessions using our

automated annotation pipeline.

3.4 Semantic Segmentation

Our proposed pipeline aims to learn the semantic information from a point cloud in a

self-supervised manner. After we retrieve automated annotations through PointRay in

the last section, we use these annotations as groundtruth labels for training our semantic

segmentation network.

We employ the most recent 3D point cloud semantic segmentation network KPConv

[54], as it has shown state-of-the-art performance in completing semantic segmentation

tasks in a large-scale environment. Also, its open-source implementation in PyTorch on

GitHub allows us to freely make changes to the original code. However, we emphasize

that our semantic segmentation network can be replaced with any existing segmentation

network implementations.

Because KPConv has demonstrated its semantic segmentation performance in the Se-

manticKitti dataset, we use mostly the same parameters as the original KPConv imple-

mentation. Figure 3.8 shows our proposed semantic segmentation network architecture

Chapter 3. Methodology 46

3
1

input

3
64

conv1

3

128

conv2

3

256

conv3

3

512

conv4

3

1024

conv5

deconv1

deconv2

deconv3

deconv4 output

Figure 3.8: Our semantic segmentation network based on KPConv [54]. For simulation
dataset, we use point cloud x, y and z coordinates as input whereas we add the intensity
channel for the real-world dataset. We use KPConv (yellow) to convolve points with 3D
kernels and Strided KPConv (purple) to effective reduce the number of points by half.
Skip connections allow information to flow between encoder and decoder layers at the
same resolution. Nearest up-samping and concatenation (green) deconvolute the learned
decoder representations and output a class label for every point in point cloud.

based on KPConv. Following we describe details about how KPConv works and our

design choice of crucial parameters.

KPConv applies direct point convolution through spherical kernels. Each local neigh-

bourhood in the point cloud is convolved by applying the weights of the nearest distance

kernel point in the neighbourhood. By default, these kernel points have a uniform dis-

tribution in Euclidean space. However, KPConv also offers a deformable operator that

learns the kernel point positions in the network, which allows the kernel points to adapt

to the topology of the local neighbourhood. For our segmentation network, we simply

choose to use the default kernel points.

We have four crucial parameters to set for our network training and inference: first

down-sampling grid size dlin, convolution radius Rin, first feature dimension fin and class

weight w. We use dlin and Rin to determine the size of our receptive field. We choose

the value dlin = 0.2 and Rin = 2.5 m to cover a non-trivial local region of our LiDAR

scan while learning enough details about the surrounding 3D geometry to make accurate

predictions. To fit more scans into a single batch, we choose fin = 64 instead of default 128

to reduce feature dimensions while not sacrificing network prediction accuracy. Another

important parameter is the class weight w. It is a manual scaling weight given to each

class during training. We determine w based on the distribution of classes in our LiDAR

Chapter 3. Methodology 47

scans. In our large-scale self-driving environment, we tend to have more non-movable

and ground points than long-term and short-term movable points. Therefore, we choose

a class weight w = [0.1, 0.2, 0.5, 0.5] for ground, non-movable, long-term movable and

short-term movable points. The network gets penalized more when making an incorrect

prediction to points belonging to long-term and short-term movable compared to ground

and non-movable.

During inference, our network takes the latest LiDAR scan input and predicts a

semantic label for every point in the scan. In Chapter 4, we further introduce measures

to evaluate our network performance and make qualitative and quantitative analyses on

our network prediction accuracy.

3.5 Summary

In this chapter, we showed our self-supervised semantic segmentation pipeline for a large-

scale self-driving environment. Mapping and localization pipeline provides accurate pose

estimates for LiDAR scans within a globally consistent map. Automated annotation

pipeline assigns four semantic labels to annotate LiDAR scans thanks to the power of

PointRay. Finally, our semantic segmentation network takes advantage of automated

annotations and learns the LiDAR segmentation for a large-scale self-driving environ-

ment. We explicitly highlight our contributions in robustly extracting ground points for

large-scale point cloud maps, accounting for the move-and-stop nature of on-road vehicles

at traffic intersections, and labelling long-term movable points without carefully crafted

geometric constraints.

Chapter 4

Datasets

In this chapter, we present the LiDAR datasets we have collected to evaluate our self-

supervised semantic learning pipeline. We begin by describing the simulation dataset

collected using the Carla simulator, an open-source software for autonomous driving

development and validation. We provide details about the modifications and hyperpa-

rameters employed in generating simulated LiDAR scans. The benefit of validating our

algorithm using the Carla simulator is that we can obtain groundtruth semantic labels to

quantitatively evaluate our algorithm. Furthermore, to evaluate how well our algorithm

works in the real world, we describe the LiDAR dataset collected using a Velodyne VLS-

128 LiDAR sensor. However, we point out that the real-world dataset does not have

groundtruth semantic labels.

4.1 Simulation Dataset

To quantitatively evaluate our pipeline, we collect the LiDAR dataset using the Carla

simulator [19]. In this section, we elaborate on the modifications and hyperparameters

we choose for the simulation environment.

48

Chapter 4. Datasets 49

4.1.1 Simulator

Carla simulator is a software built from the ground up to support the development,

training and validation of the autonomous driving system. In addition to the open-

source code, Carla provides open digital assets, e.g. vehicles, buildings, to facilitate that

purpose. As it is built using the Unreal Engine, the Carla simulator supports flexible

specification of the sensor suites, environmental conditions, full control of static and

dynamic elements in the map and much more. These factors grant us the capability to

customize our own assets to facilitate our autonomous driving research.

Although Carla simulator provides a simulation platform to conduct our research,

it is released for general purpose use and has certain limitations that require custom

modifications.

Even though Carla simulator provides various generic vehicle models to simulate real-

world driving scenarios, most existing vehicle models in Carla are sedan cars such as Tesla

Model 3. This limits us from simulating LiDAR scans that suffer from greater occlusions

because we are also interested in evaluating our network prediction accuracy with the only

partial observation of the objects. To overcome this limitation, we customize some truck

models in Blender [16] and import our custom truck models into the Carla simulator.

The truck models not only have greater dimensions compared to sedan cars but also

enrich the variety of vehicle models in the simulation environment.

Another issue with the Carla simulator is that it is difficult to simulate dynamic ob-

jects across different sessions. Carla simulator provides static maps in which elements do

not change their locations as they should in a real-world environment. For example, the

trash on the ground in the Carla simulator stays at the same location when we collect a

new session of data. In reality, they should change their locations across sessions because

they are considered as dynamics. This uncommon behaviour would result in our pipeline

mistakenly identifying points from the trash as non-movable points as opposed to long-

term movable points. To overcome this issue, we first remove all the dynamic objects

from the Carla simulator, then manually record potential locations for the dynamic ob-

jects, and finally re-generate the dynamic objects by adding some noise to the recorded

Chapter 4. Datasets 50

locations. Using this approach, we are able to reliably generate dynamic objects in our

simulation environment.

The last issue with the Carla simulator is its traffic manager, which Carla uses to

efficiently manage simulated traffic to mimic a real-world environment. When a vehicle

is at an intersection, the traffic manager randomly assigns a direction for the vehicle to

turn. When our vehicle is under the control of the traffic manager, it freely explores the

map. However, because the map is a large and complex environment, freely navigating

inside the map would take forever for our vehicle to fully explore the map. To resolve

this issue, we assign waypoints to our vehicle and use the Behavioral agent in Carla to

navigate from one waypoint to another. To avoid the vehicle from repeating exactly the

same route in different sessions, we add random noise to the waypoint locations.

Recall that LiDAR laser beams emit pulsed light waves and return when hit an

obstacle. The returned intensity information can also be used to improve the scene un-

derstanding of the environment, and it depends on many factors, including the physical

properties of the obstacle. Although the Carla simulator is powerful in simulating the

traffic in an environment, it does not have the capability of simulating the LiDAR inten-

sity information. In addition to that, the LiDAR sensor is treated as a global shutter as

opposed to a rolling shutter in the Carla simulator. Therefore, LiDAR scans from the

Carla simulator do not require motion compensation.

The simulated LiDAR from the Carla simulator collects scans at a rate of 10 Hz. It

resembles a Velodyne HDL-64 with 64 laser beams and a vertical field of view of 30◦

ranging from 5◦ to −25◦ from the horizontal level. The LiDAR collects 12,000 points

in each scan with an added Gaussian noise on the endpoint positions using a standard

deviation of 0.1 m.

Using the Carla simulator, we collect datasets in three different maps: Town 00,

Town 01 and Town 02. Table 4.1 provides a summary of characteristics for each map.

We explicitly collect datasets in three different maps because we want to enable our

pipeline to generalize to complex large-scale environments as opposed to an unchanged

environment in [53].

Furthermore, we generate different levels of traffic in each session. We define three

Chapter 4. Datasets 51

Town Summary

Town 00
Figure-8 infinite loop with a highway and a small town;

A bridge and a tunnel at the cross junction.

Town 01
Squared-grid highway encircling a small town;
Fence on both sides of the road for sidewalks;

Multiple lanes easy for any lane changes.

Town 02
Small town including buildings, residential houses, a parking lot,

recreational parks, outdoor patios, sidewalks etc;
Multiple lanes easy for any lane changes.

Table 4.1: A summary for three different maps in our simulation dataset. Each map
consists of various elements and has completely different layouts.

Traffic Level No. Vehicles No. Pedestrians
Light 50 100

Medium 100 100
Extreme 200 400

Table 4.2: Number of vehicles and pedestrians used for each traffic level. Depending on
the desired traffic level, we generate different number of vehicles and pedestrians. Unlike
parked vehicles, these vehicles and pedestrians constantly move in the map.

(a) Light traffic (b) Medium traffic (c) Extreme traffic

Figure 4.1: Simulated traffic in Carla simulator with different traffic levels: light, medium
and extreme. Different traffic levels simulate different numbers of moving vehicles and
pedestrians around our vehicle.

Chapter 4. Datasets 52

different traffic levels: light, medium and extreme, and we generate a different number

of moving vehicles and pedestrians around our vehicle in different traffic levels. Figure

4.1(a), Figure 4.1(b) and Figure 4.1(c) show an example of simulated traffic in the Carla

simulator with different traffic levels. For each map, we collect one session with light

traffic and use it as the mapping session. We collect three other sessions with light traffic,

three sessions with medium traffic and two sessions with extreme traffic as localization

sessions. Our vehicle drives approximately 4 km in each session, collecting 6,000 to 12,000

LiDAR scans depending on different traffic levels.

4.2 Real-World Dataset

To validate our proposed pipeline on real-world data, we use a real-world dataset pri-

marily collected by Burnett et al. [10] with a data-taking platform Boreas, as shown in

Figure 4.2, from Autonomous Space Robotics Laboratory (ASRL).

Figure 4.2: Our data-taking platform Boreas from ASRL. It includes a Velodyne VLS-
128 LiDAR sensor and an Applanix POS-LV inertial navigation system.

Chapter 4. Datasets 53

The onboard sensor suite includes a Velodyne VLS-128 LiDAR sensor and an Applanix

POS-LV inertial navigation system. The LiDAR sensor is time synchronized with the

Applanix POS-LV to obtain accurate timing information. Applanix POS-LV inertial

navigation system includes an inertial measurement unit (IMU), two global positioning

system (GPS) antennas and a wheel encoder. We specifically acquire two GPS antennas

to obtain a more accurate baseline and better RTX performance.

Figure 4.3: Our data collection route using Boreas from ASRL. The route starts from
UTIAS, turns right onto Dufferin Street, North York, Ontario, and turns left into a local
residential neighbourhood. The vehicle takes a detour and returns to its start position.

We operate Boreas and log LiDAR data at a rate of 10 Hz by repeatedly driving

along a designated route on different days to satisfy the requirements from a mapping

and localization pipeline. We especially drive on Dufferin Street, North York, Ontario

and in a local residential neighbourhood near the University of Toronto Institute for

Aerospace Studies. Figure 4.3 shows an example of our vehicle trajectory.

To the date this thesis is completed, we have collected more than twenty sessions

on the designated route. In this thesis, we use one session as the mapping session and

Chapter 4. Datasets 54

another five sessions as the localization sessions to generate automated annotations. The

rest of the sessions can be used as unseen data to validate our approach. We further

point out that each session is around 10 km travel, containing nearly 10,000 frames.

4.3 Summary

In this chapter, we present our data collection strategy to evaluate our self-supervised

semantic learning pipeline. To make a quantitative analysis, we collect a simulation

dataset using the Carla simulator. We make modifications to the open-source software

to suit our needs, e.g. greater occlusions with new truck models and customized dynamics

spawning strategy. To validate our pipeline in a real-world environment, we use a real-

world dataset from ASRL. Its onboard sensor suite includes a Velodyne VLS-128 LiDAR

sensor and an Applanix POS-LV inertial navigation system that can be used to retrieve

groundtruth poses. Unfortunately, unlike the Carla simulator, we are unable to retrieve

groundtruth semantic labels from the real-world dataset.

Chapter 5

Experimental Results

In this chapter, we provide a qualitative and quantitative evaluation of the individual

components introduced in Chapter 3. Using the simulation and real-world dataset, we

carefully make an analysis of the results from our semantics-aware localization pipeline.

We begin with introducing our experimental setup followed by the methods to evaluate

each individual component. Then we present our qualitative and quantitative evaluation

on each individual component using the simulation dataset. Next, we show our qualitative

results from the real-world dataset. Finally, we evaluate our semantics-aware localization

pipeline.

5.1 Experimental Setup

Our self-supervised semantic learning pipeline for large-scale scene understanding can

be divided into smaller individual components, including the mapping and localization

pipeline provided by Applanix, the automated annotation pipeline and the semantic

segmentation network. In this section, we describe our experimental setup in using

simulation and real-world datasets to validate our pipeline.

55

Chapter 5. Experimental Results 56

5.1.1 Simulation Dataset

In Chapter 4.1 we collected a simulation dataset using the Carla simulator. The dataset

includes a number of sessions collected in three different maps. For each map, we use our

mapping and localization pipeline to retrieve a globally consistent map and pose estimates

for localization sessions. We use one session with light traffic as the mapping session and

the rest sessions with light and medium traffic as localization sessions. Finally, we obtain

pose estimates for these five localization sessions.

Using the pose estimates from the mapping and localization pipeline, we feed them

into our automated annotation pipeline for scan annotation. For each map, we annotate

scans from five localization sessions, producing a total of approximately 40,000 annotated

scans.

However, we do not use all the annotated scans in our semantic segmentation network

for training. Instead, annotated scans from Town 00, Town 01 and 02 are used for train-

ing, validation, and testing, respectively. This ensures us that these sets are completely

independent of each other.

Finally, to show our improvement to the localization pipeline, we choose to seman-

tically filter out points in point clouds using our network predictions. We only keep

non-movable points in the scan to perform localization. This ensures that only points

invariant to the environment, i.e., non-movable points, are localized against the map. To

demonstrate our semantics-aware localization pipeline, we use Town 02 as our test set.

5.1.2 Real-world Dataset

In Chapter 4.2 we mentioned that a real-world dataset is collected using a Velodyne

VLS-128 LiDAR sensor. Although the dataset has more than twenty sessions, we use

one session as a mapping session and another five sessions as localization sessions for our

mapping and localization pipeline to retrieve accurate pose estimates.

Using these pose estimates, we feed scans into our automated annotation pipeline for

scan annotation. Unlike simulated LiDAR scans from the Carla simulator, these scans

require motion compensation to achieve accurate annotation results. Finally, we retrieve

Chapter 5. Experimental Results 57

approximately 40,000 annotated scans from five localization sessions.

As opposed to the simulation dataset, we use all the annotated scans for training and

validation. For testing, we choose another three independent sessions from the twenty

sessions we have collected. Even though there are no overlapping scans between training,

validation and test sets, these sets are collected in the same environment, and thus

potentially introducing unknown bias to the network prediction.

Finally, to show our improvement to the localization pipeline, we apply our semantics-

aware localization pipeline on testing data.

5.2 Evaluation Methods

We break down our pipeline into the mapping and localization pipeline provided by

Applanix, the automated annotation pipeline and the semantic segmentation network. In

this section, we introduce methods we employ to quantitatively evaluate the performance

of each individual component.

Our mapping and localization pipeline can be sub-divided into two components: the

mapping component and the localization component. While the mapping component

finds the optimal pose estimates to produce a globally consistent map, the localization

component finds the optimal pose estimates to match scans within a globally consistent

map. Here we only evaluate the localization performance by comparing the estimated

poses to the groundtruth provided by Applanix POS-LV. We introduce multiple metrics

to evaluate localization, where (̂·) denotes a quantity from our estimation.

1. Horizontal RMS: Root Mean Square (RMS) error along the x and y horizontal

directions

Horizontal RMS =

√∑N
i=1(xi − x̂i)2 + (yi − ŷi2)

N
(5.1)

2. Horizontal Max: Maximum L2 norm between the estimate and groundtruth trajec-

Chapter 5. Experimental Results 58

tory along the horizontal directions

Horizontal Max = max
i∈N

√
(xi − x̂i)2 + (yi − ŷi2) (5.2)

3. < 0.1 m Pct: Percentage of scans that has horizontal RMS less than 0.1 m

4. < 0.3 m Pct: Percentage of scans that has horizontal RMS less than 0.3 m

5. < 0.6 m Pct: Percentage of scans that has horizontal RMS less than 0.6 m

6. Yaw RMS: RMS error about the yaw direction, i.e., vehicle heading

Yaw RMS =

√∑N
i=1(φi − φ̂i)2

N
(5.3)

7. Yaw Max: Maximum RMS error along the yaw direction

Horizontal Max = max
i∈N

√
(φi − φ̂i)2 (5.4)

8. < 0.1◦ Pct: Percentage of scans that has yaw RMS less than 0.1◦

9. < 0.3◦ Pct: Percentage of scans that has yaw RMS less than 0.3◦

10. < 0.6◦ Pct: Percentage of scans that has yaw RMS less than 0.6◦

To evaluate our annotation pipeline quantitatively, we compare our annotations to the

groundtruth for the simulation dataset. We introduce the confusion matrix to evaluate

this multi-class classification problem. In Table 5.1 we use an example to demonstrate the

confusion matrix by predicting four classes: A, B, C and D. We define true positives (TP)

as correctly predicting a class whereas false positives (FP) as falsely predicting a class.

We also define false negatives (FN) as falsely predicting other classes. We take a closer

look at the prediction for class A especially. Its true positives (TPA) can be quantified

by the number correctly predicting class A. Its false positives (FPA) are numbers falsely

predicting a class A when the actual class are either B, C or D. Similarly, its false

Chapter 5. Experimental Results 59

negatives (FNA) are numbers falsely predicting a class B, C or D when the actual class

is A. In our problem, we are more interested in the true positives, i.e., diagonal elements

in Table 5.1, as they reflect our correct prediction of a class.

Actual Class
Predicted Class

A B C D

A TPA FNA

B
FPA

TPB

C TPC

D TPD

Table 5.1: Confusion matrix for evaluating a 4-class classification problem. The goal
is to correctly predict classes A, B, C and D. While the diagonal elements are the true
positives, the columns and rows comprise false positives and false negatives of a class.
We illustrate this by taking class A as an example.

Since the number of points belonging to a class is different, we normalize the confusion

matrix by rows and make a quantitative analysis on the percentage of correct predictions

for each class. Unfortunately for the real-world dataset, because the groundtruth class

labels do not exist, we cannot build a confusion matrix or make any quantitative analysis

of our annotations.

For the simulation dataset, we evaluate our network prediction accuracy by comparing

our network predictions with the groundtruth. Using exactly the same approach, we build

the confusion matrix to quantitatively evaluate our network predictions. However, for

the real-world dataset, we choose to only present our qualitative result due to the missing

groundtruth.

To evaluate our semantics-aware localization pipeline, we re-use the same evaluation

metrics for the aforementioned mapping and localization pipeline. Finally, we compare

our semantics-aware localization pipeline to the former generic localization pipeline.

5.3 Mapping and Localization Evaluation

In this section, we evaluate our localization pipeline using the metrics we described in

Chapter 5.2. Localization performance is important to our algorithm because it pro-

Chapter 5. Experimental Results 60

vides accurate pose estimates that are the foundation of our automated annotation

pipeline. We avoid an inaccurate or failed localization solution as it would cause our

algorithm to falsely annotate points. We explicitly distinguish this localization solution

from semantics-aware localization as it does not rely on any semantic information.

We evaluate our localization performance quantitatively using both simulation dataset

and real-world dataset. For the simulation dataset, we only use sessions with light and

medium traffic for localization because they usually produce accurate pose estimates.

We then use these pose estimates to help us annotate LiDAR scans. We purposely avoid

sessions with extreme traffic because we tend to find them with poor pose estimates. In

Table 5.2, we evaluate localization by comparing our pose estimates to groundtruth from

the Carla simulator. Also, we average the evaluation metrics in Table 5.2 for similar

sessions.

Town
Traffic
Level

Hori.
RMS

Hori.
Max

< 0.1m
Pct.

< 0.2m
Pct.

< 0.3m
Pct.

Yaw
RMS

Yaw
Max

< 0.1◦

Pct.
< 0.3◦

Pct.
< 0.6◦

Pct.

00
Light 0.094 0.453 82.46 96.77 99.13 0.043 0.377 99.11 99.93 99.98

Medium 0.088 0.374 85.81 97.44 99.76 0.024 0.265 99.64 99.95 99.99

01
Light 0.071 0.347 87.26 98.82 99.89 0.029 0.311 99.68 99.98 100.0

Medium 0.086 0.401 79.45 96.92 99.33 0.030 0.327 99.59 99.97 99.97

02
Light 0.068 0.325 89.16 98.25 99.82 0.020 0.194 99.71 99.98 99.99

Medium 0.074 0.317 88.92 95.36 99.11 0.032 0.331 99.10 99.96 99.98

Table 5.2: Localization evaluation on sessions with light and medium traffic levels. The
evaluation metrics are averaged among sessions with the same traffic level in the same
map.

We can see from Table 5.2 that our mapping and localization pipeline provides ac-

curate pose estimates in both light and medium traffic compared to the groundtruth.

Low horizontal RMS and yaw RMS guarantee us decent scan-to-map alignment when

we apply PointRay in the map annotation process. Our localization performance is

also consistent throughout the entire trajectory as suggested by the high percentage of

pose estimates below error bounds. Furthermore, it shows that our localization pipeline

performs equally well in scenes with different characteristics.

In addition to the simulation dataset, we also evaluate our localization performance

on the real-world dataset using post-processed GPS poses from Applanix LV. Table 5.3

Chapter 5. Experimental Results 61

Session
Hori.
RMS

Hori.
Max

< 0.1m
Pct.

< 0.2m
Pct.

< 0.3m
Pct.

Yaw
RMS

Yaw
Max

< 0.1◦

Pct.
< 0.3◦

Pct.
< 0.6◦

Pct.
1 0.098 0.444 73.09 96.15 99.54 0.054 0.604 99.02 99.82 99.95

2 0.112 0.487 57.81 92.14 98.11 0.051 0.589 99.23 99.91 99.97

3 0.093 0.451 72.48 97.02 99.24 0.047 0.366 99.68 99.93 99.98

4 0.124 0.515 44.91 89.77 96.12 0.081 0.681 98.13 99.13 99.86

5 0.118 0.418 57.82 90.11 97.73 0.067 0.512 99.29 99.27 99.90

Table 5.3: Localization evaluation on real-world datasets.

presents our localization performance when localizing multiple sessions in a pre-generated

map. Although localization sessions are collected on different days, our localization

pipeline continues to produce accurate pose estimates. From a quantitative perspective,

localizing in the real world has greater errors compared to localizing in a simulated

environment. Despite that, the pose estimates are well-bounded, and thus can still be

used to help annotate LiDAR scans.

5.4 Annotation Evaluation

In this section, we compare our annotation on the simulation dataset with the groundtruth

from the Carla simulator and provide a qualitative and quantitative evaluation of our

annotation accuracy. Recall that our automated annotation pipeline annotates LiDAR

scans using four class labels: ground, non-movable, long-term movable and short-term

movable. As discussed in Chapter 5.2, we employ the confusion matrix to evaluate this

multi-class classification problem.

Figure 5.1(a) and Figure 5.2(b) present an example of our annotated scan in com-

parison with the groundtruth. Ground, non-movable, long-term movable and short-term

movable points are annotated with blue, green, yellow and red. From a qualitative per-

spective, our ground extraction algorithm manages to capture most of the ground points.

However, our annotations in the black circled areas suggest that our ground extraction is

quite aggressive in that it also captures non-ground points that are close to the ground

plane. The non-movable points in the scan, i.e., walls and fence, are successfully identi-

Chapter 5. Experimental Results 62

fied through our annotation pipeline despite some false annotations close to the ground.

The main feature that distinguishes our annotation pipeline from other dynamic object

detection algorithms is our detection of long-term movable points in the scan. The top

circled yellow points are parked vehicles in a parking lot which are successfully identi-

fied as long-term movable points. Through PointRay, these points receive low moving

probability and thus are unlikely to move compared to points from on-road vehicles.

(a) Annotated scan (b) Groundtruth scan

Figure 5.1: Comparison of annotated and groundtruth scan examples from the testing set
of our simulation dataset using the automated annotation pipeline. The scan is annotated
with four classes: ground (blue), non-movable (green), long-term movable (yellow) and
short-term movable (red).

In Table 5.4 we present the confusion matrix to provide a quantitative evaluation of

our annotation. We emphasize that this confusion matrix is computed from all our anno-

tated scans. As suggested by the diagonal elements, we achieve close to perfect extraction

of ground points. We do decently well in extracting non-movable points and short-term

movable points, yet fail to extract half of the long-term movable points. From the first

column of the confusion matrix, we can easily observe that a lot of false annotations

happen in cases where we incorrectly annotate points to be ground when they belong

to other classes. This observation aligns with our previous hypothesis that the ground

extraction algorithm is overaggressive. Also, nearly 25% of long-term movable points are

identified as non-movable and short-term movable points. We identify it as a trade-off

to address the move-and-stop nature of on-road vehicles because we purposely choose

a relatively low τshort to capture more short-term movable points from on-road vehicles.

Chapter 5. Experimental Results 63

This inevitably includes more long-term movable points as short-term movable points

and causes our long-term movable and short-term movable points to intermix. This can

be well noticed by 12.2% of short-term movable points being misclassified as long-term

movable points.

Groundtruth
Annotation

ground non-movable
long-term
movable

short-term
movable

ground 99.49% 0.33% 0.11% 0.06%
non-movable 21.82% 73.97% 2.66% 1.54%

long-term movable 26.64% 15.06% 48.49% 9.82%
short-term movable 8.46% 3.99% 12.21% 75.35%

Table 5.4: Confusion matrix between groundtruth and annotations, normalized by rows.
Diagonal elements suggest the correct prediction (TP) of each class. While the rest of
the rows suggest the percentage of misclassification to other classes, the column suggests
false annotations to a class.

Finally, we conclude our annotation performance on the simulation dataset. We

rely on an aggressive ground extraction algorithm to achieve nearly perfect ground an-

notations, yet sacrifice annotation accuracy on other classes. Our long-term movable

annotation especially fails to detect half of the points due to our attempt to address the

move-and-stop issue with on-road vehicles. Despite the imperfections in our scan anno-

tations, we hope our semantic segmentation network can robustly learn the true positives

from a number of outliers.

5.5 Network Prediction Evaluation

In this section, we train our semantic segmentation network using annotated scans from

the simulation dataset and compare our network predictions to the groundtruth from

the Carla simulator to provide a qualitative and quantitative analysis. Our network

consumes the latest LiDAR scan input and does not rely on any temporal information

as other dynamic object detection approaches. [63] For the network training, we use

annotated scans from Town 00 and Town 01 as training and validation sets, respectively.

We use one Tesla V100 GPU and reach convergence after about 12 hours. Table 5.5 lists

our network training parameters.

Chapter 5. Experimental Results 64

Hyperparameters Value
Optimizer Stochastic Gradient Descent (SGD)

Learning Rate 0.01
Learning Rate Decay Yes

Momentum 0.98
Loss Cross Entropy Loss

Class Weight
ground: 0.1, non-movable: 0.2

long-term movable: 0.5, short-term movable: 0.5
Batch Size 8

Data Augmentation Yes

Table 5.5: List of network training parameters for learning semantic segmentation of
LiDAR scans.

Figure 5.2(a) and Figure 5.2(b) present an example of our predicted scan from Town

02 test set in comparison with the groundtruth. We use the same colour code as in

Chapter 5.4. Our network makes correct predictions to most of the ground points in this

example scan except for being overaggressive in the bottom right corner. As opposed to

its aggressive pattern in the annotating process in Figure 5.1(a), our network prediction

becomes more conservative and no longer falsely assigns ground labels to points close to

the ground plane. Furthermore, an important observation is that our network learns to

distinguish the parked vehicle in the top circle from the on-road vehicle on the left even

though they have a very similar geometry. Our hypothesis is that our network has learned

to identify whether points from a vehicle belong to long-term movable or short-term

movable by interpreting 3D geometry from not only the vehicle but also the surrounding

environment, thanks to a large receptive field. Also, for small moving objects, such as

the pedestrian in the bottom circle, our network has successfully identified them as short-

term movable points. It is likely that our network has learned to interpret a pedestrian

model and it auto-assigns any points from it to be short-term movable.

Table 5.6 presents the confusion matrix computed from our predictions on Town 02

test set to quantitatively evaluate our network prediction accuracy. As discussed earlier,

we observe that our ground point detection is becoming more conservative compared

to our annotation. This is reflected in the true positives and false positives for ground

points. Even though the true positives drop from 99.49% to 93.54%, the false positives

Chapter 5. Experimental Results 65

(a) Predicted scan (b) Groundtruth scan

Figure 5.2: Comparison of predicted and groundtruth scan examples from the testing set
of our simulation dataset using best-trained network parameters. Our network learns to
assign four class labels to understand the scene.

also reduce significantly. This indicates that fewer points are incorrectly classified as

ground points, and it explains why there is a significant improvement in the prediction

accuracy of non-movable points, from 73.97% to 92.69%. Also, we are seeing slight

improvement on predicting long-term movable points from 48.49% to 55.90%. Even

though the improvement is trivial, we are seeing a shift in the distribution of its false

negatives. In Table 5.4 most misclassification for long-term movable points comes from

either ground or non-movable points, yet our network predictions suggest that it now

comes from short-term movable instead. This indicates that our network becomes worse

in identifying short-term movable from long-term movable compared to our annotations.

Even though we have qualitatively shown the network’s ability to identify a parked vehicle

from an on-road vehicle, the quantitative result suggests an unsatisfying capability of our

network to identify all the long-term movable points in the scene.

Finally, we conclude our network prediction performance on the simulation dataset.

Our network learns to predict class labels from the latest LiDAR scan input. Compared

to our annotations, the network is more conservative in predicting ground points, which

in return improves the prediction accuracy on other classes. However, as suggested by

the quantitative results in Table 5.6, predicting and identifying long-term movable and

short-term movable from each other remain challenging despite slight improvements.

Chapter 5. Experimental Results 66

Groundtruth
Prediction

ground non-movable
long-term
movable

short-term
movable

ground 93.54% 5.98% 0.15% 0.34%
non-movable 4.32% 92.69% 1.45% 1.45%

long-term movable 16.12% 3.88% 55.90% 24.09%
short-term movable 0.48% 0.82% 23.49% 75.20%

Table 5.6: Confusion matrix between groundtruth and network predictions, normalized
by rows. Diagonal elements suggest the correct prediction (TP) of each class. While
we improve on nearly all classes, we still face challenges when long-term movable and
short-term movable intermix.

5.6 Semantics-Aware Localization Evaluation

In this section, we present a quantitative evaluation of our semantics-aware localization

pipeline. Our pipeline uses network predictions as visual cues to semantically filter out

points from LiDAR scans to further improve localization. We only keep non-movable

points in our scans as they are permanent to the environment. We pass semantically

filtered scans into our localization pipeline in order to localize against the pre-generated

map and compare our performance to the generic localization pipeline without any se-

mantic filtering.

For the simulation dataset, we conduct localization experiments on all sessions with

different traffic levels. Table 5.7 presents our localization performance in comparison

with the generic localization. We refer to setting 1 as the generic localization pipeline

without semantic filtering and setting 2 as our proposed semantics-aware localization

pipeline. We emphasize that sessions 1 and 2, 3 and 4, 5 and 6 are simulated with

extreme, medium and light traffic to test the robustness of localization. Intuitively, it is

more challenging for a vehicle to localize within a pre-generated map with more traffic

as it introduces greater occlusions. Our experiments show that in challenging scenarios

with extreme traffic (session 1 and 2), semantically filtering out the ground and movable

points in the scans helps retain an accurate pose estimate when generic localization fails

due to the abundance of moving traffic, causing localization solution to drift. Figure

5.3(a) and Figure 5.3(b) show an example of a scan in extreme traffic before and after

semantic filtering. By keeping only non-movable points in the scan, it becomes easier for

Chapter 5. Experimental Results 67

localization to match permanent structures to the pre-generated map. Furthermore, our

experiments on sessions with decent traffic (session 3-6) suggest that our semantics-aware

localization pipeline performs equally or better than the generic localization approach,

even though not by a large margin.

Session Setting
Hori.
RMS

Hori.
Max

< 0.1m
Pct.

< 0.2m
Pct.

< 0.3m
Pct.

Yaw
RMS

Yaw
Max

< 0.1◦

Pct.
< 0.3◦

Pct.
< 0.6◦

Pct.

1
1 9.757 198.8 68.43 91.56 95.17 11.55 174.19 84.63 97.14 97.59

2 (ours)0.086 0.416 78.83 97.09 99.87 0.026 0.453 99.39 99.97 99.98

2
1 54.49 378.3 64.70 80.74 86.42 3.21 168.72 94.95 97.11 97.39

2 (ours)0.788 19.60 69.69 84.10 88.13 0.050 0.41 94.32 99.90 100.0

3
1 0.073 0.308 85.83 98.49 99.94 0.025 0.348 99.74 99.94 99.97

2 (ours)0.071 0.348 85.62 98.83 99.94 0.024 0.237 99.13 99.97 99.97

4
1 0.069 0.355 87.04 98.55 99.89 0.020 0.179 99.67 99.98 99.98

2 (ours)0.066 0.328 88.31 98.62 99.98 0.020 0.178 99.68 99.98 99.98

5
1 0.100 0.503 73.75 93.41 99.18 0.029 0.620 99.29 99.89 99.96

2 (ours)0.091 0.539 74.81 96.83 99.33 0.031 0.627 99.10 99.85 99.95

6
1 0.097 0.481 77.24 95.88 99.31 0.024 0.359 99.45 99.92 99.99

2 (ours)0.089 0.487 78.10 96.03 99.69 0.022 0.387 99.44 99.93 99.99

Table 5.7: Localization evaluation on the test set with various traffic levels. Intuitively,
with more traffic in the environment, it is more difficult for our vehicle to localize against
the pre-generated map.

Finally, we conclude our semantics-aware localization pipeline. By learning semantics

using a semantic segmentation network, our semantics-aware localization pipeline filters

out ground and movable points from scans and use the rest of the points for localization.

Experiments show that it successfully resolves failures cases when the robot attempts to

localize in extremely busy traffic. Furthermore, when evaluated on sessions with common

traffic, it performs equally or better than the generic localization approach.

5.7 Real-world Dataset Evaluation

From Chapter 5.4 to Chapter 5.6 we provide a qualitative and quantitative evaluation of

our method on the simulation dataset. In this section, we provide a qualitative evaluation

of our semantic segmentation network on the real-world dataset and make a quantitative

Chapter 5. Experimental Results 68

(a) Scan before semantic filtering (b) Scan after semantic filtering

Figure 5.3: Comparison of a LiDAR scan captured in extreme traffic before and after
semantic filtering. While generic localization estimates pose using all points in (a), our
semantics-aware localization filters out ground (blue), long-term movable (yellow) and
short-term movable (red) points from the scan (b) before localizing against the pre-
generated map. Under extreme traffic, generic localization fails due to the abundance of
dynamics in the environment, i.e., on-road vehicles (red) in (a), whereas our semantics-
aware localization successfully localizes using non-movable points in (b).

analysis of our semantics-aware localization. We train a semantic segmentation network

using real-world scan annotations and present an example of our network predictions on

a test set scan from the real-world dataset in Figure 5.4. From a qualitative perspective,

we easily notice that the network captures ground points well thanks to their simple

3D geometry. Non-movable points such as walls, poles and traffic signs are also well

segmented. The segmentation on billboards in the bottom right circle suggests that our

network has also learned the capability to segment small objects in a large-scale scene.

Furthermore, our approach manages to distinguish long-term movable from short-term

movable, especially parked vehicles from on-road vehicles. The vehicles parked in the

doorway (right circle) are successfully identified as long-term movable. Compared with

the on-road vehicles, these parked vehicles have different surroundings (trees) that the

network learns to distinguish from. Despite all this, the network still incorrectly identifies

part of an on-road vehicle as long-term movable as circled on the left. This misclassi-

fication suggests that our network still needs improvement in robustly distinguishing

long-term movable and short-term movable points.

Table 5.8 presents our semantics-aware localization performance on the test set. As

Chapter 5. Experimental Results 69

Figure 5.4: Network predictions on the test set from the real-world dataset.

mentioned earlier, we retrieve test set from more than twenty sessions of collected data

that are neither used for mapping nor localization. We can easily observe that by se-

mantically filtering out the ground and movable points in the scans, our semantics-aware

localization pipeline performs on par with the generic localization pipeline. The reason

we do not see a large improvement in the localization performance is that our data is

collected in a local residential neighbourhood, which does not contain an abundance of

dynamic objects. Therefore, semantically filtering out the ground and movable points

do not significantly help localization as it already has enough permanent structures for

scan-to-map alignment.

Session Setting
Hori.
RMS

Hori.
Max

< 0.1m
Pct.

< 0.2m
Pct.

< 0.3m
Pct.

Yaw
RMS

Yaw
Max

< 0.1◦

Pct.
< 0.3◦

Pct.
< 0.6◦

Pct.

1
1 0.105 0.423 73.79 96.35 99.53 0.050 0.592 99.14 99.78 99.94

2 (ours)0.098 0.416 75.63 96.10 99.42 0.049 0.584 99.28 99.83 99.97

2
1 0.104 0.531 70.91 90.60 98.89 0.044 0.493 99.32 99.88 100.0

2 (ours) 0.106 0.489 71.74 92.47 99.18 0.045 0.497 99.32 99.86 100.0

3
1 0.115 0.502 68.97 88.98 99.08 0.049 0.459 99.12 99.82 99.99

2 (ours)0.110 0.534 70.59 91.35 99.12 0.047 0.517 99.20 99.84 99.99

Table 5.8: Localization evaluation on the test set for the real-world dataset.

Chapter 5. Experimental Results 70

Finally, we conclude our semantics-aware localization pipeline on a real-world dataset.

Our semantic segmentation network learns decent class labels from our qualitative eval-

uation. However, when we semantically filter out points in the scans, the quantitative

improvement on localization is trivial due to the lack of dynamics in the environment.

5.8 Summary

In this chapter, we presented the results of our self-supervised semantic learning pipeline.

Using the metrics discussed earlier in the chapter, we break down our pipeline into in-

dividual components and make qualitative and quantitative analyses on results from the

simulation dataset. Furthermore, we evaluate our network predictions qualitatively on

the real-world dataset and provide quantitative analysis to our semantics-aware local-

ization pipeline. From our experimental results on both datasets, we conclude that our

proposed method performs well in annotating LiDAR scans and making accurate pre-

dictions of semantic classes. The proposed semantics-aware localization pipeline demon-

strates improvement to localization in busy traffic. However, due to the lack of dynamic

elements, our real-world dataset proves to be insufficient to highlight the benefit of our

approach.

Chapter 6

Conclusions & Future Work

6.1 Conclusions

This thesis presents a self-supervised semantic learning approach for large-scale scene

understanding. Our goal is to identify movable points in a LiDAR scan. Instead of

segmenting the scene into static and dynamic points, we learn to segment point clouds

into more descriptive semantic classes: ground, non-movable, long-term movable and

short-term movable. We accomplish that by training a semantic segmentation network

using groundtruth annotations. However, acquiring hand-labelled groundtruth annota-

tions is expensive. We address this issue via an automated annotation pipeline that takes

advantage of ray-tracing and pose estimates from a mapping and localization solution.

Compared to earlier work in [53], our method extends its application to a large-scale

environment. We utilize a more robust ground extraction technique, address the move-

and-stop nature of on-road vehicles, label long-term movable points without carefully

crafted geometric constraints, and evaluate our approach in a semantics-aware localiza-

tion pipeline.

Unfortunately, a public dataset that suits our needs does not exist due to the difficulty

in acquiring the groundtruth labels. To evaluate our approach, we collect a simulation

dataset using the Carla simulator and a real-world dataset using the data collection

vehicle from ASRL. Our simulation dataset provides us with a quantitative benchmark

to evaluate individual components in our pipeline. Furthermore, we validate our approach

71

Chapter 6. Conclusions & Future Work 72

and make qualitative analyses on results using a real-world dataset.

In both simulation and real-world datasets, our mapping and localization solution

provides accurate pose estimates. However, our automated pipeline finds it difficult to

annotate long-term movable points due to the limit on map resolution. Our network

prediction on the semantic classes shows that we can make accurate predictions on the

ground and non-movable points yet misclassify some short-term and long-term movable

points. We deem this as acceptable because we still manage to correctly annotate most

of the points. Finally, we evaluate our entire pipeline by performing localization on

semantically filtered LiDAR scans and compare its performance against the unfiltered

approach.

In summary, the novel contribution of this thesis is a self-supervised semantic learning

approach for large-scale scene understanding. We explicitly emphasize that we extend

the original approach [53] to large-scale autonomous driving scenarios by:

• utilizing a robust LiDAR-only mapping and localization solution provided by Ap-

planix Corporation

• correcting motion distortion for LiDAR point clouds when aggregating scans to

map

• designing a voting strategy to extract ground points for large-scale point cloud map

• accounting for move-and-stop nature of on-road vehicles at traffic intersections

• labelling long-term movable points without carefully crafted geometric constraints

Furthermore, we provide a qualitative and quantitative evaluation of our approach on a

simulation dataset using the Carla simulator and a real-world dataset using a Velodyne

VLS-128 LiDAR sensor.

6.2 Future Work

We conclude this thesis with a discussion on future work to address multiple topics that

arise during and after evaluating our self-supervised semantic learning pipeline.

Chapter 6. Conclusions & Future Work 73

6.2.1 Object-level Annotation

Recall our automated annotation pipeline. We annotate the map prior to transferring

the annotations to the associated scans. We annotate points in the scans based on the

annotation of their nearest neighbour in the map. Even though this is computationally

appealing, points belonging to the same object may not get the same annotation as

illustrated in Figure 5.1(a). A good example is a pedestrian on the sidewalk. Our

annotation pipeline may annotate most of the points from the pedestrian as short-term

movable, yet suggest his feet as ground points. Therefore, our future work should look into

developing a self-supervised object-level annotation pipeline as opposed to the current

point-level approach.

The object-level annotation pipeline would annotate points in LiDAR scans by en-

suring points from the same object always receive the same annotation. To accomplish

that, an intuitive approach is to segment scans into different objects, quantify the most

frequent annotation in each object, and hard-assign this annotation to points from each

object.

Finally, this object-level annotation pipeline would produce more accurate annota-

tions, and thus have our network learn a more accurate semantic segmentation.

6.2.2 Runtime for Semantic Segmentation

Recall that our semantic segmentation network can be replaced with any existing segmen-

tation network implementations. We choose to develop our network based on KPConv

because of its state-of-the-art performance in completing semantic segmentation tasks in

a large-scale environment. However, the runtime of KPConv makes it inapplicable for

any real-time use. The current runtime is 2 Hz in contrast to our LiDAR logging rate

at 10 Hz. Therefore, future work should look into replacing KPConv with a real-time

semantic segmentation network to achieve fast inference.

An alternative semantic segmentation network is RangeNet++ introduced by Milioto

et al. [38]. The method reduces computational burden by using LiDAR range images

as opposed to point clouds and achieves more than 20 times faster inference time than

Chapter 6. Conclusions & Future Work 74

a point cloud semantic segmentation network. It also achieves near to state-of-the-art

semantic segmentation performance, which makes it more applicable for real-time use.

6.2.3 Annotation Update

Recall that we use an annotated mapM(m) as an intermediate representation to annotate

scans in our annotation pipeline. The map is used to update annotations of all the

localization scans. In other words, if there is any update to the map annotations, we

need to update accordingly to all the localization scans. This is not an issue in our

thesis because we only compute annotation for M(m) once. However, when we look

into improving our annotations frequently using newly collected localization sessions, it

requires us to constantly update map annotations for M(m). As a result, we have to

update annotations for all the localization scans in the current pipeline regardless if it

is necessary. This becomes a computationally expensive operation as it is linear to our

map update frequency and the number of localization scans. Therefore, future work

should look into improving the current pipeline to efficiently update scan annotations.

An intuitive modification would be to update the scan annotation only if its associated

map annotation has changed to reduce a lot of computation burden.

75

Appendix A. Computing Moving Probability for Map M 76

Appendix A

Computing Moving Probability for

Map M

Algorithm 1: Compute moving probability for map M
Result: Map M with moving probability pi for each xi

initialize n, m s.t. each entry is zero;

for P̄k in all motion compensated scans do

for P̄ki in P̄k do

transform P̄ki to F−→i
using Tk;

i = vox(P̄ki);

ni = ni + 1;

encode free space of P̄k into frustum grid Ik;

project xi into Ik;

if r(xi) <= Ik(θi, φi) then
mi = mi + 1

ni = ni + 1

else
mi = mi

ni = ni

end

end

end

for xi in M do
pi = mi

ni

end

Bibliography

[1] Sean Anderson and Timothy D Barfoot. Full STEAM ahead: Exactly sparse gaus-

sian process regression for batch continuous-time trajectory estimation on se (3).

In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 157–164. IEEE, 2015.

[2] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Contour de-

tection and hierarchical image segmentation. IEEE transactions on pattern analysis

and machine intelligence, 33(5):898–916, 2010.

[3] K Somani Arun, Thomas S Huang, and Steven D Blostein. Least-squares fitting of

two 3-d point sets. IEEE Transactions on pattern analysis and machine intelligence,

(5):698–700, 1987.

[4] Timothy D Barfoot. State estimation for robotics. Cambridge University Press,

2017.

[5] Ioan Andrei Barsan, Shenlong Wang, Andrei Pokrovsky, and Raquel Urtasun. Learn-

ing to localize using a lidar intensity map. arXiv preprint arXiv:2012.10902, 2020.

[6] Jens Behley, Martin Garbade, Andres Milioto, Jan Quenzel, Sven Behnke, Cyrill

Stachniss, and Jurgen Gall. Semantickitti: A dataset for semantic scene understand-

ing of lidar sequences. In Proceedings of the IEEE/CVF International Conference

on Computer Vision, pages 9297–9307, 2019.

[7] Jens Behley and Cyrill Stachniss. Efficient surfel-based slam using 3d laser range

data in urban environments. In Robotics: Science and Systems, volume 2018, 2018.

77

Bibliography 78

[8] Paul J Besl and Neil D McKay. Method for registration of 3-D shapes. In Sen-

sor fusion IV: control paradigms and data structures, volume 1611, pages 586–606.

International Society for Optics and Photonics, 1992.

[9] Peter Biber and Wolfgang Straßer. The normal distributions transform: A new

approach to laser scan matching. In Proceedings 2003 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453),

volume 3, pages 2743–2748. IEEE, 2003.

[10] Keenan Burnett, Angela P Schoellig, and Timothy D Barfoot. Do we need to com-

pensate for motion distortion and doppler effects in spinning radar navigation? IEEE

Robotics and Automation Letters, 6(2):771–778, 2021.

[11] Xieyuanli Chen, Thomas Läbe, Andres Milioto, Timo Röhling, Olga Vysotska,

Alexandre Haag, Jens Behley, and Cyrill Stachniss. Overlapnet: Loop closing for

lidar-based slam. arXiv preprint arXiv:2105.11344, 2021.

[12] Xieyuanli Chen, Andres Milioto, Emanuele Palazzolo, Philippe Giguere, Jens Behley,

and Cyrill Stachniss. Suma++: Efficient lidar-based semantic SLAM. In 2019

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pages 4530–4537. IEEE, 2019.

[13] Yang Chen and Gérard Medioni. Object modelling by registration of multiple range

images. Image and vision computing, 10(3):145–155, 1992.

[14] Younggun Cho, Giseop Kim, and Ayoung Kim. Deeplo: Geometry-aware deep lidar

odometry. arXiv preprint arXiv:1902.10562, 2019.

[15] Younggun Cho, Giseop Kim, and Ayoung Kim. Unsupervised geometry-aware deep

lidar odometry. In 2020 IEEE International Conference on Robotics and Automation

(ICRA), pages 2145–2152. IEEE, 2020.

[16] Blender Online Community. Blender-a 3d modelling and rendering package, 2017.

Bibliography 79

[17] Ayush Dewan, Gabriel L Oliveira, and Wolfram Burgard. Deep semantic classifica-

tion for 3d lidar data. In 2017 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 3544–3549. IEEE, 2017.

[18] Hang Dong and Timothy D Barfoot. Lighting-invariant visual odometry using lidar

intensity imagery and pose interpolation. In Field and Service Robotics, pages 327–

342. Springer, 2014.

[19] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen

Koltun. Carla: An open urban driving simulator. In Conference on robot learning,

pages 1–16. PMLR, 2017.

[20] Renaud Dubé, Andrei Cramariuc, Daniel Dugas, Juan Nieto, Roland Siegwart, and

Cesar Cadena. Segmap: 3d segment mapping using data-driven descriptors. arXiv

preprint arXiv:1804.09557, 2018.

[21] Udo Frese, Per Larsson, and Tom Duckett. A multilevel relaxation algorithm for

simultaneous localization and mapping. IEEE Transactions on Robotics, 21(2):196–

207, 2005.

[22] Paul Furgale and Timothy D Barfoot. Visual teach and repeat for long-range rover

autonomy. Journal of Field Robotics, 27(5):534–560, 2010.

[23] Wolfgang Hess, Damon Kohler, Holger Rapp, and Daniel Andor. Real-time loop

closure in 2D lidar slam. In 2016 IEEE International Conference on Robotics and

Automation (ICRA), pages 1271–1278. IEEE, 2016.

[24] Michael Himmelsbach, Felix V Hundelshausen, and H-J Wuensche. Fast segmen-

tation of 3d point clouds for ground vehicles. In 2010 IEEE Intelligent Vehicles

Symposium, pages 560–565. IEEE, 2010.

[25] Kin Leong Ho and Paul Newman. Loop closure detection in slam by combining

visual and spatial appearance. Robotics and Autonomous Systems, 54(9):740–749,

2006.

Bibliography 80

[26] Michael Kaess, Hordur Johannsson, Richard Roberts, Viorela Ila, John J Leonard,

and Frank Dellaert. isam2: Incremental smoothing and mapping using the bayes

tree. The International Journal of Robotics Research, 31(2):216–235, 2012.

[27] Giseop Kim and Ayoung Kim. Scan context: Egocentric spatial descriptor for place

recognition within 3d point cloud map. In 2018 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pages 4802–4809. IEEE, 2018.

[28] Jacek Komorowski. Minkloc3d: Point cloud based large-scale place recognition.

In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer

Vision, pages 1790–1799, 2021.

[29] Rainer Kümmerle, Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, and Wolfram

Burgard. g 2 o: A general framework for graph optimization. In 2011 IEEE Inter-

national Conference on Robotics and Automation, pages 3607–3613. IEEE, 2011.

[30] Stefan Leutenegger, Simon Lynen, Michael Bosse, Roland Siegwart, and Paul Fur-

gale. Keyframe-based visual–inertial odometry using nonlinear optimization. The

International Journal of Robotics Research, 34(3):314–334, 2015.

[31] Jesse Levinson, Michael Montemerlo, and Sebastian Thrun. Map-based precision

vehicle localization in urban environments. In Robotics: science and systems, vol-

ume 4, page 1. Citeseer, 2007.

[32] Qing Li, Shaoyang Chen, Cheng Wang, Xin Li, Chenglu Wen, Ming Cheng, and

Jonathan Li. Lo-net: Deep real-time lidar odometry. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8473–

8482, 2019.

[33] Kok-Lim Low. Linear least-squares optimization for point-to-plane icp surface reg-

istration. Chapel Hill, University of North Carolina, 4(10):1–3, 2004.

[34] Feng Lu and Evangelos Milios. Globally consistent range scan alignment for envi-

ronment mapping. Autonomous robots, 4(4):333–349, 1997.

Bibliography 81

[35] Weixin Lu, Yao Zhou, Guowei Wan, Shenhua Hou, and Shiyu Song. L3-net: To-

wards learning based lidar localization for autonomous driving. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

6389–6398, 2019.

[36] Martin Magnusson, Andreas Nuchter, Christopher Lorken, Achim J Lilienthal, and

Joachim Hertzberg. Evaluation of 3d registration reliability and speed-a comparison

of icp and ndt. In 2009 IEEE International Conference on Robotics and Automation,

pages 3907–3912. IEEE, 2009.

[37] RS Merali, CH Tong, J Gammell, J Bakambu, E Dupuis, and TD Barfoot. Three-

dimensional surface mapping using a semi-autonomous rover: A planetary analogue

field experiment. In Proc. of the 11th Int. Symp. on Artificial Intell., Robotics and

Automation in Space (iSAIRAS), 2012.

[38] Andres Milioto, Ignacio Vizzo, Jens Behley, and Cyrill Stachniss. Rangenet++:

Fast and accurate lidar semantic segmentation. In 2019 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 4213–4220. IEEE, 2019.

[39] Mohammadreza Mostajabi, Payman Yadollahpour, and Gregory Shakhnarovich.

Feedforward semantic segmentation with zoom-out features. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 3376–3385, 2015.

[40] Kai Ni, Drew Steedly, and Frank Dellaert. Tectonic sam: Exact, out-of-core,

submap-based slam. In Proceedings 2007 IEEE International Conference on Robotics

and Automation, pages 1678–1685. IEEE, 2007.

[41] Edwin Olson, John Leonard, and Seth Teller. Fast iterative alignment of pose graphs

with poor initial estimates. In Proceedings 2006 IEEE International Conference on

Robotics and Automation, 2006. ICRA 2006., pages 2262–2269. IEEE, 2006.

[42] Shishir Pagad, Divya Agarwal, Sathya Narayanan, Kasturi Rangan, Hyungjin Kim,

and Ganesh Yalla. Robust method for removing dynamic objects from point clouds.

Bibliography 82

In 2020 IEEE International Conference on Robotics and Automation (ICRA), pages

10765–10771. IEEE, 2020.

[43] Xuran Pan, Zhuofan Xia, Shiji Song, Li Erran Li, and Gao Huang. 3d object detec-

tion with pointformer. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 7463–7472, 2021.

[44] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning

on point sets for 3d classification and segmentation. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 652–660, 2017.

[45] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical

feature learning on point sets in a metric space. arXiv preprint arXiv:1706.02413,

2017.

[46] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. Octnet: Learning deep

3d representations at high resolutions. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 3577–3586, 2017.

[47] Aleksandr Segal, Dirk Haehnel, and Sebastian Thrun. Generalized-icp. In Robotics:

science and systems, volume 2, page 435. Seattle, WA, 2009.

[48] Tixiao Shan and Brendan Englot. Lego-loam: Lightweight and ground-optimized

lidar odometry and mapping on variable terrain. In 2018 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 4758–4765. IEEE, 2018.

[49] Mark Sheehan, Alastair Harrison, and Paul Newman. Continuous vehicle localisation

using sparse 3d sensing, kernelised rényi distance and fast gauss transforms. In 2013

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 398–

405. IEEE, 2013.

[50] Jamie Shotton, John Winn, Carsten Rother, and Antonio Criminisi. Textonboost

for image understanding: Multi-class object recognition and segmentation by jointly

modeling texture, layout, and context. International journal of computer vision,

81(1):2–23, 2009.

Bibliography 83

[51] Hauke Strasdat, JMM Montiel, and Andrew J Davison. Real-time monocular slam:

Why filter? In 2010 IEEE International Conference on Robotics and Automation,

pages 2657–2664. IEEE, 2010.

[52] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. Multi-

view convolutional neural networks for 3d shape recognition. In Proceedings of the

IEEE international conference on computer vision, pages 945–953, 2015.

[53] Hugues Thomas, Ben Agro, Mona Gridseth, Jian Zhang, and Timothy D Barfoot.

Self-supervised learning of lidar segmentation for autonomous indoor navigation.

arXiv preprint arXiv:2012.05897, 2020.

[54] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui,

François Goulette, and Leonidas J Guibas. Kpconv: Flexible and deformable convo-

lution for point clouds. In Proceedings of the IEEE/CVF International Conference

on Computer Vision, pages 6411–6420, 2019.

[55] Chi Hay Tong, Timothy D Barfoot, and Erick Dupuis. 3d slam for planetary worksite

mapping. In 2011 IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 631–638. IEEE, 2011.

[56] Mikaela Angelina Uy and Gim Hee Lee. PointNetVLAD: Deep point cloud based

retrieval for large-scale place recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 4470–4479, 2018.

[57] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint

arXiv:1706.03762, 2017.

[58] Guowei Wan, Xiaolong Yang, Renlan Cai, Hao Li, Yao Zhou, Hao Wang, and Shiyu

Song. Robust and precise vehicle localization based on multi-sensor fusion in diverse

city scenes. In 2018 IEEE International Conference on Robotics and Automation

(ICRA), pages 4670–4677. IEEE, 2018.

Bibliography 84

[59] Xinkai Wei, Ioan Andrei Bârsan, Shenlong Wang, Julieta Martinez, and Raquel

Urtasun. Learning to localize through compressed binary maps. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

10316–10324, 2019.

[60] Daniel Wilbers, Christian Merfels, and Cyrill Stachniss. Localization with sliding

window factor graphs on third-party maps for automated driving. In 2019 Inter-

national Conference on Robotics and Automation (ICRA), pages 5951–5957. IEEE,

2019.

[61] Huan Yin, Yue Wang, Xiaqing Ding, Li Tang, Shoudong Huang, and Rong Xiong.

3d lidar-based global localization using siamese neural network. IEEE Transactions

on Intelligent Transportation Systems, 21(4):1380–1392, 2019.

[62] Keisuke Yoneda, Hossein Tehrani, Takashi Ogawa, Naohisa Hukuyama, and Seiichi

Mita. Lidar scan feature for localization with highly precise 3-d map. In 2014 IEEE

Intelligent Vehicles Symposium Proceedings, pages 1345–1350. IEEE, 2014.

[63] David Yoon, Tim Tang, and Timothy Barfoot. Mapless online detection of dynamic

objects in 3d lidar. In 2019 16th Conference on Computer and Robot Vision (CRV),

pages 113–120. IEEE, 2019.

[64] David J Yoon, Haowei Zhang, Mona Gridseth, Hugues Thomas, and Timothy D

Barfoot. Unsupervised learning of lidar features for use in a probabilistic trajectory

estimator. IEEE Robotics and Automation Letters, 6(2):2130–2138, 2021.

[65] Wentao Yuan, Tejas Khot, David Held, Christoph Mertz, and Martial Hebert. Pcn:

Point completion network. In 2018 International Conference on 3D Vision (3DV),

pages 728–737. IEEE, 2018.

[66] Ji Zhang and Sanjiv Singh. LOAM: Lidar odometry and mapping in real-time. In

Robotics: Science and Systems, volume 2, 2014.

